Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?
Sweet, Julia; Brzezinski, Mark A.; McNair, Heather M.; Passow, Uta
2016-01-01
Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification. PMID:27893739
Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?
Jones, Jonathan M; Sweet, Julia; Brzezinski, Mark A; McNair, Heather M; Passow, Uta
2016-01-01
Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.
40 CFR Appendix A to Subpart O of... - Regulated Contaminants
Code of Federal Regulations, 2010 CFR
2010-07-01
..., young children, some of the elderly, and people with severely compromised immune systems. Total organic carbon (ppm) TT TT N/A Naturally present in the environment Total organic carbon (TOC) has no health effects. However, total organic carbon provides a medium for the formation of disinfection by products...
Scaling laws for perturbations in the ocean-atmosphere system following large CO2 emissions
NASA Astrophysics Data System (ADS)
Towles, N.; Olson, P.; Gnanadesikan, A.
2015-07-01
Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR) model (Zeebe et al., 2009; Zeebe, 2012b), we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.
NASA Technical Reports Server (NTRS)
Muller, Matthew S.; Bauer, Clarence F.
1994-01-01
Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.
USDA-ARS?s Scientific Manuscript database
Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE, that is the annual sum of CO2 fluxes, the total carbon uptake minus total carbon respired by the plants-soil-ecosystem) than soybean due to increased carbon uptake efficiency...
NASA Astrophysics Data System (ADS)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; Yin, Yunhe; Kumar, Jitendra; Ma, Chun; Xu, Xiaofeng
2017-09-01
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. We compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (
Ecological impact of historical and future land-use patterns in Senegal
Parton, W.; Tappan, G. Gray; Ojima, D.; Tschakert, P.
2004-01-01
The CENTURY model was used to simulate changes in total system carbon resulting from land-use history (1850–2000), and impacts of climatic changes and improved land-use management practices in Senegal. Results show that 0.477 Gtons of carbon have been lost from 1850 to 2000. Improved management practices have the potential of increasing carbon levels by 0.116 Gtons from 2000 to 2100. Potential to store carbon exists for improved forest management and agriculture practices in southern Senegal. Potential climatic changes decrease plant production (30 percent), total system carbon (14 percent), and the potential to store carbon from improved management practices (31 percent).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...
2017-09-09
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
A survey of the carbonate system in the Levantine Mediterranean Sub-basin
NASA Astrophysics Data System (ADS)
El Rahman Hassoun, Abed; Gemayel, Elissar; Abboud-Abi Saab, Marie
2016-04-01
The carbonate system is very important since it regulates the pH of the seawater and controls the circulation of CO2 between the various natural reservoirs. Recently, several oceanographic cruises have been carried out to assess this system in the Mediterranean Sea. However, the measurements undertaken to quantify the carbonate system parameters in the Levantine Sub-basin remain scarce and occasional. In our study, we are compiling the occasional data taken near Lebanon and surveying the carbonate system in the Lebanese seawaters for the first time by fixing two stations off the Lebanese coast to study the monthly and annual variations of this system through the water column. The dominant processes changing the carbonate chemistry of a seawater can be described by considering changes in the total alkalinity (AT) and the total dissolved inorganic carbon (CT). To measure these parameters, the collected seawater samples are titrated via potentiometric acid titration using a closed cell (DOE, 1994). Further, the temperature and the salinity are measured in situ. Dissolved oxygen concentrations are measured using a Winkler iodometric titration. Nutrients (phosphates, nitrates, nitrites), chlorophyll a and phytoplankton populations are also studied. The compilation of the carbonate system data taken from the cruises conducted near Cyprus (MedSeA 2013, Meteor 84-3, BOUM, Meteor 51-2) indicate that the AT and CT averages are equal to 2617 ±15 and 2298 ± 9 μmol kg-1 respectively, showing high AT and CT concentrations compared to those measured in other Mediterranean sub-basins. Our survey will provide a brand new dataset that will be useful to better comprehend the carbonate system in the Mediterranean Sea in general and the actual situation of the water masses formation in the Levantine Sub-basin after the Eastern Mediterranean Transient (EMT) in particular. Moreover, this work will permit us to estimate the air-sea fluxes and to estimate the anthropogenic CO2 concentrations and the acidification rate in the Lebanese seawaters for the first time. Keywords: Total alkalinity, total dissolved inorganic carbon, carbonate system, Lebanon, Levantine Sub-basin, Mediterranean Sea.
Total organic carbon (TOC) and dissolved organic carbon (DOC) have long been used to estimate the amount of natural organic matter (NOM) found in raw and finished drinking water. In recent years, computer automation and improved instrumental analysis technologies have created a ...
Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application
NASA Astrophysics Data System (ADS)
Bae, Seong Jun; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik
2014-12-01
Various supercritical carbon dioxide (S-CO2) cycles for a power conversion system of a Molten Carbonate Fuel Cell (MCFC) hybrid system are studied in this paper. Re-Compressing Brayton (RCB) cycle, Simple Recuperated Brayton (SRB) cycle and Simple Recuperated Transcritical (SRT) cycle layouts were selected as candidates for this study. In addition, a novel concept of S-CO2 cycle which combines Brayton cycle and Rankine cycle is proposed and intensively studied with other S-CO2 layouts. A parametric study is performed to optimize the total system to be compact and to achieve wider operating range. Performances of each S-CO2 cycle are compared in terms of the thermal efficiency, net electricity of the MCFC hybrid system and approximate total volumes of each S-CO2 cycle. As a result, performance and total physical size of S-CO2 cycle can be better understood for MCFC S-CO2 hybrid system and especially, newly suggested S-CO2 cycle shows some success.
USDA-ARS?s Scientific Manuscript database
Soil erosion and sediment loss with runoff are closely linked to global carbon and nitrogen cycles. Reducing tillage has been shown to reduce erosion and runoff sediment-bound carbon (C) and nitrogen (N) losses. However, published studies represent only a few soil types and regions and rarely direct...
40 CFR 63.1413 - Compliance demonstration procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... HAP concentration. (iii) For a carbon adsorption system that regenerates the carbon bed directly... organic compound concentration level, adsorption cycle time, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total regeneration stream mass or...
Scaling laws for perturbations in the ocean-atmosphere system following large CO2 emissions
NASA Astrophysics Data System (ADS)
Towles, N.; Olson, P.; Gnanadesikan, A.
2015-01-01
Scaling relationships are derived for the perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the carbon cycle model LOSCAR (Zeebe et al., 2009; Zeebe, 2012b) we calculate perturbations to atmosphere temperature and total carbon, ocean temperature, total ocean carbon, pH, and alkalinity, marine sediment carbon, plus carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form γDαEbeta, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. However, these power laws deviate substantially from predictions based on simplified equilibrium considerations. For example, although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission rate-only scaling α + β =0, a prediction of the long-term equilibrium between CO2 input by volcanism and CO2 removal by silicate weathering. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0< α + β < 1 for most of the other system variables. The deviations in these scaling laws from equilibrium predictions are mainly due to the multitude and diversity of time scales that govern the exchange of carbon between marine sediments, the ocean, and the atmosphere.
NASA Technical Reports Server (NTRS)
Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II
2005-01-01
On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.
40 CFR Table 1b to Subpart Dddd of... - Add-on Control Systems Compliance Options
Code of Federal Regulations, 2011 CFR
2011-07-01
... dryer zones one and two (at new affected sources) (1) Reduce emissions of total HAP, measured as THC (as carbon) a, by 90 percent; or(2) Limit emissions of total HAP, measured as THC (as carbon) a, to 20 ppmvd... are greater than or equal to 10 ppmvd. a You may choose to subtract methane from THC as carbon...
Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay
Yates, K.K.; Dufore, C.; Smiley, N.; Jackson, C.; Halley, R.B.
2007-01-01
Oxygen and carbonate system parameters were measured, in situ, over diurnal cycles in Tampa Bay and Florida Bay, Florida. All system parameters showed distinct diurnal trends in Tampa Bay with an average range of diurnal variation of 39.1 μmol kg− 1 for total alkalinity, 165.1 μmol kg− 1 for total CO2, 0.22 for pH, 0.093 mmol L− 1 for dissolved oxygen, and 218.1 μatm for pCO2. Average range of diurnal variation for system parameters in Tampa Bay was 73% to 93% of the seasonal range of variability for dissolved oxygen and pH. All system parameters measured in Florida Bay showed distinct variation over diurnal time-scales. However, clear diurnal trends were less evident. The average range of diurnal variability in Florida Bay was 62.8 μmol kg− 1 for total alkalinity, 130.4 μmol kg− 1 for total CO2, 0.13 for pH, 0.053 mmol L− 1 for dissolved oxygen, and 139.8 μatm for pCO2. The average range of diurnal variation was 14% to 102% of the seasonal ranges for these parameters. Diurnal variability in system parameters was most influenced by primary productivity and respiration of benthic communities in Tampa Bay, and by precipitation and dissolution of calcium carbonate in Florida Bay. Our data indicate that use of seasonal data sets without careful consideration of diurnal variability may impart significant error in calculations of annual carbon and oxygen budgets. These observations reinforce the need for higher temporal resolution measurements of oxygen and carbon system parameters in coastal ecosystems.
Stamper, M Andrew; Kittell, Michele M; Patel, Erin E; Corwin, Allison L
2011-09-01
Head and lateral line erosion syndrome (HLLES) is a common but very poorly understood disease of marine aquarium fish. One suspected etiology is the use of granulated activated carbon (GAC) to filter the water. Seventy-two ocean surgeons Acanthurus bahianus were distributed among three carbon-negative control systems and three GAC-treated systems such that each tank contained approximately the same total body mass. Each replicate system was made up of two 250-L circular tanks with a common filtration system (6 fish per tank, 12 fish per replicate system). The GAC-treated tanks were exposed to full-stream, extruded coconut shell activated carbon, which produced a mean total organic carbon content of 0.4 mg/L. The results of this study indicate that extruded coconut shell activated carbon filtering at full-stream rates can cause HLLES-type lesions in ocean surgeons. The HLLES developed exponentially over 15 d, beginning in the chin region. This was followed by pitting in the cheek region, which expanded until erosions coalesced. Once the carbon was discontinued, the processes reversed in a mean time of 49 d. As the lesions healed, they reverted from the coalesced to the pitted stage and then darkened before returning to normal.
Carbon isotope effects associated with autotrophic acetogenesis
NASA Technical Reports Server (NTRS)
Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.
1989-01-01
The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.
Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter
2015-01-01
Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...
Fuel Cell System Contaminants Material Screening Data | Hydrogen and Fuel
contaminants; solution conductivity; pH; total organic carbon (TOC); cyclic voltammetry (CV); membrane conductivity) and organics (measured as total organic carbon) in leachate solutions. Each plot shows the ) contaminants on voltage loss over time for each materials class. GCMS Summary: Top 4 Organic Compounds by
Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy Ai Wei; Mohamed Amin, Mohamed Afizal; Nolasco-Hipolito, Cirilo; Bujang, Kopli
2016-09-01
An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Qiang; Song, Ang; Peng, Wenjie; Jin, Zhenjiang; Müller, Werner E G; Wang, Xiaohong
2017-06-01
Aerobic anoxygenic phototrophic bacteria may play a particular role in carbon cycling of aquatic systems. However, little is known about the interaction between aerobic anoxygenic phototrophic bacteria and hydrochemistry in groundwater-surface water exchange systems of subtropical karst catchments. We carried out a detailed study on the abundance of aerobic anoxygenic phototrophic bacteria and bacterioplankton, hydrochemistry and taxonomy of bacterioplankton in the Maocun watershed, Southwest China, an area with karst geological background. Our results revealed that bacteria are the important contributors to total organic carbon source/sequestration in the groundwater-surface water of this area. The aerobic anoxygenic phototrophic bacteria, including β-Proteobacteria, also appear in the studied water system. In addition to that, the genus Polynucleobacter of the phototropic β-Proteobacteria shows a close link with those sampling sites by presenting bacterial origin organic carbon on CCA biplot and is found to be positively correlated with total nitrogen, dissolved oxygen and pH (r = 0.860, 0.747 and 0.813, respectively) in the Maocun watershed. The results suggest that Polynucleobacter might be involved in the production of organic carbon and might act as the negative feedback on global warming. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine parameters. Emission-control system means any device, system, or element of design that controls.... Nonmethane hydrocarbon equivalent (NMHCE) means the sum of the carbon mass contributions of non-oxygenated... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non...
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine parameters. Emission-control system means any device, system, or element of design that controls.... Nonmethane hydrocarbon equivalent (NMHCE) means the sum of the carbon mass contributions of non-oxygenated... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non...
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray;
2013-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew
2012-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
[Carbon footprint of buildings in the urban agglomeration of central Liaoning, China].
Shi, Yu; Yun, Ying Xia; Liu, Chong; Chu, Ya Qi
2017-06-18
With the development of urbanization in China, buildings consumed lots of material and energy. How to estimate carbon emission of buildings is an important scientific problem. Carbon footprint of the central Liaoning agglomeration was studied with carbon footprint approach, geographic information system (GIS) and high-resolution remote sensing (HRRS) technology. The results showed that the construction carbon footprint coefficient of central Liaoning urban agglomeration was 269.16 kg·m -2 . The approach of interpreting total building area and spatial distribution with HRRS was effective, and the accuracy was 89%. The extraction approach was critical for total carbon footprint and spatial distribution estimation. The building area and total carbon footprint of central Liaoning urban agglomeration in descending order was Shenyang, Anshan, Fushun, Liao-yang, Yingkou, Tieling and Benxi. The annual average increment of footprint from 2011 to 2013 in descending order was Shenyang, Benxi, Fushun, Anshan, Tieling, Yingkou and Liaoyang. The accurate estimation of construction carbon footprint spatial and its distribution was of significance for the planning and optimization of carbon emission reduction.
Fuel Cell System Contaminants Material Screening Data: Text Version |
explore the results of fuel cell system contaminants studies. Total Anions [IC] and Total Concentration of Elements [ICP] in Leachate Solutions Material Class Manufacturer Trade Name and Use Grade ICP Total (ppm ) IC Total (ppm) Total Organic Carbon (ppm) Solution Conductivity (µS/cm) Adhesives LORD 2-part
NASA Technical Reports Server (NTRS)
1978-01-01
A total wash water renovation system concept was developed for removing objectionable materials from spacecraft wash water in order to make the water reusable. The breadboard model system described provides for pretreatment with ferric chloride to remove soap by chemical precipitation, carbon adsorption to remove trace dissolved organics, and ion exchange for removal of dissolved salts. The entire system was put into continuous operation and carefully monitored to assess overall efficiency and equipment maintenance problems that could be expected in actual use. In addition, the capacity of the carbon adsorbers and the ion-exchange resin was calculated and taken into consideration in the final evaluation of the system adequacy. The product water produced was well within the Tentative Wash Water Standards with regard to total organic carbon, conductivity, urea content, sodium chloride content, color, odor, and clarity.
Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua
2014-11-01
Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-control system means any device, system, or element of design that controls or reduces the emissions of... equivalent (NMHCE) means the sum of the carbon mass contributions of non-oxygenated nonmethane hydrocarbons... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non...
2.0 SUMMARY OF METHOD
2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water sample...
Conceptual design study of a six-man solid electrolyte system for oxygen reclamation
NASA Technical Reports Server (NTRS)
Morris, J. P.; Wu, C. K.; Elikan, L.; Bifano, N. J.; Holman, R. R.
1972-01-01
A six-man solid electrolyte oxygen regeneration system (SEORS) that will produce 12.5 lbs/day of oxygen has been designed. The SEORS will simultaneously electrolyze both carbon dioxide and water vapor and be suitable for coupling with a carbon dioxide concentration system of either molecular sieve, solid amine or hydrogen depolarized electrochemical type. The total system will occupy approximately 19 cu ft (34.5 in. x .26 in. x 36 in. high) and will weigh approximately 500 pounds. It is estimated that the total electrical power required will be 1783 watts. The system consists of three major components; electrolyzer, hydrogen diffuser, and carbon deposition reactor. There are 108 electrolysis stacks of 12 cells each in the electrolyzer. Only 2/3 of the 108 stacks will be operated at a time; the remainder will be held in reserve. The design calls for 96 palladium membranes for hydrogen removal to give 60 percent redundancy. Four carbon deposition reactors are employed. The iron catalyst tube in each reactor weighs 7.1 lb and 100 percent redundancy is allowed.
NASA Astrophysics Data System (ADS)
Leach, J. A.; Larsson, A.; Wallin, M. B.; Nilsson, M. B.; Laudon, H.
2016-07-01
Understanding stream carbon export dynamics is needed to accurately predict how the carbon balance of peatland catchments will respond to climatic and environmental change. We used a 12 year record (2003-2014) of continuous streamflow and manual spot measurements of total organic carbon (TOC), dissolved inorganic carbon (DIC), methane (CH4), and organic carbon quality (carbon-specific ultraviolet absorbance at 254 nm per dissolved organic carbon) to assess interannual and seasonal variability in stream carbon export for a peatland catchment (70% mire and 30% forest cover) in northern Sweden. Mean annual total carbon export for the 12 year period was 12.2 gCm-2 yr-1, but individual years ranged between 6 and 18 gCm-2 yr-1. TOC, which was primarily composed of dissolved organic carbon (>99%), was the dominant form of carbon being exported, comprising 63% to 79% of total annual exports, and DIC contributed between 19% and 33%. CH4 made up less than 5% of total export. When compared to previously published annual net ecosystem exchange (NEE) for the studied peatland system, stream carbon export typically accounted for 12 to 50% of NEE for most years. However, in 2006 stream carbon export accounted for 63 to 90% (estimated uncertainty range) of NEE due to a dry summer which suppressed NEE, followed by a wet autumn that resulted in considerable stream export. Runoff exerted a primary control on stream carbon export from this catchment; however, our findings suggest that seasonal variations in biologic and hydrologic processes responsible for production and transport of carbon within the peatland were secondary influences on stream carbon export. Consideration of these seasonal dynamics is needed when predicting stream carbon export response to environmental change.
Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany
NASA Astrophysics Data System (ADS)
Medinski, T.; Freese, D.
2012-04-01
Alley-cropping system is seen as a viable land-use practice for mitigation of greenhouse gas CO2, energy-wood production and soil carbon sequestration. The extent to which carbon is stored in soil varies between ecosystems, and depends on tree species, soil types and on the extent of physical protection of carbon within soil aggregates. This study investigates soil carbon sequestration at alley-cropping systems presented by alleys of fast growing tree species (black locust and poplar) and maize, in Brandenburg, Eastern Germany. Carbon accumulation and turnover are assessed by measuring carbon fractions differing in decomposition rates. For this purpose soil samples were fractionated into labile and recalcitrant soil-size fractions by wet-sieving: macro (>250 µm), micro (53-250 µm) and clay + silt (<53 µm), followed by determination of organic carbon and nitrogen by gas-chromatography. Soil samples were also analysed for the total C&N content, cold-water extractable OC, and microbial C. Litter decomposition was evaluated by litter bags experiment. Soil CO2 flux was measured by LiCor automated device LI-8100A. No differences for the total and stable (clay+silt, <53 µm) carbon fraction were observed between treatment. While cold water-extractable carbon was significantly higher at maize alley compared to black locust alley. This may indicate faster turnover of organic matter at maize alley due to tillage, which influenced greater incorporation of plant residues into the soil, greater soil respiration and microbial activity.
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each.... A separate supply of carbon dioxide need not be provided for each space protected. The total...
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each.... A separate supply of carbon dioxide need not be provided for each space protected. The total...
NASA Astrophysics Data System (ADS)
Schneider, Christian
2017-04-01
The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Ianni, Carmela; Langone, Leonardo; Ori, Carlo; Aulicino, Giuseppe; Cotroneo, Yuri; Saggiomo, Maria; Mangoni, Olga
2017-02-01
Water samples (0-200 m) were collected in a coastal area of the Ross Sea in January 2014 to evaluate the physical and biological forcing on the carbonate system at the mesoscale (distance between stations of 5-10 km). Remote sensing supported the determination of the sampling strategy and helped positioning each sampling station. Total alkalinity, pH, dissolved oxygen, phytoplankton pigments and composition were investigated in combination with measurements of temperature, salinity and current speed. Total inorganic carbon, sea water CO2 partial pressure and the saturation state (Ω) for calcite and aragonite were calculated from the measured total alkalinity and pH. In addition, continuous measurements of atmospheric CO2 concentration were completed. LADCP measurements revealed the presence of a significant change in current speed and direction that corresponded to a clearly defined front characterized by gradients in both temperature and salinity. Phytoplankton biomass was relatively high at all stations and the highest values of chlorophyll-a were found between 20 to 50 m, with the dominant taxonomic group being haptophyceae. The carbonate system properties in surface waters exhibited mesoscale variability with a horizontal length scale of about 10 km. Sea-ice melt, through the input of low salinity water, results in a dilution of the total alkalinity and inorganic carbon, but our observations suggest that phytoplankton activity was the major forcing of the distribution of the carbonate system variables. Higher CO3-, Ω and pH in the surface layer were found where the highest values of chlorophyll-a were observed. The calculated ΔpCO2 pattern follows both MODIS data and in situ chlorophyll-a measurements, and the estimated CO2 fluxes ranged from -0.5 ± 0.4 to -31.0 ± 6.4 mmol m- 2 d- 1. The large range observed in the fluxes is due to both the spatial variability of sea water pCO2 and to the episodic winds experienced.
Preparation of water samples for carbon-14 dating
Feltz, H.R.; Hanshaw, Bruce B.
1963-01-01
For most natural water, a large sample is required to provide the 3 grams of carbon needed for a carbon-14 determination. A field procedure for isolating total dissolved-carbonate species is described. Carbon dioxide gas is evolved by adding sulfuric acid to the water sample; the gas is then collected in a sodium hydroxide trap by recycling in a closed system. The trap is then transported to the dating laboratory where the carbon-14 is counted.
Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich
2015-10-01
Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1) yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1) yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1) yr(-1) ) due to very high fruit production (15-20 Mg ha(-1) yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nędzarek, Arkadiusz; Pociecha, Agnieszka
2010-12-01
Hydrochemical research into the small, shallow water bodies and wetland areas around the Henryk Arctowski Polish Antarctic Station (King George Island) is presented. Concentrations of nitrite, nitrate, ammonium, and total nitrogen in these waters were determined, as were those of reactive and total phosphorous, inorganic carbon, organic carbon, total carbon, silicate, and chloride and sulfate ions. Conductivity and pH were also measured. Average concentrations ranged widely, e.g., total nitrogen 0.176-29.21 mg L -1, total phosphorus 0.022-18.35 mg L -1, total carbon 1.38-26.90 mg L -1, Cl - 30.17-850 mg L -1, and SO 42- 2.11-236 mg L -1. The trophic status was influenced by influxes of nitrogen and phosphorus from penguin rookeries. Selected water bodies supported 31 taxa of algae and 11 invertebrate taxa, with Euglenophyta dominating in waters with high concentrations of ammonium-nitrogen, whereas diatoms characterized Lake Wujka, with low ammonium concentrations. All water bodies studied had rotifers, but crustaceans were only represented in Lake Wujka.
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 95.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 95.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 95.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds
NASA Technical Reports Server (NTRS)
2008-01-01
Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.
P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw
2010-01-01
We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...
Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.
Wang, Songyi; Tao, Fengming; Shi, Yuhe
2018-01-06
In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.
Hower, J.C.; Finkelman, R.B.; Rathbone, R.F.; Goodman, J.
2000-01-01
Fly ash was collected from eight mechanical and 10 baghouse hoppers at each of the twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of many low-sulfur, high-volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical hoppers. The mechanical fly ash, coarser than the baghouse ash, showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbon and total coke - the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in proportions of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units. Mercury capture is a function of both the total carbon content and the gas temperature at the point of fly ash separation, mercury content increasing with an increase in carbon for a specific collection system. Mercury adsorption on fly ash carbon increases at lower flue-gas temperatures. Baghouse fly ash, collected at a lower temperature than the higher-carbon mechanically separated fly ash, contains a significantly greater amount of Hg.
Chapelle, Francis H.; Thomas, Lashun K.; Bradley, Paul M.; Rectanus, Heather V.; Widdowson, Mark A.
2012-01-01
Aquifer sediment and groundwater chemistry data from 15 Department of Defense facilities located throughout the United States were collected and analyzed with the goal of estimating the amount of natural organic carbon needed to initiate reductive dechlorination in groundwater systems. Aquifer sediments were analyzed for hydroxylamine and NaOH-extractable organic carbon, yielding a probable underestimate of potentially bioavailable organic carbon (PBOC). Aquifer sediments were also analyzed for total organic carbon (TOC) using an elemental combustion analyzer, yielding a probable overestimate of bioavailable carbon. Concentrations of PBOC correlated linearly with TOC with a slope near one. However, concentrations of PBOC were consistently five to ten times lower than TOC. When mean concentrations of dissolved oxygen observed at each site were plotted versus PBOC, it showed that anoxic conditions were initiated at approximately 200 mg/kg of PBOC. Similarly, the accumulation of reductive dechlorination daughter products relative to parent compounds increased at a PBOC concentration of approximately 200 mg/kg. Concentrations of total hydrolysable amino acids (THAA) in sediments also increased at approximately 200 mg/kg, and bioassays showed that sediment CO2 production correlated positively with THAA. The results of this study provide an estimate for threshold amounts of bioavailable carbon present in aquifer sediments (approximately 200 mg/kg of PBOC; approximately 1,000 to 2,000 mg/kg of TOC) needed to support reductive dechlorination in groundwater systems.
THE EFFECT OF FLUORIDE ON LEAD SOLUBILITY
Difficulties in predicting and controlling lead corrosion are encountered by hundreds of water systems across the country. Inorganic carbonate, sulfate, silicate, orthophosphate, pH, total organic carbon, temperature and the type/amount of chlorine residual are all known factors ...
Carbon pathways in the Seine river system
NASA Astrophysics Data System (ADS)
Marescaux, Audrey; Garnier, Josette; Thieu, Vincent
2016-04-01
Many papers have recently suggested that the anthropogenic perturbations of the carbon cycle have led to a significant increase in carbon export from terrestrial ecosystems to inland waters. The quantification of the carbon cascade (including fate of CO2 emissions) in highly anthropized river systems is thus essential to understand the response of aquatic systems. The Seine Basin where Paris and its environs represent 2/3 of its population, and agriculture is particularly intensive, is a eutrophic system. The main aim of this research is to understand and quantify how an excess of anthropogenic nutrients entering the Seine River system may locally enhance primary production, C sequestration, C respiration and CO2 emissions. The development of a new CO2 module in the pre-existing biogeochemical Riverstrahler model (Billen et al., 2007) should enable a refined calculation of the carbon budget. Besides calculation of the Respiration and Production activities along the entire river continuum, it will directly associate CO2 emissions. The CO2 modelling results will be confronted to (i) direct (in-situ) measurements with a non-dispersive infrared gas analyzer and (ii) indirect measurements based on total alkalinity, carbonate and pH along the Seine river system during the last decades, and (iii) calculations of a C metabolism budget. Billen, G., Garnier, J., Némery, J., Sebilo, M., Sferratore, A., Barles, S., Benoit P., Benoît, M. (2007). A long-term view of nutrient transfers through the Seine river continuum. Science of the Total Environment, 375(1-3), 80-97. http://doi.org/10.1016/j.scitotenv.2006.12.005
Stream carbon dynamics in low-gradient headwaters of a forested watershed
April Bryant-Mason; Y. Jun Xu; Johnny M. Grace
2013-01-01
Headwater streams drain more than 70 percent of the total watershed area in the United States. Understanding of carbon dynamics in the headwater systems is of particular relevance for developing best silvicultural practices to reduce carbon export. This study was conducted in a low-gradient, predominantly forested watershed located in the Gulf Coastal Plain region, to...
Katam, Keerthi; Bhattacharyya, Debraj
2018-05-12
Microalgae-based treatment systems have been successfully used for the polishing of domestic wastewater. Research is underway in studying the suitability of using these systems as main treatment units. This study focuses on comparing the performances of a mixed microalgal culture and an aerobic bacterial culture, based on the kinetic evaluation, in removing organic carbon from a kitchen wastewater. The two systems were operated at six different solid retention times (SRTs)-2, 4, 6, 8, 10, and 12 days in continuous mode. The influent and effluent samples were analyzed for chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN), phosphates, and surfactants. Steady-state kinetics (k, K s , Y, and k d ) for organic carbon removal were obtained by fitting experimental data in linearized Michaelis-Menten and Monod equations. The mixed microalgal system showed similar or better performance in COD and TN removal (88 and 85%, respectively) when compared with the COD and TN removal by the aerobic bacterial system (89 and 48%). A maximum lipid yield of 40% (w/w of dry biomass) was observed in the microalgal system. Saturated fatty acids accounted for 50% of the total observed FAME species. The study indicates that the mixed microalgal culture is capable of treating kitchen wastewater and has the potential to replace aerobic bacteria in biological treatment systems in certain cases.
Analysis on Dissemination Conditions of Photovoltaics in Japan by Using Energy System Model MARKAL
NASA Astrophysics Data System (ADS)
Endo, Eiichi; Ichinohe, Masayuki
The national target for PV capacity in Japan is 4. 82, GW in 2010, and several PV Roadmaps until 2030 are also described. To achieve the target, several support programs, such as subsidization to capital cost, Green Credit by the Green Power Certification System, buy-back under the Renewable Portfolio Standard low, have been already introduced. Carbon tax is still under consideration, but there are several analyses about possible carbon tax. The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive with other energy technologies and make the target for PV capacity achievable by 2030 in Japan under an expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. Based on the results of analysis, under 6000, JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120, JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost unnecessary in 2030, if we can reduce it less than 170, JPY/W. The total necessary buy-back meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue from the assumed carbon tax can finance the annual total necessary buy-back. This means if photovoltaics can attain the targeted PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently.
A classification of freshwater Louisiana lakes based on water quality and user perception data.
Burden, D G; Malone, R F
1987-09-01
An index system developed for Louisiana lakes was based on correlations between measurable water quality parameters and perceived lake quality. Support data was provided by an extensive monitoring program of 30 lakes coordinated with opinion surveys undertaken during summer 1984. Lakes included in the survey ranged from 4 to 735 km(2) in surface area with mean depths ranging from 0.5 to 8.0 m. Water quality data indicated most of these lakes are eutrophic, although many have productive fisheries and are considered recreational assets. Perception ratings of fishing quality and its associated water quality were obtained by distributing approximately 1200 surveys to Louisiana Bass Club Associaton members. The ability of Secchi disc transparency, total organic carbon, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a to discriminate between perception classes was examined using probability distributions and multivariate analyses. Secchi disc and total organic carbon best reflected perceived lake conditions; however, these parameters did not provide the discrimination necessary for developing a quantitative risk assessment of lake trophic state. Consequently, an interim lakes index system was developed based on total organic carbon and perceived lake conditions. The developed index system will aid State officials in interpretating and evaluating regularly collected lake quality data, recognizing potential problem areas, and identifying proper management policies for protecting fisheries usage within the State.
USDA-ARS?s Scientific Manuscript database
We implemented conservation farming practices (winter cover cropping plus strip tillage) for a non-irrigated corn production system in the southern coastal plain of Georgia, USA that had been previously been managed under a plow and harrow tillage regime. Total soil carbon and nitrogen were measure...
Controlling Processes on Carbonate Chemistry across the Pacific
NASA Astrophysics Data System (ADS)
Hartman, S. E.
2016-12-01
The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.
Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples
NASA Astrophysics Data System (ADS)
Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.
2014-12-01
Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed for online separation of physically dissolved nitrogen. This novel HTC system, "iso TOC cube", provides an innovative tool with large potential in investigation of biogeochemical carbon and nitrogen cycles.
NASA Astrophysics Data System (ADS)
Lu, Xixi; Ran, Lishan
2015-04-01
The Yellow River system used to have very high sediment export to ocean (around 1.5 Gt/yr in the 1950s) because of severe soil erosion on the Loess Plateau. However, its sediment export has declined to <0.25 Gt/yr in recent years (in the 2000s), mainly due to human activities like construction of reservoirs and check dams and other soil and water conservations such as construction of terraces and vegetation restoration. Such drastic reduction in soil erosion and sediment flux and subsequently in associated Particular Organic Carbon (POC) transport can potentially play a significant role in carbon cycling. Through the sediment flux budget we examined POC budget and carbon sequestration through vegetation restoration and various soil and water conservations including reservoirs construction over the past decades in the Yellow River system. Landsat imageries were used to delineate the reservoirs and check dams for estimating the sediment trapping. The reservoirs and check dams trapped a total amount of sediment 0.94 Gt/yr, equivalent to 6.5 Mt C. Soil erosion controls through vegetation restoration and terrace construction reduced soil erosion 1.82 Gt/yr, equivalent to 12 Mt C. The annual NPP increased from 0.150 Gt C in 2000 to 0.1889 Gt C in 2010 with an average increment rate of 3.4 Mt C per year over the recent decade (from 2000 to 2010) through vegetation restoration. The total carbon stabilized on slope systems through soil erosion controls (12 Mt C per year) was much higher than the direct carbon sequestration via vegetation restoration (3.4 Mt C per year), indicating the importance of horizontal carbon mobilization in carbon cycling, albeit a high estimate uncertainty.
NASA Astrophysics Data System (ADS)
Boix-Fayos, Carolina; Almagro, María; Díaz-Pereira, Elvira; Pérez-Cutillas, Pedro; de Vente, Joris; Martínez-Mena, María
2017-04-01
Quantification of different organic carbon pools mobilized by lateral fluxes is important to close organic carbon (OC) budgets at the catchment scale. This quantification helps to identify in which forms OC is transferred, deposited, and mineralized during the erosion cycle. Many Mediterranean mountain catchments have experienced important land use changes in the last 50 years leading to a recovery of the vegetation in many cases. Furthermore, many of them are characterized by stream discontinuity with high runoff rates responding to intensive hydrological pulses. There is a current lack of knowledge on fluvial OC fluxes and their relation to soil organic carbon stocks in these systems. The objective of this research was to quantify the amount of organic carbon transported by these systems in a catchment representative of Mediterranean conditions and to explore how intermittent fluvial systems can affect organic carbon transported by lateral flows. During six years OC fluvial fluxes in a catchment of 77 km2 in SE Spain were monitored. The catchment experienced a greening-up process in the last 50 years through a conversion mainly from agricultural use (decrease 44%) to forest (increase 45%). Data on water discharge, sediment concentration, total organic carbon (OC) of suspended sediments and dissolved organic carbon (DOC) were collected throughout 32 rainfall events and 13 sampling periods with base flow conditions. The data were collected from two monitoring stations located on two nested subcatchments covering permanent and ephemeral flow conditions. We found no significant differences in OC concentrations in suspended sediments (10.1 ± 5 g kg-1) and DOC (0.014 ± 0.010 g kg-1) between the ephemeral and the permanent streams. However, sediment concentration, index of aggregation and silt content of suspended load were significantly higher in the ephemeral stream than in the permanent one. OC concentration of suspended sediments was much lower than OC concentration of the catchment soils (20.5 ± 7 g kg-1), and it showed a strong positive correlation with clay content. DOC concentrations were quite high, being in the upper limit of the mean values reported for European rivers and close to DOC values of runoff generated in natural forests from similar areas. A strong positive correlation between DOC and sediment concentration was also observed. DOC represents a 20% and 12% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. OC in suspended solids represents an 80% and 88% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. The ephemeral stream (with a contribution of 70% to the total catchment area) provides up to 20% to the total transported OC downstream. The OC transported to the catchment outlet (1.97 g C m-2 year-1) constitutes 33 % of the OC lateral flux mobilized in the upper subcatchment areas (6 g C m-2 year-1). These findings highlight the strong dynamic character of organic carbon during transport in these fluvial systems and the important role of the hydrological regime for carbon transport and stability.
