Sample records for total surface cover

  1. Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Rose, L. Shea

    2001-02-28

    Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four majormore » land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.« less

  2. The radiation from slots in truncated dielectric-covered surfaces

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.; Kouyoumjian, R. G.; Pathak, P. H.

    1974-01-01

    A theoretical approach based on the geometrical theory of diffraction is used to study the electromagnetic radiation from a narrow slot in a dielectric-covered perfectly-conducting surface terminated at an edge. The total far-zone field is composed of a geometrical optics field and a diffracted field. The geometrical optics field is the direct radiation from the slot to the field point. The slot also generates surface waves which are incident at the termination of the dielectric cover, where singly-diffracted rays and reflected surface waves are excited. The diffraction and reflection coefficients are obtained from the canonical problem of the diffraction of a surface wave by a right-angle wedge where the dielectric-covered surface is approximated by an impedance surface. This approximation is satisfactory for a very thin cover; however, the radiation from its vertical and faces cannot be neglected in treating the thicker dielectric cover. This is taken into account by using a Kirchhoff-type approximation, which contributes a second term to the diffraction coefficient previously obtained. The contributions from the geometrical optics field, the singly-diffracted rays and all significant multiply-diffracted rays are summed to give the total radiation. Calculated and measured patterns are found to be in good agreement.

  3. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  4. Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Leanna Shea; Akbari, Hashem; Taha, Haider

    2003-01-15

    In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52more » km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.« less

  5. Effect of Cover Thickness on the Relationship of Surface Relief to Diameter of Northern Lowland QCDs on Mars

    NASA Technical Reports Server (NTRS)

    Buczkowski, D. L.; Frey, H. V.; McGill, G. E.

    2005-01-01

    Previous work has established that there is a relationship of surface relief to diameter for quasi-circular depressions (QCDs) around the Utopia Basin [1]. This relationship has been used to support the contention that the QCDs represent impact craters buried beneath a differentially compacting cover material. For any given regional cover thickness, total cover thickness is greater over the centers of completely buried craters than over their rims; thus total compaction is greater over the center of craters than their rims and topographic depressions will form. Since large craters are deeper than small craters, differential compaction models also predict that surface relief will be proportional to the diameter of the buried crater [2]. It is highly unlikely, however, that the material covering the QCD impact craters is a consistent thickness throughout the entire northern lowlands of Mars. We explore the effects that changes in cover thickness would have on the surface relief vs. diameter relationship of QCDs.

  6. Can "YouTube" help students in learning surface anatomy?

    PubMed

    Azer, Samy A

    2012-07-01

    In a problem-based learning curriculum, most medical students research the Internet for information for their "learning issues." Internet sites such as "YouTube" have become a useful resource for information. This study aimed at assessing YouTube videos covering surface anatomy. A search of YouTube was conducted from November 8 to 30, 2010 using research terms "surface anatomy," "anatomy body painting," "living anatomy," "bone landmarks," and "dermatomes" for surface anatomy-related videos. Only relevant video clips in the English language were identified and related URL recorded. For each videotape the following information were collected: title, authors, duration, number of viewers, posted comments, and total number of days on YouTube. The data were statistically analyzed and videos were grouped into educationally useful and non-useful videos on the basis of major and minor criteria covering technical, content, authority, and pedagogy parameters. A total of 235 YouTube videos were screened and 57 were found to have relevant information to surface anatomy. Analysis revealed that 15 (27%) of the videos provided useful information on surface anatomy. These videos scored (mean ± SD, 14.0 ± 0.7) and mainly covered surface anatomy of the shoulder, knee, muscles of the back, leg, and ankle, carotid artery, dermatomes, and anatomical positions. The other 42 (73%) videos were not useful educationally, scoring (mean ± SD, 7.4 ± 1.8). The total viewers of all videos were 1,058,634. Useful videos were viewed by 497,925 (47% of total viewers). The total viewership per day was 750 for useful videos and 652 for non-useful videos. No video clips covering surface anatomy of the head and neck, blood vessels and nerves of upper and lower limbs, chest and abdominal organs/structures were found. Currently, YouTube is an inadequate source of information for learning surface anatomy. More work is needed from medical schools and educators to add useful videos on YouTube covering this area.

  7. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air temperature.

  8. Characterizing the fabric of the urban environment: A case studyof Metropolitan Chicago, Illinois and Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Rose, Leanna Shea

    2001-10-30

    Urban fabric data are needed in order to estimate the impactof light-colored surfaces (roofs and pavements) and urban vegetation(trees, grass, shrubs) on the meteorology and air quality of a city, andto design effective implementation programs. In this report, we discussthe result of a semi-automatic Monte-Carlo statistical approach used todevelop data on surface-type distribution and city-fabric makeup(percentage of various surface-types) using aerial colororthophotography. The digital aerial photographs for metropolitan Chicagocovered a total of about 36 km2 (14 mi2). At 0.3m resolution, there wereapproximately 3.9 x 108 pixels of data. Four major land-use types wereexamined: commercial, industrial, residential, andtransportation/communication. On average, formore » the areas studied, atground level vegetation covers about 29 percent of the area (ranging 4 80percent); roofs cover about 25 percent (ranging 8 41 percent), and pavedsurfaces about 33 percent (ranging 12 59 percent). For the most part,trees shade streets, parking lots, grass, and side-walks. In commercialareas, paved surfaces cover 50 60 percent of the area. In residentialareas, on average, paved surfaces cover about 27percent of the area.Land-use/land-cover (LULC) data from the United States Geological Surveywas used to extrapolate these results from neighborhood scales tometropolitan Chicago. In an area of roughly 2500 km2, defining most ofmetropolitan Chicago, over 53 percent is residential. The total roof areais about 680 km2, and the total paved surfaces (roads, parking areas,sidewalks) are about 880 km2. The total vegetated area is about 680km2.« less

  9. 75 FR 47888 - IntelliDriveSM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... activities). Environment/fuel use. Pavement conditions (e.g., snow or ice cover, surface roughness, pothole.../destination pair, by time period, weighted by trip volume. System Throughput is intended to quantify the total.... Pavement conditions such as snow or ice cover, slippery conditions, surface roughness, or pothole detection...

  10. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam

    2017-04-01

    Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.

  11. [Influence of different types of surface on the diversity of soil fauna in Beijing Olympic Park].

    PubMed

    Song, Ying-shi; Li, Xiao-wen; Li, Feng; Li, Hai-mei

    2015-04-01

    Soil fauna are impacted by urbanization. In order to explore the stress of different surface covers on diversity and community structure of soil fauna, we conducted this experiment in Beijing Olympic Park. In autumn of 2013, we used Baermann and Tullgren methods to study the diversity of soil fauna in the depth of 0-5 cm, 5-10 cm, 10-15 cm under four different land covers i.e. bared field (BF), totally impervious surface (TIS), partly impervious surface (PIS) and grassland (GL). The results showed that the total number of soil fauna in 100 cm3 was in order of GL (210) > PIS (193) > TIS (183) > BF (90), and the number of nematodes accounted for 72.0%-92.8% of the total number. On the vertical level, except for the TIS, the other three types of surface soil fauna had the surface gathered phenomenon. The Shannon diversity index and the Pielou evenness index of BF were lower, but the Simpson dominance index was higher than in the other land covers. The Shannon index and Margalef richness indes of GL were higher than those of the other land covers. The Shannon indexes of TIS and PIS were between the BF and GL. Except for the TIS and GL, the similarity indexes were between 0.4-0.5, indicating moderate non-similar characteristics. The diversity of soil fauna was significantly correlated with temperature, pH and available potassium.

  12. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    PubMed

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  13. Linking land cover and water quality in New York City's water supply watersheds.

    PubMed

    Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A

    2005-08-01

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.

  14. Assessing canopy cover over streets and sidewalks in street tree populations

    Treesearch

    S.E. Maco; E.G. McPherson

    2002-01-01

    Total canopy cover and canopy cover over street and sidewalk surfaces were estimated for street trees in Davis, California, U.S. Calculations were made using simple trigonometric equations based on the results of a sample inventory. Canopy cover from public trees over streets and sidewalks varied between 4% and 46% by city zone, averaging 14% citywide. Consideration of...

  15. A Time-Series of Surface Oil Distribution Detected by Satellite SAR During the Deepwater Horizon Blowout

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Garcia-Pineda, O. G.; Solow, A.; Daneshgar, S.; Beet, A.

    2013-12-01

    Oil discharged as a result of the Deepwater Horizon disaster was detected on the surface of the Gulf of Mexico by synthetic aperture radar satellites from 25 April 2010 until 4 August 2010. SAR images were not restricted by daylight or cloud-cover. Distribution of this material is a tracer for potential environmental impacts and an indicator of impact mitigation due to response efforts and physical forcing factors. We used a texture classifying neural network algorithm for semi-supervised processing of 176 SAR images from the ENVISAT, RADARSAT I, and COSMO-SKYMED satellites. This yielded an estimate the proportion of oil-covered water within the region sampled by each image with a nominal resolution of 10,000 sq m (100m pixels), which was compiled as a 5-km equal area grid covering the northern Gulf of Mexico. Few images covered the entire impact area, so analysis was required to compile a regular time-series of the oil cover. A Gaussian kernel using a bandwidth of 2 d was used to estimate oil cover percent in each grid at noon and midnight throughout the interval. Variance and confidence intervals were calculated for each grid and for the global 12-h totals. Results animated across the impact region show the spread of oil under the influence of physical factors. Oil cover reached an early peak of 17032.26 sq km (sd 460.077) on 18 May, decreasing to 27% of this total on 4 June, following by sharp increase to an overall maximum of 18424.56 sq km (sd 424.726) on 19 June. There was a significant negative correlation between average wind stress and the total area of oil cover throughout the time-series. Correlation between response efforts including aerial and subsurface application of dispersants and burning of gathered oil was negative, positive, or indeterminate at different time segments during the event. Daily totals for oil-covered surface waters of the Gulf of Mexico during 25 April - 9 August 2010 with upper and lower 0.95 confidence limits on estimate. (No oil visible after 4 August.)

  16. Dependence of global radiation on cloudiness and surface albedo in Tartu, Estonia

    NASA Astrophysics Data System (ADS)

    Tooming, H.

    The dependence of global and diffuse radiation on surface albedo due to multiple reflection of radiation between the surface and the atmosphere (base of clouds) is found on the basis of data obtained at the Tartu-Tõravere Actinometric Station over the period 1955-2000. It is found that the monthly totals of global radiation increase by up to 1.38-1.88 times, particularly in the winter half-year between November and March, when snow cover albedo may be high. A semi-empirical formula is derived for calculating with sufficient accuracy the monthly totals of global radiation, considering the amount of cloudiness and the surface albedo. In the time series of the monthly total by global radiation a downward trend occurs in winter months. A decrease in global radiation by up to 20% in the past 46 years can be explained primarily by a relatively high negative trend in the snow cover duration and surface albedo (up to -0.24). As a result, days are growing darker, a new phenomenon associated with climate change, which undoubtedly affects human mood to some extent.

  17. Land Cover Change Monitoring of Typical Functional Communities of Sichuan Province Based on ZY-3 Data

    NASA Astrophysics Data System (ADS)

    Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.

    2018-04-01

    According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  18. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Stormwater Runoff

    EPA Pesticide Factsheets

    Introduction to impervious surfaces associated with urbanization, overview of effects vs. total imperviousness, overview of how impervious surfaces affect biotic condition, summary of threshold values of impervious cover for stream biotic condition.

  19. Comprehensive data set of global land cover change for land surface model applications

    NASA Astrophysics Data System (ADS)

    Sterling, Shannon; Ducharne, AgnèS.

    2008-09-01

    To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.

  20. Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven

    2015-01-01

    The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.

  1. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed ten years (1982-1991) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog and precipitation The global average cloud cover (average of day and night) is about 2% higher if we impose the moonlight criterion than if we use all observations. The difference is greater in winter than in summer, because of the fewer hours of darkness in the summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-1991 is found to be 55% for northern hemisphere land, 53% for southern hemisphere land, 66% for northern hemisphere ocean, and 70% for southern hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6% for nighttime 63.3%.

  2. Surface Albedo Darkening from wildfires in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Ichoku, C. M.; Poudal, R.; Roman, M. O.; Wilcox, E.

    2014-01-01

    Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and a major source of atmospheric trace gases and aerosols. They are known to produce changes in landscape patterns and lead to changes in surface albedo that can persist for long periods. Here, we estimate the darkening of surface albedo due to wildfires in different land cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires over most land cover types (e.g. woody savannas: (-0.00352 0.00003) and savannas: (- 0.003910.00003), which together accounted for >86% of the total MODIS fire count between 2003 and 2011). Grasslands had a higher value (-0.00454 0.00003) than the savannas, but accounted for only about 5% of the total fire count. A few other land cover types (e.g. Deciduous broad leaf: (0.00062 0.00015), and barren: 0.00027 0.00019), showed an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo change due to wildfires is more important during the fire season (October-February). The albedo recovery progresses rapidly during the first year after fires, where savannas show the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wetlands and barren lands show the least one-year recovery (56%). The persistence of surface albedo darkening in most land cover types is limited to about six to seven years, after which at least 98% of the burnt pixels recover to their pre-fire albedo.

  3. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed Central

    Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems. PMID:29432442

  4. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed

    Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems.

  5. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  6. Depletion and Redistribution of Soil Nutrients in Response to Wind Erosion in Desert Grasslands of the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Li, J.; Okin, G.; Hartman, L.; Epstein, H.

    2005-12-01

    Wind is a key abiotic factor that determines the spatial distribution of soil nutrients in arid grasslands with large unvegetated gaps, such as those found in the southwestern US. On the landscape scale, basic relationships such as wind erosion rate vs. vegetative cover, and soil nutrient removal rate vs. vegetative cover have not yet been extensively studied. In a series of experiments conducted in the Jornada Experimental Range near Las Cruces, New Mexico, we have examined these relationships to determine the impact of wind erosion and dust emission on pools of soil nutrients. In the experiments, varying levels of cover were achieved by vegetation removal on 25 m x 50 m plots. Intense surface soil sampling was conducted to monitor spatial distribution of soil nutrients. Large numbers of aeolian sediment samplers were installed to obtain estimates of vertical and horizontal dust flux. Available data from one wind erosion season show that: 1) total organic C (TOC) and total N (TN) content in the windblown sediment collected at the height of 1 m were 2.2 to 7.2 times larger than those of nutrients in the surface soil (enrichment ratio); 2) enrichment ratio generally increases with the increase of vegetative cover, indicating biotic processes continually add nutrients to surface soil in high-cover treatments, while nutrients are depleted in low-cover treatments; 3) average horizontal mass flux is 12 times larger in the bare plot than in the control plot, indicating the extreme importance of vegetative cover in protecting soil nutrient loss caused by wind erosion; 4) detectable soil nutrient depletion happened within one windy season in plots with vegetation removal, especially for TOC and TN, reflecting the importance of biotic processes in maintaining nutrient pools in the surface soil; and, 5) after only a single windy season, wind erosion can significantly alter the spatial pattern of soil nutrients.

  7. Fertilization and seeding effects on vegetative cover after wildfire in north-central Washington state

    Treesearch

    David W. Peterson; Erich Kyle Dodson; Richy J. Harrod

    2009-01-01

    Land surface treatments are often applied after severe wildfires to mitigate runoff and erosion threats. However, questions remain about treatment effectiveness, even as treatment costs continue to rise. We experimentally evaluated the effects of seeding and fertilization treatments on vegetative and total soil cover for two growing seasons after the Pot Peak wildfire...

  8. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  9. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  10. Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.

    2017-06-01

    This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of the drainage basin surface area) as compared to Erdalen (18% of the drainage basin surface area) and by a significantly higher sediment yield from the glacierized area of the Bødalen drainage basin compared to the glacierized surface area in Erdalen. When looking at the total annual mass of suspended sediments being fluvially exported from both entire drainage basin systems, the total amount of suspended sediments coming from the ice-free drainage basin surface areas altogether dominates over the total amount of suspended sediments coming from the glacierized surface area of both drainage basins. Drainage-basin wide annual suspended sediment yields are rather low when compared with yields of other partly glacierized drainage basin systems in Norway and in other cold climate environments worldwide, which is mainly due to the high resistance of the predominant gneisses towards glacial erosion and weathering, the altogether only small amounts of sediments being available within the entire drainage basin systems, the stable and nearly closed vegetation cover in the ice-free surface areas with sedimentary covers, and the efficiency of proglacial lakes in trapping sediments supplied by defined outlet glaciers. Both contemporary and long-term suspended sediment yields are altogether supply-limited. Contemporary suspended sediment transport accounts for nearly two-thirds of the total fluvial transport and, accordingly, plays an important role within the sedimentary budgets of the entire Erdalen and Bødalen drainage basins.

  11. Linking Land Use Changes to Surface Water Quality Variability in Lake Victoria: Some Insights From Remote Sensing (GC41B-1101)

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan

    2016-01-01

    Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.

  12. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    NASA Astrophysics Data System (ADS)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  13. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  14. Seepage through a hazardous-waste trench cover

    USGS Publications Warehouse

    Healy, R.W.

    1989-01-01

    Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216 mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest rates occurred along the edge of the cover, where seepage was highly episodic, with 84% of the total there being traced to wetting fronts from 28 individual storms. Limitations of the zero-flux-plane method were severe enough for the method to be judged inappropriate for use in this study.Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest rates occurred along the edge of the cover, where seepage was highly episodic, with 84% of the total there being traced to wetting fronts from 28 individual storms. Limitations of the zero-flux-plane method were severe enough for the method to be judged inappropriate for use in this study.

  15. Climatological Data For Clouds Over the Globe From Surface Observations, 1982-1991: The Total Cloud Edition (1994) (NDP-026a)

    DOE Data Explorer

    Hahn, Carole J. [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Warren, Stephen G. [Department of Atmospheric Sciences, University of Colorado, Boulder, CO; London, Julius [Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado, Boulder, CO

    1994-01-01

    Routine, synoptic surface weather reports from ships and land stations over the entire globe, for the10-year period December 1981 through November 1991, were processed for total cloud cover and the frequencies of occurrence of clear sky, sky-obscured due to precipitation, and sky-obscured due to fog. Archived data, consisting of various annual, seasonal and monthly averages, are provided in grid boxes that are typically 2.5° × 2.5° for land and 5° × 5° for ocean. Day and nighttime averages are also given separately for each season. Several derived quantities, such as interannual variations and annual and diurnal harmonics, are provided as well. This data set incorporates an improved representation of nighttime cloudiness by utilizing only those nighttime observations for which the illuminance due to moonlight exceeds a specified threshold. This reduction in the night-detection bias increases the computed global average total cloud cover by about 2%. The impact on computed diurnal cycles is even greater, particularly over the oceans where it is found (in contrast to previous surface-based climatologies), that cloudiness is often greater at night than during the day.

  16. Obliquity-paced climate change recorded in Antarctic debris-covered glaciers

    PubMed Central

    Mackay, Sean L.; Marchant, David R.

    2017-01-01

    The degree to which debris-covered glaciers record past environmental conditions is debated. Here we describe a novel palaeoclimate archive derived from the surface morphology and internal debris within cold-based debris-covered glaciers in Antarctica. Results show that subtle changes in mass balance impart major changes in the concentration of englacial debris and corresponding surface topography, and that over the past ∼220 ka, at least, the changes are related to obliquity-paced solar radiation, manifest as variations in total summer energy. Our findings emphasize solar radiation as a significant driver of mass balance changes in high-latitude mountain systems, and demonstrate that debris-covered glaciers are among the most sensitive recorders of obliquity-paced climate variability in interior Antarctica, in contrast to most other Antarctic archives that favour eccentricity-paced forcing over the same time period. Furthermore, our results open the possibility that similar-appearing debris-covered glaciers on Mars may likewise hold clues to environmental change. PMID:28186094

  17. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions

    USGS Publications Warehouse

    Xian, George

    2008-01-01

    By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.

  18. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014

    PubMed Central

    Chen, Xiaona; Liang, Shunlin; Cao, Yunfeng; He, Tao; Wang, Dongdong

    2015-01-01

    Quantifying and attributing the phenological changes in snow cover are essential for meteorological, hydrological, ecological, and societal implications. However, snow cover phenology changes have not been well documented. Evidence from multiple satellite and reanalysis data from 2001 to 2014 points out that the snow end date (De) advanced by 5.11 (±2.20) days in northern high latitudes (52–75°N) and was delayed by 3.28 (±2.59) days in northern mid-latitudes (32–52°N) at the 90% confidence level. Dominated by changes in De, snow duration days (Dd) was shorter in duration by 5.57 (±2.55) days in high latitudes and longer by 9.74 (±2.58) days in mid-latitudes. Changes in De during the spring season were consistent with the spatiotemporal pattern of land surface albedo change. Decreased land surface temperature combined with increased precipitation in mid-latitudes and significantly increased land surface temperature in high latitudes, impacted by recent Pacific surface cooling, Arctic amplification and strengthening westerlies, result in contrasting changes in the Northern Hemisphere snow cover phenology. Changes in the snow cover phenology led to contrasting anomalies of snow radiative forcing, which is dominated by De and accounts for 51% of the total shortwave flux anomalies at the top of the atmosphere. PMID:26581632

  19. The effect of moonlight on observation of cloud cover at night, and application to cloud climatology

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1995-01-01

    Ten years of nighttime weather observations from the Northern Hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 deg, light from a partial moon at higher elevation, or twilight from the sun less than 9 deg bvelow the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. The diurnal cycles of total cloud cover we obtain are compared with those of the International Satellite Cloud Climatology Project (ISCCP) for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed 10 years (1982-91) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog, and precipitation. The global average cloud cover (average of day and night) is about 2% higher if the moonlight criterion is imposed than if all observations are used. The difference is greater in winter than in summer, because of the fewer hours of darkness in summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-91 is found to be 55% for Northern Hemisphere land, 53% for Southern Hemisphere land, 66% for Northern Hemisphere ocean, and 70% for Southern Hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6%; for nighttime 63.3%.

  20. Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health

    NASA Astrophysics Data System (ADS)

    Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.

    2002-12-01

    Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.

  1. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  2. MODIS Measures Total U.S. Leaf Area

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  3. Trends in Total Cloud Amount Over China (1951 - 1994)

    DOE Data Explorer

    Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States).

    1999-01-01

    These total cloud amount time series for China are derived from the work of Kaiser (1998). The cloud data were extracted from a database of 6-hourly weather observations provided by the National Climate Center of the China Meteorological Administration (CMA) to the U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) through a bilateral research agreement. Surface-observed (visual) six-hourly observations [0200, 0800, 1400, and 2000 Beijing Time (BT)] of cloud amount (0-10 tenths of sky cover) were available from 196 Chinese stations covering the period 1954-94. Data from 1951-1953 were also available; however, they only included 0800, 1400, and 2000 BT observations.

  4. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    PubMed

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  5. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    PubMed

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land-cover map is more appropriate than the others. In conclusion, it is desirable to apply the integration method when generating the ISM with the highest accuracy. However, if time and cost are constrained, it would be effective to primarily use the land-cover map. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Global Impacts of Long-Term Land Cover Changes Within China's Densely Populated Rural Regions

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2006-12-01

    Long-term changes in land cover are usually investigated in terms of large-scale change processes such as urban expansion, deforestation and land conversion to agriculture. Yet China's densely populated agricultural regions, which cover more than 2 million square kilometers of Monsoon Asia, have been transformed profoundly over the past fifty years by fine-scale changes in land cover caused by unprecedented changes in population, technology and social conditions. Using a regional sampling and upscaling design coupled with high-resolution landscape change measurements at five field sites, we investigated long-term changes in land cover and ecological processes, circa 1945 to 2002, within and across China's densely populated agricultural regions. As expected, the construction of buildings and roads increased impervious surface area over time, but the total net increase was surprising, being similar in magnitude to the total current extent of China's cities. Agricultural land area declined over the same period, while tree cover increased, by about 10%, driven by tree planting and regrowth around new buildings, the introduction of perennial agriculture, improved forestry, and declines in annual crop cultivation. Though changes in impervious surface areas were closely related to changes in population density, long-term changes in agricultural land and tree cover were unrelated to populated density and required explanation by more complex models with strong regional and biophysical components. Moreover, most of these changes occurred primarily at fine spatial scales (< 30 m), under the threshold for conventional global and regional land cover change measurements. Given that these changes in built structures and vegetation cover have the potential to contribute substantially to regional and global changes in biogeochemistry, hydrology, and land-atmosphere interactions, future investigations of these changes and their impacts across Monsoon Asia would benefit from models that incorporate fine-scale landscape structure and its changes over time.

  7. Cloud classification in polar regions using AVHRR textural and spectral signatures

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Weger, R. C.; Christopher, S. A.; Kuo, K. S.; Carsey, F. D.

    1990-01-01

    Arctic clouds and ice-covered surfaces are classified on the basis of textural and spectral features obtained with AVHRR 1.1-km spatial resolution imagery over the Beaufort Sea during May-October, 1989. Scenes were acquired about every 5 days, for a total of 38 cases. A list comprising 20 arctic-surface and cloud classes is compiled using spectral measures defined by Garand (1988).

  8. Geographic Distribution of QCDs Around the Northern Plains Basins of Mars and the Relationship to Lowland Materials

    NASA Technical Reports Server (NTRS)

    Buczkowski, D. L.; Frey, H. V.; McGill, G. E.

    2005-01-01

    It has been suggested that quasicircular depressions (QCDs) without a structural representation in Viking and MOC visible imagery represent buried impact craters [1,2,3,4]. Topographic depressions will form over impact craters buried by a differentially compacting cover material because total cover thickness, and thus total compaction, is greater over the center of completely buried impact craters than their rims [5]. If this is the process by which QCDs form, then only areas of differentially compacting materials should have QCDs. Previous work has established that there is a relationship of surface relief to diameter for QCDs around the Utopia Basin [6]. The slope of the trend of this relationship varies depending on cover thickness, becoming steeper with decreasing thickness [7]. Comparing trendslopes of QCDs around different lowland basins might give us insight into the relative thickness of the cover material in these areas. We explore the geographic distribution of QCDs around the Utopia, Isidis and Acidalia basins and compare their location to geologic units and materials. We also compare evidence for relative thickness of cover material at the three basins.

  9. Deterioration of soil fertility by land use changes in South Sumatra, Indonesia: from 1970 to 1990

    NASA Astrophysics Data System (ADS)

    Lumbanraja, Jamalam; Syam, Tamaluddin; Nishide, Hiroyo; Kabul Mahi, Ali; Utomo, Muhajir; Sarno; Kimura, Makoto

    1998-10-01

    We monitored the land use changes in a hilly area of West Lampung, South Sumatra, Indonesia, from 1970 to 1990. The main data sources were the land use maps produced in 1970, 1978, 1984 and 1990 covering the area of 27 km×27 km. Transmigration and the resultant effect of increased population were the major driving forces in land use changes. Fifty-seven per cent of the study area was covered with primary forests in 1970, but only 13% in 1990. Areas under plantations, which were absent in 1970, increased to 60% in 1990. In addition, the change from monoculture plantations (mostly coffee plantation) to mixed plantations was noticeable from 1984 to 1990. Total upland areas including upland areas under shifting cultivation and upland fields with crops and vegetables decreased from 21% in 1970 to 0·1% in 1990. Soil chemical properties (total organic C, total N, available P, total P, exchangeable cations, cation exchangeable capacity (CEC), etc.) were analysed for lands under different land use forms after deforestation in the study area. Soil samples (surface layers, 0-20 cm, and subsurface layers, 20-40 cm) were collected from three different locations, each comprised of four different land use systems: i.e. primary forests, secondary forests, coffee plantations and cultivated lands. The contents of total organic C, total N, available P, total P, exchangeable cations and CEC decreased significantly with land use change from primary forests to the other land use forms. Cultivated lands exhibited the lowest values. Although less remarkable than in the surface layers, the amounts of total organic C, total N, total P, exchangeable cations and CEC were also decreased by forest clearing in the subsurface layers.Based on the land use changes from 1978 in the study area and the deterioration of soil chemical properties by forest clearing, total decreases in the amounts of nutrients in the surface and subsurface layers were estimated. The land use changes were estimated to have decreased the total amounts of total organic C, total N, available P, total P, exchangeable cations and CEC by 2-9% in 1984 and by 2-15% in 1990 in the surface layers, and by 1-6%% in 1984 and by 2-9% in 1990 in the subsurface layers from the levels in 1978, respectively.

  10. Bacterial adhesion on commercially pure titanium and anatase-coated titanium healing screws: an in vivo human study.

    PubMed

    Scarano, Antonio; Piattelli, Adriano; Polimeni, Antonella; Di Iorio, Donato; Carinci, Francesco

    2010-10-01

    Little is known about the mechanisms of bacterial interaction with implant materials in the oral cavity. Other surface characteristics, in addition to surface roughness, seem to be extremely important in relation to plaque formation. Different adhesion affinities of bacteria were reported for different materials. Anatase is a nanoparticle that can be applied to titanium surfaces as a coating. The anatase coating gives special characteristics to the implant surface, including some genetic effects on osteoblasts. In this study, the antibacterial effect of anatase is investigated. The aim of this study is to characterize the percentages of surfaces covered by bacteria on commercially pure (cp) titanium and anatase-coated healing screws. Ten patients participated in this study. The protocol of the study was approved by the ethics committee of the University of Chieti-Pescara. A total of 20 healing screws (10 test and 10 control screws) were used in the study. The control screws were made of cp titanium, whereas the test screws were coated with anatase. Cleaning procedures and agents for chemical plaque control were not applied to the healing screws for the complete duration of the test period. After 7 days, all healing screws were removed, substituted, and processed under scanning electron microscopy for evaluation of the portions of the surfaces covered by bacteria. The supracrestal screw surfaces covered by bacteria on test specimens were not significantly lower than those of control screws (P = 0.174). The subcrestal screw surfaces and threads covered by bacteria on test specimens were significantly lower than those of control screws, and P values were 0.001 and 0.000, respectively. Results show that anatase could be a suitable material for coating implant abutments, with a low colonization potential.

  11. Hand burns surface area: A rule of thumb.

    PubMed

    Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan

    2018-08-01

    Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  12. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    PubMed

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  13. Global land-atmosphere coupling associated with cold climate processes

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  14. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Ng, Sam; Bellisario, Antonio

    2017-11-01

    An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long-term, sustainable solutions, the importance of the water stored in rock glaciers or other alpine permafrost landforms, such as talus slopes, must be weighed against the economic value of mineral resources.

  15. [Distribution, surface and protected area of palm-swamps in Costa Rica and Nicaragua].

    PubMed

    Serrano-Sandí, Juan; Bonilla-Murillo, Fabian; Sasa, Mahmood

    2013-09-01

    In Central America, palm swamps are known collectively as yolillales. These wetlands are usually dominated by the raffia palm Raphia taedigera, but also by the royal palm Manicaria saccifera and -in lower extensions- by the American oil palm Elaeis oleifera. The yolillales tend to be poor in woody species and are characteristic of regions with high rainfall and extensive hydroperiods, so they remain flooded most of the year. The dominance of large raffia palm leaves in the canopy, allow these environments to be distinguishable in aerial photographs, which consequently has helped to map them along most of their distribution. However, while maps depicting yolillales are available, the extent of their surface area, perimeter and connectivity remains poorly understood. This is particularly true for yolillales in Costa Rica and Nicaragua, countries that share a good proportion of palm dominated swaps in the Rio San Juan Basin. In addition, it is not known the actual area of these environments that is under any category of protection according to the conservation systems of both countries. As a first step to catalog yolillal wetlands in Costa Rica and Nicaragua, this paper evaluates cartographic maps to delineate yolillales in the region. A subsample of yolillales mapped in this study were visited and we geo-referenced them and evaluate the extent and condition of the swamp. A total of 110 883.2ha are classified as yolillales in Nicaragua, equivalent to 22% of wetland surface area recorded for that country (excluding the Cocibolca and Xolothn Lakes). In Costa Rica, 53 931.3ha are covered by these palm dominated swamps, which represent 16.24% of the total surface area covered by wetlands. About 47% of the area covered by yolillales in Nicaragua is under some category of protection, the largest extensions protected by Cerro Silva, Laguna Tale Sulumas and Indio Maiz Nature Reserves. In Costa Rica, 55.5% of the area covered by yolillal is located within protected areas, mainly the Tortuguero National Park, Barra del Colorado Wildlife Refuge and the Sierpe-Thrraba National Wetland. Therefore, in both countries, about half the area covered by these wetlands is not protected by their systems of protection of wilderness areas.

  16. A comparative study of soil water movement under different vegetation covers

    NASA Astrophysics Data System (ADS)

    FERNANDO, A.; Tanaka, T.

    2002-05-01

    Vegetation, varying widely floristically, structurally, and in spatial distribution, is a complex phenomenon, delicately adjusted within itself and to its broader environment. To investigate the soil water movement of different vegetation covers, soil physical properties, and pressure head of soil water, have been analysed in a pine forest and adjacent disturbed grassland at the Terrestrial Environmental Research Centre (ERC) of Tsukuba University, Japan. Our results of the soil physical properties showed significant differences under different vegetation. At the forest site, the total porosity was nearly constant, i.e. 81% to 84%, from the ground surface to the depth of 70 cm, and decreased uniformly with the depth to reach 63.2% at 150 cm. At the grassland site, the total porosity was about 70% near the ground surface, however, expeditiously decreased to approximately 62% between the depths of 10 and 40 cm. Below these depths the total porosity increased to a maximum of about 77% between the depths of 50 and 80 cm, then decreased again to 54.9% at 150 cm. The total pressure head indicated that the evapotranspiration zone of the pine forest was 70 cm but was 50 cm in the grassland. KEY WORDS: Natural pine forest, Disturbed grassland, Soil water movement, Soil physical properties, Evaporation effective zone.

  17. Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987-2016) case study of Hamoun Wetland, Iran.

    PubMed

    Kharazmi, Rasoul; Tavili, Ali; Rahdari, Mohammad Reza; Chaban, Lyudmila; Panidi, Evgeny; Rodrigo-Comino, Jesús

    2018-05-23

    The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R 2  = 0.94) than fall and spring (R 2  = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.

  18. Regulatory impact analysis: benefits and costs of proposed surface water treatment rule and total coliform rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-01

    This report contains an analysis of the costs and benefits of controlling microbial contaminants in drinking water through the promulgation of two regulations: (1) the Surface Water Treatment Rule (SWTR); and (2) the Total Coliform Rule. This regulatory impact analysis (RIA) was prepared in accordance with Executive Order 12291, which requires that the costs and benefits of all major rules be examined and compared. The major topical areas covered in the RIA are as follows: problem definition; market imperfections, the need for federal regulation, and consideration of regulatory alternatives; assessment of total costs; assessment of benefits; regulatory flexibility act andmore » Paperwork Reduction Act analyses; and a summary of costs and benefits.« less

  19. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.

  20. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.

    PubMed

    Jokela, William; Sherman, Jessica; Cavadini, Jason

    2016-09-01

    Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    NASA Astrophysics Data System (ADS)

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low water flows which are essentially feeded by snowmelt water. Simulations were ran, predicting the snow level between two sampled dates, they provided promising result for national scale extrapolation.

  2. SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirono, Sin-iti

    2013-03-01

    The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to largemore » aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.« less

  3. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    PubMed

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  4. Photogrammetric registration of dental plaque accumulation in vivo.

    PubMed

    Bergström, J

    1981-01-01

    Using the labial surface of upper anterior laterals for determination, the accumulation of plaque was assessed by means of a stereo-photogrammetric method. The stereoimages were subjected to photogrammetric evaluation, the part of the surface area covered by plaque being given in per cent of the total surface area of the tooth. Plaque extension and plaque topography was studied in young adults with healthy periodontia during a 20 day period of no oral hygiene. At the end of the experimental period, on an average 75 per cent of the surface area was covered by plaque, corresponding to an extension rate of 3.75 per cent per day. The correlation between plaque values obtained by photogrammetry and various estimates obtained from clinical scoring ranged between r = 0.66 and r = 0.78. It is concluded that the method introduced is a sensitive means of determining small amounts of plaque and should prove useful for in vivo investigation of plaque growth and plaque suppression, where measurements of high quality is of importance.

  5. In-lake carbon dioxide concentration patterns in four distinct phases in relation to ice cover dynamics

    NASA Astrophysics Data System (ADS)

    Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.

    2014-12-01

    Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.

  6. How does vineyard management intensity affect inter-row plant diversity and associated root parameters

    NASA Astrophysics Data System (ADS)

    Winter, Silvia; Labuda, Thomas; Probus, Sandra; Penke, Nicole; Himmelbauer, Margarita; Loiskandl, Willibald; Strauss, Peter; Bauer, Thomas; Popescu, Daniela; Comsa, Maria; Bunea, Claudiu-Ioan; Zaller, Johann G.; Kriechbaum, Monika

    2017-04-01

    Vineyard management has changed dramatically in the last 50 years. In many wine-growing regions, vineyard inter-rows are kept clean of vegetation by frequent tillage or use of herbicides to establish bare soil systems. In the last thirty years, policy-makers and several winegrowers have realized that temporary or permanent vegetation cover between the vine rows may increase ecosystem services like soil erosion mitigation, soil fertility and biodiversity conservation. The inter-row area of a vineyard can host a diverse flora providing habitat and food resources for pollinating insects and natural enemies of pests. The goal of this study was to analyze the influence of different soil management intensities on plant diversity and root parameters in the vineyard inter-rows. We investigated 15 vineyards in Romania and 14 in Austria to study the effects of three different management intensities on plant diversity, above and below-ground plant biomass, total root length and surface area of roots. Management intensity ranged from bare soil inter-rows to alternative soil tillage every second year to permanent vegetation cover for more than five years. In each vineyard inter-row, six soil samples (7 cm diameter and 10 cm height) of the upper soil layer were extracted for root analyses. Root were separated from the soil, stained and finally scanned and analyzed with the WinRHIZO software. Finally, roots were dried at 70°C to obtain dry matter of the root samples. Vegetation cover and vascular plant diversity was recorded in four 1 m2 plots within each vineyard inter-row two times a year. The most intensive bare soil management regime in Romania significantly reduced root biomass, total root length and surface area in comparison to the alternative and permanent vegetation cover management. Plant biodiversity was also reduced by intensive management, but differences were not significant. While alternative tillage every second year showed the highest values of plant species diversity and functional richness, total root length, surface area and root biomass always showed the highest value in the vineyards with permanent vegetation cover. In Austria, the difference between temporary and permanent vegetation cover was much less pronounced than in Romania. The overall synthesis of these results combined with additional biodiversity datasets and soil parameters gathered within the transdisciplinary BiodivERsA project VineDivers will be used to draft management and policy recommendations for various stakeholder groups engaged in viticulture.

  7. Climatological determinants of woody cover in Africa.

    PubMed

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  8. Temporal variability of total cloud cover at a Mediterranean megacity in the 20th century: Evidence from visual observations and climate models

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2013-04-01

    Cloud cover is one of the major factors that determine the radiation budget and the climate system of the Earth. Moreover, the response of clouds has always been an important source of uncertainty in global climate models. Visual surface observations of clouds have been conducted at the National Observatory of Athens (NOA) since the mid 19th century. The historical archive of cloud reports at NOA since 1860 has been digitized and updated, spanning now a period of one and a half century. Mean monthly values of total cloud cover were derived by averaging subdaily observations of cloud cover (3 observations/day). Changes in observational practice (e.g. from 1/10 to 1/8 units) were considered, however, subjective measures of cloud cover from trained observers introduces some kind of uncertainty in the time series. Data before 1884 were considered unreliable, so the analysis was restricted to the series from 1884 to 2012. The time series of total cloud cover at NOA is validated and correlated with historical time series of other (physically related) variables such as the total sunshine duration as well as DTR (Diurnal Temperature Range) which are independently measured. Trend analysis was performed on the mean annual and seasonal series of total cloud cover from 1884-2012. The mean annual values show a marked temporal variability with sub periods of decreasing and increasing tendencies, however, the overall linear trend is positive and statistically significant (p <0.001) amounting to +2% per decade and implying a total increase of almost 25% for the whole analysed period. These results are in agreement qualitatively with the trends reported in other studies worldwide, especially concerning the period before the mid 20th century. On a seasonal basis, spring and summer series present outstanding positive long term trends, while in winter and autumn total cloud cover reveals also positive but less pronounced long term trends Additionally, an evaluation of cloud cover and/or sunshine duration/diurnal temperature range as depicted by regional climate models over Athens will be performed. Regional climate models are valuable tools for projections of future climate change but their performance is typically assessed only in terms of temperature and precipitation. The representation of non-standard parameters such as cloud cover and/or sunshine duration/diurnal temperature range has so far seen little or no evaluation in the models and can therefore be prone to large uncertainties. Regional climate models developed in the framework of recent EU projects, such as the ENSEMBLES (www.ensembles-eu.org) and the CIRCE (www.circeproject.eu) projects, will be used and an initial validation of these parameters against the historical archive of NOA will be performed.

  9. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  10. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    NASA Astrophysics Data System (ADS)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopesmore » in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.« less

  12. Tundra Rehabilitation in Alaska's Arctic

    NASA Astrophysics Data System (ADS)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the methods used for monitoring are currently being explored, including evaluation of the approaches to 1) improve the efficiency of the management of field activities and reporting, 2) improve the success and rate of revegetation, 3) decrease costs of revegetation and monitoring, and 4) implement function-based performance standards.

  13. Great Lakes in January

    NASA Image and Video Library

    2017-12-08

    This image taken on January 13, 2015 from the Suomi NPP satellite's VIIRS instrument shows the Great Lakes and surrounding areas. The latest Great Lakes Surface Environmental Analysis (GLSEA) from the NOAA Great Lakes Environmental Research Laboratory shows total ice cover of 29.3% as of January 13th. Credit: NOAA/NASA/NPP Via NOAA Environmental Visualization Laboratory

  14. Surface covering of downed logs: drivers of a neglected process in dead wood ecology.

    PubMed

    Dynesius, Mats; Gibb, Heloise; Hjältén, Joakim

    2010-10-07

    Many species use coarse woody debris (CWD) and are disadvantaged by the forestry-induced loss of this resource. A neglected process affecting CWD is the covering of the surfaces of downed logs caused by sinking into the ground (increasing soil contact, mostly covering the underside of the log), and dense overgrowth by ground vegetation. Such cover is likely to profoundly influence the quality and accessibility of CWD for wood-inhabiting organisms, but the factors affecting covering are largely unknown. In a five-year experiment we determined predictors of covering rate of fresh logs in boreal forests and clear-cuts. Logs with branches were little covered because they had low longitudinal ground contact. For branchless logs, longitudinal ground contact was most strongly related to estimated peat depth (positive relation). The strongest predictor for total cover of branchless logs was longitudinal ground contact. To evaluate the effect on cover of factors other than longitudinal ground contact, we separately analyzed data from only those log sections that were in contact with the ground. Four factors were prominent predictors of percentage cover of such log sections: estimated peat depth, canopy shade (both increasing cover), potential solar radiation calculated from slope and slope aspect, and diameter of the log (both reducing cover). Peat increased cover directly through its low resistance, which allowed logs to sink and soil contact to increase. High moisture and low temperatures in pole-ward facing slopes and under a canopy favor peat formation through lowered decomposition and enhanced growth of peat-forming mosses, which also proved to rapidly overgrow logs. We found that in some boreal forests, peat and fast-growing mosses can rapidly cover logs lying on the ground. When actively introducing CWD for conservation purposes, we recommend that such rapid covering is avoided, thereby most likely improving the CWD's longevity as habitat for many species.

  15. Effects of forest cover changes in European Russia on regional weather conditions: results of numerical experiments with the COSMO-CLM model

    NASA Astrophysics Data System (ADS)

    Olchev, Alexander; Kuzmina, Ekaterina; Rozinkina, Inna; Nikitin, Mikhail; Rivin, Gdaly S.

    2017-04-01

    The forests have a significant effect on the climatic system. They capture CO2 from the atmosphere, regulate the surface evaporation and runoff, and influence the radiation and thermal conditions of the land surface. It is obvious, that their influence depends on many different factors including regional climate conditions, land use and vegetation structure, surface topography, etc. The main goal of the study is to assess the possible influence of forest cover changes (under deforestation and/or afforestation) on regional weather conditions in the central part of European Russia using the results of modeling experiments provided by the meso-scale COSMO-CLM model. The need of the study lies in a lack of the experimental and modeling data characterizing the influence of the forest and land-use changes on regional weather conditions in European part of Russia. The forest ecosystems in the study region play a very important biosphere role that is significantly increased in the last decades due to considerable strengthening of anthropogenic activity in the area of European Russia. The area selected for the study is located in the central part of European Russia between 55 and 59N and 28 and 37E. It comprises several geographical zones including dark-coniferous forests of the South-European taiga in the north, the mixed forests in the central part and the broad-leaved forests in the south. The forests within the study area are very heterogeneous. The total area covered by forests according to recent remote sensing data is about 50%. The numerical experiments were provided using the COSMO-CLM model with the spatial resolution 13.2 km. As initial and boundary conditions for the numerical experiments the global reanalysis ERA Interim (with the 6-hour resolution in time and 0.75° × 0.75° in space) were used. The weather conditions were simulated in a continuous cycle for several months for the entire area of European Russia using the results of global reanalysis on external boundaries of the modeling domain. For the modeling experiments the warm period (from May to September) of 2010 was selected. The first modeling experiment assumed total deforestation of the study area. The second experiment suggested complete interruption of economic activity in the region, forest regeneration and total area afforestation. It was assumed that the forest cover increase in the considered scenario was only due to increase of the fraction of pioneer small-leaved tree species (e.g. birch, aspen). Any possible changes in proportion of coniferous species were ignored. The results of the modeling experiments showed considerable influence of forest cover changes on regional weather conditions. The influence of forest cover was manifested in changes of spatial patterns of the air temperature at different levels in the atmosphere, in changes of amount and intensity of precipitation, dew point, cloud cover, relative humidity, wind speed, and in changes of a number of other meteorological parameters. It was shown that the total deforestation of the study region can result in increase of the mean air temperature in summer on 0.3°C and in reduction of precipitation by about 6%. The afforestation processes can lead to opposite effects: in case of modeling scenario imitating the total afforestation of the study area the model predicts the decrease of the mean summer temperatures on 0.1°C and increase of precipitation by 4%. The diurnal changes of meteorological parameters can be significantly higher and more heterogeneous. Whereas the changes of the surface air temperature and humidity, wind speed and some other parameters are mainly appeared within the area with changed forest cover only, the changes of precipitation and cloud cover patterns are manifested within the entire European part of Russia including the areas situated outside the study region. The study is involved in the NEESPI program and it was supported by grant of the Russian Science Foundation (14-14- 00956).