Optoelectronic system of online measurements of unburned carbon in coal fly ash
NASA Astrophysics Data System (ADS)
Golas, Janusz; Jankowski, Henryk; Niewczas, Bogdan; Piechna, Janusz; Skiba, Antoni; Szkutnik, Wojciech; Szkutnik, Zdzislaw P.; Wartak, Ryszarda; Worek, Cezary
2001-08-01
Carbon-in-ash level is an important consideration for combustion efficiency as well as ash marketing. The optoelectronic analyzing system for on-line determination and monitoring of the u burned carbon content of ash samples is presented. The apparatus operates on the principle that carbon content is proportional to the reflectance of IR light. Ash samples are collected iso kinetically from the flue gas duct and placed in a sample tube with a flat glass bottom. The same is then exposed to a light. The reflectance intensity is used by the system's computer to determine residual carbon content from correlation curves. The sample is then air purged back to the duct or to the attached sample canister to enable laboratory check analysis. The total cycle time takes between 5 and 10 minutes. Real time result of carbon content with accuracy 0.3-0.7 percent are reported and can be used for boiler controlling.
Dinsmore, K J; Billett, M F; Dyson, K E
2013-07-01
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5-year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2 , CH4 and N2 O. We show that short-term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in-stream temperature-dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m(-2) yr(-1) ), followed by CO2 evasion (10.0 g C m(-2) yr(-1) ). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere-atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change. © 2013 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh;
2016-01-01
Urban emissions of greenhouse gases (GHG) represent more than 70% of the global fossil fuel GHG emissions. Unless mitigation strategies are successfully implemented, the increase in urban GHG emissions is almost inevitable as large metropolitan areas are projected to grow twice as fast as the world population in the coming 15 years. Monitoring these emissions becomes a critical need as their contribution to the global carbon budget increases rapidly. In this study, we developed the first comprehensive monitoring systems of CO2 emissions at high resolution using a dense network of CO2 atmospheric measurements over the city of Indianapolis. The inversion system was evaluated over a 8-month period and showed an increase compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product, with a 20% increase in the total emissions over the area (from 4.5 to 5.7 Metric Megatons of Carbon +/- 0.23 Metric Megatons of Carbon). However, several key parameters of the inverse system need to be addressed to carefully characterize the spatial distribution of the emissions and the aggregated total emissions.We found that spatial structures in prior emission errors, mostly undetermined, affect significantly the spatial pattern in the inverse solution, as well as the carbon budget over the urban area. Several other parameters of the inversion were sufficiently constrained by additional observations such as the characterization of the GHG boundary inflow and the introduction of hourly transport model errors estimated from the meteorological assimilation system. Finally, we estimated the uncertainties associated with remaining systematic errors and undetermined parameters using an ensemble of inversions. The total CO2 emissions for the Indianapolis urban area based on the ensemble mean and quartiles are 5.26 - 5.91 Metric Megatons of Carbon, i.e. a statistically significant difference compared to the prior total emissions of 4.1 to 4.5 Metric Megatons of Carbon. We therefore conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emissions and their associated error structures are required if we are to determine the spatial structures of urban emissions at high resolution.
Oxidation kinetics of a continuous carbon phase in a nonreactive matrix
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Cawley, James D.; Parthasarathy, Triplicane A.
1995-01-01
Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.
Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint
Wang, Songyi; Tao, Fengming; Shi, Yuhe
2018-01-01
In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639
The carbon footprint of Australian health care.
Malik, Arunima; Lenzen, Manfred; McAlister, Scott; McGain, Forbes
2018-01-01
Carbon footprints stemming from health care have been found to be variable, from 3% of the total national CO 2 equivalent (CO 2 e) emissions in England to 10% of the national CO 2 e emissions in the USA. We aimed to measure the carbon footprint of Australia's health-care system. We did an observational economic input-output lifecycle assessment of Australia's health-care system. All expenditure data were obtained from the 15 sectors of the Australian Institute of Health and Welfare for the financial year 2014-15. The Australian Industrial Ecology Virtual Laboratory (IELab) data were used to obtain CO 2 e emissions per AUS$ spent on health care. In 2014-15 Australia spent $161·6 billion on health care that led to CO 2 e emissions of about 35 772 (68% CI 25 398-46 146) kilotonnes. Australia's total CO 2 e emissions in 2014-15 were 494 930 kilotonnes, thus health care represented 35 772 (7%) of 494 930 kilotonnes total CO 2 e emissions in Australia. The five most important sectors within health care in decreasing order of total CO 2 e emissions were: public hospitals (12 295 [34%] of 35 772 kilotonnes CO 2 e), private hospitals (3635 kilotonnes [10%]), other medications (3347 kilotonnes [9%]), benefit-paid drugs (3257 kilotonnes [9%]), and capital expenditure for buildings (2776 kilotonnes [8%]). The carbon footprint attributed to health care was 7% of Australia's total; with hospitals and pharmaceuticals the major contributors. We quantified Australian carbon footprint attributed to health care and identified health-care sectors that could be ameliorated. Our results suggest the need for carbon-efficient procedures, including greater public health measures, to lower the impact of health-care services on the environment. None. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
A Regionally-Specific Assessment of the Carbon Abatement Potential of Biochar
NASA Astrophysics Data System (ADS)
Birch, G.; Field, J.; Keske, C.; DeFoort, M.; Cotrufo, M.
2012-12-01
Biochar, the solid carbon-rich co-product of certain bioenergy conversion technologies, is receiving a great deal of attention as a strategy for sequestering carbon in soils and improving the performance of agricultural systems. Several studies have attempted to quantify the lifecycle carbon abatement potential of biochar systems, considering emissions associated with feedstock provisioning and processing, energy co-production, agronomic system impacts (yield increases and nitrous oxide emission suppression), and the recalcitrance of biochar in soil, as well as accounting for the carbon abatement value of using the char as a fuel that is foregone when it is used as a soil amendment instead. These assessments typically focus on biochar production in advanced, efficient slow pyrolysis systems, despite the fact that much biochar is currently produced through small-scale carbonization or gasification systems that lack energy recovery or even emission control capability. Here, a mechanistic biochar system assessment model is presented, capable of estimating system carbon abatement value and profitability for different feedstocks, conversion technologies and temperatures, and application into different agricultural soils. The variation of biochar recalcitrance in soil as a function of production temperature is considered, and agricultural impacts are assessed in the context of biochar's liming value, an effect that is straightforward to quantify and that has often been implicated in observed crop yield increases or nitrous oxide emission reductions. The analysis is rigorous in that tradeoffs between biochar production quantity and quality are endogenized, but conservative in that other potential agronomic benefits of biochar (e.g. improved soil water holding capacity) are not considered. This model is applied to a case study of bioenergy and biochar co-production in northern Colorado using beetle-killed pine wood and slash as a feedstock. Preliminary results suggest that a) high system carbon abatement potentials are possible in the case study scenario, but only in systems that control air pollutant emissions and recover energy; b) biochar has more value as a soil amendment than a fuel when produced at high temperatures and applied to soils of low pH and low buffering capacity; and c) the carbon abatement value of agronomic impacts in temperate systems is relatively minor compared to other parts of the lifecycle. Additional results will be presented for which an optimal system design is identified and the analysis scaled-up to reflect the total beetle-kill feedstock availability in the state of Colorado in order to estimate the total regional carbon-mitigation potential of the technology.
Floodplain Impact on Riverine Dissolved Carbon Cycling in the Mississippi-Atchafalaya River System
NASA Astrophysics Data System (ADS)
DelDuco, E.; Xu, Y. J.
2017-12-01
Studies have shown substantial increases in the export of terrestrial carbon by rivers over the past several decades, and have linked these increases to human activity such as changes in land use, urbanization, and intensive agriculture. The Mississippi River (MR) is the largest river in North America, and is among the largest in the world, making its carbon export globally significant. The Atchafalaya River (AR) receives 25% of the Mississippi River's flow before traveling 189 kilometers through the largest bottomland swamp in North America, providing a unique opportunity to study floodplain impacts on dissolved carbon in a large river. The aim of this study was to determine how dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the AR change spatially and seasonally, and to elucidate which processes control carbon cycling in this intricate swamp river system. From May 2015 -May 2016, we conducted monthly river sampling from the river's inflow to its outflow, analyzing samples for DOC and DIC concentrations and δ 13C stable isotope composition. During the study period, the river discharged a total of 5.35 Tg DIC and a total of 2.34 Tg DOC into the Gulf of Mexico. Based on the mass inflow-outflow balance, approximately 0.53 Tg ( 10%) of the total DIC exported was produced within the floodplain, while 0.24 Tg ( 10%) of DOC entering the basin was removed. The AR was consistently saturated with pCO2 above atmospheric pressure, indicating that this swamp-river system acts a large source of DIC to the atmosphere as well as to coastal margins. Largest changes in carbon constituents occurred during periods of greatest inundation of the basin, and corresponded with shifts in isotopic composition that indicated large inputs of DIC from floodplains. This effect was particularly pronounced during initial flood stages. This study demonstrates that a major river with extensive floodplains in its coastal margin can act as an important source of DIC as well as a sink for DOC. In light of increased riverine carbon export due to climate change and enhanced hydrological cycling, low-lying floodplain systems such as the AR may need to be looked to in future years for the filtration and removal of organic materials, which impact coastal margins and ocean ecosystems as a whole.
Schoen, Heidi R; Peyton, Brent M; Knighton, W Berk
2016-12-01
A novel analytical system was developed to rapidly and accurately quantify total volatile organic compound (VOC) production from microbial reactor systems using a platinum catalyst and a sensitive CO 2 detector. This system allows nearly instantaneous determination of total VOC production by utilizing a platinum catalyst to completely and quantitatively oxidize headspace VOCs to CO 2 in coordination with a CO 2 detector. Measurement of respiratory CO 2 by bypassing the catalyst allowed the total VOC content to be determined from the difference in the two signals. To the best of our knowledge, this is the first instance of a platinum catalyst and CO 2 detector being used to quantify the total VOCs produced by a complex bioreactor system. Continuous recording of these CO 2 data provided a record of respiration and total VOC production throughout the experiments. Proton transfer reaction-mass spectrometry (PTR-MS) was used to identify and quantify major VOCs. The sum of the individual compounds measured by PTR-MS can be compared to the total VOCs quantified by the platinum catalyst to identify potential differences in detection, identification and calibration. PTR-MS measurements accounted on average for 94 % of the total VOC carbon detected by the platinum catalyst and CO 2 detector. In a model system, a VOC producing endophytic fungus Nodulisporium isolate TI-13 was grown in a solid state reactor utilizing the agricultural byproduct beet pulp as a substrate. Temporal changes in production of major volatile compounds (ethanol, methanol, acetaldehyde, terpenes, and terpenoids) were quantified by PTR-MS and compared to the total VOC measurements taken with the platinum catalyst and CO 2 detector. This analytical system provided fast, consistent data for evaluating VOC production in the nonhomogeneous solid state reactor system.
L'vova, N V; Tupitsyna, Iu Iu; Badalov, N G; Krasnikov, V E; Lebedeva, O D
2013-01-01
The results of the study on the influence of carbon dioxide baths differing in the total mineralization levels on the clinical course of hypertensive disease associated with coronary heart disease and on various functional systems of the body. The data obtained provide an insight into the role of salt concentrations (10 and 20 g/l) in carbon dioxide bath water (1.2 g/l) applied for the traditional treatment of the patients with hypertensive disease associated with concomitant coronary heart disease and musculoskeletal pathology. Highly mineralized bath water has a greater influence on the functional state of the cardiovascular system by causing a more pronounced decrease in peripheral vascular resistance and hypotensive effect. Baths with a salt concentration of 20 g/l markedly reduced pain and had anti-inflammatory effect in the patients with pathology of support and locomotor organs.
Sayyahzadeh, Amir Hossein; Ganjidoust, Hossein; Ayati, Bita
2016-01-01
Moving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e. the place of growth and formation of biofilm, play the main role in the treatment in this system, MBBR systems were operated in the present research with modified Bee-cell media. Activated carbon granules of almond or walnut shells were placed in media pores to improve the treatment of refinery oil wastewater and their operation with MBBR system was compared with the conventional Bee-cell media. In these experiments, the effects of organic loading rate, hydraulic retention time (HRT), media filling ratio (MFR), and activated carbon concentration (ACC) used in the media were investigated on the operation of MBBR systems. The analysis of results estimated the optimal values of HRT, MFR, and ACC used in the media between the studied levels, being equal to 22 h, 50%, and 7.5 g/L, respectively. Under these conditions, total petroleum hydrocarbons removal efficiencies for MBBR systems using Bee-cell media with carbon of almond, carbon of walnut shells, and a carbon-free system were 95 ± 1.17%, 91 ± 1.11%, and 57 ± 1.7%, respectively, which confirms the adsorption ability of systems with the media containing activated carbon in the removal of petroleum compounds from wastewater.
Making a case for telehealth: measuring the carbon cost of health-related travel.
Ellis, Isabelle; Cheek, Colleen; Jaffray, Linda; Skinner, Timothy
2013-01-01
Telehealth services are promoted to reduce the cost of travel for people living in rural areas. The previous Australian Government, through the national Digital Economy Strategy, invested heavily in telehealth service development, at the same time introducing a carbon pricing mechanism. In planning a range of new telehealth services to a rural community the authors sought to quantify the travel conducted by people from one rural area in Australia to access health care, and to calculate the associated carbon emissions. A population survey was conducted over a 1-week period of health-related travel events for the year 1 July 2011 to 30 June 2012 of all households on King Island, a community situated between the Australian mainland state of Victoria and the state of Tasmania. Validated emissions calculators were sourced from the Carbon Neutral website, including the vehicle and fuel use calculator and air travel carbon calculator, to calculate the total emissions associated with the fuel burned in tonnes of carbon dioxide equivalent (tCO2e). Thirty nine percent of the population (625 participants) reported a total of 511 healthcare-related travel events. Participants travelled a total of 346 573 km and generated 0.22 tCO2e per capita. Participants paid the cost of their own travel more than 70% of the time. Dependence on fossil fuels for transport in a carbon economy has a significant impact on total healthcare carbon emissions. Alternative models of care, such as telehealth, need be developed for an environmentally sustainable healthcare system for rural and remote areas.
Cooperative water network system to reduce carbon footprint.
Lim, Seong-Rin; Park, Jong Moon
2008-08-15
Much effort has been made in reducing the carbon footprint to mitigate climate change. However, water network synthesis has been focused on reducing the consumption and cost of freshwater within each industrial plant. The objective of this study is to illustrate the necessity of the cooperation of industrial plants to reduce the total carbon footprint of their water supply systems. A mathematical optimization model to minimize global warming potentials is developed to synthesize (1) a cooperative water network system (WNS) integrated over two plants and (2) an individual WNS consisting of two WNSs separated for each plant. The cooperative WNS is compared to the individual WNS. The cooperation reduces their carbon footprint and is economically feasible and profitable. A strategy for implementing the cooperation is suggested for the fair distribution of costs and benefits. As a consequence, industrial plants should cooperate with their neighbor plants to further reduce the carbon footprint.
Carbon and nitrogen balances for six shrublands across Europe
NASA Astrophysics Data System (ADS)
Beier, Claus; Emmett, Bridget A.; Tietema, Albert; Schmidt, Inger K.; PeñUelas, Josep; LáNg, Edit KováCs; Duce, Pierpaolo; de Angelis, Paolo; Gorissen, Antonie; Estiarte, Marc; de Dato, Giovanbattista D.; Sowerby, Alwyn; KröEl-Dulay, GyöRgy; Lellei-KováCs, Eszter; Kull, Olevi; Mand, Pille; Petersen, Henning; Gjelstrup, Peter; Spano, Donatella
2009-12-01
Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems, but data on such cycles are required for developing and testing ecosystem models. As climate change progresses, the potential feedback from terrestrial ecosystems to the atmosphere through changes in carbon stocks, carbon sequestration, and general knowledge on biogeochemical cycles becomes increasingly important. Here we present carbon and nitrogen balances of six shrublands along a climatic gradient across the European continent. The aim of the study was to provide a basis for assessing the range and variability in carbon storage in European shrublands. Across the sites the net carbon storage in the systems ranged from 1,163 g C m-2 to 18,546 g C m-2, and the systems ranged from being net sinks (126 g C m-2 a-1) to being net sources (-536 g C m-2 a-1) of carbon with the largest storage and sink of carbon at wet and cold climatic conditions. The soil carbon store dominates the carbon budget at all sites and in particular at the site with a cold and wet climate where soil C constitutes 95% of the total carbon in the ecosystem. Respiration of carbon from the soil organic matter pool dominated the carbon loss at all sites while carbon loss from aboveground litter decomposition appeared less important. Total belowground carbon allocation was more than 5 times aboveground litterfall carbon which is significantly greater than the factor of 2 reported in a global analysis of forest data. Nitrogen storage was also dominated by the soil pools generally showing small losses except when atmospheric N input was high. The study shows that in the future a climate-driven land cover change between grasslands and shrublands in Europe will likely lead to increased ecosystem C where shrublands are promoted and less where grasses are promoted. However, it also emphasizes that if feedbacks on the global carbon cycle are to be predicted it is critically important to quantify and understand belowground carbon allocation and processes as well as soil carbon pools, particularly on wet organic soils, rather than plant functional change as the soil stores dominate the overall budget and fluxes of carbon.
Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.
Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme
2017-12-01
Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, Inez
The project aims to investigate the feasibility of advancing our understanding of the carbon cycle, using a carbon-weather data assimilation system that updates the modeled carbon dioxide concentration and atmospheric circulation every six hours using CO 2 data (from the OCO 2 satellite) and weather data. At the core of the system is the DOE-NCAR-CAM5fv global circulation model coupled to the National Center for Atmospheric Research's Data Assimilation Testbed, running an ensemble of 30 models. This combination provides realistic vertical carbon dioxide gradients and conservation of dry air mass. A global four-dimensional distribution of atmospheric CO 2 concentration is produced.more » Our results show (1) that OCO 2 total precipitable water data are reliable and provide valuable uncertainty information for the OCO 2 data assimilation; and (2) that our approach is a promising method for monitoring national carbon dioxide emissions.« less
Thermodynamic analyses of a biomass-coal co-gasification power generation system.
Yan, Linbo; Yue, Guangxi; He, Boshu
2016-04-01
A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji
2007-09-26
Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.
Thermal design of a Mars oxygen production plant
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Iyer, Venkatesh A.
1991-01-01
The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.
Gas hydrate and spatial venting variations in the continental margin offshore Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Lin, S.; Lim, Y.; Hsieh, W.; Yang, T.; Wang, Y.
2006-12-01
Strong BSR, high methane contents and rapid sulfate reduction were found in the continental margin sediments offshore southwestern Taiwan. In order to identify the venting phenomena and its relationship with gas hydrate, this research investigate sea floor vent features using WHOI?|s Towcam system as well as piston core in the study region. A total of 10 dives were conducted on board the r/v OR-1. Pore water sulfate, dissolved sulfide, methane, chloride, del O18 ratio, sediment organic carbon, carbonate content and carbonate del C13 ratio, pyrite-S were measured Large spatial variations were found based on pictures obtained from Towcam system and piston cores. Active venting features include bacteria mat, live dense bivalve patches, gas plume, temperature and salinity fluctuations, rapid sulfate reduction and high concentrations of methane in sediments. In addition, vent chimney, pockmark and large authigenic carbonate buildup were also observed in the active venting area. In contrast, in some areas without active venting features, scatter dead chimney, semi- buried carbonate structures, and dead bivalves were found. Total sulfate depletion was found at depth as shallow as 1 meter below sediment water interface in area near active vent whereas almost no sulfate depletion was observed in areas without any vent feature. Stages of carbonate build up existed, with initial phase dominated by small tube, chimney, and later with massive carbonate structures protruding the sea floor. The appearances of massive carbonate buildup structures seemed to indicate the end stage of gas hydrate venting phenomena.
Modeling carbon emissions from urban traffic system using mobile monitoring.
Sun, Daniel Jian; Zhang, Ying; Xue, Rui; Zhang, Yi
2017-12-01
Comprehensive analyses of urban traffic carbon emissions are critical in achieving low-carbon transportation. This paper started from the architecture design of a carbon emission mobile monitoring system using multiple sets of equipment and collected the corresponding data about traffic flow, meteorological conditions, vehicular carbon emissions and driving characteristics on typical roads in Shanghai and Wuxi, Jiangsu province. Based on these data, the emission model MOVES was calibrated and used with various sensitivity and correlation evaluation indices to analyze the traffic carbon emissions at microscopic, mesoscopic and macroscopic levels, respectively. The major factors that influence urban traffic carbon emissions were investigated, so that emission factors of CO, CO 2 and HC were calculated by taking representative passenger cars as a case study. As a result, the urban traffic carbon emissions were assessed quantitatively, and the total amounts of CO, CO 2 and HC emission from passenger cars in Shanghai were estimated as 76.95kt, 8271.91kt, and 2.13kt, respectively. Arterial roads were found as the primary line source, accounting for 50.49% carbon emissions. In additional to the overall major factors identified, the mobile monitoring system and carbon emission quantification method proposed in this study are of rather guiding significance for the further urban low-carbon transportation development. Copyright © 2017 Elsevier B.V. All rights reserved.
Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
Jams, John T.
2010-01-01
Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.
Development of a Low Cost, Compact, Spectrophotometric pH Sensor
NASA Astrophysics Data System (ADS)
Spaulding, R. S.; Darlington, R. C.; Beck, J. C.; DeGrandpre, M. D.
2016-02-01
Understanding the ecological impacts of oceanic CO2 uptake in the post-industrial world requires high spatial and temporal resolution measurements of inorganic carbon. Most researchers aim for measuring two of the four inorganic carbon parameters (partial pressure of CO2, total alkalinity, total dissolve inorganic carbon, and pH), in order to fully characterize the carbonate system. While this is desirable in many circumstances, in some cases it may be possible to fully characterize the system using pH and salinity, or even to use pH alone as a proxy to the health of calcifying marine organisms. The development of relatively inexpensive spectrophotometric pH sensors compatible with Lagrangian drifters would greatly improve the ability of researchers to characterize the changing oceanic carbonate system. We have designed and tested a novel, miniaturized, submersible, autonomous opto-fluidic device that can be manufactured at a relatively low cost. The flexible design can be deployed independent of or in tandem with GDP style drifters and will enable spectrophotometric pH technology on a host of drifting platforms and buoys. This device uses a dual wavelength light emitting diode (LED) light source, low volume mixer, and an optical flow-cell mounted to the electronic controller board. Laboratory testing shows that this device measures pH with similar accuracy and precision to other spectrophotometric methods such as the SAMI-pH.
Ohira, Shin-Ichi; Kaneda, Kyosuke; Matsuzaki, Toru; Mori, Shuta; Mori, Masanobu; Toda, Kei
2018-06-05
Most quantifications are achieved by comparison of the signals obtained with the sample to those from a standard. Thus, the purity and stability of the standard are key in chemical analysis. Furthermore, if an analyte standard cannot be obtained, quantification cannot be achieved, even if the chemical structures are identified by a qualification method (e.g., high-resolution mass spectrometry). Herein, we describe a universal and analyte standard-free detector for aqueous-eluent-based high-performance liquid chromatography. This universal carbon detector (UCD) was developed based on total organic carbon detection. Separated analytes were oxidized in-line and converted to carbon dioxide (CO 2 ). Generated CO 2 was transferred into the gas phase and collected into ultrapure water, which was followed by conductivity detection. The system can be applied as a HPLC detector that does not use an organic solvent as an eluent. The system can be calibrated with a primary standard of sodium bicarbonate for organic compounds. The universality and quantification were evaluated with organic compounds, including organic acids, sugars, and amino acids. Furthermore, the system was successfully applied to evaluation of the purity of formaldehyde in formalin solution, and determination of sugars in juices. The results show the universal carbon detector has good universality and can quantify many kinds of organic compounds with a single standard such as sodium bicarbonate.
Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K
NASA Astrophysics Data System (ADS)
Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.
2013-05-01
The concentration-based (stoichiometric) equilibrium solubility product of ikaite (CaCO3·6H2O) in seawater and cryogenic seawater-derived brines was determined at 1 atm total pressure over the temperature range from -1.1 to -7.5 °C and the salinity range from 34 to 124 in temperature-salinity pairs representative of sea ice brines. The solubility measurements were obtained in solutions that were undersaturated and supersaturated with respect to ikaite by equilibration with CO2/N2 gas mixtures of known pCO2 (20-400 μatm). The solutions were then equilibrated with synthetic ikaite (seed) for up to 3 months in a closed system. Arrival of the solid-solution system at a long-term chemical equilibrium was indicated by attainment of constant chemical solution composition with respect to total dissolved calcium, total dissolved inorganic carbon, and total alkalinity. Using these measurements, the stoichiometric equilibrium solubility product of ikaite (Ksp,ikaite∗=[Ca][CO32-], in molkgsolution-2) was determined, with the carbonate ion concentration computed from the measured total alkalinity and total dissolved inorganic carbon concentrations. The computed carbonate ion concentration and, by extension, the Ksp,ikaite∗ are both contingent on solving the system of equations that describe the parameters of the CO2 system in seawater by extrapolation to the experimental salinity and temperature conditions. The results show that the pKsp,ikaite∗=-logKsp,ikaite∗ in seawater of salinity 34 at -1.1 °C was 5.362 ± 0.004 and that the pKsp,ikaite∗ in sea ice at the freezing point of brines of salinity greater than 34 can be described as a function of temperature (T, in K) by the equation, pKsp,ikaite∗=-15489.09608+623443.70216T-1+2355.14596lnT, in the temperature range of 265.15 K < T < 271.15 K (-8 °C < t < -2 °C). Brines of low pCO2 (20 μatm) yielded a much slower (>1 month) approach to chemical equilibrium when incubated without seeding ikaite crystals. Simple modeling indicated that ikaite should not precipitate from sea ice brines evolving under closed system conditions with respect to CO2 exchange. To facilitate ikaite precipitation, brine pCO2 reduction due to photosynthesis or CO2 degassing, or both, is necessary.
The stoichiometric dissociation constants of carbonic acid in seawater brines from 298 to 267 K
NASA Astrophysics Data System (ADS)
Papadimitriou, Stathys; Loucaides, Socratis; Rérolle, Victoire M. C.; Kennedy, Paul; Achterberg, Eric P.; Dickson, Andrew G.; Mowlem, Matthew; Kennedy, Hilary
2018-01-01
The stoichiometric dissociation constants of carbonic acid (K1C∗ and K2C∗) were determined by measurement of all four measurable parameters of the carbonate system (total alkalinity, total dissolved inorganic carbon, pH on the total proton scale, and CO2 fugacity) in natural seawater and seawater-derived brines, with a major ion composition equivalent to that of Reference Seawater, to practical salinity (SP) 100 and from 25 °C to the freezing point of these solutions and -6 °C temperature minimum. These values, reported in the total proton scale, provide the first such determinations at below-zero temperatures and for SP > 50. The temperature (T, in Kelvin) and SP dependence of the current pK1C∗ and pK2C∗ (as negative common logarithms) within the salinity and temperature ranges of this study (33 ≤ SP ≤ 100, -6 °C ≤ t ≤ 25 °C) is described by the following best-fit equations: pK1C∗ = -176.48 + 6.14528 SP0.5 - 0.127714 SP + 7.396 × 10-5SP2 + (9914.37 - 622.886 SP0.5 + 29.714 SP) T-1 + (26.05129 - 0.666812 SP0.5) lnT (σ = 0.011, n = 62), and pK2C∗ = -323.52692 + 27.557655 SP0.5 + 0.154922 SP - 2.48396 × 10-4 SP2 + (14763.287 - 1014.819 SP0.5 - 14.35223 SP) T-1 + (50.385807 - 4.4630415 SP0.5) lnT (σ = 0.020, n = 62). These functions are suitable for application to investigations of the carbonate system of internal sea ice brines with a conservative major ion composition relative to that of Reference Seawater and within the temperature and salinity ranges of this study.
Evaluation of carbon saturation across gradients of cropping systems diversity and soil depth
NASA Astrophysics Data System (ADS)
Castellano, Michael; Poffenbarger, Hanna; Cambardella, Cindy; Liebman, Matt; Mallarino, Antonio; Olk, Dan; Russell, Ann; Six, Johan
2017-04-01
Growing evidence indicates arable soils in the US Maize Belt are effectively carbon-saturated. We hypothesized that: 1) surface soil mineral-associated soil organic carbon (SOC) stocks in these systems are effectively carbon-saturated and 2) diverse cropping systems with greater belowground C inputs would increase subsoil SOC stocks because subsoils have large C saturation deficit. Using three long-term field trials in Iowa (study durations of 60, 35, and 12 years), we examined the effects of cropping system diversity (maize-soybean-oat/alfalfa-alfalfa or corn-corn-oat/alfalfa-alfalfa vs. maize-soybean rotation) on SOC content at different depths (0-100 cm) throughout the soil profile. Average annual C inputs were similar for both cropping systems, but the proportion of C delivered belowground was approximately twice as great in the extended rotations. Within and across cropping systems and the three field trial locations, there was a positive linear relationship between total SOC and the concentration of SOC in the mineral-associated fraction, indicating mineral-associated SOC stocks are not saturated. Organic C accumulation was observed at depth (15-100 cm) but not at the surface (0-15 cm) across all sites and rotations. These data suggest surface SOC stocks may have reached equilibrium rather than effective C saturation. In the absence of experiments that manipulate C inputs, the relationship between total SOC and the concentration of SOC in the mineral-associated fraction is frequently used as a proxy for C-saturation, and this relationship should be further explored.
USDA-ARS?s Scientific Manuscript database
In the past six years, pomegranate (POM) cultivation has become a popular commercial crop in San Joaquin Valley, California. The rising demand for this permanent crop is primarily due to POM juice high nutritional and antioxidants properties. In addition, it has been found POM trees are drought tole...
Modeling long-term carbon residue in the ocean-atmosphere system following large CO2 emissions
NASA Astrophysics Data System (ADS)
Towles, N. J.; Olson, P.; Gnanadesikan, A.
2013-12-01
We use the LOSCAR carbon cycle model (Zeebe et al., 2009; Zeebe, 2012) to calculate the residual carbon in the ocean and atmosphere following large CO2 emissions. We consider the system response to CO2 emissions ranging from 100 to 20000 PgC, and emission durations from 100 yr to 100 kyr, subject to a wide range of system parameters such as the strengths of silicate weathering and the oceanic biological carbon pump. We define the carbon gain factor as the ratio of residual carbon in the ocean-atmosphere to the total emitted carbon. For moderate sized emissions shorter than about 50 kyr, we find that the carbon gain factor grows during the emission and peaks at about 1.7, primarily due to the erosion of carbonate marine sediments. In contrast, for longer emissions, the carbon gain factor peaks at a smaller value, and for very large emissions (more than 5000 PgC), the gain factor decreases with emission size due to carbonate sediment exhaustion. This gain factor is sensitive to model parameters such as low latitude efficiency of the biological pump. The timescale for removal of the residual carbon (reducing the carbon gain factor to zero) depends strongly on the assumed sensitivity of silicate weathering to atmospheric pCO2, and ranges from less than one million years to several million years.
Jiang, Yongjun
2013-09-01
Generally, the DIC in karst groundwater is dominantly derived from carbonate dissolution by carbonic acid. However, recently increases in the inorganic carbon flux have been linked to human activities, which nitric and sulfuric acids may contribute to carbonate dissolution. In order to quantify the sources and fluxes of DIC, and evaluate the carbon isotopic evolution of groundwater in Southwest China, the carbonate dissolution by carbonic, sulfuric and nitric acids was evaluated by hydrochemistry and δ¹³C(DIC)of groundwater. The results show that: (1) groundwater collected from residential and agricultural areas, showed higher DIC concentrations and δ¹³C(DIC) than those in groundwater collected from forested and grass land areas; (2) the contributions of carbonate dissolution by carbonic acid to total DIC concentrations in groundwater collected from forested and grass land areas averaged 99%; (3) the contributions of carbonate dissolution by carbonic acid to total DIC concentrations in groundwater, collected from residential and agricultural areas, varied from 40% to 77% with a mean percentage of 62%; (4) while the contributions of carbonate dissolution by sulfuric and nitric acids to total DIC concentrations in groundwater, collected from residential and agricultural areas, varied from 23% to 60% with a mean percentage of 38%; and (5) the δ¹³C(DIC) approaching a value of around -14‰, with a molar ratio between (Ca²⁺+Mg²⁺) and HCO₃⁻ of around 0.5 in groundwater, indicated that the carbonate was dissolved by soil CO₂ from C₃ vegetation under open system conditions. While the δ¹³C(DIC) varying from -5‰ to -11‰, with a variational molar ratio between (Ca²⁺+Mg²⁺) and HCO₃⁻ of 0.5 to 0.8 in groundwater, indicated that carbonate dissolution was controlled by soil CO₂ (from C₃ vegetation), HNO₃ and H₂SO₄. Also, this study indicated that the amount of soil or atmospheric CO₂ consumed during carbonate weathering should be critically evaluated when sulfuric or nitric acids are involved. Thus, not only the exports of inorganic carbon have been enhanced, but also the concentrations of nitrate and sulfate in karst groundwater have been elevated due to carbonate dissolution by sulfuric or nitric acid. Copyright © 2013 Elsevier B.V. All rights reserved.
Integrated exhaust gas analysis system for aircraft turbine engine component testing
NASA Technical Reports Server (NTRS)
Summers, R. L.; Anderson, R. C.
1985-01-01
An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.
NASA Astrophysics Data System (ADS)
Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.
2018-02-01
The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.
A carbon balance model for the great dismal swamp ecosystem
Sleeter, Rachel; Sleeter, Benjamin M.; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd J.; Zhu, Zhiliang
2017-01-01
BackgroundCarbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.ResultsWe modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.ConclusionsNatural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
A carbon balance model for the great dismal swamp ecosystem.
Sleeter, Rachel; Sleeter, Benjamin M; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd; Zhu, Zhiliang
2017-12-01
Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985-2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus. Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha -1 /year -1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
Estimated withdrawals from principal aquifers in the United States, 2000
Maupin, Molly A.; Barber, Nancy L.
2005-01-01
Fresh ground-water withdrawals from 66 principal aquifers in the United States were estimated for irrigation, public-supply, and self-supplied industrial water uses for the year 2000. Total ground-water withdrawals were 76,500 million gallons per day, or 85,800 thousand acre-feet per year for these three uses. Irrigation used the largest amount of ground water, 56,900 million gallons per day, followed by public supply with 16,000 million gallons per day, and self-supplied industrial with 3,570 million gallons per day. These three water uses represented 92 percent of the fresh groundwater withdrawals for all uses in the United States, the remaining 8 percent included self-supplied domestic, aquaculture, livestock, mining, and thermoelectric power uses. Aquifer withdrawals were categorized by five lithologic groups: unconsolidated and semiconsolidated sand and gravel aquifers, carbonate-rock aquifers, igneous and metamorphic-rock aquifers, sandstone aquifers, and sandstone and carbonate-rock aquifers. Withdrawals from aquifers that were not included in one of the 66 principal aquifers were reported in an “Other” aquifers group. The largest withdrawals in the United States were from unconsolidated and semiconsolidated sand and gravel aquifers, which accounted for 80 percent of total withdrawals from all aquifers. Carbonate-rock aquifers provided 8 percent of the withdrawals, and igneous and metamorphic-rock aquifers, 6 percent. Withdrawals from sandstone aquifers, from sandstone and carbonate-rock aquifers, and from the “Other” aquifers category each constituted about 2 percent of the total withdrawals reported.Fifty-five percent of the total withdrawals for irrigation, public-supply, and self-supplied industrial water uses were provided by the High Plains aquifer, California Central Valley aquifer system, the Mississippi River Valley alluvial aquifer, and the Basin and Range basin-fill aquifers. These aquifers provided most of the withdrawals for irrigation. The High Plains aquifer was the most intensively used aquifer in the United States. This aquifer provided 23 percent of the total withdrawals from all aquifers for irrigation, public-supply, and self-supplied industrial water uses combined, and 30 percent of the total withdrawals from all aquifers for irrigation. The primary aquifers used for public supply were the glacial sand and gravel aquifers of the Northeastern and North-Central States, the California Coastal Basin aquifers, the Floridan aquifer system, the Basin and Range basin-fill aquifers, and the Coastal lowlands aquifer system along the Gulf Coast. These five aquifers provided 43 percent of the total withdrawals from all aquifers for public supply. The glacial sand and gravel aquifers, Coastal lowlands aquifer system, Floridan aquifer system, and Cambrian-Ordovician aquifer system were the primary sources of water for self-supplied industrial use; these aquifers provided 46 percent of the total ground-water withdrawals for that use.
Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.
2015-09-02
Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.
Denitrification-Efficiencies of Alternate Carbon Sources
1984-07-01
carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11
NASA Astrophysics Data System (ADS)
WU, Y.; Liu, S.; Li, Z.; Young, C.; Werner, J.; Dahal, D.; Liu, J.; Schmidt, G.
2012-12-01
Climate and land cover changes may influence the capacity of the terrestrial ecosystems to be carbon sinks or sources. The objective of this study was to investigate the potential change of the carbon sequestration in the Marine West Coast Forests ecoregion in the Pacific Northwest United States using the General Ensemble Biogeochemical Modeling System (GEMS). In GEMS, the underlying biogeochemical model, Erosion and Deposition Carbon Model (EDCM), was used and calibrated using MODIS net primary production (NPP) and grain yield data during the baseline period from 2002 to 2005, and then validated with another four-year period from 2006 to 2009. GEMS-EDCM was driven using projected climate from three General Circulation Models (GCMs) under three IPCC scenarios (A2, A1B, and B1) and derived land cover data from the FORecasting SCEnarios (FORE-SCE) model under the same three IPCC scenarios for the period from 2006 to 2050. This ecoregion, two-thirds of which is covered by forest, was projected to continue to gain carbon from 2005 to 2050, with an annual carbon sequestration of about -3 Tg C. It was also predicted that live biomass and soil organic carbon (SOC) would contain about 48% and 33% of the total carbon storage by 2050, respectively. In addition, forest carbon sequestration (-2 Tg C yr-1) demonstrated to be the largest sink among all ecosystems, accounting for 73% of the total, followed by grass/shrub and agriculture. Overall, results about predicted dynamics of carbon storage and sequestration can be informative to policy makers for seeking mitigation plans to reduce greenhouse gases emissions.
Carbon Dioxide Observational Platform System (CO-OPS), feasibility study
NASA Technical Reports Server (NTRS)
Bouquet, D. L.; Hall, D. W.; Mcelveen, R. P.
1987-01-01
The Carbon Dioxide Observational Platform System (CO-OPS) is a near-space, geostationary, multi-user, unmanned microwave powered monitoring platform system. This systems engineering feasibility study addressed identified existing requirements such as: carbon dioxide observational data requirements, communications requirements, and eye-in-the-sky requirements of other groups like the Defense Department, the Forestry Service, and the Coast Guard. In addition, potential applications in: earth system science, space system sciences, and test and verification (satellite sensors and data management techniques) were considered. The eleven month effort is summarized. Past work and methods of gathering the required observational data were assessed and rough-order-of magnitude cost estimates have shown the CO-OPS system to be most cost effective (less than $30 million within a 10 year lifetime). It was also concluded that there are no technical, schedule, or obstacles that would prevent achieving the objectives of the total 5-year CO-OPS program.
Development of system design information for carbon dioxide using an amine type sorber
NASA Technical Reports Server (NTRS)
Rankin, R. L.; Roehlich, F.; Vancheri, F.
1971-01-01
Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.
Plasma Cutting and Carbon-Arc Cutting. Welding Module 8. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching the two units of a module in operating plasma cutting and carbon-arc cutting equipment. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The materials included in the module have been…
State Carbon Dioxide Emissions Data
2017-01-01
These estimates of energy-related carbon dioxide (CO2) are based on the State Energy Data System. The state data include a summary table with total energy-related CO2 by state beginning in 1990, tables with emissions by all fuels and sectors in 2015, and additional tables for each fuel and sector with history going back to 1980
Code of Federal Regulations, 2012 CFR
2012-07-01
... regenerative carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681
Biswas, Swarup; Mishra, Umesh
2016-01-01
The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.
Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.
Zhang, Wenju; Liu, Kailou; Wang, Jinzhou; Shao, Xingfang; Xu, Minggang; Li, Jianwei; Wang, Xiujun; Murphy, Daniel V.
2015-01-01
We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0–20 cm depth) between 1986-2012. By employing natural 13C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1–6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4–5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production. PMID:26039186
NASA Astrophysics Data System (ADS)
DeJong, H. B.; Dunbar, R. B.; Mucciarone, D. A.; Koweek, D.
2016-02-01
Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high resolution carbon system data. Here we present 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February-March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (ΩCa) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of 1.2 for the Ross Sea using a total alkalinity-salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.
Gonzalez-Martinez, A; Leyva-Díaz, J C; Rodriguez-Sanchez, A; Muñoz-Palazon, B; Rivadeneyra, A; Poyatos, J M; Rivadeneyra, M A; Martinez-Toledo, M V
2015-01-01
A bench-scale pure moving bed bioreactor-membrane bioreactor (MBBR-MBR) used for the treatment of urban wastewater was analyzed for the identification of bacterial strains with the potential capacity for calcium carbonate and struvite biomineral formation. Isolation of mineral-forming strains on calcium carbonate and struvite media revealed six major colonies with a carbonate or struvite precipitation capacity in the biofouling on the membrane surface and showed that heterotrophic bacteria with the ability to precipitate calcium carbonate and struvite constituted ~7.5% of the total platable bacteria. These belonged to the genera Lysinibacillus, Trichococcus, Comamomas and Bacillus. Pyrosequencing analysis of the microbial communities in the suspended cells and membrane biofouling showed a high degree of similarity in all the samples collected with respect to bacterial assemblage. The study of operational taxonomic units (OTUs) identified through pyrosequencing suggested that ~21% of the total bacterial community identified in the biofouling could potentially form calcium carbonate or struvite crystals in the pure MBBR-MBR system used for the treatment of urban wastewater.
NASA Astrophysics Data System (ADS)
Xie, Tengxiang; Wu, Yanyou
2017-03-01
This study aims to explore the changes in a microalgal biokarst system as a potential carbon sink system in response to pH changes. The bidirectional isotope labeling method and mass balance calculation were adopted in a simulated biokarst environment with a series of set pH conditions and three microalgal species. Three key processes of the microalgal biokarst system, including calcite dissolution, CaCO3 reprecipitation, and inorganic carbon assimilation by microalgae, were completely quantitatively described. The combined effects of chemical dissolution and species-specific biodissolution caused a decrease in overall dissolution rate when the pH increased from 7 to 9. CaCO3 reprecipitation and the utilization of dissolved inorganic carbon originating from calcite dissolution decreased when the pH increased from 7 to 9. The three processes exhibited different effects in changing the CO2 atmosphere. The amount of photosynthetic carbon sink was larger at high pH values than at low pH values. However, the CO2 sequestration related to the biokarst process (biokarst carbon sink) increased with decreasing pH. Overall, the total amount of sequestered CO2 produced by the biokarst system (CaCO3-CO2-microalgae) shows a minimum at a specific pH then increases with decreasing pH. Therefore, various processes and carbon sinks in the biokarst system are sensitive to pH changes, and biokarst processes play an important negative feedback role in the release of CO2 by acidification. The results also suggest that the carbon sink associated with carbonate weathering cannot be neglected when considering the global carbon cycle on the scale of thousands of years (<3 ka).
Photocatalytic post-treatment in waste water reclamation systems
NASA Technical Reports Server (NTRS)
Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.
1989-01-01
A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.
Ziegler, Alan D; Phelps, Jacob; Yuen, Jia Qi; Webb, Edward L; Lawrence, Deborah; Fox, Jeff M; Bruun, Thilde B; Leisz, Stephen J; Ryan, Casey M; Dressler, Wolfram; Mertz, Ole; Pascual, Unai; Padoch, Christine; Koh, Lian Pin
2012-10-01
Policy makers across the tropics propose that carbon finance could provide incentives for forest frontier communities to transition away from swidden agriculture (slash-and-burn or shifting cultivation) to other systems that potentially reduce emissions and/or increase carbon sequestration. However, there is little certainty regarding the carbon outcomes of many key land-use transitions at the center of current policy debates. Our meta-analysis of over 250 studies reporting above- and below-ground carbon estimates for different land-use types indicates great uncertainty in the net total ecosystem carbon changes that can be expected from many transitions, including the replacement of various types of swidden agriculture with oil palm, rubber, or some other types of agroforestry systems. These transitions are underway throughout Southeast Asia, and are at the heart of REDD+ debates. Exceptions of unambiguous carbon outcomes are the abandonment of any type of agriculture to allow forest regeneration (a certain positive carbon outcome) and expansion of agriculture into mature forest (a certain negative carbon outcome). With respect to swiddening, our meta-analysis supports a reassessment of policies that encourage land-cover conversion away from these [especially long-fallow] systems to other more cash-crop-oriented systems producing ambiguous carbon stock changes - including oil palm and rubber. In some instances, lengthening fallow periods of an existing swidden system may produce substantial carbon benefits, as would conversion from intensely cultivated lands to high-biomass plantations and some other types of agroforestry. More field studies are needed to provide better data of above- and below-ground carbon stocks before informed recommendations or policy decisions can be made regarding which land-use regimes optimize or increase carbon sequestration. As some transitions may negatively impact other ecosystem services, food security, and local livelihoods, the entire carbon and noncarbon benefit stream should also be taken into account before prescribing transitions with ambiguous carbon benefits. © 2012 Blackwell Publishing Ltd.
The Electrocatalytic Reduction of Carbon Dioxide Using Macrocycles of Nickel and Cobalt.
1980-10-24
34 water only. Carbon monoxide was found to coprise at least 50% of the total reduced products in all cases; H was also produced in most cases. While a...experiments performed in a gas tight elec- trolysis cell followed by g.c. analysis. The solvents used were either CH3CN-H20 or water only. Carbon...these experiments, and the solvent systems used were either acetonitrile/ water or water only. Gas chromato- graphic analysis was used to determine
Diatoms Si uptake capacity drives carbon export in coastal upwelling systems
NASA Astrophysics Data System (ADS)
Abrantes, Fatima; Cermeno, Pedro; Lopes, Cristina; Romero, Oscar; Matos, Lélia; Van Iperen, Jolanda; Rufino, Marta; Magalhães, Vitor
2016-07-01
Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica-precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California, and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production, and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. On the global scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.
NASA Astrophysics Data System (ADS)
Das, Anindita; Cao, Wenrui; Zhang, Hongjie; Saren, Gaowa; Jiang, Mingyu; Yu, Xinke
2017-11-01
Oceanic stretches experiencing perpetual darkness and extreme limitation of utilizable organic matter often rely on chemosynthetic carbon (C)-fixation. However, C-fixation is not limited to carbon-deplete environments alone but might also occur in varying degrees in carbon-replete locales depending on the nature and concentration of utilizable carbon, electron donors and acceptors. Quantification of microbial C-fixation and relative contribution of domains bacteria and archaea are therefore crucial. The present experiment estimates the differential rates of C-fixation by archaea and bacteria along with the effects of different electron donors. Four Sino-Pacific marine sediments from Bashi strait (Western Pacific Warm Pool), East China Sea, South China Sea and Okinawa Trough were examined. Total microbial C-uptake was estimated by doping of aqueous NaH14CO3. Total bacterial C-uptake was measured by blocking archaeal metabolism using inhibitor GC7. Archaeal contribution was estimated by subtracting total bacterial from total microbial C-uptake. Effect of electron donor addition was analyzed by spiking with ammonium, sulfide, and reduced metals. Results suggested that C-fixation in marine sediments was not the function of archaea alone, which was in contrast to results from several recent publications. C-fixing bacteria are also equally active. Often in spite of great effort of one domain to fix carbon, the system does not become net C-fixing due to equal and opposite C-releasing activity of the other domain. Thus a C-releasing bacterial or archaeal community can become C-fixing with the change of nature and concentration of electron donors.
Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan
Ulmishek, Gregory F.
2001-01-01
The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum system area; therefore, the oil could have migrated from the adjacent North Caspian basin. The North Ustyurt Jurassic Total Petroleum System encompasses the rest of the basin area and includes Jurassic and younger rocks. Several oil and gas fields have been discovered in this total petroleum system. Oil accumulations are in Jurassic clastic reservoirs, in structural traps at depths of 2.5?3 km. Source rocks for the oil are lacustrine beds and coals in the continental Jurassic sequence. Gas fields are in shallow Eocene sandstones in the northern part of the total petroleum system. The origin of the gas is unknown. The North Ustyurt Paleozoic Total Petroleum System stratigraphically underlies the North Ustyurt Jurassic system and occupies the same geographic area. The total petroleum system is almost unexplored. Two commercial flows of gas and several oil and gas shows have been tested in Carboniferous shelf carbonates in the eastern part of the total petroleum system. Source rocks probably are adjacent Carboniferous deep-water facies interpreted from seismic data. The western extent of the total petroleum system is conjectural. Almost all exploration drilling in the North Ustyurt basin has been limited to Jurassic and younger targets. The underlying Paleozoic-Triassic sequence is poorly known and completely unexplored. No wells have been drilled in offshore parts of the basin. Each of three total petroleum systems was assessed as a single assessment unit. Undiscovered resources of the basin are small to moderate. Most of the undiscovered oil probably will be discovered in Jurassic and Neocomian stratigraphic and structural traps on the Buzachi arch, especially on its undrilled off-shore extension. Most of the gas discoveries are expected to be in Paleozoic carbonate reservoirs in the eastern part of the basin.
Code of Federal Regulations, 2014 CFR
2014-07-01
... using a carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Summers, R. L.
1981-01-01
An integrated gas analysis system designed to operate in automatic, semiautomatic, and manual modes from a remote control panel is described. The system measures the carbon monoxide, oxygen, water vapor, total hydrocarbons, carbon dioxide, and oxides of nitrogen. A pull through design provides increased reliability and eliminates the need for manual flow rate adjustment and pressure correction. The system contains two microprocessors to range the analyzers, calibrate the system, process the raw data to units of concentration, and provides information to the facility research computer and to the operator through terminal and the control panels. After initial setup, the system operates for several hours without significant operator attention.
Developing a Carbon Monitoring System For Pinyon-juniper Forests and Woodlands
NASA Astrophysics Data System (ADS)
Falkowski, M. J.; Hudak, A. T.; Fekety, P.; Filippelli, S.
2017-12-01
Pinyon-juniper (PJ) forests and woodlands are the third largest vegetation type in the United States. They cover over 40 million hectares across the western US, representing 40% of the total forest and woodland area in the Intermountain West. Although the density of carbon stored in these ecosystems is relatively low compared to other forest types, the vast area of short stature forests and woodlands (both nationally and globally) make them critical components of regional, national, and global carbon budgets. The overarching goal of this research is to prototype a carbon monitoring, reporting, and verification (MRV) system for characterizing total aboveground biomass stocks and flux across the PJ vegetation gradient in the western United States. We achieve this by combining in situ forest measurements and novel allometric equations with tree measurements derived from high resolution airborne imagery to map aboveground biomass across 500,000 km2 in the Western US. These high-resolution maps of aboveground biomass are then leveraged as training data to predict biomass flux through time from Landsat time-series data. The results from this research highlight the potential in mapping biomass stocks and flux in open forests and woodlands, and could be easily adopted into an MRV framework.
Predicting Trihalomethanes (THMs) in the New York City Water Supply
NASA Astrophysics Data System (ADS)
Mukundan, R.; Van Dreason, R.
2013-12-01
Chlorine, a commonly used disinfectant in most water supply systems, can combine with organic carbon to form disinfectant byproducts including carcinogenic trihalomethanes (THMs). We used water quality data from 24 monitoring sites within the New York City (NYC) water supply distribution system, measured between January 2009 and April 2012, to develop site-specific empirical models for predicting total trihalomethane (TTHM) levels. Terms in the model included various combinations of the following water quality parameters: total organic carbon, pH, specific conductivity, and water temperature. Reasonable estimates of TTHM levels were achieved with overall R2 of about 0.87 and predicted values within 5 μg/L of measured values. The relative importance of factors affecting TTHM formation was estimated by ranking the model regression coefficients. Site-specific models showed improved model performance statistics compared to a single model for the entire system most likely because the single model did not consider locational differences in the water treatment process. Although never out of compliance in 2011, the TTHM levels in the water supply increased following tropical storms Irene and Lee with 45% of the samples exceeding the 80 μg/L Maximum Contaminant Level (MCL) in October and November. This increase was explained by changes in water quality parameters, particularly by the increase in total organic carbon concentration and pH during this period.
NASA Astrophysics Data System (ADS)
Durden, D.; Muraoka, H.; Scholes, R. J.; Kim, D. G.; Loescher, H. W.; Bombelli, A.
2017-12-01
The development of an integrated global carbon cycle observation system to monitor changes in the carbon cycle, and ultimately the climate system, across the globe is of crucial importance in the 21stcentury. This system should be comprised of space and ground-based observations, in concert with modelling and analysis, to produce more robust budgets of carbon and other greenhouse gases (GHGs). A global initiative, the GEO Carbon and GHG Initiative, is working within the framework of Group on Earth Observations (GEO) to promote interoperability and provide integration across different parts of the system, particularly at domain interfaces. Thus, optimizing the efforts of existing networks and initiatives to reduce uncertainties in budgets of carbon and other GHGs. This is a very ambitious undertaking; therefore, the initiative is separated into tasks to provide actionable objectives. Task 3 focuses on the optimization of in-situ observational networks. The main objective of Task 3 is to develop and implement a procedure for enhancing and refining the observation system for identified essential carbon cycle variables (ECVs) that meets user-defined specifications at minimum total cost. This work focuses on the outline of the implementation plan, which includes a review of essential carbon cycle variables and observation technologies, mapping the ECVs performance, and analyzing gaps and opportunities in order to design an improved observing system. A description of the gap analysis of in-situ observations that will begin in the terrestrial domain to address issues of missing coordination and large spatial gaps, then extend to ocean and atmospheric observations in the future, will be outlined as the subsequent step to landscape mapping of existing observational networks.
NASA Astrophysics Data System (ADS)
Sarmiento, J. L.; Gray, A. R.; Johnson, K. S.; Carter, B.; Riser, S.; Talley, L. D.; Williams, N. L.
2016-02-01
The Southern Ocean is thought to play an important role in the ocean-atmosphere exchange of carbon dioxide and the uptake of anthropogenic carbon dioxide. However, the total number of observations of the carbonate system in this region is small and heavily biased towards the summer. Here we present 1.5 years of biogeochemical measurements, including pH, oxygen, and nitrate, collected by 11 autonomous profiling floats deployed in the Pacific sector of the Southern Ocean in April 2014. These floats sampled a variety of oceanographic regimes ranging from the seasonally ice-covered zone to the subtropical gyre. Using an algorithm trained with bottle measurements, alkalinity is estimated from salinity, temperature, and oxygen and then used together with the measured pH to calculate total carbon dioxide and pCO2 in the upper 1500 dbar. The seasonal cycle in the biogeochemical quantities is examined, and the factors governing pCO2 in the surface waters are analyzed. The mechanisms driving the seasonal cycle of carbon are further investigated by computing budgets of heat, carbon, and nitrogen in the mixed layer. Comparing the different regimes sampled by the floats demonstrates the complex and variable nature of the carbon cycle in the Southern Ocean.
Control factors and scale analysis of annual river water, sediments and carbon transport in China.
Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu
2016-05-11
Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-control system means any device, system, or element of design that controls or reduces the emissions of... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non....1001 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-control system means any device, system, or element of design that controls or reduces the emissions of... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non....1001 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...
Goodall, Rosemary A; Hall, Jay; Sharer, Robert J; Traxler, Loa; Rintoul, Llew; Fredericks, Peter M
2008-01-01
Fourier transform infrared (FT-IR) attenuated total reflection (ATR) imaging has been successfully used to identify individual mineral components of ancient Maya paint. The high spatial resolution of a micro FT-IR-ATR system in combination with a focal plane array detector has allowed individual particles in the paint to be resolved and identified from their spectra. This system has been used in combination with micro-Raman spectroscopy to characterize the paint, which was found to be a mixture of hematite and silicate particles with minor amounts of calcite, carbon, and magnetite particles in a sub-micrometer hematite and calcite matrix. The underlying stucco was also investigated and found to be a combination of calcite with fine carbon particles, making a dark sub-ground for the paint.
Soil warming, carbon–nitrogen interactions, and forest carbon budgets
Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim
2011-01-01
Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374
Carbon footprint of patient journeys through primary care: a mixed methods approach.
Andrews, Elizabeth; Pearson, David; Kelly, Charlotte; Stroud, Laura; Rivas Perez, Martin
2013-09-01
The NHS has a target of cutting its carbon dioxide (CO2) emissions by 80% below 1990 levels by 2050. Travel comprises 17% of the NHS carbon footprint. This carbon footprint represents the total CO2 emissions caused directly or indirectly by the NHS. Patient journeys have previously been planned largely without regard to the environmental impact. The potential contribution of 'avoidable' journeys in primary care is significant. To investigate the carbon footprint of patients travelling to and from a general practice surgery, the issues involved, and potential solutions for reducing patient travel. A mixed methods study in a medium-sized practice in Yorkshire. During March 2012, 306 patients completed a travel survey. GIS maps of patients' travel (modes and distances) were produced. Two focus groups (12 clinical and 13 non-clinical staff) were recorded, transcribed, and analysed using a thematic framework approach. The majority (61%) of patient journeys to and from the surgery were made by car or taxi; main reasons cited were 'convenience', 'time saving', and 'no alternative' for accessing the surgery. Using distances calculated via ArcGIS, the annual estimated CO2 equivalent carbon emissions for the practice totalled approximately 63 tonnes. Predominant themes from interviews related to issues with systems for booking appointments and repeat prescriptions; alternative travel modes; delivering health care; and solutions to reducing travel. The modes and distances of patient travel can be accurately determined and allow appropriate carbon emission calculations for GP practices. Although challenging, there is scope for identifying potential solutions (for example, modifying administration systems and promoting walking) to reduce 'avoidable' journeys and cut carbon emissions while maintaining access to health care.
Carbon footprint of patient journeys through primary care: a mixed methods approach
Andrews, Elizabeth; Pearson, David; Kelly, Charlotte; Stroud, Laura; Rivas Perez, Martin
2013-01-01
Background The NHS has a target of cutting its carbon dioxide (CO2) emissions by 80% below 1990 levels by 2050. Travel comprises 17% of the NHS carbon footprint. This carbon footprint represents the total CO2 emissions caused directly or indirectly by the NHS. Patient journeys have previously been planned largely without regard to the environmental impact. The potential contribution of ‘avoidable’ journeys in primary care is significant. Aim To investigate the carbon footprint of patients travelling to and from a general practice surgery, the issues involved, and potential solutions for reducing patient travel. Design and setting A mixed methods study in a medium-sized practice in Yorkshire. Method During March 2012, 306 patients completed a travel survey. GIS maps of patients’ travel (modes and distances) were produced. Two focus groups (12 clinical and 13 non-clinical staff) were recorded, transcribed, and analysed using a thematic framework approach. Results The majority (61%) of patient journeys to and from the surgery were made by car or taxi; main reasons cited were ‘convenience’, ‘time saving’, and ‘no alternative’ for accessing the surgery. Using distances calculated via ArcGIS, the annual estimated CO2 equivalent carbon emissions for the practice totalled approximately 63 tonnes. Predominant themes from interviews related to issues with systems for booking appointments and repeat prescriptions; alternative travel modes; delivering health care; and solutions to reducing travel. Conclusion The modes and distances of patient travel can be accurately determined and allow appropriate carbon emission calculations for GP practices. Although challenging, there is scope for identifying potential solutions (for example, modifying administration systems and promoting walking) to reduce ‘avoidable’ journeys and cut carbon emissions while maintaining access to health care. PMID:23998839
USDA-ARS?s Scientific Manuscript database
Soil organic C and N are important indicators of agricultural sustainability, yet numerous field studies have revealed a multitude of responses in the extent and rate of change imposed by conservation management, and therefore, a lack of clarity on responses. We conducted an evaluation of total and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
NASA Astrophysics Data System (ADS)
Prado-Pérez, A. J.; Aracil, E.; Pérez del Villar, L.
2014-06-01
Currently, carbon deep geological storage is one of the most accepted methods for CO2 sequestration, being the long-term behaviour assessment of these artificial systems absolutely essential to guarantee the safety of the CO2 storage. In this sense, hydrogeochemical modelling is being used for evaluating any artificial CO2 deep geological storage as a potential CO2 sinkhole and to assess the leakage processes that are usually associated with these engineered systems. Carbonate precipitation, as travertines or speleothems, is a common feature in the CO2 leakage scenarios and, therefore, is of the utmost importance to quantify the total C content trapped as a stable mineral phase in these carbonate formations. A methodology combining three classical techniques such as: electrical resistivity tomography, geostatistical analysis and mercury porosimetry is described in this work, which was developed for calculating the total amount of C trapped as CaCO3 associated with the CO2 leakages in Alicún de las Torres natural analogue (Granada, Spain). The proposed methodology has allowed estimating the amount of C trapped as calcite, as more than 1.7 Mt. This last parameter, focussed on an artificial CO2 deep geological storage, is essential for hydrogeochemical modellers when evaluating whether CO2 storages constitute or not CO2 sinkholes. This finding is extremely important when assessing the long-term behaviour and safety of any artificial CO2 deep geological storage.
Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?
Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.
2012-01-01
Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.
Dong, Guohui; Ai, Zhihui; Zhang, Lizhi
2014-12-01
In this study, nanoscale zero-valent copper (nZVC) was synthesized with a facile solvothermal method and used for the aerobic removal of azo contaminants at neutral pH for the first time. We found that both Cu(I) and OH generated during the nZVC induced molecular oxygen activation process accounted for the rapid total destruction of azo contaminants in the nZVC/Air system, where nZVC could activate molecular oxygen to produce H2O2, and also release Cu(I) to break the -NN- bond of azo contaminants via the sandmeyer reaction for the generation of carbon center radicals. The in-situ generated carbon center radicals would then react with OH produced by the Cu(I) catalyzed decomposition of H2O2, resulting in the generation of low molecular weight organic acids and their subsequent mineralization. The indispensible role of Cu(I) catalyzed sandmeyer reaction and the promotion effect of in-situ generated carbon center radicals on the rapid total destruction of azo contaminants in the nZVC/Air system were confirmed by gas chromatography-mass spectrometry analysis. This study can deepen our understanding on the degradation of organic pollutant with molecular oxygen activated by zero valent metal, and also provide a new method to remove azo contaminants at neutral pH. Copyright © 2014 Elsevier Ltd. All rights reserved.
Net ecosystem calcification and net primary production in two Hawaii back-reef systems
NASA Astrophysics Data System (ADS)
Kiili, S.; Colbert, S.; Hart, K.
2016-02-01
Back-reef systems have complex carbon cycling, driven by dominant benthic communities that change with environmental conditions and display characteristic patterns of net primary production (NP) and net ecosystem calcification (G). The G/NP ratio provides a fundamental community-level assessment to compare systems spatially and to evaluate temporal changes in carbon cycling. Carbon dynamics were examined at leeward Hōnaunau and windward Waíōpae, Hawaíi Island. Both locations discharge brackish groundwater, including geothermal water at Waíōpae. The change in total CO2 (TCO2) and total alkalinity (TA) between morning and afternoon was measured to calculate the G/NP ratio along a salinity gradient. At both sites, aragonite saturation (ΩAr) was lower than open ocean conditions, and increased with salinity. Between the morning and afternoon, ΩAr increased by at least 1 as photosynthesis consumed CO2. At Waíōpae, water was corrosive to aragonite due to the input of acidic groundwater, but not at Honaunau, demonstrating the importance of local watershed characteristics on ΩAr. Across the salinity gradient, TA and TCO2 decreased between morning and afternoon. At Hōnaunau, G/NP increased from 0.11 to 0.31 with salinity, consistent with an offshore increase in coral cover. But at Waíōpae, G/NP decreased from 0.49 to 0.0 with salinity, despite an increase in coral cover with salinity. Low G may be caused by benthic processes, including coral bleaching or high rates of carbonate dissolution in interstitial waters between tide pools. Broader environmental conditions than just salinity, including pH of fresh groundwater inputs, shape the carbon cycling in the back-reef system. Examining the G/NP ratio of a back-reef system allows for a simple method to establish community level activity, and possibly indicate changes in a dynamic system.
NASA Astrophysics Data System (ADS)
Wang, A. Z.; Sonnichsen, F. N.; Chu, S. N.; Bradley, A. M.; Hoering, K.
2016-02-01
The marine CO2 (inorganic carbon) system is characterized by four primary parameters - total dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), and pH. These parameters are central to the study of the marine carbon cycle and ocean acidification. Simultaneous measurements of two of the four CO2 parameters are required to fully resolve the seawater CO2 system, and DIC is one of the preferred parameters. A self-calibrating, in-situ sensor, Channelized Optical System (CHANOS), has recently been developed to provide simultaneous measurements of both DIC and pH, resolving carbonate chemistry with a single system. CHANOS is among the first to achieve simultaneous, in-situ measurements of a desired pair of CO2 parameters. DIC and pH channels both use flow-through, spectrophotometric methods to detect relative absorbances of the acid and base forms of a pH-sensitive indicator. The precision of CHANOS in laboratory and in-situ tests are ±0.002 and ±3.0 µmol kg-1 for pH and DIC, respectively. In-situ comparison with bottle sampling and analyses indicate that the accuracies for pH and DIC are ±0.004 and ±5.0 µmol kg-1, respectively. It has been demonstrated that CHANOS can make in-situ, climatology-quality measurements to resolve the CO2 system in dynamic aquatic environments. To further improve response time of the sensor, especially for DIC measurements, a new generation of CHANOS-DIC is under development. The new system adapts the recently developed spectrophotometric DIC method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time as fast as 22s. Continuous measurements are also achievable. Because of the fast response of CHANOS measurements, it is versatile and suitable for deployments on both fixed (e.g. buoys) and mobile (e.g., AUV, ROV, and profilers) platforms.
Treatment efficiency and stoichiometry of a high-strength graywater.
Morse, Audra; Khatri, Sukrut; Jackson, W Andrew
2007-12-01
The transit mission wastewater may represent a future graywater, in which toilet waste is separated from other household waste streams, and dilution water is minimal. A loading rate study indicated that denitrification is stoichiometrically limited, and nitrification was kinetically limited. Denitrification stoichiometry was developed by deriving hypothetical molecular formulas of organic carbon inputs to be represented by the relative proportions of carbon, hydrogen, oxygen, and nitrogen. The derived stoichiometry was validated against experimental data by adjusting the values of fe and fs and multiplying the total dissolved organic carbon loss across the system by the overall R equation and then comparing the total nitrogen removed in the reaction to experimentally observed total nitrogen removal. The nitrification stoichiometry was similarly validated by multiplying the R equation by the ammonium-nitrogen removed and then comparing the NO(x)-N formed in the equation to actual NO(x)-N production values. The fs values for the denitrifying and nitrifying bacteria were 0.33 and 0.15, respectively.
NASA Astrophysics Data System (ADS)
Salvadó, Joan A.; Bröder, Lisa; Andersson, August; Semiletov, Igor P.; Gustafsson, Örjan
2017-10-01
Black carbon (BC) plays an important role in carbon burial in marine sediments globally. Yet the sequestration of BC in the Arctic Ocean is poorly understood. Here we assess the concentrations, fluxes, and sources of soot BC (SBC)—the most refractory component of BC—in sediments from the East Siberian Arctic Shelf (ESAS), the World's largest shelf sea system. SBC concentrations in the contemporary shelf sediments range from 0.1 to 2.1 mg g-1 dw, corresponding to 2-12% of total organic carbon. The 210Pb-derived fluxes of SBC (0.42-11 g m-2 yr-1) are higher or in the same range as fluxes reported for marine surface sediments closer to anthropogenic emissions. The total burial flux of SBC in the ESAS ( 4,000 Gg yr-1) illustrates the great importance of this Arctic shelf in marine sequestration of SBC. The radiocarbon signal of the SBC shows more depleted yet also more uniform signatures (-721 to -896‰; average of -774 ± 62‰) than of the non-SBC pool (-304 to -728‰; average of -491 ± 163‰), suggesting that SBC is coming from an, on average, 5,900 ± 300 years older and more specific source than the non-SBC pool. We estimate that the atmospheric BC input to the ESAS is negligible ( 0.6% of the SBC burial flux). Statistical source apportionment modeling suggests that the ESAS sedimentary SBC is remobilized by thawing of two permafrost carbon (PF/C) systems: surface soil permafrost (topsoil/PF; 25 ± 8%) and Pleistocene ice complex deposits (ICD/PF; 75 ± 8%). The SBC contribution to the total mobilized permafrost carbon (PF/C) increases with increasing distance from the coast (from 5 to 14%), indicating that the SBC is more recalcitrant than other forms of translocated PF/C. These results elucidate for the first time the key role of permafrost thaw in the transport of SBC to the Arctic Ocean. With ongoing global warming, these findings have implications for the biogeochemical carbon cycle, increasing the size of this refractory carbon pool in the Arctic Ocean.
Comparative treatment effectiveness of conventional trench and seepage pit systems.
Field, J P; Farrell-Poe, K L; Walworth, J L
2007-03-01
On-site wastewater treatment systems can be a potential source of groundwater contamination in regions throughout the United States and other parts of the world. Here, we evaluate four conventional trench systems and four seepage pit systems to determine the relative effectiveness of these systems for the treatment of septic tank effluent in medium- to coarse-textured arid and semiarid soils. Soil borings were advanced up to twice the depth of the trenches (4 m) and seepage pits (15 m) at two horizontal distances (30 cm and 1.5 m) from the sidewalls of the systems. Soil samples were analyzed for various biological and chemical parameters, including Escherichia coli, total coliform, pH, total organic carbon, total dissolved solids, total nitrogen, ammonium-nitrogen, and nitrate-nitrogen. Most soil parameters investigated approached background levels more rapidly near the trenches than the seepage pits, as sampling distance increased both vertically and horizontally from the sidewalls of the systems.
Lee, Jihyun; Shon, Myung-Baek; Cha, Hyung-Gon; Choi, Keun-Hyung
2017-12-15
In the G8 and G9 approval tests for ballast water management systems, organic carbon additives are frequently supplemented into test water to satisfy the water quality requirements. Because organic additives can affect the approval test, the additive selected, and its use and validation should be included in the test report. This study assessed the effects of organic carbon additives on the concentration of total residual oxidants (TROs) and the formation of disinfection by-products (DBPs). The concentration of dissolved organic carbon (DOC) in test water containing additives varied depending on the type of additive, but all additives, except for methylcellulose, had concentrations similar to or higher than the theoretical values. There was a low concentration of particulate organic carbon (POC) compared to the amount of corn starch added. Over the course of the five-day holding time, TRO concentrations tended to decrease. In general, substances with a large molecular size had a higher DBP concentration than their counterparts with a smaller molecular size, some of which, however produced the highest DBP concentrations due to their molecular structure. The results suggest that the formation of DBPs is affected by the reaction with TROs, molecular size, and molecular structure in a complex manner. Copyright © 2017 Elsevier B.V. All rights reserved.
Kott, Y; Ribas, F; Frías, J; Lucena, F
1997-09-01
In recent years, two different approaches to the study of biodegradable organic matter in distribution systems have been followed. The assimilable organic carbon (AOC) indicates the portion of the dissolved organic matter used by bacteria and converted to biomass, which is directly measured as total bacteria, active bacteria or colony-forming units and indirectly as ATP or increase in turbidity. In contrast, the biodegradable dissolved organic carbon (BDOC) is the portion of the dissolved organic carbon that can be mineralized by heterotrophic microorganisms, and it is measured as the difference between the inflow and the outflow of a bioreactor. In this study, at different steps in a water treatment plant, the bacterial regrowth capability was determined by the AOC method that measures the maximum growth rate by using a computerized Monitek turbidimeter. The BDOC was determined using a plug flow bioreactor. Measurements of colony-forming units and total organic carbon (TOC) evolution in a turbidimeter and of colony-forming units at the inflow/outflow of the bioreactor were also performed, calculating at all sampling points the coefficient yield (Y = cfu/delta TOC) in both systems. The correlations between the results from the bioreactor and turbidimeter have been calculated; a high correlation level was observed between BDOC values and all the other parameters, except for Y calculated from bacterial suspension measured in the turbidimeter.
Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems.