  16. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    NASA Astrophysics Data System (ADS)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  17. Changes of cloudiness over tropical land during the past few decades and its link to global climate change

    NASA Astrophysics Data System (ADS)

    Arias, P.; Fu, R.; Li, W.

    2007-12-01

    Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease of convective and total cloudiness over the Southern Amazon basin, due to an increase of LFC and atmospheric thermodynamic stability. Such an increase of surface SW radiation probably has contributed to the increasing in growth rate for the forests in the Amazon forests. Currently, the same analysis is being applied using radiosonde data from the Comprehensive Aerological Reference Data Set (CARDS) over the Amazon and Congo basins and the Southeast Asia. Our objective is to identify changes in cloudiness over tropical land and identify its underlying causes, especially the link to changes in surface temperature and humidity.

  18. Ecological impacts of wheat seeding after a Sierra Nevada wildfire

    USGS Publications Warehouse

    Keeley, Jon E.

    2004-01-01

    The Highway Fire burned 1680 ha of mixed ponderosa pine–oak–chaparral in the newly created Giant Sequoia National Monument and the adjacent Sequoia National Forest of Fresno County, California in August 2001. The USDA Forest Service Burned Area Emergency Rehabilitation (BAER) program recommended that portions of the burned forest be seeded with a non-persistent variety of wheat at a density of 157 kg ha–1 (140 lb/ac). The present study compared the vascular plant diversity and cover in seeded and unseeded parts of this burn to evaluate the ecological impact of seeding an alien grass. In the first post-fire growing season, the natural regeneration of unseeded control sites averaged ~55% ground surface covered. Wheat seeding enhanced the ground cover, averaging 95% ground surface cover. Wheat was the dominant species on the seeded sites, comprising 67% of the total cover. Dominance–diversity curves were markedly affected by the seeding and indicated a disruption in the natural ecological structure of these communities. On seeded sites, wheat dominated and all other species were poorly represented whereas, on unseeded control sites, there was a more equitable distribution of species. Correlated with the wheat cover was a significant decrease in species richness at all scales examined. Total species richness was reduced from 152 species across all unseeded sites to 104 species on all seeded sites. Average species richness, at scales from 1 to 1000 m2, was 30–40% lower on seeded sites. Species most strongly inhibited were post-fire endemics whose lifecycle is restricted to immediate post-fire environments. Seeded sites had fewer alien species than unseeded sites; however, this may not have any lasting effect since other studies show the primary alien threat is not in the first post-fire year. Seeding was also associated with an order of magnitude drop in Pinus ponderosa seedling recruitment and, coupled with the massive thatch still remaining on the site, it is likely that recruitment will be inhibited in subsequent years.

  19. Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover

    NASA Astrophysics Data System (ADS)

    Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.

    2012-12-01

    Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to changes in impervious cover in areas where annual evapotranspiration is high relative to precipitation (e.g. the Southwestern States, Texas, and Florida). Water yield was less sensitive in areas with low evapotranspiration relative to precipitation (e.g. Pacific Northwest and Northeastern States). Additionally, water yield was most impacted when high evapotranspiration land cover types (e.g. forests) were converted to impervious cover than when lower evapotranspiration land cover types (e.g. grassland) were converted. Using projections of future impervious cover provided by the U.S. EPA Integrated Climate and Land Use Scenarios project, water yield in urban areas of the Southwest, Texas, and Florida will be the most impacted by 2050, in part because these areas are projected to have significant increases in impervious cover, but also because they are in areas where evapotranspiration is high relative to precipitation. Our study suggests that watershed management should consider the climate-driven sensitivity of water yield to increases in impervious cover and the type of land cover being converted in addition to the magnitude of projected increases in impervious cover when evaluating impacts of urbanization on water resources.

  20. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Years 2005 Through 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Link, Steven O.; Strickland, Christopher E.

    2008-02-01

    A prototype Hanford barrier was deployed over the 216-B-57 Crib at the Hanford Site in 1994 to prevent percolation through the underlying waste and to minimize spreading of buried contaminants. This barrier is being monitored to evaluate physical and hydrologic performance at the field scale. This report summarizes data collected during the period FY 2005 through FY 2007. In FY 2007, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance, including precipitation, runoff, storage, drainage, and deep percolation. Owing to a hiatus inmore » funding in FY 2005 through 2006, data collected were limited to automated measurements of the water-balance components. For the reporting period (October 2004 through September 2007) precipitation amount and distribution were close to normal. The cumulative amount of water received from October 1994 through September 2007 was 3043.45 mm on the northern half of the barrier, which is the formerly irrigated treatment, and 2370.58 mm on the southern, non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of around 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. For the reporting period, the total drainage from the soil-covered plots ranged from near zero amounts under the soil-covered plots to almost 20 mm under the side slopes. Over the 13-yr monitoring period, side slope drainage accounted for about 20 percent of total precipitation while the soil-covered plots account for only 0.12 mm total. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys show the barrier and protective side slopes to be stable. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation in 1994 although species diversity on the soil cover continues to decrease, from 35 in 1997 to 12 in 2007. The formerly irrigated treatments continue to show greater cover of grasses and litter than the non-irrigated treatments. On the formerly irrigated treatments, the mean cover class was 25 to 50 percent for both grasses and shrubs. On the non-irrigated treatments, the mean cover class was 5 to 25 percent from grasses and 25 to 50 percent for shrubs. The western and northern side slopes of the barrier show less plant cover than the soil surface, but show higher species diversity. This may be due to the influence of windblown soil and seeds from adjacent land, or the lack of shrubs competing for resources. Insects and small mammals continue to use the barrier surface and several holes and mounds were observed during the last year. This suggests that the restored barrier surface is beginning to function like a recovering ecosystem. Small-mammal burrowing on the top and sides of the barrier is most prevalent on the finer-grained and disturbed soils while active ant mounds were observed on the northern and western slopes.« less

  1. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    NASA Astrophysics Data System (ADS)

    Kujanpää, J.; Kalakoski, N.

    2015-05-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. The input total ozone product is generated by the German Aerospace Center (DLR) also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT) and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit (daytime ascending node around 14:30 LT). In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast) using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5° × 0.5° regular latitude-longitude grid and stored as daily files in the hierarchical data format (HDF5) within two weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.

  2. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River basin, New Jersery, New York, and Pennsylvania, 1998-2001

    USGS Publications Warehouse

    Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.

    2004-01-01

    Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed-sediment patterns were similar to those observed in water. Concentrations of tHg were higher in samples from the urbanized areas. In the more forested areas, MeHg concentrations were higher than in other land-use areas. Concentrations of tHg in bed sediment were positively correlated with urbanization factors (population, urban land cover, and impervious land surface) and negatively correlated with forested land cover and elevation. Forested land cover and latitude were positively correlated with concentrations of MeHg. The methylation efficiency was higher in samples from the forested areas and was negatively correlated with urbanization. Analyses within land-use groups showed that tHg concentrations in fish fillets from the urban sites were positively correlated with forested land cover and wetland cover. Urbanization factors within the agricultural group were positively correlated with tHg in fish; concentrations of tHg in fish from sites in the low intensity-agricultural group were negatively correlated with urbanization factors. Within the agricultural land-use group, tHg concentrations in water were negatively correlated with septic density, and MeHg concentrations were negatively correlated with elevation. In the forested and low intensity-agricultural groups, MeHg in water was negatively correlated with forested and agricultural land cover. Methylation efficiency in water also was negatively correlated with forested land cover but positively correlated with agricultural land cover. Bed sediment concentrations of tHg in the forested and low-agricultural groups were positively correlated with agricultural land cover and negatively correlated with forested land cover. Concentrations of MeHg in bed sediment were positively correlated with septic density and drainage area and negatively correlated with forested land cover. Methylation efficiency was negatively correlated with population density, a

  3. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.

  4. Studies of the net surface radiative flux from satellite radiances during FIFE

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Studies of the net surface radiative flux from satellite radiances during First ISLSCP Field Experiment (FIFE) are presented. Topics covered include: radiative transfer model validation; calibration of VISSR and AVHRR solar channels; development and refinement of algorithms to estimate downward solar and terrestrial irradiances at the surface, including photosynthetically available radiation (PAR) and surface albedo; verification of these algorithms using in situ measurements; production of maps of shortwave irradiance, surface albedo, and related products; analysis of the temporal variability of shortwave irradiance over the FIFE site; development of a spectroscopy technique to estimate atmospheric total water vapor amount; and study of optimum linear combinations of visible and near-infrared reflectances for estimating the fraction of PAR absorbed by plants.

  5. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  6. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley

    2015-01-01

    This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.

  7. Consequences of land-cover misclassification in models of impervious surface

    USGS Publications Warehouse

    McMahon, G.

    2007-01-01

    Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.

  8. Perfluoroalkylated substances in the global tropical and subtropical surface oceans.

    PubMed

    González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña

    2014-11-18

    In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability. This suggests that a number of physical and biogeochemical processes collectively drive the oceanic occurrence and fate of PFASs in a complex manner.

  9. Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area.

    PubMed

    Leroy, Marie-Charlotte; Portet-Koltalo, Florence; Legras, Marc; Lederf, Franck; Moncond'huy, Vincent; Polaert, Isabelle; Marcotte, Stéphane

    2016-10-01

    In recent years, due to their economic and ecological advantages, green infrastructures for stormwater management have been widely implemented. The present study focused on vegetated swales and compared two vegetated covers, grassed or planted with macrophytes in order to evaluate their performance in terms of water quality improvement. These swales collected runoff of a moderately busy road (<2500vehday(-1)) in a commercial area. Twelve storm events were analyzed over a two year period with measurement of total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total hydrocarbons (THC), total phosphorous (TP), total Kjeldahl nitrogen (TKN), trace elements and 16 polycyclic aromatic hydrocarbons (PAHs). The grass cover led to poor results due to lower retention of soil particles on which trace elements and PAHs are bounded. The swales planted with macrophytes, with a deeper root system more capable of retaining soil particles, led to reductions of concentrations from 17 to 45% for trace elements such as lead, zinc and copper and 30% for the 16 PAHs in infiltrated waters. In addition, the macrophyte cover showed lower variability of pollutant concentrations in infiltrated waters compared to incoming waters. This buffering capacity is interesting to mitigate the impact of moderate peak pollution on surface water or ground water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. More Frequent Cloud Free Sky and Less Surface Solar Radiation in China from 1955-2000

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Kaiser, Dale P.; Leung, L. Ruby; Xu, Ming

    2006-01-01

    In this study, we used newly available data frorn extended weather stations and time period to reveal that much of China has experienced significant decreases in cloud cover over the last half of the Twentieth century. This conclusion is supported by analysis of the more reliably observed frequency of cloud-free sky and overcast sky. We estimated that the total cloud cover and low cloud cover in China have decreased 0.88% and 0.33% per decade, respectively, and cloud-free days have increased 0.60% and overcast days decreased 0.78% per decade from 1954-2001. Meanwhile, both solar radiation and pan evaporation have decreased in China, with'solar radiation decreasing 3.1 w/square m and pan evaporation decreasing 39 mm per decade. Combining these results with findings of previous studies, we speculated that increased air pollution may have produced a fog-like haze that reflected/absorbed radiation from the sun and resulted in less solar radiation reaching the surface, despite concurrent increasing trends in cloud-free sky over China.

  11. Mass spectrometric analysis of organic compounds, water and volatile constituents in the atmosphere and surface of Mars: The Viking Mars Lander

    USGS Publications Warehouse

    Anderson, Duwayne M.; Biemann, K.; Orgel, Leslie E.; Oro, John; Owen, Timothy W.; Shulman, Garson P.; Toulmin, Priestley; Urey, H.C.

    1972-01-01

    An experiment centering around a mass spectrometer is described, which is aimed at the identification of organic substances present in the top 10 cm of the surface of Mars and an analysis of the atmosphere for major and minor constituents as well as isotopic abundances. In addition, an indication of the abundance of water in the surface and some information concerning the mineralogy can be obtained by monitoring the gases produced upon heating the soil sample.The organic material will simply be expelled by heating to 150°, 300°, and 500° into the carrier gas stream of a gas chromatograph interfaced to the mass spectrometer or by slowly heating the sample in direct communication with the spectrometer. It is planned to analyze a total of up to nine soil samples in order to study diurnal and seasonal variations. The system is designed to give useful data even for minor constituents if the total of organics should be as low as 5ppm. The spectrometer covers the mass range of 12–200 with adequate resolution.The results of these experiments, which are deliberately designed to cover a wide spectrum of possibilities independent of terrestrial models, are expected to produce a good picture of the planet's organic chemistry and its possible biological significance as well as allow conclusions regarding the history of the planet's atmosphere.

  12. Managed Clearings: an Unaccounted Land-cover in Urbanizing Regions

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Madden, M.; Meentemeyer, R. K.

    2016-12-01

    Managed clearings (MC), such as lawns, public parks and grassy transportation medians, are a common and ecologically important land cover type in urbanizing regions, especially those characterized by sprawl. We hypothesize that MC is underrepresented in land cover classification schemes and data products such as NLCD (National Land Cover Database) data, which may impact environmental assessments and models of urban ecosystems. We visually interpreted and mapped fine scale land cover with special attention to MC using 2012 NAIP (National Agriculture Imagery Program) images and compared the output with NLCD data. Areas sampled were 50 randomly distributed 1*1km blocks of land in three cities of the Char-lanta mega-region (Atlanta, Charlotte, and Raleigh). We estimated the abundance of MC relative to other land cover types, and the proportion of land-cover types in NLCD data that are similar to MC. We also assessed if the designations of recreation, transportation, and utility in MC inform the problem differently than simply tallying MC as a whole. 610 ground points, collected using the Google Earth, were used to evaluate accuracy of NLCD data and visual interpretation for consistency. Overall accuracy of visual interpretation and NLCD data was 78% and 58%, respectively. NLCD data underestimated forest and MC by 14.4km2 and 6.4km2, respectively, while overestimated impervious surfaces by 10.2km2 compared to visual interpretation. MC was the second most dominant land cover after forest (40.5%) as it covered about 28% of the total area and about 13% higher than impervious surfaces. Results also suggested that recreation in MC constitutes up to 90% of area followed by transportation and utility. Due to the prevalence of MC in urbanizing regions, the addition of MC to the synthesis of land-cover data can help delineate realistic cover types and area proportions that could inform ecologic/hydrologic models, and allow for accurate prediction of ecological phenomena.

  13. Improvement of one-nucleon removal and total reaction cross sections in the Liège intranuclear-cascade model using Hartree-Fock-Bogoliubov calculations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, Jose Luis; David, Jean-Christophe; Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; Leray, Sylvie

    2017-11-01

    The prediction of one-nucleon-removal cross sections by the Liège intranuclear-cascade model has been improved using a refined description of the matter and energy densities in the nuclear surface. Hartree-Fock-Bogoliubov calculations with the Skyrme interaction are used to obtain a more realistic description of the radial-density distributions of protons and neutrons, as well as the excitation-energy uncorrelation at the nuclear surface due to quantum effects and short-range correlations. The results are compared with experimental data covering a large range of nuclei, from carbon to uranium, and projectile kinetic energies. We find that the new approach is in good agreement with experimental data of one-nucleon-removal cross sections covering a broad range in nuclei and energies. The new ingredients also improve the description of total reaction cross sections induced by protons at low energies, the production cross sections of heaviest residues close to the projectile, and the triple-differential cross sections for one-proton removal. However, other observables such as quadruple-differential cross sections of coincident protons do not present any sizable sensitivity to the new approach. Finally, the model is also tested for light-ion-induced reactions. It is shown that the new parameters can give a reasonable description of the nucleus-nucleus total reaction cross sections at high energies.

  14. Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    2004-01-01

    This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).

  15. Coupled Environmental Processes in the Mojave Desert and Implications for ET Covers as Stable Landforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Shafer; M. Y oung; S. Zitzer

    2006-01-18

    Monolayer evapotranspiration (ET) covers are the baseline method for closure of disposal sites for low-level radioactive waste (LLW), mixed LLW, and transuranic (TRU) waste at the Nevada Test Site (NTS). The regulatory timeline is typically 1,000 years for LLW and 10,000 years for TRU waste. Covers for such waste have different technical considerations than those with shorter timelines because they are subject to environmental change for longer periods of time, and because the environmental processes are often coupled. To evaluate these changes, four analog sites (approximately 30, 1,000 to 2,000, 7,000 to 12,500, and 125,000 years in age) on themore » NTS were analyzed to address the early post-institutional control period (the youngest site), the 1,000-year compliance period for disposal of LLW, and the 10,000-year period for TRU waste. Tests included soil texture, structure, and morphology; surface soil infiltration and hydraulic conductivity; vegetation and faunal surveys; and literature reviews. Separate measurements were made in plant undercanopy and intercanopy areas. The results showed a progressive increase in silt and clay content of surface soils with age. Changes in soil texture and structure led to a fivefold decline in saturated hydraulic conductivity in intercanopy areas, but no change in undercanopies, which were subject to bioturbation. These changes may have been responsible for the reduction in total plant cover, most dramatically in intercanopy areas, primarily because more precipitation either runs off the site or is held nearer to the surface where plant roots are less common. The results suggest that covers may evolve over longer timeframes to stable landforms that minimize the need for active maintenance.« less

  16. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  17. Space Shuttle Columbia views the world with imaging radar: The SIR-A experiment

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Cimino, J. B.; Elachi, C.

    1983-01-01

    Images acquired by the Shuttle Imaging Radar (SIR-A) in November 1981, demonstrate the capability of this microwave remote sensor system to perceive and map a wide range of different surface features around the Earth. A selection of 60 scenes displays this capability with respect to Earth resources - geology, hydrology, agriculture, forest cover, ocean surface features, and prominent man-made structures. The combined area covered by the scenes presented amounts to about 3% of the total acquired. Most of the SIR-A images are accompanied by a LANDSAT multispectral scanner (MSS) or SEASAT synthetic-aperture radar (SAR) image of the same scene for comparison. Differences between the SIR-A image and its companion LANDSAT or SEASAT image at each scene are related to the characteristics of the respective imaging systems, and to seasonal or other changes that occurred in the time interval between acquisition of the images.

  18. New insights into the properties of pubescent surfaces: peach fruit as a model.

    PubMed

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; Del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-08-01

    The surface of peach (Prunus persica 'Calrico') is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context.

  19. New Insights into the Properties of Pubescent Surfaces: Peach Fruit as a Model1[OA

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-01-01

    The surface of peach (Prunus persica ‘Calrico’) is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context. PMID:21685175

  20. Vegetation-induced turbulence influencing evapotranspiration-soil moisture coupling: Implications for semiarid regions

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Kirchner, J. W.; Entekhabi, D.

    2016-12-01

    The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.

  1. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  2. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric

    2018-04-01

    Land cover management in agricultural areas is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of cover crops during the fallow period. This is possible since the albedo of bare soil in many areas of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of cover crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 year time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced cover crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the cover crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of cover crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering areas favourable to their introduction, cover crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per year, using 2011 as a reference. The impact of the albedo change per year would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.

  3. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Brenda; Macknick, Jordan; McCall, James

    Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency ofmore » the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.« less

  4. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T

    2017-05-15

    Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.

  6. An intercomparison of GCM and RCM dynamical downscaling for characterizing the hydroclimatology of California and Nevada

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Rhoades, A.; Johansen, H.; Ullrich, P. A.; Collins, W. D.

    2017-12-01

    Dynamical downscaling is widely used to properly characterize regional surface heterogeneities that shape the local hydroclimatology. However, the factors in dynamical downscaling, including the refinement of model horizontal resolution, large-scale forcing datasets and dynamical cores, have not been fully evaluated. Two cutting-edge global-to-regional downscaling methods are used to assess these, specifically the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research & Forecasting (WRF) regional climate model, under different horizontal resolutions (28, 14, and 7 km). Two groups of WRF simulations are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM outputs (WRF_VRCESM) to evaluate the effects of the large-scale forcing datasets. The impacts of dynamical core are assessed by comparing the VR-CESM simulations to the coupled WRF_VRCESM simulations with the same physical parameterizations and similar grid domains. The simulated hydroclimatology (i.e., total precipitation, snow cover, snow water equivalent and surface temperature) are compared with the reference datasets. The large-scale forcing datasets are critical to the WRF simulations in more accurately simulating total precipitation, SWE and snow cover, but not surface temperature. Both the WRF and VR-CESM results highlight that no significant benefit is found in the simulated hydroclimatology by just increasing horizontal resolution refinement from 28 to 7 km. Simulated surface temperature is sensitive to the choice of dynamical core. WRF generally simulates higher temperatures than VR-CESM, alleviates the systematic cold bias of DJF temperatures over the California mountain region, but overestimates the JJA temperature in California's Central Valley.

  7. Validation of TES ammonia observations at the single pixel scale in the San Joaquin Valley during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Sun, Kang; Cady-Pereira, Karen; Miller, David J.; Tao, Lei; Zondlo, Mark A.; Nowak, John B.; Neuman, J. A.; Mikoviny, Tomas; Müller, Markus; Wisthaler, Armin; Scarino, Amy J.; Hostetler, Chris A.

    2015-05-01

    Ammonia measurements from a vehicle-based, mobile open-path sensor and those from aircraft were compared with Tropospheric Emission Spectrometer (TES) NH3 columns at the pixel scale during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality field experiment. Spatial and temporal mismatches were reduced by having the mobile laboratory sample in the same areas as the TES footprints. To examine how large heterogeneities in the NH3 surface mixing ratios may affect validation, a detailed spatial survey was performed within a single TES footprint around the overpass time. The TES total NH3 column above a single footprint showed excellent agreement with the in situ total column constructed from surface measurements with a difference of 2% (within the combined measurement uncertainties). The comparison was then extended to a TES transect of nine footprints where aircraft data (5-80 ppbv) were available in a narrow spatiotemporal window (<10 km, <1 h). The TES total NH3 columns above the nine footprints agreed to within 6% of the in situ total columns derived from the aircraft-based measurements. Finally, to examine how TES captures surface spatial gradients at the interpixel scale, ground-based, mobile measurements were performed directly underneath a TES transect, covering nine footprints within ±1.5 h of the overpass. The TES total columns were strongly correlated (R2 = 0.82) with the median NH3 mixing ratios measured at the surface. These results provide the first in situ validation of the TES total NH3 column product, and the methodology is applicable to other satellite observations of short-lived species at the pixel scale.

  8. Effects of Surface Roughness and Mechanical Properties of Cover-Layer on Near-Field Optical Recording

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hong; Lee, Jun-Seok; Lim, Jungshik; Seo, Jung-Kyo

    2009-03-01

    Narrow gap distance in cover-layer incident near-field recording (NFR) configuration causes a collision problem in the interface between a solid immersion lens and a disk surface. A polymer cover-layer with smooth surface results in a stable gap servo while a nanocomposite cover-layer with high refractive index shows a collision problem during the gap servo test. Even though a dielectric cover-layer, in which the surface is rougher than the polymer, supplements the mechanical properties, an unclear eye pattern due to an unstable gap servo can be obtained after a chemical mechanical polishing. Not only smooth surface but also good mechanical properties of cover-layer are required for the stable gap servo in the NFR.

  9. Adsorption of hydrogen on stable and metastable Ir(100) surfaces

    NASA Astrophysics Data System (ADS)

    Arman, Mohammad Alif; Klein, Andreas; Ferstl, Pascal; Valookaran, Abhilash; Gustafson, Johan; Schulte, Karina; Lundgren, Edvin; Heinz, Klaus; Schneider, Alexander; Mittendorfer, Florian; Hammer, Lutz; Knudsen, Jan

    2017-02-01

    Using the combination of high resolution core level spectroscopy and density functional theory we present a detailed spectroscopic study for all clean and hydrogen covered phases of Ir(100). The results are complemented by an investigation of the hydrogen desorption process from various phases using temperature programmed desorption spectroscopy and scanning tunneling microscopy. In total, all experimentally determined core level shifts match very well with those predicted by density functional theory based on established structural models. In particular, we find for the (bridge site) adsorption on the unreconstructed 1×1 phase that the initial core level shift of surface Ir atoms is altered by +0.17 eV for each Ir-H bond formed. In the submonolayer regime we find evidence for island formation at low temperatures. For the H-induced deconstructed 5×1-H phase we identify four different surface core level shifts with two of them being degenerate. Finally, for the reconstructed 5×1-hex phase also four surface components are identified, which undergo a rather rigid core level shift of +0.15 eV upon hydrogen adsorption suggesting a similarly homogeneous charge transfer to all Ir surface atoms. Thermodesorption experiments for the 5×1-H phase reveal two different binding states for hydrogen independent of the total coverage. We conclude that the surface always separates into patches of fully covered deconstructed and uncovered reconstructed phases. We could also show by tunneling microscopy that with the desorption of the last hydrogen atom from the deconstructed unit cell the surface instantaneously reverts into the reconstructed state. Eventually, we could determine the saturation coverage upon molecular adsorption for all phases to be θmax1 × 1 - H = 1.0 ML , θmax5 × 1 - H = 0.8 ML , and θmax5 × 1 - hex - H ≥ 1.0 ML .

  10. Organization of microbeads in Leidenfrost drops.

    PubMed

    Maquet, Laurent; Colinet, Pierre; Dorbolo, Stéphane

    2014-06-21

    We investigated the organization of micrometric hydrophilic beads (glass or basalt) immersed in Leidenfrost drops. Starting from a large volume of water compared to the volume of the beads, while the liquid evaporates, we observed that the grains are eventually trapped at the interface of the droplet and accumulate. At a moment, the grains entirely cover the droplet. We measured the surface area at this moment as a function of the total mass of particles inserted in the droplet. We concluded that the grains form a monolayer around the droplet assuming (i) that the packing of the beads at the surface is a random close packing and (ii) that the initial surface of the drop is larger than the maximum surface that the beads can cover. Regarding the evaporation dynamics, the beads are found to reduce the evaporation rate of the drop. The slowdown of the evaporation is interpreted as being the consequence of the dewetting of the particles located at the droplet interface which makes the effective surface of evaporation smaller. As a matter of fact, contact angles of the beads with the water deduced from the evaporation rates are consistent with contact angles of beads directly measured at a flat air-water interface of water in a container.

  11. Using GIS data and satellite derived irradiance to optimize siting of PV installations in Switzerland

    NASA Astrophysics Data System (ADS)

    Kahl, Annelen; Nguyen, Viet-Anh; Bartlett, Stuart; Sossan, Fabrizio; Lehning, Michael

    2016-04-01

    For a successful distribution strategy of PV installations, it does not suffice to choose the locations with highest annual total irradiance. Attention needs to be given to spatial correlation patterns of insolation to avoid large system-wide variations, which can cause extended deficits in supply or might even damage the electrical network. One alternative goal instead is to seek configurations that provide the smoothest energy production, with the most reliable and predictable supply. Our work investigates several scenarios, each pursuing a different strategy for a future renewable Switzerland without nuclear power. Based on an estimate for necessary installed capacity for solar power [Bartlett, 2015] we first use heuristics to pre-select realistic placements for PV installations. Then we apply optimization methods to find a subset of locations that provides the best possible combined electricity production. For the first part of the selection process, we use a DEM to exclude high elevation zones which would be difficult to access and which are prone to natural hazards. Then we use land surface cover information to find all zones with potential roof area, deemed suitable for installation of solar panels. The optimization employs Principal Component Analysis of satellite derived irradiance data (Surface Incoming Shortwave Radiation (SIS), based on Meteosat Second Generation sensors) to incorporate a spatial aspect into the selection process that does not simply maximize annual total production but rather provides the most robust supply, by combining regions with anti-correlated cloud cover patterns. Depending on the initial assumptions and constraints, the resulting distribution schemes for PV installations vary with respect to required surface area, annual total and lowest short-term production, and illustrate how important it is to clearly define priorities and policies for a future renewable Switzerland.

  12. Total Internal Reflection Accounts for the Bright Color of the Saharan Silver Ant

    PubMed Central

    Aron, Serge

    2016-01-01

    The Saharan silver ant Cataglyphis bombycina is one of the terrestrial living organisms best adapted to tolerate high temperatures. It has recently been shown that the hairs covering the ant’s dorsal body part are responsible for its silvery appearance. The hairs have a triangular cross-section with two corrugated surfaces allowing a high optical reflection in the visible and near-infrared (NIR) range of the spectrum while maximizing heat emissivity in the mid-infrared (MIR). Those two effects account for remarkable thermoregulatory properties, enabling the ant to maintain a lower thermal steady state and to cope with the high temperature of its natural habitat. In this paper, we further investigate how geometrical optical and high reflection properties account for the bright silver color of C. bombycina. Using optical ray-tracing models and attenuated total reflection (ATR) experiments, we show that, for a large range of incidence angles, total internal reflection (TIR) conditions are satisfied on the basal face of each hair for light entering and exiting through its upper faces. The reflection properties of the hairs are further enhanced by the presence of the corrugated surface, giving them an almost total specular reflectance for most incidence angles. We also show that hairs provide an almost 10-fold increase in light reflection, and we confirm experimentally that they are responsible for a lower internal body temperature under incident sunlight. Overall, this study improves our understanding of the optical mechanisms responsible for the silver color of C. bombycina and the remarkable thermoregulatory properties of the hair coat covering the ant’s body. PMID:27073923

  13. Canopy Effects on Macroscale Snow Sublimation

    NASA Astrophysics Data System (ADS)

    Svoma, B. M.

    2015-12-01

    Sublimation of snow cover directly affects snow accumulation, impacting ecosystem processes, soil moisture, soil porosity, biogeochemical processes, wildfire, and water resources. Available energy, the exposed surface area of a snow cover, and exposure time with the atmosphere vary greatly in complex terrain (e.g., aspect, elevation, forest cover), with latitude, and with continentality. It is therefore difficult to scale up results from site specific short term studies. Using the 32-km NARR, the 4-km PRISM, with 30-m terrain and forest cover data, meteorological variables are downscaled to simulate sublimation from canopy intercepted snow and from the snowpack over the Salt River Basin in Arizona for a wet and dry year. Simulations indicate that: (1) total sublimation is highly variable in response to variability in both sublimation rate and snow cover duration; (2) total canopy sublimation is similar for both years while ground sublimation is considerably greater during the wet year; (3) sublimation is a relatively greater contribution to the snow water budget during the dry year (28% vs. 20% of total snowfall); (4) at high elevations, ground sublimation is less in open areas than forested areas during the dry year, while the reverse is evident during the wet year as snowpack lasted longer into spring. While a reduction in leaf area index leads to a reduction of total sublimation due to less interception in both years, ground sublimation increases during the dry year, possibly due to less sheltering from solar radiation and wind. This reduction in sheltering results in a large decrease in snowpack duration (i.e., ten days in spring) at mid-elevations for the wet year, leading to a decrease in ground sublimation. This results in a 500 meter difference in the elevation of maximum sublimation reduction upon reduced leaf area index between the two years. Forest cover properties can vary considerably on short and long time scales through natural (wildfire, bark beetle infestation, drought) and anthropogenic (land management practices) processes. Therefore, understanding how small scale changes impact snow sublimation at larger spatial scales, and how this varies temporally, is critical from ecosystem function and water resources perspectives.

  14. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.

  15. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated, bare soil and open water surfaces. The result of this study also shows that runoff is high in the clay, clay loam and sandy-clay loam due to the lack of infiltration process in clay soil from capping or crusting or sealing of the soil pores, therefore this situation will aid runoff. The application of the WetSpass model shows that precipitation, soil texture and land use / land cover are three controlling factors affecting the water balance in the LCB. Key words: Groundwater recharge, surface runoff, evapotranspiration, water balance, meteorological, draught, Landuse changes, climate changes, WetSpass, GIS.

  16. Mesoscale mapping of available solar energy at the earth's surface by use of satellites

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.

    1980-01-01

    A method is presented for use of cloud images in the visual spectrum from the SMS/GOES geostationary satellites to determine the hourly distribution of sunshine on the mesoscale. Cloud coverage and density as a function of time of day and season are evaluated through the use of digital data processing techniques. Seasonal geographic distributions of cloud cover/sunshine are converted to joules of solar radiation received at the earth's surface through relationships developed from long-term measurements of these two parameters at six widely distributed stations. The technique can be used to generate maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface.

  17. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  18. Global optimum vegetation rain water use is determined by aridity

    NASA Astrophysics Data System (ADS)

    Good, S. P.; Wang, L.; Caylor, K. K.

    2015-12-01

    The amount of rainwater that vegetation is able to transpire directly determines the total productivity of ecosystems, yet broad-scale trends in this sub-component of total evapotranspiration remain unclear. Since development in the 1970's, the Budyko framework has provided a simple, first-order, approach to partitioning total rainfall into runoff and evapotranspiration across climates. However, this classic paradigm provides little insight into the strength of biological mediation (i.e. transpiration flux) of the hydrologic cycle. Through a minimalist stochastic hydrology model we analytically extend the classical Budyko framework to predict the magnitude of transpiration relative to total rainfall as a function of ecosystem aridity. Consistent with a synthesis of experimental partitioning studies across climates, this model suggests a peak in the biological contribution to the hydrologic cycle at intermediate moisture values, with both arid and wet climates seeing decreased transpiration:precipitation ratios. To best match observed transpiration:precipitation ratios requires incorporation of elevated evaporation at lower canopy covers due to greater energy availability at the soil surface and elevated evaporation at higher canopy covers due to greater interception amounts. This new approach provides a connection between current and future climate regimes, hydrologic flux partitioning, and macro-system ecology.

  19. Canadian snow and sea ice: historical trends and projections

    NASA Astrophysics Data System (ADS)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  20. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  1. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    USGS Publications Warehouse

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  2. On numerically pluricanonical cyclic coverings

    NASA Astrophysics Data System (ADS)

    Kulikov, V. S.; Kharlamov, V. M.

    2014-10-01

    We investigate some properties of cyclic coverings f\\colon Y\\to X (where X is a complex surface of general type) branched along smooth curves B\\subset X that are numerically equivalent to a multiple of the canonical class of X. Our main results concern coverings of surfaces of general type with p_g=0 and Miyaoka-Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates.

  3. Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland

    USGS Publications Warehouse

    Nicholas, F.W.; Lewis, J.E.

    1980-01-01

    Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.

  4. Land cover characterization and land surface parameterization research

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.

    1997-01-01

    The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.

  5. Impact of dynamically changing land cover on runoff process: the case of Iligan river basin

    NASA Astrophysics Data System (ADS)

    Salcedo, Stephanie Mae B.; Suson, Peter D.; Milano, Alan E.; Ignacio, Ma. Teresa T.

    2016-10-01

    Iligan river basin located in Northern Mindanao, Philippines covers 165.7 km2 of basin area. In December 2011, tropical storm Sendong (Washi) hit Iligan City, leaving a trail of wrecked infrastructures and about 490 persons reported dead. What transpired was a wake up call to mitigate future flood disasters. Fundamental to mitigation is understanding runoff behavior inside a basin considering that this is the main source of flooding. For this reason, the present study evaluated total runoff volume, peak discharge and lag time given land cover scenarios in four different years- 1973, 1989, 1998 and 2008. IFSAR and LIDAR DEM were integrated to generate the basin model in ArcGIS. HEC-HMS was used in simulating models for each scenario with Soil Conservation Service Curve Number (SCS CN) as the loss parameter method. Four simulation models of the runoff with varying CN values were established using RIDF as rainfall input with 5 year, 10 year, 25 year, 50 year and 100 year Rainfall Return Period (RRP). Total Runoff volume, peak discharge and lag time were progressively higher from 1973 to 2008 with 1989 land cover as exception where runoff parameters was its lowest. The total runoff volume, peak discharge and lag time is governed by vegetation type. When vegetation is characterized predominantly with woody perennials, runoff volume and peak time is lower. Conversely, when the presence of woody perennials is minimal, these parameters are higher. This study shows that an important way to mitigate flooding is to reduce surface runoff by maintaining vegetation predominantly composed of woody perennials.

  6. Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions.

    PubMed

    Knepp, T; Pippin, M; Crawford, J; Chen, G; Szykman, J; Long, R; Cowen, L; Cede, A; Abuhassan, N; Herman, J; Delgado, R; Compton, J; Berkoff, T; Fishman, J; Martins, D; Stauffer, R; Thompson, A M; Weinheimer, A; Knapp, D; Montzka, D; Lenschow, D; Neil, D

    Total-column nitrogen dioxide (NO 2 ) data collected by a ground-based sun-tracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA's Langley Research Center in Hampton, Virginia were analyzed to study the relationship between total-column and surface NO 2 measurements. The measurements span more than a year and cover all seasons. Surface mixing ratios are estimated via application of a planetary boundary-layer (PBL) height correction factor. This PBL correction factor effectively corrects for boundary-layer variability throughout the day, and accounts for up to ≈75 % of the variability between the NO 2 data sets. Previous studies have made monthly and seasonal comparisons of column/surface data, which has shown generally good agreement over these long average times. In the current analysis comparisons of column densities averaged over 90 s and 1 h are made. Applicability of this technique to sulfur dioxide (SO 2 ) is briefly explored. The SO 2 correlation is improved by excluding conditions where surface levels are considered background. The analysis is extended to data from the July 2011 DISCOVER-AQ mission over the greater Baltimore, MD area to examine the method's performance in more-polluted urban conditions where NO 2 concentrations are typically much higher.

  7. Satellite observations of surface temperature during the March 2015 total solar eclipse.

    PubMed

    Good, Elizabeth

    2016-09-28

    The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).

  8. Satellite observations of surface temperature during the March 2015 total solar eclipse

    PubMed Central

    2016-01-01

    The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=−0.47; larger obscuration = larger LST drop), eclipse duration (r=−0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550764

  9. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    NASA Astrophysics Data System (ADS)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  10. Secondary Electron Emission Yields

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Lundin, W.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    The secondary electron emission (SEE) characteristics for a variety of spacecraft materials were determined under UHV conditions using a commercial double pass CMA which permits sequential Auger electron electron spectroscopic analysis of the surface. The transparent conductive coating indium tin oxide (ITO) was examined on Kapton and borosilicate glass and indium oxide on FED Teflon. The total SEE coefficient ranges from 2.5 to 2.6 on as-received surfaces and from 1.5 to 1.6 on Ar(+) sputtered surfaces with 5 nm removed. A cylindrical sample carousel provides normal incidence of the primary beam as well as a multiple Faraday cup measurement of the approximately nA beam currents. Total and true secondary yields are obtained from target current measurements with biasing of the carousel. A primary beam pulsed mode to reduce electron beam dosage and minimize charging of insulating coatings was applied to Mg/F2 coated solar cell covers. Electron beam effects on ITO were found quite important at the current densities necessary to do Auger studies.

  11. Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Steeves Lloyd, Kayla; Bolotin, Igor L.; Schmeling, Martina; Hanley, Luke; Veryovkin, Igor V.

    2016-10-01

    Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2. The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples' chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection X-ray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.

  12. 40 CFR 264.1085 - Standards: Surface impoundments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the surface impoundment by installing and operating either of the following: (1) A floating membrane... from a surface impoundment using a floating membrane cover shall meet the requirements specified in... floating membrane cover designed to meet the following specifications: (i) The floating membrane cover...

  13. Landcover Mapping of the McMurdo Ice Shelf Using Landsat and WorldView Image Data

    NASA Astrophysics Data System (ADS)

    Hansen, E. K.; Macdonald, G.; Mayer, D. P.; MacAyeal, D. R.

    2016-12-01

    Ice shelves bound approximately half of the Antarctic coast and act to buttress the glaciers that feed them. The collapse of the Larsen B Ice Shelf on the Antarctic Peninsula highlights the importance of processes at the surface for an ice shelf's stability. The McMurdo Ice Shelf is unique among Antarctic ice shelves in that it exists in a relatively warm climate zone and is thus more vulnerable to climate change than colder ice shelves at similar latitudes. However, little is known quantitatively about the surface cover types across the ice shelf, impeding the study of its hydrology and of the origins of its features. In particular, no work has been done linking field observations of supraglacial channels to shelf-wide surface hydrology. We will present the first satellite-derived multiscale landcover map of the McMurdo Ice Shelf based on Landsat 8 and WorldView-2 image data. Landcover types are extracted using supervised classification methods referenced to field observations. Landsat 8 provides coverage of the entire ice shelf ( 5,000 km2) at 30 m/pixel, sufficient to distinguish glacial ice, debris cover, and large supraglacial lakes. WorldView data cover a smaller area— 300 km2 at 2 m/pixel—and thus allow detailed mapping of features that are not spatially resolved by Landsat, such as supraglacial channels and small fractures across the ice shelf's surface. We take advantage of the higher resolution of WorldView-2 data to calculate the area of mid-summer surface water in channels and melt ponds within a detailed study area and use this as the basis for a spectral mixture model in order to estimate the total surface water area across the ice shelf. We intend to use the maps to guide strategic planning of future field research into the seasonal surface hydrology and climate stability of the McMurdo Ice Shelf.

  14. Comparisons of cloud cover evaluated from LANDSAT imagery and meteorological stations across the British Isles

    NASA Technical Reports Server (NTRS)

    Barrett, E. C. (Principal Investigator); Grant, C. K.

    1976-01-01

    The author has identified the following significant results. This stage of the study has confirmed the initial supposition that LANDSAT data could be analyzed to provide useful data on cloud amount, and that useful light would be thrown thereby on the performance of the ground observer of this aspect of the state of the sky. This study, in comparison with previous studies of a similar nature using data from meteorological satellites, has benefited greatly from the much higher resolution data provided by LANDSAT. This has permitted consideration of not only the overall performance of the surface observer in estimating total cloud cover, but also his performance under different sky conditions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, N.G.; Alvarez, A.M.; Cagnoli, M.V.

    SiO{sub 2} covered with MgO has been used as support of iron catalysts in the Fischer-Tropsch reaction. Catalysts of 5% (w/w) iron concentration and 2, 4, and 8% (w/w) of MgO on SiO{sub 2} were prepared. Selective chemisorption of CO, volumetric oxidation, and Moessbauer spectroscopy were used to characterize the type of iron species and the metallic crystal sizes. MgO covers the SiO{sub 2} surface and modifies the metallic crystal size. The activity to total hydrocarbons increases with the amount of MgO added. An optimal concentration of about 4% (w/w) was found to have the highest selectivity to olefins. 45more » refs., 13 figs., 3 tabs.« less

  16. Natural and Unnatural Oil Layers on the Surface of the Gulf of Mexico Detected and Quantified in Synthetic Aperture RADAR Images with Texture Classifying Neural Network Algorithms

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Garcia-Pineda, O. G.; Morey, S. L.; Huffer, F.

    2011-12-01

    Effervescent hydrocarbons rise naturally from hydrocarbon seeps in the Gulf of Mexico and reach the ocean surface. This oil forms thin (~0.1 μm) layers that enhance specular reflectivity and have been widely used to quantify the abundance and distribution of natural seeps using synthetic aperture radar (SAR). An analogous process occurred at a vastly greater scale for oil and gas discharged from BP's Macondo well blowout. SAR data allow direct comparison of the areas of the ocean surface covered by oil from natural sources and the discharge. We used a texture classifying neural network algorithm to quantify the areas of naturally occurring oil-covered water in 176 SAR image collections from the Gulf of Mexico obtained between May 1997 and November 2007, prior to the blowout. Separately we also analyzed 36 SAR images collections obtained between 26 April and 30 July, 2010 while the discharged oil was visible in the Gulf of Mexico. For the naturally occurring oil, we removed pollution events and transient oceanographic effects by including only the reflectance anomalies that that recurred in the same locality over multiple images. We measured the area of oil layers in a grid of 10x10 km cells covering the entire Gulf of Mexico. Floating oil layers were observed in only a fraction of the total Gulf area amounting to 1.22x10^5 km^2. In a bootstrap sample of 2000 replications, the combined average area of these layers was 7.80x10^2 km^2 (sd 86.03). For a regional comparison, we divided the Gulf of Mexico into four quadrates along 90° W longitude, and 25° N latitude. The NE quadrate, where the BP discharge occurred, received on average 7.0% of the total natural seepage in the Gulf of Mexico (5.24 x10^2 km^2, sd 21.99); the NW quadrate received on average 68.0% of this total (5.30 x10^2 km^2, sd 69.67). The BP blowout occurred in the NE quadrate of the Gulf of Mexico; discharged oil that reached the surface drifted over a large area north of 25° N. Performing a similar estimate using 5x5 km grid cells, we observed discharged oil over an area of 1.20x10^5 km^2; 91% of this area was east of 90° W. The average area oil covered water observed in the SAR images was 4.41x104^ km^2, 98% of which was observed in the eastern Gulf. Numerical oil spill model experiments are used to clarify the distinction between the area impacted by the BP oil spill and the surface slicks due to known natural seeps. Natural oil seepage has been cited as a background source of hydrocarbon contamination in the Gulf of Mexico. Our direct comparison shows that during the blowout, the discharged oil impacted an average area two orders of magnitude greater than the entire Gulf total and three orders of magnitude greater than the usual dose received in the northeastern region. Because the layers of discharged oil were often many times thicker than natural seep oil, additional scale factors are required to show the true difference in doses. These differences should be weighed when evaluating the relative impact of natural and unnatural oil in a large marine ecosystem.

  17. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  18. Soil chemical and physical properties that differentiate urban land-use and cover types

    Treesearch

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  19. Increase in surface albedo caused by agricultural plastic film

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, H.; Xia, X.

    2016-12-01

    The area of agricultural greenhouses and cropland covered by plastic film has increased inChina over the past three decades. Construction of large-area plastic greenhouse potentiallychanges the physical and radiative properties of the surface and its albedo, thereby potentiallyaffecting the surface energy budget and climate change. This study aims to investigate theeffect of the plastic-film cover on surface albedo based on computationswith a simplified modeland several field observation experiments. The results showed that surface albedo increasedby ˜23.5 and ˜33.9% on clear and overcast days, respectively, if grassland was covered byplastic film. Surface albedo of bare soil covered by plastic film increased by ˜16.6% underclear sky conditions. A larger increase in surface albedo was derived for surface types withsmaller surface albedo. Model calculations were in good agreement with field observations.

  20. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.

  2. Spatially quantifying and attributing 17 years of land cover change to examine post-agricultural forest transition in Hawai`i

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.

    2017-12-01

    The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These results directly link land management history to land cover outcomes using an innovative approach to quantify change. It is also the first study to quantify forest transition dynamics in Hawaii and points to the need for similar assessments in post-agricultural landscapes on other oceanic islands.

  3. The formation of diethyl ether via the reaction of iodoethane with atomic oxygen on the Ag(110) surface

    NASA Astrophysics Data System (ADS)

    Jones, G. Scott; Barteau, Mark A.; Vohs, John M.