Yousefi, Mohammad; Khoramivafa, Mahmud; Damghani, Abdolmajid Mahdavi
2017-08-01
The aims of this study were to assess the energy requirements, carbon footprint, and water footprint of sunflower production in Kermanshah province, western Iran. Data were collected from 70 sunflower production agroecosystems which were selected based on random sampling method in summer 2012. Results indicated that total input and output energy in sunflower production were 26,973.87 and 64,833.92 MJha -1 , respectively. The highest share of total input energy in sunflower agroecosystems was recorded for electricity power, N fertilizer, and diesel fuel with 35, 19, and 17%, respectively. Also, energy use efficiency, water footprint, greenhouse gas (GHG) emission, and carbon footprint were calculated as 2.40, 3.41 m 3 kg -1 , 2042.091 kg CO 2eq ha -1 , and 0.875 kg CO 2eq kg -1 , respectively. 0.18 of sunflower water footprint was related to green water footprint and the remaining 82% was related to blue water footprint. Also, the highest share of carbon footprint was related to electricity power (nearby 80%). Due to the results of this study, reducing use of fossil fuel and non-renewable energy resource and application of sufficient irrigation systems by efficient use of water resource are essential in order to achieve low carbon footprint, environmental challenges, and also sustainability of agricultural production systems.
Coherence of long-term variations of zooplankton in two sectors of the California Current System
NASA Astrophysics Data System (ADS)
Lavaniegos, Bertha E.; Ohman, Mark D.
2007-10-01
We analyzed long-term (56-year) variations in springtime biomass of the zooplankton of the California Current System from two primary regions sampled by CalCOFI: Southern California (SC) and Central California (CC) waters. All organisms were enumerated from the plankton samples and converted to organic carbon biomass using length-carbon relationships, then aggregated into 19 major taxa. Planktonic copepods dominate the carbon biomass in both SC (59%) and CC (46%), followed by euphausiids (18% and 25% of mean biomass in SC and CC, respectively). Pelagic tunicates, especially salps and doliolids, constituted a higher fraction of the biomass in CC (13%) than in SC (5%). There was no long-term trend detectable in total zooplankton carbon biomass, in marked contrast to a decline in zooplankton displacement volume in both regions. The difference between these biomass metrics is accounted for by a long-term decline in pelagic tunicates (particularly salps), which have a relatively high ratio of biovolume:carbon. The decline in pelagic tunicates was accompanied by a long-term increase in water column density stratification. No other taxa showed a decline over the duration of the study, apart from salps and pyrosomes in SC and doliolids in CC. Some zooplankton taxa showed compensatory increases over the same time period (ostracods, large decapods, and calycophoran siphonophores in both SC and CC; appendicularians and polychaetes in SC). Two tests for ecosystem shifts, a sequential algorithm and the cumulative sum of anomalies (CuSum) approach, failed to detect changes in 1976-1977 in total carbon biomass, displacement volume, or most individual major taxa, suggesting that aggregated biomass is an insensitive indicator of climate forcing. In contrast, both techniques revealed a cluster of step-like changes associated with the La Niña of 1999. The major El Niño’s in the past half century have consistently depressed total zooplankton biomass and biomass of many major taxa in both SC and CC, although such effects are transitory. Much, but not all, of the interannual variability in zooplankton is shared between the Southern and Central California sectors of the California Current System.
NASA Astrophysics Data System (ADS)
Bajo, Petra; Borsato, Andrea; Drysdale, Russell; Hua, Quan; Frisia, Silvia; Zanchetta, Giovanni; Hellstrom, John; Woodhead, Jon
2017-08-01
In this study, the 'dead carbon proportion' (DCP) calculated from combined U-Th and radiocarbon analyses was used to explore the carbon isotope systematics in Corchia Cave (Italy) speleothems, using the example of stalagmite CC26 which grew during the last ∼12 ka. The DCP values in CC26 are among the highest ever recorded in a stalagmite, spanning the range 44.8-68.8%. A combination of almost closed-system conditions and sulphuric acid dissolution (SAD) are proposed as major drivers in producing such a high DCP with minor contribution from old organic matter from the deep vadose zone. The long-term decrease in both DCP and δ13C most likely reflects post-glacial soil recovery above the cave, with a progressive increase of soil CO2 contribution to the total dissolved inorganic carbon (DIC). Pronounced millennial-scale shifts in DCP and relatively small coeval but antipathetic changes in δ13C are modulated by the effects of hydrological variability on open and closed-system dissolution, SAD and prior calcite precipitation. Hence, the DCP in Corchia Cave speleothems represents an additional proxy for rainfall amount.
Carbon footprint and ammonia emissions of California beef production systems.
Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M
2012-12-01
Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions associated with their mothers were primarily attributed to milk rather than meat production. For the Holstein system, the feedlot phase was responsible for 91% of the total GHG emission, while the calf-ranch phase was responsible for 7% with the remaining 2% from transportation. This simulation study provides baseline emissions data for California beef production systems and indicates where mitigation strategies can be most effective in reducing emissions.
Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal
2015-01-01
African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.
Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal
2015-01-01
Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget. PMID:26599231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyr, Alex
This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb carbon-14 system parameters performed during the A20_2003 and A22_2003 cruises, which took place between September 22 and November 13, 2003, aboard research vessel (R/V) Knorr under the auspices of the National Oceanic and Atmospheric Administration (NOAA) and National Science Foundation (NSF). The R/V Knorr departed Woods Hole, Massachusetts, on September 22 for the Repeat Section A20, and ended this line in Port of Spain, Trinidad, on October 20. The Repeat Section A22 started on October 23 in Portmore » of Spain, Trinidad, and finished on November 13, 2003, in Woods Hole, Massachusetts. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and NSF as part of the Climate Variability Program (CLIVAR)/CO2/repeat hydrography/tracer program. Samples were taken from 36 depths at 88 stations on section A20 and 82 stations on section A22. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO 2), total alkalinity (TALK), dissolved organic carbon (DOC), CFC, carbon-14, hydrographic, and other chemical measurements.« less
Materials and structures for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.
1988-01-01
Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
The on-site system application analysis is summarized. Preparations were completed for the first test of a full-sized single cell. Emphasis of the methanol fuel processor development program shifted toward the use of commercial shell-and-tube heat exchangers. An improved method for predicting the carbon-monoxide tolerance of anode catalysts is described. Other stack support areas reported include improved ABA bipolar plate bonding technology, improved electrical measurement techniques for specification-testing of stack components, and anodic corrosion behavior of carbon materials.
Lindquist, Sandra J.
1999-01-01
The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.
Impacts of land use and climate change on carbon dynamics in south-central Senegal
Liu, Shu-Guang; Kaire, M.; Wood, Eric C.; Diallo, O.; Tieszen, Larry L.
2004-01-01
Total carbon stock in vegetation and soils was reduced 37% in south-central Senegal from 1900 to 2000. The decreasing trend will continue during the 21st century unless forest clearing is stopped, selective logging dramatically reduced, and climate change, if any, relatively small. Developing a sustainable fuelwood and charcoal production system could be the most feasible and significant carbon sequestration project in the region. If future climate changes dramatically as some models have predicted, cropland productivity will drop more than 65% around 2100, posing a serious threat to food security and the efficiency of carbon sequestration projects.
Oswald, Florian; Stoll, I. Katharina; Zwick, Michaela; Herbig, Sophia; Sauer, Jörg; Boukis, Nikolaos; Neumann, Anke
2018-01-01
Low productivities of bioprocesses using gaseous carbon and energy sources are usually caused by the low solubility of those gases (e.g., H2 and CO). It has been suggested that increasing the partial pressure of those gases will result in higher dissolved concentrations and should, therefore, be helpful to overcome this obstacle. Investigations of the late 1980s with mixtures of hydrogen and carbon monoxide showed inhibitory effects of carbon monoxide partial pressures above 0.8 bar. Avoiding any effects of carbon monoxide, we investigate growth and product formation of Clostridium ljungdahlii at absolute process pressures of 1, 4, and 7 bar in batch stirred tank reactor cultivations with carbon dioxide and hydrogen as sole gaseous carbon and energy source. With increasing process pressure, the product spectrum shifts from mainly acetic acid and ethanol to almost only formic acid at a total system pressure of 7 bar. On the other hand, no significant changes in overall product yield can be observed. By keeping the amount of substance flow rate constant instead of the volumetric gas feed rate when increasing the process pressure, we increased the overall product yield of 7.5 times of what has been previously reported in the literature. After 90 h of cultivation at a total pressure of 7 bar a total of 4 g L−1 of products is produced consisting of 82.7 % formic acid, 15.6 % acetic acid, and 1.7 % ethanol. PMID:29484294
Selmants, Paul C; Litton, Creighton M; Giardina, Christian P; Asner, Gregory P
2014-09-01
Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above- and belowground live biomass and detritus across a well-constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha(-1) for each 1 °C rise in temperature - a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem-level carbon storage will respond to future warming. © 2014 John Wiley & Sons Ltd.
Wang, Zhaohui Aleck; Sonnichsen, Frederick N; Bradley, Albert M; Hoering, Katherine A; Lanagan, Thomas M; Chu, Sophie N; Hammar, Terence R; Camilli, Richard
2015-04-07
A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time of only ∼ 90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ± 2.5 μmol kg(-1) for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ± 0.0024 and ± 4.1 μmol kg(-1), respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO2 parameters, and is capable of resolving the CO2 system in dynamic marine environments.
Yang, Hong; Xing, Yangping; Xie, Ping; Ni, Leyi; Rong, Kewen
2008-02-01
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.
Thermogenic methane release as a cause for the long duration of the PETM
Frieling, Joost; Svensen, Henrik H.; Planke, Sverre; Cramwinckel, Margot J.; Selnes, Haavard; Sluijs, Appy
2016-01-01
The Paleocene–Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean–atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of this CIE are generally explained by a large and rapid initial pulse, followed by ∼50 kyr of 13C-depleted carbon injection. Suggested sources include submarine methane hydrates, terrigenous organic matter, and thermogenic methane and CO2 from hydrothermal vent complexes. Here, we test for the contribution of carbon release associated with volcanic intrusions in the North Atlantic Igneous Province. We use dinoflagellate cyst and stable carbon isotope stratigraphy to date the active phase of a hydrothermal vent system and find it to postdate massive carbon release at the onset of the PETM. Crucially, however, it correlates to the period within the PETM of longer-term 13C-depleted carbon release. This finding represents actual proof of PETM carbon release from a particular reservoir. Based on carbon cycle box model [i.e., Long-Term Ocean–Atmosphere–Sediment Carbon Cycle Reservoir (LOSCAR) model] experiments, we show that 4–12 pulses of carbon input from vent systems over 60 kyr with a total mass of 1,500 Pg of C, consistent with the vent literature, match the shape of the CIE and pattern of deep ocean carbonate dissolution as recorded in sediment records. We therefore conclude that CH4 from the Norwegian Sea vent complexes was likely the main source of carbon during the PETM, following its dramatic onset. PMID:27790990
Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O
1983-09-01
The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.
NASA Astrophysics Data System (ADS)
Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel
2014-04-01
The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.
South Sumatra Basin Province, Indonesia; the Lahat/Talang Akar-Cenozoic total petroleum system
Bishop, Michele G.
2000-01-01
Oil and gas are produced from the onshore South Sumatra Basin Province. The province consists of Tertiary half-graben basins infilled with carbonate and clastic sedimentary rocks unconformably overlying pre-Tertiary metamorphic and igneous rocks. Eocene through lower Oligocene lacustrine shales and Oligocene through lower Miocene lacustrine and deltaic coaly shales are the mature source rocks. Reserves of 4.3 billion barrels of oil equivalent have been discovered in reservoirs that range from pre-Tertiary basement through upper Miocene sandstones and carbonates deposited as synrift strata and as marine shoreline, deltaic-fluvial, and deep-water strata. Carbonate and sandstone reservoirs produce oil and gas primarily from anticlinal traps of Plio-Pleistocene age. Stratigraphic trapping and faulting are important locally. Production is compartmentalized due to numerous intraformational seals. The regional marine shale seal, deposited by a maximum sea level highstand in early middle Miocene time, was faulted during post-depositional folding allowing migration of hydrocarbons to reservoirs above the seal. The province contains the Lahat/Talang Akar-Cenozoic total petroleum system with one assessment unit, South Sumatra.
NASA Astrophysics Data System (ADS)
Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai
2018-01-01
Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for revealing the mechanism of carbon burial and evaluating the capacity of marine carbon accumulation and sequestration.
NASA Technical Reports Server (NTRS)
Bowman, Elizabeth M.; Carpenter, Joyce; Roy, Robert J.; Van Keuren, Steve; Wilson, Mark E.
2015-01-01
Since 2007, the Oxygen Generation System (OGS) on board the International Space Station (ISS) has been producing oxygen for crew respiration via water electrolysis. As water is consumed in the OGS recirculating water loop, make-up water is furnished by the ISS potable water bus. A rise in Total Organic Carbon (TOC) was observed beginning in February, 2011, which continues through the present date. Increasing TOC is of concern because the organic constituents responsible for the TOC were unknown and had not been identified; hence their impacts on the operation of the electrolytic cell stack components and on microorganism growth rates and types are unknown. Identification of the compounds responsible for the TOC increase, their sources, and estimates of their loadings in the OGA as well as possible mitigation strategies are presented.
Yan, Linbo; He, Boshu
2017-07-01
A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehrpooya, Mehdi; Ansarinasab, Hojat; Moftakhari Sharifzadeh, Mohammad Mehdi; Rosen, Marc A.
2017-10-01
An integrated power plant with a net electrical power output of 3.71 × 105 kW is developed and investigated. The electrical efficiency of the process is found to be 60.1%. The process includes three main sub-systems: molten carbonate fuel cell system, heat recovery section and cryogenic carbon dioxide capturing process. Conventional and advanced exergoeconomic methods are used for analyzing the process. Advanced exergoeconomic analysis is a comprehensive evaluation tool which combines an exergetic approach with economic analysis procedures. With this method, investment and exergy destruction costs of the process components are divided into endogenous/exogenous and avoidable/unavoidable parts. Results of the conventional exergoeconomic analyses demonstrate that the combustion chamber has the largest exergy destruction rate (182 MW) and cost rate (13,100 /h). Also, the total process cost rate can be decreased by reducing the cost rate of the fuel cell and improving the efficiency of the combustion chamber and heat recovery steam generator. Based on the total avoidable endogenous cost rate, the priority for modification is the heat recovery steam generator, a compressor and a turbine of the power plant, in rank order. A sensitivity analysis is done to investigate the exergoeconomic factor parameters through changing the effective parameter variations.
NASA Astrophysics Data System (ADS)
Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin
2017-02-01
Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.
Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina
2015-06-15
We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and aggregate turnover in the winter with topsoil frost. Copyright © 2015. Published by Elsevier B.V.
Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul D.; SanSoucie, Michael P.
2015-01-01
NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.
40 CFR 265.1033 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Closed-vent systems and control devices. 265.1033 Section 265.1033 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... total carbon working capacity -established as a requirement of § 265.1035(b)(4)(iii)(G), whichever is...
Révész, Kinga M.; Doctor, Daniel H.
2014-01-01
The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.
Process and system for treating waste water
Olesen, Douglas E.; Shuckrow, Alan J.
1978-01-01
A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Andrawes, F. F.
1980-01-01
Total carbon and sulfur abundances have been measured for 25 meteorites recovered from the Allan Hills area of Antarctica. The majority (greater than 67%) of the meteorites analyzed do not contain enriched carbon abundances resulting from weathering processes. The presence of secondary carbonates in samples which give no apparent evidence of weathering was noted during pyrolysis experiments, despite the 'normal' total carbon abundances. In selected cases, the surfaces of weathered samples may contain up to a factor of two greater carbon content than the interior. Variations in carbon abundances may reflect the degree of weathering and the amount of secondary minerals present. One of the surprises of this study is that the majority of the Antarctic meteorites studied do not exhibit total carbon and sulfur abundances outside the ranges previously observed for falls.
NASA Astrophysics Data System (ADS)
Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.
2017-10-01
The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
NASA Astrophysics Data System (ADS)
Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong
2016-04-01
Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was higher in silt fraction than in other fractions for these rice soils. For the size fractions other than clay fraction, soil gene concentration, Archaeal gen abundance, normalized enzyme activity and carbon sequestration was seen increased but SOC- and gene- scaled soil respiration decreased, more or less with prolonged rice cultivation. As shown with regression analysis, SOC content was positively linearly correlated to recalcitrant carbon proportion but negatively linearly correlated to labile carbon, in both sand and clay fractions. However, soil respiration was found positively logarithmically correlated to total DNA contents and bacterial gen abundance in both sand and clay fractions. Total DNA content was found positively correlated to SOC and labile carbon content, recalcitrant carbon proportion and normalized enzyme activity but negatively to soil respiration, in sand fraction only. Our findings suggested that carbon accumulation and stabilization was prevalent in both sand and clay fraction, only the coarse sand fraction was found responsible for bioactivity dynamics in the rice soils. Thus, soil carbon sequestration was primarily by formation of the macro-aggregates, which again mediated carbon stability and bioactivity in the rice soils under long term rice cultivation.
Bacterial carbon utilization in vertical subsurface flow constructed wetlands.
Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T
2008-03-01
Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.
The internal consistency of the North Sea carbonate system
NASA Astrophysics Data System (ADS)
Salt, Lesley A.; Thomas, Helmuth; Bozec, Yann; Borges, Alberto V.; de Baar, Hein J. W.
2016-05-01
In 2002 (February) and 2005 (August), the full suite of carbonate system parameters (total alkalinity (AT), dissolved inorganic carbon (DIC), pH, and partial pressure of CO2 (pCO2) were measured on two re-occupations of the entire North Sea basin, with three parameters (AT, DIC, pCO2) measured on four additional re-occupations, covering all four seasons, allowing an assessment of the internal consistency of the carbonate system. For most of the year, there is a similar level of internal consistency, with AT being calculated to within ± 6 μmol kg- 1 using DIC and pH, DIC to ± 6 μmol kg- 1 using AT and pH, pH to ± 0.008 using AT and pCO2, and pCO2 to ± 8 μatm using DIC and pH, with the dissociation constants of Millero et al. (2006). In spring, however, we observe a significant decline in the ability to accurately calculate the carbonate system. Lower consistency is observed with an increasing fraction of Baltic Sea water, caused by the high contribution of organic alkalinity in this water mass, not accounted for in the carbonate system calculations. Attempts to improve the internal consistency by accounting for the unconventional salinity-borate relationships in freshwater and the Baltic Sea, and through application of the new North Atlantic salinity-boron relationship (Lee et al., 2010), resulted in no significant difference in the internal consistency.
Publications - GMC 14 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 14 Publication Details Title: Total organic carbon and flame ionization detectable carbon Unknown, 1979, Total organic carbon and flame ionization detectable carbon analyses cuttings from on-shore
Gao, Huilin; Dong, Lihu; Li, Fengri; Zhang, Lianjun
2015-01-01
A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the plantations in Heilongjiang Province, P.R. China. The sample trees were measured and calculated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage and root). Both compatible biomass and carbon stock models were developed with the total biomass and total carbon stocks as the constraints, respectively. Four methods were used to evaluate the carbon stocks of tree components. The first method predicted carbon stocks directly by the compatible carbon stocks models (Method 1). The other three methods indirectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compatible biomass models, and (2) multiplying the estimated biomass by three different carbon conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concentration of the sample trees (Method 3), and average carbon concentration of each tree component (Method 4)). The prediction errors of estimating the carbon stocks were compared and tested for the differences between the four methods. The results showed that the compatible biomass and carbon models with tree diameter (D) as the sole independent variable performed well so that Method 1 was the best method for predicting the carbon stocks of tree components and total. There were significant differences among the four methods for the carbon stock of stem. Method 2 produced the largest error, especially for stem and total. Methods 3 and Method 4 were slightly worse than Method 1, but the differences were not statistically significant. In practice, the indirect method using the mean carbon concentration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon stocks models are not available. PMID:26659257
NASA Astrophysics Data System (ADS)
Xu, Qiang; Gao, Fei; Yang, Hongsheng
2016-03-01
Bivalves and seaweeds are important cleaners that are widely used in integrated multi-trophic aquaculture (IMTA) systems. A beneficial relationship between seaweed and bivalve in the seaweed-based IMTA system has been confirmed, but the trophic importance of seaweed-derived particulate organic materials to the co-cultured bivalve is still unclear. We evaluated the trophic importance of the kelp Saccharina japonica to the co-cultured scallop Chlamys farreri in a typical IMTA farm in Sungo Bay (Weihai, North China). The dynamics of detritus carbon in the water were monitored during the culturing period. The proportion of kelp-derived organic matter in the diet of the co-cultured scallop was assessed via the stable carbon isotope method. Results showed that the detritus carbon in the water ranged from 75.52 to 265.19 μg/L, which was 25.6% to 73.8% of total particulate organic carbon (TPOC) during the study period. The amount of detritus carbon and its proportion in the TPOC changed throughout the culture cycle of the kelp. Stable carbon isotope analysis showed that the cultured scallop obtained 14.1% to 42.8% of its tissue carbon from the kelp, and that the percentages were closely correlated with the proportion of detritus carbon in the water ( F =0.993, P= 0.003). Evaluation showed that for 17 000 tons (wet weight) of annual scallop production, the kelp contributed about 139.3 tons of carbon (535.8 tons of dry mass). This confirms that cultured kelp plays a similar trophic role in IMTA systems as it does in a natural kelp bed. It is a major contributor to the detritus pool and supplies a vital food source to filter-feeding scallops in the IMTA system, especially during winter and early spring when phytoplankton are scarce.
Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles
NASA Technical Reports Server (NTRS)
Stewart, David A.
1997-01-01
Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.
Scenario analysis of energy-based low-carbon development in China.
Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng
2014-08-01
China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.
Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater
Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron
2012-01-01
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.
Application of selected methods of remote sensing for detecting carbonaceous water pollution
NASA Technical Reports Server (NTRS)
Davis, E. M.; Fosbury, W. J.
1973-01-01
A reach of the Houston Ship Channel was investigated during three separate overflights correlated with ground truth sampling on the Channel. Samples were analyzed for such conventional parameters as biochemical oxygen demand, chemical oxygen demand, total organic carbon, total inorganic carbon, turbidity, chlorophyll, pH, temperature, dissolved oxygen, and light penetration. Infrared analyses conducted on each sample included reflectance ATR analysis, carbon tetrachloride extraction of organics and subsequent scanning, and KBr evaporate analysis of CCl4 extract concentrate. Imagery which was correlated with field and laboratory data developed from ground truth sampling included that obtained from aerial KA62 hardware, RC-8 metric camera systems, and the RS-14 infrared scanner. The images were subjected to analysis by three film density gradient interpretation units. Data were then analyzed for correlations between imagery interpretation as derived from the three instruments and laboratory infrared signatures and other pertinent field and laboratory analyses.
Baustian, Melissa M.; Stagg, Camille L.; Perry, Carey L.; Moss, Leland C; Carruthers, Tim J.B.; Allison, Mead
2017-01-01
Salinity alterations will likely change the plant and environmental characteristics in coastal marshes thereby influencing soil carbon accumulation rates. Coastal Louisiana marshes have been historically classified as fresh, intermediate, brackish, or saline based on resident plant community and position along a salinity gradient. Short-term total carbon accumulation rates were assessed by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient. Bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation rates. Despite some significant differences in soil properties among marsh types, the mean total carbon accumulation rates among marsh types were not significantly different (mean ± std. err. of 190 ± 27 g TC m−2 year−1). However, regression analysis indicated that mean annual surface salinity had a significant negative relationship with total carbon accumulation rates. Based on both analyses, the coastal Louisiana total marsh area (1,433,700 ha) accumulates about 2.7 to 3.3 Tg C year−1. Changing salinities due to increasing relative sea level or resulting from restoration activities may alter carbon accumulation rates in the short term and significantly influence the global carbon cycle.
Urea adsorption by activated carbon prepared from palm kernel shell
NASA Astrophysics Data System (ADS)
Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee
2017-07-01
Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.
Research developments in methods to reduce the carbon footprint of the food system: a review.
Xu, Zhongyue; Sun, Da-Wen; Zeng, Xin-An; Liu, Dan; Pu, Hongbin
2015-01-01
Global warming is a worldwide issue with its evident impact across a wide range of systems and sectors. It is caused by a number of greenhouse gases (GHGs) emissions, in which food system has made up of a large part. Recently, reduction of GHG emissions has become an urgent issue to be resolved in the food system. Many governments and organizations are making great endeavors to alleviate the adverse effect of this phenomenon. In this review, methods to reduce the carbon footprint within the life cycle of a food system are presented from the technical, consumption behavior and environmental policies perspectives. The whole food system including raw material acquisition, processing, packaging, preservation, transportation, consumption, and disposal are covered. Improving management techniques, and adopting advanced technology and equipment are critical for every stage of a food system. Rational site selection is important to alleviate the influence of land use change. In addition, environmental choices of packaging stage, reduction in refrigeration dependence, and correct waste treatment are essential to reduce the total carbon footprint of the production. However, only technical methods cannot radically reverse the trend of climate change, as consumption behaviors present a great deal of influence over climate change. Appropriate purchase patterns and substitution within food product categories by low carbon products can reduce GHG emissions. Development of methods to calculate the carbon footprint of every kind of food and its processing technology enable people to make environmental choice. Policy can shape and cultivate the new code of consumption and influence the direction of emerging technology and science. From political perspectives, government intervention and carbon offset are common tools, especially for carbon tax and a real or implicit price of carbon. Finally, by mitigating the methodologies described above, the rate and magnitude of climate changes can be also reduced to some extent.
GLODAPv2 data exploration and extraction system
NASA Astrophysics Data System (ADS)
Krassovski, Misha; Kozyr, Alex; Boden, Thomas
2016-04-01
The Global Ocean Data Analysis Project (GLODAP) is a cooperative effort of investigators funded for ocean synthesis and modeling projects by the U.S. National Oceanic and Atmospheric Administration (NOAA), Department of Energy (DOE), and National Science Foundation (NSF). Cruises conducted as part of the WOCE, JGOFS, and NOAA Ocean-Atmosphere Carbon Exchange Study (OACES) over the decade of the 1990s generated oceanographic data of unparalleled quality and quantity. GLODAPv2 is a uniformly calibrated open-ocean data product containing inorganic carbon and carbon-relevant variables. This new product includes data from approximately one million individual seawater samples collected from over 700 cruises during the period 1972-2013. Extensive quality control and subsequent calibration were carried out for salinity, oxygen, nutrient, carbon dioxide, total alkalinity, pH, and chlorofluorocarbon data. The Carbon Dioxide Information and Analysis Center (CDIAC), serving as the primary DOE disseminator for climate data and information, developed database and web accessible systems that permit users worldwide to query and retrieve data from the GLODAPv2 collection. This presentation will showcase this new system, discuss technologies used to build the GLODAPv2 resource, and describe integration with a metadata search engine provided by CDIAC as well.
NASA Astrophysics Data System (ADS)
Dean, J. F.; van der Velde, Y.; Garnett, M. H.; Dinsmore, K. J.; Baxter, R.; Lessels, J. S.; Smith, P.; Street, L. E.; Subke, J.-A.; Tetzlaff, D.; Washbourne, I.; Wookey, P. A.; Billett, M. F.
2018-03-01
Mobilization of soil/sediment organic carbon into inland waters constitutes a substantial, but poorly-constrained, component of the global carbon cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized carbon, but aquatic 14C studies in permafrost regions rarely detect ‘old’ carbon (assimilated from the atmosphere into plants and soil prior to AD1950). The emission of greenhouse gases derived from old carbon by aquatic systems may indicate that carbon sequestered prior to AD1950 is being destabilized, thus contributing to the ‘permafrost carbon feedback’ (PCF). Here, we measure directly the 14C content of aquatic CO2, alongside dissolved organic carbon, in headwater systems of the western Canadian Arctic—the first such concurrent measurements in the Arctic. Age distribution analysis indicates that the age of mobilized aquatic carbon increased significantly during the 2014 snow-free season as the active layer deepened. This increase in age was more pronounced in DOC, rising from 101-228 years before sampling date (a 120%-125% increase) compared to CO2, which rose from 92-151 years before sampling date (a 59%-63% increase). ‘Pre-industrial’ aged carbon (assimilated prior to ~AD1750) comprised 15%-40% of the total aquatic carbon fluxes, demonstrating the prevalence of old carbon to Arctic headwaters. Although the presence of this old carbon is not necessarily indicative of a net positive PCF, we provide an approach and baseline data which can be used for future assessment of the PCF.
NASA Technical Reports Server (NTRS)
Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.
Space Station Freedom Water Recovery test total organic carbon accountability
NASA Technical Reports Server (NTRS)
Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary
1991-01-01
Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.
Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan
2018-06-01
Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.
Lin, Junjie; Zhu, Biao; Cheng, Weixin
2015-12-01
The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond. © 2015 John Wiley & Sons Ltd.
Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.
2008-01-01
We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.
Potentially bioavailable natural organic carbon and hydrolyzable amino acids in aquifer sediments
Thomas, Lashun K.; Widdowson, Mark A.; Novak, John T.; Chapelle, Francis H.; Benner, Ronald; Kaiser, Karl
2012-01-01
This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic -carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene--contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p < 0.05). Higher levels of HAA were consistently observed at sites with greater levels of PBOC and first-order decay rates. Because amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.
Economics of total energy schemes in the liberalised European energy market
NASA Astrophysics Data System (ADS)
Lampret, Peter
This thesis is concerned with the liberalisation of the European Energy markets and the affects this has had on total energy systems. The work concentrates on a number of case studies all of which are located in the area surrounding Gelsenkirchen - Bottrop - Gladbeck, the centre of the Ruhr region of Germany.The thesis describes briefly how the legislation of the parliament of the extended European Union has been interpreted and enacted into German legislation and its affects on production, transport, sales and customers. Primarily the legislation has been enacted to reduce energy costs by having a competitive market while enabling security of supply. The legislation whose development has accelerated since 1999 can lead to negative effects and these have been highlighted for the case studies chosen.The legislation and technological advances, each of them successful by themselves, do not provide the expected reduction of carbon dioxide emissions when applied to total energy system. The introduction of human behaviour as a missing link makes the problems evident and gives a theoretical basis to overcome these problems. The hypothesis is proven by eight detailed research projects and four concisely described ones.The base of the research is the experience gained on approximately 1,000 operation years of the simplest total energy system, that of centralised heating. This experience is transferred to different solutions for total energy systems and their economics in combination with the changing legislation and observation of human behaviour.The variety of topics of the case studies includes the production of heat by boiler, solar or combined heat and power and the use of fuel cells. Additionally the transfer of heat, at the place of demand is considered, either as an individual boiler in a building or as de-centralised district heating.The various results of these projects come together in a final project which covers four different heating systems in identical buildings each with five apartments.Based on the experience described a schematic of the energy system is developed demonstrating the interdependence of actors within energy systems, the energy system itself and the outer frame which includes legislation and the environment. In parallel a financial solution is proposed for a future carbon dioxide free heating and hot potable water supply.To combine both systems a missing link that of human behaviour is introduced. This linkage requires changes of legislation which are described.The solution proposed enables future energy consumption and in parallel the reduction of carbon dioxide emissions.
Economics of total energy schemes in the liberalised European energy market
NASA Astrophysics Data System (ADS)
Lampret, Peter
This thesis is concerned with the liberalisation of the European Energy markets and the affects this has had on total energy systems. The work concentrates on a number of case studies all of which are located in the area surrounding Gelsenkirchen - Bottrop - Gladbeck, the centre of the Ruhr region of Germany. The thesis describes briefly how the legislation of the parliament of the extended European Union has been interpreted and enacted into German legislation and its affects on production, transport, sales and customers. Primarily the legislation has been enacted to reduce energy costs by having a competitive market while enabling security of supply. The legislation whose development has accelerated since 1999 can lead to negative effects and these have been highlighted for the case studies chosen. The legislation and technological advances, each of them successful by themselves, do not provide the expected reduction of carbon dioxide emissions when applied to total energy system. The introduction of human behaviour as a missing link makes the problems evident and gives a theoretical basis to overcome these problems. The hypothesis is proven by eight detailed research projects and four concisely described ones. The base of the research is the experience gained on approximately 1,000 operation years of the simplest total energy system, that of centralised heating. This experience is transferred to different solutions for total energy systems and their economics in combination with the changing legislation and observation of human behaviour. The variety of topics of the case studies includes the production of heat by boiler, solar or combined heat and power and the use of fuel cells. Additionally the transfer of heat, at the place of demand is considered, either as an individual boiler in a building or as de-centralised district heating. The various results of these projects come together in a final project which covers four different heating systems in identical buildings each with five apartments. Based on the experience described a schematic of the energy system is developed demonstrating the interdependence of actors within energy systems, the energy system itself and the outer frame which includes legislation and the environment. In parallel a financial solution is proposed for a future carbon dioxide free heating and hot potable water supply. To combine both systems a missing link that of human behaviour is introduced. This linkage requires changes of legislation which are described. The solution proposed enables future energy consumption and in parallel the reduction of carbon dioxide emissions.
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411
Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
40 CFR 264.1033 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Closed-vent systems and control devices. 264.1033 Section 264.1033 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... no greater than 20 per-cent of the time required to con-sume the total carbon working cap-a-city...
Composite rotor blades for large wind energy installations
NASA Technical Reports Server (NTRS)
Kussmann, A.; Molly, J.; Muser, D.
1980-01-01
The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.
Experimental clean combustor program, phase 3
NASA Technical Reports Server (NTRS)
Roberts, R.; Fiorentino, A.; Greene, W.
1977-01-01
A two-stage vortex burning and mixing combustor and associated fuel system components were successfully tested at steady state and transient operating conditions. The combustor exceeded the program goals for all three emissions species, with oxides of nitrogen 10 percent below the goal, carbon monoxide 26 percent below the goal, and total unburned hydrocarbons 75 percent below the goal. Relative to the JT9D-7 combustor, the oxides of nitrogen were reduced by 58 percent, carbon monoxide emissions were reduced by 69 percent, and total unburned hydrocarbons were reduced by 9 percent. The combustor efficiency and exit temperature profiles were comparable to those of production combustor. Acceleration and starting characteristics were deficient relative to the production engine.
A theoretical study for mechanical contact between carbon nanotubes
NASA Astrophysics Data System (ADS)
Takagi, Yoshiteru; Uda, Tsuyoshi; Ohno, Takahisa
2005-03-01
We have theoretically investigated motions of single-walled carbon nanotubes (SWNTs) which are mounted on a flat substrate layer of SWNTs by tight-binding molecular dynamics simulations. One of the most interesting motions is the conversion of force and torque, where the force and torque acting initially on the mounted tube finally results in the lateral motion and rolling of the supporting tubes in the substrate. This motion is well understood in terms of the total energy surface of the SWNT/SWNT system. It is suggested that an undulation of the total energy surface plays a role as an atomic-scale gear tooth in the field of nanomechanics, in spite of the atomically smooth surface of SWNT.
Potential Carbon Negative Commercial Aviation through Land Management
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
2008-01-01
Brazilian terra preta soil and char-enhanced soil agricultural systems have demonstrated both enhanced plant biomass and crop yield and functions as a carbon sink. Similar carbon sinking has been demonstrated for both glycophyte and halophyte plants and plant roots. Within the assumption of 3.7 t-C/ha/yr soils and plant root carbon sinking, it is possible to provide carbon neutral U.S. commercial aviation using about 8.5% of U.S. arable lands. The total airline CO2 release would be offset by carbon credits for properly managed soils and plant rooting, becoming carbon neutral for carbon sequestered synjet processing. If these lands were also used to produce biomass fuel crops such as soybeans at an increased yield of 60 bu/acre (225gal/ha), they would provide over 3.15 10(exp 9) gallons biodiesel fuel. If all this fuel were refined into biojet it would provide a 16% biojet-84% synjet blend. This allows the U.S. aviation industry to become carbon negative (carbon negative commercial aviation through carbon credits). Arid land recovery could yield even greater benefits.
McSwiggen, P.L.
1993-01-01
The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.
Behaviour of estrogenic endocrine-disrupting chemicals in permeable carbonate sands.