    1999-01-01

    The reactions of iodoethane (ICH 2CH 3) on clean and oxygen-covered Ag(110) surfaces were investigated using temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). Iodoethane adsorbs dissociatively at 150 K to produce surface ethyl groups on both clean and oxygen-covered Ag(110) surfaces. The ethyl species couple to form butane on both surfaces, with the desorption peak maximum located between 218 and 238 K, depending on the ethyl coverage. In addition to butane, a number of oxidation products including diethyl ether, ethanol, acetaldehyde, surface acetate, ethylene, carbon dioxide and water were formed on the oxygen-dosed Ag(110) surface. Diethyl ether was the major oxygenate produced at all ethyl:oxygen ratios, and the peak temperature for ether evolution varied from 220 to 266 K depending on the relative coverages of these reactants. The total combustion products, CO 2 and H 2O, were primarily formed at low ethyl coverages in the presence of excess oxygen. The formation of ethylene near 240 K probably involves an oxygen-assisted dehydrogenation pathway since ethylene is not formed from ethyl groups on the clean surface. Acetaldehyde and ethanol evolve coincidentally with a peak centered at 270-280 K, and are attributed to the reactions of surface ethoxide species. The surface acetate which decomposes near 620 K is formed from subsequent reactions of acetaldehyde with oxygen atoms. The addition of ethyl to oxygen to form surface ethoxides was verified by HREELS results. The yields of all products exhibited a strong dependence on the relative coverages of ethyl and oxygen.

  4. Surface and atmosphere parameter maps from earth-orbiting radiometers

    NASA Technical Reports Server (NTRS)

    Gloersen, P.

    1976-01-01

    Earlier studies have shown that an earth-orbiting electrically scanned microwave radiometer (ESMR) is capable of inferring the extent, concentration, and age of sea ice; the extent, concentration, and thickness of lake ice; rainfall rates over oceans; surface wind speeds over open water; particle size distribution in the deep snow cover of continental ice sheets; and soil moisture content in unvegetated fields. Most other features of the surface of the earth and its atmosphere require multispectral imaging techniques to unscramble the combined contributions of the atmosphere and the surface. Multispectral extraction of surface parameters is analyzed on the basis of a pertinent equation in terms of the observed brightness temperature, the emissivity of the surface which depends on wavelength and various parameters, the sensible temperature of the surface, and the total atmospheric opacity which is also wavelength dependent. Implementation of the multispectral technique is examined. Properties of the surface of the earth and its atmosphere to be determined from a scanning multichannel microwave radiometer are tabulated.

  5. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.

    PubMed

    Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A

    2010-01-01

    Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.

  6. High-resolution mapping and modelling of surface albedo in Norwegian boreal forests: from remotely sensed data to predictions

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Hu, Xiangping; Vezhapparambu, Sajith; Stromman, Anders

    2017-04-01

    Surface albedo, a key parameter of the Earth's climate system, has high variability in space, time, and land cover and its parameterization is among the most important variables in climate models. The lack of extensive estimates for model improvement is one of the main limitations for accurately quantifying the influence of surface albedo changes on the planetary radiation balance. We use multi-year satellite retrievals of MODIS surface albedo (MCD43A3), high resolution land cover maps, and meteorological records to characterize albedo variations in Norway across latitude, seasons, land cover type, and topography. We then use this dataset to elaborate semi-empirical models to predict albedo values as a function of tree species, age, volume and climate variables like temperature and snow water equivalents (SWE). Given the complexity of the dataset and model formulation, we apply an innovative non-linear programming approach simultaneously coupled with linear un-mixing. The MODIS albedo products are at a resolution of about 500 m and 8 days. The land cover maps provide vegetation structure information on relative abundance of tree species, age, and biomass volumes at 16 m resolution (for both deciduous and coniferous species). Daily observations of meteorological information on air temperature and SWE are produced at 1 km resolution from interpolation of meteorological weather stations in Norway. These datasets have different resolution and projection, and are harmonized by identifying, for each MODIS pixel, the intersecting land cover polygons and the percentage area of the MODIS pixel represented by each land cover type. We then filter the subplots according to the following criteria: i) at least 96% of the total pixel area is covered by a single land cover class (either forest or cropland); ii) if forest area, at least 98% of the forest area is covered by spruce, deciduous or pine. Forested pixels are then categorized as spruce, deciduous, or pine dominant if the fraction of the respective tree species is greater than 75%. Results show averages of albedo estimates for forests and cropland depicting spatial (along a latitudinal gradient) and temporal (daily, monthly, and seasonal) variations across Norway. As the case study region is a country with heterogeneous topography, we also study the sensitivity of the albedo estimates to the slope and aspect of the terrain. The mathematical programming approach uses a variety of functional forms, constraints and variables, leading to many different model outputs. There are several models with relatively high performances, allowing for a flexibility in the model selection, with different model variants suitable for different situations. This approach produces albedo predictions at the same resolution of the land cover dataset (16 m, notably higher than the MODIS estimates), can incorporate changes in climate conditions, and is robust to cross-validation between different locations. By integrating satellite measurements and high-resolution vegetation maps, we can thus produce semi-empirical models that can predict albedo values for boreal forests using a variety of input variables representing climate and/or vegetation structure. Further research can explore the possible advantages of its implementation in land surface schemes over existing approaches.

  7. A SUB-PIXEL COEFFICIENT MODEL TO FORM AGGREGATE IMPERVIOUUS SURFACE ESTIMATES FROM NATIONAL LAND COVER DATA

    EPA Science Inventory

    Using GIS to produce impervious surface coefficients from National Land Cover Data

    National Laud Cover Data (NLCD) and county level planimetric impervious surface data were utilized to derive an impervious coefficient per NLCD class. Results show that coefficients fall in...

  8. An analysis of the relationship between cloud anomalies and sea surface temperature anomalies in a global circulation model

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.

    1992-01-01

    The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.

  9. Estimating the extent of impervious surfaces and turf grass across large regions

    USGS Publications Warehouse

    Claggett, Peter; Irani, Frederick M.; Thompson, Renee L.

    2013-01-01

    The ability of researchers to accurately assess the extent of impervious and pervious developed surfaces, e.g., turf grass, using land-cover data derived from Landsat satellite imagery in the Chesapeake Bay watershed is limited due to the resolution of the data and systematic discrepancies between developed land-cover classes, surface mines, forests, and farmlands. Estimates of impervious surface and turf grass area in the Mid-Atlantic, United States that were based on 2006 Landsat-derived land-cover data were substantially lower than estimates based on more authoritative and independent sources. New estimates of impervious surfaces and turf grass area derived using land-cover data combined with ancillary information on roads, housing units, surface mines, and sampled estimates of road width and residential impervious area were up to 57 and 45% higher than estimates based strictly on land-cover data. These new estimates closely approximate estimates derived from authoritative and independent sources in developed counties.

  10. Conductive fabric seal

    DOEpatents

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2017-04-04

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  11. Conductive fabric seal

    DOEpatents

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2015-10-13

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  12. Recent evolution of glacial lakes in the Eastern Himalayas: the case-study of Mt. Everest (Nepal)

    NASA Astrophysics Data System (ADS)

    Salerno, Franco; D'Agata, Carlo; Diolaiuti, Guglielmina; Smiraglia, Claudio; Viviano, Gaetano; Tartari, Gianni

    2010-05-01

    In this contribution we analyze the glacier and lakes surface variations since the end of the 1950s until 2008 (around 50 years) through hystorical maps and remote sensing images. The Sagarmatha National Park (SNP), Eastern Hymalaian range (Nepal) covers an area of 1141km2, ranging from 2845 m to 8848 m (Mt Everest). Nearly all (28 out of a total of 29 in SNP) are ‘black glaciers', known also as D-type or debris-covered. Overall, SNP experienced a small net reduction in glacier cover of 19.6 km2 (4.9%) from 403.9 km2 at the end of the ‘50s to 384.6 km2 at the start of the ‘90s. As regards lakes surface variations, SNP experienced a very large net increasing in lake surface cover of 1.6 km2 (26%) from 6.0 km2 at the end of the ‘50s to 7.6 km2 in 2008. Moreover the number of lakes is enormously increased (by 36%, from 124 to 169). The new lakes have appeared at higher elevations (42 m higher than the lakes of 50's) probably following the glaciers retreat. As previously documented in bibliography, the Proglacial lakes (Moraine-dammed and in contact with the glacier front) is the typology of glacial lakes more effected by the climate change. These lakes are susceptible to Glacial Lake Outburst Floods (GLOFs) with the potential of releasing million cubic meters of water in a few hours causing catastrophic flooding up. We conclude this contribution pointing out the emerged scientific questions to address future research activities.

  13. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Xi, B.; Minnis, P.

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.

  14. Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forests

    Treesearch

    Robert M. Hubbard; Michael G. Ryan; Kelly Elder; Charles C. Rhoades

    2005-01-01

    Soil CO2 flux can contribute as much as 60-80% of total ecosystem respiration in forests. Although considerable research has focused on quantifying this flux during the growing season, comparatively little effort has focused on non-growing season fluxes. We measured soil CO2 efflux through snow in 50 and 300 year old subalpine forest stands near Fraser CO. Our...

  15. Deforestation, Madagascar

    NASA Image and Video Library

    1990-04-29

    This high oblique view shows the majority of the island of Madagascar (19.0S, 47.5E). This Texas sized island is now largely deforested and is suffering from severe soil erosion as well as a declining biological species diversity and productivity. At the turn of the century, the island was almost totally forested but now, forests cover only about 10 percent of the surface. Evidence of soil erosion can be seen in the offshore sediment plumes.

  16. Deforestation, Madagascar

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This high oblique view shows the majority of the island of Madagascar (19.0S, 47.5E). This Texas sized island is now largely deforested and is suffering from severe soil erosion as well as a declining biological species diversity and productivity. At the turn of the century, the island was almost totally forested but now, forests cover only about 10 percent of the surface. Evidence of soil erosion can be seen in the offshore sediment plumes.

  17. Deforestation, Madagascar

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This high oblique view shows the majority of the island of Madagascar (22.0S, 45.5E). This Texas sized island is now largely deforested and is suffering from severe soil erosion as well as a declining biological species diversity and productivity. At the turn of the century, the island was almost totally forested but now, forests cover only about 10 percent of the surface. Evidence of soil erosion can be seen in the offshore sediment plumes.

  18. Water hyacinths for upgrading sewage lagoons to meet advanced wastewater treatment standards, part 2

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.

    1976-01-01

    Field tests using water hyacinths as biological filtration agents were conducted in the Mississippi gulf coast region. The plants were installed in one single cell and one multiple cell sewage lagoon systems. Water hyacinths demonstrated the ability to maintain BOD5 and total suspended solid (TSS) levels within the Environmental Protection Agency's prescribed limits of 30 mg/lBOD5 and 30 mg/l TSS. A multiple cell sewage lagoon system consisting of two aerated and one water hyacinth covered cell connected in series demonstrated the ability to maintain BOD5 and TSS levels below 30 mg/l year-round. A water hyacinth covered lagoon with a surface area of 0.28 hectare containing a total volume of 6.8 million liters demonstrated the capacity to treat 437,000 to 1,893,000 liters of sewage influent from 2.65 hectares of aerated lagoons daily and produce an effluent that met or exceeded standards year-round.

  19. Evapotranspiration from selected fallowed agricultural fields on the Tule Lake National Wildlife Refuge, California, during May to October 2000

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration at the lot 6 stubble and cover crop sites. The ratio of evapotranspiration rate to the reference evapotranspiration rate was strongly correlated with percentage of site coverage by vegetation at the lot C1B and lot 6 stubble sites (correlation coefficient = 0.95, sample size = 6), where percentage of site coverage was determined from quantitative vegetation surveys. It is concluded that evapotranspiration was mediated by the vegetation at all three sites, and that the differences in seasonal timing of evapotranspiration losses were caused by differences in timing of vegetation growth and development and senescence among the sites. Depth to the water table below the land surface at lot C1B ranged from 0.67 meters in early July to greater than 1.39 meters in late August. Depth to the water table at lot 6 ranged from 0.77 meter in late May to greater than 1.40 meters in late August.

  20. Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the Solid Oxide Fuel Cell Cathode Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalan, Srikanth

    2017-04-06

    This final report for project FE0009656 covers the period from 10/01/2012 to 09/30/2015 and covers research accomplishments on the effects of carbon dioxide on the surface composition and structure of cathode materials for solid oxide fuel cells (SOFCs), specifically La1-xSrxFeyCo1- yO3-δ (LSCF). Epitaxially deposited thin films of LSCF on various single-crystal substrates have revealed the selective segregation of strontium to the surface thereby resulting in a surface enrichment of strontium. The near surface compositional profile in the films have been measured using total x-ray fluorescence (TXRF), and show that the kinetics of strontium segregation are higher at higher partial pressuresmore » of carbon dioxide. Once the strontium segregates to the surface, it leads to the formation of precipitates of SrO which convert to SrCO3 in the presence of even modest concentrations of carbon dioxide in the atmosphere. This has important implications for the performance of SOFCs which is discussed in this report. These experimental observations have also been verified by Density Functional Theory calculations (DFT) which predict the conditions under which SrO and SrCO3 can occur in LSCF. Furthermore, a few cathode compositions which have received attention in the literature as alternatives to LSCF cathodes have been studied in this work and shown to be thermodynamically unstable under the operating conditions of the SOFCs.« less

  1. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  2. Comparative climatology of four marine stratocumulus regimes

    NASA Technical Reports Server (NTRS)

    Hanson, Howard P.

    1990-01-01

    The climatology of marine stratocumulus (MSc) cloud regimes off the west coasts of California, Peru, Morocco, and Angola are examined. Long-term, annual averages are presented for several quantities of interest in the four MSc regimes. The climatologies were constructed using the Comprehensive Ocean-Atmosphere Data Set (COADS). A 40 year time series of observations was extracted for 32 x 32 deg analysis domains. The data were taken from the monthly-averaged, 2 deg product. The resolution of the analysis is therefore limited to scales of greater than 200 km with submonthly variability not resolved. The averages of total cloud cover, sea surface temperature, and surface pressure are presented.

  3. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    NASA Astrophysics Data System (ADS)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.

  4. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters.

    PubMed

    Solberg, Ingrid; Kaartvedt, Stein

    2014-01-01

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat ( Sprattus sprattus ) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day -1 . The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established.

  5. Antifouling property of highly oleophobic substrates for solar cell surfaces

    NASA Astrophysics Data System (ADS)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  6. Surface loss probability of atomic hydrogen for different electrode cover materials investigated in H₂-Ar low-pressure plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sode, M., E-mail: maik.sode@ipp.mpg.de; Schwarz-Selinger, T.; Jacob, W.

    2014-07-07

    In an inductively coupled H₂-Ar plasma at a total pressure of 1.5 Pa, the influence of the electrode cover material on selected line intensities of H, H₂, and Ar are determined by optical emission spectroscopy and actinometry for the electrode cover materials stainless steel, copper, tungsten, Macor{sup ®}, and aluminum. Hydrogen dissociation degrees for the considered conditions are determined experimentally from the measured emission intensity ratios. The surface loss probability β{sub H} of atomic hydrogen is correlated with the measured line intensities, and β{sub H} values are determined for the considered materials. Without the knowledge of the atomic hydrogen temperature,more » β{sub H} cannot be determined exactly. However, ratios of β{sub H} values for different surface materials are in first order approximation independent of the atomic hydrogen temperature. Our results show that β{sub H} of copper is equal to the value of stainless steel, β{sub H} of Macor{sup ®} and tungsten is about 2 times smaller and β{sub H} of aluminum about 5 times smaller compared with stainless steel. The latter ratio is in reasonable agreement with literature. The influence of the atomic hydrogen temperature T{sub H} on the absolute value is thoroughly discussed. For our assumption of T{sub H}=600 K, we determine a β{sub H} for stainless steel of 0.39±0.13.« less

  7. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

  8. The seasonal cycle of snow cover, sea ice and surface albedo

    NASA Technical Reports Server (NTRS)

    Robock, A.

    1980-01-01

    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  9. Using land-cover change as dynamic variables in surface-water and water-quality models

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne

    2010-01-01

    Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.

  10. Improved vegetation parameterization for hydrological model and assessment of land cover change impacts on flow regime of the Upper Bhima basin, India

    NASA Astrophysics Data System (ADS)

    Mohaideen, M. M. Diwan; Varija, K.

    2018-05-01

    This study investigates the potential and applicability of variable infiltration capacity (VIC) hydrological model to simulate different hydrological components of the Upper Bhima basin under two different Land Use Land Cover (LULC) (the year 2000 and 2010) conditions. The total drainage area of the basin was discretized into 1694 grids of about 5.5 km by 5.5 km: accordingly the model parameters were calibrated at each grid level. Vegetation parameters for the model were prepared using temporal profile of Leaf Area Index (LAI) from Moderate-Resolution Imaging Spectroradiometer and LULC. This practice provides a methodological framework for the improved vegetation parameterization along with region-specific condition for the model simulation. The calibrated and validated model was run using the two LULC conditions separately with the same observed meteorological forcing (1996-2001) and soil data. The change in LULC has resulted to an increase in the average annual evapotranspiration over the basin by 7.8%, while the average annual surface runoff and baseflow decreased by 18.86 and 5.83%, respectively. The variability in hydrological components and the spatial variation of each component attributed to LULC were assessed at the basin grid level. It was observed that 80% of the basin grids showed an increase in evapotranspiration (ET) (maximum of 292 mm). While the majority of the grids showed a decrease in surface runoff and baseflow, some of the grids showed an increase (i.e. 21 and 15% of total grids—surface runoff and baseflow, respectively).

  11. An Alternative Posterosuperior Auricular Fascia Flap for Ear Elevation During Microtia Reconstruction.

    PubMed

    Li, Yiyuan; Zhang, Ruhong; Zhang, Qun; Xu, Zhicheng; Xu, Feng; Li, Datao

    2017-02-01

    Advances in staged total auricular reconstruction have resulted in improved anterior auricular appearance; however, satisfactory postreconstruction esthetics of the retroauricular fold remain challenging. The postauricular appearance of the reconstructed ear depends largely upon optimizing the covering material. When used as the covering soft tissue for ear elevation, a flap containing primarily the upper portion of the retroauricular fascia has potential advantages over the conventional book cover-type retroauricular fascia flap. We developed a geometrically designed, posterosuperior auricular fascia flap to replace the conventional retroauricular fascia flap for ear elevation. During the second-stage operation, the posterosuperior auricular fascia flap is rotated downward and turned over to wrap around the inner strut and entire posterior auricular surface. Compared to the conventional book cover-type retroauricular fascia flap, the novel posterosuperior auricular fascia flap was easier to harvest and the operative time significantly decreased (110.3 vs. 121.5 min, p < 0.01). The modified flap produced a thin and natural contour of the postauricular surface, as well as reduced the incidence of postauricular hypertrophic scarring (from 24.7 to 13.2%, p = 0.03) and partial skin graft necrosis (from 43.4 to 31.2%, p = 0.01). The geometrically designed posterosuperior auricular fascia flap improves ear elevation. Compared to the conventional book cover-type retroauricular fascia flap, this covering tissue is easier to perform so the surgical time is decreased. It was highly vascularized, well defined, thinner, and yields reliable results. Thus, favorable postauricular surface results can be achieved during auricular reconstruction by using the modified fascia flap. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  12. Selective coal mine overburden treatment with topsoil and compost to optimise pasture or native vegetation establishment.

    PubMed

    Spargo, A; Doley, D

    2016-11-01

    Overburden at a coal mine in the Hunter Valley, New South Wales, was stored in a flat-topped artificial mound with 14-degree side slopes. Topsoil was scarce, dispersive and readily eroded. A split-plot factorial experiment applied an enhanced municipal solid waste compost at 0, 60 or 100 t ha(-1) to untreated overburden or to overburden covered with 0.1 m of topsoil. Two seeding treatments, of trees and shrubs or of pasture species, were applied to two 0.5-ha replicates of each surface treatment. Substrate physical and chemical properties and vegetation attributes were assessed 2.5 years later. Compost application to both topsoil and overburden significantly increased total N, P, Cu and Zn, soluble K, Ca and Mg, and significantly reduced soluble Na and pH. Mean tree density, size and total canopy cover were significantly greater with compost applied at 60 t ha(-1) to overburden than with all other treatments, especially those on topsoil where tree growth was inhibited by undesired species. Compost application to overburden and topsoil at 100 t ha(-1) significantly increased biomass of desired pasture species and significantly reduced undesired species cover compared with unamended topsoil and the extent of bare ground compared with unamended overburden. Successful development of woody species on overburden and pastures on both overburden and topsoil treated with compost provides opportunities for new combinations of landscape design, surface preparation and plant species introductions to increase the stability of final landforms, the effectiveness of resource use, and the delivery of commercial and biodiversity benefits from mine site rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Regional scale albedo of first year Arctic drift ice during summer melt estimated from synthesis of in situ measurements and airborne imagery

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry; Granskog, Mats A.; Hudson, Stephen R.; Pedersen, Christina A.; Karlsen, Tor I.; Gerland, Sebastian

    2014-05-01

    The paper presents the results of analysis of the radiative properties of first year sea ice in advanced stages of melt. The presented technique is based on the upscaling in situ point measurements of surface albedo to the regional (150 km) spatial scale using aerial photographs of sea ice captured by a helicopter borne camera setup. The sea ice imagery as well as in situ snow and ice data were collected during the eight day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic north of Svalbard at 83.5 N during 27 July-03 August 2012. In total some 100 ground albedo measurements were made on melting sea ice in locations representative of the four main types of sea ice surface identified using the discriminant analysis -based classification technique. Some 11000 images from a total of six ice survey flights adding up to some 770 km of flight tracks covering about 28 km2 of sea ice surface were classified to yield the along-track distributions of four major surface classes: bare ice, dark melt ponds, bright melt ponds and open water. Results demonstrated a relative homogeneity of sea ice cover in the study area allowing for upscaling the local optical measurements to the regional scale. For the typical 10% open water fraction and 25% melt pond coverage, with a ratio of dark to bright ponds of 2 identified from selected images, the aggregate scale surface albedo of the area was estimated to be 0.42(0.40;0.44). The confidence intervals on the estimate were derived using the moving block bootstrap approach applied to the sequences of classified sea ice images and albedo of the four surface classes treated as random variables. Uncertainty in the mean estimates of local albedo from in situ measurements contributed some 65% to the variance of the estimated regional albedo with the remaining variance to be associated with the spatial inhomogeneity of sea ice cover. The results of the study are of relevance for the modeling of sea ice processes in climate simulations. It particularly concerns the period of summer melt when the optical properties of sea ice undergo substantial changes which the existing sea ice models experience most difficulties to accurately reproduce. That phase of a season is especially crucial for climate and ecosystem processes in the polar regions.

  14. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  15. Surface Coverage and Metallicity of ZnO Surfaces from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, Andre; The Schleife research Group Team

    Zinc oxide (ZnO) surfaces are widely used in different applications such as catalysis, biosensing, and solar cells. These surfaces are, in many cases, chemically terminated by hydroxyl groups. In experiment, a transition of the ZnO surface electronic properties from semiconducting to metallic was reported upon increasing the hydroxyl coverage to more than approximately 80 %. The reason for this transition is not well understood yet. We report on first-principles calculations based on density functional theory for the ZnO [ 10 1 0 ] surface, taking different amounts of hydroxyl coverage into account. We calculated band structures for fully relaxed configurations and verified the existence of this transition. However, we only find the fully covered surface to be metallic. We thus explore the possibility for clustering of the surface-terminating hydroxyl groups based on total-energy calculations. We also found that the valence band maximum consists of oxygen p states from both the surface hydroxyl groups and the surface oxygen atoms of the material. The main contribution to the metallicity is found to be from the hydroxyl groups.

  16. Effect of stone coverage on soil erosion

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.

    2010-12-01

    Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in negligible changes in the bulk density during the erosion event. Since the main process contributing to surface sealing development is the compaction due to the raindrop kinetic energy and associated physico-chemical changes, the protection provided by the stone cover is consistent with the area-averaging approach used in applying the HR model.

  17. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    PubMed

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-04

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.

  18. Environmental factors controlling spatial variation in sediment yield in a central Andean mountain area

    NASA Astrophysics Data System (ADS)

    Molina, Armando; Govers, Gerard; Poesen, Jean; Van Hemelryck, Hendrik; De Bièvre, Bert; Vanacker, Veerle

    2008-06-01

    A large spatial variability in sediment yield was observed from small streams in the Ecuadorian Andes. The objective of this study was to analyze the environmental factors controlling these variations in sediment yield in the Paute basin, Ecuador. Sediment yield data were calculated based on sediment volumes accumulated behind checkdams for 37 small catchments. Mean annual specific sediment yield (SSY) shows a large spatial variability and ranges between 26 and 15,100 Mg km - 2 year - 1 . Mean vegetation cover (C, fraction) in the catchment, i.e. the plant cover at or near the surface, exerts a first order control on sediment yield. The fractional vegetation cover alone explains 57% of the observed variance in ln(SSY). The negative exponential relation (SSY = a × e- b C) which was found between vegetation cover and sediment yield at the catchment scale (10 3-10 9 m 2), is very similar to the equations derived from splash, interrill and rill erosion experiments at the plot scale (1-10 3 m 2). This affirms the general character of an exponential decrease of sediment yield with increasing vegetation cover at a wide range of spatial scales, provided the distribution of cover can be considered to be essentially random. Lithology also significantly affects the sediment yield, and explains an additional 23% of the observed variance in ln(SSY). Based on these two catchment parameters, a multiple regression model was built. This empirical regression model already explains more than 75% of the total variance in the mean annual sediment yield. These results highlight the large potential of revegetation programs for controlling sediment yield. They show that a slight increase in the overall fractional vegetation cover of degraded land is likely to have a large effect on sediment production and delivery. Moreover, they point to the importance of detailed surface vegetation data for predicting and modeling sediment production rates.

  19. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  20. Reductions of plant cover induced by sheep grazing change the above-belowground partition and chemistry of organic C stocks in arid rangelands of Patagonian Monte, Argentina.

    PubMed

    Larreguy, C; Carrera, A L; Bertiller, M B

    2017-09-01

    The objective of this study was to estimate the size and chemical quality of the total organic C stock and its partition between above-belowground plant parts and soil at sites with different plant cover induced by sheep grazing in the arid Patagonian Monte. This study was conducted at six representative sites with increasing signs of canopy disturbance attributed to grazing pressure. We used faeces density as a proxy of grazing pressure at each site. We assessed the total plant cover, shrub and perennial grass cover, total standing aboveground biomass (AGB), litter mass and belowground biomass (BGB) at each site. We further estimated the content of organic C, lignin and soluble phenols in plant compartments and the content of organic C, organic C in humic substances (recalcitrant C) and water soluble C (labile C) in soil at each site. Total plant cover was significantly related to grazing pressure. Standing AGB and litter mass decreased with increasing canopy disturbance while BGB did not vary across sites. Total organic C stock and the organic C stock in standing AGB increased with increasing total plant, shrub, and perennial grass cover. The organic C stock in litter mass increased with increasing total plant and shrub cover, while the organic C stock in BGB did not vary across sites. Lignin content in plant compartments increased with increasing total and shrub cover, while soluble phenols content did not change across sites. The organic C stock and the water soluble C content in soil were positively associated with perennial grass cover. Changes in total plant cover induced by grazing pressure negatively affected the size of the total organic C stock, having minor impact on the size of belowground than aboveground components. The reduction of perennial grass cover was reflected in decreasing chemical quality of the organic C stock in soil. Accordingly, plant managerial strategies should not only be focused on the amount of organic C sequestered but also on the chemical quality of organic C stocks since C chemistry could have an important impact on ecosystem functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility

    USGS Publications Warehouse

    Reed, Sasha C.; Coe, Kirsten K.; Sparks, Jed P.; Housman, David C.; Zelikova, Tamara J.; Belnap, Jayne

    2012-01-01

    Arid and semi-arid ecosystems cover ~40% of Earth’s terrestrial surface, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2 mm summer rainfall events reduced moss cover from ~25% of total surface cover to <2% after only one growing season, whereas increased temperature had no effect. Laboratory measurements identified a physiological mechanism behind the mortality: small precipitation events caused a negative moss carbon balance, whereas larger events maintained net carbon uptake. Multiple metrics of nitrogen cycling were notably different with moss mortality and had significant implications for soil fertility. Mosses are important members in many dryland ecosystems and the community changes observed here reveal how subtle modifications to climate can affect ecosystem structure and function on unexpectedly short timescales. Moreover, mortality resulted from increased precipitation through smaller, more frequent events, underscoring the importance of precipitation event size and timing, and highlighting our inadequate understanding of relationships between climate and ecosystem function in drylands.

  2. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    PubMed

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  3. Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands

    USGS Publications Warehouse

    Poitras, Travis; Villarreal, Miguel; Waller, Eric K.; Nauman, Travis; Miller, Mark E.; Duniway, Michael C.

    2018-01-01

    Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize surface variability of vegetation cover and bare ground across a range of vegetation community types. Using three year composites of Landsat data, we modeled relationships between spectral information and field data collected at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess improvement over single variables. We found that for all vegetation types, percent cover bare ground could be accurately modeled with single indices that included a combination of red and shortwave infrared bands, while near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland ecological states across our study area, illustrating how this approach can be implemented to guide dryland ecosystem management.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.

    We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysismore » period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.« less

  5. Hot gas path component having cast-in features for near wall cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface of the substrate defines at least one interior space. At least a portion of the outer surface of the substrate includes a recess formed therein. The recess includes a bottom surface and a groove extending at least partially along the bottom surface of the recess. A cover is disposed within the recess and covers at least a portion of the groove. The groove is configured to channel a cooling fluid therethrough to cool the cover.

  6. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.

  7. Drainage-return, surface-water withdrawal, and land-use data for the Sacramento-San Joaquin Delta, with emphasis on Twitchell Island, California

    USGS Publications Warehouse

    Templin, William E.; Cherry, Daniel E.

    1997-01-01

    Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).

  8. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat imagery change detection methods

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.

    2010-01-01

    A prototype method was developed to update the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 to a nominal date of 2006. NLCD 2001 is widely used as a baseline for national land cover and impervious cover conditions. To enable the updating of this database in an optimal manner, methods are designed to be accomplished by individual Landsat scene. Using conservative change thresholds based on land cover classes, areas of change and no-change were segregated from change vectors calculated from normalized Landsat scenes from 2001 and 2006. By sampling from NLCD 2001 impervious surface in unchanged areas, impervious surface predictions were estimated for changed areas within an urban extent defined by a companion land cover classification. Methods were developed and tested for national application across six study sites containing a variety of urban impervious surface. Results show the vast majority of impervious surface change associated with urban development was captured, with overall RMSE from 6.86 to 13.12% for these areas. Changes of urban development density were also evaluated by characterizing the categories of change by percentile for impervious surface. This prototype method provides a relatively low cost, flexible approach to generate updated impervious surface using NLCD 2001 as the baseline.

  9. Method of mounting a PC board to a hybrid

    NASA Technical Reports Server (NTRS)

    O'Coin, James R. (Inventor)

    1999-01-01

    A system for mounting a hybrid electronic component to a PC board is disclosed. The system includes a set of brackets for mutually engaging a first surface of the PC board and a cover surface of the hybrid electronic component, wherein the cover surface has an arcuate shape when in a vacuum environment. The brackets are designed with legs having lengths and thicknesses for providing clearance between the cover surface of the hybrid and the first surface of the PC board for use when the hybrid electronic component is in a vacuum environment.

  10. Incidence loss for fan turbine rotor blade in two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Kline, J. F.; Moffitt, T. P.; Stabe, R. G.

    1983-01-01

    The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.

  11. Climatic modification by CO2, H2O, and aerosol

    NASA Technical Reports Server (NTRS)

    Rasool, I.

    1972-01-01

    Research is reported on the effects of increasing the CO2, aerosols, and water content of the atmosphere on the surface temperature and climatology. An atmospheric model is described with the incoming solar radiation for a planetary albedo of 33 percent, surface temperature of 288 K, relative humidity of 75 percent, cloud cover of 48 percent, CO2 of 0.3 parts per thousand, and aerosol density of two million per square centimeter. The results show that if the CO2 increases by a factor of 1000 or more, the total pressure of the atmosphere increases, and the earth may become as hot as Venus. It is also shown that as the amount of dust particles in the atmosphere increases, the solar radiation decreases, and the surface temperature lowers.

  12. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  13. The Surfaces of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Moore, Jeffrey M.; Sykes, Mark V.; Owen, Tobias C.; Bartholomew, Mary Jane; Brown, Robert H.; Tryka, Kimberly A.

    1996-01-01

    Much of the surface of Pluto consists of high-albedo regions covered to an unknown depth by Beta-N2, contaminated with CH4, CO, and other molecules. A portion of the exposed surface appears to consist of solid H2O. The remainder is covered by lower albedo material of unknown composition. The N2 ice may occur as polar caps of large extent, leaving ices and other solids of lower volatility in the equatorial regions. The low-albedo material found primarily in the equatorial regions may consist in part of solid hydrocarbons and nitriles produced from N2 and CH4 in the atmosphere or in the surface ices. Alternatively, it may arise from deposition from impacting bodies and/or the chemistry of the impact process itself. Charon's surface is probably more compositionally uniform than that of Pluto, and is covered by H2O ice with possible contaminants or exposures of other materials that are as yet unidentified. The molecular ices discovered on Pluto and Charon have been identified from near-infrared spectra obtained with Earth-based telescopes. The quantitative interpretation of those data has been achieved through the computation of synthetic spectra using the Hapke scattering theory and the optical constants of various ices observed in the laboratory. Despite limitations imposed by the availability of laboratory data on ices in various mixtures, certain specific results have been obtained. It appears that CH4 and CO are trace constituents, and that some fraction of the CH4 (and probably the CO) on Pluto is dissolved in the matrix of solid N2. Pure CH4 probably also occurs on Pluto's surface, allowing direct access to the atmosphere. Study of the nitrogen absorption band at 2.148 micrometers shows that the temperature of the N2 in the present epoch is 40 +/-2 K. The global temperature regime of Pluto can be modeled from observations of the thermal flux at far-infrared and millimeter wavelengths. The low-albedo equatorial regions must be significantly warmer than the polar regions covered by N2 (at T = 40 K) to account for the total thermal flux measured. At the present season, the diurnal skin depth of the insolation-driven thermal wave is small, and the observed mm-wave fluxes may arise from a greater depth. Alternatively, the mm-wave flux may arise from the cool, sublimation source region. The surface microstructure in the regions covered by N2 ice is likely governed by the sintering properties of this highly volatile material. The observed nitrogen infrared band strength requires that expanses of the surface be covered with cm-sized crystals of N2. Grains of H2O ice on Charon, in contrast, are probably of order 50 micrometers in size, and do not metamorphose into larger grains at a significant rate. Because of the similarities in size, density, atmosphere and surface composition between Pluto and Neptune's satellite Triton, the surface structures observed by Voyager on Triton serve as a plausible paradigm for what might be expected on Pluto. Such crater forms, tectonic structures, aeolian features, cryovolcanic structures, and sublimation-degraded topography as are eventually observed on Pluto and Charon by spacecraft will give information on their interior compositions and structures, as well as on the temperature and wind regimes over the planet's extreme seasonal cycle.

  14. Hydrologic impacts of land cover variability and change at seasonal to decadal time scales over North America, 1992-2016

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.

  15. Air quality and human health impacts of grasslands and shrublands in the United States

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.

    2018-06-01

    Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.

  16. Comparative study of radiometric and calorimetric methods for total hemispherical emissivity measurements

    NASA Astrophysics Data System (ADS)

    Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves

    2018-05-01

    Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity (about 0.4) and with good uniformity of emissivity values (within ±0.015).

  17. Utility of Thermal Infrared Satellite Data For Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Xian, G.; Crane, M.; Granneman, B.

    2006-12-01

    Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.

  18. Mass spectrometric analysis of organic compounds, water and volatile constituents in the atmosphere and surface of Mars - The Viking Mars Lander.

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Biemann, K.; Orgel, L. E.; Oro, J.; Owen , T.; Shulman, G. P.; Toulmin, P., III; Urey, H. C.

    1972-01-01

    An experiment centering around a mass spectrometer is described, which is aimed at the identification of organic substances present in the top 10 cm of the surface of Mars and an analysis of the atmosphere for major and minor constituents as well as isotopic abundances. In addition, an indication of the abundance of water in the surface and some information concerning the mineralogy can be obtained by monitoring the gases produced upon heating the soil sample. The organic material will simply be expelled by heating to 150, 300, and 500 C into the carrier gas stream of a gas chromatograph interfaced to the mass spectrometer or by slowly heating the sample in direct communication with the spectrometer. It is planned to analyze a total of up to nine soil samples in order to study diurnal and seasonal variations. The system is designed to give useful data even for minor constituents if the total of organics should be as low as 5 ppm. The spectrometer covers the mass range of 12-200 with adequate resolution.

  19. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  20. 7 CFR 51.1586 - Serious damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of more than 10 percent of the total weight of the potato including peel covering defective area. Any... percent of the total weight of the potato including peel covering defective area. (b) Shriveling, when the... percent of the total weight of the potato including peel covering defective area. (e) Wireworm, grass root...

  1. 7 CFR 51.1586 - Serious damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of more than 10 percent of the total weight of the potato including peel covering defective area. Any... percent of the total weight of the potato including peel covering defective area. (b) Shriveling, when the... percent of the total weight of the potato including peel covering defective area. (e) Wireworm, grass root...

  2. Modelling of XCO₂ Surfaces Based on Flight Tests of TanSat Instruments.

    PubMed

    Zhang, Li Li; Yue, Tian Xiang; Wilson, John P; Wang, Ding Yi; Zhao, Na; Liu, Yu; Liu, Dong Dong; Du, Zheng Ping; Wang, Yi Fu; Lin, Chao; Zheng, Yu Quan; Guo, Jian Hong

    2016-11-01

    The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km² and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO₂) surface based on flight test data which measured the near- and short-wave infrared (NIR) reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO₂ in the flight area using the limited flight test data and the approximate surface of XCO₂, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM) platform to fill the gaps where there is no information on XCO₂ in the flight test area, which takes the approximate surface of XCO₂ as its driving field and the XCO₂ observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO₂ were constructed with HASM based on the flight's observations. The results showed that the mean XCO₂ in the flight test area is about 400 ppm and that XCO₂ over urban areas is much higher than in other places. Compared with OCO-2's XCO₂, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO₂ surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  3. Dust emissions from unpaved roads on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Duniway, M.; Flagg, C.; Belnap, J.

    2013-12-01

    On the Colorado Plateau, elevated levels of aeolian dust have become a major land management and policy concern due to its influence on climate, weather, terrestrial ecosystem dynamics, landscape development and fertility, melting of snow and ice, air quality, and human health. Most desert soil surfaces are stabilized by plants, rocks, and/or physical or biological soil crusts, but once disturbed, sediment production from these surfaces can increase dramatically. Road development and use is a common surface disturbing activity in the region. The extent and density of roads and road networks is rapidly increasing due to continued energy exploration, infrastructure development, and off-highway recreation activities. Though it is well known that unpaved roads produce dust, the relative contribution of dust from existing roads or the implications of future road development to regional dust loading is unknown. To address this need, we have initiated a multifaceted research effort to evaluating dust emissions from unpaved roads regionally. At 34 sites arranged across various road surfaces and soil textures in southeastern Utah, we are: 1) monitoring dust emissions, local wind conditions, and vehicle traffic and 2) evaluating fugitive dust potential using a portable wind tunnel and measuring road characteristics that affect dust production. We will then 3) develop a GIS-based model that integrates results from 1 & 2 to estimate potential dust contributions from current and future scenarios of regional road development. Passive, horizontal sediment traps were installed at three distances downwind from the road edge. One control trap was placed upwind of the samplers to account for local, non-road dust emissions. An electronic vehicle counter and anemometer were also installed at monitoring sites. Dust samples were collected every three months at fixed heights, 15 cm up to 100 cm above the soil surface, from March 2010 to the present. Threshold friction velocities (TFV), the minimum wind velocity required to initiate erosion, and sediment production were also quantified using a portable wind tunnel at monitoring sites. Additionally, numerous characteristics including gravel cover, particle-size distribution, soil compaction, and loose-erodible material were measured on road surfaces at monitoring sites. Preliminary results suggest that roads are an important regional dust source, as emissions from roads are comparable to non-road, rural sources that are being monitored concurrently. While gravel roads produce more dust per day on average, per vehicle emissions are larger on dirt roads. Dust flux decreases with distance from the road edge on all road types, however this decline is less pronounced on dirt roads. Portable wind tunnel results indicate that TFV is consistently lower on dirt versus gravel roads across all soil types. Fugitive dust flux is generally larger and more variable on dirt roads compared to gravel roads. Initial analyses suggest that several easily measurable road surface characteristics can potentially be used to predict both TFV and sediment production, including: total gravel cover, gravel particle-size classes, clay content, and road compaction. The relation between TFV and total gravel cover in particular appears to be non-linear, with TFV increasing rapidly above ~40% gravel cover.

  4. Surface topography of two trematodes parasites infecting grey heron Ardea cinerea Jouyi (Aves, Ciconiiformes) in Qena, Egypt.

    PubMed

    Ammar, Khalaf Nour Abd El-Wahed

    2015-04-01

    Apharyngostrigea ardeolina and Echinoparyphium recurvatum are two important digenean parasites that were recovered from small intestine of grey heron with an infection rate (16.2%) and (8.8%) respectively. The surface topography of two species was redescribed by both light and scanning electron microscopy. Using SEM studies showed that the body surface of two trematodes were covered by contact receptors, several types of sensory tegumental papillae which may have useful function in orientation and feeding through increasing the surface area of absorption, could also play a role in sensation or in selection of the materials for ingestion by the fluke. The head collar of E. recurvatum is reniform in shape, bearing uninterrupted double row of 41 collar finger-like spines, a total including 4 end group ones on both ventral corners., tegumental spines were tongue-shaped without a terminal tip.

  5. Global-scale surface spectral variations on Titan seen from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Buratti, B.J.; Sotin, Christophe; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Clark, R.; Nicholson, P.

    2007-01-01

    We present global-scale maps of Titan from the Visual and Infrared Mapping Spectrometer (VIMS) instrument on Cassini. We map at 64 near-infrared wavelengths simultaneously, covering the atmospheric windows at 0.94, 1.08, 1.28, 1.6, 2.0, 2.8, and 5 ??m with a typical resolution of 50 km/pixel or a typical total integration time of 1 s. Our maps have five to ten times the resolution of ground-based maps, better spectral resolution across most windows, coverage in multiple atmospheric windows, and represent the first spatially resolved maps of Titan at 5 ??m. The VIMS maps provide context and surface spectral information in support of other Cassini instruments. We note a strong latitudinal dependence in the spectral character of Titan's surface, and partition the surface into 9 spectral units that we describe in terms of spectral and spatial characteristics. ?? 2006 Elsevier Inc. All rights reserved.

  6. Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice

    NASA Astrophysics Data System (ADS)

    Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco

    2015-04-01

    The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates melting of sea ice. Hence, the change in seasonality and the associated change in feedback strength is an integral part of the positive surface albedo feedback leading to Arctic amplification and diminishing sea ice cover in the next century when global climate warms.

  7. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  8. WATER COOLED RETORT COVER

    DOEpatents

    Ash, W.J.; Pozzi, J.F.

    1962-05-01

    A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

  9. Producing Information for Corine Database by Using Classification Method: a Case Study of Sazlidere Basin, Istanbul

    NASA Astrophysics Data System (ADS)

    Sarıyılmaz, F. B.; Musaoğlu, N.; Uluğtekin, N.

    2017-11-01

    The Sazlidere Basin is located on the European side of Istanbul within the borders of Arnavutkoy and Basaksehir districts. The total area of the basin, which is largely located within the province of Arnavutkoy, is approximately 177 km2. The Sazlidere Basin is faced with intense urbanization pressures and land use / cover change due to the Northern Marmara Motorway, 3rd airport and Channel Istanbul Projects, which are planned to be realized in the Arnavutkoy region. Due to the mentioned projects, intense land use /cover changes occur in the basin. In this study, 2000 and 2012 dated LANDSAT images were supervised classified based on CORINE Land Cover first level to determine the land use/cover classes. As a result, four information classes were identified. These classes are water bodies, forest and semi-natural areas, agricultural areas and artificial surfaces. Accuracy analysis of the images were performed following the classification process. The supervised classified images that have the smallest mapping units 0.09 ha and 0.64 ha were generalized to be compatible with the CORINE Land Cover data. The image pixels have been rearranged by using the thematic pixel aggregation method as the smallest mapping unit is 25 ha. These results were compared with CORINE Land Cover 2000 and CORINE Land Cover 2012, which were obtained by digitizing land cover and land use classes on satellite images. It has been determined that the compared results are compatible with each other in terms of quality and quantity.

  10. Updating the New Zealand Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Baumann, S. C.; Anderson, B.; Mackintosh, A.; Lorrey, A.; Chinn, T.; Collier, C.; Rack, W.; Purdie, H.

    2017-12-01

    The last complete glacier inventory of New Zealand dates from the year 1978 (North Island 1988) and was manually constructed from oblique aerial photographs and geodetic maps (Chinn 2001). The inventory has been partly updated by Gjermundsen et al. (2011) for the year 2002 (40% of total area) and by Sirguey & More (2010) for the year 2009 (32% of total area), both using ASTER satellite imagery. We used Landsat 8 OLI/TIRS satellite data from February/March 2016 to map the total glaciated area. Clean and debris-covered ice were mapped semi-automatically. The band ratio approach was used for clean ice (ratio: red/SWIR). We mapped debris-covered ice using a supervised classification (maximum likelihood). Manual post processing was necessary due to misclassifications (e.g. lakes, clouds) or mapping in shadowed areas. It was also necessary to manually combine the clean and debris-covered parts into single glaciers. Additional input data for the post processing were Sentinel 2 images from the same time period, orthophotos from Land Information New Zealand (resolution: 0.75 m, date: Nov 2014), and the 1978/88 outlines from the GLIMS database (http://www.glims.org/). As the Sentinel 2 data were more heavily cloud covered compared to the Landsat 8 images, they were only used for post processing and not for the classification itself. Initial results show that New Zealand glaciers covered an area of about 1050 km² in 2016, a reduction of 16% since 1978. Approximately 17% of glacier area was covered in surface debris. The glaciers in the central Southern Alps around Mt Cook reduced in area by 24%. Glaciers in the North Island of New Zealand reduced by 71% since 1988, and only 2 km² of ice cover remained in 2016. Chinn, TJH (2001). "Distribution of the glacial water resources of New Zealand." Journal of Hydrology (NZ) 40(2): 139-187 Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, TJH, Fitzharris, B & Hagen, JO (2011). "Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978-2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data." Journal of Glaciology 57(204): 667-683 Sirguey, P & More, B (2010). GLIMS Glacier Database. Boulder, NSIDC

  11. UV 380 nm Reflectivity of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2000-01-01

    The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.

  12. UV 380 nm reflectivity of the Earth's surface, clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2001-03-01

    The 380 nm radiance measurements of the Total Ozone Mapping Spectrometer (TOMS) have been converted into a global data set of daily (1979-1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice) and then corrected to RPC for the presence of partly clouded scenes. Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicate the presence of clouds, haze, or aerosols in the satellite field of view. A statistical analysis of 14 years of daily reflectivity data shows that most snow-/ice-free scenes observed by TOMS have a reflectivity less than 10% for the majority of days during a year. The 380 nm reflectivity data show that the true surface reflectivity is 2-3% lower than the most frequently occurring reflectivity value for each TOMS scene as seen from space. Most likely the cause is a combination of frequently occurring boundary layer water and/or aerosol haze. For most regions the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R>15%) more than half of each year. In the low to middle latitudes the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show both the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.

  13. Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Naz, Bibi S.; Bowling, Laura C.

    2015-02-01

    The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range between ∼ 5500 and 6200 m in various watersheds. These outputs can be used as input to hydrological models, to estimate spatially-variable degree day factors for hydrological modeling, to separate glacier and snow-melt contributions in river flows, and to study glacier mass balance, and glacier responses to changing climate.

  14. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  15. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, John R.; Schertz, William W.

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  16. Discrete post-processing of total cloud cover ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  17. Output-increasing, protective cover for a solar cell

    DOEpatents

    Hammerbacher, Milfred D.

    1995-11-21

    A flexible cover (14) for a flexible solar cell (12) protects the cell from the ambient and increases the cell's efficiency. The cell(12)includes silicon spheres (16) held in a flexible aluminum sheet matrix (20,22). The cover (14) is a flexible, protective layer (60) of light-transparent material having a relatively flat upper, free surface (64) and an irregular opposed surface (66). The irregular surface (66) includes first portions (68) which conform to the polar regions (31R) of the spheres (16) and second convex (72) or concave (90) portions (72 or 90) which define spaces (78) in conjunction with the reflective surface (20T) of one aluminum sheet (20). Without the cover (14) light (50) falling on the surface (20T) between the spheres (16) is wasted, that is, it does not fall on a sphere (16). The surfaces of the second portions are non-parallel to the direction of the otherwise wasted light (50), which fact, together with a selected relationship between the refractive indices of the cover and the spaces, result in sufficient diffraction of the otherwise wasted light (50) so that about 25% of it is reflected from the surface (20T) onto a sphere (16).

  18. The relationship of post-fire white ash cover to surface fuel consumption

    Treesearch

    Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Nolan W. Brewer; Alistair M. S. Smith; Penelope Morgan

    2013-01-01

    White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green...

  19. Quantifying the Components of Impervious Surfaces

    USGS Publications Warehouse

    Tilley, Janet S.; Slonecker, E. Terrence

    2006-01-01

    This study's objectives were to (1) determine the relative contribution of impervious surface individual components by collecting digital information from high-resolution imagery, 1-meter or better; and to (2) determine which of the more advanced techniques, such as spectral unmixing or the application of coefficients to land use or land cover data, was the most suitable method that could be used by State and local governments as well as Federal agencies to efficiently measure the imperviousness in any given watershed or area of interest. The components of impervious surfaces, combined from all the watersheds and time periods from objective one were the following: buildings 29.2-percent, roads 28.3-percent, parking lots 24.6-percent; with the remaining three totaling 14-percent - driveways, sidewalks, and other, where other were any other features that were not contained within the first five. Results from objective two were spectral unmixing techniques will ultimately be the most efficient method of determining imperviousness, but are not yet accurate enough as it is critical to achieve accuracy better than 10-percent of the truth, of which the method is not consistently accomplishing as observed in this study. Of the three techniques in coefficient application tested, land use coefficient application was not practical, while if the last two methods, coefficients applied to land cover data, were merged, their end results could be to within 5-percent or better, of the truth. Until the spectral unmixing technique has been further refined, land cover coefficients should be used, which offer quick results, but not current as they were developed for the 1992 National Land Characteristics Data.

  20. Assimilation of HF Radar-Derived Radials and Total Currents in the Monterey Bay Area

    DTIC Science & Technology

    2009-01-01

    39529-5004, USA b Naval Postgraduate School Monterey. USA ARTICLE INFO Article history: Accepted 16 August 2008 Available online 19 September 2008 ...et al„ 1998; Breivick and Saetra, 2001; Oke et al., 2002; Kurapov et al., 2003; Paduan and Shulman, 2004; Wilkin et al., 2005). Surface-current data...atmospheric model nest covering the central California region that was first put in place during AOSN-II (Doyle et al., 2008 ). In this study, we address

  1. Cover-layer with High Refractive Index for Near-Field Recording Media

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hong; Lee, Jun-Seok

    2007-06-01

    TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.

  2. Cover-Layer with High Refractive Index for Near-Field Recording Media

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hong; Lee, Jun-Seok

    2007-06-01

    TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.

  3. Mariner 9 Solar Array Design, Manufacture, and Performance

    NASA Technical Reports Server (NTRS)

    Sequeira, E. A.

    1973-01-01

    The mission of Mariner 9, the first spacecraft to orbit another planet, was to make scientific observations of the surface of Mars. Throughout this unique mission, the Mariner 9 solar array successfully supported the power requirements of the spacecraft without experiencing anomalies. Basically, the design of the solar array was similar to those of Mariners 6 and 7; however, Mariner 9 had the additional flight operational requirement to perform in a Mars orbit environment mode. The array special tests provided information on the current-voltage characteristics and array space degradation. Tests indicated that total solar array current degradation was 3.5 percent, which could probably be attributed to the gradual degradation of the cover glass and/or the RTV 602 adhesive employed to cement the cover glass to the solar cell.

  4. Wearing surface testing and screening : Yukon River Bridge.

    DOT National Transportation Integrated Search

    2015-09-01

    There is a demand and a need for cheaper and alternative surface coverings in environments with high temperature fluctuations. Our : design for an alternative surface covering involves a basic two-part component epoxy with the addition of a solvent. ...

  5. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  6. Imposing constraints on parameter values of a conceptual hydrological model using baseflow response

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.

    Calibration of conceptual hydrological models is frequently limited by a lack of data about the area that is being studied. The result is that a broad range of parameter values can be identified that will give an equally good calibration to the available observations, usually of stream flow. The use of total stream flow can bias analyses towards interpretation of rapid runoff, whereas water quality issues are more frequently associated with low flow condition. This paper demonstrates how model distinctions between surface an sub-surface runoff can be used to define a likelihood measure based on the sub-surface (or baseflow) response. This helps to provide more information about the model behaviour, constrain the acceptable parameter sets and reduce uncertainty in streamflow prediction. A conceptual model, DIY, is applied to two contrasting catchments in Scotland, the Ythan and the Carron Valley. Parameter ranges and envelopes of prediction are identified using criteria based on total flow efficiency, baseflow efficiency and combined efficiencies. The individual parameter ranges derived using the combined efficiency measures still cover relatively wide bands, but are better constrained for the Carron than the Ythan. This reflects the fact that hydrological behaviour in the Carron is dominated by a much flashier surface response than in the Ythan. Hence, the total flow efficiency is more strongly controlled by surface runoff in the Carron and there is a greater contrast with the baseflow efficiency. Comparisons of the predictions using different efficiency measures for the Ythan also suggest that there is a danger of confusing parameter uncertainties with data and model error, if inadequate likelihood measures are defined.

  7. 40 CFR 265.1086 - Standards: Surface impoundments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... floating membrane cover in accordance with the provisions specified in paragraph (c) of this section; or (2... emissions from a surface impoundment using a floating membrane cover shall meet the requirements specified... with a floating membrane cover designed to meet the following specifications: (i) The floating membrane...

  8. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    PubMed

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  9. A further assessment of vegetation feedback on decadal Sahel rainfall variability

    NASA Astrophysics Data System (ADS)

    Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia

    2013-03-01

    The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

  10. Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Saito, Jun; Sugiyama, Shin; Tsutaki, Shun; Sawagaki, Takanobu

    2016-09-01

    A large number of glaciers and ice caps (GICs) are distributed along the Greenland coast, physically separated from the ice sheet. The total area of these GICs accounts for 5% of Greenland's ice cover. Melt water input from the GICs to the ocean substantially contributed to sea-level rise over the last century. Here, we report surface elevation changes of six ice caps near Qaanaaq (77°28‧N, 69°13‧W) in northwestern Greenland based on photogrammetric analysis of stereo pair satellite images. We processed the images with a digital map plotting instrument to generate digital elevation models (DEMs) in 2006 and 2010 with a grid resolution of 500 m. Generated DEMs were compared to measure surface elevation changes between 2006 and 2010. Over the study area of the six ice caps, covering 1215 km2, the mean rate of elevation change was -1.1 ± 0.1 m a-1. This rate is significantly greater than that previously reported for the 2003-2008 period (-0.6 ± 0.1 m a-1) for GICs all of northwestern Greenland. This increased mass loss is consistent with the rise in summer temperatures in this region at a rate of 0.12 °C a-1 for the 1997-2013 period.

  11. [Practice of engineering management and its effect on schistosomiasis control in Hankou marshland, Wuhan City].

    PubMed

    Zhi-Qing, Deng; Xiao-Dong, Tan; Shi-Bo, Kong; Kai, Wu; Ming-Xing, Xu; Hua-Tang, Luo

    2017-01-06

    To investigate the Oncomelania hupensis snail control effect of schistosomiasis control engineering in marshland within Wuhan City. The engineering measures including surface barrier removal, molluscicide, flatting surface, topsoil stripping, topsoil covering and ditch renovation were applied to transform Hankou marshland. Then the corresponding technical parameters of engineering measures were put forward. The situation of snails was analyzed before and after the transform project. The total length and area of the project were 6 015 m and 87.21 hm 2 , respectively, including 17.44 hm 2 of topsoil landfill, 52.08 hm 2 of topsoil covering and 23 new ditches. After the transformation, the average length of the new groove, the groove top width, groove depth, height difference, and the average values of slopes and ditch bottom slope were all increased, while the average values of the width and height of the ditch were decreased. At the same time, the marshland beach surface had a new slope that the embankment was higher than the river and no living O. hupensis snails were found then. The snail breeding environment in Hankou marshland has been effectively changed by the project. However, the constant monitoring and engineering management are still needed to consolidate the effect.

  12. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern Great Basin negatively impact air quality and transportation in the populated regions of Utah; this study details an improved forecasting protocol for dust storm events that will benefit transportation planning and improve public health.

  13. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.

  14. Classification of surface types using SIR-C/X-SAR, Mount Everest Area, Tibet

    USGS Publications Warehouse

    Albright, Thomas P.; Painter, Thomas H.; Roberts, Dar A.; Shi, Jiancheng; Dozier, Jeff; Fielding, Eric

    1998-01-01

    Imaging radar is a promising tool for mapping snow and ice cover in alpine regions. It combines a high-resolution, day or night, all-weather imaging capability with sensitivity to hydrologic and climatic snow and ice parameters. We use the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) to map snow and glacial ice on the rugged north slope of Mount Everest. From interferometrically derived digital elevation data, we compute the terrain calibration factor and cosine of the local illumination angle. We then process and terrain-correct radar data sets acquired on April 16, 1994. In addition to the spectral data, we include surface slope to improve discrimination among several surface types. These data sets are then used in a decision tree to generate an image classification. This method is successful in identifying and mapping scree/talus, dry snow, dry snow-covered glacier, wet snow-covered glacier, and rock-covered glacier, as corroborated by comparison with existing surface cover maps and other ancillary information. Application of the classification scheme to data acquired on October 7 of the same year yields accurate results for most surface types but underreports the extent of dry snow cover.

  15. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    PubMed

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  16. On the Dielectric Properties of the Martian-like Surface Sediments

    NASA Technical Reports Server (NTRS)

    Heggy, E.; Clifford, S. M.; Morris, R. V.; Paillou, P.; Ruffie, G.

    2004-01-01

    We have undertaken laboratory electromagnetic characterization of the total set of minerals identified by TES on the Martian surface in order to investigate experimentally the dielectric properties of the sediments covering it in the frequency range from 1 to 30 MHz. Volcanic Rocks with a well defined mineralogy and petrology from potential terrestrial analogues sites have also been included in the study. Our primary objective is to evaluate the range of electrical and magnetic losses that may be encountered by the various Radar sounding and imaging experiments dedicated to map the Martian subsurface searching for underground water. The electromagnetic properties of these Mars-like materials will be presented as a function of various geophysical parameters, such as porosity, bulk density and temperature. The secondary objective, is to locate regions were surface dielectric conditions are suitable for subsurface sounding.

  17. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    PubMed

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  19. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  20. Determination of wetland ecosystem boundaries and validation of land use maps using remote sensing: Fuente de Piedra case study (Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez, Antonio; Malak, Dania Abdul; Schröder, Christoph; Martinez-Murillo, Juan F.

    2016-04-01

    Remote sensing techniques (SRS) are valid tools for wetland monitoring that could support wetland managers in assessing the spatial and temporal changes in wetland ecosystems as well as in understanding their condition and the ecosystem services they provide. This study focuses on the one hand, on drawing hydro-ecological guidelines for the delimitation of wetland ecosystems; and on the other hand, to assess the reliability of widely available satellite images (Landsat) in estimating the land use/ land cover types covering wetlands. This research develops comprehensive guidelines to determine the boundaries of the Fuente de Piedra wetland ecosystem located in Andalusia, Spain and defines the main land use/ land cover classes covering this ecosystem using Landsat 8 images. An accuracy of the SRS results delivered is tested using the regional inventory of land use produced by the regional government of Andalusia in 2011. By using the ecological and hydrological settings of the area, the boundaries of the Fuente de Piedra wetland ecosystem are determined as an alternative to improve the current delimitations methodology (the Ramsar and Natura 2000 delineations), used by the local authorities so far and based mainly on administrative reasoning. In terms of the land use land cover definition in the area, Fuente de Piedra wetland ecosystem shows to cover a total area of 195 km2 composed mainly by agricultural areas (81.46%): olive groves, non-irrigated arable land and pastures, being 54.82%, 25.71% and 0.93% of the surface respectively. Wetland related land covers (water surface, wetland vegetation) represent 6.85% while natural vegetation is distributed in forest, 1.67%, and shrub areas, 4.14%, being 5.81% in total. 4.58% of the area corresponds to urban and other artificial surfaces. The rest, 1.30%, is composed of different areas without vegetation (sands, bare rock, dumps, etc.). The classification of the Landsat images made with the newly developed SWOS toolbox (under the Horizon 2020 SWOS project) provides reliable results (r2= 0.98). The image segmentation corresponds very closely with the plots of land observed in the satellite image, and the allocation of land use coverages corresponds in 82% of the segments. Forest and olive groves are the best identified coverages with an accuracy of 93% in both cases. Wetlands are correctly classified by 87%, where linear features (narrow streams, etc.) are not detected by the methodology used due to the limitations of Landsat resolution. Arable lands are classified with an accuracy of 85.5%; where the methodology seems to confuse this land use with sparse olive grove. In the case of shrubs, accuracy round the 72%, with confusions with this land use are related with arable land, sparse forests in wetland areas. In the case of urban areas, only 60.5% of the segments are correctly classified as the distinction between urban fabric and industrial areas does not seem to be possible and linear features are not detected (highways, secondary roads,…).

  1. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    NASA Astrophysics Data System (ADS)

    Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.

    2017-03-01

    We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  2. Integrating satellite remote sensing data and field data to predict rangeland structural indicators at the continental scale

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2016-12-01

    Rangelands provide a variety of important ecosystem goods and services across drylands globally. They are also the most important emitters of dust across the globe. Field data collection based on points does not represent spatially continuous information about surface variables and, given the vast size of the world's rangelands, cannot cover even a small fraction of their area. Remote sensing is potentially a labor- and time-saving method to observe important rangeland vegetation variables at both temporal and spatial scales. Information on vegetation cover, bare gap size, and plant height provide key rangeland vegetation variables in arid and semiarid rangelands, in part because they strongly impact dust emission and determine wildlife habitat characteristics. This study reports on relationships between remote sensing in the reflected solar spectrum and field measures related to these three variables, and shows how these relationships can be extended to produce spatially and temporally continuous datasets coupled with quantitative estimates of error. Field data for this study included over 3,800 Assessment, Inventory, and Monitoring (AIM) measurements on Bureau of Land Management (BLM) lands throughout the western US. Remote sensing data were derived from MODIS nadir BRDF-adjusted reflectance (NBAR) and Landsat 8 OLI surface reflectance. Normalized bare gap size, total foliar cover, herbaceous cover and herbaceous height exhibit the greatest predictability from remote sensing variables with physically-reasonable relationships between remote sensing variables and field measures. Data fields produced using these relationships across the western US exhibit good agreement with independent high-resolution imagery.

  3. Processes driving rapid morphological changes observed on the Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Quincey, Duncan; Rowan, Ann; Gibson, Morgan; Irvine-Fynn, Tristram; King, Owen; Watson, Scott

    2016-04-01

    The response of many Himalayan glaciers to climatic change is complicated by the presence of a supraglacial debris cover, which leads to a suite of processes controlling mass loss that are not commonly found where glaciers are debris-free. Here, we present a range of field, surface topographic and ice-dynamical observations acquired from Khumbu Glacier in Nepal, to describe and quantify these processes in fine spatial and temporal resolution. Like many other debris-covered glaciers in the Himalaya, the debris-covered tongue of the Khumbu Glacier is heavily in recession. For at least two decades, the lower ablation area has been stagnant as surface lowering in the mid-ablation zone has led to ever decreasing driving stresses. Contemporary velocity data derived from TerraSAR-X imagery confirms that the active-inactive ice boundary can now be found 5 km from the glacier terminus and that the maximum velocity, immediately below the icefall, is around 70 m per year. These data show that in this upper part of the ablation zone, the glacier velocity has not changed during the last 20 years, suggesting that at least above the icefall the glacier remains healthy. Across the stagnant debris-covered tongue there have been marked surface morphological changes. Mapping from 2004 shows relatively few surface ponds, a homogeneous debris-covered surface, and a small area towards the terminus supporting soil formation and low vegetation. Mapping from field observations in 2014 shows an abundance of surface meltwater, a more heterogeneous surface texture associated with many exposed ice cliffs, and a long (3 km) zone of stable terrain where soils are developing and, in places, low scrub can be found. Most dramatically, a string of surface ponds occupying the true-left lowermost 2 km of ice have expanded and coalesced, suggesting the glacier has crossed a threshold leading towards large glacial lake development. Two fine-resolution DEMs derived from Structure-from-Motion in spring 2014 and autumn 2015 elucidate the processes driving mass loss across the debris-covered area. Recession is greatest around surface meltwater ponds and in the upper part of the ablation area where debris cover is thinnest. Comparison with an historic DEM from 1984 shows the evolution of the glacier surface topography, which has become increasingly irregular because of the development of surface ponds and associated ice cliffs. These observations suggest a continuous cycle of relief inversion drives surface lowering across large areas of the debris-covered surface, and we propose a conceptual model to illustrate this cycle that is applicable to all receding debris-covered glaciers in the region.

  4. Concentrations, loads, and yields of total nitrogen and total phosphorus in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 1989-2011, at multiple spatial scales

    USGS Publications Warehouse

    Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.

    2014-01-01

    Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.

  5. Flood damage claims reveal insights about surface runoff in Switzerland

    NASA Astrophysics Data System (ADS)

    Bernet, D. B.; Prasuhn, V.; Weingartner, R.

    2015-12-01

    A few case studies in Switzerland exemplify that not only overtopping water bodies frequently cause damages to buildings. Reportedly, a large share of the total loss due to flooding in Switzerland goes back to surface runoff that is formed and is propagating outside of regular watercourses. Nevertheless, little is known about when, where and why such surface runoff occurs. The described process encompasses surface runoff formation, followed by unchannelised overland flow until a water body is reached. It is understood as a type of flash flood, has short response times and occurs diffusely in the landscape. Thus, the process is difficult to observe and study directly. A promising source indicating surface runoff indirectly are houseowners' damage claims recorded by Swiss Public Insurance Companies for Buildings (PICB). In most of Switzerland, PICB hold a monopoly position and insure (almost) every building. Consequently, PICB generally register all damages to buildings caused by an insured natural hazard (including surface runoff) within the respective zones. We have gathered gapless flood related claim records of most of all Swiss PICB covering more than the last two decades on average. Based on a subset, we have developed a methodology to differentiate claims related to surface runoff from other causes. This allows us to assess the number of claims as well as total loss related to surface runoff and compare these to the numbers of overtopping watercourses. Furthermore, with the good data coverage, we are able to analyze surface runoff related claims in space and time, from which we can infer spatial and temporal characteristics of surface runoff. Although the delivered data of PICB are heterogeneous and, consequently, time-consuming to harmonize, our first results show that exploiting these damage claim records is feasible and worthwhile to learn more about surface runoff in Switzerland.

  6. Global characterization of Titan's dune fields by RADAR and VIMS observations

    NASA Astrophysics Data System (ADS)

    garcia, A.; Rodriguez, S.; Lucas, A.; Appéré, T.; Le Gall, A.; Reffet, E.; Le Corre, L.; Le Mouélic, S.; Cornet, T.; Courrech Du Pont, S.; Narteau, C.; Bourgeois, O.; Radebaugh, J.; Arnold, K.; Barnes, J. W.; Sotin, C.; Brown, R. H.; Lorenz, R. D.; Turtle, E. P.

    2013-12-01

    Cassini/RADAR high-resolution images of Titan's surface revealed linear features, geomorphologically similar to longitudinal dunes. Those dunes cover a large portion of the whole surface of Titan, i.e 7.8%, and 13.4% are present on the 58.4% of the surface imaged by the RADAR/SAR from July 2004 to July 2013 (fig.1). 99.6% of the dunes are confined at the equatorial regions (30°N-30°S). Formed and sculpted by the wind, those features represent clues for the understanding of the climatic history on the satellite. By using the joint analysis between RADAR/SAR observations and the infrared VIMS mosaic corrected for atmospheric contributions acquired through July 2013 and June 2010 respectively, we found a very high degree of correlation at global scale (more than 70%) between the RADAR dunes and a specific infrared VIMS spectral unit, the 'dark brown unit'. Some RADAR dunes, less than 2%, also belong in a commonly referenced unit, the 'dark blue unit'. These two units have been delimited by defining for each a specific set of spectral criteria. We have shown that those two units present a spectral behavior different, especially at short wavelengths (below 2 μm) allowing to say that the 'dark brown unit' is dominated by organic sediment, similar to atmospheric aerosols, namely tholins, and the 'dark blue' is most likely enriched in water ice compared to the rest of Titan's surface. Given the strong correlation between RADAR dunes and the infrared 'dark brown unit' we are now able to extrapolate the total surface area of the dunes material to the total surface area of the 'dark brown unit' which correspond to 17% of the Titan's surface. This permits to estimate the volume of sediment of 360,000 km3 (total mass ≈ 290,000 GT). Thus, these estimates based on the RADAR dunes/VIMS units correlation make the dune fields the largest organic reservoir on Titan's surface and characterize more precisely the composition of the dune material over the total extend of the dune regions.

  7. Mapping Surface Cover Parameters Using Aggregation Rules and Remotely Sensed Cover Classes. Version 1.9

    NASA Technical Reports Server (NTRS)

    Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes

    1997-01-01

    A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.

  8. Nitrous oxide and nitrate concentration in under-drainage from arable fields subject to diffuse pollution mitigation measures

    NASA Astrophysics Data System (ADS)

    Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian

    2016-04-01

    Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective mitigation measure in an agricultural area where high nitrate losses from fields into groundwater or surface water is excessively occurring.

  9. Regeneration of the epidermis and basement membrane of the planarian Dugesia japonica after total-body x irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hori, I.

    1979-03-01

    Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes inmore » extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed.« less

  10. Evaluating the effects of historical land cover change on summertime weather and climate in New Jersey: Land cover and surface energy budget changes

    USGS Publications Warehouse

    Wichansky, P.S.; Steyaert, L.T.; Walko, R.L.; Waever, C.P.

    2008-01-01

    The 19th-century agrarian landscape of New Jersey (NJ) and the surrounding region has been extensively transformed to the present-day land cover by urbanization, reforestation, and localized areas of deforestation. This study used a mesoscale atmospheric numerical model to investigate the sensitivity of the warm season climate of NJ to these land cover changes. Reconstructed 1880s-era and present-day land cover data sets were used as surface boundary conditions for a set of simulations performed with the Regional Atmospheric Modeling System (RAMS). Three-member ensembles with historical and present-day land cover were compared to examine the sensitivity of surface air and dew point temperatures, rainfall, and the individual components of the surface energy budget to these land cover changes. Mean temperatures for the present-day landscape were 0.3-0.6??C warmer than for the historical landscape over a considerable portion of NJ and the surrounding region, with daily maximum temperatures at least 1.0??C warmer over some of the highly urbanized locations. Reforested regions, however, were slightly cooler. Dew point temperatures decreased by 0.3-0.6??C, suggesting drier, less humid near-surface air for the present-day landscape. Surface warming was generally associated with repartitioning of net radiation from latent to sensible heat flux, and conversely for cooling. While urbanization was accompanied by strong surface albedo decreases and increases in net shortwave radiation, reforestation and potential changes in forest composition have generally increased albedos and also enhanced landscape heterogeneity. The increased deciduousness of forests may have further reduced net downward longwave radiation. Copyright 2008 by the American Geophysical Union.

  11. Australian snowpack in the NARCliM ensemble: evaluation, bias correction and future projections

    NASA Astrophysics Data System (ADS)

    Luca, Alejandro Di; Evans, Jason P.; Ji, Fei

    2017-10-01

    In this study we evaluate the ability of an ensemble of high-resolution Regional Climate Model simulations to represent snow cover characteristics over the Australian Alps and go on to asses future projections of snowpack characteristics. Our results show that the ensemble presents a cold temperature bias and overestimates total precipitation leading to a general overestimation of the snow cover as compared with MODIS satellite data. We then produce a new set of snowpack characteristics by running a temperature based snow melt/accumulation model forced by bias corrected temperature and precipitation fields. While some positive snow cover biases remain, the bias corrected (BC) dataset show large improvements regarding the simulation of total amounts, seasonality and spatial distribution of the snow cover compared with MODIS products. Both the raw and BC datasets are then used to assess future changes in the snowpack characteristics. Both datasets show robust increases in near-surface temperatures and decreases in snowfall that lead to a substantial reduction of the snowpack over the Australian Alps. The snowpack decreases by about 15 and 60% by 2030 and 2070 respectively. While the BC data introduce large differences in the simulation of the present climate snowpack, in relative terms future changes appear to be similar to those obtained using the raw data. Future temperature projections show a clear dependence with elevation through the snow-albedo feedback effect that affects snowpack projections. Uncertainties in future projections of the snowpack are large in both datasets and are mainly dominated by the choice of the lateral boundary conditions.

  12. The interaction of Io's plumes and sublimation atmosphere

    NASA Astrophysics Data System (ADS)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2017-09-01

    Io's volcanic plumes are the ultimate source of its SO2 atmosphere, but past eruptions have covered the moon in surface frost which sublimates in sunlight. Today, Io's atmosphere is a result of some combination of volcanism and sublimation, but it is unknown exactly how these processes work together to create the observed atmosphere. We use the direct simulation Monte Carlo (DSMC) method to model the interaction of giant plumes with a sublimation atmosphere. Axisymmetric plume/atmosphere simulations demonstrate that the total mass of SO2 above Io's surface is only poorly approximated as the sum of independent volcanic and sublimated components. A simple analytic model is developed to show how variation in the mass of erupting gas above Io's surface can counteract variation in the mass of its hydrostatic atmosphere as surface temperature changes over a Jupiter year. Three-dimensional, unsteady simulations of giant plumes over an Io day are also presented, showing how plume material becomes suspended in the sublimation atmosphere. We find that a plume which produces some total mass above Io's surface at night will cause a net increase in the noon-time atmosphere of only a fraction of the night-time value. However, as much as seven times the night-side mass of the plume will become suspended in the sublimation atmosphere, altering its composition and displacing sublimated material.

  13. Estimated use of water in the Apalachicola-Chattahoochee-Flint River basin during 1990, with state summaries from 1970 to 1990

    USGS Publications Warehouse

    Marella, R.L.; Fanning, J.L.; Mooty, W.S.

    1993-01-01

    The Apalachicola-Chattahoochee-Flint River basin covers approximately 19,800 square miles in parts of Alabama, Florida, and Georgia. Most of the basin lies within Georgia as does most of the population. Most of the water withdrawn in the basin in 1990 was withdrawn in Georgia (82 percent). Withdrawals in Florida and Alabama each accounted for 9 percent of the total withdrawal in the basin. Water with- drawn in the basin for 1990 totaled 2,098 million gallons per day, of which approximately 17 percent (351 million gallons per day) was consumed. Of the total water used, nearly 86 percent was withdrawn from surface-water sources, and the remaining 14 percent was withdrawn from ground-water sources. Nearly 63 percent of the surface water used in the basin during 1990 was for thermoelectric power generation; other surface water uses included public supply (24 percent), self-supplied commercial- industrial use (12 percent), and agricultural use (4 percent). Nearly 58 percent of the ground water used in the basin for 1990 was used for agricultural irrigation; other ground-water uses included public supply (21 percent), self-supplied domestic use (11 percent), self-supplied commercial-industrial use (9 percent), and thermoelectric power generation (less than 1 percent). The Chattahoochee River supplied most of the surface water used in the basin (64 percent) and the Floridan aquifer system supplied most of the ground water used (44 percent) in 1990. During 1990, 39,815 Mgal/d of water was used to produce 35,843 gigawatthours of electricity. Of that total, 1.076 Mgal/d was used to produced 33,460 gigawwatthours of electricity at 8 fossil fuel facilities and 38,740 Mgal/d was used to produce 2,384 gigawatthours of electricity at 14 hydroelectric facilities.

  14. Headwater Influences on Downstream Water Quality

    PubMed Central

    Oakes, Robert M.

    2007-01-01

    We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality. PMID:17999108

  15. Effects of low Earth orbit environment on the Long Duration Exposure Facility thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sampair, Thomas R.; Berrios, William M.

    1992-01-01

    One of the benefits of the Long Duration Exposure Facility (LDEF) was the opportunity to study the before and after effects of low earth orbit space environment on the spacecraft thermal control coatings. Since the LDEF's thermal control was totally passive by design, the selection of the external surface absorptivity to emissivity ratio (alpha/epsilon) and the ability for the coating to retain the alpha/epsilon over time was an important consideration in the thermal design of the LDEF. The primary surface coating chosen for the LDEF structure was clear chromic anodized aluminum with an average design alpha/epsilon of 0.32/0.16. External surface absorptivity (alpha) and emissivity (epsilon) were measured on all intercostals, longerons, tray mounting flanges, thermal control panels, and a limited number of experiment surface coatings after the experiment trays were removed from the LDEF structure. All surface alpha/epsilon measurements were made using portable hand held infrared and solar spectrum reflectometers. The absorptivity measurements were taken with a Devices and Services SSR-ER version 5.0 solar spectra reflectometer which has a stated uncertainty of +/- 0.01, and all normal emissivity measurements were made using the Gier Dunkle DB-100 infrared reflectometer also with a stated uncertainty of +/- 0.01. Both instruments were calibrated in the laboratory by LaRC instrumentation personnel before being used in the field at KSC. A combined total of 733 measurements were taken on the anodized aluminum hardware which included the structure (intercostals, longerons, and center ring), earth and space end thermal control panels, and experiment tray mounting flanges. The facility thermal control coatings measured in this survey cover 33 percent of the total exposed LDEF surface area. To correlate low earth orbit environmental effects on the anodized coatings, measurements were taken in both exposed and unexposed surfaces and compared to quality assurance (QA) measurements taken on the new surfaces at the time of hardware fabrication in 1978. The results of investigation are presented.

  16. A method to generate surface UV radiation maps over Europe using GOME, Meteosat, and ancillary geophysical data

    NASA Astrophysics Data System (ADS)

    Verdebout, Jean

    2000-02-01

    This paper presents a method for generating surface ultraviolet (UV) radiation maps over Europe, with a spatial resolution of 0.05°, and potentially on a half-hour basis. The UV irradiance is obtained by interpolation in a look-up table (LUT), the entries of which are solar zenith angle, total column ozone amount, cloud liquid water thickness, near-surface horizontal visibility, surface elevation, and UV albedo. Both satellite (Meteosat, GOME) and nonsatellite (synoptic observations, meteorological model results, digital elevation model) data are exploited to assign values to the influencing factors. With the help of another LUT simulating the visible signal, Meteosat data are processed to retrieve the cloud liquid water thickness. The radiative transfer calculations are performed with the UVspec code. A preliminary step consists in generating an effective surface Meteosat albedo map from a series of 10 consecutive days. In this process the well-known difficulty of distinguishing clouds from snow-covered surfaces is encountered. An attempt is made to partially resolve the ambiguity by using the Meteosat infrared channel and modeled snow cover data. After additional empirical cloud filtering, the effective albedo map is used as a baseline to estimate the cloud liquid water thickness. The UV surface albedo is assigned uniform values for land and sea/ocean, except in the presence of snow. In this case it is given a value proportional to the Meteosat effective albedo. The total column ozone is extracted from the level 3 GOME products. The aerosol optical thickness is mapped by gridding the daily measurements performed by ˜1000 ground stations. The digital elevation model is the GTOPO30 data set from the U.S. Geological Survey. European wide UV dose rate maps are presented for one day in April 1997, and the influence of the various factors is illustrated. A daily integrated dose map was also generated using 27 Meteosat acquisitions at half-hour intervals on the same day. The dose map produced in this way takes into account the evolution of the cloud field and is thought to be more accurate than if it were estimated from one data take, in particular at the relatively high spatial resolution of the product. Finally, a preliminary comparison of modeled dose rate and daily dose with measurements performed with a ground instrument is discussed.

  17. Impact of forestry on total and methyl-mercury in surface waters: distinguishing effects of logging and site preparation.

    PubMed

    Eklöf, Karin; Schelker, Jakob; Sørensen, Rasmus; Meili, Markus; Laudon, Hjalmar; von Brömssen, Claudia; Bishop, Kevin

    2014-05-06

    Forestry operations can increase the export of mercury (both total and methyl) to surface waters. However, little is known about the relative contribution of different forestry practices. We address this question using a paired-catchment study that distinguishes the effects of site preparation from the antecedent logging. Runoff water from three catchments, two harvested and one untreated control, was sampled biweekly during one year prior to logging, two years after logging, and three years after site preparation. The logging alone did not significantly increase the concentrations of either total or methyl-mercury in runoff, but export increased by 50-70% in one of the harvested catchments as a consequence of increased runoff volume. The combined effects of logging and site preparation increased total and methyl-mercury concentrations by 30-50% relative to preharvest conditions in both treated catchments. The more pronounced concentration effect after site preparation compared to logging could be related to site preparation being conducted during summer. This caused more soil disturbance than logging, which was done during winter with snow covering the ground. The results suggest that the cumulative impact of forest harvest on catchment mercury outputs depends on when and how forestry operations are implemented.

  18. Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada

    NASA Technical Reports Server (NTRS)

    Cihlar, J. (Principal Investigator); Dixon, R. G.

    1981-01-01

    Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.

  19. Linkages between Snow Cover Seasonality, Terrain, and Land Surface Phenology in the Highland Pastures of Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Henebry, Geoffrey; Tomaszewska, Monika; Kelgenbaeva, Kamilya

    2017-04-01

    In the highlands of Kyrgyzstan, vertical transhumance is the foundation of montane agropastoralism. Terrain attributes, such as elevation, slope, and aspect, affect snow cover seasonality, which is a key influence on the timing of plant growth and forage availability. Our study areas include the highland pastures in Central Tien Shan mountains, specifically in the rayons of Naryn and At-Bashy in Naryn oblast, and Alay and Chong-Alay rayons in Osh oblast. To explore the linkages between snow cover seasonality and land surface phenology as modulated by terrain and variations in thermal time, we use 16 years (2001-2016) of Landsat surface reflectance data at 30 m resolution with MODIS land surface temperature and snow cover products at 1 km and 500 m resolution, respectively, and two digital elevation models, SRTM and ASTER GDEM. We model snow cover seasonality using frost degree-days and land surface phenology using growing degree-days as quadratic functions of thermal time: a convex quadratic (CxQ) model for land surface phenology and a concave quadratic (CvQ) model for snow cover seasonality. From the fitted parameter coefficients, we calculated phenometrics, including "peak height" and "thermal time to peak" for the CxQ models and "trough depth" and "thermal time to trough" for the CvQ models. We explore how these phenometrics change as a function of elevation and slope-aspect interactions and due to interannual variability. Further, we examine how snow cover duration and timing affects the subsequent peak height and thermal time to peak in wetter, drier, and normal years.

  20. Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing

    PubMed Central

    Mahmoud, Shereif H.; Alazba, A. A.

    2015-01-01

    The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, I. R.; Garcia-Pineda, O.; Beet, A.

    When wind speeds are 2–10 m s -1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent,natural seeps and from the Deep water Horizon (DWH) discharge. This analysis identified 914 natural oil seep zones across the entire Gulf of Mexico in pre-2010 data. Their ~0.1 mm slicks covered an aggregated average of 775 km 2. Assuming an average volume of 77.5 m 3 over an 8–24 h lifespanmore » per oil slick, the floating oil indicates a surface flux of 2.5–9.4 X 10 4 m 3 yr -1. Oil from natural slicks was regionally concentrated: 68%, 25%, 7%, and <1% of the total was observed in the NW, SW, NE, and SE Gulf, respectively. This reflects differences in basin history and hydrocarbon generation. SAR images from 2010 showed that the 87 day DWH discharge produced a surface-oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km 2(SD 5028) and a volume of 22,600 m 3(SD 5411). Peak magnitudes of oil were detected during equivalent, ~14 day intervals around 23 May and 18 June, when wind speeds remained <5ms -1. Over this interval, aggregated volume of floating oil decreased by 21%; area covered increased by 49% (p < 0.1), potentially altering its ecological impact. Furthermore, the most likely causes were increased applications of dispersant and surface burning operations.« less

  2. Plastic covering on airfoil structure provides smooth uninterrupted surface

    NASA Technical Reports Server (NTRS)

    Kinzler, J. A.; Fehrenkamp, L. G.; Heffernam, J. T.; Lee, W. S.

    1975-01-01

    Primed surface is covered with adhesive. Sheet of plastic film is stretched over adhesive and mechanical holder is used to apply tension to ends of sheet to make it conform to surface of airfoil. After adhesive cures, plastic can be trimmed with sharp cutting tool.

  3. Performance assessment of a single-layer moisture store-and-release cover system at a mine waste rock pile in a seasonally humid region (Nova Scotia, Canada).

    PubMed

    Power, Christopher; Ramasamy, Murugan; Mkandawire, Martin

    2018-03-03

    Cover systems are commonly applied to mine waste rock piles (WRPs) to control acid mine drainage (AMD). Single-layer covers utilize the moisture "store-and-release" concept to first store and then release moisture back to the atmosphere via evapotranspiration. Although more commonly used in semi-arid and arid climates, store-and-release covers remain an attractive option in humid climates due to the low cost and relative simplicity of installation. However, knowledge of their performance in these climates is limited. The objective of this study was to assess the performance of moisture store-and-release covers at full-scale WRPs located in humid climates. This cover type was installed at a WRP in Nova Scotia, Canada, alongside state-of-the-art monitoring instrumentation. Field monitoring was conducted over 5 years to assess key components such as meteorological conditions, cover material water dynamics, net percolation, surface runoff, pore-gas, environmental receptor water quality, landform stability and vegetation. Water balances indicate small reductions in water influx to the waste rock (i.e., 34 to 28% of precipitation) with the diminished AMD release also apparent by small improvements in groundwater quality (increase in pH, decrease in sulfate/metals). Surface water quality analysis and field observations of vegetative/aquatic life demonstrate significant improvements in the surface water receptor. The WRP landform is stable and the vegetative cover is thriving. This study has shown that while a simple store-and-release cover may not be a highly effective barrier to water infiltration in humid climates, it can be used to (i) eliminate contaminated surface water runoff, (ii) minimize AMD impacts to surface water receptor(s), (iii) maintain a stable landform, and (iv) provide a sustainable vegetative canopy.

  4. In situ methane and nitrous oxide fluxes in soil from a transect in Hennequin Point, King George Island, Antarctic.

    PubMed

    Vieira, Frederico Costa Beber; Pereira, Antônio Batista; Bayer, Cimélio; Schünemann, Adriano Luis; Victoria, Filipe de Carvalho; de Albuquerque, Margéli Pereira; de Oliveira, Cássio Strassburger

    2013-01-01

    The study aimed at to determine the magnitude of the methane (CH(4)) and nitrous oxide (N(2)O) flux rates in soils at Hennequin Point, King George Island, Antarctic, under different slope positions, vegetal covers and presence of skuas, as well as to evaluate the main soil and climate factors that are involved with the flux of such gases. In situ gas sampling (closed chamber method) was performed in four sites along a transect involving a skua nesting field in a moraine with 5% and 100% of surface covered by vegetal, and two poor-drained soils in the toeslope (a bare alluvium soil and a poor-drained moss field with 100% soil cover). Flux rates ranged from -0.86±0.45 to 2.75±1.52 μg N(2)O-N m(-2) h(-1) and -12.26±3.05 to 1.42±1.31 μg CH(4)-C m(-2) h(-1). The soil totally covered by vegetal in the skua field had the largest CH(4) influx rates. However, this benefic effect was counterbalanced by the greatest N(2)O efflux rates from this soil, resulting in the largest contribution to the global warming potential among the soils evaluated. Flux rates were closely related to soil temperature, but no significant relation was observed with mineral N contents and water-filled pore space. In turn, accumulated CH(4) and N(2)O emissions were closely related to the total N and total organic C stocks in the soil. Net CH(4) influx predominated even in the poor-drained soils, suggesting that the coarse soil texture avoided critical anaerobic conditions. No significant changes in flux rates were observed for sampling time along the day. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Final Report for DOE Support of 5th the International Workshop on Oxide Surfaces (IWOX-V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles T. Campbell

    The 5th International Workshop on Oxide Surfaces (IWOX-V) was held at Granlibakken Conference center in Lake Tahoe, CA, January 7-12. The total attendance was ~90. The breakdown of attendees by country is as follows: USA 41 Germany 18 Japan 7 UK 5 Italy 5 France 4 Austria 3 Denmark 3 Cech. Repub. 1 Ireland 1 New Zealand 1 India 1 The technical program included oral sessions on the electronic and magnetic properties of oxide surfaces, surface and interface structure, advances in theory, surface defects, thin film oxides on metals and on oxides, thin film metals on oxides, surface photochemistry, surfacemore » reactivity, and interactions with water. Two evening poster sessions had similar themes. As in previous years, the program stimulated significant interest and discussion among the attendees. The local expenses (food and lodging, $918 per person) for eight foreign invited speakers were covered by BES funds. In addition, partial reimbursement for travel ($328 per person) was supported by BES funds for two more foreign invited speakers.« less

  6. Surface erosion at disturbed alpine sites: effects of vegetation cover and plant diversity

    NASA Astrophysics Data System (ADS)

    Martin, C.; Pohl, M.; Alewell, C.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    The relationship between plant diversity and soil stability in disturbed alpine terrain is poorly studied. In this paper, we investigated the influence of plant cover and diversity on water run-off and sediment yield on ski slopes. Rainfall simulations were conducted on a micro-scale (25 x 25 cm) to be able to replicate plots with different degrees of vegetation cover. We selected plots with 10%, 30% and 60% of vegetation cover containing different combinations of plant diversities: (i) grass, (ii) herb, (iii) moss/ lichen, and all combinations of these plant groups. Each combination was replicated five times with an applied rain intensity of 375 ml min-1 for about 5 minutes. As could be expected, percent vegetation cover had a large effect on surface erosion: sediment yield decreased with increasing vegetation cover. However, within the plots with 60% cover, sediment yield was lower at higher plant diversity and functional group diversity. The findings of this study support the view that beside the re-establishment of a closed vegetation cover, plant diversity is a relevant factor to reduce surface erosion at disturbed sites in alpine ecosystems.

  7. The formation of ice sails

    NASA Astrophysics Data System (ADS)

    Fowler, A. C.; Mayer, C.

    2017-11-01

    Debris-covered glaciers are prone to the formation of a number of supraglacial geomorphological features, and generally speaking, their upper surfaces are far from level surfaces. Some of these features are due to radiation screening or enhancing properties of the debris cover, but theoretical explanations of the consequent surface forms are in their infancy. In this paper we consider a theoretical model for the formation of "ice sails", which are regularly spaced bare ice features which are found on debris-covered glaciers in the Karakoram.

  8. Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ferraro, R. R.

    2013-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.

  9. Analyzing the effects of urban expansion on land surface temperature patterns by landscape metrics: a case study of Isfahan city, Iran.

    PubMed

    Madanian, Maliheh; Soffianian, Ali Reza; Koupai, Saeid Soltani; Pourmanafi, Saeid; Momeni, Mehdi

    2018-03-03

    Urban expansion can cause extensive changes in land use and land cover (LULC), leading to changes in temperature conditions. Land surface temperature (LST) is one of the key parameters that should be considered in the study of urban temperature conditions. The purpose of this study was, therefore, to investigate the effects of changes in LULC due to the expansion of the city of Isfahan on LST using landscape metrics. To this aim, two Landsat 5 and Landsat 8 images, which had been acquired, respectively, on August 2, 1985, and July 4, 2015, were used. The support vector machine method was then used to classify the images. The results showed that Isfahan city had been encountered with an increase of impervious surfaces; in fact, this class covered 15% of the total area in 1985, while this value had been increased to 30% in 2015. Then LST zoning maps were created, indicating that the bare land and impervious surfaces categories were dominant in high temperature zones, while in the zones where water was present or NDVI was high, LST was low. Then, the landscape metrics in each of the LST zones were analyzed in relation to the LULC changes, showing that LULC changes due to urban expansion changed such landscape properties as the percentage of landscape, patch density, large patch index, and aggregation index. This information could be beneficial for urban planners to monitor and manage changes in the LULC patterns.

  10. Urban Heat Island ın Ankara

    NASA Astrophysics Data System (ADS)

    Yılmaz, Erkan

    2016-04-01

    In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.

  11. AES and LEED study of the zinc blende SiC(100) surface

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1985-01-01

    Auger and LEED measurements have been carried out on the (100) surface of zinc blende SiC. Two different phases of the clean surface, in addition to two kinds of oxygen-covered surfaces, have been obtained, identified, and discussed. In the oxygen-covered surface, the oxygen is bonded to the Si. The carbon-rich phase is reconstructed (2 x 1), similar to the (100) clean surfaces of Si, Ge, and diamond. The Si-topped surface is reconstructed. A model of alternating Si dimers is suggested for this surface.