Shepherd, Benjamin O; Erler, Dirk V; Tait, Douglas R; van Zwieten, Lukas; Kimber, Stephen; Eyre, Bradley D
2015-08-01
The remediation of four estrogenic endocrine-disrupting compounds (EDCs), estrone (E1), estradiol (E2), ethinylestradiol (EE2) and estriol (E3), was measured in saturated and unsaturated carbonate sand-filled columns dosed with wastewater from a sewage treatment plant. The estrogen equivalency (EEQ) of inlet wastewater was 1.2 ng L(-1) and was remediated to an EEQ of 0.5 ng L(-1) through the unsaturated carbonate sand-filled columns. The high surface area of carbonate sand and associated high microbial activity may have assisted the degradation of these estrogens. The fully saturated sand columns showed an increase in total estrogenic potency with an EEQ of 2.4 ng L(-1), which was double that of the inlet wastewater. There was a significant difference (P < 0.05) in total estrogenic potency between aerobic and anaerobic columns. The breakdown of conjugated estrogens to estrogenic EDCs formed under long residence time and reducing conditions may have been responsible for the increase in the fully saturated columns. This may also be explained by the desorption of previously sorbed estrogenic EDCs. The effect of additional filter materials, such as basalt sediment and coconut fibre, on estrogenic EDC reduction was also tested. None of these amendments provided improvements in estrogen remediation relative to the unamended unsaturated carbonate sand columns. Aerobic carbonate sand filters have good potential to be used as on-site wastewater treatment systems for the reduction of estrogenic EDCs. However, the use of fully saturated sand filters, which are used to promote denitrification, and the loss of nitrogen as N2 were shown to cause an increase in EEQ. The potential for the accumulation of estrogenic EDCs under anaerobic conditions needs to be considered when designing on-site sand filtration systems required to reduce nitrogen. Furthermore, the accumulation of estrogens under anaerobic conditions such as under soil absorption systems or leachate fields has the potential to contaminate groundwater especially when the water table levels fluctuate.
Nemeth, Denise; Lambrinos, John G; Strik, Bernadine C
2017-02-01
Perennial crops potentially provide a sink for atmospheric carbon. However, there is a poor understanding of how perennial crops differ in their carbon allocation patterns, and few studies have tested how agronomic practices such as fertilization influence long-term patterns of carbon allocation in actual production systems. In this study, we report results of a long-term field experiment that tested the individual and combined effects of organic matter incorporation and nitrogen fertilization on carbon allocation. The mature (nine-year-old) blueberry plants in this study had an average standing carbon stock of 1147gCm -2 and average annual Net Primary Production (NPP) of 523gCm -2 yr -1 , values that are similar to those reported for other woody crops. Forty-four percent of blueberry annual NPP was sequestered in persistent biomass, 19% was exported as harvested fruit, and 37% entered the detrital pathway. Nitrogen applied at rates typical for blueberry production throughout the span of the study had no significant effect on total plant or soil C. However, pre-planting organic matter incorporation and periodic mulching with sawdust significantly increased both soil organic matter and soil C. Pre-planting organic matter incorporation also increased total standing plant C nine years later at maturity. At the field scale, we estimate that fields receiving pre-planting organic matter incorporation would have 4.8% (4.5Mgha -1 ) more standing C relative to non-amended fields, although the difference is within the range of uncertainty of the estimated values. These results suggest that blueberry production can provide a valuable medium-term carbon store that is comparable in magnitude to that of temperate tree crops, but overall carbon budgets are influenced by management practices over the first decade after planting. Copyright © 2016 Elsevier B.V. All rights reserved.
Process for making hollow carbon spheres
Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle
2013-04-16
A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.
An assessment of the net value of CSP systems integrated with thermal energy storage
Mehos, M.; Jorgenson, J.; Denholm, P.; ...
2015-05-01
Within this study, we evaluate the operational and capacity value—or total system value—for multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.
Herrmann, Maria; Najjar, Raymond G.; Kemp, W. Michael; Alexander, Richard B.; Boyer, Elizabeth W.; Cai, Wei-Jun; Griffith, Peter C.; Kroeger, Kevin D.; McCallister, S. Leigh; Smith, Richard A.
2015-01-01
Net ecosystem production (NEP) and the overall organic carbon budget for the estuaries along the East Coast of the United States are estimated. We focus on the open estuarine waters, excluding the fringing wetlands. We developed empirical models relating NEP to loading ratios of dissolved inorganic nitrogen to total organic carbon, and carbon burial in the sediment to estuarine water residence time and total nitrogen input across the landward boundary. Output from a data-constrained water quality model was used to estimate inputs of total nitrogen and organic carbon to the estuaries across the landward boundary, including fluvial and tidal-wetland sources. Organic carbon export from the estuaries to the continental shelf was computed by difference, assuming steady state. Uncertainties in the budget were estimated by allowing uncertainties in the supporting model relations. Collectively, U.S. East Coast estuaries are net heterotrophic, with the area-integrated NEP of −1.5 (−2.8, −1.0) Tg C yr−1 (best estimate and 95% confidence interval) and area-normalized NEP of −3.2 (−6.1, −2.3) mol C m−2 yr−1. East Coast estuaries serve as a source of organic carbon to the shelf, exporting 3.4 (2.0, 4.3) Tg C yr−1 or 7.6 (4.4, 9.5) mol C m−2 yr−1. Organic carbon inputs from fluvial and tidal-wetland sources for the region are estimated at 5.4 (4.6, 6.5) Tg C yr−1 or 12 (10, 14) mol C m−2 yr−1 and carbon burial in the open estuarine waters at 0.50 (0.33, 0.78) Tg C yr−1 or 1.1 (0.73, 1.7) mol C m−2 yr−1. Our results highlight the importance of estuarine systems in the overall coastal budget of organic carbon, suggesting that in the aggregate, U.S. East Coast estuaries assimilate (via respiration and burial) ~40% of organic carbon inputs from fluvial and tidal-wetland sources and allow ~60% to be exported to the shelf.
NASA Astrophysics Data System (ADS)
Choma, Jerzy; Jedynak, Katarzyna; Fahrenholz, Weronika; Ludwinowicz, Jowita; Jaroniec, Mietek
2014-01-01
Soft-templating method was used to prepare mesoporous carbons. The synthesis in the presence of hydrochloric and citric acids involved resorcinol and formaldehyde as carbon precursors and triblock copolymer Pluronic F127 as a template. The as-synthesized samples underwent carbonization in flowing nitrogen at various temperatures; namely 600 °C, 700 °C and 800 °C. Two routes were used to develop microporosity in the mesoporous carbons studied. The first one involved introduction of tetraethyl orthosilicate to the reaction system. After silica dissolution with NaOH, an increase in microporosity was observed. The second method, chemical activation with KOH at 700 °C, was explored as an alternative approach to create microporosity. It is noteworthy that the TEOS addition not only led to the development of microporosity but also to some improvement of mesoporosity. The post-synthesis KOH activation resulted in more significant increase in the microporosity as compared to the samples obtained by TEOS-assisted synthesis. The mesopore volume was somewhat lower for activated carbons as compared to that in mesoporous carbons. Both methods resulted in micro-mesoporous carbons with good adsorption properties; for instance, in the case of carbons prepared in the presence of TEOS, the best sample exhibited BET surface area of 1463 m2/g and the total pore volume of 1.31 cm3/g. For the KOH activated carbons the best adsorption parameters were as follows: the specific surface area = 1906 m2/g, and the total pore volume = 0.98 cm3/g. Both procedures used for microporosity development afforded carbons with good adsorption properties that can be useful for applications such as CO2 adsorption, air and water purification.
Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C
2015-05-01
Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.
Publications - GMC 13 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 13 Publication Details Title: Total organic carbon, rock-eval pyrolysis and vitrinite information. Bibliographic Reference Phillips Petroleum Company, 1983, Total organic carbon, rock-eval K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page
Publications - GMC 127 | Alaska Division of Geological & Geophysical
DGGS GMC 127 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite information. Bibliographic Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite ) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department
Greywater characterization and loadings - Physicochemical treatment to promote onsite reuse.
Noutsopoulos, C; Andreadakis, A; Kouris, N; Charchousi, D; Mendrinou, P; Galani, A; Mantziaras, I; Koumaki, E
2018-06-15
Greywater is the wastewater produced in bathtubs, showers, hand basins, kitchen sinks, dishwashers and laundry machines. Segregation of greywater and blackwater and on site greywater treatment in order to promote its reuse for toilet flushing and/or garden irrigation is an interesting option especially in water deficient areas. The objective of this study was to characterize the different greywater sources in Greek households and to evaluate the performance of alternative physicochemical treatment systems to treat several types of greywater. Based on the results average daily greywater production was equal to 98 L per person per day and accounts for approximately 70-75% of the total household wastewater production (135 L per person per day). Among the different sources, laundry and kitchen sink are the main contributors to the total greywater load of organic carbon, suspended solids and surfactants, whereas dishwasher and bathroom greywater are the main sources of phosphorus and endocrine disrupting chemicals respectively. Depending on sources, greywater accounts for as low as 15% of the total wastewater load of organic carbon (in the case of light greywater sources), to as high as 74% of the total load organic load (in the case of the heavy greywater sources). On the other hand, the nutrients load of greywater is limited. The application of a physical treatment system consisting of coagulation, sedimentation, sand filtration, granular activated carbon filtration and disinfection can provide for a final effluent with high quality characteristics for onsite reuse, especially when treating light greywater. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Second State of the Carbon Cycle Report: A Scientific Basis for Policy and Management Decisions
NASA Astrophysics Data System (ADS)
Birdsey, R.; Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.
2017-12-01
The second "State of the Carbon Cycle of North America Report" (SOCCR-2) includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems (including coastal ocean waters), information about anthropogenic drivers, and implications for policy and carbon management. SOCCR-2 includes new focus areas such as soil carbon, arctic and boreal ecosystems, tribal lands, and greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane is considered to a greater extent than before. SOCCR-2 will contribute to the next U.S. National Climate Assessment, as well as providing information to support science-based management decisions and policies that include climate change mitigation and adaptation in Canada, the United States, and Mexico. Although the Report is still in the review process, preliminary findings indicate that North America is a net emitter of carbon dioxide and methane to the atmosphere, and that natural sinks offset about 25% of emitted carbon dioxide. Combustion of fossil fuels represents the largest source of emissions, but show a decreasing trend over the last decade and a lower share (20%) of the global total compared with the previous decade. Forests, soils, grasslands, and coastal oceans comprise the largest carbon sinks, while emissions from inland waters are a significant source of carbon dioxide. The Report also documents the lateral transfers of carbon among terrestrial ecosystems and from terrestrial to near-coastal ecosystems, to complete the carbon cycle accounting. Further, the Report explores the consequences of rising atmospheric carbon dioxide on terrestrial and oceanic systems, and the capacity of these systems to continue to act as carbon sinks based on the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. SOCCR-2 highlights key data gaps in carbon accounting frameworks, uncertainties in modeling and estimation approaches, and integrated frameworks for improving our understanding of the North American carbon cycle.
Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O
1983-01-01
The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study. PMID:6639023
Code of Federal Regulations, 2011 CFR
2011-07-01
... should be consistent with the manufacturer's specifications, if available. (3) Inspect the system... properly. (4) Optimize total emissions of carbon monoxide. This optimization should be consistent with the...
Huston, R; Chan, Y C; Chapman, H; Gardner, T; Shaw, G
2012-03-15
Due to prolonged droughts in recent years, the use of rainwater tanks in urban areas has increased in Australia. In order to apportion sources of contribution to heavy metal and ionic contaminants in rainwater tanks in Brisbane, a subtropical urban area in Australia, monthly tank water samples (24 sites, 31 tanks) and concurrent bulk deposition samples (18 sites) were collected during mainly April 2007-March 2008. The samples were analysed for acid-soluble metals, soluble anions, total inorganic carbon and total organic carbon, and characteristics such as total solid and pH. The Positive Matrix Factorisation model, EPA PMF 3.0, was used to apportion sources of contribution to the contaminants. Four source factors were identified for the bulk deposition samples, including 'crustal matter/sea salt', 'car exhausts/road side dust', 'industrial dust' and 'aged sea salt/secondary aerosols'. For the tank water samples, apart from these atmospheric deposition related factors which contributed in total to 65% of the total contaminant concentration on average, another six rainwater collection system related factors were identified, including 'plumbing', 'building material', 'galvanizing', 'roofing', 'steel' and 'lead flashing/paint' (contributing in total to 35% of the total concentration on average). The Australian Drinking Water Guideline for lead was exceeded in 15% of the tank water samples. The collection system related factors, in particular the 'lead flashing/paint' factor, contributed to 79% of the lead in the tank water samples on average. The concentration of lead in tank water was found to vary with various environmental and collection system factors, in particular the presence of lead flashing on the roof. The results also indicated the important role of sludge dynamics inside the tank on the quality of tank water. Copyright © 2011 Elsevier Ltd. All rights reserved.
McSwiggen, P.L.
1993-01-01
Earlier attempts at solution models for the ternary carbonate system have been unable to adequately accommodate the cation ordering which occurs in some of the carbonate phases. The carbonate solution model of this study combines a Margules type of interaction model with a Bragg-Williams type of ordering model. The ordering model determines the equilibrium state of order for a crystal, from which the cation distribution within the lattice can be obtained. The interaction model addresses the effect that mixing different cation species within a given cation layer has on the total free energy of the system. An ordering model was derived, based on the Bragg-Williams approach; it is applicable to ternary systems involving three cations substituting on two sites, and contains three ordering energy parameters (WCaMg, WCaFe, and WCaMgFe). The solution model of this study involves six Margules-type interaction parameters (W12, W21, W13, W31, W23, and W32). Values for the two sets of energy parameters were calculated from experimental data and from compositional relationships in natural assemblages. ?? 1993 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2005-05-01
Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.
Recent developments in water quality monitoring for Space Station reclaimed wastewaters
NASA Technical Reports Server (NTRS)
Small, John W.; Verostko, Charles E.; Linton, Arthur T.; Burchett, Ray
1987-01-01
This paper discusses the recent developments in water quality monitoring for Space Station reclaimed wastewaters. A preprototype unit that contains an ultraviolet absorbance organic carbon monitor integrated with pH and conductivity sensors is presented. The preprototype has provisions for automated operation and is a reagentless flow-through system without any gas/liquid interfaces. The organic carbon monitor detects by utraviolet absorbance the organic impurities in reclaimed wastewater which may be correlated to the organic carbon content of the water. A comparison of the preprototype organic carbon detection values with actual total organic carbon measurements is presented. The electrolyte double junction concept for the pH sensor and fixed electrodes for both the pH and conductivity sensors are discussed. In addition, the development of a reagentless organic carbon analyzer that incorporates ultraviolet oxidation and infrared detection is presented. Detection sensitivities, hardware development, and operation are included.
Historical warming reduced due to enhanced land carbon uptake.
Shevliakova, Elena; Stouffer, Ronald J; Malyshev, Sergey; Krasting, John P; Hurtt, George C; Pacala, Stephen W
2013-10-15
Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65-82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186-192 GtC, a carbon saving of 251-274 GtC.
Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.
Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi
2016-09-01
We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term. Copyright © 2016. Published by Elsevier B.V.
Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin
2017-01-01
Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25–2 mm), and micro- (0.053–0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics. PMID:28211507
Measurement of total organic concentration in water
NASA Technical Reports Server (NTRS)
Winkler, E.
1978-01-01
Instrument for determining total organic concentration in water uses no corrosive reagents or gases. Instead continuous ultraviolet photolysis process converts organic compounds to carbon dioxide (CO2). CO2 electrode is used to measure CO2 content. Only reagent necessary is oxygen, generated in situ by electrolyzing some water. In addition to application in aerospace industry, system has potential uses in pollution monitoring and in laboratory analyses.
Effect of hydrogen on the melting of the Fe-C system and the fate of the subducted carbon
NASA Astrophysics Data System (ADS)
Lai, X.; Chen, B.; Gao, J.; Zhu, F.
2017-12-01
The subducted oceanic crust carries significant amount of carbonates and organic carbons from the surface into the deep mantle. Through slab-mantle interactions, subducted carbons can react with metallic iron in the metal-saturated regions of the mantle and form various reduced species such as Fe carbides. The Fe-C system is found to have higher eutectic melting temperature than mantle geotherm and thus carbon by forming iron carbides may be "redox freezed" in the mantle (Rohrbach and Schmidt 2011). Hydrogen was found to be have significant effect on the melting of the Fe-light-elements systems such as the Fe-S system (Shibazaki et al., 2011). Here we report experimental results from both multi-anvil press and diamond anvil cell experiments on the melting behaviors of the Fe-C-H system. C14H12, a solid-state C-H organic compound was used as a C-H source to react with the metallic iron at high pressure and high temperature conditions. With excess C14H12, hydrogen in the FeHx alloy was totally replaced by carbon at 14.8-24.7 GPa. Conversely, with excess Fe, the existence of hydrogen is found to depress the melting temperature of the Fe-C system by at least 100 K. Hydrogen may facilitate the transport and cycling of subducted carbon in the deep mantle and contribute to formation of superdeep diamonds (Smith et al. 2016). Rohrbach, Arno, and Max W. Schmidt. "Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling." Nature 472.7342 (2011): 209. Shibazaki, Yuki, et al. "Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede." Earth and Planetary Science Letters 301.1 (2011): 153-158. Smith, Evan M., et al. "Large gem diamonds from metallic liquid in Earth's deep mantle." Science 354.6318 (2016): 1403-1405.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Podest, E.; Miller, C. E.; Dinardo, S. J.
2012-12-01
Fundamental aspects of the complex Arctic biological-climatologic-hydrologic system remain poorly quantified. As a result, significant uncertainties exist in the carbon budget of the Arctic ecosystem. NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a currently-operational Earth Venture 1 (EV-1) mission that is examining correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems. CARVE is conducted through a series of intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission timeframe. CARVE employs a C-23 Sherpa aircraft to fly an innovative airborne remote sensing payload. This payload includes an L-band radiometer/radar system and a nadir-viewing spectrometer to deliver simultaneous measurements of land surface state variables that control gas emissions (i.e., soil moisture and inundation, freeze/thaw state, surface temperature) and total atmospheric columns of carbon dioxide, methane, and carbon monoxide. The aircraft payload also includes a gas analyzer that links greenhouse gas measurements directly to World Meteorological Organization standards and provide vertical profile information. CARVE measurement campaigns are scheduled regularly throughout the growing season each year to capture the seasonal variability in Arctic system carbon fluxes associated with the spring thaw, the summer drawdown, and the fall refreeze. Continuous ground-based measurements provide temporal and regional context as well as calibration for CARVE airborne measurements. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. Ultimately, CARVE will provide an integrated set of data that will provide unprecedented experimental insights into Arctic carbon cycling. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration
Publications - GMC 100 | Alaska Division of Geological & Geophysical
DGGS GMC 100 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc100.pdf (317.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 26 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 26 Publication Details Title: Geochemical data (total organic carbon, rock-eval pyrolysis, and Reference Unknown, 1984, Geochemical data (total organic carbon, rock-eval pyrolysis, and vitrinite ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 29 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 29 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Minder, Michael, and Shell Oil Company, 1985, Geochemical analysis (total organic carbon, rock ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 334 | Alaska Division of Geological & Geophysical
DGGS GMC 334 Publication Details Title: Total Organic Carbon and Rock Eval with additional geochemical ConocoPhillips, and Baseline Resolution Inc. Analytical Laboratories, 2006, Total Organic Carbon and Rock Eval ) Keywords Total Organic Carbon Top of Page Department of Natural Resources, Division of Geological &
Publications - GMC 25 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 25 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Unknown, 1984, Geochemical analysis (total organic carbon, rock-eval pyrolysis, kerogen type ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 144 | Alaska Division of Geological & Geophysical
DGGS GMC 144 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite for more information. Bibliographic Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis gmc144.pdf (104.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance
Publications - GMC 125 | Alaska Division of Geological & Geophysical
DGGS GMC 125 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Cunningham, K., and Shell Oil Company, 1989, Total organic carbon, rock-eval pyrolysis, and Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division
Publications - GMC 30 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 30 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis , Geochemical analysis (total organic carbon, rock-eval pyrolysis, vitrinite reflectance and gc/ms chromato (1.3 M) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of
Publications - GMC 122 | Alaska Division of Geological & Geophysical
DGGS GMC 122 Publication Details Title: Total organic carbon, rock-eval pyrolysis, vitrinite for more information. Bibliographic Reference Exxon, and Geo-Strat, Inc., 1989, Total organic carbon Information gmc122.pdf (1.4 M) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 101 | Alaska Division of Geological & Geophysical
DGGS GMC 101 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc101.pdf (201.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 207 | Alaska Division of Geological & Geophysical
DGGS GMC 207 Publication Details Title: Total organic carbon, rock-eval, and vitrinite reflectance data for more information. Bibliographic Reference Unknown, 1993, Total organic carbon, rock-eval, and Report Information gmc207.pdf (165.0 K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page
Publications - GMC 60 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 60 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite , Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical data for the Nechelik (125.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of
Publications - GMC 19 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 19 Publication Details Title: Geochemical analysis (total organic carbon-rock-eval, vitrinite information. Bibliographic Reference Unknown, [n.d.], Geochemical analysis (total organic carbon-rock-eval K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources
Publications - GMC 27 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 27 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis . Bibliographic Reference Unknown, 1995, Geochemical analysis (total organic carbon, rock-eval pyrolysis, and ; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of
Publications - GMC 62 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 62 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite . Bibliographic Reference Unknown, 1985, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division
Publications - GMC 103 | Alaska Division of Geological & Geophysical
DGGS GMC 103 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc103.pdf (57.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 23 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 23 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, [n.d.], Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for Information gmc023.pdf (199.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 22 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 22 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, 1984, Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for the gmc022.pdf (247.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 286 | Alaska Division of Geological & Geophysical
DGGS GMC 286 Publication Details Title: Total organic carbon (TOC), rock-eval, vitrinite reflectance publication sales page for more information. Bibliographic Reference DGSI, Inc., 1999, Total organic carbon Products Report Report Information gmc286.pdf (2.0 M) Keywords Total Organic Carbon; Vitrinite Reflectance
Publications - GMC 102 | Alaska Division of Geological & Geophysical
DGGS GMC 102 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc102.pdf (81.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 124 | Alaska Division of Geological & Geophysical
DGGS GMC 124 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data from the Report Information gmc124.pdf (278.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 59 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 59 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite . Bibliographic Reference Unknown, 1985, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance -Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources
Stackpoole, Sarah M.; Stets, Edward G.; Striegl, Robert G.
2014-01-01
A nested sampling network on the Colorado (CR) and Missouri Rivers (MR) provided data to assess impacts of large-scale reservoir systems and climate on carbon export. The Load Estimator (LOADEST) model was used to estimate both dissolved inorganic and organic carbon (DIC and DOC) fluxes for a total of 22 sites along the main stems of the CR and MR. Both the upper CR and MR DIC and DOC fluxes increased longitudinally, but the lower CR fluxes decreased while the lower MRs continued to increase. We examined multiple factors through space and time that help explain these flux patterns. Seasonal variability in precipitation and temperature, along with site-level concentration versus discharge relationships proved to be significant factors explaining much of the difference among sites located below reservoirs as compared to sites located in more free-flowing segments of the river. The characterization of variability in carbon exports over space and time provides a basis for understanding carbon cycling and transport within river basins affected by large reservoir systems, particular in arid-to semi-arid ecosystems.
Water Hyacinths and Alligator Weeds for Final Filtration of Sewage
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.
1976-01-01
The potential of water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxerides) (Mart.) Griesb. as secondary and tertiary filtration systems for domestic sewage was demonstrated. These two vascular aquatic plants reduced the suspended solids, total Kjeldahl nitrogen, total phosphorus, BOD sub 5, and total organic carbon levels in domestic sewage from 60 percent to 98 percent within a two week period. These plants grown in domestic sewage were also free of toxic levels of trace heavy metals.
The oceanic origin of path-independent carbon budgets.
MacDougall, Andrew H
2017-09-04
Virtually all Earth system models (ESM) show a near proportional relationship between cumulative emissions of CO 2 and change in global mean temperature, a relationship which is independent of the emissions pathway taken to reach a cumulative emissions total. The relationship, which has been named the Transient Climate Response to Cumulative CO 2 Emissions (TCRE), gives rise to the concept of a 'carbon budget'. That is, a finite amount of carbon that can be burnt whilst remaining below some chosen global temperature change threshold, such as the 2.0 °C target set by the Paris Agreement. Here we show that the path-independence of TCRE arises from the partitioning ratio of anthropogenic carbon between the ocean and the atmosphere being almost the same as the partitioning ratio of enhanced radiative forcing between the ocean and space. That these ratios are so close in value is a coincidence unique to CO 2 . The simple model used here is underlain by many assumptions and simplifications but does reproduce key aspects of the climate system relevant to the path-independence of carbon budgets. Our results place TCRE and carbon budgets on firm physical foundations and therefore help validate the use of these metrics for climate policy.
Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~
NASA Astrophysics Data System (ADS)
Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.
2012-12-01
The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).
NASA Astrophysics Data System (ADS)
Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz
2016-04-01
The climate system of sub-tropical southern Africa is mainly controlled by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. This underlines the importance of paleoenvironmental reconstructions in order to estimate regional implications of current global changes. However, the majority of studies on southern African paleoclimate are based on the investigation of marine sedimentary archives and past climate development especially in continental areas is still poorly understood. This emphasizes the necessity of continental proxy-data from this area. Proxy datasets from local geoarchives especially of the southwestern Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. An age model based on 14C dating of total organic carbon (TOC) shows evidence that sedimentation predominates over erosional processes with respect to pan formation. Besides the analyses of basic geochemical bulk parameters including TOC, δ13CTOC, total inorganic carbon, δ13CTIC, δ18OTIC, total nitrogen and δ15N, our paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Results show prominent shifts in n-alkane and n-alkanol distributions and compound specific carbon isotope values, pointing to changes to a more grass dominated environment during Heinrich Stadial 1 (18.5-14.6 ka BP), while hydrogen isotope values suggest wetter phases during Holocene and LGM. This high variability indicates the local vulnerability to global change.
Baseline and Projected Future Carbon Stocks and Fluxes in the Hawaiian Islands
NASA Astrophysics Data System (ADS)
Selmants, P. C.; Sleeter, B. M.; Giardina, C. P.; Zhu, Z.; Asner, G. P.
2016-12-01
Hawaii is characterized by steep climatic gradients and heterogeneous land cover within a small geographic area, presenting a model tropical system to capture ecosystem carbon dynamics across a wide range of climate, soil, and land use conditions. However, ecosystem carbon balance is poorly understood on a statewide level, and the potential for climate and land use change to affect carbon dynamics in Hawaii has not been formally assessed. We estimated current baseline and projected future ecosystem carbon stocks and fluxes on the seven main Hawaiian Islands using a combination of remote sensing, published plot-level data, and simulation modeling. Total ecosystem carbon storage during the baseline period was estimated at 258 TgC, with 70% stored as soil organic carbon, 25% as live biomass and 5% as surface detritus, and gross primary production was estimated at 20 TgC y-1. Net ecosystem carbon balance, which incorporated carbon losses from freshwater aquatic fluxes to nearshore waters and wildland fire emissions, was estimated as 0.34 TgC y-1 during the baseline period, offsetting 7% of anthropogenic emissions. We used a state and transition simulation model to estimate the response of ecosystem carbon stocks and fluxes to potential changes in climate, land use, and wildfire over a 50-year projection period (2012-2061). Total ecosystem carbon storage was projected to increase by 5% by the year 2061, but net ecosystem carbon balance was projected to decline by 35% due to climate change induced reductions in statewide net primary production and increased carbon losses from land use and land cover change. Our analysis indicates that the State of Hawaii would remain a net carbon sink overall, primarily because of ecosystem carbon sequestration on Hawaii Island, but predicted changes in climate and land use on Kauai and Oahu would convert these islands to net carbon sources. The Hawaii carbon assessment is part of a larger effort by the U.S. Geological Survey to assess the carbon sequestration potential of ecosystems across the United States and should provide valuable information for setting research and policy priorities for sustainable carbon management strategies aimed at offsetting anthropogenic carbon emissions.
Modeling in-situ pine root decomposition using data from a 60-year chronosequence
Kim H. Ludovici; Stanley J. Zarnoch; Daniel D. Richter
2002-01-01
Because the root system of a mature pine tree typically accounts for 20-30% of the total tree biomass, decomposition of large lateral roots and taproots following forest harvest and re-establishment potentially impact nutrient supply and carbon sequestration in pine systems over several decades. If the relationship between stump diameter and decomposition of...
Black carbon in aerosol during BIBLE B
NASA Astrophysics Data System (ADS)
Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.
2003-02-01
The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.
Black carbon in aerosol during BIBLE B
NASA Astrophysics Data System (ADS)
Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.
2002-02-01
The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.
Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayorga, E; Aufdenkampe, A K; Masiello, C A
2005-06-23
Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C andmore » {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.« less
Research on oxygen recovery systems for use in space capsules
NASA Technical Reports Server (NTRS)
Selman, J. R.; Steunenberg, R. K.; Cairns, E. J.
1973-01-01
An improved electrochemical process was investigated for the recovery of oxygen from the atmospheres of manned space capsules. The objective of the proposed system is to recover the oxygen from CO2 with high efficiency and to recover the additional amount of oxygen from water that is required to provide a total oxygen makeup stream of about 2.0 lb/man-day. The carbon from the CO2 must be converted into a readily disposable or usable form. The results are given of initial experiments with a porous stainless steel cathode in a LiCl-KCl electrolyte with small additions of oxide, carbonate, and hydroxide.
Veksha, Andrei; Bhuiyan, Tazul I.; Hill, Josephine M.
2016-01-01
Several samples of activated carbon were prepared by physical (CO2) and chemical (H3PO4) activation of aspen wood and tested for the adsorption of organic compounds from water generated during the recovery of bitumen using steam assisted gravity drainage. Total organic carbon removal by the carbon samples increased proportionally with total pore volume as determined from N2 adsorption isotherms at −196 °C. The activated carbon produced by CO2 activation had similar removal levels for total organic carbon from the water (up to 70%) to those samples activated with H3PO4, but lower yields, due to losses during pyrolysis and activation. A method to increase the yield when using CO2 activation was proposed and consisted of recycling bio-oil produced from previous runs to the aspen wood feed, followed by either KOH addition (0.48%) or air pretreatment (220 °C for 3 h) before pyrolysis and activation. By recycling the bio-oil, the yield of CO2 activated carbon (after air pretreatment of the mixture) was increased by a factor of 1.3. Due to the higher carbon yield, the corresponding total organic carbon removal, per mass of wood feed, increased by a factor of 1.2 thus improving the overall process efficiency. PMID:28787817
Fillion, Eric; Fishlock, Dan
2005-09-28
The first synthesis of taiwaniaquinol B, a 6-nor-5(6-->7)abeoabietane-type diterpenoid exhibiting the uncommon fused 6-5-6 tricyclic carbon skeleton, was accomplished in 15 steps. A Lewis acid-promoted tandem intramolecular Friedel-Crafts/carbonyl alpha-tert-alkylation reaction was exploited as the core strategy for the synthesis of the sterically congested 1-indanone-containing tricyclic structure. This multiple carbon-carbon bond forming reaction exploits the unique reactivity of Meldrum's acid. The facile precursor synthesis makes this a useful methodology for the expedient modification and assembly of sterically congested 1-indanone-containing ring systems.
Calisto, Vânia; Jaria, Guilaine; Silva, Carla Patrícia; Ferreira, Catarina I A; Otero, Marta; Esteves, Valdemar I
2017-05-01
This work describes the adsorptive removal of three widely consumed psychiatric pharmaceuticals (carbamazepine, paroxetine and oxazepam) from ultrapure water. Two different adsorbents were used: a commercial activated carbon and a non-activated waste-based carbon (PS800-150-HCl), produced by pyrolysis of primary paper mill sludge. These adsorbents were used in single, binary and ternary batch experiments in order to determine the adsorption kinetics and equilibrium isotherms of the considered pharmaceuticals. For the three drugs and both carbons, the equilibrium was quickly attained (with maximum equilibrium times of 15 and 120 min for the waste-based and the commercial carbons, respectively) even in binary and ternary systems. Single component equilibrium data were adequately described by the Langmuir model, with the commercial carbon registering higher maximum adsorption capacities (between 272 ± 10 and 493 ± 12 μmol g -1 ) than PS800-150-HCl (between 64 ± 2 and 74 ± 1 μmol g -1 ). Multi-component equilibrium data were also best fitted by the single component Langmuir isotherm, followed by the Langmuir competitive model. Overall, competitive effects did not largely affect the performance of both adsorbents. Binary and ternary systems maintained fast kinetics, the individual maximum adsorption capacities were not lower than half of the single component systems and both carbons presented improved total adsorption capacities for multi-component solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, X.; Zhai, W. D.; Guo, L. G.; Jiang, Z. P.; Qi, D.; Xu, Y.; Huang, X.
2017-12-01
We investigated sea surface carbonate system and ancillary parameters in the northern South China Sea (SCS), East China Sea (ECS), Yellow Sea, and Bohai Sea during a single cruise from late April to June 2011. In this transitional season between the dry/cold and wet/warm seasons, we observed ubiquitous terrestrial inorganic carbon signals in the Yellow Sea and Bohai Sea, as indicated by excess total alkalinity (TAlk) from 150 to 450 μmol kg-1 and excess Ca concentrations from 100 to 470 μmol kg-1, associated with relatively high DIC/TAlk ratios from 0.88 to 0.92. In contrast, these terrestrial inorganic carbon signals were limited to nearshore areas in the southern ECS and northern SCS. These results suggested that the Yellow Sea and Bohai Sea were dominated by terrestrial inputs all over the year, while the terrestrial signals in the southern ECS and northern SCS were highly diminished in dry seasons through water mixing with open ocean waters (likely introduced by Kuroshio). This study also showed that the terrestrial inorganic carbon inputs had diminished carbonate ion concentrations and CaCO3 saturation states in the Yellow Sea and Bohai Sea. This may contribute to recent findings that the North Yellow Sea represents one of the systems in the China seas most vulnerable to the potentially negative effects of ocean acidification.
Publications - GMC 242 | Alaska Division of Geological & Geophysical
DGGS GMC 242 Publication Details Title: Total organic carbon and rock-eval pyrolysis evaluation of 21 Core Laboratories, 1995, Total organic carbon and rock-eval pyrolysis evaluation of 21 hand-picked coal Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon Top of Page Department of Natural Resources, Division
Publications - GMC 208 | Alaska Division of Geological & Geophysical
DGGS GMC 208 Publication Details Title: HRZ total organic carbon and rock-eval data from cuttings of , HRZ total organic carbon and rock-eval data from cuttings of Colville basin and Arctic Foothills (117.0 K) Keywords Total Organic Carbon Top of Page Department of Natural Resources, Division of
Publications - GMC 205 | Alaska Division of Geological & Geophysical
DGGS GMC 205 Publication Details Title: Total organic carbon, rock-eval, and gas chromatograms from for more information. Bibliographic Reference Unknown, 1992, Total organic carbon, rock-eval, and gas Information gmc205.pdf (272.0 K) Keywords Total Organic Carbon Top of Page Department of Natural Resources
Publications - GMC 136 | Alaska Division of Geological & Geophysical
DGGS GMC 136 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and some vitrinite Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and some vitrinite reflectance data of cuttings Report Information gmc136.pdf (39.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 12 | Alaska Division of Geological & Geophysical Surveys
- 11,850 feet; total organic carbon, rock-eval pyrolysis and visual kerogen/vitrinite reflectance Authors River #1 well 10,255 - 11,850 feet; total organic carbon, rock-eval pyrolysis and visual kerogen gmc012.pdf (384.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 24 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 24 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, [n.d.], Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance of the Information gmc024.pdf (79.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Limits on carbon sequestration in arid blue carbon ecosystems.