  12. Sensitivity of June Near-Surface Temperatures and Precipitation in the Eastern United States to Historical Land Cover Changes Since European Settlement

    NASA Technical Reports Server (NTRS)

    Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.

    2008-01-01

    Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water-saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem-Atmosphere Feedback (LEAF-2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present-day maximum and minimum temperatures in the eastern United States to warm by about 0.3 C and 0.4 C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1 C when compared to 1920. Little change in precipitation was found.

  13. Sensitivity of June near‐surface temperatures and precipitation in the eastern United States to historical land cover changes since European settlement

    USGS Publications Warehouse

    Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.

    2008-01-01

    Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water‐saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem‐Atmosphere Feedback (LEAF‐2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present‐day maximum and minimum temperatures in the eastern United States to warm by about 0.3°C and 0.4°C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1°C when compared to 1920. Little change in precipitation was found.

  14. Multi-decadal evolution of ice/snow covers in the Mont-Blanc massif (France)

    NASA Astrophysics Data System (ADS)

    Guillet, Grégoire; Ravanel, Ludovic

    2017-04-01

    Dynamics and evolution of the major glaciers of the Mont-Blanc massif have been vastly studied since the XXth century. Ice/snow covers on steep rock faces as part of the cryosphere however remain poorly studied with only qualitative descriptions existing. The study of ice/snow covers is primordial to further understand permafrost degradation throughout the Mont-Blanc massif and to improve safety and prevention for mountain sports practitioners. This study focuses on quantifying the evolution of ice/snow covers surface during the past century using a specially developed monoplotting tool using Bayesian statistics and Markov Chain Monte Carlo algorithms. Combining digital elevation models and photographs covering a time-span of 110 years, we calculated the ice/snow cover surface for 3 study sites — North faces of the Tour Ronde (3792 m a.s.l.) and the Grandes Jorasses (4208 m a.s.l.) and Triangle du Tacul (3970 m a.s.l.) — and deduced the evolution of their area throughout the XXth century. First results are showing several increase/decrease periods. The first decrease in ice/snow cover surface occurs between the 1940's and the 1950's. It is followed by an increase up to the 1980's. Since then, ice/snow covers show a general decrease in surface which is faster since the 2010's. Furthermore, the gain/loss during the increase/decrease periods varies with the considered ice/snow cover, making it an interesting cryospheric entity of its own.

  15. Improving surface-subsurface water budgeting using high resolution satellite imagery applied on a brownfield.

    PubMed

    Dujardin, J; Batelaan, O; Canters, F; Boel, S; Anibas, C; Bronders, J

    2011-01-15

    The estimation of surface-subsurface water interactions is complex and highly variable in space and time. It is even more complex when it has to be estimated in urban areas, because of the complex patterns of the land-cover in these areas. In this research a modeling approach with integrated remote sensing analysis has been developed for estimating water fluxes in urban environments. The methodology was developed with the aim to simulate fluxes of contaminants from polluted sites. Groundwater pollution in urban environments is linked to patterns of land use and hence it is essential to characterize the land cover in a detail. An object-oriented classification approach applied on high-resolution satellite data has been adopted. To assign the image objects to one of the land-cover classes a multiple layer perceptron approach was adopted (Kappa of 0.86). Groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow using MODFLOW in order to identify and budget water fluxes. The developed methodology is applied to a brownfield case site in Vilvoorde, Brussels (Belgium). The obtained land use map has a strong impact on the groundwater recharge, resulting in a high spatial variability. Simulated groundwater fluxes from brownfield to the receiving River Zenne were independently verified by measurements and simulation of groundwater-surface water interaction based on thermal gradients in the river bed. It is concluded that in order to better quantify total fluxes of contaminants from brownfields in the groundwater, remote sensing imagery can be operationally integrated in a modeling procedure. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impact of new land boundary conditions from Moderate Resolution Imaging Spectroradiometer (MODIS) data on the climatology of land surface variables

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Dickinson, R. E.; Zhou, L.; Shaikh, M.

    2004-10-01

    This paper uses the Community Land Model (CLM2) to investigate the improvements of a new land surface data set, created from multiple high-quality collection 4 Moderate Resolution Imaging Spectroradiometer data of leaf area index (LAI), plant functional type, and vegetation continuous fields, for modeled land surface variables. The previous land surface data in CLM2 underestimate LAI and overestimate the percent cover of grass/crop over most of the global area. For snow-covered regions with abundant solar energy the increased LAI and percent cover of tree/shrub in the new data set decreases the percent cover of surface snow and increases net radiation and thus increases ground and surface (2-m) air temperature, which reduces most of the model cold bias. For snow-free regions the increased LAI and changes in the percent cover from grass/crop to tree or shrub decrease ground and surface air temperature by converting most of the increased net radiation to latent heat flux, which decreases the model warm bias. Furthermore, the new data set greatly decreases ground evaporation and increases canopy evapotranspiration over tropical forests, especially during the wet season, owing to the higher LAI and more trees in the new data set. It makes the simulated ground evaporation and canopy evapotranspiration closer to reality and also reduces the warm biases over tropical regions.

  18. Evaluation of concrete cover by surface wave technique: Identification procedure

    NASA Astrophysics Data System (ADS)

    Piwakowski, Bogdan; Kaczmarek, Mariusz; Safinowski, Paweł

    2012-05-01

    Concrete cover degradation is induced by aggressive agents in ambiance, such as moisture, chemicals or temperature variations. Due to degradation usually a thin (a few millimeters thick) surface layer has porosity slightly higher than the deeper sound material. The non destructive evaluation of concrete cover is vital to monitor the integrity of concrete structures and prevent their irreversible damage. In this paper the methodology applied by the classical technique used for ground structure recovery called Multichanel Analysis of Surface Waves is discussed as the NDT tool in civil engineering domain to characterize the concrete cover. In order to obtain the velocity as a function of sample depth the dispersion of surface waves is used as an input for solving inverse problem. The paper describes the inversion procedure and provides the practical example of use of developed system.

  19. Effect of Gas Flaring on the Environment: A Case Study of a Part of Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Akeem, N. A.; Anifowose, A. Y. B.

    2016-12-01

    Gas flaring is a common practice in the Niger Delta region of Nigeria. It releases greenhouse gases into the atmosphere and causes reduction in the biodiversity and health status of inhabitants of the environment. This study examines the use of Remote Sensing and GIS in assessing the impact of gas flaring on water quality, land surface temperature (LST), and vegetation cover within the study area. Landsat imageries (1987, 2002 and 2015) covering the study area were utilized in carrying out time series analysis to compare pollution of surface water, land surface temperature and Normalized Difference Vegetation Index (NDVI) changes. The water quality parameters investigated are pH, Nitrate, Lead, Iron, Sulphate and Total Dissolve Solids. The pH and nitrate values obtained were not within the standard limits set by W.H.O.; they range between 4.12-6.04 and 80.50-88.30mg/l respectively. Values range between 0.0-0.04 mg/l for Pb, 0.01-1.20 mg/l for Fe, 39.98-245.60 mg/l for SO4, and 0.0-7.0 mg/l for TDS. The area covered with vegetation reduced from 63.0% to 54.2% and to 46.4%, with the area occupied by unhealthy vegetation increasing from 49.61% to 53.87% and a further decrease to 48.1%. It was also observed that the volume of gas flared had a direct impact on the variation of the land surface temperature with the mean LST of 1987 as 28.1oC, increasing to 31.3oC in 2002 and decreasing to 25.5oC in 2015. The results therefore revealed gas flaring as a significant factor responsible for unfavorable water quality, high temperature variation and the rapid decline in the health of natural vegetation of the study area.

  20. The Influence of The Geological and Geomorphological Settings On The Shallow Landslides Triggered During The 19th June, 1996 Heavy Rainfalls In Southern Apuan Alps (italy)

    NASA Astrophysics Data System (ADS)

    D'Amato Avanzi, G.; Giannecchini, R.; Puccinelli, A.

    On June the 19th, 1996 many disastrous shallow landslides (nearly 700) occurred in the southern Apuan Alps (Tuscany, Italy) as a consequence of an exceptionally heavy rainstorm (474 mm/12 hours). Here, the results of the studies on the landslides oc- curred in the most severely damaged basins (Cardoso, Mulina and Turrite di Galli- cano torrents) are summarized. The most significant parameters of the landslides were analysed, to identify the factors which most influenced their activation. Moreover, the total amount of mobilized material was estimated. The most common type of landslide movement was complex, from very to extremely rapid, debris slide-debris flow, with a high length to breadth ratio. Most of them were probably first time landslides; ca. 90% of them involved the colluvium cover of slopes. The studies in the landslide sites also highlighted many geomorphically and geologically recurrent factors, summarized be- low. 85% of landslides occurred on rather steep slopes (30-45), in first-order basins and hollows. In these situations, the concave geometry of the colluvium/bedrock inter- face favoured the convergence of groundwater flow and the build-up of pore pressure, leading to failure. In landslide sites, a concave shape of the surface and a rectilinear profile of the slope were a frequent feature. The bedrock of landslide sites was gener- ally made up of impervious or scarcely pervious rocks. In many cases, the presence of a main discontinuity in the bedrock (bedding or schistosity) dipping downslope was significant. The total surface involved in landslides of June 19, 1996 was estimated at ca. 1 Km2, 2.2% of the basins surface. More than 80% of this surface was covered by chestnut trees: thus, ca. 7,000 chestnut trees were uprooted by the landslides and fell into the riverbeds. This significantly contributed to the extensive destruction and blockage of bridge spans. The total volume of mobilized material was estimated at ca. 1,350,000 m3: most of this volume poured into the riverbeds, while the rest remained on the slopes involved. The research is still in progress; many pluviometric, hydro- geologic and geotechnical data will be analysed after a monitoring period to better evaluate slope stability conditions and critical landslide-triggering rainfall thresholds.

  1. Plant growth on debris covered glacier surfaces - ecology, vegetation patterns and implications for debris mantled glaciers serving as cold and warm stage plant refugia in the past

    NASA Astrophysics Data System (ADS)

    Fickert, Thomas; Friend, Donald; Grüninger, Friederike; Molnia, Bruce; Richter, Michael

    2017-04-01

    As stated at the International Conference on Debris-Covered Glaciers in 2000, "debris-covered glaciers comprise a significant fraction of the global population of glaciers...." Given a minimum of debris thickness and sufficient stability, these surfaces host surprisingly diverse plant assemblages, both floristically and structurally. Observations of plant growth on glacier surfaces are reported from around the world - including mature forests with trees more than 50cm in diameter. Debris covered glacier surfaces are mobile habitats for plants, which migrate downhill with glacier movement, but are able to spread upward with strong anabatic valley winds. Plant growth is possible even on a very shallow debris cover. Depending on site conditions, floristic composition and structure of vegetation on debris covered glaciers represent a mosaic of environments, including subnival pioneer communities, glacier foreland early- to late-successional stages, and morainal locations. The taxa involved display a wide spectrum of adaptations to habitat conditions with particular migration and dispersal strategies. With a shallow debris cover, alpine/subnival taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures. In contrast, a greater thickness of debris cover allows even thermophilous plants of lower elevations to grow on glacier surfaces. Employing the principle of actualism, debris covered glaciers provided important and previously undocumented refugia for plants during the Pleistocene cold stages from which alpine and arctic plant species were able to re-establish and spread in post-glacial time. This assumption is complementary to the two competing ideas to explain the fate of alpine and/or arctic taxa during the Pleistocene, the nunatak hypothesis (i.e. in-situ survival of plants on unglaciated summits) and tabula rasa theory (i.e. displacement of plants and subsequent remigration). Vice versa debris covered glaciers might have served as refugia for cryophilic plants during Holocene warm stages.

  2. A 10-Year Climatology of Cloud Cover and Vertical Distribution Derived from Both Surface and GOES Observations Over the DOE ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Xi, Baike; Dong, Xiquan; Minnis, P.; Khaiyer, M.

    2010-01-01

    Analysis of a decade of ARM radar-lidar and GOES observations at the SGP site reveal that 0.5 and 4-hr averages of the surface cloud fraction correspond closely to 0.5deg and 2.5deg averages of GOES cloudiness, respectively. The long-term averaged surface and GOES cloud fractions agree to within 0.5%. Cloud frequency increases and cloud amount decreases as the temporal and spatial averaging scales increase. Clouds occurred most often during winter and spring. Single-layered clouds account for 61.5% of the total cloud frequency. There are distinct bimodal vertical distributions of clouds with a lower peak around 1 km and an upper one that varies from 7.5 to 10.8 km between winter and summer, respectively. The frequency of occurrence for nighttime GOES high-cloud tops agree well with the surface observations, but are underestimated during the day.

  3. Surface roughness effects on the solar reflectance of cool asphalt shingles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less

  4. Widely tunable telecom MEMS-VCSEL for terahertz photomixing.

    PubMed

    Haidar, Mohammad Tanvir; Preu, Sascha; Paul, Sujoy; Gierl, Christian; Cesar, Julijan; Emsia, Ali; Küppers, Franko

    2015-10-01

    We report frequency-tunable terahertz (THz) generation with a photomixer driven by an ultra-broadband tunable micro-electro-mechanical system vertical-cavity surface-emitting laser (MEMS-VCSEL) and a fixed-wavelength VCSEL, as well as a tunable MEMS-VCSEL mixed with a distributed feedback (DFB) diode. A total frequency span of 3.4 THz is covered in direct detection mode and 3.23 THz in the homodyne mode. The tuning range is solely limited by the dynamic range of the photomixers and the Schottky diode/photoconductor used in the experiment.

  5. Surface Observation Climatic Summaries (SOCS) for Hanau AAF, Germany

    DTIC Science & Technology

    1992-03-01

    COVER CEILING VS VISIDILITY--POP (PNDN HOURLY 038)....................... D-2-1 S"Y CUME--POP (P1FRO DOURLY 018)................................. .. D-3...PART. SPECIFIED PHENOMENA VS WIND DIRECTION--PERCENT OCCURRENCE FREQUENCY. THESE TABLES INCLUDE SUMHARY OF MONTH FOR ALL HORS AIM YEAR COMBINED. WIND...TOTAL FISCIP PRCIP FISCIP PCWIP &/OR sym &/OR 093? 1NO. or EauE SAND TO VS ORB JW .0 13.9 .S 5.4 19.9 35.9 3.2 56.9 3140 mU .1 6.9 a.0 16.9 27.1 16.3

  6. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2011-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.

  7. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2012-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.

  8. A MODELING APPROACH FOR ESTIMATING WATERSHED IMPERVIOUS SURFACE AREA FROM NATIONAL LAND COVER DATA 92

    EPA Science Inventory

    We used National Land Cover Data 92 (NLCD92), vector impervious surface data, and raster GIS overlay methods to derive impervious surface coefficients per NLCD92 class in portions of the Nfid-Atlantic physiographic region. The methods involve a vector to raster conversion of the ...

  9. Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Safia, Abdelmounaine; Masek, Jeffrey; Peters-Lidars, Christaq; Imhoff, Marc L.

    2008-01-01

    We develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45 C during daytime and 0.81 C at night compared to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show urban areas warmer than their surrounding during summer and slightly cooler in winter. The hydrological cycle is practically "shut down" during summer and characterized by relatively large amount of runoff in winter. We estimate the annual amount of carbon uptake to 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10 C, compared to current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase 39% and the July mean temperature would decrease by 0.9 C, compared to current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.

  10. Water Footprint of Hydroelectricity: A Case Study of Two Large Canadian Boreal Watersheds

    NASA Astrophysics Data System (ADS)

    Irambona, C.; Music, B.; Nadeau, D.; Mahdi, T. F.; Strachan, I. B.

    2015-12-01

    20% of Canada's total freshwater is located in the province of Quebec, where 30% of the country's energy is produced from hydropower. Hydroelectric generation uses a considerable amount of water through evaporation from the reservoirs. The blue water footprint is an indicator of the annual freshwater consumption related to hydropower production. Although environmental effects of reservoir impounding have been previously investigated, their impacts on local and regional evapotranspiration are still not well understood due to the lack of long-term observation data. This study aims to assess the blue water footprint of two large hydroelectric systems located in the Canadian boreal forest. To do so, we use hydro-meteorological data from two specially designed climate simulations (a 'no-reservoir' and a 'post-impoundment' simulation) performed by the fifth generation of the Canadian Regional Climate Model (CRCM5) driven by the ERA-Interim reanalysis. Land-surface processes in the CRCM5 are parameterized by the Canadian Land Surface Scheme (CLASS V3.6), while surface fluxes over the water bodies are simulated by the 1-D lake model (Flake). A 'no-reservoir' and a 'post-impoundment' simulation are carried by adjusting the water fraction on the reservoir grids. Both simulations cover a 42 years period (1970-2012) at 0.11° horizontal resolution, consisting of 300 x 300 grid points centered on the province of Quebec. The two watersheds under study (200 000 km² total) are located in Northern Quebec (49-54°N), Canada, where more than 42% of the province power generation capacity is installed with eight reservoirs covering a total area of 10 000 km². A first validation of the 'post-impoundment' simulation is performed using micrometeorological ground observations, complemented with available hydro-meteorological data from Environment Canada weather stations. Then, each reservoir water footprint is calculated using the 'post-impoundment' simulation. Finally, the net evapotranspiration and the pre and post impoundment water budgets are assessed on the watershed scale. Results from this study are expected to be useful for water resources management in Quebec and other similar boreal environments.

  11. Operational and LIS-Based North American Land Data Assimilation Systems at National Centers for Environmental Prediction: Capability in Simulating Water and Energy Budget over the Western United States

    NASA Astrophysics Data System (ADS)

    Mitchell, K.; Xia, Y.; Ek, M. B.; Mocko, D. M.; Kumar, S.; Peters-Lidard, C. D.

    2016-12-01

    NLDAS is a multi-institutional collaborative project sponsored by NOAA's Climate Program Office and NASA's Terrestrial Hydrological Program. NLDAS has a long successful history of producing soil moisture, snow cover, total runoff and streamflow products via application of surface meteorology and precipitation datasets to drive four land-surface models (i.e., Noah, Mosaic, SAC, VIC). The purpose of the NLDAS system is to support numerous research and operational applications in the land modeling and water resources management communities. Since the operational NLDAS version was successfully implemented at NCEP in August 2014, NLDAS products are being used by over 5000 users annually worldwide, including academia, governmental agencies, and private enterprises. Over 71 million files and 144 Tb of data were downloaded in 2015. As we endeavor to increase the quality and breadth of NLDAS products, a joint effort between NASA and NCEP is underway to enable the assimilation of hydrology-relevant remote sensing datasets within NLDAS through the NASA Land Information System (LIS). The use of LIS will also enable easier transition of newly upgraded land surface models into NCEP NLDAS operations. Cold season processes significantly affect water and energy cycles, and their partitioning. As such, in the evaluation of NLDAS systems it is important to assess water and energy exchanges and/or partitioning processes over high-elevations. The Rocky Mountain region of the western U. S. is chosen as such a region to analyze and compare snow water equivalent (SWE), snow cover, snow melt, snow sublimation, total runoff, and sensible heat and latent heat flux. Reference data sets (observation-based and reanalysis) of monthly SWE, streamflow, evapotranspiration, GRACE-based total water storage change, and energy fluxes are used to evaluate model-simulated results. The results show several key factors that affect model simulations: (1) forcing errors such as precipitation partitioning into snowfall and rainfall, (2) snow albedo, (3) refreezing of melted snow, (4) boundary layer stability, and (5) freezing and thawing of soil. Though the anomaly correlations indicate good agreement with the observations or reanalysis products, large quantitative differences are evident in certain cases.

  12. Analysis of surface wave propagation in a grounded dielectric slab covered by a resistive sheet

    NASA Technical Reports Server (NTRS)

    Shively, David G.

    1992-01-01

    Both parallel and perpendicular polarized surface waves are known to propagate on lossless and lossy grounded dielectric slabs. Surface wave propagation on a grounded dielectric slab covered with a resistive sheet is considered. Both parallel and perpendicular polarizations are examined. Transcendental equations are derived for each polarization and are solved using iterative techniques. Attenuation and phase velocity are shown for representative geometries. The results are applicable to both a grounded slab with a resistive sheet and an ungrounded slab covered on each side with a resistive sheet.

  13. A review of permissible limits of drinking water

    PubMed Central

    Kumar, Manoj; Puri, Avinash

    2012-01-01

    Water is one of the prime necessities of life. We can hardly live for a few days without water. In a man's body, 70-80% is water. Cell, blood, and bones contain 90%, 75%, and 22% water, respectively. The general survey reveals that the total surface area of earth is 51 crore km2 out of which 36.1 crore km2 is covered sea. In addition to this, we get water from rivers, lakes, tanks, and now on hills. In spite of such abundance, there is a shortage of soft water in the world. Physicochemical parameter of any water body plays a very important role in maintaining the fragile ecosystem that maintains various life forms. Present research paper deals with various water quality parameter, chlorides, dissolved oxygen, total iron, nitrate, water temperature, pH, total phosphorous, fecal coli form bacteria, and adverse effect of these parameters on human being. PMID:23112507

  14. Soil Moisture and Snow Cover: Active or Passive Elements of Climate

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2002-01-01

    A key question is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change. An intriguing new statistical technique involving 'clustering' is developed to assist in this analysis.

  15. Monitoring urban land cover change by updating the national land cover database impervious surface products

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.

    2009-01-01

    The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales.

  16. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  17. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A. D.

    2013-07-01

    surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  18. Accumulation of Polycyclic Aromatic Hydrocarbons in Soils and Mosses of Southern Tundra at Different Distances from the Thermal Power Plant

    NASA Astrophysics Data System (ADS)

    Yakovleva, E. V.; Gabov, D. N.; Beznosikov, V. A.; Kondratenok, B. M.

    2018-05-01

    A number of polycyclic aromatic hydrocarbon (PAH) structures have been identified in organic horizons of surface-gley tundra soils (Stagnic Cambisols) and the moss Pleurozium schreberi. The total content of polyarenes in soils and P. schreberi exceeds the background values in 3.5-5 times. A tendency of increasing content of polyarenes with the distance from the source to 1 km has been revealed. High coefficients of variation have been found between the contents of PAHs in snow cover, organic soil horizons, and mosses. Light hydrocarbons dominate in the composition of PAHs from the snow and ground covers and mosses. Naphthalene dominates on the surface of mosses in all of the studied plots, which is largely related to its intensive uptake by mosses under pollution conditions. It has been found that when the input of polyarenes onto the surface of tundra phytocenoses increases, the bioaccumulation of PAHs by P. schreberi is intensified, and PAHs begin to penetrate into moss. The increase in the concentration of high-molecularweight polyarenes in the environment plays the key role in the activation of PAH bioaccumulation by moss. It has been shown that P. schreberi can be used as an indicator species for monitoring the contamination of tundra phytocenoses by polyarenes. Both living and dead parts of P. schreberi are suitable for the environmental monitoring of PAH contamination.

  19. Biophysical characterization and management effects on semiarid rangeland observed from Landsat ETM+ data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Hongliang; Liang, Shunlin; McClaran, Mitchell P.

    2005-01-20

    Semi-arid rangelands are very sensitive to global climatic change; studies of their biophysical attributes are crucial to understanding the dynamics of rangeland ecosystems under human disturbance. In the Santa Rita Experimental Range (SRER), Arizona, the vegetation has changed considerably and there have been many management activities applied. This study calculates seven surface variables: the enhanced vegetation index (EVI), the normalized difference vegetation index (NDVI), surface albedos (total shortwave, visible and near-infrared), leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by green vegetation (FPAR) from the Enhanced Thematic Mapper (ETM+) data. Comparison with the MODIS (Moderate Resolutionmore » Imaging Spectroradiometer) vegetation index and albedo products indicate they agree well with our estimates from ETM+ while their LAI and FPAR are larger than ETM+. Human disturbance has significantly changed the cover types and biophysical conditions. Statistical tests indicate that surface albedos increased and FPAR decreased at all sites. The recovery will require more than 67 years, and is about 50% complete within 40 years at the higher elevation. Grass cover, vegetation indices, albedos and LAI recovered from cutting faster at the higher elevation. Woody plants, vegetation indices and LAI have recovered to their original characteristics after 65 years at the lower elevation. More studies are needed to examine the spectral characteristics of different ground components.« less

  20. Minimizing Collateral Brain Injury Using a Protective Layer of Fibrin Glue: Technical Note.

    PubMed

    Basma, Jaafar; Latini, Francesco; Ryttlefors, Mats; Abuelem, Tarek; Krisht, Ali Fadl

    2015-12-01

    Neurosurgical procedures expose the brain surface to a constant risk of collateral injury. We describe a technique where the brain surface is covered with a protective layer of fibrin glue and discuss its advantages. A thin layer of fibrin glue was applied on the brain surface after its exposure in 34 patients who underwent different craniotomies for tumoral and vascular lesions. Data of 35 more patients who underwent standard microsurgical technique were collected as a control group. Cortical and pial injuries were evaluated using an intraoperative visual scale. Eventual abnormal signals at the early postoperative T2-weighted fluid-attenuated inversion recovery (T2FLAIR) magnetic resonance imaging (MRI) sequences were evaluated in oncological patients. Total pial injury was noted in 63% of cases where fibrin glue was not used. In cases where fibrin glue was applied, a significantly lower percentage of 26% (P < 0.01) had pial injuries. Only 9% had injuries in areas covered with fibrin glue (P < 0.0001). Early postoperative T2FLAIR MRI confirmed the differences of altered signal around the surgical field in the two populations. We propose beside an appropriate and careful microsurgical technique the possible use of fibrin glue as alternative, safe, and helpful protection during complex microsurgical dissections. Its intrinsic features allow the neurosurgeon to minimize the cortical manipulation preventing minor collateral brain injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Quantifying urban land cover change between 2001 and 2006 in the Gulf of Mexico region

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Bunde, Brett; Danielson, Patrick; Dewitz, Jon; Fry, Joyce; Pu, Ruiliang

    2012-01-01

    We estimated urbanization rates (2001–2006) in the Gulf of Mexico region using the National Land Cover Database (NLCD) 2001 and 2006 impervious surface products. An improved method was used to update the NLCD impervious surface product in 2006 and associated land cover transition between 2001 and 2006. Our estimation reveals that impervious surface increased 416 km2 with a growth rate of 5.8% between 2001 and 2006. Approximately 1110.1 km2 of non-urban lands were converted into urban land, resulting in a 3.2% increase in the region. Hay/pasture, woody wetland, and evergreen forest represented the three most common land cover classes that transitioned to urban. Among these land cover transitions, more than 50% of the urbanization occurred within 50 km of the coast. Our analysis shows that the close-to-coast land cover transition trend, especially within 10 km off the coast, potentially imposes substantial long-term impacts on regional landscape and ecological conditions.

  2. Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.

    2017-12-01

    The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.

  3. Evaluation of the long-term performance of six alternative disposal methods for LLRW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossik, R.; Sharp, G.; Chau, T.

    1995-12-31

    The State of New York has carried out a comparison of six alternative disposal methods for low-level radioactive waste (LLRW). An important part of these evaluations involved quantitatively analyzing the long-term (10,000 yr) performance of the methods with respect to dose to humans, radionuclide concentrations in the environment, and cumulative release from the facility. Four near-surface methods (covered above-grade vault, uncovered above-grade vault, below-grade vault, augered holes) and two mine methods (vertical shaft mine and drift mine) were evaluated. Each method was analyzed for several generic site conditions applicable for the state. The evaluations were carried out using RIP (Repositorymore » Integration Program), an integrated, total system performance assessment computer code which has been applied to radioactive waste disposal facilities both in the U.S. (Yucca Mountain, WIPP) and worldwide. The evaluations indicate that mines in intact low-permeability rock and near-surface facilities with engineered covers generally have a high potential to perform well (within regulatory limits). Uncovered above-grade vaults and mines in highly fractured crystalline rock, however, have a high potential to perform poorly, exceeding regulatory limits.« less

  4. Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: A spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Hamzah, M.; Khenfouch, M.; Rjeb, A.; Sayouri, S.; Houssaini, D. S.; Darhouri, M.; Srinivasu, VV

    2018-03-01

    Polyethylene is the most commonly used plastic in daily life, covering wide areas of application e.g. this polymer is used as a greenhouses covering material. This article investigates the effect of photo-oxidation on commercial unstabilised Low Density Polyethylene (uLDPE), as result of outdoor weathering factors. In this study, the samples were exposed for four months to the natural weather. The physico-chemical effects of natural ageing were studied by attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy to elucidate the chemical composition, the nature of chemical bonds established and further to interrogate the changes that occur on the surface of the uLDPE samples. The main chemical change of uLDPE results in the formation of different kinds of carbonyl and vinyl groups identifiable in the ATR-FTIR and XPS spectra. The degree of crystallinity for these samples was calculated in terms of time exposure. An increase in the degree of crystallinity due to chemicrystallization was observed, which we indicative of the occurrences of chain scission. During outdoor exposure it was found that the photo-oxidation results in the formation of chain scission occurrences via Norrish type II reactions.

  5. Case study:-calender covers in a hospital laundry. Energy Efficiency Office, Department of Energy.

    PubMed

    1992-01-01

    Whipps Cross Hospital laundry is typical of many laundries, both in the commercial sector and NHS, in that it uses old calenders which are substantially less efficient than more modern machines. Although calendering is a relatively efficient method of moisture removal, the quantity of flatwork processed by this laundry means that the calendering section uses a significant proportion of the total laundry energy consumption. In common with many other laundries, the four calenders were producing a great deal of airborne lint which required expensive cleaning at regular intervals, and made the working environment uncomfortable, reducing the performance and morale of the operators. In an effort to improve this situation, covers were fitted to all the calenders in early 1989. These were claimed to improve energy efficiency by reducing the heat losses from the calender's upper surfaces and to improve the local atmosphere by reducing the quantity of lint and moist air escaping into the laundry. This case study examines the savings (both energy savings and others) achieved by the installation of the covers, and assesses any drawbacks which may have become apparent after extended use.

  6. Controlling factors for infiltration on undisturbed hillslopes in unmanaged plantation forests

    NASA Astrophysics Data System (ADS)

    Hiraoka, Marino; Onda, Yuichi; Gomi, Takashi; Mizugaki, Shigeru; Nanko, Kazuki; Kato, Hiroaki

    2017-04-01

    Infiltration into the soil is a crucial factor for predicting overland flow generation. Infiltration capacity strongly relates to ground vegetation, soil characteristics, or both. For revealing controlling factors for infiltration capacity, we conducted in-situ rainfall simulation using an oscillating-nozzle type rainfall simulator at 26 plots with different ground cover conditions of unmanaged Japanese cypress (Chamaecyparis obtusa) plantations. For wide-ranging vegetation cover condition (0-100%), infiltration capacity widely varied (5-322 mm/h) and had positive correlations with indices of ground vegetation and ground litter (p < 0.01). For a limited vegetation cover condition (0-20%), the range of infiltration capacity (7-114 mm/h) was associated with ground litter thickness (p < 0.05), and difference in soil organic matter and difference in soil bulk density. Principal component analysis showed that the first and second principal components (70% of total variation) related to changes in above- and below-ground biomass and changes in pores in soil. Our findings showed that development of ground vegetation alters hydrological processes of surface soil through changes in soil characteristics via the propagation of belowground biomass development.

  7. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  8. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  9. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects

    NASA Astrophysics Data System (ADS)

    Hillhouse, Heidi L.; Schacht, Walter H.; Soper, Jonathan M.; Wienhold, Carol E.

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  10. 40 CFR 98.466 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section. (2) The degradable organic carbon (DOCx) value (mass fraction) and an indication as to... describing the landfill cover material: (1) The type of cover material used (as either organic cover, clay cover, sand cover, or other soil mixtures). (2) For each type of cover material used, the surface area...

  11. Installation of surface-mounted flat-conductor cable

    NASA Technical Reports Server (NTRS)

    Carden, J. R.

    1976-01-01

    Guide describes step-by-step process for installation of interior surface-mounted FCC used in commerical and residential buildings. Photographs illustrate how cable-riser and baseboard covers are installed as well as receptacle assembly and receptacle-cover replacement.

  12. Mapping evapotranspiration based on remote sensing: An application to Canada's landmass

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Cihlar, J.

    2003-07-01

    The evapotranspiration (ET) from all Canadian landmass in 1996 is estimated at daily steps and 1 km resolution using a process model named boreal ecosystem productivity simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas the transpiration from both the overstory and understory vegetation is modeled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modeling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modeled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38%. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm yr-1 and evaporation and sublimation of 126 mm yr-1. Forested areas contributed the largest fraction of the total national ET at 59%. Averaged for all cover types, transpiration accounted for 45% of the total ET, while in forested areas, transpiration contributed 51% of ET. Modeled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.

  13. Quantifying the Spatial Distribution of Evapotranspiration over Canada With a Process Model Using Remote Sensing, Meteorological, and Soil Data

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J.; Cihlar, J.

    2004-12-01

    The evapotranspiration (ET) from all Canadian landmass is estimated at daily steps and 1 km resolution using a process model named Boreal Ecosystem Productivity Simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps, as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas, the transpiration from both the overstory and understory vegetation is modelled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modelling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modelled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that, for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38 %. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm/yr and evaporation and sublimation of 126 mm/yr. Forested areas contributed the largest fraction of the total national ET at 59 %. Averaged for all cover types, transpiration accounted for 45 % of the total ET, while in forested areas, transpiration was contributed 51 % of ET. Modelled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.

  14. Altitude-dependent influence of snow cover on alpine land surface phenology

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Kneubühler, Mathias; Garonna, Irene; Notarnicola, Claudia; De Gregorio, Ludovica; De Jong, Rogier; Chimani, Barbara; Schaepman, Michael E.

    2017-05-01

    Snow cover impacts alpine land surface phenology in various ways, but our knowledge about the effect of snow cover on alpine land surface phenology is still limited. We studied this relationship in the European Alps using satellite-derived metrics of snow cover phenology (SCP), namely, first snow fall, last snow day, and snow cover duration (SCD), in combination with land surface phenology (LSP), namely, start of season (SOS), end of season, and length of season (LOS) for the period of 2003-2014. We tested the dependency of interannual differences (Δ) of SCP and LSP metrics with altitude (up to 3000 m above sea level) for seven natural vegetation types, four main climatic subregions, and four terrain expositions. We found that 25.3% of all pixels showed significant (p < 0.05) correlation between ΔSCD and ΔSOS and 15.3% between ΔSCD and ΔLOS across the entire study area. Correlations between ΔSCD and ΔSOS as well as ΔSCD and ΔLOS are more pronounced in the northern subregions of the Alps, at high altitudes, and on north and west facing terrain—or more generally, in regions with longer SCD. We conclude that snow cover has a greater effect on alpine phenology at higher than at lower altitudes, which may be attributed to the coupled influence of snow cover with underground conditions and air temperature. Alpine ecosystems may therefore be particularly sensitive to future change of snow cover at high altitudes under climate warming scenarios.

  15. Quantifying multi-temporal urban development characteristics in Las Vegas from Landsat and ASTER data

    USGS Publications Warehouse

    Xian, G.; Crane, M.; McMahon, C.

    2008-01-01

    Urban development has expanded rapidly in Las Vegas, Nevada of the United States, over the last fifty years. A major environmental change associated with this urbanization trend is the transformation of the landscape from natural cover types to increasingly anthropogenic impervious surface. This research utilizes remote sensing data from both the Landsat and Terra-Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instruments in conjunction with digital orthophotography to estimate urban extent and its temporal changes by determining sub-pixel impervious surfaces. Percent impervious surface area has shown encouraging agreement with urban land extent and development density. Results indicate that total urban land-use increases approximately 110 percent from 1984 to 2002. Most of the increases are associated with medium-to high-density urban development. Places having significant increases in impervious surfaces are in the northwestern and southeastern parts of Las Vegas. Most high-density urban development, however, appears in central Las Vegas. Impervious surface conditions for 2002 measured from Landsat and ASTER satellite data are compared in terms of their accuracy.

  16. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Dickinson, Robert E.

    2012-06-01

    This review surveys the basic theories, observational methods, satellite algorithms, and land surface models for terrestrial evapotranspiration, E (or λE, i.e., latent heat flux), including a long-term variability and trends perspective. The basic theories used to estimate E are the Monin-Obukhov similarity theory (MOST), the Bowen ratio method, and the Penman-Monteith equation. The latter two theoretical expressions combine MOST with surface energy balance. Estimates of E can differ substantially between these three approaches because of their use of different input data. Surface and satellite-based measurement systems can provide accurate estimates of diurnal, daily, and annual variability of E. But their estimation of longer time variability is largely not established. A reasonable estimate of E as a global mean can be obtained from a surface water budget method, but its regional distribution is still rather uncertain. Current land surface models provide widely different ratios of the transpiration by vegetation to total E. This source of uncertainty therefore limits the capability of models to provide the sensitivities of E to precipitation deficits and land cover change.

  17. Thin Thermal-Insulation Blankets for Very High Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  18. Soil Moisture and Snow Cover: Active or Passive Elements of Climate?

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2002-01-01

    A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectively of snow is the most important process by which snow cover cart impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger.

  19. The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.

    2015-12-01

    Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.

  20. The bright side of snow cover effects on PV production - How to lower the seasonal mismatch between electricity supply and demand in a fully renewable Switzerland

    NASA Astrophysics Data System (ADS)

    Kahl, Annelen; Dujardin, Jérôme; Dupuis, Sonia; Lehning, Michael

    2017-04-01

    One of the major problems with solar PV in the context of a fully renewable electricity production at mid-latitudes is the trend of higher production in summer and lower production in winter. This trend is most often exactly opposite to demand patterns, causing a seasonal mismatch that requires extensive balancing power from other production sources or large storage capacities. Which possibilities do we have to bring PV production into closer correlation with demand? This question motivated our research and in response we investigated the effects of placing PV panels at different tilt angles in regions with extensive snow cover to increase winter production from ground reflected short wave radiation. The aim of this project is therefore to quantify the effect of varying snow cover duration (SCD) and of panel tilt angle on the annual total production and on production during winter months when electricity is most needed. We chose Switzerland as ideal test site, because it has a wide range of snow cover conditions and a high potential for renewable electricity production. But methods can be applied to other regions of comparable conditions for snow cover and irradiance. Our analysis can be separated into two steps: 1. A systematic, GIS and satellite-based analysis for all of Switzerland: We use time series of satellite-derived irradiance, and snow cover characteristics together with land surface cover types and elevation information to quantify the environmental conditions and to estimate potential production and ideal tilt angles. 2. A scenario-based analysis that contrasts the production patterns of different placement scenarios for PV panels in urban, rural and mountainous areas. We invoke a model of a fully renewable electricity system (including Switzerland's large hydropower system) at national level to compute the electricity import and storage capacity that will be required to balance the remaining mismatch between production and demand to further illuminate trade-offs between the different placement scenarios. Our results show that in regions with extended periods of snow cover the winter production can be 10% higher without sacrifices on the annual total production. This helps significantly in reducing the energy gap mentioned above; annual required import can be lowered by 10%-20% and forced export due to overproduction during summer months reduces to less than half.

  1. Comparison of methods for quantifying surface sublimation over seasonally snow-covered terrain

    USGS Publications Warehouse

    Sexstone, Graham A.; Clow, David W.; Stannard, David I.; Fassnacht, Steven R.

    2016-01-01

    Snow sublimation can be an important component of the snow-cover mass balance, and there is considerable interest in quantifying the role of this process within the water and energy balance of snow-covered regions. In recent years, robust eddy covariance (EC) instrumentation has been used to quantify snow sublimation over snow-covered surfaces in complex mountainous terrain. However, EC can be challenging for monitoring turbulent fluxes in snow-covered environments because of intensive data, power, and fetch requirements, and alternative methods of estimating snow sublimation are often relied upon. To evaluate the relative merits of methods for quantifying surface sublimation, fluxes calculated by the EC, Bowen ratio–energy balance (BR), bulk aerodynamic flux (BF), and aerodynamic profile (AP) methods and their associated uncertainty were compared at two forested openings in the Colorado Rocky Mountains. Biases between methods are evaluated over a range of environmental conditions, and limitations of each method are discussed. Mean surface sublimation rates from both sites ranged from 0.33 to 0.36 mm day−1, 0.14 to 0.37 mm day−1, 0.10 to 0.17 mm day−1, and 0.03 to 0.10 mm day−1 for the EC, BR, BF and AP methods, respectively. The EC and/or BF methods are concluded to be superior for estimating surface sublimation in snow-covered forested openings. The surface sublimation rates quantified in this study are generally smaller in magnitude compared with previously published studies in this region and help to refine sublimation estimates for forested openings in the Colorado Rocky Mountains.

  2. No-infill 3D Printing

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Ran; Zhang, Yu-He; Geng, Guo-Hua

    2016-09-01

    In this paper, we examined how printing the hollow objects without infill via fused deposition modeling, one of the most widely used 3D-printing technologies, by partitioning the objects to shell parts. More specifically, we linked the partition to the exact cover problem. Given an input watertight mesh shape S, we developed region growing schemes to derive a set of surfaces that had inside surfaces that were printable without support on the mesh for the candidate parts. We then employed Monte Carlo tree search over the candidate parts to obtain the optimal set cover. All possible candidate subsets of exact cover from the optimal set cover were then obtained and the bounded tree was used to search the optimal exact cover. We oriented each shell part to the optimal position to guarantee the inside surface was printed without support, while the outside surface was printed with minimum support. Our solution can be applied to a variety of models, closed-hollowed or semi-closed, with or without holes, as evidenced by experiments and performance evaluation on our proposed algorithm.

  3. Simultaneous multicolor detection system of the single-molecular microbial antigen by total internal reflection fluorescence microscopy with fluorescent nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji

    2005-11-01

    Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.

  4. The Activity Profile of Young Tennis Athletes Playing on Clay and Hard Courts: Preliminary Data.

    PubMed

    Adriano Pereira, Lucas; Freitas, Victor; Arruda Moura, Felipe; Saldanha Aoki, Marcelo; Loturco, Irineu; Yuzo Nakamura, Fábio

    2016-04-01

    The aim of this study was to compare the kinematic characteristics of tennis matches between red clay and hard courts in young tennis players. Eight young tennis players performed two tennis matches on different court surfaces. The match activities were monitored using GPS units. The distance covered in different velocity ranges and the number of accelerations were analyzed. The paired t test and inference based on magnitudes were used to compare the match physical performance between groups. The total distance (24% of difference), high-intensity running distance (15 - 18 km/h) (30% of difference), the number of high-intensity activities (44% of difference), the body load (1% of difference), and accelerations >1.5 g (1.5-2 g and >2 g 7.8 and 8.1 % of difference, respectively) were significantly greater in clay court than hard court matches ( p < 0.05). Matches played on the red clay court required players to cover more total and high-intensity running distances and engage in more high-intensity activities than the matches played on the hard court. Finally, on the clay court the body load and the number of accelerations performed (>1.5 g) were possibly higher than on the hard court.

  5. The utility of estimating net primary productivity over Alaska using baseline AVHRR data

    USGS Publications Warehouse

    Markon, C.J.; Peterson, Kim M.

    2002-01-01

    Net primary productivity (NPP) is a fundamental ecological variable that provides information about the health and status of vegetation communities. The Normalized Difference Vegetation Index, or NDVI, derived from the Advanced Very High Resolution Radiometer (AVHRR) is increasingly being used to model or predict NPP, especially over large remote areas. In this article, seven seasonally based metrics calculated from a seven-year baseline NDVI dataset were used to model NPP over Alaska, USA. For each growing season, they included maximum, mean and summed NDVI, total days, product of total days and maximum NDVI, an integral estimate of NDVI and a summed product of NDVI and solar radiation. Field (plot) derived NPP estimates were assigned to 18 land cover classes from an Alaskan statewide land cover database. Linear relationships between NPP and each NDVI metric were analysed at four scales: plot, 1-km, 10-km and 20-km pixels. Results show moderate to poor relationship between any of the metrics and NPP estimates for all data sets and scales. Use of NDVI for estimating NPP may be possible, but caution is required due to data seasonality, the scaling process used and land surface heterogeneity.

  6. Shape-Selective Syntheses of Gold and Copper Nanostructures: Insights From Density-Functional Theory and Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Hsien

    Density-functional theory (DFT) and molecular dynamics (MD) were used to resolve the origins of shape-selective syntheses of {111}-faceted Au nanostructures mediated by polyvinylpyrrolidone (PVP) as well as {100}-faceted Cu nanostructures mediated by hex- adecylamine(HDA) seen in experiment. For the work in PVP on Au surfaces, the hexagonal reconstruction of Au(100) was considered. DFT results indicate that the Au(111) surface covered by the PVP segment, 2-pyrrolidone (2P), has a lower surface energy than the 2P- covered (5 x 1) Au(100)-hex surface, and that PVP may exhibit a binding affinity for Au(111) comparable to or greater than (5 x 1) Au(100)-hex. With MD, it is shown that the PVP-covered Au(111) surface has a lower surface energy than the PVP-covered (5 x 1) Au(100)-hex surface, and that the atactic PVP isosamer chains have a binding affinity for Au(111) comparable to (5 x 1) Au(100)-hex. Also, the (5 x 1) Au(100)-hex surface may have a higher flux of Au atoms than the Au(111) surface. Therefore, the Au(111) surface would be thermodynamically and kinetically favored in PVP-mediated syntheses, leading to {111}-faceted Au nanostructures. For the work in HDA on Cu surfaces, DFT results show that the HDA-covered Cu(100) surface has a slightly higher surface energy than the HDA- covered Cu(111) surface. However, HDA has a significant binding preference on Cu(100) over Cu(111). Therefore, the Cu(100) surface would be kinetically favored in HDA-mediated syn- theses, leading to {100}-faceted Cu nanostructures. Further, a metal-organic many-body (MOMB) force field for HDA-Cu interactions was developed based on the DFT work, and the force field was used to resolve the HDA binding patterns on Cu(100) at molecular level. With MD, it is found that decylamine (DA) may be used as an effective capping agent in the synthesis of {100}-faceted Cu nanostructures since DA as well as HDA are organized on Cu surfaces and have the same binding preference on Cu(100) over Cu(111). It is also found that the HDA structures on Cu surfaces remain intact in aqueous solution due to hydrophobicity of alkyl tails and long alkyl chains in the HDA molecules, which could prevent Cu oxidation during the synthesis.

  7. Destruction of the recreational, asthetic, agricultural, wildlife conservation and preservation, and residential uses of the land as a result of the abuses of the manufacturing, commercial, extractive, construction, and transportation industries

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Explicit concern over land use and abuse stems from the recognition of the negative impacts of unrestrained and unregulated economic, industrial, and population growth upon finite land resources. Only one quarter of the total surface area of the earth is land, and of that a large portion is uninhabitable. The present stresses upon the land include urbanization, urban sprawl and urban congestion; electrical, nuclear industrial park siting requirements; land degradation through stripping surface minerals; land degradation through disposal of radioactive wastes, sewage sludge, solid waste and other industrial wastes; rising demand for agricultural land; and the erosion and destruction of land through elimination of protective coverings such as forests, grasslands, and wetlands.

  8. Incidence loss for a core turbine rotor blade in a two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Kline, J. F.

    1974-01-01

    The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.

  9. Robust Thermal Control of Propulsion Lines for Space Missions

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    2011-01-01

    A document discusses an approach to insulating propulsion lines for spacecraft. In spacecraft that have propulsion lines that are located externally with open bus architecture, the lines are typically insulated by Multi Layer Insulation (MLI) blankets. MLI on propulsion lines tends to have large and somewhat random variances in its heat loss properties (effective emittance) from one location to the next, which makes it an un-robust approach to control propulsion line temperatures. The approach described here consists of a clamshell design in which the inner surface of the shell is coated with low-emissivity aluminized Kapton tape, and the outer surface is covered with black tape. This clamshell completely encloses the propulsion line. The line itself is covered with its heater, which in turn, is covered completely with black tape. This approach would be low in heater power needs because even though the outer surface of the prop line (and its heater) is covered with black tape as well as the outer surface of the clamshell, the inner surface of the clamshell is covered with low-emissivity aluminized Kapton tape. Hence, the heat loss from the line will be small and comparable to the MLI based one. In terms of contamination changing the radiative properties of surfaces, since the clamshell s inner surface is always protected during handling and is only installed after all the work on the prop line has been completed, the controlling surface, which is the clamshell s inner surface, is always in pristine condition. This proposed design allows for a much more deterministic and predictable design using a very simple and implementable approach for thermal control. It also uses low heater power and is robust to handling and contamination during and after implementation.

  10. Strategy for robot motion and path planning in robot taping

    NASA Astrophysics Data System (ADS)

    Yuan, Qilong; Chen, I.-Ming; Lembono, Teguh Santoso; Landén, Simon Nelson; Malmgren, Victor

    2016-06-01

    Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

  11. 7 CFR 51.1583 - Damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the total weight of the potato including peel covering defective area. Loss of outer skin... percent of the total weight of the potato including peel covering defective area. (g) Rhizoctonia, when...

  12. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.; Ju, W.; Govind, A.

    2008-06-01

    Carbon dynamics in peatlands are controlled, in large part, by their wetness as defined by water table depth and volumetric liquid soil moisture content. A common type of peatland is raised bogs that typically have a multiple-layer canopy of vascular plants over a Sphagnum moss ground cover. Their convex form restricts water supply to precipitation and water is shed toward the margins, usually by lateral subsurface flow. The hydraulic gradient for lateral subsurface flow is governed by the peat surface topography at the mesoscale (˜200 m to 5 km). To investigate the influence of mesoscale topography on wetness, evapotranspiration (ET), and gross primary productivity (GPP) in a bog during the snow-free period, we compare the outputs of a further developed version of the daily Boreal Ecosystem Productivity Simulator (BEPS) with observations made at the Mer Bleue peatland, located near Ottawa, Canada. Explicitly considering mesoscale topography, simulated total ET and GPP correlate well with measured ET (r = 0.91) and derived gross ecosystem productivity (GEP; r = 0.92). Both measured ET and derived GEP are simulated similarly well when mesoscale topography is neglected, but daily simulated values are systematically underestimated by about 10% and 12% on average, respectively, due to greater wetness resulting from the lack of lateral subsurface flow. Owing to the differences in moss surface conductances of water vapor and carbon dioxide with increasing moss water content, the differences in the spatial patterns of simulated total ET and GPP are controlled by the mesotopographic position of the moss ground cover.

  13. Thermodynamics of GaN(s)-NH3(v)+N2(v)+H2(v) system - Electronic aspects of the processes at GaN(0001) surface

    NASA Astrophysics Data System (ADS)

    Kempisty, Pawel; Strak, Pawel; Sakowski, Konrad; Krukowski, Stanislaw

    2017-08-01

    Comprehensive analysis of GaN(0001) surface in equilibrium with ammonia/hydrogen mixture was undertaken using results of ab initio calculations. Adsorption energies of the species derived from ammonia and molecular hydrogen and their stable sites were obtained. It was shown that the adsorption process type and energy depend on the position of Fermi level at the surface. Hydrogen decomposes into two separate H atoms, always adsorbed in the positions on top of the surface Ga atoms (On-top). Ammonia adsorption at GaN(0001) surface proceeds molecularly to ammonia in the On-top position or dissociatively into NH2 radicals in bridge (NH2-bridge) or On-top positions or into NH radicals in H3 (NH-H3) site. Presence of these species affects Fermi level pinning at the surface due to creation of new surface states. The Fermi level pinning in function of the surface attached species concentration was determined using extended electron counting rule (EECR). Results of ab initio calculations fully proved validity of the EECR predictions. Thermodynamic analysis of the surface in equilibrium with molecular hydrogen and ammonia vapor mixture is made giving the range of ammonia and hydrogen pressures, corresponding to Fermi level pinned at Ga-broken bond state for NH-H3&H and NH3&H and NH2-bridge&H coverage and at VBM for NH3 & H coverage. As the region of Fermi level pinned at Ga broken bond state corresponds to very low pressures, at pressures close to normal, GaN(0001) surface is almost totally covered by H, NH3 and NH2 located in On-top positions. It is also shown however that dominant portion of the hydrogen and ammonia pressures corresponds to Fermi level not pinned. Among them are these corresponding to MOVPE and HVPE growth conditions in which the surface is almost fully covered by NH3, NH2 and H species in On-top positions.

  14. The Effects of Surface Properties and Albedo on Methane Retrievals with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.

    2017-12-01

    Atmospheric methane has increased by a factor of 2.5 since the beginning of the industrial era in response to anthropogenic emissions (Ciais et al., 2013). Although it is less abundant than carbon dioxide it is 86 time more potent on a 20 year time scale (Myhre et al., 2013) and is therefore responsible for about 20% of the total global warming induced by anthropogenic greenhouse gasses (Kirschke et al., 2013). Given the importance of methane to global climate change, monitoring and measuring methane emissions using techniques such as remote sensing is of increasing interest. Recently the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) has proven to be a valuable instrument for quantitative mapping of methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). In this study, we applied the Iterative Maximum a Posterior Differential Optical Spectroscopy (IMAP-DOAS) methane retrieval algorithm to a synthetic image with variable methane concentrations, albedo, and land cover. This allowed for characterizing retrieval performance, including potential sensitivity to variable land cover, low albedo surfaces, and surfaces known to cause spurious signals. We conclude that albedo had little influence on the IMAP-DOAS results except at very low radiance levels. Water (without sun glint) was found to be the most challenging surface for methane retrievals while hydrocarbons and some green vegetation also caused error. Understanding the effect of surface properties on methane retrievals is important given the increased use of AVIRIS-NG to map gas plumes over diverse locations and methane sources. This analysis could be expanded to include additional gas species like carbon dioxide and to further investigate gas sensitivity of proposed instruments for dedicated gas mapping from airborne and spaceborne platforms.

  15. Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city.

    PubMed

    Lagucki, Edward; Burdine, Justin D; McCluney, Kevin E

    2017-01-01

    Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change.

  16. Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city

    PubMed Central

    Lagucki, Edward

    2017-01-01

    Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change. PMID:28890848

  17. Natural and unnatural oil slicks in the Gulf of Mexico

    USGS Publications Warehouse

    MacDonald, Ian R.; O. Garcia-Pineda,; A. Beet,; S. Daneshgar Asl,; L. Feng,; D. G. Graettinger,; D. French-McCay,; J. Holmes,; C. Hu,; F. Huffer,; I. Leifer,; F. Mueller-Karger,; A. Solow,; M. Silva,; Swayze, Gregg A.

    2015-01-01

    When wind speeds are 2 – 10 m s−1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent, natural seeps and from the Deepwater Horizon (DWH) discharge. This analysis identified 914 natural oil seep zones across the entire Gulf of Mexico in pre-2010 data. Their ∼0.1 µm slicks covered an aggregated average of 775 km2. Assuming an average volume of 77.5 m3over an 8 – 24 h lifespan per oil slick, the floating oil indicates a surface flux of 2.5 – 9.4 × 104 m3 y−1. Oil from natural slicks was regionally concentrated: 68%, 25%, 7%, and <1% of the total was observed in the NW, SW, NE and SE Gulf, respectively. This reflects differences in basin history and hydrocarbon generation. SAR images from 2010 showed that the 87-day DWH discharge produced a surface-oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km2 (SD 5,028) and a volume of 22,600 m3 (SD 5,411). Peak magnitudes of oil were detected during equivalent, ∼14-day intervals around 23 May and 18 June, when wind speeds remained <5 m s−1. Over this interval, aggregated volume of floating oil decreased by 21%; area covered increased by 49% (p < .1), potentially altering its ecological impact. The most likely causes were increased applications of dispersant and surface burning operations.

  18. Natural and unnatural oil slicks in the Gulf of Mexico

    DOE PAGES

    MacDonald, I. R.; Garcia-Pineda, O.; Beet, A.; ...

    2015-12-28

    When wind speeds are 2–10 m s -1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent,natural seeps and from the Deep water Horizon (DWH) discharge. This analysis identified 914 natural oil seep zones across the entire Gulf of Mexico in pre-2010 data. Their ~0.1 mm slicks covered an aggregated average of 775 km 2. Assuming an average volume of 77.5 m 3 over an 8–24 h lifespanmore » per oil slick, the floating oil indicates a surface flux of 2.5–9.4 X 10 4 m 3 yr -1. Oil from natural slicks was regionally concentrated: 68%, 25%, 7%, and <1% of the total was observed in the NW, SW, NE, and SE Gulf, respectively. This reflects differences in basin history and hydrocarbon generation. SAR images from 2010 showed that the 87 day DWH discharge produced a surface-oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km 2(SD 5028) and a volume of 22,600 m 3(SD 5411). Peak magnitudes of oil were detected during equivalent, ~14 day intervals around 23 May and 18 June, when wind speeds remained <5ms -1. Over this interval, aggregated volume of floating oil decreased by 21%; area covered increased by 49% (p < 0.1), potentially altering its ecological impact. Furthermore, the most likely causes were increased applications of dispersant and surface burning operations.« less

  19. Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.

    PubMed

    Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R

    2013-01-01

    Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Friction-induced surface activity of some hydrocarbons with clean and oxide-covered iron

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction studies were conducted on a clean and oxide-covered iron surface with exposure of that surface to various hydrocarbons. The hydrocarbons included ethane, ethylene ethyl chloride, methyl chloride, and vinyl chloride. Auger cylindrical mirror analysis was used to follow interactions of the hydrocarbon with the iron surface. Results with vinyl chloride indicate friction induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and accordingly friction. In contrast with ethyl and vinyl chloride, friction induced surface reactivity was not observed with ethane and ethylene.

  1. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse.

    PubMed

    Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun

    2014-01-15

    We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.

  2. Reconstructed Historical Land Cover and Biophysical Parameters for Studies of Land-Atmosphere Interactions within the Eastern United States

    NASA Technical Reports Server (NTRS)

    Steyaert, Louis T.; Knox, Robert G.

    2007-01-01

    The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment including surface weather, hydrologic, and climatic variability? - How do the potential effects of regional human-induced land cover change on the environment compare to similar changes that are caused by the natural variations of the Earth's climate system? To help answer these questions, we reconstructed a fractional land cover and biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 time-slices. Each land cover fraction is associated with a biophysical parameter class, a suite of parameters defining the biophysical characteristics of that kind of land cover. This new dataset is designed for use in computer models of land-atmosphere interactions, to understand and quantify the effects of historical land cover changes on the water, energy, and carbon cycles

  3. Throughfall patterns of a Subtropical Atlantic Forest in Brazil

    NASA Astrophysics Data System (ADS)

    Macedo Sá, João Henrique; Borges Chaffe, Pedro Luiz; Yuimi de Oliveira, Debora; Nery Giglio, Joana; Kobiyama, Masato

    2017-04-01

    The interception process is responsible for the spatial and temporal redistribution of the precipitation that reaches the ground. This process is important especially in forested areas since it influences recycling of moisture from the air and also the amount of water that effectively reaches the ground. The contact of the precipitation with the canopy influences on the water quality, increasing the concentration of various nutrients in the throughfall (Tf) and stemflow (Sf). Brazil, only about 8% of the original Atlantic Forest cover remains. That is an important biome and little is known about the characteristics of rainfall interception of this forest. The total interception loss in forested areas is usually formulated as the gross precipitation (P) minus the sum of the throughfall (Tf) and the stemflow (Sf). The stems characteristics influence on Sf, meanwhile, the value of Tf strongly depends on the canopy and leaf structures. Because of the complex structure of the canopy, these characteristics are usually expressed by the simpler Leaf Area Index (LAI) or the Canopy Cover Fraction (CCF). The Araponga river experimental catchment (ARA) with 5.3 ha is on the northern plateau of Santa Catarina State, southern Brazil. It is an area completely covered by secondary subtropical Atlantic Forest, the regional climate is the Köppen Cfb type, i.e., temperate climate without dry season and with warm summer (the mean temperature of the hottest month is always under 22°C). The objectives of the present study were (i) to evaluate the spatial and temporal variation of canopy cover; (ii) to influence of the interception process on the precipitation quality; and (iii) to explore the relation between canopy cover and throughfall. Inside the catchment, 9 Tf gauges were installed 40 cm above the soil surface in order to include the interception by shrub. 28 hand-made gauges were installed on a circular area of 3 m radius to analyze the spatial variability of throughfall. During 3 year in 2012 to 2014, digital images were taken every month with a camera installed horizontally 25 cm above the soil surface at each Tf gage. The total incident rainfall was 4624 mm, the throughfall volume was 3538 mm or 76% of incident rainfall. CCF and LAI ranged from 70 to 90% and from 3 to 5.5 m2/m2, respectively. We could not find any satisfactory relationship between Tf and canopy parameters (CCF and LAI). The analysis shows the significant difference in the water quality of the precipitation that reaches the ground after being intercepted. There was no significant relationship between the physicochemical parameters and the canopy cover fraction. The results indicate that the distribution of throughfall is not homogeneous, its spatial variation is not linked to any of the calculated parameters.

  4. Gaseous mercury fluxes in peatlands and the potential influence of climate change

    NASA Astrophysics Data System (ADS)

    Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.

    2017-04-01

    Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in vascular vegetation cover and peat warming as a result of climate change may significantly affect the dynamics of TGM fluxes between peatlands and the atmosphere.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demchenko, V.S.; Filipov, V.I.; Semenyuk, V.I.

    This article shows how the protective properties of preservative greases and oils can be determined by using an index which characterizes the kinetics of the corrosion processes on the metal surface under the layer of the lubricant. The index takes into account the actual time of existence of the corrosion products (from the moment of their appearance to the end of the test) and the actual area of the metal test specimens occupied by these products. In order to compare the proposed index to the indexes being used, the protective properties of aviation oil MS-20s, industrial oils I-12A and I-50A,more » and spindle oil AU, to which oil-soluble corrosion inhibitors were added, are examined. The mean rate of spreading of initial corrosion (referred to the total test time of 60 days) and the mean rate of corrosion (the total metal weight loss divided by the total surface area of the metal panel and the total test time) are calculated. It is concluded that in order to improve the reliability of protection ratings of preservative oils and greases, it is preferable to determine the rate of spreading of corrosion damage, the metal panel weight loss, and the increase in depth of the corrosion with allowance for the actual time of existence of corrosion (from the moment of appearance to the end of the test) and the actual area covered by the corrosion products. Includes a table.« less

  6. Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Noël, Stefan; Bekki, Slimane; Irbah, Abdenour; Meftah, Mustapha; Claud, Chantal

    2018-05-01

    Atmospheric water vapour plays a key role in the Arctic radiation budget, hydrological cycle and hence climate, but its measurement with high accuracy remains an important challenge. Total column water vapour (TCWV) datasets derived from ground-based GNSS measurements are used to assess the quality of different existing satellite TCWV datasets, namely from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The comparisons between GNSS and satellite data are carried out for three reference Arctic observation sites (Sodankylä, Ny-Ålesund and Thule) where long homogeneous GNSS time series of more than a decade (2001-2014) are available. We select hourly GNSS data that are coincident with overpasses of the different satellites over the three sites and then average them into monthly means that are compared with monthly mean satellite products for different seasons. The agreement between GNSS and satellite time series is generally within 5 % at all sites for most conditions. The weakest correlations are found during summer. Among all the satellite data, AIRS shows the best agreement with GNSS time series, though AIRS TCWV is often slightly too high in drier atmospheres (i.e. high-latitude stations during autumn and winter). SCIAMACHY TCWV data are generally drier than GNSS measurements at all the stations during the summer. This study suggests that these biases are associated with cloud cover, especially at Ny-Ålesund and Thule. The dry biases of MODIS and SCIAMACHY observations are most pronounced at Sodankylä during the snow season (from October to March). Regarding SCIAMACHY, this bias is possibly linked to the fact that the SCIAMACHY TCWV retrieval does not take accurately into account the variations in surface albedo, notably in the presence of snow with a nearby canopy as in Sodankylä. The MODIS bias at Sodankylä is found to be correlated with cloud cover fraction and is also expected to be affected by other atmospheric or surface albedo changes linked for instance to the presence of forests or anthropogenic emissions. Overall, the results point out that a better estimation of seasonally dependent surface albedo and a better consideration of vertically resolved cloud cover are recommended if biases in satellite measurements are to be reduced in the polar regions.

  7. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size showed an overestimation of in situ LST and some improvement in the daytime Terra and nighttime Aqua biases, with the highest accuracy achieved with the 5x5 window. A comparison between MODIS emmisivity from bands 31, 32, and in situ emissivity showed that emissivity errors (Relative error = -.003) were insignificant.

  8. Field wind tunnel testing of two silt loam soils on the North American Central High Plains

    NASA Astrophysics Data System (ADS)

    Scott Van Pelt, R.; Baddock, Matthew C.; Zobeck, Ted M.; Schlegel, Alan J.; Vigil, Merle F.; Acosta-Martinez, Veronica

    2013-09-01

    Wind erosion is a soil degrading process that threatens agricultural sustainability and environmental quality globally. Protecting the soil surface with cover crops and plant residues, practices common in no-till and reduced tillage cropping systems, are highly effective methods for shielding the soil surface from the erosive forces of wind and have been credited with beneficial increases of chemical and physical soil properties including soil organic matter, water holding capacity, and wet aggregate stability. Recently, advances in biofuel technology have made crop residues valuable feed stocks for ethanol production. Relatively little is known about cropping systems effects on intrinsic soil erodibility, the ability of the soil without a protective cover to resist the erosive force of wind. We tested the bare, uniformly disturbed, surface of long-term tillage and crop rotation research plots containing silt loam soils in western Kansas and eastern Colorado with a portable field wind tunnel. Total Suspended Particulate (TSP) were measured using glass fiber filters and respirable dust, PM10 and PM2.5, were measured using optical particle counters sampling the flow to the filters. The results were highly variable and TSP emission rates varied from less than 0.5 mg m-2 s-1 to greater than 16.1 mg m-2 s-1 but all the results indicated that cropping system history had no effect on intrinsic erodibility or dust emissions from the soil surfaces. We conclude that prior best management practices will not protect the soil from the erosive forces of wind if the protective mantle of crop residues is removed.

  9. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2015-03-17

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Validation of HF Radar ocean surface currents in the Ibiza Channel using lagrangian drifters, moored current meter and underwater gliders

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Fernández, Vicente; Orfila, Alejandro; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    SOCIB High Frequency (HF) radar is one component of a multi-platform system located in the Balearic Islands and made up of Lagrangian platforms (profilers and drifting buoys), fixed stations (sea-level, weather, mooring and coastal), beach monitoring (camera), gliders, a research vessel as well as an ocean forecast system (waves and hydrodynamics). The HF radar system overlooks the Ibiza Channel, known as a 'choke point" where Atlantic and Mediterranean water masses interact and where meridional exchanges of water mass properties between the Balearic and the Algerian sub-basins take place. In order to determine the reliability of surface velocity measurements in this area, a quality assessment of the HF Radar is essential. We present the results of several validation experiments performed in the Ibiza Channel in 2013 and 2014. Of particular interest is an experiment started in September 2014 when a set of 13 surface drifters with different shapes and drogue lengths were released in the area covered by the HF radar. The drifter trajectories can be examined following the SOCIB Deployment Application (DAPP): http://apps.socib.es/dapp. Additionally, a 1-year long time series of surface currents obtained from a moored surface current-meter located in the Ibiza Channel, inside the area covered by the HF radar, was also used as a useful complementary validation exercise. Direct comparison between both radial surface currents from each radar station and total derived velocities against drifters and moored current meter velocities provides an assessment of the HF radar data quality at different temporal periods and geographical areas. Statistics from these comparisons give good correlation and low root-mean-square deviation. The results will be discussed for different months, geographical areas and types of surface drifters and wind exposure. Moreover, autonomous underwater glider constitutes an additional source of information for the validation of the observed velocity structures and some statistics will be presented.

  11. Attenuation by clouds of UV radiation for low stratospheric ozone conditions

    NASA Astrophysics Data System (ADS)

    Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Quiroga, Jonathan; Quel, Eduardo; Mizuno, Akira

    2017-02-01

    Stratospheric poor ozone air masses related to the polar ozone hole overpass subpolar regions in the Southern Hemisphere during spring and summer seasons, resulting in increases of surface Ultraviolet Index (UVI). The impact of these abnormal increases in the ultraviolet radiation could be overestimated if clouds are not taking into account. The aim of this work is to determine the percentage of cases in which cloudiness attenuates the high UV radiation that would reach the surface in low total ozone column situations and in clear sky hypothetical condition for Río Gallegos, Argentina. For this purpose, we analysed UVI data obtained from a multiband filter radiometer GUV-541 (Biospherical Inc.) installed in the Observatorio Atmosférico de la Patagonia Austral (OAPA-UNIDEF (MINDEF - CONICET)) (51 ° 33' S, 69 ° 19' W), Río Gallegos, since 2005. The database used covers the period 2005-2012 for spring seasons. Measured UVI values are compared with UVI calculated using a parametric UV model proposed by Madronich (2007), which is an approximation for the UVI for clear sky, unpolluted atmosphere and low surface albedo condition, using the total ozone column amount, obtained from the OMI database for our case, and the solar zenith angle. It is observed that ˜76% of the total low ozone amount cases, which would result in high and very high UVI categories for a hypothetical (modeled) clear sky condition, are attenuated by clouds, while 91% of hypothetical extremely high UVI category are also attenuated.

  12. Surface Flooding from Hurricane Harvey Shown in New SMAP Imagery

    NASA Image and Video Library

    2017-08-30

    A new series of images generated with data from NASA's Soil Moisture Active Passive (SMAP) satellite illustrate the surface flooding caused by Hurricane Harvey from before its initial landfall through August 27, 2017. The SMAP observations detect the proportion of the ground covered by surface water within the satellite's field of view. The sequence of images depicts successive satellite orbital swath observations showing the surface water conditions on August 22, before Harvey's landfall (left), and then on Aug. 27, two days after landfall (middle). The resulting increase in surface flooding from record rainfall over the three-day period, shown at right, depicts regionally heavy flooding around the Houston metropolitan area. The hardest hit areas (blue and purple shades) cover more than 23,000 square miles (about 59,600 square kilometers) and indicate a more than 1,000-fold increase in surface water cover from rainfall-driven flooding. SMAP's low-frequency (L-band) microwave radiometer features enhanced capabilities for detecting surface water changes in nearly all weather conditions and under low-to-moderate vegetation cover. The satellite provides global coverage with one to three-day repeat sampling, which is well suited for monitoring dynamic inland waters around the world. https://photojournal.jpl.nasa.gov/catalog/PIA21930

  13. Sensitivity of Great Lakes Ice Cover to Air Temperature

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Titze, D.

    2016-12-01

    Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.

  14. Impacts of Land Cover Changes on Climate over China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  15. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    NASA Astrophysics Data System (ADS)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  16. Cover crop biomass harvest for bioenergy: implications for crop productivity

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  17. [Optimization of application parameters of soil seed bank in vegetation recovery via response surface methodology].

    PubMed

    He, Meng-Xuan; Li, Hong-Yuan; Mo, Xun-Qiang; Meng, Wei-Qing; Yang, Jia-Nan

    2014-08-01

    The thickness of surface soil, the covering thickness and the number of adding arbor seeds are all important factors to be considered in the application of soil seed bank (SSB) for vegetation recovery. To determine the optimal conditions, the Box-Behnken central composite design with three parameters and three levels was conducted and Design-Expert was used for response surface optimization. Finally, the optimal model and optimal level of each parameter were selected. The quadratic model was more suitable for response surface optimization (P < 0.0001), indicating the model had good statistical significance which could express ideal relations between all the independent variable and dependent variable. For the optimum condition, the thickness of surface soil was 4.3 cm, the covering thickness was 2 cm, and the number of adding arbor seeds was 224 ind x m(-2), under which the number of germinated seedlings could be reached up to 6222 plants x m(-2). During the process of seed germination, significant interactions between the thickness of surface soil and the covering thickness, as well as the thickness of surface soil and the number of adding arbor seeds were found, but the relationship between the covering thickness and the number of adding arbor seeds was relatively unremarkable. Among all the parameters, the thickness of surface soil was the most important one, which had the steepest curve and the largest standardized coefficient.

  18. The effect of contaminant on skid resistance of pavement surface

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Gultom, E. M.

    2018-03-01

    Skid resistance of the pavement surface is the force generated by the movement of the wheels of the vehicle on the surface of the pavement. Contaminants are materials that cover the surface of the pavement affecting the skid resistance of the pavement surface. The contaminant acts as a coating interface or direct contact of the pavement surface with the wheels of the vehicle which can cause adverse effects, such as the decreasing value of skid resistance of the pavement surface. This study aims to analyze the effect of some types of contaminants on skid resistance of pavement surfaces. The contaminants that used in this study were water, sand, salt, and lubricating oil. The study was conducted by direct testing on two types of pavement: flexible pavement and rigid pavement. The measurements of the skid resistance were made using the British Pendulum Tester with British Pendulum Number for two conditions: before and after the pavement surface was covered with contaminants. The results showed that there was a contaminant effect on skid resistance of pavement surface. Skid resistance of pavement surfaces decreased after the contaminants were covered in water, sand, salt, and lubricant by 20.1%, 22.8%, 37.1% and 50.5% respectively.

  19. Topographic and geomorphologic controls on the distribution of vegetation formations in Elephant Point (Livingston Island, Maritime Antarctica).

    PubMed

    Ruiz-Fernández, Jesús; Oliva, Marc; García-Hernández, Cristina

    2017-06-01

    This article focuses on the spatial distribution of vegetation formations in Elephant Point, an ice-free area of 1.16km 2 located in Livingston Island (South Shetland Islands, Antarctica). Fieldwork carried out in January 2014 consisted of floristic surveys and designation of a vegetation map. We have examined these data in a GIS environment together with topographical and geomorphological features existing in the peninsula in order to infer the factors controlling vegetation distribution. This has allowed quantifying the total area covered by the four different vegetation formations distributed across the peninsula, proliferating mainly on bedrock plateaus and Holocene raised beaches. Grass formation is essentially composed of Deschampsia antarctica, distributed almost exclusively on raised beaches, and covering 4.1% of the ice-free surface. The remaining three formations are fundamentally composed of cryptogam species. The first of which is fruticose lichen and moss formation, present on high bedrock plateaus and principally formed by lichens such as Usnea aurantiaco-atra. The next is the crustose lichen formation, spreading on bedrock plateaus near the coast populated by bird colonies. In this case, ornitocoprophilous lichens such as Caloplaca regalis, Xanthoria elegans and Haematomma erythromma are predominant. Together, both formations have colonised 5.1% of the peninsula. The last variety, moss carpet and moss cushion formation, occupies 1.4% of the deglaciated surface, spreading primarily in flooded areas, stabilised talus slopes, and bedrock plateaus as well. Therefore, the total surface colonised by vegetation is 12.2ha, which comprises 10.5% of the peninsula. Due to the retreat of the Rotch Dome glacier, 20.1ha remain ice-free since 1956 (17.3% of the deglaciated area). Ever since, even though the Antarctic Peninsula has registered one of the most significant temperature rises on Earth, vegetation has only colonised 0.04ha of this new space, which merely represents 0.3% of the vegetated area in Elephant Point. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Parabolic features and the erosion rate on Venus

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.

    1993-01-01

    The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.

  1. Ejection of nanoclusters from gold nanoislet layers by 38 keV Au ions in the elastic stopping mode.

    PubMed

    Baranov, I A; Della-Negra, S; Domaratsky, V P; Chemezov, A V; Kirillov, S N; Novikov, A C; Obnorsky, V V; Pautrat, M; Urbassek, H M; Wien, K; Yarmiychuk, S V; Zhurkin, E E

    2009-07-01

    Total absolute yields of the ejected gold were obtained regardless of the type of the particles are--atoms, clusters, nanoclusters,--as well as absolute yields of gold nanoclusters, from nanoislet gold targets under bombardment by monoatomic gold ions at 45 degrees to the target surface with the energy 38 keV, i.e., in the "purely" elastic stopping mode -6 keV/nm up to the fluence of 4 x 10(12) cm2. Three targets had gold nanoislets on the substrate surface: 2-12 nm; -18 nm; -35 nm, the most probable sizes being 7.1; 9.4; 17.5 nm respectively. The part of the surface area covered with gold was known. Total transfer of gold was determined by means of the neutron-activation analysis and decreased from 450 to 20 at/ion. The number of the ejected gold nanoclusters was determined using TEM and decreased from approximately 0.06 to < 0.01 per one 38 keV Au ion with the increase of the most probable sizes of the nanoislets on the target from 7.1 to 17.5 nm. The yields appeared to be surprisingly high, which is of scientific and practical importance. Tentative estimations were made using molecular dynamics simulations.

  2. Effects of urbanization on stream ecosystems along an agriculture-to-urban land-use gradient, Milwaukee to Green Bay, Wisconsin, 2003-2004

    USGS Publications Warehouse

    Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.

    2010-01-01

    In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were more strongly related to local geologic setting, slope, watershed topography, and river-engineering practices than to urbanization. Historical local river-engineering features such as channelization, bank stabilization, and grade controls may have confounded relations among habitat characteristics and urbanization. A number of hydrologic-condition metrics (including flashiness and duration of high flow during pre- or post-ice periods) showed strong relations to the urban intensity index. Hydrologic-condition metrics cannot be used alone to predict habitat or geomorphic change. Chloride and SPMD measures of potential toxicity and polycyclic aromatic hydrocarbon concentrations showed the strongest positive correlations to urbanization including increases in road infrastructure, percentage of impervious surface in the watershed, urban land cover, and land-distribution related to urban land cover. This suggests that automobiles and the infrastructure required to support automobiles are a significant source of these compounds in this study area. Chloride in spring and summer showed a significant positive correlation with the urban intensity index; concentrations increased with increasing road infrastructure, urban land cover, and a number of landscape variables related to urbanization. Spring concentrations of sulfate, prometon, and diazinon correlated to fewer urban characteristics than chloride, including increases in road infrastructure, percentage of impervious surface, and urban land cover. Changes in biological communities correlated to the urban intensity index or individual urban-associated variables. Decreased percentages of pollution-sensitive diatoms and diatoms requiring high dissolved-oxygen saturation correlated to increases in the percentage of developed urban land, total impervious surface, stream flashiness, population density, road-area density, and decreases in the percentage of wetland in the watershed. Invertebrate taxa richness and Coleop

  3. Modelling the contribution of supraglacial ice cliffs to the mass-balance of glaciers in the Langtang catchment, Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Buri, P.; Steiner, J. F.; Miles, E.; Ragettli, S.; Pellicciotti, F.

    2017-12-01

    Supraglacial cliffs are typical surface features of debris-covered glaciers worldwide, affecting surface evolution, and mass balance by providing a direct ice-atmosphere interface where melt rates can be very high. As a result, ice cliffs act as windows of energy transfer from the atmosphere to the ice, and enhance melt and mass losses of otherwise insulated ice. However, their contribution to glacier mass balance has never been quantified at the glacier scale, and all inference has been obtained from upscaling results of point-scale models or observations at select individual cliffs. Here we use a 3D, physically-based backwasting model to estimate the volume losses associated with the melting and backwasting of supraglacial ice cliffs for the entire debris-covered glacier area of the Langtang catchment. We estimate mass losses for the 2014 melt season and compare them to recent values of glacier mass balance determined from geodetic and numerical modelling approached. Cliff outlines and topography are derived from high-resolution stereo SPOT6-imagery from April 2014. Meteorological data to force the model are provided by automatic weather stations on- and off-glacier within the valley. The model simulates ice cliff backwasting by considering the cliff-atmosphere energy-balance, reburial by debris and the effects of adjacent ponds. In the melt season of 2014, cliffs' distribution and patterns of mass losses vary considerably from glacier to glacier, and we relate rates of volume loss to both glaciers' and cliffs' characteristics. Only cliffs with a northerly aspect account for substantial losses. Uncertainty in our estimates is due to the quality of the stereo DEM, uncertainties in the cliff delineation and the fact that we use a conservative approach to cliff delineation and discard very small cliffs and those for which uncertainty in topography is high. Despite these uncertainties, our work presents the first estimate of the importance of supraglacial ice-cliffs to total glacier mass-balance, and shows that the volume lost by backwasting of ice cliffs is a non-negligible term in the total glacier mass balance of debris-covered glaciers, providing a partial explanation of the higher-than-expected mass losses of debris-covered glaciers of High Mountain Asia.

  4. Measurements of slip length for flows over graphite surface with gas domains

    NASA Astrophysics Data System (ADS)

    Li, Dayong; Wang, Yuliang; Pan, Yunlu; Zhao, Xuezeng

    2016-10-01

    We present the measurements of slip lengths for the flows of purified water over graphite surface covered with surface nanobubbles or nano/micropancakes, which can be produced after using high temperature water to replace low temperature water. The slip length values measured on bare graphite surface, nano/micropancake or nanobubble covered graphite surfaces are about 8 nm, 27 nm, and 63 nm, respectively. Our results indicate that the gaseous domains formed at the solid-liquid interface, including surface nanobubbles and nano/micropancakes, could act as a lubricant and significantly increase slip length.

  5. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    NASA Astrophysics Data System (ADS)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  6. Land cover change mapping using MODIS time series to improve emissions inventories

    NASA Astrophysics Data System (ADS)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  7. Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica

    USGS Publications Warehouse

    Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.

    1997-01-01

    Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.

  8. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    NASA Astrophysics Data System (ADS)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  9. Tracking Water, C, N, and P by Linking Local Scale Soil Hydrologic and Biogeochemical Features to Watershed Scale

    NASA Astrophysics Data System (ADS)

    Sedaghatdoost, A.; Mohanty, B.; Huang, Y.

    2017-12-01

    The biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P) have many contemporary significance due to their critical roles in determining the structure and function of ecosystems. The objectives of our study is to find out temporal dynamics and spatial distribution of soil physical, chemical, and biological properties and their interaction with C, N, and P cycles in the soil for different land covers and weather conditions. The study is being conducted at three locations within Texas Water Observatory (TWO), including Riesel (USDA-ARS experimental watersheds), Texas A&M Agrilife Research Farm, and Danciger forest in Texas. Soil physical, hydraulic, chemical (total C, total N, total P, pH, EC, redox potential, N-NO3-, N-NH4+, PO42-, K, Ca, Mg, Na, Mn, and Alox and Feox), and microbiological (Microbial biomass C, N, and P, PLFA analysis, enzymatic activity) properties are being measured in the top 30 cm of the soil profile. Our preliminary data shows that biogeochemical processes would be more profound in the areas with higher temperature and precipitation as these factors stimulate microbial activity and thus influence C, N, and P cycles. Also concentrations of C and N are greater in woodlands relative to remnant grasslands as a consequence of the greater above- and below-ground productivity of woodlands relative to remnant grasslands. We hypothesize that finer soil textures have more organic matter, microbial population, and reactive surfaces for chemicals than coarse soils, as described in some recent literature. However, the microbial activity may not be active in fine textured soils as organic materials may be sorbed to clay surfaces or protected from decomposing organisms. We also expect reduced condition in saturated soils which will decrease carbon mineralization while increase denitrification and alkalinity in the soil. Spatio-temporal data with initial evaluation of biogeochemical factors/processes for different land covers will be presented.

  10. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Continental Growth and Mantle Hydration as Earth System Feedback Cycles and possible Effects of the Biosphere

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2016-12-01

    The evolution of Earth is charcterized by intertwined feedback cycles. We focus on two feedback cycles that include the mantle water budget and the continental crust and study possible effects of the Earth's biosphere. The first feedback loop includes cycling of water into the mantle at subduction zones and outgassing at volcanic chains and mid-ocean ridges. Water will reduce the viscosity of mantle rock, and therefore the speed of mantle convection and plate subduction will increase with the mantle water concentration, eventually enhancing the rates of mantle water regassing and outgassing. A second feedback loop includes the production and erosion of continental crust. Continents grow by volcanism above subduction zones, whose total length is determined by the total area of the continents. Furthermore, the erosion rate of the continents is proportional to the total surface area of continental crust. The rate of sediment subduction affects the rate of transport of water to the mantle and the production rate of new continental crust. We present a model that includes both cycles and show how the system develops stable and unstable fixed points in a plane defined by mantle water concentration and surface are of continents. The stable points represent either an Earth mostly covered by continents and a wet mantle or an Earth mostly covered by oceans with a dry mantle. The presently observed Earth is inbetween these extreme states but the state is intrinsically unstable. We couple the feedback model to a parameterized thermal evolution model. We show how Earth evolved towards its present unstable state. We argue that other feedback cycles such as the carbonate silicate cycle may act to stabilize the present state, however. By enhancing continental weathering and erosion, and eventually the sediment transport into subduction zones, the biosphere impacts both feedback cycles and might play a crucial role in regulating Earth's system and keep continental crust coverage and mantle water budget at its present day state.

  12. Improved cloud parameterization for Arctic climate simulations based on satellite data

    NASA Astrophysics Data System (ADS)

    Klaus, Daniel; Dethloff, Klaus; Dorn, Wolfgang; Rinke, Annette

    2015-04-01

    The defective representation of Arctic cloud processes and properties remains a crucial problem in climate modelling and in reanalysis products. Satellite-based cloud observations (MODIS and CPR/CALIOP) and single-column model simulations (HIRHAM5-SCM) were exploited to evaluate and improve the simulated Arctic cloud cover of the atmospheric regional climate model HIRHAM5. The ECMWF reanalysis dataset 'ERA-Interim' (ERAint) was used for the model initialization, the lateral boundary forcing as well as the dynamical relaxation inside the pan-Arctic domain. HIRHAM5 has a horizontal resolution of 0.25° and uses 40 pressure-based and terrain-following vertical levels. In comparison with the satellite observations, the HIRHAM5 control run (HH5ctrl) systematically overestimates total cloud cover, but to a lesser extent than ERAint. The underestimation of high- and mid-level clouds is strongly outweighed by the overestimation of low-level clouds. Numerous sensitivity studies with HIRHAM5-SCM suggest (1) the parameter tuning, enabling a more efficient Bergeron-Findeisen process, combined with (2) an extension of the prognostic-statistical (PS) cloud scheme, enabling the use of negatively skewed beta distributions. This improved model setup was then used in a corresponding HIRHAM5 sensitivity run (HH5sens). While the simulated high- and mid-level cloud cover is improved only to a limited extent, the large overestimation of low-level clouds can be systematically and significantly reduced, especially over sea ice. Consequently, the multi-year annual mean area average of total cloud cover with respect to sea ice is almost 14% lower than in HH5ctrl. Overall, HH5sens slightly underestimates the observed total cloud cover but shows a halved multi-year annual mean bias of 2.2% relative to CPR/CALIOP at all latitudes north of 60° N. Importantly, HH5sens produces a more realistic ratio between the cloud water and ice content. The considerably improved cloud simulation manifests in a more correct radiative transfer and better energy budget in the atmospheric boundary layer and results also in a more realistic surface energy budget associated with more reasonable turbulent fluxes. All this mitigates the positive temperature, relative humidity and horizontal wind speed biases in the lower model levels.

  13. Effects of Canada goose herbivory on the tidal freshwater wetlands in Anacostia Park, 2009-2011

    USGS Publications Warehouse

    Krafft, Cairn C.; Hatfield, Jeffrey S.; Hammerschlag, Richard S.

    2013-01-01

    Herbivory has played a major role in dictating vegetation abundance and species composition at Kingman Marsh in Anacostia Park, Washington, D.C., since restoration of this tidal freshwater wetland was initiated in 2000. The diverse and robust vegetative cover that developed in the first year post-reconstruction experienced significant decimation in the second year, after the protective fencing was removed, and remained suppressed throughout the five-year study period. In June 2009 a herbivory study was initiated to document the impacts of herbivory by resident and nonmigratory Canada geese (Branta canadensis) to vegetation at Kingman Marsh. Sixteen modules consisting of paired fenced plots and unfenced control plots were constructed. Eight of the modules were installed in vegetated portions of the restoration site that had been protected over time by pre-existing fencing, while the remaining eight modules were placed in portions of the site that had not been protected over time and were basically unvegetated at the start of the experiment. Exclosure fencing was sufficiently elevated from the substrate level to allow access to other herbivores such as fish and turtles, while hopefully excluding mature Canada geese. The study was designed with an initial exclosure elevation of 20 cm. This elevation was chosen based on the literature, as adequate to exclude mature Canada geese, while maximizing access to other herbivores such as fish and turtles. Repeated measures analysis of variance (ANOVA) was used to analyze the differences between paired fenced and unfenced control plots for a number of variables including total vegetative cover. Differences in total vegetative cover were not statistically significant for the baseline data collected in June 2009. By contrast, two months after the old protective fencing was removed from the initially-vegetated areas to allow Canada geese access to the unfenced control plots, total vegetative cover had declined dramatically in the initially-vegetated unfenced control plots, and differences between paired fenced and unfenced control plots were statistically significant. These differences have remained steady and significant throughout the remainder of these first three years of the study. Total vegetative cover has followed a somewhat different path in the initially-unvegetated modules, where cover in the fenced plots did not significantly exceed cover in the unfenced control plots until the August 2010 sampling event. In spite of the slow start in the initially-unvegetated modules, differences between paired fenced plots and unfenced control plots have remained significant and even increased significantly over time. This indicates that total vegetative cover in the initially-unvegetated fenced plots and unfenced control plots is continuing to diverge over time as vegetation increases in the protected plots compared to the basically unvegetated unfenced control plots. Total vegetative cover has been composed almost entirely of native species during the first three years of the study, with cover by exotics averaging less than 1% during each sampling event. Species richness did not differ significantly between fenced plots and unfenced control plots during 2009, the first year of the study. Since August 2010, species richness has remained significantly greater in the fenced plots than in the unfenced control plots. These differences have remained relatively steady over time for both the initially-vegetated and initially unvegetated modules. During the study it became apparent that our elevated fence plots were more accessible to mature geese than we had expected. Even after lowering the exclosure fencing to 15 cm in 2010 and 10 cm in 2011, we documented geese inside exclosures in both years. Nonetheless the data indicate that even at 10 cm, we have limited the numbers of mature geese entering the fenced plots, rather than totally preventing their access through low spots in the uneven substrate surface. At an exclosure elevation of 10 cm and with a soft, mucky substrate, we are assuming that non-goose herbivores such as fish and turtles still have free access to the fenced plots. Annual wildrice (Zizania aquatica), known from previous studies to be especially palatable to Canada geese, has seen the greatest impact from partial access to the fenced plots by mature geese, moving from an overwhelming dominant in the initially-vegetated plots to a minor presence there by August 2011. Interestingly, pickerelweed (Pontederia cordata), also known to be highly palatable to Canada geese, has so far shown only minor herbivory in the fenced plots. By August 2011, pickerelweed had actually increased to significantly greater cover levels in the fenced plots compared to the unfenced control plots. In conclusion, the first three years of data document that vegetation exposed to full herbivory by resident and nonmigratory Canada geese for three years in the unfenced control plots showed significantly lower total vegetative cover and species richness compared to the vegetation in the fenced plots, which experienced reduced herbivory by resident and nonmigratory Canada geese. These effects were documented for modules located in both initially-vegetated and initially-unvegetated habitats.

  14. Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study.

    PubMed

    Gu, Chuan; Botto, Lorenzo

    2018-01-31

    Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π s /γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.

  15. Variation and significance of surface heat after the mechanical sand control of Qinghai-Tibet Railway was covered with sandy sediments

    NASA Astrophysics Data System (ADS)

    Xie, Shengbo; Qu, Jianjun; Mu, Yanhu; Xu, Xiangtian

    Mechanical control of drifting sand used to protect the Qinghai-Tibet Railway from sand damage inevitably results in sand deposition, and the change in radiation and heat flux after the ground surface is covered with sandy sediments remains unclear. These variations were studied in this work through field observations along with laboratory analyses and tests. After the ground surface was covered with sandy sediments produced by the mechanical control of sand in the Qinghai-Tibet Railway, the reflectivity increased, and the annual average reflectivity on the surface covered with sandy sediments was higher than that without sandy sediments, with the value increasing by 0.043. Moreover, the surface shortwave radiation increased, whereas the surface net radiation decreased. The annual average value of the surface shortwave radiant flux density on the sandy sediments was higher than that without sandy sediments, with the value increasing by 7.291 W·m-2. The annual average value of the surface net radiant flux density on the sandy sediments decreased by 9.639 W·m-2 compared with that without sandy sediments. The soil heat flux also decreased, and the annual average value of the heat flux in the sandy sediments decreased by 0.375 W·m-2 compared with that without sandy sediments. These variations caused the heat source on the surface of sandy sediments underground to decrease, which is beneficial for preventing permafrost from degradation in the section of sand control of the railway.

  16. Land-atmosphere-aerosol coupling in North China during 2000­-2013

    NASA Astrophysics Data System (ADS)

    Wei, J.; Jin, Q.; Yang, Z. L.; Zhou, L.

    2017-12-01

    North China is one of the most densely populated regions in the world. To its west, north, and northwest, the world's largest afforestation project has been going on for decades. At the same time, North China has been suffering from air pollution because of its large fossil fuel consumption. Here we show that the changes in land cover and aerosol concentration are coupled with the variations of land surface temperature, cloud cover, and surface solar radiation during the summer 2000-2013. Model experiments show that the interannual variation of aerosol concentration in North China is mainly a result of the varying atmospheric circulation. The increasing vegetation cover due to afforestation has enhanced surface evapotranspiration (ET) and cooled the local surface, and precipitation is observed to be increasing with ET. The model with prescribed increasing vegetation cover can simulate the increasing ET but cannot reproduce the increasing precipitation. Although this may be caused by model biases, the lack of aerosol processes in the model could also be a potential cause.