Schile, Lisa M; Kauffman, J Boone; Crooks, Stephen; Fourqurean, James W; Glavan, Jane; Megonigal, J Patrick
2017-04-01
Coastal ecosystems produce and sequester significant amounts of carbon ("blue carbon"), which has been well documented in humid and semi-humid regions of temperate and tropical climates but less so in arid regions where mangroves, marshes, and seagrasses exist near the limit of their tolerance for extreme temperature and salinity. To better understand these unique systems, we measured whole-ecosystem carbon stocks in 58 sites across the United Arab Emirates (UAE) in natural and planted mangroves, salt marshes, seagrass beds, microbial mats, and coastal sabkha (inter- and supratidal unvegetated salt flats). Natural mangroves held significantly more carbon in above- and belowground biomass than other vegetated ecosystems. Planted mangrove carbon stocks increased with age, but there were large differences for sites of similar age. Soil carbon varied widely across sites (2-367 Mg C/ha), with ecosystem averages that ranged from 49 to 156 Mg C/ha. For the first time, microbial mats were documented to contain soil carbon pools comparable to vascular plant-dominated ecosystems, and could arguably be recognized as a unique blue carbon ecosystem. Total ecosystem carbon stocks ranged widely from 2 to 515 Mg C/ha (seagrass bed and mangrove, respectively). Seagrass beds had the lowest carbon stock per unit area, but the largest stock per total area due to their large spatial coverage. Compared to similar ecosystems globally, mangroves and marshes in the UAE have lower plant and soil carbon stocks; however, the difference in soil stocks is far larger than with plant stocks. This incongruent difference between stocks is likely due to poor carbon preservation under conditions of weakly reduced soils (200-350 mV), coarse-grained sediments, and active shoreline migration. This work represents the first attempt to produce a country-wide coastal ecosystem carbon accounting using a uniform sampling protocol, and was motivated by specific policy goals identified by the Abu Dhabi Global Environmental Data Initiative. These carbon stock data supported two objectives: to quantify carbon stocks and infer sequestration capacity in arid blue carbon ecosystems, and to explore the potential to incorporate blue carbon science into national reporting and planning documents. © 2016 by the Ecological Society of America.
Theresa B. Jain; Russell T. Graham; David Adams
2010-01-01
Although "carbonâ management may not be a primary objective in forest management, influencing the distribution, composition, growth, and development of biomass to fulfill multiple objectives is; therefore, given a changing climate, managing carbon could influence future management decisions. Also, typically, the conversion from total biomass to total carbon is 50...
Inorganic carbon speciation and fluxes in the Congo River
NASA Astrophysics Data System (ADS)
Wang, Zhaohui Aleck; Bienvenu, Dinga Jean; Mann, Paul J.; Hoering, Katherine A.; Poulsen, John R.; Spencer, Robert G. M.; Holmes, Robert M.
2013-02-01
Seasonal variations in inorganic carbon chemistry and associated fluxes from the Congo River were investigated at Brazzaville-Kinshasa. Small seasonal variation in dissolved inorganic carbon (DIC) was found in contrast with discharge-correlated changes in pH, total alkalinity (TA), carbonate species, and dissolved organic carbon (DOC). DIC was almost always greater than TA due to the importance of CO2*, the sum of dissolved CO2 and carbonic acid, as a result of low pH. Organic acids in DOC contributed 11-61% of TA and had a strong titration effect on water pH and carbonate speciation. The CO2* and bicarbonate fluxes accounted for ~57% and 43% of the DIC flux, respectively. Congo River surface water released CO2 at a rate of ~109 mol m-2 yr-1. The basin-wide DIC yield was ~8.84 × 104 mol km-2 yr-1. The discharge normalized DIC flux to the ocean amounted to 3.11 × 1011 mol yr-1. The DOC titration effect on the inorganic carbon system may also be important on a global scale for regulating carbon fluxes in rivers.
Carbon footprint hotspots of prefabricated sandwich panels for hostel construction in Perlis
NASA Astrophysics Data System (ADS)
Razali, Norashikin; Ayob, Afizah; Chandra, Muhammad Erwan Shah; Zaki, Mohd Faiz Mohammad; Ahmad, Abdul Ghapar
2017-10-01
Sustainable design and construction have gained increasing research interest, and reduction of carbon from building construction has become the main focus of environmental strategies in Malaysia. This study uses life cycle assessment and life cycle inventory analysis frameworks to estimate the amount of carbon footprint expressed in carbon dioxide equivalent tons (CO2e) produced by manufacturing prefabricated Industrialized Building System sandwich panels and its installation for a five-story hostel in Perlis, Malaysia. Results show that the carbon footprint hotspots were centered on boiler machine operation and cement with 4.52 and 369.04 tons CO2e, respectively. This finding is due to the extensive energy used for steam heating and high engine rating for the boiler. However, for cement, the carbon footprint hotspots are caused by the large quantity of cement applied in shotcrete mixture and its high extraction and production CO2 emission values. The overall onsite materials generated 96.36% of the total carbon footprint. These carbon footprint hotspot results constitute a necessary base for the Malaysian government in accomplishing an adequate dimensioning of carbon emissions in the building sector.
Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu
2013-08-23
Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu(2+) from the system and form very stable CuS with Cu(2+), resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S(2-) levels in running water and living cells.
The Martian ocean: First acid, then alkaline
NASA Technical Reports Server (NTRS)
Schaefer, M. W.
1992-01-01
In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
NASA Astrophysics Data System (ADS)
Gramsch, E.; Le Nir, G.; Araya, M.; Rubio, M. A.; Moreno, F.; Oyola, P.
2013-02-01
In 2006 a large transformation was carried out on the public transportation system in Santiago de Chile. The original system (before 2006) had hundreds of bus owners with about 7000 diesel buses. The new system has only 13 firms with about 5900 buses which operate in different parts of the city with little overlap between them. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. Measurements were carried out during May-July of 2005 (before Transantiago) and June-July of 2007 (after Transantiago). We have used the Wilcoxon rank-sum test to evaluate black carbon concentration in four streets in year 2005 and 2007. The results show that a statistically significant reduction between year 2005 (before Transantiago) and year 2007 (after Transantiago) in Alameda street, which changed from a mean of 18.8 μg m-3 in 2005 to 11.9 μg m-3 in 2007. In this street there was a decrease in the number of buses as well as the number of private vehicles and an improvement in the technology of public transportation between those years. Other two streets (Usach and Departamental) did not change or experienced a small increase in the black carbon concentration in spite of having less flux of buses in 2007. Eliodoro Yañez Street, which did not have public transportation in 2005 or 2007 experienced a 15% increase in the black carbon concentration between those years. Analysis of the data indicates that the change is related to a decrease in the total number of vehicles or the number of other diesel vehicles in the street rather than a decrease in the number of buses only. These results are an indication that in order to decrease pollution near a street is not enough to reduce the number of buses or improve its quality, but to reduce the total number of vehicles.
NASA Technical Reports Server (NTRS)
Minh, N. Q.; Chung, B. W.; Doshi, R.; Lear, G. R.; Montgomery, K.; Ong, E. T.
1999-01-01
The use of the Martian atmosphere (95% CO2) to produce oxygen (for propellant and life support) can significantly lower the required launch mass and dramatically reduce the total cost for Mars missions. Zirconia electrolysis cells are one of the technologies being considered for oxygen generation from carbon dioxide in Mars In Situ Resource Utilization (ISRU) production plants. The attractive features of the zirconia cell for this application include simple operation and lightweight, low volume system.
NASA Technical Reports Server (NTRS)
Carter, Donald L.; Cole, Harold; Habercom, Mark; Griffith, Guy
1992-01-01
The development of a closed-loop water recovery system for Space Station Freedom involves many technical challenges associated with contaminant removal. Attention is presently given to the characterization of contaminants constituting total organic carbon (TOC), and to the Hubaux and Vos (1970) statistical model for low level TOC that has been employed. A tabulation is given for TOC accountability in the case of both potable and hygiene waters.
Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami
2018-06-01
The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.
Strategy for the reduction of total integrated fluid logistics to the Space Station Freedom
NASA Technical Reports Server (NTRS)
Gould, Marston J.; Shannon, David T., Jr.
1993-01-01
The use of an integrated environmental control and life support system (ECLSS) and secondary propulsion system (SRS) on the Space Station Freedom (SSF) has many potential advantages. Through the metabolism of food, the crew on-board the station will produce carbon dioxide as a waste gas and an excess of water in the form of urine and condensate. The processing of these waste fluids by the ECLSS could produce quantities of oxygen that would eliminate the need for cryogenic oxygen resupply and hydrogen, carbon dioxide, and/or methane that could be used with the addition of a resistojet system to provide a constant low thrust for station. This additional thrust would represent significant savings in required hydrazine resupply.
NASA Astrophysics Data System (ADS)
Barouchas, Pantelis; Koulos, Vasilios; Melfos, Vasilios
2017-04-01
For the determination of total carbonates in soil archaeometry a new technique was applied using a multi-sensor philosophy, which combines simultaneous measurement of pressure and temperature. This technology is innovative and complies with EN ISO 10693:2013, ASTM D4373-02(2007) and Soil Science Society of America standard test methods for calcium carbonate content in soils and sediments. The total carbonates analysis is based on a pressure method that utilizes the FOGII Digital Soil CalcimeterTM, which is a portable apparatus. The total carbonate content determined by treating a 1.000 g (+/- 0.001 g) dried sample specimens with 6N hydrochloric acid (HCL) reagent grade, in an enclosed reaction vessel. Carbon dioxide gas evolved during the reaction between the acid and carbonate fraction of the specimen, was measured by the resulting pressure generated, taking in account the temperature conditions during the reaction. Prior to analysis the procedure was validated with Sand/Soil mixtures from BIPEA proficiency testing program with soils of different origins. For applying this new method in archaeometry a total number of ten samples were used from various rocks which are related with cultural constructions and implements in Greece. They represent a large range of periods since the Neolithic times, and were selected because there was an uncertainty about their accurate mineralogical composition especially regarding the presence of carbonate minerals. The results were compared to the results from ELTRA CS580 inorganic carbon analyzer using an infrared cell. The determination of total carbonates for 10 samples from different ancient sites indicated a very good correlation (R2 >0.97) between the pressure method with temperature compensation and the infrared method. The proposed method is quickly and accurate in archaeometry and can replace easily other techniques for total carbonates testing. The FOGII Digital Soil CalcimeterTM is portable and easily can be carried for field work in archaeology.
NASA Astrophysics Data System (ADS)
Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.
2018-05-01
An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.
NASA Astrophysics Data System (ADS)
Giesbrecht, K. E.; Miller, L. A.; Davelaar, M.; Zimmermann, S.; Carmack, E.; Johnson, W. K.; Macdonald, R. W.; McLaughlin, F.; Mucci, A.; Williams, W. J.; Wong, C. S.; Yamamoto-Kawai, M.
2014-03-01
We have assembled and conducted primary quality control on previously publicly unavailable water column measurements of the dissolved inorganic carbon system and associated biogeochemical parameters (oxygen, nutrients, etc.) made on 26 cruises in the subarctic and Arctic regions dating back to 1974. The measurements are primarily from the western side of the Canadian Arctic, but also include data that cover an area ranging from the North Pacific to the Gulf of St. Lawrence. The data were subjected to primary quality control (QC) to identify outliers and obvious errors. This data set incorporates over four thousand individual measurements of total inorganic carbon (TIC), alkalinity, and pH from the Canadian Arctic over a period of more than 30 years and provides an opportunity to increase our understanding of temporal changes in the inorganic carbon system in northern waters and the Arctic Ocean. The data set is available for download on the CDIAC (Carbon Dioxide Information Analysis Center) website: http://cdiac.ornl.gov/ftp/oceans/IOS_Arctic_Database/ (doi:10.3334/CDIAC/OTG.IOS_ARCT_CARBN).
NASA Astrophysics Data System (ADS)
Daulay, Dini Novalanty Ohara; Hidayat, Jafron Wasiq
2018-02-01
Global warming is an important issue in the world which it gives a negative effect on human life. One indicator of global warming is increasing greenhouse gas i.e. carbondioxide from human activities. Deforestation and forest degradation are the second largest contributor of carbon into the atmosphere, after the use of fossil fuels by industry and transportation. As lungs of the world, forest is enable to produce renewable energy sources i.e. biomass. Forest carbon stock in above ground biomass (AGB) is the greatest effect source on deforestation and forest degradation. Therefore, it is necessary to perform a study the potential of carbon in forest. The purpose of this research is to determine carbon stock value in Batang Gadis National Park, Mandailing Natal Regency, North Sumatera Province, Indonesia. The carbon potential stored in this forest vegetation is calculated using AGB allometric equation by using data in diameter at breast height (dbh = 1.3 m), height, and density of the wood for trees. Data obtained from secondary data is Asset Assessment Report which State Controlled Forest Natural Resources Batang Gadis National Park, 2016. Study locations were Pagar Gunung and Sopo Tinjak Villages. Carbon stock values were calculated and analyzed with assumption that a half of biomass part is carbon stock which using Australian carbon price about AUD 11.82 Australia (Australian dollars) and EU € 5 (US 6). The results showed that the total biomass in Pagar Gunung and Sopo Tinjak Villages amounted to 259.83 tonnes and 160.89 tonnes. From the results of the total biomass, the total carbon stocks (C) and CO2 stocks in both villages are 210.36 tonnes (129.92 tonnes in Pagar Gunung Village and 80.45 tonnes in Sopo Tinjak Village) and 772.03 tonnes (476.79 tonnes in Pagar Gunung Village and 295.24 tonnes in Sopo Tinjak Village). By using the carbon price prevailing in the market place Australia Emission Trading System (ETS) and the EU ETS (AUD 11.82/t CO2e and € 5 (US 6)/t CO2e), the value of carbon stock that can be produced from Batang Gadis National Park (Pagar Gunung and Sopo Tinjak Villages) is about Rp. 92,499,921.72 (in AUD ) or Rp. 61,654,433.67 (in US ).
NASA Astrophysics Data System (ADS)
Song, Y.; Gurney, K. R.; Rayner, P. J.; Asefi-Najafabady, S.
2012-12-01
High resolution quantification of global fossil fuel CO2 emissions has become essential in research aimed at understanding the global carbon cycle and supporting the verification of international agreements on greenhouse gas emission reductions. The Fossil Fuel Data Assimilation System (FFDAS) was used to estimate global fossil fuel carbon emissions at 0.25 degree from 1992 to 2010. FFDAS quantifies CO2 emissions based on areal population density, per capita economic activity, energy intensity and carbon intensity. A critical constraint to this system is the estimation of national-scale fossil fuel CO2 emissions disaggregated into economic sectors. Furthermore, prior uncertainty estimation is an important aspect of the FFDAS. Objective techniques to quantify uncertainty for the national emissions are essential. There are several institutional datasets that quantify national carbon emissions, including British Petroleum (BP), the International Energy Agency (IEA), the Energy Information Administration (EIA), and the Carbon Dioxide Information and Analysis Center (CDIAC). These four datasets have been "harmonized" by Jordan Macknick for inter-comparison purposes (Macknick, Carbon Management, 2011). The harmonization attempted to generate consistency among the different institutional datasets via a variety of techniques such as reclassifying into consistent emitting categories, recalculating based on consistent emission factors, and converting into consistent units. These harmonized data form the basis of our uncertainty estimation. We summarized the maximum, minimum and mean national carbon emissions for all the datasets from 1992 to 2010. We calculated key statistics highlighting the remaining differences among the harmonized datasets. We combine the span (max - min) of datasets for each country and year with the standard deviation of the national spans over time. We utilize the economic sectoral definitions from IEA to disaggregate the national total emission into specific sectors required by FFDAS. Our results indicated that although the harmonization performed by Macknick generates better agreement among datasets, significant differences remain at national total level. For example, the CO2 emission span for most countries range from 10% to 12%; BP is generally the highest of the four datasets while IEA is typically the lowest; The US and China had the highest absolute span values but lower percentage span values compared to other countries. However, the US and China make up nearly one-half of the total global absolute span quantity. The absolute span value for the summation of national differences approaches 1 GtC/year in 2007, almost one-half of the biological "missing sink". The span value is used as a potential bias in a recalculation of global and regional carbon budgets to highlight the importance of fossil fuel CO2 emissions in calculating the missing sink. We conclude that if the harmonized span represents potential bias, calculations of the missing sink through forward budget or inverse approaches may be biased by nearly a factor of two.
Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Kapsenberg, Lydia; Alliouane, Samir; Gazeau, Frédéric; Mousseau, Laure; Gattuso, Jean-Pierre
2017-05-01
Coastal time series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time series station Point B in the northwestern Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for total dissolved inorganic carbon (CT) and total alkalinity (AT). Parameters of the carbonate system such as pH (pHT, total hydrogen ion scale) were calculated and a deconvolution analysis was performed to identify drivers of change. The rate of surface ocean acidification was -0.0028 ± 0.0003 units pHT yr-1. This rate is larger than previously identified open-ocean trends due to rapid warming that occurred over the study period (0.072 ± 0.022 °C yr-1). The total pHT change over the study period was of similar magnitude as the diel pHT variability at this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO2) forcing (59 %, 2.08 ± 0.01 ppm CO2 yr-1) and warming (41 %). Similar trends were observed at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO2 accounted for approximately 40 % of the observed increase in CT (2.97 ± 0.20 µmol kg-1 yr-1). The remaining increase in CT may have been driven by the same unidentified process that caused an increase in AT (2.08 ± 0.19 µmol kg-1 yr-1). Based on the analysis of monthly trends, synchronous increases in CT and AT were fastest in the spring-summer transition. The driving process of the interannual increase in AT has a seasonal and shallow component, which may indicate riverine or groundwater influence. This study exemplifies the importance of understanding changes in coastal carbonate chemistry through the lens of biogeochemical cycling at the land-sea interface. This is the first coastal acidification time series providing multiyear data at high temporal resolution. The data confirm rapid warming in the Mediterranean Sea and demonstrate coastal acidification with a synchronous increase in total alkalinity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Publications - GMC 285 | Alaska Division of Geological & Geophysical
DGGS GMC 285 Publication Details Title: Total organic carbon (TOC), rock-eval, and gas chromatography , Total organic carbon (TOC), rock-eval, and gas chromatography of core (8846.2'-13508') from the Husky Report Information gmc285.pdf (4.5 M) Keywords Total Organic Carbon Top of Page Department of Natural
Code of Federal Regulations, 2011 CFR
2011-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.
Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria
The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment.
Zhang, X; Inoue, T; Kato, K; Harada, J; Izumoto, H; Wu, D; Sakuragi, H; Ietsugu, H; Sugawara, Y
2016-01-01
The objective of this study was to evaluate performance of a hybrid constructed wetland (CW) built for high organic content piggery wastewater treatment in a cold region. The system consists of four vertical and one horizontal flow subsurface CWs. The wetland was built in 2009 and water quality was monitored from the outset. Average purification efficiency of this system was 95±5, 91±7, 89±8, 70±10, 84±15, 90±6, 99±2, and 93±16% for biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total carbon (TC), total nitrogen (TN), ammonium-N (NH4-N), total phosphorus (TP), total coliform (T. Coliform), and suspended solids (SS), respectively during August 2010-December 2013. Pollutant removal rate was 15±18 g m(-2) d(-1), 49±52 g m(-2) d(-1), 6±4 g m(-2) d(-1), 7±5 g m(-2) d(-1), and 1±1 g m(-2) d(-1) for BOD5, COD, TN, NH4-N, and TP, respectively. The removal efficiency of BOD5, COD, NH4-N, and SS improved yearly since the start of operation. With respect to removal of TN and TP, efficiency improved in the first three years but slightly declined in the fourth year. The system performed well during both warm and cold periods, but was more efficient in the warm period. The nitrate increase may be attributed to a low C/N ratio, due to limited availability of carbon required for denitrification.
Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K
2013-10-01
Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.
Water-quality impacts from climate-induced forest die-off
NASA Astrophysics Data System (ADS)
Mikkelson, Kristin M.; Dickenson, Eric R. V.; Maxwell, Reed M.; McCray, John E.; Sharp, Jonathan O.
2013-03-01
Increased ecosystem susceptibility to pests and other stressors has been attributed to climate change, resulting in unprecedented tree mortality from insect infestations. In turn, large-scale tree die-off alters physical and biogeochemical processes, such as organic matter decay and hydrologic flow paths, that could enhance leaching of natural organic matter to soil and surface waters and increase potential formation of harmful drinking water disinfection by-products (DBPs). Whereas previous studies have investigated water-quantity alterations due to climate-induced, forest die-off, impacts on water quality are unclear. Here, water-quality data sets from water-treatment facilities in Colorado were analysed to determine whether the municipal water supply has been perturbed by tree mortality. Results demonstrate higher total organic carbon concentrations along with significantly more DBPs at water-treatment facilities using mountain-pine-beetle-infested source waters when contrasted with those using water from control watersheds. In addition to this differentiation between watersheds, DBP concentrations demonstrated an increase within mountain pine beetle watersheds related to the degree of infestation. Disproportionate DBP increases and seasonal decoupling of peak DBP and total organic carbon concentrations further suggest that the total organic carbon composition is being altered in these systems.
77 FR 69381 - Designation of Product Categories for Federal Procurement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
... carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished... fertilizer formulas that will improve the efficiency and the effectiveness of the chemicals, including... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...
Organic Carbon Storage in China's Urban Areas
Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy
2013-01-01
China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014
NASA Astrophysics Data System (ADS)
Tifafi, Marwa; Guenet, Bertrand; Hatté, Christine
2018-01-01
Soils are the major component of the terrestrial ecosystem and the largest organic carbon reservoir on Earth. However, they are a nonrenewable natural resource and especially reactive to human disturbance and climate change. Despite its importance, soil carbon dynamics is an important source of uncertainty for future climate predictions and there is a growing need for more precise information to better understand the mechanisms controlling soil carbon dynamics and better constrain Earth system models. The aim of our work is to compare soil organic carbon stocks given by different global and regional databases that already exist. We calculated global and regional soil carbon stocks at 1 m depth given by three existing databases (SoilGrids, the Harmonized World Soil Database, and the Northern Circumpolar Soil Carbon Database). We observed that total stocks predicted by each product differ greatly: it is estimated to be around 3,400 Pg by SoilGrids and is about 2,500 Pg according to Harmonized World Soil Database. This difference is marked in particular for boreal regions where differences can be related to high disparities in soil organic carbon concentration. Differences in other regions are more limited and may be related to differences in bulk density estimates. Finally, evaluation of the three data sets versus ground truth data shows that (i) there is a significant difference in spatial patterns between ground truth data and compared data sets and that (ii) data sets underestimate by more than 40% the soil organic carbon stock compared to field data.
Klett, T.R.
2001-01-01
Undiscovered conventional oil and gas resources were assessed within total petroleum systems of the Pelagian Province (2048) as part of the U.S. Geological Survey World Petroleum Assessment 2000. The Pelagian Province is located mainly in eastern Tunisia and northwestern Libya. Small portions of the province extend into Malta and offshore Italy. Although several petroleum systems may exist, only two ?composite? total petroleum systems were identified. Each total petroleum system comprises a single assessment unit. These total petroleum systems are called the Bou Dabbous?Tertiary and Jurassic-Cretaceous Composite, named after the source-rock intervals and reservoir-rock ages. The main source rocks include mudstone of the Eocene Bou Dabbous Formation; Cretaceous Bahloul, Lower Fahdene, and M?Cherga Formations; and Jurassic Nara Formation. Known reservoirs are in carbonate rocks and sandstone intervals throughout the Upper Jurassic, Cretaceous, and Tertiary sections. Traps for known accumulations include fault blocks, low-amplitude anticlines, high-amplitude anticlines associated with reverse faults, wrench fault structures, and stratigraphic traps. The estimated means of the undiscovered conventional petroleum volumes in total petroleum systems of the Pelagian Province are as follows: [MMBO, million barrels of oil; BCFG, billion cubic feet of gas; MMBNGL, million barrels of natural gas liquids] Total Petroleum System MMBO BCFG MMBNGL Bou Dabbous?Tertiary 667 2,746 64 Jurassic-Cretaceous Composite 403 2,280 27
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel; Bielen, Dave; Eichman, Josh
Electrification of end-use services in the transportation, buildings, and industrial sectors coupled with decarbonization of electricity generation has been identified as one of the key pathways to achieving a low-carbon future in the United States. By lowering the carbon intensity of the electricity generation and substituting electricity for higher-emissions fossil fuels in end-use sectors, significant reductions in carbon dioxide emissions can be achieved. This report describes a preliminary analysis that examines the potential impacts of widespread electrification on the U.S. energy sector. We develop a set of exploratory scenarios under which electrification is aggressively pursued across all end-use sectors andmore » examine the impacts of achieving these electrification levels on electricity load patterns, total fossil energy consumption, carbon dioxide emissions, and the evolution of the U.S. power system.« less
Hu, Xiao Fei; Zou, Yan; Fu, Chun
2017-02-01
Carbon footprint is a new method to measure carbon emissions, and the ecological compensation criterion can be determined according to the regional carbon footprint and carbon carrying capacity. The spatial and temporal patterns of ecological compensation criterion were studied among 11 cities in Jiangxi Province using carbon footprint, carbon capacity and carbon surplus/deficit models. Our results found that carbon footprint in Jiangxi Province showed a rapid growth trend from 2000 to 2013, with an average annual growth rate of 8.7%. The carbon carrying capacity always remained surplus, but the net carbon surplus amount decreased from 2000 to 2013. Among the 11 cities, Nanchang and Jiujiang made the biggest contribution to total carbon emission, and Ganzhou, Ji'an and Shangrao had provided the largest contribution to carbon total absorption. In 2013, the total carbon surplus amount was 2.273 billion yuan in Jiangxi Province. Ganzhou, Ji'an, Fuzhou and Shangrao should be given priority to ecological compensation money. These results could provide a scientific basis for the establishment of ecological compensation mechanism in Jiangxi Province and the transfer of CO 2 emission rights.
NASA Astrophysics Data System (ADS)
Gao, Z.; Gao, W.; Chang, N.-B.
2010-07-01
In China, cumulative changes in climate and land use/land cover (LULC) from 1981 to 2000 had collectively affected the net productivity in the terrestrial ecosystem and thus the net carbon flux, both of which are intimately linked with the global carbon cycle. This paper represents the first national effort of its kind to systematically investigate the impact of changes of LULC on carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). The CEVSA was applied and driven by high resolution LULC data retrieved from remote sensing and climate data collected from two ground-based meteorological stations. In particular, it allowed us to simulate carbon fluxes (net primary productivity (NPP), vegetation carbon (VEGC) storage, soil carbon (SOC) storage, heterotrophic respiration (HR), and net ecosystem productivity (NEP)) and carbon storage from 1981 to 2000. Simulations generally agree with output from other models and results from bookkeeping approach. Based on these simulations, temporal and spatial variations in carbon storage and fluxes in China may be confirmed and we are able to relate these variations to climate variability during this period for detailed analyses to show influences of the LULC and environmental controls on NPP, NEP, HR, SOC, and VEGC. Overall, the increases in NPP were greater than HR in most of the time due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in the net increase of total amount of carbon being stored by about 0.296 Pg C within the 20-years time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 Pg C within the 20 years. Such findings will contribute to the generation of control policies of carbon emissions under global climate change.
NASA Astrophysics Data System (ADS)
Dai, Changchao; Wan, Jiafeng; Yang, Juan; Qu, Shanshan; Jin, Tieyu; Ma, Fangwei; Shao, Jinqiu
2018-06-01
In this work, argy wormwood-based porous carbon electrode materials for high-performance supercapacitors are prepared through H3PO4 solution hydrothermal carbonization and subsequent KOH activation. The obtained carbon has a specific surface area (SSA) of 927 m2 g-1, a total pore volume of 0.56 cm3 g-1, and a high oxygen (9.38%) content. In three-electrode system, it exhibits specific capacitance of 344 F g-1 at 1 A g-1. Moreover, the symmetric supercapacitor shows an excellent rate capability of 87% retention from 1 A g-1 to 10 A g-1, and a good cycling performance with 91.6% retention over 5000 cycles in 6 M KOH. Therefore, the sample activated by H3PO4 & KOH exhibits an excellent future in energy storage.
Morrison, Jonathan; Colombo, Michael J.
2006-01-01
Water quality was characterized at three tributary watersheds to the Nepaug Reservoir-Nepaug River, Phelps Brook, and Clear Brook-from October 1998 through September 2001 to document existing water-quality conditions and evaluate potential future effects of the removal of sand and gravel from areas of the watershed. Some removal operations may include removal of vegetation and top soil and steepening of slopes. Routine water samples collected monthly in all three watersheds were analyzed for nutrients, organic carbon, major ions, and fecal indicator bacteria. Results of the analyses indicate that, in general, the water quality in all three tributary watersheds is good and meets standards established for drinking-water supplies for nitrate, but does not always meet contact-recreation standards for bacteria. Median concentrations of total nitrogen, total phosphorus, and total organic carbon were highest in the routine monthly samples from Phelps Brook and lowest from Clear Brook. Samples also were collected during selected storms to examine changes in concentrations of nutrients during periods of high streamflow. The maximum values measured for total nitrogen, total phosphorus, and total organic carbon were in storm samples from Clear Brook. The Nepaug River watershed delivered the largest loads of total nitrogen, total phosphorus, and total organic carbon to the reservoir. Yields of nutrients and organic carbon differed significantly from year to year and among the three watersheds. Yields of total nitrogen and total organic carbon were largest from Phelps Brook and smallest from Clear Brook. The yields of total phosphorus were largest from Nepaug River and smallest from Phelps Brook. In comparison to other watersheds in Connecticut, annual loads and yields from the three streams were lower than those of developed urban areas and comparable to those of other rural and forested basins. Delivery of nutrients and organic carbon to the reservoir took place mostly during the spring with the exception of those constituents delivered during Tropical Storm Floyd, a large fall storm.
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2014 CFR
2014-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2013 CFR
2013-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2010 CFR
2010-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... NCS or operating permit—PR. Carbon adsorber d Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) [63.114(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Aranda, V; Macci, C; Peruzzi, E; Masciandaro, G
2015-01-01
This study evaluates soil fertility, biochemical activity and the soil's ability to stabilize organic matter after application of composted olive-mill pomace. This organic amendment was applied in two different olive groves in southern Spain having different soil typologies (carbonated and silicic). Olive grove soils after 17 years of organic management with application of olive-mill pomace co-compost were of higher quality than those with conventional management where no co-compost had been applied. The main chemical parameters studied (total organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, total extractable carbon (TEC), and humic-to-fulvic acids ratio), significantly increased in soils treated with the organic amendment. In particular, the more resistant pool of organic matter (TEC) enhanced by about six and eight fold in carbonated and silicic soils, respectively. Moreover, the amended silicic soils showed the most significant increases in enzyme activities linked to C and P cycles (β-glucosidase twenty-five fold higher and phosphatase seven fold higher). Organic management in both soils induced higher organic matter mineralization, as shown by the higher pyrrole/phenol index (increasing 40% and 150% in carbonated and silicic soils, respectively), and lower furfural/pyrrole index (decreasing 27% and 71% in carbonated and silicic soils, respectively). As a result of mineralization, organic matter incorporated was also more stable as suggested by the trend of the aliphatic/aromatic index (decreasing 36% and 30% in carbonated and silicic soils, respectively). Therefore, management system and soil type are key factors in increasing long-term C stability or sequestration in soils. Thus application of olive-oil extraction by-products to soils could lead to important mid-to -long-term agro-environmental benefits, and be a valuable alternative use for one of the most widespread polluting wastes in the Mediterranean region. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Alan Mays; Bert R. Bock; Gregory A. Brodie
The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. Themore » CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface materials will be evaluated for their effectiveness at treating the irrigation water for various pollutants.« less
Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.
Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten
2008-01-01
Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.
SOCCR-2, Chapter 2: A Synthesis of the North American Carbon Budget
NASA Astrophysics Data System (ADS)
Hayes, D. J.; Vargas, R.; Alin, S. R.; Conant, R. T.; Hutyra, L.; Jacobson, A. R.; Kurz, W. A.; Liu, S.; McGuire, A. D.; Poulter, B.; Woodall, C. W.
2017-12-01
Scientific information quantifying and characterizing the continental-scale carbon budget is necessary for developing national and international policy on climate change. The North American continent (NA) has been considered to be a significant net source of carbon to the atmosphere, with fossil fuel emissions from the U.S., Canada and Mexico far outpacing uptake on land, inland waters and adjacent coastal oceans. As reported in the First State of the Carbon Cycle Report (SOCCR-1), the three countries combined to emit approximately 1800 MtC of carbon in 2003, or 27% of the global total fossil fuel inventory. Based on inventory data from various sectors, SOCCR-1 estimated a 500 MtC/yr natural sink that offset about 30% of emissions primarily through forest growth, storage in wood products and sequestration in agricultural soils. Here we present a synthesis of the NA carbon budget for the next report (SOCCR-2) based on updated inventory data and new research over the last decade. The North American continent— including its energy systems, land-base and coastal oceans—is very likely to have been a net source of carbon to the atmosphere over the 2004-2013 time period, having contributed on average approximately 1037 (+/- 25%) MtC/yr. At 1765 (+/-2%) MtC/yr, total fossil fuel emissions from Canada, the United States, and Mexico very likely contributed the largest source of carbon over the 2004-2013 time period - a level of magnitude similar to that reported for 2003 (1856 MtC/yr +/- 10%) in SOCCR-1. Between one-quarter and one half of the total fossil fuel emissions over the 2004 - 2013 time period were likely offset by natural sinks on North American land and adjacent coastal ocean. The strength of the natural sink was likely persistent over the 2004-2013 time period as compared to the ca. 2003 magnitude reported in SOCCR-1 (500 MtC/yr), maintained primarily by carbon uptake with forest growth and storage in wood products offsetting carbon losses from natural disturbance and land-use change. Considering the uncertainty ranges around the two approaches, the magnitude of the continental carbon sink over the last decade is not significantly different between the top-down (634 +/- 288 MtC/yr) and the synthesis of bottom-up (577 +/- 433 MtC/yr) estimates in this report.
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-07-15
Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied frommore » novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.« less
Ying Ouyang; Johnny M. Grace; Wayne C. Zipperer; Jeff Hatten; Janet Dewey
2018-01-01
Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) instreams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities throughabsorption of light and complex metals with production of carcinogenic compounds....
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
NASA Astrophysics Data System (ADS)
Szczepański, M.; Szajdak, L.; Bogacz, A.
2009-04-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.
Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa
2015-07-01
Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.
Life cycle carbon footprint of shale gas: review of evidence and implications.
Weber, Christopher L; Clavin, Christopher
2012-06-05
The recent increase in the production of natural gas from shale deposits has significantly changed energy outlooks in both the US and world. Shale gas may have important climate benefits if it displaces more carbon-intensive oil or coal, but recent attention has discussed the potential for upstream methane emissions to counteract this reduced combustion greenhouse gas emissions. We examine six recent studies to produce a Monte Carlo uncertainty analysis of the carbon footprint of both shale and conventional natural gas production. The results show that the most likely upstream carbon footprints of these types of natural gas production are largely similar, with overlapping 95% uncertainty ranges of 11.0-21.0 g CO(2)e/MJ(LHV) for shale gas and 12.4-19.5 g CO(2)e/MJ(LHV) for conventional gas. However, because this upstream footprint represents less than 25% of the total carbon footprint of gas, the efficiency of producing heat, electricity, transportation services, or other function is of equal or greater importance when identifying emission reduction opportunities. Better data are needed to reduce the uncertainty in natural gas's carbon footprint, but understanding system-level climate impacts of shale gas, through shifts in national and global energy markets, may be more important and requires more detailed energy and economic systems assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hanandeh, Ali; El-Zein, Abbas
2009-07-15
Climate change is a driving force behind some recent environmental legislation around the world. Greenhouse gas emission reduction targets have been set in many industrialised countries. A change in current practices of almost all greenhouse-emitting industrial sectors is unavoidable, if the set targets is to be achieved. Although, waste disposal contributes around 3% of the total greenhouse gas emissions in Australia (mainly due to fugitive methane emissions from landfills), the carbon credit and trading scheme set to start in 2010 presents significant challenges and opportunities to municipal solid waste practitioners. Technological advances in waste management, if adopted properly, allow themore » municipal solid waste sector to act as carbon sink, hence earning tradable carbon credits. However, due to the complexity of the system and its inherent uncertainties, optimizing it for carbon credits may worsen its performance under other criteria. We use an integrated, stochastic multi-criteria decision-making tool that we developed earlier to analyse the carbon credit potential of Sydney municipal solid waste under eleven possible future strategies. We find that the changing legislative environment is likely to make current practices highly non-optimal and increase pressures for a change of waste management strategy.« less
NASA Astrophysics Data System (ADS)
Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.
2016-08-01
An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater should be prioritized in management efforts to improve stream restoration by locating hydrologic hot spots where stream restoration is most likely to succeed.
Historical warming reduced due to enhanced land carbon uptake
Shevliakova, Elena; Stouffer, Ronald J.; Malyshev, Sergey; Krasting, John P.; Hurtt, George C.; Pacala, Stephen W.