  17. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    NASA Astrophysics Data System (ADS)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize. Contrary to our hypothesis, total growing-season root CO2 flux was not proportional to end-of-season root biomass of cropping systems; unfertilized prairie contained nearly twice the root biomass of N-fertilized prairie, but the two systems' total root CO2 fluxes were not significantly different in either year. We found that the total growing-season flux of both root- and organic matter-derived CO 2 was higher in the prairie systems compared to the maize system. However, on a percentage basis, the prairies' soil-surface CO2 flux from May-September averaged 29% root-derived while from mid-June through September the maize averaged 22% root-derived. The percentage of the total CO2 flux that was root-derived in a given system varied from year to year, indicating there is no set relationship for a given cropping system.

  18. Imaging spectrometer measurement of water vapor in the 400 to 2500 nm spectral region

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.; Conel, James E.; Dozier, Jeff

    1995-01-01

    The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) measures the total upwelling spectral radiance from 400 to 2500 nm sampled at 10 nm intervals. The instrument acquires spectral data at an altitude of 20 km above sea level, as images of 11 by up to 100 km at 17x17 meter spatial sampling. We have developed a nonlinear spectral fitting algorithm coupled with a radiative transfer code to derive the total path water vapor from the spectrum, measured for each spatial element in an AVIRIS image. The algorithm compensates for variation in the surface spectral reflectance and atmospheric aerosols. It uses water vapor absorption bands centered at 940 nm, 1040 nm, and 1380 nm. We analyze data sets with water vapor abundances ranging from 1 to 40 perceptible millimeters. In one data set, the total path water vapor varies from 7 to 21 mm over a distance of less than 10 km. We have analyzed a time series of five images acquired at 12 minute intervals; these show spatially heterogeneous changes of advocated water vapor of 25 percent over 1 hour. The algorithm determines water vapor for images with a range of ground covers, including bare rock and soil, sparse to dense vegetation, snow and ice, open water, and clouds. The precision of the water vapor determination approaches one percent. However, the precision is sensitive to the absolute abundance and the absorption strength of the atmospheric water vapor band analyzed. We have evaluated the accuracy of the algorithm by comparing several surface-based determinations of water vapor at the time of the AVIRIS data acquisition. The agreement between the AVIRIS measured water vapor and the in situ surface radiometer and surface interferometer measured water vapor is 5 to 10 percent.

  19. A Coupled Ice-Atmosphere-Dust Model for a Neoproterozoic "Mudball Earth"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Strom, D.

    2010-12-01

    The Neoproterozoic "Snowball Earth" glaciations remain a subject of intense debate. While many have used field data to argue for either a totally or partially ice-covered Earth, fewer efforts have been made to establish the basic physical climate state and internal dynamics of these alternatives. Description of feedbacks is especially important: how does a globally ice-covered Earth reinforce itself as a stable climate system, and/or sow the seeds for its own destruction? In previous work, we investigated the flow properties of thick floating global ice sheets, and found that flow from pole to equator tends to eliminate regions of thin ice in the tropics. We briefly mentioned that ice flow and sublimation could lead to a "lag deposit" of dust on top of the tropical ice. The consequences of this were explored in detail by Dorian Abbott and others, who found that the accumulation of dust atop tropical ice causes a strong warming effect, which strongly promotes deglaciation of a Snowball climate. However, Abbott et al specified a dust layer ab initio in their GCM simulations, leaving aside the processes which produce it. Here, we present the results of our efforts to add dust processes to an earlier coupled atmosphere/ocean/ice model originally developed by David Pollard and Jim Kasting. Their model includes energy balance equations for the atmosphere and an ice mechanics model for glacial flow. To this we have added variables tracking the fraction of dust incorporated into snow and ice; the transport and accumulation of this dust through ice flow; the effects of dust on albedo and penetration of sunlight into the ice; restriction of evaporation from dust-covered surfaces; and density and buoyancy effects of dusty ice. Dust is added to the surface globally at a fixed rate, and is removed by meltwater runoff. We find that ice in tropical regions of net evaporation quickly develops a surface dust layer which drastically lowers its albedo. This dust layer develops rapidly (1000-10,000 years), and remains relatively thin (mm to cm). Its albedo effect is not strong enough to cause deglaciation on its own, but does warm the planet to near the melting point: modest amounts of CO2 are enough to cause total deglaciation. Our results show that the "mudball Earth" is a remarkably stable climate system. Drastic changes in forcing, such as varying the rate of dust accumulation by a factor of 100, have little effect on the climate, due to a strong feedback control. With summertime temperatures just below melting, adding more dust to lower the planetary albedo warms the Earth, causing summertime melting which washes away the additional dust, maintaining status quo. Dust layer thickness is controlled by a related hydrological feedback: if the dust becomes thick enough to prevent evaporation in the tropics, then less snow falls at midlatitudes. Thus, midlatitude snow cover becomes dustier and darker, warming the planet, which again melts some ice to eliminate excess dust. Future work with this model will consider the patchiness of thin dust cover on an ice surface, and will also look at the consequences of large instantaneous dust sources such as asteroid/comet impacts or large volcanic eruptions.

  20. Host status of Meyer and Eureka lemons for Anastrepha ludens.

    PubMed

    Mangan, Robert L; Moreno, Aleena Tarshis

    2012-04-01

    Host status for Mexican fruit fly (Anastrepha ludens (Loew)) was examined under laboratory conditions in cage infested Eureka and Meyer lemons. Our approach was to allow females to oviposit on the two cultivars in separate laboratory cages with aluminum foil covering to restrict the areas where females had access to fruit surface. Fruit of each cultivar were placed in covered trays for incubations and at approximately weekly intervals, fruit were removed, dissected, and live and dead eggs and larvae tabulated in each tissue of the fruit. Infestation and survival were tabulated and analyzed for the effects of harvest date, fruit color and brix indices, postoviposition period, and cultivar. Infestation rate, determined by counts of total eggs and larvae was significantly higher in Meyer lemons. In both cultivars, females deposited eggs into both albedo and pulp tissue but not into flavedo. Both cultivars showed high resistance (> 90% mortality) to egg and first instars survival in albedo and pulp. Second and third instars surviving in the pulp had high survival rates (> 60%) in both cultivars in fruit dissected at weeks 2-4 after infestation. Total adults produced were slightly higher, and total second and third stage larvae were also higher for Meyer lemons. Numbers of adults and total second and third stage larvae increased in Eureka lemons in more mature fruit, but the higher numbers in Meyer lemons were not associated with fruit maturity, at time of infestation. Numbers of second and third stage larvae were significantly correlated with some fruit color indices in Eureka but not in Meyer lemons. Application of these results to quarantine risk analysis is discussed.

  1. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.

    PubMed

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L

    2017-06-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  2. Relationship between high daily erythemal UV doses, total ozone, surface albedo and cloudiness: An analysis of 30 years of data from Switzerland and Austria

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Weihs, P.; Vuilleumier, L.; Maeder, J. A.; Holawe, F.; Blumthaler, M.; Lindfors, A.; Peter, T.; Simic, S.; Spichtinger, P.; Wagner, J. E.; Walker, D.; Ribatet, M.

    2010-10-01

    This work investigates the occurrence frequency of days with high erythemal UV doses at three stations in Switzerland and Austria (Davos, Hoher Sonnblick and Vienna) for the time period 1974-2003. While several earlier studies have reported on increases in erythemal UV dose up to 10% during the last decades, this study focuses on days with high erythemal UV dose, which is defined as a daily dose at least 15% higher than for 1950s clear-sky conditions (which represent preindustrial conditions with respect to anthropogenic chlorine). Furthermore, the influence of low column ozone, clear-sky/partly cloudy conditions and surface albedo on UV irradiance has been analyzed on annual and seasonal basis. The results of this study show that in the Central Alpine Region the number of days with high UV dose increased strongly in the early 1990s. A large fraction of all days with high UV dose occurring in the period 1974-2003 was found especially during the years 1994-2003, namely 40% at Davos, 54% at Hoher Sonnblick and 65% at Vienna. The importance of total ozone, clear-sky/partly cloudy conditions and surface albedo (e.g. in dependence of snow cover) varies strongly among the seasons. However, overall the interplay of low total ozone and clear-sky/partly cloudy conditions led to the largest fraction of days showing high erythemal UV dose. Furthermore, an analysis of the synoptic weather situation showed that days with high erythemal UV dose, low total ozone and high relative sunshine duration occur at all three stations more frequently during situations with low pressure gradients or southerly advection.

  3. Using Minimum-Surface Bodies for Iteration Space Partitioning

    NASA Technical Reports Server (NTRS)

    Frumlin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. We study coverings of iteration spaces represented by structured and unstructured grids. For structured grids we introduce a covering based on successive minima tiles of the interference lattice of the grid. We show that the covering has good surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For unstructured grids no cache efficient covering can be guaranteed. We present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  4. Self-cleaning skin-like prosthetic polymer surfaces

    DOEpatents

    Simpson, John T [Clinton, TN; Ivanov, Ilia N [Knoxville, TN; Shibata, Jason [Manhattan Beach, CA

    2012-03-27

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the inner surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.

  5. Method of making self-cleaning skin-like prosthetic polymer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, John T.; Ivanov, Ilia N.; Shibata, Jason

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the innermore » surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.« less

  6. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  7. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential radiative forcing from LULCC we create a 'worst-case scenario" in which all arable land is converted to agriculture by the year 2100. This scenario leads to a total radiative forcing of 4.3 Wm-2 (+/- 1 Wm-2) suggesting that well thought-out land policy is needed to minimize future increases in global anthropogenic radiative forcing.

  8. Interactive Design and Visualization of Branched Covering Spaces.

    PubMed

    Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene

    2018-01-01

    Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.

  9. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  10. Impacts of Climate and Land-cover Changes on Water Resources in a Humid Subtropical Watershed: a Case Study from East Texas, USA

    NASA Astrophysics Data System (ADS)

    Heo, J.

    2015-12-01

    This study investigates an interconnected system of climate change - land cover - water resources for a watershed in humid subtropical climate from 1970 to 2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed in our study area where temperature had no obvious increase trend and precipitation showed definite increasing trend compared to previous studies. The main trend of land-cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Precipitation contribution to the other hydrologic parameters for a humid subtropical basin is estimated to be 51.9% of evapotranspiration, 16.3% of surface runoff, 0.9% of groundwater discharge, 19.3% of soil water content, and 11.6% of water storage. It shows little higher evapotranspiration and considerably lower surface runoff compare to other humid climate area due to vegetation dominance of land cover. Hydrologic responses to climate and land cover changes are increases of surface runoff, soil water content, evapotranspiration by 15.0%, 2.7%, and 20.1%, respectively, and decrease of groundwater discharge decreased by 9.2%. Surface runoff is relatively stable with precipitation while groundwater discharge and soil water content are sensitive to land cover changes especially human intervention. If temperature is relatively stable, it is considered to be land cover plays important role in evapotranspiration. Citation: Heo, J., J. Yu, J. R. Giardino, and H. Cho (2015), Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: a case study from East Texas, USA, Water Environ. J., 29, doi:10.1111/wej.12096

  11. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions.

    PubMed

    Zhang, Yanhong; Weng, Xuefei; Li, Huan; Li, Haobo; Wei, Mingming; Xiao, Jianping; Liu, Zhi; Chen, Mingshu; Fu, Qiang; Bao, Xinhe

    2015-05-13

    In heterogeneous catalysis molecule-metal interaction is often modulated through structural modifications at the surface or under the surface of the metal catalyst. Here, we suggest an alternative way toward this modulation by placing a two-dimensional (2D) cover on the metal surface. As an illustration, CO adsorption on Pt(111) surface has been studied under 2D hexagonal boron nitride (h-BN) overlayer. Dynamic imaging data from surface electron microscopy and in situ surface spectroscopic results under near ambient pressure conditions confirm that CO molecules readily intercalate monolayer h-BN sheets on Pt(111) in CO atmosphere but desorb from the h-BN/Pt(111) interface even around room temperature in ultrahigh vacuum. The interaction of CO with Pt has been strongly weakened due to the confinement effect of the h-BN cover, and consequently, CO oxidation at the h-BN/Pt(111) interface was enhanced thanks to the alleviated CO poisoning effect.

  12. Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    USGS Publications Warehouse

    DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.

    2009-01-01

    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to <1 seed/m2 within disturbed sites. Annual seed densities were an order of magnitude greater than those of perennials, were one-third the undisturbed seed densities on compacted sites, but doubled on trenched sites relative to controls. On trenched sites, greater litter cover comprising the infructescences of the dominant spring annuals, and low gravel content, enhanced seed densities of both annuals and perennials. Litter cover and surface ruggedness were the best explanations for viable perennial seed densities on compacted sites, but litter cover and the presence of a common harvester ant explained annual seed densities better than any other surface characteristics that were examined. Surface disturbances can have a varied impact on the condition of the soil surface in arid lands. Nevertheless, the consistently positive relationship between ground cover of litter and viable seed density emphasizes the importance of litter as an indicator of site degradation and recovery potential in arid lands.

  13. Effect of cloud cover and surface type on earth's radiation budget derived from the first year of ERBE data

    NASA Technical Reports Server (NTRS)

    Gibson, G. G.; Denn, F. M.; Young, D. F.; Harrison, E. F.; Minnis, P.; Barkstrom, B. R.

    1990-01-01

    One year of ERBE data is analyzed for variations in outgoing LW and absorbed solar flux. Differences in land and ocean radiation budgets as well as differences between clear-sky and total scenes, including clouds, are studied. The variation of monthly average radiative parameters is examined for February 1985 through January 1986 for selected study regions and on zonal and global scales. ERBE results show significant seasonal variations in both outgoing LW and absorbed SW flux, and a pronounced difference between oceanic and continental surfaces. The main factors determining cloud radiative forcing in a given region are solar insolation, cloud amount, cloud type, and surface properties. The strongest effects of clouds are found in the midlatitude storm tracks over the oceans. Over much of the globe, LW warming is balanced by SW cooling. The annual-global average net cloud forcing shows that clouds have a net cooling effect on the earth for the year.

  14. Assessments of urban growth in the Tampa Bay watershed using remote sensing data

    USGS Publications Warehouse

    Xian, G.; Crane, M.

    2005-01-01

    Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.

  15. An Investigation of the Wear on Silicon Surface at High Humidity.

    PubMed

    Wang, Xiaodong; Guo, Jian; Xu, Lin; Cheng, Guanggui; Qian, Linmao

    2018-06-16

    Using an atomic force microscope (AFM), the wear of monocrystalline silicon (covered by a native oxide layer) at high humidity was investigated. The experimental results indicated that tribochemistry played an important role in the wear of the silicon at different relative humidity levels (RH = 60%, 90%). Since the tribochemical reactions were facilitated at 60% RH, the wear of silicon was serious and the friction force was around 1.58 μN under the given conditions. However, the tribochemical reactions were restrained when the wear pair was conducted at high humidity. As a result, the wear of silicon was very slight and the friction force decreased to 0.85 μN at 90% RH. The slight wear of silicon at high humidity was characterized by etching tests. It was demonstrated that the silicon sample surface was partly damaged and the native oxide layer on silicon sample surface had not been totally removed during the wear process. These results may help us optimize the tribological design of dynamic microelectromechanical systems working in humid conditions.

  16. Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3-δ as cathode material for solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yang; Nikiforov, Alexey Y.; Kaspar, Tiffany C.

    2016-11-01

    In this study, a strontium doped lanthanum cobalt ferrite thin film with 30% Sr on A-site, denoted as La0.7Sr0.3Co0.2Fe0.8O3-δ or LSCF-7328, was investigated before and after annealing at 800 °C under CO2 containing atmosphere for 9 hours. The formation of secondary phases on surface of post-annealed LSCF-7328 has been observed using atomic force microscope (AFM) and scanning electron microscope (SEM). The extent of Sr segregation at the film surface was observed using the synchrotron-based total reflection X-ray fluorescence (TXRF) technique. The bonding environment of the secondary phases formed on the surface was investigated by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES).more » Transmission electron microscope (TEM) and related spectroscopy techniques were used for microstructural and quantitative elemental analyses of the secondary phases on surface. These studies revealed that the secondary phases on surface consisted of SrO covered with a capping layer of SrCO3. The formation of Co-rich phases has also been observed on the surface of post-annealed LSCF-7328.« less

  17. [Study of the microwave emissivity characteristics over different land cover types].

    PubMed

    Zhang, Yong-Pan; Jiang, Ling-Mei; Qiu, Yu-Bao; Wu, Sheng-Li; Shi, Jian-Cheng; Zhang, Li-Xin

    2010-06-01

    The microwave emissivity over land is very important for describing the characteristics of the lands, and it is also a key factor for retrieving the parameters of land and atmosphere. Different land covers have their emission behavior as a function of structure, water content, and surface roughness. In the present study the global land surface emissivities were calculated using six month (June, 2003-August, 2003, Dec, 2003-Feb, 2004) AMSR-E L2A brightness temperature, MODIS land surface temperature and the layered atmosphere temperature, and humidity and pressure profiles data retrieved from MODIS/Aqua under clear sky conditions. With the information of IGBP land cover types, "pure" pixels were used, which are defined when the fraction cover of each land type is larger than 85%. Then, the emissivity of sixteen land covers at different frequencies, polarization and their seasonal variation were analyzed respectively. The results show that the emissivity of vegetation including forests, grasslands and croplands is higher than that over bare soil, and the polarization difference of vegetation is smaller than that of bare soil. In summer, the emissivity of vegetation is relatively stable because it is in bloom, therefore the authors can use it as its emissivity in our microwave emissivity database over different land cover types. Furthermore, snow cover can heavily impact the change in land cover emissivity, especially in winter.

  18. On the impact of snow cover on daytime pollution dispersion

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.

    A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.

  19. Watershed Analysis for Runoff and Erosion Potential on Santa Cruz Watershed: Impact of Climate and Land Cover Changes

    EPA Science Inventory

    Many empirical studies have established the significant relationship between climate and runoff: climate change may potentially increase or decrease the surface runoff. Increased surface runoff can also increase the risk of soil erosion. Land cover change can alter rainfall-runof...

  20. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance evolution

    USDA-ARS?s Scientific Manuscript database

    Land cover changes affect climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Recent studies have examined both the greenhouse gas and biophysical consequ...

  1. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance

    USDA-ARS?s Scientific Manuscript database

    Land cover change affects climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Previous studies have highlighted that forest loss in high latitudes could c...

  2. 40 CFR 63.942 - Standards-Surface impoundment floating membrane cover.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... seams or between the interface of the cover edge and its foundation mountings. (4) Except as provided...: organic vapor permeability; the effects of any contact with the liquid and its vapor managed in the surface impoundment; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating...

  3. 40 CFR 63.942 - Standards-Surface impoundment floating membrane cover.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... seams or between the interface of the cover edge and its foundation mountings. (4) Except as provided...: organic vapor permeability; the effects of any contact with the liquid and its vapor managed in the surface impoundment; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating...

  4. 40 CFR 63.942 - Standards-Surface impoundment floating membrane cover.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... seams or between the interface of the cover edge and its foundation mountings. (4) Except as provided...: organic vapor permeability; the effects of any contact with the liquid and its vapor managed in the surface impoundment; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating...

  5. 40 CFR 63.942 - Standards-Surface impoundment floating membrane cover.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... seams or between the interface of the cover edge and its foundation mountings. (4) Except as provided...: organic vapor permeability; the effects of any contact with the liquid and its vapor managed in the surface impoundment; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating...

  6. 40 CFR 63.942 - Standards-Surface impoundment floating membrane cover.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... seams or between the interface of the cover edge and its foundation mountings. (4) Except as provided...: organic vapor permeability; the effects of any contact with the liquid and its vapor managed in the surface impoundment; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating...

  7. Temperature measurement involving nanostructured thermal barrier coating using a multiwavelength pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1996-01-01

    It has been reported that erroneous results were obtained when a conventional pyrometer was used to measure the surface temperature of turbine engine components. Temperatures discrepancies were observed in components which were identical, except that one had its measured surface covered by a nanostructured thermal barrier coating (TBC) whereas the other component's surface was not so coated. These components were placed in an identical environment, receiving identical heat fluxes. A pyrometer measured the TBC covered surface hundreds degrees lower. These coatings were about 25 (mu)m thick, consisting of hundreds of layers of finer structures. The TBC's had very low thermal conductivity, heat flux calculations indicated that the temperatures of the coated surface should exhibit much higher temperature than the uncoated surface. Because these coatings were transparent to radiation from the visible to the infrared region, the temperatures measured by the pyrometer should be the temperature of the covered surface. Turbo components' performance and service life depend critically on the temperatures that it would experience; it is therefore important to know accurately and confidently the real surface temperature. Out of these concerns, an investigation into the measurement of nanostructured material surface temperature was carried out.

  8. Quality of surface-water runoff in selected streams in the San Antonio segment of the Edwards aquifer recharge zone, Bexar County, Texas, 1997-2012

    USGS Publications Warehouse

    Opsahl, Stephen P.

    2012-01-01

    During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.

  9. Mapping Wetlands of Dongting Lake in China Using Landsat and SENTINEL-1 Time Series at 30M

    NASA Astrophysics Data System (ADS)

    Xing, L.; Tang, X.; Wang, H.; Fan, W.; Gao, X.

    2018-04-01

    Mapping and monitoring wetlands of Dongting lake using optical sensor data has been limited by cloud cover, and open access Sentinal-1 C-band data could provide cloud-free SAR images with both have high spatial and temporal resolution, which offer new opportunities for monitoring wetlands. In this study, we combined optical data and SAR data to map wetland of Dongting Lake reserves in 2016. Firstly, we generated two monthly composited Landsat land surface reflectance, NDVI, NDWI, TC-Wetness time series and Sentinel-1 (backscattering coefficient for VH and VV) time series. Secondly, we derived surface water body with two monthly frequencies based on the threshold method using the Sentinel-1 time series. Then the permanent water and seasonal water were separated by the submergence ratio. Other land cover types were identified based on SVM classifier using Landsat time series. Results showed that (1) the overall accuracies and kappa coefficients were above 86.6 % and 0.8. (3) Natural wetlands including permanent water body (14.8 %), seasonal water body (34.6 %), and permanent marshes (10.9 %) were the main land cover types, accounting for 60.3 % of the three wetland reserves. Human-made wetlands, such as rice fields, accounted 34.3 % of the total area. Generally, this study proposed a new flowchart for wetlands mapping in Dongting lake by combining multi-source remote sensing data, and the use of the two-monthly composited optical time series effectively made up the missing data due to the clouds and increased the possibility of precise wetlands classification.

  10. Concentrations, and Estimated Loads and Yields of Total Nitrogen and Total Phosphorus at Selected Stations in Kentucky, 1979-2004

    USGS Publications Warehouse

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    To evaluate the State's water quality, the Kentucky Division of Water collects data from a statewide network of primary ambient stream water-quality monitoring stations and flexible, rotating watershed-monitoring stations. This ambient stream water-quality monitoring network program is directed to assess the conditions of surface waters throughout Kentucky. Water samples were collected monthly for the majority of the stations from 1979 to 1998, which represented agricultural, undeveloped (mainly forested), and areas of mixed land use/land cover. In 1998, the number of water samples collected was reduced to a collection frequency of six times per year (every 2 months) every 4 of 5 years, because a new monitoring network was implemented involving a 5-year rotating Basin Management Unit scheme of monitoring. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to summarize concentrations of total nitrogen and total phosphorus and provide estimates of total nitrogen and total phosphorus loads and yields in 55 selected streams in Kentucky's ambient stream water-quality monitoring network, which was operated from 1979 through 2004. Streams in predominately agricultural basins had higher concentrations of total nitrogen (TN) and concentrations of total phosphorus (TP) than streams in predominately undeveloped (forested) basins. Streams in basins in intensely developed karst areas characterized by caves, springs, sinkholes, and sinking streams had a higher median concentration of TN (1.5 milligrams per liter [mg/L]) than streams in basins with limited or no karst areas (0.63 mg/L). As with TN, median concentrations of TP also were higher in areas of intense karst (0.05 mg/L) than in areas with limited or no karst (0.02 mg/L). The U.S. Environmental Protection Agency (USEPA) has recommended ecoregional nutrient water-quality criteria as a starting point for States to establish more precise numeric water-quality criteria for nutrients to protect aquatic life and recreational and other uses of rivers and streams. On the basis of the 25th percentile of concentration data from reference stations aggregated by ecoregion, the USEPA established recommended water-quality criteria for TN and TP in the two Aggregated Ecoregions (IX and XI) in Kentucky waters. The 25th percentile median values for TN and TP from this study exceeded the USEPA's recommendations in both aggregated ecoregions in the agricultural and mixed land-use/land-cover basins, and for TN in the undeveloped land-use/land-cover basins in Aggregated Ecoregion XI. However, the 25th percentile median values for TN (Aggregated Ecoregion IX) and TP in both aggregated ecoregions did not exceed the USEPA's recommendations in the undeveloped land-use/land-cover basins. Estimated loads and yields of TN and TP varied substantially among the individual stations. Estimated mean annual yields of TN ranged from 0.10 [tons per year per square mile (ton/yr)/mi2] to 7.2 (ton/yr)/mi2, and estimated mean annual yields of TP ranged from 0.02 (ton/yr)/mi2 to 1.4 (ton/yr)/mi2. Estimated mean annual yields of TN and TP were generally highest at stations in predominately agricultural basins, and lowest at stations in undeveloped land-use/land-cover basins.

  11. An eddy covariance system to characterize the atmospheric surface layer and turbulent latent heat fluxes over a debris-covered Himalayan glacier.

    NASA Astrophysics Data System (ADS)

    Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael

    2017-04-01

    Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.

  12. What do We Know the Snow Darkening Effect Over Himalayan Glaciers?

    NASA Technical Reports Server (NTRS)

    Yasunari, T. J.; Lau, K.-U.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; Gautam, R.; Kim, K. M.; Dasilva, A. M.; Colarco, P. R.

    2011-01-01

    The atmospheric absorbing aerosols such as dust, black carbon (BC), organic carbon (OC) are now well known warming factors in the atmosphere. However, when these aerosols deposit onto the snow surface, it causes darkening of snow and thereby absorbing more energy at the snow surface leading to the accelerated melting of snow. If this happens over Himalayan glacier surface, the glacier meltings are expected and may contribute the mass balance changes though the mass balance itself is more complicated issue. Glacier has mainly two parts: ablation and accumulation zones. Those are separated by the Equilibrium Line Altitude (ELA). Above and below ELA, snow accumulation and melting are dominant, respectively. The change of ELA will influence the glacier disappearance in future. In the Himalayan region, many glacier are debris covered glacier at the terminus (i.e., in the ablation zone). Debris is pieces of rock from local land and the debris covered parts are probably not affected by any deposition of the absorbing aerosols because the snow surface is already covered by debris (the debris covered parts have different mechanism of melting). Hence, the contribution of the snow darkening effect is considered to be most important "over non debris covered part" of the Himalayan glacier (i.e., over the snow or ice surface area). To discuss the whole glacier retreat, mass balance of each glacier is most important including the discussion on glacier flow, vertical compaction of glacier, melting amount, etc. The contribution of the snow darkening is mostly associated with "the snow/ice surface melting". Note that the surface melting itself is not always directly related to glacier retreats because sometimes melt water refreezes inside of the glacier. We should discuss glacier retreats in terms of not only the snow darkening but also other contributions to the mass balance.

  13. What is the role of historical anthropogenically-induced land-cover change on the surface climate of West Africa? Results from the LUCID intercomparison project

    NASA Astrophysics Data System (ADS)

    Souleymane, S.

    2015-12-01

    West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an increase in QA), which is induced by the regional significance effect of CO2SST due to a small LULCC imposed. In contrast, the decrease of surface water balance resulting from LULCC effect is a similar sign to those resulting from CO2SST but the signal resulting of the biophysical effects of LULCC is stronger than the regional CO2SST impact.

  14. Subpixel urban land cover estimation: comparing cubist, random forests, and support vector regression

    Treesearch

    Jeffrey T. Walton

    2008-01-01

    Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM+ imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (...

  15. Use of reagents to convert chrysotile and amosite asbestos used as insulation or protection for metal surfaces

    DOEpatents

    Sugama, Toshifumi; Petrakis, Leon

    2000-12-12

    A composition for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces. The composition comprises a combination of at least two multiple-functional group reagents, in which each reagent includes a Fluro acid component and a corrosion inhibiting compoment. A method for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces is also provided.

  16. Surface debris of canal walls after post space preparation in endodontically treated teeth: a scanning electron microscopic study.

    PubMed

    Serafino, Cinzia; Gallina, Giuseppe; Cumbo, Enzo; Ferrari, Marco

    2004-03-01

    To evaluate surface cleanliness of root canal walls along post space after endodontic treatment using 2 different irrigant regimens, obturation techniques, and post space preparation for adhesive bonding. Forty teeth, divided into 4 groups, were instrumented, using Ni-Ti rotary files, irrigated with NaOCl or NaOCl+EDTA and obturated with cold lateral condensation (CLC) or warm vertical condensation (WVC) of gutta-percha. After post space preparation, etching, and washing procedure, canal walls were observed using a scanning electron microscope (SEM). Amount of debris, smear layer, sealer/gutta-percha remnants, and visibility of open tubules were rated. Higher amounts of rough debris, large sealer/gutta-percha remnants, thick smear layer, and no visibility of tubule orifices were recorded in all the groups at apical level of post space. At middle and coronal levels areas of clean dentin, alternating with areas covered by thin smear layer, smaller debris, gutta-percha remnants, and orifices of tubules partially or totally occluded by plugs were frequently observed. After endodontic treatment, obturation, and post space preparation SEM analysis of canal walls along post space shows large areas (covered by smear layer, debris, and sealer/gutta-percha remnants) not available for adhesive bonding and resin cementation of fiber posts.

  17. Study of the model of calibrating differences of brightness temperature from geostationary satellite generated by time zone differences

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Shan, Xinjian; Qu, Chunyan

    2010-11-01

    In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.

  18. Confined catalysis under two-dimensional materials

    PubMed Central

    Li, Haobo; Xiao, Jianping; Bao, Xinhe

    2017-01-01

    Confined microenvironments formed in heterogeneous catalysts have recently been recognized as equally important as catalytically active sites. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. Well-defined 2D space between a catalyst surface and a 2D material overlayer provides an ideal microenvironment to explore the confined catalysis experimentally and theoretically. Using density functional theory calculations, we reveal that adsorption of atoms and molecules on a Pt(111) surface always has been weakened under monolayer graphene, which is attributed to the geometric constraint and confinement field in the 2D space between the graphene overlayer and the Pt(111) surface. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. The microenvironment created by coating a catalyst surface with 2D material overlayer can be used to modulate surface reactivity, which has been illustrated by optimizing oxygen reduction reaction activity on Pt(111) covered by various 2D materials. We demonstrate a concept of confined catalysis under 2D cover based on a weak van der Waals interaction between 2D material overlayers and underlying catalyst surfaces. PMID:28533413

  19. View Angle Effects on MODIS Snow Mapping in Forests

    NASA Technical Reports Server (NTRS)

    Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.

    2012-01-01

    Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.

  20. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  1. Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)

    NASA Astrophysics Data System (ADS)

    Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander

    2016-04-01

    It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g-1 with a median of 96 ng*g-1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g-1 (medium 72 ng*g-1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of topsoil to subsoil concentrations of PAHs is different for differ congeners. Contents of phenanthrene and fluorene predominantly increase with the depth. Content of high molecular weight PAHs (benzo[a]pyrene, anthracene, tetraphene, perylene and pyrene) predominantly decreased with the depth. Other PAHs congeners have indistinct profile distributions in studied pits. Based on studied results PAHs divided to associations with different concentrations, sources and vertical distribution in soils: a) phenanthrene and fluorine; b) naphthalene, diphenyl; c) pyrene, benzo(a)pyrene, tetraphene, perylene, chrysene; d) anthracene and benzo(ghi)perylene. Research is funded by Russian Science Foundation (Project 14-27-00083).

  2. Effects of land use types on surface water quality across an anthropogenic disturbance gradient in the upper reach of the Hun River, Northeast China.

    PubMed

    Wang, Ruizhao; Xu, Tianle; Yu, Lizhong; Zhu, Jiaojun; Li, Xiaoyu

    2013-05-01

    Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO(3)(-)N, and NH(4)(+)-N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009-2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO(3)(-)-N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.

  3. The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-07-01

    In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.

  4. Development of colour and firmness in strawberry crops is UV light sensitive, but colour is not a good predictor of several quality parameters.

    PubMed

    Ordidge, Matthew; García-Macías, Paulina; Battey, Nicholas H; Gordon, Michael H; John, Philip; Lovegrove, Julie A; Vysini, Eleni; Wagstaffe, Alexandra; Hadley, Paul

    2012-06-01

    Strawberry (Fragaria × ananassa Duchesne var. Elsanta) plants were grown in polytunnels covered with three polythene films that transmitted varying levels of ultraviolet (UV) light. Fruit were harvested under near-commercial conditions and quality and yield were measured. During ripening, changes in the colour parameters of individual fruit were monitored, and the accuracy of using surface colour to predict other quality parameters was determined by analysing the correlation between colour and quality parameters within UV treatments. Higher exposure to UV during growth resulted in the fruit becoming darker at harvest and developing surface colour more quickly; fruit were also firmer at harvest, but shelf life was not consistently affected by the UV regime. Surface colour measurements were poorly correlated to firmness, shelf life or total phenolics, anthocyanins and ellagic acid contents. Although surface colour of strawberry fruits was affected by the UV regime during growth, and this parameter is an important factor in consumer perception, we concluded that the surface colour at the time of harvest was, contrary to consumer expectations, a poor indicator of firmness, potential shelf life or anthocyanin content. Copyright © 2011 Society of Chemical Industry.

  5. Walking on ballast impacts balance.

    PubMed

    Wade, Chip; Garner, John C; Redfern, Mark S; Andres, Robert O

    2014-01-01

    Railroad workers often perform daily work activities on irregular surfaces, specifically on ballast rock. Previous research and injury epidemiology have suggested a relationship between working on irregular surfaces and postural instability. The purpose of this study was to examine the impact of walking on ballast for an extended duration on standing balance. A total of 16 healthy adult males walked on a 7.62 m × 4.57 m (25 ft × 15 ft) walking surface of no ballast (NB) or covered with ballast (B) of an average rock size of about 1 inch for 4 h. Balance was evaluated using dynamic posturography with the NeuroCom(®) Equitest System(™) prior to experiencing the NB or B surface and again every 30 min during the 4 h of ballast exposure. Dependent variables were the sway velocity and root-mean-square (RMS) sway components in the medial-lateral and anterior-posterior directions. Repeated measures ANOVA revealed statistically significant differences in RMS and sway velocity between ballast surface conditions and across exposure times. Overall, the ballast surface condition induced greater sway in all of the dynamic posturography conditions. Walking on irregular surfaces for extended durations has a deleterious effect on balance compared to walking on a surface without ballast. These findings of changes in balance during ballast exposure suggest that working on an irregular surface may impact postural control.

  6. Estimation of Physical Parameters of a Multilayered Multi-Scale Vegetated Surface

    NASA Astrophysics Data System (ADS)

    Hosni, I.; Bennaceur Farah, L.; Naceur, M. S.; Farah, I. R.

    2016-06-01

    Soil moisture is important to enable the growth of vegetation in the way that it also conditions the development of plant population. Additionally, its assessment is important in hydrology and agronomy, and is a warning parameter for desertification. Furthermore, the soil moisture content affects exchanges with the atmosphere via the energy balance at the soil surface; it is significant due to its impact on soil evaporation and transpiration. Therefore, it conditions the energy transfer between Earth and atmosphere. Many remote sensing methods were tested. For the soil moisture; the first methods relied on the optical domain (short wavelengths). Obviously, due to atmospheric effects and the presence of clouds and vegetation cover, this approach is doomed to fail in most cases. Therefore, the presence of vegetation canopy complicates the retrieval of soil moisture because the canopy contains moisture of its own. This paper presents a synergistic methodology of SAR and optical remote sensing data, and it's for simulation of statistical parameters of soil from C-band radar measurements. Vegetation coverage, which can be easily estimated from optical data, was combined in the backscattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established backscattering model. A two-dimensional multiscale SPM model has been employed to investigate the problem of electromagnetic scattering from an underlying soil. The water cloud model (WCM) is used to account for the effect of vegetation water content on radar backscatter data, whereof to eliminate the impact of vegetation layer and isolate the contributions of vegetation scattering and absorption from the total backscattering coefficient.

  7. Study of UV cloud modification factors in Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Wolfram, Elian A.; Orte, Facundo; Salvador, Jacobo; Quiroga, Jonathan; D'Elia, Raúl; Antón, Manuel; Alados-Arboledas, Lucas; Quel, Eduardo

    2017-02-01

    Anthropogenic perturbation of the ozone layer has induced change in the amount of UV radiation that reaches the Earth's surface, mainly through the Antarctic ozone hole, making the ozone and ultraviolet (UV) radiation two important issues in the study of Earth atmosphere in the scientific community. Also the clouds have been identified as the main modulator of UV amount in short time scales and produce the main source of uncertainty in the projection of surface UV level as consequence of projected ozone recovery. While clouds can decrease direct radiation, they can produce an increase in the diffuse component, and as consequence the surface UV radiation may be higher than an equivalent clear sky scenario for several minutes. In particular this situation can be important when low ozone column and partially cloud cover skies happen simultaneously. These situations happen frequently in southern Patagonia, where the CEILAP Lidar Division has established the Atmospheric Observatory of Southern Patagonia, an atmospheric remote sensing site near the city of Río Gallegos (51°55'S, 69°14'W). In this paper, the impact of clouds over the UV radiation is investigated by the use of ground based measurements from the passive remote sensing instruments operating at this site, mainly of broad and moderate narrow band filter radiometers. We analyzed the UV Index obtained from a multiband filter radiometer GUV-541 (UVI) [Biospherical Inc.] installed in the Observatorio Atmosférico de la Patagonia Austral, Río Gallegos, since 2005. Cloud modification factors (CMF, ratio between the measured UV radiation in a cloudy sky and the simulated radiation under cloud-free conditions) are evaluated for the study site. The database used in this work covers the period 2005-2012 for spring and summer seasons, when the ozone hole can affect these subpolar regions. CMF higher than 1 are found during spring and summer time, when lower total ozone columns, higher solar elevations and high cloud cover occur simultaneously, producing extreme erythemal irradiance at ground surface. Enhancements as high as 25% were registered. The maximum duration of the enhancement was around 30 minute. This produces dangerous sunbathing situations for the Río Gallegos citizen.

  8. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575 deg. C is covered for ash content.

  9. In Situ Structural Studies of the Underpotential Deposition of Copper onto an Iodine Covered Platinum Surface Using X-Ray Standing Waves

    DTIC Science & Technology

    1991-01-01

    electrocrystallization, catalysis, and surface chemistry. In this process, submonolayer to monolayer(s) amounts of a metal can be electrodeposited on a foreign...mechanisms involving nucleation and growth processes. Although electrochemical methods are invaluable in controlling and measuring thermodynamic...obtain direct atomic structural information about metal deposits on an iodine covered Pt(IIl) surface . They found that electrodeposition occurred in a

  10. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Hatch coverings. 1918.31 Section 1918.31 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.31 Hatch coverings. (a) No cargo... partially opened intermediate deck unless either the hatch at that deck is sufficiently covered or an...

  11. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hatch coverings. 1918.31 Section 1918.31 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.31 Hatch coverings. (a) No cargo... partially opened intermediate deck unless either the hatch at that deck is sufficiently covered or an...

  12. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Hatch coverings. 1918.31 Section 1918.31 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.31 Hatch coverings. (a) No cargo... partially opened intermediate deck unless either the hatch at that deck is sufficiently covered or an...

  13. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Hatch coverings. 1918.31 Section 1918.31 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.31 Hatch coverings. (a) No cargo... partially opened intermediate deck unless either the hatch at that deck is sufficiently covered or an...

  14. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Hatch coverings. 1918.31 Section 1918.31 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.31 Hatch coverings. (a) No cargo... partially opened intermediate deck unless either the hatch at that deck is sufficiently covered or an...

  15. Preliminary Examination of Pulse Shapes From GLAS Ocean Returns

    NASA Astrophysics Data System (ADS)

    Swift, T. P.; Minster, B.

    2003-12-01

    We have examined GLAS data collected over the Pacific ocean during the commission phase of the ICESat mission, in an area where sea state is well documented. The data used for this preliminary analysis were acquired during two passes along track 95, on March 18 and 26 of 2003, along the stretch offshore southern California. These dates were chosen for their lack of cloud cover; large (4.0 m) and small (0.7 m) significant wave heights, respectively; and the presence of waves emanating from single distant Pacific storms. Cloud cover may be investigated using MODIS images (http://acdisx.gsfc.nasa.gov/data/dataset/MODIS/), while models of significant wave heights and wave vectors for offshore California are archived by the Coastal Data Information Program (http://cdip.ucsd.edu/cdip_htmls/models.shtml). We find that the shape of deep-ocean GLAS pulse returns is diagnostic of the state of the ocean surface. A calm surface produces near-Gaussian, single-peaked shot returns. In contrast, a rough surface produces blurred shot returns which often feature multiple peaks; these peaks are typically separated by total path lengths on the order of one meter. Gaussian curves fit to rough-water returns are therefore less reliable and lead to greater measurement error; outliers in the ocean surface elevation product are mostly the result of poorly fit low-energy shot returns. Additionally, beat patterns and aliasing artifacts may arise from the sampling of deep-ocean wave trains by GLAS footprints separated by 140m. The apparent wavelength of such patterns depends not only on the wave frequency, but also on the angle between the ICESat ground track and the azimuth of the wave crests. We present a preliminary analysis of such patterns which appears to be consistent with a simple geometrical model.

  16. Dental Calculus Arrest of Dental Caries.

    PubMed

    Keyes, Paul H; Rams, Thomas E

    An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.

  17. Natural and unnatural oil slicks in the Gulf of Mexico

    PubMed Central

    Garcia‐Pineda, O.; Beet, A.; Daneshgar Asl, S.; Feng, L.; Graettinger, G.; French‐McCay, D.; Holmes, J.; Hu, C.; Huffer, F.; Leifer, I.; Muller‐Karger, F.; Solow, A.; Silva, M.; Swayze, G.

    2015-01-01

    Abstract When wind speeds are 2–10 m s−1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent, natural seeps and from the Deepwater Horizon (DWH) discharge. This analysis identified 914 natural oil seep zones across the entire Gulf of Mexico in pre‐2010 data. Their ∼0.1 µm slicks covered an aggregated average of 775 km2. Assuming an average volume of 77.5 m3 over an 8–24 h lifespan per oil slick, the floating oil indicates a surface flux of 2.5–9.4 × 104 m3 yr−1. Oil from natural slicks was regionally concentrated: 68%, 25%, 7%, and <1% of the total was observed in the NW, SW, NE, and SE Gulf, respectively. This reflects differences in basin history and hydrocarbon generation. SAR images from 2010 showed that the 87 day DWH discharge produced a surface‐oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km2 (SD 5028) and a volume of 22,600 m3 (SD 5411). Peak magnitudes of oil were detected during equivalent, ∼14 day intervals around 23 May and 18 June, when wind speeds remained <5 m s−1. Over this interval, aggregated volume of floating oil decreased by 21%; area covered increased by 49% (p < 0.1), potentially altering its ecological impact. The most likely causes were increased applications of dispersant and surface burning operations. PMID:27774370

  18. Dental Calculus Arrest of Dental Caries

    PubMed Central

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993

  19. The Activity Profile of Young Tennis Athletes Playing on Clay and Hard Courts: Preliminary Data

    PubMed Central

    Adriano Pereira, Lucas; Freitas, Victor; Arruda Moura, Felipe; Saldanha Aoki, Marcelo; Loturco, Irineu

    2016-01-01

    Abstract The aim of this study was to compare the kinematic characteristics of tennis matches between red clay and hard courts in young tennis players. Eight young tennis players performed two tennis matches on different court surfaces. The match activities were monitored using GPS units. The distance covered in different velocity ranges and the number of accelerations were analyzed. The paired t test and inference based on magnitudes were used to compare the match physical performance between groups. The total distance (24% of difference), high-intensity running distance (15 - 18 km/h) (30% of difference), the number of high-intensity activities (44% of difference), the body load (1% of difference), and accelerations >1.5 g (1.5-2 g and >2 g 7.8 and 8.1 % of difference, respectively) were significantly greater in clay court than hard court matches (p < 0.05). Matches played on the red clay court required players to cover more total and high-intensity running distances and engage in more high-intensity activities than the matches played on the hard court. Finally, on the clay court the body load and the number of accelerations performed (>1.5 g) were possibly higher than on the hard court. PMID:28149359

  20. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  1. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    NASA Astrophysics Data System (ADS)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  2. The fabrication of flip-covered plasmonic nanostructure surfaces with enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Jung, Joo-Yun; Sung, Sang-Keun; Kim, Kwang-Seop; Cheon, So-Hui; Lee, Jihye; Choi, Jun-Hyuk; Lee, Eungsug

    2017-01-01

    Exposed nanostructure surfaces often suffer from external dynamic wear, particularly when used in human interaction, resulting in surface defects and the degradation of plasmonic resonance properties particularly in terms of transmittance extinction rate and peak-to-valley slope. In this work, a method for the fabrication of flip-covered silver nanostructure-arrayed surfaces is shown to enhance wear resistance. Selectively transferred silver dot and silver webbed-trench exposed reference samples were fabricated by metal nanoimprint, and flip-covered samples were created by flipping and bonding reference samples onto a PET film coated with an adhesive layer. The samples' spectral transmittance was measured before and after a dynamic wear test. Some spectral shift was observed due to the change in refractive index of the surrounding media, but this was not as significant as the effects of the other chosen geometry factors. It was found that dynamic wear had a greater effect on the plasmonic resonance behavior of the exposed samples than in those that had been flip-covered. This suggests that flip-covering may be an effective strategy for the protection of plasmonic resonators against dynamic wear. It is expected that the slight variations in spectral transmittance could be compensated through proper tuning of the sample geometry.

  3. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet

    PubMed Central

    Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.

    2017-01-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014

  4. Estimation of runoff mitigation by morphologically different cover crop root systems

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  5. Remote Sensing of Vegetation Recovery from Disturbance in Drylands

    NASA Astrophysics Data System (ADS)

    Poitras, T. B.; Villarreal, M. L.; Waller, E.; Duniway, M.; Nauman, T.

    2016-12-01

    Characteristics of dryland ecosystems such as climatic extremes and water limitations render semi-arid regions vulnerable to disturbance and slow to recover. Land surface monitoring over time through the use of remote sensing may have potential for identifying dryland ecosystem recovery after anthropogenic and natural disturbance. However, semi-arid vegetation cover is challenging to measure using remote sensing techniques due to low vegetation cover and confusion between bright and variable soils and non-photosynthetic vegetation (NPV). We therefore evaluated the ability of various multispectral indices to distinguish bare ground from total vegetation cover, in order to determine those that can detect changes over time in heavily disturbed sites. We calculated nine spectral indices from Landsat TM using Google Earth Engine (March through October, 2006 through 2008) and tested relationships between index values and ground measurements from long-term monitoring data collected in and around Canyonlands National Park in Utah. We also tested multivariate models, with some showing improvement under cross-validation. We found that indices that included shortwave infrared bands and soil brightness were important for capturing gradients in bare ground, and vegetation cover was best quantified with near-infrared bands. These results will be used to help assess the landscape-scale impacts of oil and gas development in dryland ecosystems and to measure response to restoration efforts. Keywords: remote sensing, landsat, drylands

  6. Impact of Rainfall, Land-Cover and Population Growth on Groundwater - A Case Study From Karnataka State, India

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Chinnapa Reddy, A. R.

    2015-12-01

    Recent trends in climate, land-use pattern and population has affected almost every portable water resources in the world. Due to depleting surface water and untimely distribution of precipitation, the demand to use groundwater has increased considerably. Further recent studies have shown that the groundwater stress is more in developing countries like India. This study focuses on understanding the impacts of three major factors (i.e., rainfall, land-cover and population growth) effecting the groundwater levels. For this purpose, the correlation between the trends in groundwater time series is compared with trends in rainfall, land-cover and population growth. To detect the trends in time series, two statistical methods namely, least square method and Mann-Kendall method, are adopted. The results were analyzed based on the measurements from 1800 observation wells in the Karnataka state, India. The data is obtained for a total of 9 year time period ranging from 2005 to 2013. A gridded precipitation data of 0.5o× 0.5o over the entire region is used. The change in land-cover and population data was approximately obtained from the local governing bodies. The early results show significant correlation between rainfall and groundwater time series trends. The outcomes will assess the vulnerability of groundwater levels under changing physical and hydroclimatic conditions, especially under climate change.

  7. Combining Landsat-8 and WorldView-3 data to assess crop residue cover

    USDA-ARS?s Scientific Manuscript database

    Crop residues on the soil surface contribute to soil quality and form the first line defense against the erosive forces of water and wind. Quantifying crop residue cover on the soil surface after crops are planted is crucial for monitoring soil tillage intensity and assessing the extent of conserva...

  8. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    USDA-ARS?s Scientific Manuscript database

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  9. Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years

    NASA Astrophysics Data System (ADS)

    Čížková, Klára; Láska, Kamil; Metelka, Ladislav; Staněk, Martin

    2018-02-01

    This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964-2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004-2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.

  10. The use of microtomography in structural geology: A new methodology to analyse fault faces

    NASA Astrophysics Data System (ADS)

    Jacques, Patricia D.; Nummer, Alexis Rosa; Heck, Richard J.; Machado, Rômulo

    2014-09-01

    This paper describes a new methodology to kinematically analyze faults in microscale dimensions (voxel size = 40 μm), using images obtained by X-ray computed microtomography (μCT). The equipment used is a GE MS8x-130 scanner. It was developed using rocks samples from Santa Catarina State, Brazil, and constructing micro Digital Elevation Models (μDEMs) for the fault surface, for analysing microscale brittle structures including striations, roughness and steps. Shaded relief images were created for the μDEMs, which enabled the generation of profiles to classify the secondary structures associated with the main fault surface. In the case of a sample with mineral growth that covers the fault surface, it is possible to detect the kinematic geometry even with the mineral cover. This technique proved to be useful for determining the sense of movement of faults, especially when it is not possible to determine striations in macro or microscopic analysis. When the sample has mineral deposit on the surface (mineral cover) this technique allows a relative chronology and geometric characterization between the faults with and without covering.

  11. Debris thickness patterns on debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  12. Effect of blood and saliva contamination on bond strength of brackets bonded with a protective liquid polish and a light-cured adhesive.

    PubMed

    Sayinsu, Korkmaz; Isik, Fulya; Sezen, Serdar; Aydemir, Bulent

    2007-03-01

    The application of a polymer coating to the labial enamel tooth surface before bonding can help keep white spot lesions from forming. Previous studies evaluating the effects of blood and saliva contamination on the bond strengths of light-cured composites showed significant reductions in bond strength values. The purpose of this study was to investigate whether the bond strength of a light-cured system (Transbond XT, 3M Unitek, Puchheim, Germany) used with a liquid polish (BisCover, Bisco, Schaumburg, Ill) is affected by contamination with blood or saliva. One hundred twenty permanent human premolars were randomly divided into 6 groups of 20. Various enamel surface conditions were studied: dry, blood contaminated, and saliva contaminated. A light-cured bonding system (Transbond XT) was used in all groups. The teeth in group 1 were bonded with Transbond XT. In the second group, BisCover polymeric resin polish was applied on the etched tooth surfaces before the brackets were bonded with Transbond XT resin. Comparison of the first and second groups showed no statistically significant difference. Groups 3 through 6 were bonded without Transbond XT. For groups 3 and 5, a layer of blood or saliva, respectively, was applied to the etched enamel followed by BisCover. In groups 4 and 6, blood or saliva, respectively, was applied on the light-cured BisCover. Shear forces were applied to the samples with a universal testing machine, and bond strengths were measured in megapascals. The protective liquid polish (BisCover) layer did not affect bond strength. Blood contamination on acid-etched surfaces affects bond strength more than saliva contamination. When a protective liquid polish (BisCover) is applied to the tooth surface, the effect of contamination by blood or saliva is prevented.

  13. Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L. R.; Schaaf, C. L.; Erb, A.; Wang, J. A.

    2017-11-01

    Land surface albedo is a key parameter controlling the local energy budget, and altering the albedo of built surfaces has been proposed as a tool to mitigate high near-surface temperatures in the urban heat island. However, most research on albedo in urban landscapes has used coarse-resolution data, and few studies have attempted to relate albedo to other urban land cover characteristics. This study provides an empirical description of urban summertime albedo using 30 m remote sensing measurements in the metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious cover fraction, tree canopy coverage, population density, and land surface temperature (LST). At 30 m spatial resolution, median albedo over the study area (excluding open water) was 0.152 (0.112-0.187). Trends of lower albedo with increasing urbanization metrics and temperature emerged only after aggregating data to 500 m or the boundaries of individual towns, at which scale a -0.01 change in albedo was associated with a 29 (25-35)% decrease in canopy cover, a 27 (24-30)% increase in impervious cover, and an increase in population from 11 to 386 km-2. The most intensively urbanized towns in the region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-morning LST 12.6°C higher. Trends in albedo derived from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) measurements were comparable, but indicated a strong contribution of open water at this coarser resolution. These results reveal linkages between albedo and urban land cover character, and offer empirical context for climate resilient planning and future landscape functional changes with urbanization.

  14. The Aggregate Representation of Terrestrial Land Covers Within Global Climate Models (GCM)

    NASA Technical Reports Server (NTRS)

    Shuttleworth, W. James; Sorooshian, Soroosh

    1996-01-01

    This project had four initial objectives: (1) to create a realistic coupled surface-atmosphere model to investigate the aggregate description of heterogeneous surfaces; (2) to develop a simple heuristic model of surface-atmosphere interactions; (3) using the above models, to test aggregation rules for a variety of realistic cover and meteorological conditions; and (4) to reconcile biosphere-atmosphere transfer scheme (BATS) land covers with those that can be recognized from space; Our progress in meeting these objectives can be summarized as follows. Objective 1: The first objective was achieved in the first year of the project by coupling the Biosphere-Atmosphere Transfer Scheme (BATS) with a proven two-dimensional model of the atmospheric boundary layer. The resulting model, BATS-ABL, is described in detail in a Masters thesis and reported in a paper in the Journal of Hydrology Objective 2: The potential value of the heuristic model was re-evaluated early in the project and a decision was made to focus subsequent research around modeling studies with the BATS-ABL model. The value of using such coupled surface-atmosphere models in this research area was further confirmed by the success of the Tucson Aggregation Workshop. Objective 3: There was excellent progress in using the BATS-ABL model to test aggregation rules for a variety of realistic covers. The foci of attention have been the site of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) in Kansas and one of the study sites of the Anglo-Brazilian Amazonian Climate Observational Study (ABRACOS) near the city of Manaus, Amazonas, Brazil. These two sites were selected because of the ready availability of relevant field data to validate and initiate the BATS-ABL model. The results of these tests are given in a Masters thesis, and reported in two papers. Objective 4: Progress far exceeded original expectations not only in reconciling BATS land covers with those that can be recognized from space, but also in then applying remotely-sensed land cover data to map aggregate values of BATS parameters for heterogeneous covers and interpreting these parameters in terms of surface-atmosphere exchanges.

  15. The cloud-radiative processes and its modulation by sea-ice cover and stability as derived from a merged C3M Data product.

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2016-12-01

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  16. National water quality assessment of the Georgia-Florida Coastal Plain study unit; water withdrawals and treated wastewater discharges, 1990

    USGS Publications Warehouse

    Marella, R.L.; Fanning, J.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers nearly 62,600 square miles along the southeastern United States coast in Georgia and Florida. In 1990, the estimated population of the study unit was 9.3 million, and included all or part of the cities of Atlanta, Jacksonville, Orlando, Tampa, and St. Petersburg. Estimated freshwater withdrawn in the study unit in 1990 was nearly 5,075 million gallons per day. Ground-water accounted for more than 57 percent of the water withdrawn during 1990 and the Floridan aquifer system provided nearly 91 percent of the total ground-water withdrawn. Surface-water accounted for nearly 43 percent of the water withdrawn in the study unit in 1990 with large amounts of withdrawals from the Altamaha River, Hillsborough River, the Ocmulgee River, the Oconee River, the St. Johns River, and the Suwannee River. Water withdrawn for public supply in the Georgia-Florida Coastal Plain study unit in 1990 totaled 1,139 million gallons per day, of which 83 percent was ground water and 17 percent was surface water. Self-supplied domestic withdrawals in the Georgia-Florida Coastal Plain study unit in 1990 totaled nearly 230 million gallons per day. Ground water supplied over 80 percent of the study units population for drining water purposes; nearly 5.8 million people were served by public supply and 1.8 million people were served by self-supplied systems. Water withdrawn for self-supplied domestic use in Georgia and Florida is derived almost exclusively from ground water, primarily because this source can provide the quantity and quality of water needed for drinking purposes. Nearly 1.7 million people served by public supply utilized surface water for their drinking water needs. Water withdrawn for self-supplied commercial-industrial uses in the study unit in 1990 totaled 862 million gallons per day, of which 93 percent was ground water and 7 percent was surface water. Water withdrawn for agriculture purposes in the study unit in 1990 totaled 1,293 million gallons per day, of which 69 percent was ground water and 31 percent was surface water. An estimated 1.254 millon acres were irrigated within the study unit during 1990. Water withdrawn for thermoelectric power generation in the study unit in 1990 totaled 1,552 million gallons per day, of which 99 percent was surface water and 1 percent was ground water. An additional 6,919 million gallons per day of saline surface water were withdrawn for thermoelectric power generation in 1990, solely for cooling purposes. Treated wastewater discharged within the Georgia-Florida Coastal Plain study unit totaled nearly 1,187 million gallons per day in 1990. Of the total water discharged, 58 percent was discharged directly into surface water and the remaining 42 percent was discharged to ground water (through drain fields, injection wells, percolation ponds or spray fields). Domestic wastewater facilities discharged in the study unit totaled nearly 789 million gallons per day, industrial wastewater facilities discharged 213 million gallons per day, and releases from septic tanks was estimated at 185 million gallons per day. More than 1.3 million septic tanks were estimated in use within the study unit in 1990.

  17. Satellite SAR inventory of Gulf of Mexico oil seeps and shallow gas hydrates

    NASA Astrophysics Data System (ADS)

    Garcia, O.; MacDonald, I. R.; Zimmer, B.; Shedd, W.; Frye, M.

    2009-04-01

    Satellite synthetic aperture radar (SAR) images from the RADARSAT platform were used to detect and inventory persistent layers of oil released from natural seeps in the Gulf of Mexico. Previously published inventories of natural oil seeps in the Gulf have been limited in scope and have relied on manual interpretation of satellite images (Mitchell et al. 1999; De Beukelaer et al. 2003). We developed a texture classifying neural network algorithm (TCNNA) to rapidly identify floating oil-layers in a semi-supervised operation. Oil layers, known as slicks, were recognized as long (10 km), narrow (100 m), often curvilinear streaks with distinct points of origin where oil reaches the ocean surface. After training the TCNNA over known seep areas and under a range of environmental and viewing conditions, the procedure was applied to 426 separate images that covered ocean areas of 100x100 km (Standard Beam Mode), 102 images that covered ocean areas of 450x450 km(ScanSAR Wide Beam Mode), and 84 images that covered ocean areas of 300x300 km (ScanSAR Narrow Beam Mode). This image data-set was collected between 1994 and 2007. It covered the entire Gulf of Mexico with a repeat rate of 4 to109, with the highest concentration over the continental slope. This effort identified a total of 4957 slicks among all the images. Of these, 287 appeared a single time in isolated locations and may therefore be false targets. The remaining slicks appeared in groups of up to 9 separate features, clustered in areas of 1 to 6.5 km across. When slicks appear within the same area in repeated images, they are judged to have a persistent source—a bubbling vent on the seafloor (MacDonald et al. 2002). Persistent sources represent geologic formations defined by migrating hydrocarbons that may include multiple separate vents. A total of 559 formations were defined by repeated imaging; these comprised a maximum of 1995 and a minimum of 1263 individual vents. This total was distributed between U.S. territorial waters, with 481 formations, and Mexican territorial waters, with 78 formations. The formations were ground-truthed against a comprehensive database of 3D seismic cubes that cover the entire northern Gulf of Mexico (Frye 2008). Formations defined by SAR slick targets were consistently associated with gas hydrate prone regions of high surface amplitude and migration features in the sub-bottom. Many of the isolated slicks also appeared to be associated with migration features in the seismic data. Temporal variation among the slicks includes examples of intermittent individual vents within a single formation and broad-scale off-again, on-again appearance of slicks over entire images covering the same areas. References: De Beukelaer, S. M., MacDonald, I., Guinnasso, N. L. J. and Murray, J. A. (2003). Distinct side-scan sonar, RADARSAT SAR, and acoustic profiler signatures of gas and oil seeps on the Gulf of Mexico slope. Geo-Mar Lett 23: 177-186 Frye, M. (2008). Preliminary Evaluation of In-Place Gas Hydrate Resources: Gulf of Mexico Outer Continental Shelf. OCS Report, MMS U.S. Department of the Interior. Minerals Management Service. Resource Evaluation Division MacDonald, I., Leifer, I., Sassen, R. and Stine, P. (2002). Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids, Blackwell Science Ltd 2(2): 95-107 Mitchell, R., MacDonald, I. R. and Kvenvolden, K. A. (1999). Estimation of total hydrocarbon seepage into the Gulf of Mexico based on satellite remote sensing images. Transactions, American Geophysical Union 80(49): Ocean Sciences Meeting Supplement, OS242

  18. Non-phytoseiid Mesostigmata within citrus orchards in Florida: species distribution, relative and seasonal abundance within trees, associated vines and ground cover plants and additional collection records of mites in citrus orchards.

    PubMed

    Childers, Carl C; Ueckermann, Eduard A

    2015-03-01

    Seven citrus orchards on reduced- to no-pesticide spray programs in central and south central Florida were sampled for non-phytoseiid mesostigmatid mites. Inner and outer canopy leaves, fruits, twigs and trunk scrapings were sampled monthly between August 1994 and January 1996. Open flowers were sampled in March from five of the sites. A total of 431 samples from one or more of 82 vine or ground cover plants were sampled monthly in five of the seven orchards. Two of the seven orchards (Mixon I and II) were on full herbicide programs and vines and ground cover plants were absent. A total of 2,655 mites (26 species) within the families: Ascidae, Blattisociidae, Laelapidae, Macrochelidae, Melicharidae, Pachylaelapidae and Parasitidae were identified. A total of 685 mites in the genus Asca (nine species: family Ascidae) were collected from within tree samples, 79 from vine or ground cover plants. Six species of Blattisociidae were collected: Aceodromus convolvuli, Blattisocius dentriticus, B. keegani, Cheiroseius sp. near jamaicensis, Lasioseius athiashenriotae and L. dentatus. A total of 485 Blattisociidae were collected from within tree samples compared with 167 from vine or ground cover plants. Low numbers of Laelapidae and Macrochelidae were collected from within tree samples. One Zygoseius furciger (Pachylaelapidae) was collected from Eleusine indica. Four species of Melicharidae were identified from 34 mites collected from within tree samples and 1,190 from vine or ground cover plants: Proctolaelaps lobatus was the most abundant species with 1,177 specimens collected from seven ground cover plants. One Phorytocarpais fimetorum (Parasitidae) was collected from inner leaves and four from twigs. Species of Ascidae, Blattisociidae, Melicharidae, Laelapidae and Pachylaelapidae were collected from 31 of the 82 vine or ground cover plants sampled, representing only a small fraction of the total number of Phytoseiidae collected from the same plants. Including the collection records of Martin Muma prior to 1975, a total of 69 species of Ascidae, Blattisociidae, Laelapidae, Macrochelidae, Melicharidae, Pachylaelapidae and Parasitidae have now been reported from citrus in Florida.

  19. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  20. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  1. Evaluating the effects of historical land cover change on summertime weather and climate in New Jersey

    NASA Astrophysics Data System (ADS)

    Wichansky, Paul Stuart

    The 19th-century agrarian landscape of New Jersey (NJ) and the surrounding region has been extensively transformed to the present-day land cover by urbanization, reforestation, and localized areas of deforestation. This study used a mesoscale atmospheric numerical model to investigate the sensitivity of the warm season climate of NJ to these land cover changes. Reconstructed 1880s-era and present-day land cover datasets were used as surface boundary conditions for a set of simulations performed with the Regional Atmospheric Modeling System (RAMS). Three-member ensembles with historical and present-day land cover were compared to examine the sensitivity of surface air and dewpoint temperatures, rainfall, the individual components of the surface energy budget, horizontal and vertical winds, and the vertical profiles of temperature and humidity to these land cover changes. Mean temperatures for the present-day landscape were 0.3-0.6°C warmer than for the historical landscape over a considerable portion of NJ and the surrounding region, with daily maximum temperatures at least 1.0°C warmer over some of the highly urbanized locations. Reforested regions in the present-day landscape, however, showed a slight cooling. Surface warming was generally associated with repartitioning of net radiation from latent to sensible heat flux, and conversely for cooling. Reduced evapotranspiration from much of the present-day land surface led to dewpoint temperature decreases of 0.3-0.6°C. While urbanization was accompanied by strong surface albedo decreases and increases in net shortwave radiation, reforestation and potential changes in forest composition have generally increased albedos and also enhanced landscape heterogeneity. The increased deciduousness of forests may have further reduced net downward longwave radiation. These land cover changes have modified boundary-layer dynamics by increasing low-level convergence and upper-level divergence in the interior of NJ, especially where sensible heat fluxes have increased for the present-day landscape, hence enhancing uplift in the mid-troposphere. The mesoscale circulations that developed in the present-day ensemble were also more effective at lifting available moisture to higher levels of the boundary layer, lowering dewpoints near the surface but increasing them aloft. Likewise, the sea breeze in coastal areas of NJ in the present-day ensemble had stronger uplift during the afternoon and enhanced moisture transport to higher levels.

  2. Assessing snow extent data sets over North America to inform and improve trace gas retrievals from solar backscatter

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew J.; Martin, Randall V.; Lyapustin, Alexei I.; McLinden, Chris A.

    2018-05-01

    Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals from solar backscatter observations. Surface snow cover presents a significant challenge due to its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, the high reflectance of snow is potentially advantageous for trace gas retrievals. We first examine the implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument for North America. We use a radiative transfer model to examine how an increase in surface reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower troposphere. We find that a substantial fraction (> 50 %) of the TEMPO field of regard can be snow covered in January and that the average sensitivity to the tropospheric NO2 column substantially increases (doubles) when the surface is snow covered.We then evaluate seven existing satellite-derived or reanalysis snow extent products against ground station observations over North America to assess their capability of informing surface conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System (IMS) had the best agreement with ground observations (accuracy of 93 %, precision of 87 %, recall of 83 %). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of MODIS-observed radiances had high precision (90 % for Aqua and Terra), but underestimated the presence of snow (recall of 74 % for Aqua, 75 % for Terra). MAIAC generally outperforms the standard MODIS products (precision of 51 %, recall of 43 % for Aqua; precision of 69 %, recall of 45 % for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83 %) but missed a significant number of snow-covered pixels (recall of 45 %). The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance metrics (accuracy of 91 %, precision of 79 %, recall of 82 %). We use the Fscore, which balances precision and recall, to determine overall product performance (F = 85 %, 82 (82) %, 81 %, 58 %, 46 (54) % for IMS, MAIAC Aqua (Terra), CMC, NISE, MODIS Aqua (Terra), respectively) for providing snow cover information for TEMPO retrievals from solar backscatter observations. We find that using IMS to identify snow cover and enable inclusion of snow-covered scenes in clear-sky conditions across North America in January can increase both the number of observations by a factor of 2.1 and the average sensitivity to the tropospheric NO2 column by a factor of 2.7.

  3. Soil Moisture and Snow Cover: Active or Passive Elements of Climate?

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2001-01-01

    A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. GAPP region in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo, effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change.

  4. Measured and Predicted Burial of Cylinders During the Indian Rocks Beach Experiment

    DTIC Science & Technology

    2007-01-01

    in shallow water (15-16 m) with fine-sand (133-/xm) and coarse-sand (566-/xm) sediments off Indian Rocks Beach (IRB), FL. Scour pits developed...eter) relative to the sediment- water interface, but only 20%-50% relative to surface area covered. The difference was caused by the lack of...sensors intended to indicate the surface area of the cylinder covered by sediment or water (i.e., percent surface area exposed during burial) and

  5. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    PubMed

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to coral communities in the study area.

  6. U.S. Constructed Area Approaches the Size of Ohio

    NASA Astrophysics Data System (ADS)

    Elvidge, Christopher D.; Milesi, Cristina; Dietz, John B.; Tuttle, Benjamin T.; Sutton, Paul C.; Nemani, Ramakrishna; Vogelmann, James E.

    2004-06-01

    The construction and maintenance of impervious surfaces-buildings, roads, parking lots, roofs, etc.-constitutes a major human alteration of the land surface, changing the local hydrology, climate, and carbon cycling. Three types of national coverage data were used to model the spatial distribution and density of impervious surface area (ISA) for the conterminous U.S.A. The results (Figure 1) indicate that total ISA of the 48 states and Washington, D.C., is 112,610 km2 (+/- 12,725 km2), which is slightly smaller than the state of Ohio (116,534 km2) and slightly larger than the area of herbaceous wetlands (98,460 km2) of the conterminous United States. The same characteristics that make impervious surfaces ideal for use in construction produce a series of effects on the environment. Impervious surfaces alter sensible and latent heat fluxes, causing urban heat islands. In heavily vegetated areas, the proliferation of ISA reduces the sequestration of carbon from the atmosphere. ISA alters the character of watersheds by increasing the frequency and magnitude of surface runoff pulses. Watershed effects of ISA begin to be detectable once 10% of the surface is covered by impervious surfaces, altering the shape of stream channels, raising water temperatures, and sweeping urban debris and pollutants into aquatic environments. Consequences of ISA include reduced numbers and diversity of species in fish and aquatic insects, and degradation of wetlands and riparian zones.

  7. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  8. Glacial modification of granite tors in the Cairngorms, Scotland

    USGS Publications Warehouse

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space-time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4-2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important for debates about the former existence of nunataks and refugia. Copyright ?? 2006 John Wiley & Sons, Ltd.

  9. Surface characteristics of isopod digestive gland epithelium studied by SEM.

    PubMed

    Millaku, Agron; Leser, Vladka; Drobne, Damjana; Godec, Matjaz; Torkar, Matjaz; Jenko, Monika; Milani, Marziale; Tatti, Francesco

    2010-05-01

    The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland "normal" epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had "abnormal" epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.

  10. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  11. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  12. SEM and EDS investigation of a pyrolytic carbon covered C/C composite maxillofacial implant retrieved from the human body after 8 years.

    PubMed

    Sebők, Béla; Kiss, Gábor; Szabó, Péter J; Rigler, Dániel; Molnár, Milán L; Dobos, Gábor; Réti, Ferenc; Szőcs, Hajnal; Joób, Arpád F; Bogdán, Sándor; Szabó, György

    2013-03-01

    The long term effect of the human body on a pyrolytic carbon covered C/C composite maxillofacial implant (CarBulat(Tm)) was investigated by comparing the structure, the surface morphology and composition of an implant retrieved after 8 years to a sterilized, but not implanted one. Although the thickness of the carbon fibres constituting the implants did not change during the 8 year period, the surface of the implant retrieved was covered with a thin surface layer not present on the unimplanted implant. The composition of this layer is identical to the composition of the underlying carbon fibres. Calcium can only be detected on the surface as a trace element implying that the new layer is not formed by bone tissue. Residual soft tissue penetrating the bulk material between the carbon fibre bunches was found on the retrieved implant indicating the importance of the surface morphology in tissue growth and adhering to implants.

  13. Microwave remote sensing and radar polarization signatures of natural fields

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1989-01-01

    Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.

  14. Mechanisms and energetics of hydride dissociation reactions on surfaces of plasma-deposited silicon thin films

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder; Valipa, Mayur S.; Mountziaris, T. J.; Maroudas, Dimitrios

    2007-11-01

    We report results from a detailed analysis of the fundamental silicon hydride dissociation processes on silicon surfaces and discuss their implications for the surface chemical composition of plasma-deposited hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of hydride dissociation on the hydrogen-terminated Si(001)-(2×1) surface and molecular-dynamics (MD) simulations of adsorbed SiH3 radical precursor dissociation on surfaces of MD-grown a-Si :H films. Our DFT calculations reveal that, in the presence of fivefold coordinated surface Si atoms, surface trihydride species dissociate sequentially to form surface dihydrides and surface monohydrides via thermally activated pathways with reaction barriers of 0.40-0.55eV. The presence of dangling bonds (DBs) results in lowering the activation barrier for hydride dissociation to 0.15-0.20eV, but such DB-mediated reactions are infrequent. Our MD simulations on a-Si :H film growth surfaces indicate that surface hydride dissociation reactions are predominantly mediated by fivefold coordinated surface Si atoms, with resulting activation barriers of 0.35-0.50eV. The results are consistent with experimental measurements of a-Si :H film surface composition using in situ attenuated total reflection Fourier transform infrared spectroscopy, which indicate that the a-Si :H surface is predominantly covered with the higher hydrides at low temperatures, while the surface monohydride, SiH(s ), becomes increasingly more dominant as the temperature is increased.

  15. Vegetation effects on soil water erosion rates and nutrient losses at Santa Catarina highlands, south Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.

    2009-04-01

    Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under subtropical climatic conditions. The area cropped under no tillage in Brazil has increased rapidly since 1990, especially in the southern region. This practice was first introduced in the 1970s as a strategy to control soil erosion and continuous declines in land productivity under conventional tillage systems. No tillage almost entirely keeps the previous crop residue on the surface. In the last 15 years soil and water losses by water erosion have been quantified for different soil tillage systems, diverse crop rotations and successive crop stages under simulated and natural rain conditions. Plot experiments showed that soil losses under no tillage systems with a vegetative cover were 98% lower when compared with conventionally tilled bare soil. Moreover water losses were 60% lower for these conditions. Conventional tillage (plowing + harrowing) in the presence of vegetative cover reduced soil losses and water losses by 80% and 50%, respectively, taken the uncultivated bare soil as a reference. The review includes the effect of vegetative cover on nutrient losses at the studied sites in the Santa Catarina highlands.

  16. Sub-pixel localization of highways in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda

    1995-01-01

    Roads and highways show up clearly in many bands of AVIRIS images. A typical lane in the U.S. is 12 feet wide, and the total width of a four lane highway, including 18 feet of paved shoulders, is 19.8 m. Such a highway will cover only a portion of any 20x20 m AVIRIS pixel that it traverses. The other portion of these pixels wil be usually covered by vegetation. An interesting problem is to precisely determine the location of a highway within the AVIRIS pixels that it traverses. This information may be used for alignment and spatial calibration of AVIRIS images. Also, since the reflection properties of highway surfaces do not change with time, and they can be determined once and for all, such information can be of help in calculating and filtering out the atmospheric noise that contaminates AVIRIS measurements. The purpose of this report is to describe a method for sub-pixel localization of highways.

  17. The effect of a periodic absorptive strip arrangement on an interior sound field in a room.

    PubMed

    Park, Joo-Bae; Grosh, Karl; Kim, Yang-Hann

    2005-02-01

    In this paper we study the effect of periodically arranged sound absorptive strips on the mean acoustic potential energy density distribution of a room. The strips are assumed to be attached on the room's surface of interest. In order to determine their effect, the mean acoustic potential energy density variation is evaluated as the function of a ratio of the strip's arrangement period to wavelength. The evaluation demonstrates that the mean acoustic potential energy density tends to converge. In addition, a comparison with a case in which absorptive materials completely cover the selected absorptive plane shows that a periodic arrangement that uses only half of the absorptive material can be more efficient than a total covering, unless the frequency of interest does not coincide with the room's resonant frequencies. Consequently, the results prove that the ratio of the arrangement period to the wavelength plays an important role in the effectiveness of a periodic absorptive strip arrangement to minimize a room's mean acoustic potential energy density.

  18. Satellite-derived ice data sets no. 2: Arctic monthly average microwave brightness temperatures and sea ice concentrations, 1973-1976

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.

    1987-01-01

    A summary data set for four years (mid 70's) of Arctic sea ice conditions is available on magnetic tape. The data include monthly and yearly averaged Nimbus 5 electrically scanning microwave radiometer (ESMR) brightness temperatures, an ice concentration parameter derived from the brightness temperatures, monthly climatological surface air temperatures, and monthly climatological sea level pressures. All data matrices are applied to 293 by 293 grids that cover a polar stereographic map enclosing the 50 deg N latitude circle. The grid size varies from about 32 X 32 km at the poles to about 28 X 28 km at 50 deg N. The ice concentration parameter is calculated assuming that the field of view contains only open water and first-year ice with an ice emissivity of 0.92. To account for the presence of multiyear ice, a nomogram is provided relating the ice concentration parameter, the total ice concentration, and the fraction of the ice cover which is multiyear ice.

  19. Recent land cover changes and sensitivity of the model simulations to various land cover datasets for China

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Ma, Zhuguo; Mahmood, Rezaul; Zhao, Tianbao; Li, Zhenhua; Li, Yanping

    2017-08-01

    Reliable land cover data are important for improving numerical simulation by regional climate model, because the land surface properties directly affect climate simulation by partitioning of energy, water and momentum fluxes and by determining temperature and moisture at the interface between the land surface and atmosphere. China has experienced significant land cover change in recent decades and accurate representation of these changes is, hence, essential. In this study, we used a climate model to examine the changes experienced in the regional climate because of the different land cover data in recent decades. Three sets of experiments are performed using the same settings, except for the land use/cover (LC) data for the years 1990, 2000, 2009, and the model default LC data. Three warm season periods are selected, which represented a wet (1998), normal (2000) and a dry year (2011) for China in each set of experiment. The results show that all three sets of land cover experiments simulate a warm bias relative to the control with default LC data for near-surface temperature in summertime in most parts of China. It is especially noticeable in the southwest China and south of the Yangtze River, where significant changes of LC occurred. Deforestation in southwest China and to the south of Yangtze River in the experiment cases may have contributed to the negative precipitation bias relative to the control cases. Large LC changes in northwestern Tibetan Plateau for 2000 and 2009 datasets are also associated with changes in surface temperature, precipitation, and heat fluxes. Wind anomalies and energy budget changes are consistent with the precipitation and temperature changes.

  20. Ground truth data for test sites (SL-4). [thermal radiation brightness temperature and solar radiation measurments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.

  1. VizieR Online Data Catalog: HD 50138 short-term variability (Borges Fernandes+, 2012)

    NASA Astrophysics Data System (ADS)

    Borges Fernandes, M.; Kraus, M.; Nickeler, D. H.; De Cat, P.; Lampens, P.; Pereira, C. B.; Oksala, M. E.

    2012-10-01

    A total of 72 files related to the optical spectra taken within 8 observing nights with HERMES spectrograph, covering the photospheric HeI 4026Å and SiII 4128Å and 4131Å lines, the circumstellar [OI] 6364Å line, and the lines formed in the upper layers of the stellar atmosphere or very close to the stellar surface: SiII 6347Å and 6371Å, HeI 6678Å, H10, H9 and Halpha lines. The data were reduced by automated data reduction pipeline and cosmic ray and heliocentric velocity corrected (but not telluric corrected). (2 data files).

  2. Impact of fire frequency on runoff, sediment and organic matter losses at micro-plot scale in north-central Portugal

    NASA Astrophysics Data System (ADS)

    Hosseini, Mohammadreza; Gonzaléz Pelayo, Oscar; Prats Alegre, Sergio; Martins, Martinho; Santos, Liliana; Ritsema, Coen; Geissen, Violette; Keizer, Jan Jacob

    2015-04-01

    High intensity and fast spreading wildfires are one of the key factors in Mediterranean ecosystems. However, since 1960 land use changes and land abandonment have resulted in a higher wildfire frequency. They have not only a strong impact on the vegetation but, may also lead to irreversible soil degradation. Therefore, assessing the impact of repeated wildfires on soil degradation is critical. Therefore, this study addresses the effects of repeated wildfires on soil cover, runoff, soil erosion and related organic matter (OM) losses in Maritime Pine forests lead to land degradation. After a large wildfire in September 2012, we selected three control sites (C) unburnt since 1975, three degraded sites (D) suffering from wildfires three more times before 2012 and three semi degraded sites (SD) only affected by wildfire in 2012. We installed 9 microplots (0.25m2) at each site and collected runoff, eroded soil and organic matter in barrels after each rainfall event during October 2012 till September 2014. Initially, soil surface of D was covered 100% by a 5 cm ash layer, after 2 years the ash coverage was still 46% and vegetation cover a 14%. Soil surface at SD initially was 95% covered by ash, after 2 years it changed to 53% ash and a vegetation cover of 13%. The soil surface of C initially was covered by 100% litter in the begin and 83% of the litter and 17% of vegetation after 2 years. The results show clearly the impact of fire frequency on runoff, OM and soil losses. Associated to maximum rainfall intensities of (23 mm.h-1 in 2013, 29 mm.h-1 in 2014) via annual rainfall of (1289 mm in 2013, 1628 mm in 2014) yearbook average runoff coefficient was the highest in D (25% in 2013, 40% in 2014) comparing to SD (6% in 2013, 10% in 2014) and C (4% in 2013, 2% in 2014). Annual average erosion for the first year in D was significantly higher than in SD with losses of 2.57 versus 0.31 Mg ha-1 and for the second year by 3.79 versus 0.84 Mg ha-1. No erosion or OM losses occurred in C due to the 100% soil cover. Annual average of OM losses in D was significantly higher with 1.29 Mg ha-1 in 2013, 2.32 Mg ha-1 in 2014 than in SD with 0.14 Mg ha-1 in 2013 and 0.37 Mg ha-1 in 2014. Repeated wildfires strongly increase the runoff coefficient and therefore the risk of flooding's in downstream regions after strong rainfalls. Total erosion rates did not exceed threshold values for soil erosion (8 Mg.ha-1) in all sites, however the transport OM loss was extremely high in the degraded sites due to the runoff related ash transport.

  3. [Comparison of molluscicidal effects of two snail control methods with plastic film covering in hilly regions].

    PubMed

    Zhou, Yun; Zhang, Biao; Wang, Zhi-Mei; Zhao, Jia-Huei; Mao, Shu; Xie, De-Bing; Mei, Zhi-Zhong; Zhang, Jun; Hong, Qing-Biao; Wang, Wei; Sun, Le-Ping

    2013-12-01

    To evaluate and compare the molluscicidal effects of colorless and black plastic film covering methods against Oncomelania hupensis snails in hilly regions. A hilly setting with high snail density was selected as the study area, and three groups including the colorless plastic film covering method, black plastic film covering method and control were designed. The snail surveys were conducted 1, 3, 7, 15 days and 30 days in each group following plastic film covering, and the mortality of snails and reduction of snail density were investigated. The air temperature, soil surface temperature in the control group, as well as the soil surface temperature and the temperatures 5 cm and 15 cm under the soil within the film were recorded. The mortality rates of snails were 36.84%, 78.94%, 95.92%, 100.00% and 99.45% 1, 3, 7, 15 days and 30 days following colorless plastic film covering, respectively, and the snail density after 30 days of covering reduced by 99.36% as compared to that before covering, while the mortality rates of snails were 10.08%, 8.94%, 6.11%, 26.15% and 49.32% 1, 3, 7, 15 days and 30 days following black plastic film covering, respectively, and the snail density after 30 days of covering reduced by 58.10% as compared to that before covering. There were significant differences in the 1-, 3-, 7-, 15-day and 30-day snail mortality rates between the colorless and black film covering groups (all P values <0.01), and a significant difference was detected in the snail density between the two groups 30 days after the film covering (P < 0.001). In addition, the speed, amplitude and duration of the rise in the soil surface temperature within the colorless film were all greater than those within the black film. The short-term molluscicidal effect of the colorless plastic film covering method is significantly superior to that of the black plastic film covering method in summer in hilly regions.

  4. Global, long-term Earth Science Data Records of forest cover, change, and fragmentation from Landsat: the Global Forest Cover Change Project

    NASA Astrophysics Data System (ADS)

    Sexton, J.; Huang, C.; Channan, S.; Feng, M.; Song, X.; Kim, D.; Song, D.; Vermote, E.; Masek, J.; Townshend, J. R.

    2013-12-01

    Monitoring, analysis, and management of forests require measurements of forest cover that are both spatio-temporally consistent and resolved globally at sub-hectare resolution. The Global Forest Cover Change project, a cooperation between the University of Maryland Global Land Cover Facility and NASA Goddard Space Flight Center, is providing the first long-term, sub-hectare, globally consistent data records of forest cover, change, and fragmentation in circa-1975, -1990, -2000, and -2005 epochs. These data are derived from the Global Land Survey collection of Landsat images in the respective epochs, atmospherically corrected to surface reflectance in 1990, 2000, and 2005 using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) implementation of the 6S radiative transfer algorithm, with ancillary information from MODIS Land products, ASTER Global Digital Elevation Model (GDEM), and climatological data layers. Forest cover and change were estimated by a novel continuous-field approach, which produced for the 2000 and 2005 epochs the world's first global, 30-m resolution database of tree cover. Surface reflectance estimates were validated against coincident MODIS measurements, the results of which have been corroborated by subsequent, independent validations against measurements from AERONET sites. Uncertainties in tree- and forest-cover values were estimated in each pixel as a compounding of within-sample uncertainty and accuracy relative to a sample of independent measurements from small-footprint lidar. Accuracy of forest cover and change estimates was further validated relative to expert-interpreted high-resolution imagery, from which unbiased estimates of forest cover and change have been produced at national and eco-regional scales. These first-of-kind Earth Science Data Records--surface reflectance in 1990, 2000, and 2005 and forest cover, change, and fragmentation in and between 1975, 1990, 2000, and 2005--are hosted at native, Landsat resolution for free public access at the Global Land Cover Facility website (www.landcover.org). Global mosaic of circa-2000, Landsat-based estimates of tree cover. Gaps due to clouds and/or snow in each scene were filled first with Landsat-based data from overlapping paths, and the remaining gaps were filled with data from the MODIS VCF Tree Cover layer in 2000.

  5. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maclaurin, Galen; Sengupta, Manajit; Xie, Yu

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less

  6. Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier

    NASA Astrophysics Data System (ADS)

    Davesne, Gautier; Fortier, Daniel; Domine, Florent; Gray, James T.

    2017-06-01

    We present data on the distribution and thermophysical properties of snow collected sporadically over 4 decades along with recent data of ground surface temperature from Mont Jacques-Cartier (1268 m a.s.l.), the highest summit in the Appalachians of south-eastern Canada. We demonstrate that the occurrence of contemporary permafrost is necessarily associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. The aims of this study were (i) to understand the snow distribution pattern and snow thermophysical properties on the Mont Jacques-Cartier summit and (ii) to investigate the impact of snow on the spatial distribution of the ground surface temperature (GST) using temperature sensors deployed over the summit. Results showed that above the local treeline, the summit is characterized by a snow cover typically less than 30 cm thick which is explained by the strong westerly winds interacting with the local surface roughness created by the physiography and surficial geomorphology of the site. The snowpack structure is fairly similar to that observed on windy Arctic tundra with a top dense wind slab (300 to 450 kg m-3) of high thermal conductivity, which facilitates heat transfer between the ground surface and the atmosphere. The mean annual ground surface temperature (MAGST) below this thin and wind-packed snow cover was about -1 °C in 2013 and 2014, for the higher, exposed, blockfield-covered sector of the summit characterized by a sporadic herbaceous cover. In contrast, for the gentle slopes covered with stunted spruce (krummholz), and for the steep leeward slope to the south-east of the summit, the MAGST was around 3 °C in 2013 and 2014. The study concludes that the permafrost on Mont Jacques-Cartier, most widely in the Chic-Choc Mountains and by extension in the southern highest summits of the Appalachians, is therefore likely limited to the barren wind-exposed surface of the summit where the low air temperature, the thin snowpack and the wind action bring local cold surface conditions favourable to permafrost development.

  7. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harder, Phillip; Schirmer, Michael; Pomeroy, John; Helgason, Warren

    2016-11-01

    Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been limited to terrestrial and airborne laser scanning and more recently with application of structure from motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and orthomosaics for snow cover at a cultivated agricultural Canadian prairie and a sparsely vegetated Rocky Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root mean square errors in snow depth estimation from differencing snow-covered and non-snow-covered DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow depth > 30 cm, but the direct observation of snow depth depletion of shallow snowpacks with this method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the flight, with the most consistent performance found for wind speeds < 10 m s-1, clear skies, high sun angles and surfaces with negligible vegetation cover.

  8. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  9. Annual land cover change mapping using MODIS time series to improve emissions inventories.

    NASA Astrophysics Data System (ADS)

    López Saldaña, G.; Quaife, T. L.; Clifford, D.

    2014-12-01

    Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A prototype land cover product was created for 2006 to 2008. Several machine learning classifiers were tested as well as different sets of input features going from the BRDF parameters to spectral Albedo. We will present the results of the time series development and the first exercises when creating the prototype land cover product.

  10. A wide-field survey of satellite galaxies around the spiral galaxy M106

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.

    2011-04-01

    We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.

  11. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  12. Calculation of current collected in a dilute plasma through a pinhole in the insulation covering a high-voltage surface

    NASA Technical Reports Server (NTRS)

    Fralick, G. C.

    1975-01-01

    A procedure is described for calculating the current collected by a pinhole defect in the insulation covering a high voltage surface. The results apply to a satellite at geosynchronous altitude where the effects of satellite motion and collective plasma effects on the collected current may be ignored.

  13. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) silage and soybean [Glycine max (L.) Merr.] rotations in the US Upper Midwest leave minimal amounts of surface residues, which can contribute to soil degradation and a reduction in water quality. Planting cover crops after harvest can reduce these concerns, but their effectiveness...

  14. Storage containers for radioactive material

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  15. Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).

  16. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    NASA Astrophysics Data System (ADS)

    Popescu, C.; Dorcioman, G.; Bita, B.; Besleaga, C.; Zgura, I.; Himcinschi, C.; Popescu, A. C.

    2016-12-01

    Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  17. Impacts of surface gold mining on land use systems in Western Ghana.

    PubMed

    Schueler, Vivian; Kuemmerle, Tobias; Schröder, Hilmar

    2011-07-01

    Land use conflicts are becoming increasingly apparent from local to global scales. Surface gold mining is an extreme source of such a conflict, but mining impacts on local livelihoods often remain unclear. Our goal here was to assess land cover change due to gold surface mining in Western Ghana, one of the world's leading gold mining regions, and to study how these changes affected land use systems. We used Landsat satellite images from 1986-2002 to map land cover change and field interviews with farmers to understand the livelihood implications of mining-related land cover change. Our results showed that surface mining resulted in deforestation (58%), a substantial loss of farmland (45%) within mining concessions, and widespread spill-over effects as relocated farmers expand farmland into forests. This points to rapidly eroding livelihood foundations, suggesting that the environmental and social costs of Ghana's gold boom may be much higher than previously thought.

  18. Robotic end gripper with a band member to engage object

    DOEpatents

    Pollard, Roy E.; Robinson, Samuel C.; Thompson, William F.; Couture, Scott A.; Sutton, Bill J.

    1994-01-01

    An end effector for use with robotic arms and like devices that utilizes a flexible band to draw an object against an anvil having a concave surface. One typical convex surface is created by a V-block, with an apex of the V being centrally located. If an object to be grasped is fragile, the contour of the concave surface closely matches the surface of the object. Typically the movement of the band is effected by a linear actuator, with the anvil remaining fixed relative to a support base. Several embodiments are described that utilize variations in drawing the band toward the anvil, with one of these embodiments described in detail in the form of a fabricated unit. One embodiment includes a cover element that can be moved over an object after the grasping thereof, with this cover potentially serving various functions. Movement of the cover can be effected with a second linear actuator.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, John T.; Ivanov, Ilia N.; Shibata, Jason

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the innermore » surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.« less

  20. Modification of surface properties of solids by femtosecond LIPSS writing: comparative studies on silicon and stainless steel

    NASA Astrophysics Data System (ADS)

    Varlamova, Olga; Hoefner, Kevin; Ratzke, Markus; Reif, Juergen; Sarker, Debasish

    2017-12-01

    We investigate the implication of modified surface morphology on wettability of stainless steel (AISI 304) and silicon (100) targets covered by laser-induced periodic surface structures (LIPSS) on extended areas (10 × 10 mm2). Using multiple pulses from a Ti: Sapphire laser (790 nm/100 fs/1 kHz) at a fluence in the range of 0.35-2.1 J/cm2 on a spot of 1.13 × 10- 4 cm2, we scanned the target under the spot to cover a large area. A systematical variation of the irradiation dose by changing the scanning speed and thus dwelling time per spot results in the formation of surface patterns ranging from very regular linear structures with a lateral period of about 500-600 nm to complex patterns of 3D microstructures with several-µm feature size, hierarchically covered by nano-ripples.

Top