2013-01-01
Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65–82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186–192 GtC, a carbon saving of 251–274 GtC. PMID:24062452
Local electric dipole moments for periodic systems via density functional theory embedding.
Luber, Sandra
2014-12-21
We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.
Isothermal aging of IM7/8320 and IM7/5260
NASA Technical Reports Server (NTRS)
Martin, Roderick H.; Siochi, Emilie J.; Gates, Thomas S.
1992-01-01
Isothermal aging was conducted on two composite systems being considered as possible candidates for the next generation supersonic transport. The composite systems were IM7/5260, a carbon/thermoset, and IM7/8320, a carbon/amorphous thermoplastic. The materials were isothermally aged for a total of 5000 hours at 125 C and 175 C. These temperatures are approximately equivalent to the upper skin temperatures of an aircraft flying at Mach 2.0 and Mach 2.4, respectively. The variations of the following properties were determined as a function of aging time: weight loss, moduli, glass transition temperature, microcracking, and modulus and strength of a +/- 45 laminate. The difficulties and accuracy of strain measurements are also discussed.
Cunha, C S; Lopes, N L; Veloso, C M; Jacovine, L A G; Tomich, T R; Pereira, L G R; Marcondes, M I
2016-11-15
The adoption of carbon inventories for dairy farms in tropical countries based on models developed from animals and diets of temperate climates is questionable. Thus, the objectives of this study were to estimate enteric methane (CH4) emissions through the SF6 tracer gas technique and through equations proposed by the Intergovernmental Panel on Climate Change (IPCC) Tier 2 and to calculate the inventory of greenhouse gas (GHG) emissions from two dairy systems. In addition, the carbon balance of these properties was estimated using enteric CH4 emissions obtained using both methodologies. In trial 1, the CH4 emissions were estimated from seven Holstein dairy cattle categories based on the SF6 tracer gas technique and on IPCC equations. The categories used in the study were prepubertal heifers (n=6); pubertal heifers (n=4); pregnant heifers (n=5); high-producing (n=6); medium-producing (n=5); low-producing (n=4) and dry cows (n=5). Enteric methane emission was higher for the category comprising prepubertal heifers when estimated by the equations proposed by the IPCC Tier 2. However, higher CH4 emissions were estimated by the SF6 technique in the categories including medium- and high-producing cows and dry cows. Pubertal heifers, pregnant heifers, and low-producing cows had equal CH4 emissions as estimated by both methods. In trial 2, two dairy farms were monitored for one year to identify all activities that contributed in any way to GHG emissions. The total emission from Farm 1 was 3.21t CO2e/animal/yr, of which 1.63t corresponded to enteric CH4. Farm 2 emitted 3.18t CO2e/animal/yr, with 1.70t of enteric CH4. IPCC estimations can underestimate CH4 emissions from some categories while overestimate others. However, considering the whole property, these discrepancies are offset and we would submit that the equations suggested by the IPCC properly estimate the total CH4 emission and carbon balance of the properties. Thus, the IPCC equations should be utilized with caution, and the herd composition should be analysed at the property level. When the carbon stock in pasture and other crops was considered, the carbon balance suggested that both farms are sustainable for GHG, by both methods. On the other hand, carbon balance without carbon stock, by both methods, suggests that farms emit more carbon than the system is capable of stock. Copyright © 2016 Elsevier B.V. All rights reserved.
Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix
2012-01-01
This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.
Absorber modeling for NGCC carbon capture with aqueous piperazine.
Zhang, Yue; Freeman, Brice; Hao, Pingjiao; Rochelle, Gary T
2016-10-20
A hybrid system combining amine scrubbing with membrane technology for carbon capture from natural gas combined cycle (NGCC) power plants is proposed in this paper. In this process, the CO 2 in the flue gas can be enriched from 4% to 18% by the membrane, and the amine scrubbing system will have lower capture costs. Aqueous piperazine (PZ) is chosen as the solvent. Different direct contact cooler (DCC) options, multiple absorber operating conditions, optimal intercooling designs, and different cooling options have been evaluated across a wide range of inlet CO 2 . Amine scrubbing without DCC is a superior design for NGCC carbon capture. Pump-around cooling at the bottom of the absorber can effectively manage the temperature of the hot flue gas, and still be effective for CO 2 absorption. The absorber gas inlet must be designed to avoid excessive localized temperature and solvent evaporation. When the inlet CO 2 increases from 4% to 18%, total absorber CAPEX decreases by 60%; another 10% of the total absorber CAPEX can be saved by eliminating the DCC. In-and-out intercooling works well for high CO 2 , while pump-around intercooling is more effective for low CO 2 . Dry cooling requires more packing and energy but appears to be technically and economically feasible if cooling water availability is limited.
Biogeochemical Protocols and Diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
NASA Technical Reports Server (NTRS)
Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather;
2017-01-01
The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF [subscript] 6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
NASA Astrophysics Data System (ADS)
Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather; Griffies, Stephen M.; John, Jasmin G.; Joos, Fortunat; Levin, Ingeborg; Lindsay, Keith; Matear, Richard J.; McKinley, Galen A.; Mouchet, Anne; Oschlies, Andreas; Romanou, Anastasia; Schlitzer, Reiner; Tagliabue, Alessandro; Tanhua, Toste; Yool, Andrew
2017-06-01
The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
NASA Astrophysics Data System (ADS)
Zhou, Shun; Ren, Yichao; Pearce, Christopher M.; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang
2017-01-01
Using net enclosures in an earthen pond, we established three culture treatments with the sea cucumber Apostichopus japonicus and the Chinese white shrimp Fenneropenaeus chinensis: monoculture of sea cucumbers (C), monoculture of shrimp (S), and co-culture of the two species (CS). We measured levels of suspended particulate matter in the water column; total organic matter, total organic carbon, total nitrogen, and carbon/nitrogen ratios in both settling particles and the sediment; and chlorophyll a levels in the sediment. We then compared these variables between the three treatments. We also examined growth, survival, and yield of the two species in the different treatments. From June to September, the mean monthly suspended particulate matter sedimentation rates in the CS and S treatments were significantly ( P<0.05) greater than those in the C treatment. From August to November, the mean monthly total organic matter, total organic carbon, total nitrogen, and chlorophyll a contents in the sediment in the CS and S treatments were significantly ( P <0.05) greater than those in the C treatment. Final wet weight, specific growth rate, survival rate, and total yield of sea cucumbers in co-culture were all significantly greater than those of sea cucumbers in monoculture. There were no significant differences among any of these variables for shrimp reared in the two systems. The bioturbation of the sediment and fecal production of the shrimp likely supplied natural food for the sea cucumbers. Co-culture of the two species is a viable option for increasing yield per unit area, maximizing use of the water body, and diversifying crop production.
Bounding the role of black carbon in the climate system: A scientific assessment
NASA Astrophysics Data System (ADS)
Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Kärcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.
2013-06-01
carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m-2 with 90% uncertainty bounds of (+0.08, +1.27) W m-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m-2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (-0.50 to +1.08) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (-0.06 W m-2 with 90% uncertainty bounds of -1.45 to +1.29 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment
NASA Technical Reports Server (NTRS)
Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.;
2013-01-01
Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W/sq m, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (0.50 to +1.08) W/sq m during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (0.06 W/sq m with 90% uncertainty bounds of 1.45 to +1.29 W/sq m). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
Brownfield, Michael E.; Charpentier, Ronald R.
2003-01-01
Undiscovered, conventional oil and gas resources were assessed in the Senegal Province as part of the U.S. Geological Survey World Petroleum Assessment 2000 (U.S. Geological Survey World Energy Assessment Team, 2000). Although several total petroleum systems may exist in the province, only one composite total petroleum system, the Cretaceous-Tertiary Composite Total Petroleum System, was defined with one assessment unit, the Coastal Plain and Offshore Assessment Unit, having sufficient data to allow quantitative assessment. The primary source rocks for the Cretaceous-Tertiary Composite Total Petroleum System are the Cenomanian-Turonian marine shales. The Turonian shales can be as much as 150 meters thick and contain Type II organic carbon ranging from 3 to 10 weight percent. In the Senegal Province, source rocks are mature even when situated at depths relatively shallow for continental passive margin basins. Reservoir rocks consist of Upper Cretaceous sandstones and lower Tertiary clastic and carbonate rocks. The Lower Cretaceous platform carbonate rocks (sealed by Cenomanian shales) have porosities ranging from 10 to 23 percent. Oligocene carbonate rock reservoirs exist, such as the Dome Flore field, which contains as much as 1 billion barrels of heavy oil (10? API, 1.6 percent sulfur) in place. The traps are a combination of structural closures and stratigraphic pinch-outs. Hydrocarbon production in the Senegal Province to date has been limited to several small oil and gas fields around Cape Verde (also known as the Dakar Peninsula) from Upper Cretaceous sandstone reservoirs bounded by normal faults, of which three fields (two gas and one oil) exceed the minimum size assessed in this study (1 MMBO; 6 BCFG). Discovered known oil resources in the Senegal Province are 10 MMBO, with known gas resources of 49 BCFG (Petroconsultants, 1996). This study estimates that 10 percent of the total number of potential oil and gas fields (both discovered and undiscovered) of at least the minimum size have been discovered. The estimated mean size and number of assessed, undiscovered oil fields are 13 MMBO and 13 fields, respectively, whereas the mean size and number of undiscovered gas fields are estimated to be 50 BCFG and 11 fields. The mean estimates for undiscovered conventional petroleum resources are 157 MMBO, 856 BCFG, and 43 MMBNGL (table 2). The mean sizes of the largest anticipated undiscovered oil and gas fields are 66 MMBO and 208 BCFG, respectively. The Senegal Province is underexplored considering its large size. The province has hydrocarbon potential in both the offshore and onshore, and undiscovered gas resources may be significant and accessible in areas where the zone of oil generation is relatively shallow.
NASA Astrophysics Data System (ADS)
Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar
2017-12-01
Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.
Carbon influx studies in the main chamber of ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Pütterich, T.; Dux, R.; Gafert, J.; Kallenbach, A.; Neu, R.; Pugno, R.; Yoon, S. W.; ASDEX Upgrade Team
2003-10-01
Carbon sources in the main chamber of ASDEX Upgrade, especially the 12 guard limiters at the low field side (LFS), were determined spectroscopically using recently installed lines of sight. Absolute photon fluxes were measured for spectral lines in the visible wavelength range referring to all spin systems of C+1 and C+2. A simple transport model for carbon enabled the simulation of the radial distribution of carbon radiation and the determination of the effective inverse photon efficiency, which was used for the evaluation of ion fluxes. The model also predicts the fraction of eroded particles that are transported out of the plasma before further ionization occurs. Comparison of the calculated losses with measurements showed good agreement in L-mode cases, whereas in H-mode cases the CIII/CII radiation ratio was too high by a factor 1.5. The contribution of each spin system to the ion flux was independently measured. For C+1 and C+2 the spin system distribution was found to be close to equilibrium. The line-of-sight-integrated photon fluxes were spatially separated for many lines of sight by Zeeman-analysis and differential measurements. This allowed us to determine the total influx from the high field side and LFS. Surprisingly, the carbon source at the inner heatshield was larger than the carbon influx from the limiter source at the LFS. This is very pronounced for the H-mode case investigated, where 60-80% of the carbon atoms emerge from the heatshield. This source is due to recycling or re-erosion of carbon, which probably originates from the limiters, because ap85% of the heatshield area consisted of tungsten coated tiles.
NASA Astrophysics Data System (ADS)
Vargas, Cristian A.; Cuevas, L. Antonio; Silva, Nelson; González, Humberto E.; De Pol-Holz, Ricardo; Narváez, Diego A.
2018-01-01
The Chilean Patagonia constitutes one of the most important and extensive fjord systems worldwide, therefore can be used as a natural laboratory to elucidate the pathway of both organic and inorganic matter in the receiving environment. In this study we use data collected during an intensive oceanographic cruise along the Magellan Strait into the Almirantazgo Fjord in southern Patagonia to evaluate how different sources of dissolved inorganic carbon (DIC) and recycling may impact particulate organic carbon (POC) δ13C and influence the nutrients and carbonate system spatial distribution. The carbonate system presented large spatial heterogeneity. The lowest total alkalinity and DIC were associated to freshwater dilution observed near melting glaciers. The δ13CDIC analysis suggests that most DIC in the upper 50 m depth was not derived from terrestrial organic matter remineralization. 13C-depleted riverine and ice-melting DIC influence the DIC pool along the study area, but due to that DIC concentration from rivers and glaciers is relatively low, atmospheric carbon contribution or biological processes seem to be more relevant. Intense undersaturation of CO2 was observed in high chlorophyll waters. Respired DIC coming from the bottom waters seems to be almost insignificant for the inorganic carbon pool and therefore do not impact significantly the stable carbon isotopic composition of dissolved organic carbon and POC in the upper 50 m depth. Considering the combined effect of cold and low alkalinity waters due to ice melting, our results highlight the importance of these processes in determining corrosive waters for CaCO3 and local acidification processes associated to calving glacier in fjord ecosystems.
Peters, Kenneth E.; Magoon, Leslie B.; Lampe, Carolyn; Scheirer, Allegra Hosford; Lillis, Paul G.; Gautier, Donald L.
2008-01-01
A calibrated numerical model depicts the geometry and three-dimensional (3-D) evolution of petroleum systems through time (4-D) in a 249 x 309 km (155 x 192 mi) area covering all of the San Joaquin Basin Province of California. Model input includes 3-D structural and stratigraphic data for key horizons and maps of unit thickness, lithology, paleobathymetry, heat flow, original total organic carbon, and original Rock-Eval pyrolysis hydrogen index for each source rock. The four principal petroleum source rocks in the basin are the Miocene Antelope shale of Graham and Williams (1985; hereafter referred to as Antelope shale), the Eocene Kreyenhagen Formation, the Eocene Tumey formation of Atwill (1935; hereafter referred to as Tumey formation), and the Cretaceous to Paleocene Moreno Formation. Due to limited Rock-Eval/total organic carbon data, the Tumey formation was modeled using constant values of original total organic carbon and original hydrogen index. Maps of original total organic carbon and original hydrogen index were created for the other three source rocks. The Antelope shale was modeled using Type IIS kerogen kinetics, whereas Type II kinetics were used for the other source rocks. Four-dimensional modeling and geologic field evidence indicate that maximum burial of the three principal Cenozoic source rocks occurred in latest Pliocene to Holocene time. For example, a 1-D extraction of burial history from the 4-D model in the Tejon depocenter shows that the bottom of the Antelope shale source rock began expulsion (10 percent transformation ratio) about 4.6 Ma and reached peak expulsion (50 percent transformation ratio) about 3.6 Ma. Except on the west flank of the basin, where steep dips in outcrop and seismic data indicate substantial uplift, little or no section has been eroded. Most petroleum migration occurred during late Cenozoic time in distinct stratigraphic intervals along east-west pathways from pods of active petroleum source rock in the Tejon and Buttonwillow depocenters to updip sandstone reservoirs. Satisfactory runs of the model required about 18 hours of computation time for each simulation using parallel processing on a Linux-based cluster.
NASA Astrophysics Data System (ADS)
Fox, J. F.; Campbell, J. E.; Martin, D.
2008-12-01
The need to quantify the impact of human disturbance upon carbon flux and storage has been recently highlighted in order to more accurately budget carbon. One understudied but critical area of research is surface coal mining's impact on terrestrial carbon storage and sediment carbon transport processes-which has been identified as potentially important to understanding fluxes in global carbon budgeting. While national attention has focused on U.S. coal production to maintain a vibrant economy, scientists are concerned that increased coal production could have unforeseen environmental implications if the relationship between coal mining practices and the environment is not better understood. This issue is particularly important to the coal mining region of the Southern Appalachian forest region, which has been responsible for 23.3% of the coal produced in the United States over the past twenty years and seen approximately 300,000 ha of forested land disturbed by surface coal mining during that time period. Our presentation provides results that focus upon terrestrial carbon cycling as impacted by mountaintop coal mining in the Southern Appalachian forest region. In order to study carbon redistribution due to the mining disturbance, our methods make use of measurements of total organic carbon, total organic nitrogen, and carbon and nitrogen stable isotopes of soils and eroded sediments collected in the region as well as published data, consultation with experts and remote sensing of land cover change. It was found that disturbed terrestrial carbon, including soil C, non-soil or plant C, and geogenic C, is approximately 10% of the carbon emitted to the atmosphere during coal combusting and transportation and mining of coal. Quantification of the fate of terrestrial carbon in different pools is provided and discussed including the fate atmosphere during recovery of the terrestrial system; newly deposited coal fragments within the terrestrial soil reservoir; and carbon that is eroded to streams in mined watersheds with different levels of disturbance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Kristofer Johnson; Frederick N. Scatena; Yude Pan
2010-01-01
The long-term response of total soil organic carbon pools ('total SOC', i.e. soil and dead wood) to different harvesting scenarios in even-aged northern hardwood forest stands was evaluated using two soil carbon models, CENTURY and YASSO, that were calibrated with forest plot empirical data in the Green Mountains of Vermont. Overall, 13 different harvesting...
Ocean acidification state in western Antarctic surface waters: drivers and interannual variability
NASA Astrophysics Data System (ADS)
Mattsdotter Björk, M.; Fransson, A.; Chierici, M.
2013-05-01
Each December during four years from 2006 to 2010, the surface water carbonate system was measured and investigated in the Amundsen Sea and Ross Sea, western Antarctica as part of the Oden Southern Ocean expeditions (OSO). The I/B Oden started in Punta Arenas in Chile and sailed southwest, passing through different regimes such as, the marginal/seasonal ice zone, fronts, coastal shelves, and polynyas. Discrete surface water was sampled underway for analysis of total alkalinity (AT), total dissolved inorganic carbon (CT) and pH. Two of these parameters were used together with sea-surface temperature (SST), and salinity to obtain a full description of the surface water carbonate system, including pH in situ and calcium carbonate saturation state of aragonite (ΩAr) and calcite (ΩCa). Multivariate analysis was used to investigate interannual variability and the major controls (sea-ice concentration, SST, salinity and chlorophyll a) on the variability in the carbonate system and Ω. This analysis showed that SST and chlorophyll a were the major drivers of the Ω variability in both the Amundsen and Ross seas. In 2007, the sea-ice edge was located further south and the area of the open polynya was relatively small compared to 2010. We found the lowest pH in situ (7.932) and Ω = 1 values in the sea-ice zone and in the coastal Amundsen Sea, nearby marine out flowing glaciers. In 2010, the sea-ice coverage was the largest and the areas of the open polynyas were the largest for the whole period. This year we found the lowest salinity and AT, coinciding with highest chl a. This implies that the highest ΩAr in 2010 was likely an effect of biological CO2 drawdown, which out-competed the dilution of carbonate ion concentration due to large melt water volumes. We predict and discuss future Ω values, using our data and reported rates of oceanic uptake of anthropogenic CO2, suggesting that the Amundsen Sea will become undersaturated with regard to aragonite about 20 yr sooner than predicted by models.
A model for gas and nutrient exchange in the chorionic vasculature system of the mouse placenta
NASA Astrophysics Data System (ADS)
Mirbod, Parisa; Sled, John
2015-11-01
The aim of this study is to develop an analytical model for the oxygen and nutrient transport from the umbilical cord to the small villous capillaries. The nutrient and carbon dioxide removal from the fetal cotyledons in the mouse placental system has also been considered. This model describes the mass transfer between the fetal and the maternal red blood cells in the chorionic arterial vasculature system. The model reveals the detail fetal vasculature system and its geometry and the precise mechanisms of mass transfer through the placenta. The dimensions of the villous capillaries, the total length of the villous trees, the total villi surface area, and the total resistance to mass transport in the fetal villous trees has also been defined. This is the first effort to explain the reason why there are at least 7 lobules in the mouse placenta from the fluid dynamics point of view.
NASA Astrophysics Data System (ADS)
Lauerwald, Ronny; Regnier, Pierre; Camino-Serrano, Marta; Guenet, Bertrand; Guimberteau, Matthieu; Ducharne, Agnès; Polcher, Jan; Ciais, Philippe
2017-10-01
Lateral transfer of carbon (C) from terrestrial ecosystems into the inland water network is an important component of the global C cycle, which sustains a large aquatic CO2 evasion flux fuelled by the decomposition of allochthonous C inputs. Globally, estimates of the total C exports through the terrestrial-aquatic interface range from 1.5 to 2.7 Pg C yr-1 (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009), i.e. of the order of 2-5 % of the terrestrial NPP. Earth system models (ESMs) of the climate system ignore these lateral transfers of C, and thus likely overestimate the terrestrial C sink. In this study, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems), the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin, the world's largest river system with regard to discharge and one of the most productive ecosystems in the world. With ORCHILEAK, we are able to reproduce observed terrestrial and aquatic fluxes of DOC and CO2 in the Amazon basin, both in terms of mean values and seasonality. In addition, we are able to resolve the spatio-temporal variability in C fluxes along the canopy-soil-water continuum at high resolution (1°, daily) and to quantify the different terrestrial contributions to the aquatic C fluxes. We simulate that more than two-thirds of the Amazon's fluvial DOC export are contributed by the decomposition of submerged litter. Throughfall DOC fluxes from canopy to ground are about as high as the total DOC inputs to inland waters. The latter, however, are mainly sustained by litter decomposition. Decomposition of DOC and submerged plant litter contributes slightly more than half of the CO2 evasion from the water surface, while the remainder is contributed by soil respiration. Total CO2 evasion from the water surface equals about 5 % of the terrestrial NPP. Our results highlight that ORCHILEAK is well suited to simulate carbon transfers along the terrestrial-aquatic continuum of tropical forests. It also opens the perspective that provided parameterization, calibration and validation is performed for other biomes, the new model branch could improve the quantification of the global terrestrial C sink and help better constrain carbon cycle-climate feedbacks in future projections.
AMBIENT CARBON MONOXIDE MONITOR
A portable instrument has been designed and two units have been built to monitor the concentration of CO in ambient air. The air flows through a sampling section that is approximately 43 cm long with a 28-pass optical system that produces a total path of 12 meters. Gas-filter cor...
Christian P. Giardina; Michael G. Ryan
2002-01-01
Trees allocate a large portion of gross primary production belowground for the production and maintenance of roots and mycorrhizae. The difficulty of directly measuring total belowground carbon allocation (TBCA) has limited our understanding of belowground carbon (C) cycling and the factors that control this important flux. We measured TBCA over 4 years using a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{submore » 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.« less
Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata.
Zavřel, Tomáš; Szabó, Milán; Tamburic, Bojan; Evenhuis, Christian; Kuzhiumparambil, Unnikrishnan; Literáková, Petra; Larkum, Anthony W D; Raven, John A; Červený, Jan; Ralph, Peter J
2018-04-01
This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P 700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO 2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Julie; West, Tristram O.; Le Page, Yannick LB
Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested andmore » 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.« less
NASA Technical Reports Server (NTRS)
Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.
2004-01-01
We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.
Biogenic carbon fluxes from global agricultural production and consumption
NASA Astrophysics Data System (ADS)
Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.
2015-10-01
Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.
Characteristics of organic carbon accumulation in subtropical seagrass meadows
NASA Astrophysics Data System (ADS)
Tanaya, T.; Watanabe, K.; Yamamoto, S.; Hongo, C.; Kayanne, H.; Kuwae, T.
2016-02-01
The carbon sequestrated in marine ecosystems has been termed "blue carbon", and seagrass meadows are one of the most dominant blue carbon stocks. Globally, the major distribution sites of seagrass meadows are coral reef flats, where it is technically difficult to quantify organic carbon in carbonate sediments. Since blue carbon stocks have been estimated to date based on seagrass biomass and fine sediments (<1 mm), no studies have measured total carbon stocks, including coarse sediments (1> mm) in seagrass meadows. To solve this problem, we developed a new box corer which can facilitate to obtain the intact cores structured by both sediments and seagrass bodies. Using the core samples taken in subtropical seagrass meadows, located off Ishigaki Island, Japan, we measured total organic carbon mass (TOCmass) and stable isotope ratios (δ13C) of total sedimentary organic matter (SOM) and estimated their sources and controlling factors. The averaged TOCmass of top 15 cm SOM including living seagrasses was 940±480 gC/m2. The live seagrass biomass accounted for only 14±14wt%, whereas the dead biomass (>2 mm), coarse sediments (>1 mm except for dead plant structures >2 mm) and fine sediments (<1 mm) accounted for 3±4wt%, 19±13wt%, and 63±14wt%, respectively. The dead biomass and coarse sediments, which have not yet been included in the past estimations, accounted for about 22wt% of the averaged TOCmass. Total organic carbon content (TOC%) of mixture of the dead biomass, coarse sediments and fine sediments increased with increasing the live seagrass biomass (R = 0.66, n = 13, p = 0.014). The live seagrass biomass was one of the controlling factors of blue carbon stocks at the sites. Using a Bayesian isotopic mixing model, we estimated that the contribution of seagrass-derived carbon to total sedimentary organic carbon was about 70%. The enrichment of sediment organic carbon with increasing the live seagrass biomass was mainly due to the increase of seagrass-derived organic carbon. These results suggest that blue carbon stocks can be increased by conservation or restoration of seagrass meadows in subtropical coasts.
Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui
2017-12-01
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers
NASA Technical Reports Server (NTRS)
Monson, D. J.
1976-01-01
Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.
2012-05-24
carbon is consumed, O2 is depleted until the system becomes anaerobic ►After O2 is consumed, anaerobic fermentation begins and H2 is released into...Degradation and TNT Biodegradation Pathway 10 Carbon source water Lactic acid propionic and pyruvic acids acetic acid fermentation methane TNT...A total of 32,791 lbs of SRS was mixed with potable water to provide 20,000 gallons of solution for injection ► 197 lbs of yeast extract was added
Fractional capacity electrolyzer development for CO2 and H2O electrolysis
NASA Technical Reports Server (NTRS)
Wynveen, R. A.
1980-01-01
The electrolyzer module was designed to produce 0.24 kg/d (0.53 lb/d) of breathable oxygen from the electrolysis of metabolic carbon dioxide and water vapor. The fractional capacity electrolyzer module is constructed from three electrochemical tube cells and contains only three critical seals. The module design illustrated an 84 percent reduction in the total number of seals for a one person capacity oxygen generating system based on the solid electrolyte carbon dioxide and water vapor electrolysis concept. The electrolyzer module was successfully endurance tested for 71 days.
Lu, Ling-Xiao; Song, Tong-Qing; Peng, Wan-Xia; Zeng, Fu-Ping; Wang, Ke-Lin; Xu, Yun-Lei; Yu, Zi; Liu, Yan
2012-05-01
Soil profiles were collected from three primary forests (Itoa orientalis, Platycladus orientalis, and Radermachera sinica) in Karst cluster-peak depression region to study the composition of soil aggregates, their organic carbon contents, and the profile distribution of the organic carbon. In the three forests, >2 mm soil aggregates were dominant, occupying about 76% of the total. The content of soil total organic carbon ranged from 12.73 to 68.66 g x kg(-1), with a significant difference among the forests. The organic carbon content in <1 mm soil aggregates was slightly higher than that in >2 mm soil aggregates, but most of soil organic carbon was stored in the soil aggregates with greater particle sizes. About 70% of soil organic carbon came from >2 mm soil aggregates. There was a significant positive relationship between the contents of 2-5 and 5-8 mm soil aggregates and the content of soil organic carbon. To increase the contents of 2-8 mm soil aggregates could effectively improve the soil carbon sequestration in Karst region. In Itoa orientalis forest, 2-8 mm soil aggregates accounted for 46% of the total, and the content of soil total organic carbon reached to 37.62 g x kg(-1), which implied that Itoa orientalis could be the suitable tree species for the ecological restoration in Karst region.
Carbon and sulfur distributions and abundances in lunar fines
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Moore, G. W.
1973-01-01
Total sulfur abundances have been determined for 20 Apollo 14, 15, and 16 soil samples and one Apollo 14 breccia. Sulfur concentrations range from 474 to 844 microg S/g. Volatilization experiments on selected samples have been carried out using step-wise heating. Sample residues have been analyzed for their total carbon and sulfur abundances to establish the material balance in lunar fines for these two elements. Volatilization experiments have established that between 31 to 54 microg C/g remains in soils which have been heated at 1100 C for 24 hours under vacuum. The residual carbon is believed to be indigenous lunar carbon whereas all forms of carbon lost from samples below 1100 C is extralunar carbon. Total carbon and sulfur abundances taken from the literature have been used to show the depletion of volatile elements with increasing grade for the Apollo 14 breccias.
Code of Federal Regulations, 2011 CFR
2011-07-01
... affected source a. reduce emissions of total HAP, measured as THC (as carbon), a by 97 percent; orb. limit emissions of total HAP, measured as THC (as carbon), a to 20 ppmvd at the control device outlet and use a PTE. 2. in an existing affected source a. reduce emissions of total HAP, measured as THC (as carbon...
Code of Federal Regulations, 2010 CFR
2010-07-01
... affected source a. reduce emissions of total HAP, measured as THC (as carbon), a by 97 percent; orb. limit emissions of total HAP, measured as THC (as carbon), a to 20 ppmvd at the control device outlet and use a PTE. 2. in an existing affected source a. reduce emissions of total HAP, measured as THC (as carbon...
Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade.
Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang
2016-06-22
Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1-3.9 ppm or 3-9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990-2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.
NASA Astrophysics Data System (ADS)
Semiletov, I. P.; Pipko, I.; Gustafsson, O.; Anderson, L. G.; Sergienko, V.; Pugach, S.; Dudarev, O.; Charkin, A. N.; Gukov, A.; Bröder, L.; Andersson, A.; Shakhova, N. E.
2015-12-01
Ocean acidification (OA) is a direct, fast, and strong effect of anthropogenic carbon dioxide (CO2), which is challenging marine ecosystems and carbon cycling. The Arctic Ocean is particularly sensitive and exhibits the highest levels of OA (lowest pH) because more CO2 can dissolve in cold water. We here use decadal data to show that extreme and extensive OA in the East Siberian Arctic Shelf (ESAS) is caused not by direct uptake of atmospheric CO2 but rather by naturally-driven processes: carbon mobilization from thawing coastal permafrost/coastal ice complexes, and freshening due to growing Arctic river runoff and ice melt, which transport carbon along with freshwater to the ESAS. These processes compose a unique acidifying phenomenon that causes persistent, and potentially increasing, aragonite under-saturation of the entire water column. Extreme aragonite under-saturation in the western near-shore ESAS is associated with >80% depression of the total calcifying benthic biomass. Massive OA on the ESAS, the largest sea shelf system of the World Ocean, illustrates the complexity of the Earth system interacting with increasing anthropogenic pressure.
Implications of sea-level rise in a modern carbonate ramp setting
NASA Astrophysics Data System (ADS)
Lokier, Stephen W.; Court, Wesley M.; Onuma, Takumi; Paul, Andreas
2018-03-01
This study addresses a gap in our understanding of the effects of sea-level rise on the sedimentary systems and morphological development of recent and ancient carbonate ramp settings. Many ancient carbonate sequences are interpreted as having been deposited in carbonate ramp settings. These settings are poorly-represented in the Recent. The study documents the present-day transgressive flooding of the Abu Dhabi coastline at the southern shoreline of the Arabian/Persian Gulf, a carbonate ramp depositional system that is widely employed as a Recent analogue for numerous ancient carbonate systems. Fourteen years of field-based observations are integrated with historical and recent high-resolution satellite imagery in order to document and assess the onset of flooding. Predicted rates of transgression (i.e. landward movement of the shoreline) of 2.5 m yr- 1 (± 0.2 m yr- 1) based on global sea-level rise alone were far exceeded by the flooding rate calculated from the back-stepping of coastal features (10-29 m yr- 1). This discrepancy results from the dynamic nature of the flooding with increased water depth exposing the coastline to increased erosion and, thereby, enhancing back-stepping. A non-accretionary transgressive shoreline trajectory results from relatively rapid sea-level rise coupled with a low-angle ramp geometry and a paucity of sediments. The flooding is represented by the landward migration of facies belts, a range of erosive features and the onset of bioturbation. Employing Intergovernmental Panel on Climate Change (Church et al., 2013) predictions for 21st century sea-level rise, and allowing for the post-flooding lag time that is typical for the start-up of carbonate factories, it is calculated that the coastline will continue to retrograde for the foreseeable future. Total passive flooding (without considering feedback in the modification of the shoreline) by the year 2100 is calculated to likely be between 340 and 571 m with a flooding rate of 3.40-8.64 m yr- 1. However, adopting the observation that global sea-level rise only accounts for 15% of the recorded shoreline retreat, this figure rises dramatically to a total likely dynamic flooding (considering modifications to the shoreline) of between 2.3 and 3.8 km. Loss of microbial and mangal habitats will subject the exposed shoreline to increasing erosion. Shoreline retreat will threaten existing coastal infrastructure.
Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater.
Chapelle, Francis H; Bradley, Paul M; McMahon, Peter B; Kaiser, Karl; Benner, Ron
2012-01-01
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar
2016-05-01
Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is evidence for microbial activity that was possibly stimulated by carbon sourced from water-rock interaction with adjacent sediments or fluid inclusions. This study provides detailed insight into the complex hydrothermal history of continental serpentinization systems and adds to our understanding of the carbon and sulfur cycling within peridotite-hosted hydrothermal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Lewicki; G. E. Hilley; L. Dobeck
A set of CO2 flux, geochemical, and hydrologic measurement techniques was used to characterize the source of and quantify gaseous and dissolved CO2 discharges from the area of Soda Springs, southeastern Idaho. An eddy covariance system was deployed for approximately one month near a bubbling spring and measured net CO2 fluxes from - 74 to 1147 g m- 2 d- 1. An inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions mapped the surface CO2 flux distribution within and quantified CO2 emission rate (24.9 t d- 1) from a 0.05 km2 area surrounding the spring. Soilmore » CO2 fluxes (< 1 to 52,178 g m- 2 d- 1) were measured within a 0.05 km2 area of diffuse degassing using the accumulation chamber method. The estimated CO2 emission rate from this area was 49 t d- 1. A carbon mass balance approach was used to estimate dissolved CO2 discharges from contributing sources at nine springs and the Soda Springs geyser. Total dissolved inorganic carbon (as CO2) discharge for all sampled groundwater features was 57.1 t d- 1. Of this quantity, approximately 3% was derived from biogenic carbon dissolved in infiltrating groundwater, 35% was derived from carbonate mineral dissolution within the aquifer(s), and 62% was derived from deep source(s). Isotopic compositions of helium (1.74–2.37 Ra) and deeply derived carbon (d13C approximately 3‰) suggested contribution of volatiles from mantle and carbonate sources. Assuming that the deeply derived CO2 discharge estimated for sampled groundwater features (approximately 35 t d- 1) is representative of springs throughout the study area, the total rate of deeply derived CO2 input into the groundwater system within this area could be ~ 350 t d- 1, similar to CO2 emission rates from a number of quiescent volcanoes.« less
NASA Technical Reports Server (NTRS)
Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.
1994-01-01
NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 sq m. Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging/diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg/sq ft of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVRs impinged from witness plates of 0.05 to 0.75 sq m.
NASA Technical Reports Server (NTRS)
Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.
1995-01-01
NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 m(exp 2). Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging-diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC-113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg-ft(exp 2) of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVR's impinged from witness plates of 0.05 to 0.75 m(exp 2).
Carnero-Bravo, Vladislav; Merino-Ibarra, Martín; Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan Albert; Ghaleb, Bassam
2015-03-01
Valle de Bravo (VB) is the main water reservoir of the Cutzamala hydraulic system, which provides 40% of the drinking water consumed in the Mexico City Metropolitan Area and exhibits symptoms of eutrophication. Nutrient (C, N and P) concentrations were determined in two sediment cores to reconstruct the water column trophic evolution of the reservoir and C fluxes since its creation in 1947. Radiometric methods ((210)Pb and (137)Cs) were used to obtain sediment chronologies, using the presence of pre-reservoir soil layers in one of the cores as an independent chronological marker. Mass accumulation rates ranged from 0.12 to 0.56 g cm(-2) year(-1) and total organic carbon (TOC) fluxes from 122 to 380 g m(-2) year(-1). Total N ranged 4.9-48 g m(-2) year(-1), and total P 0.6-4.2 g m(-2) year(-1). The sedimentary record shows that all three (C, N and P) fluxes increased significantly after 1991, in good agreement with the assessed trophic evolution of VB and with historic and recent real-time measurements. In the recent years (1992-2006), the TOC flux to the bottom of VB (average 250 g m(-2) year(-1), peaks 323 g m(-2) year(-1)) is similar to that found in highly eutrophic reservoirs and impoundments. Over 1/3 of the total C burial since dam construction, circa 70,000 t, has occurred in this recent period. These results highlight the usefulness of the reconstruction of carbon and nutrient fluxes from the sedimentary record to assess carbon burial and its temporal evolution in freshwater ecosystems.
Development of radiocarbon-based methods to investigate atmospheric fossil carbon pollution
NASA Astrophysics Data System (ADS)
Major, István; Vodila, Gergely; Furu, Enikő; Kertész, Zsófia; Haszpra, László; Hajdas, Irka; Molnár, Mihály
2013-04-01
Gaseous and solid state carbon containing compounds significantly affect global climate change based on current atmospheric research results. Major part of the anthropogenic changes of the atmospheric carbon dioxide can be attributed to the combustion of fossil fuels and 95% of their emission is realised in the industrially active areas of the northern hemisphere. Anthropogenic carbonaceous aerosol particles play also a key role in the atmosphere modifying indirectly climate change and the quality of the environment and affecting directly human health. Since September 2008, the CO2 concentration of the air and its specific radiocarbon content (14C) has been monitored in the city of Debrecen (Hungary) and in a rural background site, Hegyhátsál (Hungary). To obtain a more representative view regarding anthropogenic contribution of the atmospheric carbon species, our measurement programme was enhanced by including the investigation of atmospheric aerosols in 2010. An aerosol cascade sampler for continuous monitoring was installed close to the atmospheric CO2 sampling station in the inner city of Debrecen. For 14C measurements, special sample preparation system and method was developed for the tiny total carbon content of the aerosol samples collected synchronously with the carbon dioxide observations. The radiocarbon measurement of the aerosol samples was performed by a high-sensitivity accelerator mass spectrometer (AMS) dedicated to environmental samples (EnvironMICADAS) developed together with ETH Zürich. The δ13C values of the samples were measured by the Dual Inlet system of a Delta PLUS XP Isotope Ratio Mass Spectrometer from the tiny CO2 amount aimed to reserve. The atmospheric fossil CO2 and fossil PM2.5 concentration variations show high similarity in the air of Debrecen city. During the winter heating period, due to the meteorological conditions (frequent thermal inversion, decreasing rate of mixing and upwelling), significantly higher total PM2.5 concentrations can be observed close to the surface, which is also reflected in the quantity of the total carbon. The trend of the fossil CO2 excess is very similar to the fossil carbon content of the total PM2.5. On the other hand during the winter time heating periods the extreme high observed aerosol concentrations in the city air seems to be caused by biomass combustion. It is well-visible from the aerosol C-14 measurements that the relative 14C content of the aerosol increases in the heating period in the PM2.5, even compared to the summer period. The trend of the measured stable isotope ratio also shows high similarity with the fossil carbon content of the PM2.5. The project was performed in part of the New Hungary Development Plan under Project No. GOP-1.3.1-09/A-2009-0032. The research was supported by the Hungarian NSF (OTKA-81515 and OTKA-77550). The publication is supported by the TÁMOP-4.2.2/B-10/1-2010-0024 project. The project was co-financed by the European Union and the European Social Fund.
Chu, Jiashu; Zhang, Tianzhe; Chang, Weidong; Zhang, Dan; Zulfiqar, Saman; Fu, Aigen; Hao, Yaqi
2016-01-01
The effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0–40 cm) at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0–20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the <0.053 mm size class and N stocks in the <0.25 mm size class. The increases in OC and N stocks in these aggregates accounted for 99.5 and 98.7% of the total increases, respectively, in the continuous alfalfa system. The increases in the OC and N stocks associated with the >0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm. PMID:27764209
Aulen, Maurice; Shipley, Bill; Bradley, Robert
2012-01-01
Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237
Carbonate system parameters of an algal-dominated reef along west Maui
Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan A.; Gallagher, Christopher; Cheriton, Olivia; Storlazzi, Curt
2018-01-01
Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.
Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements
NASA Astrophysics Data System (ADS)
Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin
2017-03-01
We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km2) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km2). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km2) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.
Simon, N.S.; Spencer, R.; Cox, T.
1999-01-01
Periphyton samples from Water Conservation Areas, Big Cypress National Preserve, and Everglades National Park in south Florida were analyzed for concentrations of total mercury, methylmercury, nitrogen, phosphorus, organic carbon, and inorganic carbon. Concentrations of total mercury in periphyton decrease slightly along a gradient from north-to-south. Both total mercury and methylmercury are positively correlated with organic carbon, nitrogen and phosphorus in periphyton. In horizontal sections of periphyton mats, total mercury concentrations tend to be largest at the tops and bottoms of the mats. Methylmercury concentrations tend to be the largest near the bottom of mats. These localized elevated concentrations of methylmercury suggest that there are "hot spots" of methylmercury in periphyton. ?? 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T
2011-06-01
The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.
2013-06-06
Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that ismore » quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second most important individual climate-forcing agent in the industrial era, following carbon dioxide. Sources that emit black carbon also emit other short- lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of co- emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil-fuel and biofuel) have a net climate forcing of +0.004 (-0.62 to +0.57) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all black- carbon-rich sources becomes slightly negative (-0.08 W m-2 with 90% uncertainty bounds of -1.23 to +0.81 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.« less
Prototype Wash Water Renovation System Integration with Government-Furnished Wash Fixture
NASA Technical Reports Server (NTRS)
1983-01-01
A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.
2003-08-29
analyzed for total volatile solids, total organic carbon, oil and grease/total petroleum hydrocarbons , grain size distribution, metals, polycyclic...TBT Tri-Butyltin TOC Total Organic Carbon TPCB Total Polychlorinated Biphenyls TPH Total Petroleum Hydrocarbons USACE U.S. Army Corps of Engineers U.S...Health PQL Practical Quantitation Limit RCRA Resource Conservation and Recovery Act SIM Selected Ion Monitoring TPH Total Petroleum Hydrocarbons tr Trace
NASA Astrophysics Data System (ADS)
Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy
2018-03-01
During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate the capacity for increased carbon storage by artificially maximising the efficiency of the biological pump in our ensemble members. We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon pumps in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable. The drawdown experiment highlights the importance of the strength of the biological pump in the control state for model studies of increased biological efficiency.
Modeling CO2 degassing and pH in a stream-aquifer system
Choi, J.; Hulseapple, S.M.; Conklin, M.H.; Harvey, J.W.
1998-01-01
Pinal Creek, Arizona receives an inflow of ground water with high dissolved inorganic carbon (57-75 mg/l) and low pH (5.8-6.3). There is an observed increase of in-stream pH from approximately 6.0-7.8 over the 3 km downstream of the point of groundwater inflow. We hypothesized that CO2 gas-exchange was the most important factor causing the pH increase in this stream-aquifer system. An existing transport model, for coupled ground water-surface water systems (OTIS), was modified to include carbonate equilibria and CO2 degassing, used to simulate alkalinity, total dissolved inorganic carbon (C(T)), and pH in Pinal Creek. Because of the non-linear relation between pH and C(T), the modified transport model used the numerical iteration method to solve the non-linearity. The transport model parameters were determined by the injection of two tracers, bromide and propane. The resulting simulations of alkalinity, C(T) and pH reproduced, without fitting, the overall trends in downstream concentrations. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that C(T) and pH in stream water were controlled by the mixing of ground water with stream water and CO2 degassing. The relative importance of these two processes varied spatially depending on the hydrologic conditions, such as stream flow velocity and whether a reach gained or lost stream water caused by the interaction with the ground water. The coupled transport model with CO2 degassing and generalized sensitivity analysis presented in this study can be applied to evaluate carbon transport and pH in other coupled stream-ground water systems.An existing transport model for coupled groundwater-surface water systems was modified to include carbonate equilibria and CO2 degassing. The modified model was used to simulate alkalinity, total dissolved inorganic carbon (CT) and pH in Pinal Creek. The model used the numerical iteration method to solve the nonlinear relation between pH and CT. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that CT and pH in the stream water were controlled by the mixing of groundwater with stream water and CO2 degassing.
K. Johnson; F. N. Scatena; Y. Pan
2010-01-01
The long-term response of total soil organic carbon pools (âtotal SOCâ, i.e. soil and dead wood) to different harvesting scenarios in even-aged northern hardwood forest stands was evaluated using two soil carbon models, CENTURY and YASSO, that were calibrated with forest plot empirical data in the Green Mountains of Vermont. Overall, 13 different harvesting scenarios...
Model systems for life processes on Mars
NASA Technical Reports Server (NTRS)
Mitz, M. A.
1974-01-01
In the evolution of life forms nonphotosynthetic mechanisms are developed. The question remains whether a total life system could evolve which is not dependent upon photosynthesis. In trying to visualize life on other planets, the photosynthetic process has problems. On Mars, the high intensity of light at the surface is a concern and alternative mechanisms need to be defined and analyzed. In the UV search for alternate mechanisms, several different areas may be identified. These involve activated inorganic compounds in the atmosphere, such as the products of photodissociation of carbon dioxide and the organic material which may be created by natural phenomena. In addition, a life system based on the pressure of the atmospheric constituents, such as carbon dioxide, is a possibility. These considerations may be important for the understanding of evolutionary processes of life on another planet. Model systems which depend on these alternative mechanisms are defined and related to presently planned and future planetary missions.
Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen
2014-05-01
The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.
Publications - GMC 56 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 56 Publication Details Title: Total organic carbon, extractable organic matter, rock-eval publication sales page for more information. Bibliographic Reference Mobil Oil Coporation, 1986, Total organic carbon, extractable organic matter, rock-eval parameters, isoprenoid ratios, carbon preference index, and
Publications - GMC 28 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 28 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Brown and Ruth Laboratories, Inc., 1985, Geochemical analysis (total organic carbon, rock-eval Organic Carbon Top of Page Department of Natural Resources, Division of Geological & Geophysical
Publications - GMC 126 | Alaska Division of Geological & Geophysical
DGGS GMC 126 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Publications - GMC 294 | Alaska Division of Geological & Geophysical
DGGS GMC 294 Publication Details Title: Total organic carbon and rock-eval pyrolysis data of cuttings publication sales page for more information. Bibliographic Reference DGSI, Inc., 2000, Total organic carbon Organic Carbon Top of Page Department of Natural Resources, Division of Geological & Geophysical
Publications - GMC 143 | Alaska Division of Geological & Geophysical
DGGS GMC 143 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Publications - GMC 66 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 66 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1987, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Publications - GMC 142 | Alaska Division of Geological & Geophysical
DGGS GMC 142 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning
2015-10-01
The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration, stable carbon (δ13C) and oxygen (δ18C) isotope ratios on the Fourth Ring Road (FRR) and in the green space system of Beijing Institute of Landscape Architecture (BILA) in summer and winter seasons. The variations of CO2 concentration, δ13C value, δ18C value and the differences of them between the FRR and the BILA, which were correlated with traffic volume and meteorological factors, were analyzed at half-hour timescale. The results showed that traffic volume on the FRR was large both in summer and winter with obvious morning and evening rush hours, and more than 150 thousands vehicles were observed everyday during the observation periods. Diurnal variation of the CO2 concentration showed a two-peak curve both on the FRR and in the green space system of the BILA. In contrast, diurnal variation of δ13C value was a two-trough curve while diurnal variation of δ18O value was a single-trough curve. The differences of CO2 concentration, δ13C value and δ18O value between the FRR and the green space system of BILA in summer were greater than those in winter. The carbon isotope partitioning results showed that in summer vehicle exhaust contributed 64.9% to total atmospheric CO2 of the FRR during measurement time, while heterotrophic respiration contributed 56.3% to total atmospheric CO2 of the green space system in BILA. However, in winter atmospheric CO2 from both the FRR and green space system mostly came from vehicle exhaust. Stepwise regression analysis indicated that differences of CO2 concentration between the FRR and green space system were significantly related to vehicle volume and solar radiation at half-hour timescale, while solar radiation and relative humidity were the main meteorological factors causing δ13 and δ18O differences between the FRR and green space system. Plants in the green space system strongly assimilated CO2 from fossil fuel burning by photosynthesis to maintain carbon and oxygen balance of urban area in the growing season, which played an important role in improving urban ecological environment.
Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.
Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus
2016-02-01
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.
Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake
NASA Astrophysics Data System (ADS)
Yang, X.; Richardson, T. K.; Jain, A. K.
2010-10-01
We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates the significance of secondary forests to terrestrial carbon sinks, the importance of nitrogen dynamics to the magnitude of secondary forests carbon uptake, and therefore the need to include both primary and secondary forests and nitrogen dynamics in terrestrial ecosystem models.
Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake
NASA Astrophysics Data System (ADS)
Yang, X.; Richardson, T. K.; Jain, A. K.
2010-04-01
We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates the significance of secondary forests to terrestrial carbon sinks, the importance of nitrogen dynamics to the magnitude of secondary forests carbon uptake, and therefore the need to include both primary and secondary forests and nitrogen dynamics in terrestrial ecosystem models.
Subaiya, Saleena; Hogg, Euan; Roberts, Ian
2011-02-03
All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. CRASH-1: ISRCTN74459797CRASH-2: ISRCTN86750102.
Wang, Changjian; Wang, Fei; Zhang, Xinlin; Deng, Haijun
2017-11-01
It is important to analyze the influence mechanism of energy-related carbon emissions from a regional perspective to effectively achieve reductions in energy consumption and carbon emissions in China. Based on the "energy-economy-carbon emissions" hybrid input-output analysis framework, this study conducted structural decomposition analysis (SDA) on carbon emissions influencing factors in Guangdong Province. Systems-based examination of direct and indirect drivers for regional emission is presented. (1) Direct effects analysis of influencing factors indicated that the main driving factors of increasing carbon emissions were economic and population growth. Carbon emission intensity was the main contributing factor restraining carbon emissions growth. (2) Indirect effects analysis of influencing factors showed that international and interprovincial trades significantly affected the total carbon emissions. (3) Analysis of the effects of different final demands on the carbon emissions of industrial sector indicated that the increase in carbon emission arising from international and interprovincial trades is mainly concentrated in energy- and carbon-intensive industries. (4) Guangdong had to compromise a certain amount of carbon emissions during the development of its export-oriented economy because of industry transfer arising from the economic globalization, thereby pointing to the existence of the "carbon leakage" problem. At the same time, interprovincial export and import resulted in Guangdong transferring a part of its carbon emissions to other provinces, thereby leading to the occurrence of "carbon transfer."
High-Melt Carbon-Carbon Coating for Nozzle Extensions
NASA Technical Reports Server (NTRS)
Thompson, James
2015-01-01
Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.
Carbon dioxide capture by activated methyl diethanol amine impregnated mesoporous carbon
NASA Astrophysics Data System (ADS)
Ardhyarini, N.; Krisnandi, Y. K.
2017-07-01
Activated Methyl Diethanol Amine (aMDEA) were impregnated onto the surface of the mesoporous carbon to increase carbon dioxide (CO2) adsorption capacity. The mesoporous carbon was synthesized through soft template method with phloroglucinol as carbon precursor and triblock copolymer (Pluronic F127) as structure directing agent. These activated MDEA impregnated mesoporous carbon (aMDEA-MC) were characterized using various solid characterization techniques. CO2 adsorption was investigated using autoclaved-reactor in the batch system. The FTIR spectrum of aMDEA-MC had absorption peaks at 3395 cm-1 and 1031 cm-1 which are characteristic for O-H stretch and amine C-N stretch in MDEA. The elemental analyzer showed that nitrogen content on the mesoporous carbon increased after impregnation by 23 wt.%. The BET surface area and total pore volume of mesoporous carbon decreased after impregnation, 43 wt.% and 50 wt.%, respectively. The maximum CO2 adsorption capacity of aMDEA43-MC was 2.63 mmol/g (298 K, 5 psi and pure CO2). This is 64 % and 35 % higher compared to the CO2 adsorption capacity of the starting MC and also commercially available activated carbon with higher surface area. All the results suggest that MDEA-MC is a promising adsorbent for CO2 capture.
NASA Astrophysics Data System (ADS)
Schafer, T.; Ellis, R.; Osborne, T.; Hicks Pries, C.
2015-12-01
Long-term monitoring of restoration projects aims to determine long-term sustainability and stability of restored systems. In coastal wetlands, one indicator of restoration of ecosystem function can be seen with organic matter (specifically carbon) accretion. SL-15, a spoil island in Fort Pierce, Fl was restored in 2005, and has been monitored for return to natural condition over the last 10 years.. To assess sediment carbon accretion, sediment cores were collected in a set of eight plots, located on the SL-15 mangrove island and the surrounding seagrass recruitment area. These were analyzed for organic carbon, microbial biomass carbon, extractable carbon, and total nitrogen. The biogeochemical data collected in the previous year was compared to data collected in 2005-2007. Vegetation surveys were also completed to show the build-up of organic material in accordance with vegetation shift over the 9-year period. From this information, a trajectory has been formulated on organic carbon accretion and vegetation shift from the time of orginal restoration activities. By comparison to control sites nearby, realistic estimates of time required to reach natural levels of carbon and vegetation community structure can be calculated..
Kårelid, Victor; Larsson, Gen; Björlenius, Berndt
2017-05-15
Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of grasslands in food security and climate change
O'Mara, F. P.
2012-01-01
Background Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Scope Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO2 equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Conclusions Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores. PMID:23002270
Azam, Hossain M; Finneran, Kevin T
2013-01-01
Onsite wastewater systems, or septic tanks, serve approximately 25% of the United States population; they are therefore a critical component of the total carbon balance for natural water bodies. Septic tanks operate under strictly anaerobic conditions, and fermentation is the dominant process driving carbon transformation. Nitrate, Fe(III), and sulfate reduction may be operating to a limited extent in any given septic tank. Electron acceptor amendments will increase carbon oxidation, but nitrate is toxic and sulfate generates corrosive sulfides, which may damage septic system infrastructure. Fe(III) reducing microorganisms transform all major classes of organic carbon that are dominant in septic wastewater: low molecular weight organic acids, carbohydrate monomers and polymers, and lipids. Fe(III) is not toxic, and the reduction product Fe(II) is minimally disruptive if the starting Fe(III) is added at 50-150 mg L(-1). We used (14)C radiolabeled acetate, lactate, propionate, butyrate, glucose, starch, and oleic acid to demonstrate that short and long-term carbon oxidation is increased when different forms of Fe(III) are amended to septic wastewater. The rates of carbon mineralization to (14)CO(2) increased 2-5 times (relative to unamended systems) in the presence of Fe(III). The extent of mineralization reached 90% for some carbon compounds when Fe(III) was present, compared to levels of 50-60% in the absence of Fe(III). (14)CH(4) was not generated when Fe(III) was added, demonstrating that this strategy can limit methane emissions from septic systems. Amplified 16S rDNA restriction analysis indicated that unique Fe(III)-reducing microbial communities increased significantly in Fe(III)-amended incubations, with Fe(III)-reducers becoming the dominant microbial community in several incubations. The form of Fe(III) added had a significant impact on the rate and extent of mineralization; ferrihydrite and lepidocrocite were favored as solid phase Fe(III) and chelated Fe(III) (with nitrilotriacetic acid or EDTA) as soluble Fe(III) forms. Copyright © 2012 Elsevier Ltd. All rights reserved.
The role of grasslands in food security and climate change.
O'Mara, F P
2012-11-01
Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO(2) equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores.
[Transported fluxes of the riverine carbon and seasonal variation in Pearl River basin].
Zhang, Lian-Kai; Qin, Xiao-Qun; Yang, Hui; Huang, Qi-Bo; Liu, Peng-Yu
2013-08-01
The riverine carbon flux is a critical component of global carbon cycle. Riverine water samples were collected from eleven hydrometric stations in the main stream of Pearl River and its tributaries during April and July, 2012. The samples were analyzed for the space and seasonal distribution characteristics of the riverine suspended substance and carbon compositions. Carbon fluxes and erosion modulus of Pearl River basin were also estimated in Boluo, Shijiao, Gaoyao, namely Dongjiang, Beijiang, Xijiang, in these two hydrological seasons. The results showed that the total suspended substance (TSS) and organic carbon, including total particulate organic carbon (POC) and dissolved organic carbon (DOC) have higher concentration in the high-water season than that in the normal-water season. Dissolved inorganic carbon (DIC) has an overwhelming concentration compared to other carbon compositions in Pearl River basin. The DIC concentration shows an order of Xijiang, Beijiang and Dongjiang from high to low. The percentage of allogenic POC in Xijiang, Beijiang and Dongjiang are 78%, 72%, 26%, respectively, and C3 plants are the main sources of allogenic POC in those three tributaries. The transported fluxes of TSS, total carbon (TC), POC, particulate inorganic carbon (PIC), DOC, DIC, total particulate carbon (TPC) and total organic carbon (TOC) are 134 x 10(12),12.69 x 10(12), 2.50 x 10(12), 1.01 x 10(12), 1.13 x 10(12), 8.05 x 10(12), 3.51 x 10(12) and 3.65 x 10(12) g x a(-1), respectively, and the erosion modulus of those compositions are 309 x 10(6), 28.98 x 10(6), 5.75 x 10(6), 2.27 x 10(6), 2.56 x 10(6), 18.4 x 10(6), 8.02 x 10(6) and 8.31 x 10(6) g x (km2 x a)(-1), respectively. Compared with average values of global large rivers, the erosion modulus of DOC, POC, and TOC in Pearl River basin are higher than the corresponding values.
NASA Astrophysics Data System (ADS)
Sempere, R.; van Wambeke, F.; Bianchi, M.; Dafner, E.; Lefevre, D.; Bruyant, F.; Prieur, L.
We investigated the dynamic of the total organic carbon (TOC) pool and the role it played in the carbon cycle during winter 1997-1998 in the Almeria-Oran jet-front (AOF) system resulting from the spreading of Atlantic surface water through the Gibraltar Strait in the Alboran Sea (Southwestern Mediterranean Sea). We determined TOC by using high temperature combustion technique (HTC) and bacterial produc- tion (BP; via [3H] leucine incorporation) during two legs in the frontal area. We also estimated labile TOC (l-TOC) and bacterial growth efficiency (BGE) by performing TOC biodegradation experiments on board during the cruise whereas water column semi-labile (sl-TOC), and refractory-TOC were determined from TOC profile exami- nation. These results are discussed in relation with current velocity measured by using accoustic doppler current profiler (ADCP). Lowest TOC stocks (6330-6853 mmol C m-2) over 0-100 m were measured in the northern side of the geostrophic Jet which is also the highest dynamic area (horizontal speed of 80 cm s-1 in the first 100 m di- rected eastward). Our results indicated variable turnover times of sl-TOC across the Jet-Front system, which might be explained by different coupling of primary produc- tion and bacterial production observed in these areas. We also estimated TOC and sl-TOC transports within the Jet core off the Alboran Sea as well as potential CO2 production through bacterial respiration produced from sl-TOC assimilation by het- erotrophic bacteria.
Makino, Y; Adams, J C; McTernan, W F
1986-01-01
The Microtox assay and various parameters (growth, ATP concentration and electrochemical detection) of Escherichia coli were used to assess the toxicity of various levels of granular activated carbon treated coal gasification process water. The generation time of E. coli was statistically significantly slower at the level of 50 percent treatment than any other level of treatment. No differences were seen for ATP concentration per cell or in the electrochemical detection methods for any level treatment. There was a very high correlation between total organic carbon removal by GAC treatment and reduction in toxicity as measured by the Microtox system. However, even the treated water which had 91 percent of the TOC removed was still highly toxic.
Zhai, Haibo; Rubin, Edward S
2016-04-05
Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.
Chemical pump study for Pioneer Venus program
NASA Technical Reports Server (NTRS)
Rotheram, M.
1973-01-01
Two chemical pumps were designed for the Pioneer Venus large probe mass spectrometer. Factors involved in the design selection are reviewed. One pump is designed to process a sample of the Venus atmosphere to remove the major component, carbon dioxide, so that the minor, inert components may be measured with greater sensitivity. The other pump is designed to promote flow of atmospheric gas through a pressure reduction inlet system. This pump, located downstream from the mass spectrometer sampling point, provides the pressure differential required for flow through the inlet system. Both pumps utilize the reaction of carbon dioxide with lithium hydroxide. The available data for this reaction was reviewed with respect to the proposed applications, and certain deficiencies in reaction rate data at higher carbon dioxide pressures noted. The chemical pump designed for the inert gas experiment has an estimated volume of 30 cu cm and weight of 80 grams, exclusive of the four valves required for the operation. The chemical pump for the pressure reduction inlet system is designed for a total sample of 0.3 bar liter during the Venus descent.
Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian
2014-12-01
A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.
Bryan, Eliza; Meredith, Karina T; Baker, Andy; Andersen, Martin S; Post, Vincent E A
2017-12-31
This study investigates the inorganic and organic aspects of the carbon cycle in groundwaters throughout the freshwater lens and transition zone of a carbonate island aquifer and identifies the transformation of carbon throughout the system. We determined 14 C and 13 C carbon isotope values for both DIC and DOC in groundwaters, and investigated the composition of DOC throughout the aquifer. In combination with hydrochemical and 3 H measurements, the chemical evolution of groundwaters was then traced from the unsaturated zone to the deeper saline zone. The data revealed three distinct water types: Fresh (F), Transition zone 1 (T1) and Transition zone 2 (T2) groundwaters. The 3 H values in F and T1 samples indicate that these groundwaters are mostly modern. 14 C DOC values are higher than 14 C DIC values and are well correlated with 3 H values. F and T1 groundwater geochemistry is dominated by carbonate mineral recrystallisation reactions that add dead carbon to the groundwater. T2 groundwaters are deeper, saline and characterised by an absence of 3 H, lower 14 C DOC values and a different DOC composition, namely a higher proportion of Humic Substances relative to total DOC. The T2 groundwaters are suggested to result from either the slow circulation of water within the seawater wedge, or from old remnant seawater caused by past sea level highstands. While further investigations are required to identify the origin of the T2 groundwaters, this study has identified their occurrence and shown that they did not evolve along the same pathway as fresh groundwaters. This study has also shown that a combined approach using 14 C and 13 C carbon isotope values for both DIC and DOC and the composition of DOC, as well as hydrochemical and 3 H measurements, can provide invaluable information regarding the transformation of carbon in a groundwater system and the evolution of fresh groundwater recharge. Copyright © 2017 Elsevier B.V. All rights reserved.
High-resolution reflection seismic survey at a CCS site, Taiwan
NASA Astrophysics Data System (ADS)
Wang, Chien-Ying; Chung, Chen-Tung; Kuo, Hsuan-Yu; Wu, Ming-shyan; Kuo-Chen, Hao
2017-04-01
To control the effect of greenhouse gas on global warming, the reduction of carbon dioxide emission has become a significant international issue in recent years. The capture of carbon dioxide during its manufacturing and storing in adjacent areas are the most economical way. This research uses high-resolution seismic reflection survey to investigate the region around the world's largest coal-fired power plant at Taichung Port, Taiwan. We aim to detect proper geological structures and to evaluate the possible way to store carbon dioxide. This research uses reflection seismic survey with two mini-vibrators and 240 channels to investigate detailed underground structures. The total length of seismic lines is more than 20 kilometers. By aligning sequential seismic lines, we are able to correlate stratigraphic layers over a wide area. Two adjacent wells along the seismic line are used to identified possible formations. The TaiChung Power Plant (TCPP) at Taichung Port is our target which has more cross-tied seismic lines and a seismic line even extending into the sea water. We analyze these seismic profiles to establish the geological model for carbon dioxide storage and evaluate the possibility of storage systems. Furthermore, this research may prepare some baseline data for the future carbon dioxide injection monitoring. The result shows that the geological structures striking 8 degrees east of north and dipping 2.8 degrees to the east. This means that carbon dioxide will migrate toward the sea direction after injection. The structural layers are relatively flat without any sign of faults. Three carbon dioxide storage systems : Mushan Wuchihshan—Paling(bottom), Peiliao—Talu(middle) and Kueichulin—Chinshui(upper) system are identified. All has the proper reservoir with high porosity and capable caprocks more than 100 meters thick. The geological storage of carbon dioxide injected into TCPP site is a feasible, commercial and safe way to reduce the emission of carbon dioxide from TCPP.
NASA Astrophysics Data System (ADS)
Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji
2017-05-01
Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.
Donato, D C; Kauffman, J B; Mackenzie, R A; Ainsworth, A; Pfleeger, A Z
2012-04-30
Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced in tropical islands and low-lying coastal areas where climate change impacts are expected to be among the most severe. This study presents the first field estimate of island-wide carbon storage in ecosystems of Oceania, with special attention to the regional role of coastal mangroves, which occur on islands and coastal zones throughout the tropics. On two island groups of Micronesia (Yap and Palau), we sampled all above- and belowground C pools, including soil and vegetation, in 24 sites distributed evenly among the three major vegetation structural types: mangroves, upland forests, and open savannas (generally on degraded lands formerly forested). Total C stocks were estimated to be 3.9 and 15.2 Tg C on Yap and Palau, respectively. Mangroves contained by far the largest per-hectare C pools (830-1218 Mg C ha(-1)), with deep organic-rich soils alone storing more C (631-754 Mg C ha(-1)) than all pools combined in upland systems. Despite covering just 12-13% of land area, mangroves accounted for 24-34% of total island C stocks. Savannas (156-203 Mg C ha(-1)) contained significantly lower C stocks than upland forests (375-437 Mg C ha(-1)), suggesting that reforesting savannas where appropriate has high potential for carbon-based funding to aid restoration objectives. For mangroves, these results demonstrate the key role of these systems within the broader context of C storage in island and coastal landscapes. Sustainable management of mangrove forests and their large C stocks is of high importance at the regional scale, and climate change mitigation programs such as REDD+ could play a large role in avoiding deforestation of mangroves where this is a management objective. Copyright © 2011 Elsevier Ltd. All rights reserved.
How much would five trillion tonnes of carbon warm the climate?
NASA Astrophysics Data System (ADS)
Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.
2016-04-01
While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5EgC, with smaller forcing contributions from other greenhouse gases. These results indicate that the unregulated exploitation of the fossil fuel resource would ultimately result in considerably more profound climate changes than previously suggested.
Impact of drought on the North America carbon balance: implications for global carbon mitigation.
NASA Astrophysics Data System (ADS)
Bowman, K. W.; Liu, J.; Parazoo, N.; Bloom, A. A.; Wunch, D.; Jiang, Z.; Gurney, K. R.; Schimel, D.
2017-12-01
Drought and heat events are significant contributors to the interanual variability of terrestrial biosphere carbon flux in temperate North America. In order to be understand the drivers of this variability, we quantified the impact of two drought events in Texas and Mexico in 2011 as wells as the United States Midwest in 2012 on Net Biome Exchange, Gross Primary Productivity, Biomass Burning, and total ecosystem respiration using the NASA Carbon Monitoring System Flux (CMS-Flux) carbon cycle data assimilation system constrained with a suite of satellite observations. The global spatial distribution of NBE was constrained by column CO2 (XCO2) observations from the Greenhouse Gases Observing Satellite (GOSAT) accounting for fossil fuel contributions, while GPP was estimated with Solar Induced Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2), and biomass burning was computed from CO emissions constrained by MOPITT. Total ecosystem respiration (TER) was calculated as a residual term. We found that both drought events greatly reduced NBE and GPP during the seasonal peak, but had quite different effects on the annual NBE. Due to the year-long duration of the 2011 Texas-Northern Mexico (Tex-Mex) drought, the annual net uptake was reduced by 0.28 ± 0.10 GtC, which was dominated by the reduction of GPP (-0.34 ± 0.14 GtC). The regional contribution to the atmospheric CO2 growth, which is the sum of fossil fuel emissions and the biosphere net uptake, increased by more than a factor of 3 from an average of 0.09 GtC to 0.30 GtC in 2011. In contrast, a seasonally enhanced NBE in the Midwest partially offset the drought leading to an annual NBE reduction of only 0.16 ± 0.16 GtC. The reduction of net carbon uptake from the 2011 and 2012 drought impact was 50% and 25% respectively of the regional annual fossil fuel emissions. The results show that climate variability needs to be considered in order to relate carbon mitigation strategies to regional and global CO2 growth rates.
NASA Astrophysics Data System (ADS)
Liao, Chengwei; Zhang, Yupeng; Pan, Chunxu
2012-12-01
In this study, a novel vertically aligned carbon material, named "cow-nipple-like" submicro-nano carbon isomeric structure, was synthesized by the thermal decomposition of C2H2 in a chemical-vapor deposition system with a high-voltage external electric field. The microstructures were characterized by using scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy, respectively. The results revealed that (1) the total height of the carbon isomeric structure was in a rang of 90-250 nm; (2) the carbon isomeric structure consisted of a submicro- or nano-sized hemisphere carbon ball with 30-120 nm in diameter at the bottom and a vertically grown carbon nanotube with 10-40 nm in diameter upon the carbon ball; (3) there was a sudden change in diameter at the junction of the carbon ball and carbon nanotube. In addition, the carbon isomeric structure showed an excellent controllability, that is, the density, height, and diameter could be controlled effectively by adjusting the precursor ferrocene concentration in the catalytic solution and C2H2 ventilation time. A possible growth model was proposed to describe the formation mechanism, and a theoretic calculation was carried out to discuss the effect of high-voltage electric field upon the growth of the carbon isomeric structure.
Changing Urban Carbon Metabolism over Time: Historical Trajectory and Future Pathway.
Chen, Shaoqing; Chen, Bin
2017-07-05
Cities are expected to play a major role in carbon emissions mitigation. A key step in decoupling urban economy from carbon emissions is to understand the full impact of socioeconomic development on urban metabolism over time. Herein, we establish a system-based framework for modeling the variation of urban carbon metabolism through time by integrating a metabolic flow inventory, input-output model, and network analysis. Using Beijing as a case study, we track the historical trajectory of carbon flows embodied in urban final consumption over 1985-2012. We find that while the tendency of increase in direct carbon emission continues within this time frame, consumption-based carbon footprint might have peaked around 2010. Significant transitions in emission intensity and roles sectors play in transferring carbon over the period are important signs of decoupling urban development from carbonization. Our further analysis of driving factors reveals a strong competition between efficiency gains and consumption level rise, showing a cumulative contribution of -584% and 494% to total carbon footprint, respectively. Projection into a future pathway suggests there is still a great potential for carbon mitigation for the city, but a strong mitigation plan is required to achieve such decarbonization before 2030. By bridging temporal metabolic model and socioeconomic planning, this framework fills one of the main gaps between monitoring of urban metabolism and design of a low-carbon economy.
Use of sorption technology for treatment of humidity condensate for potable water
NASA Technical Reports Server (NTRS)
Ajjarapu, Sundara R. M.; Symons, J. M.
1992-01-01
This research focused on the testing of the original potable water processor aboard Space Station Freedom that was to produce potable water from the humidity condensate and additional water generated by carbon dioxide reduction. Humidity condensate was simulated by an influent water model 'Ersatz'. The humidity condensate was treated with multifiltration (MF) beds that consisted of a train of sorption beds (referred to as 'Unibed') designed to remove specific contaminants. For the complete simulated MF system runs tested for 100 bed volumes (BV) (volume processed/total column volume), 0.6 percent of the TOC was removed by the SAC/IRN 77 (Strong Acid Cation exchange resin), 39.6 percent of the total organic carbon (TOC) was removed by the WBA/IRA 68 (Weak Base Anion exchange resin), 13.2 percent of the TOC was removed by activated carbon adsorption (580-26), and the remaining sorbent media acted as polishing units to remove an additional 1.6 percent of the TOC at steady state. At steady state, 45 percent of the influent TOC passed through the MF bed.
Carbon Ion Radiotherapy at the Gunma University Heavy Ion Medical Center: New Facility Set-up.
Ohno, Tatsuya; Kanai, Tatsuaki; Yamada, Satoru; Yusa, Ken; Tashiro, Mutsumi; Shimada, Hirofumi; Torikai, Kota; Yoshida, Yukari; Kitada, Yoko; Katoh, Hiroyuki; Ishii, Takayoshi; Nakano, Takashi
2011-10-26
Carbon ion radiotherapy (C-ion RT) offers superior dose conformity in the treatment of deep-seated tumors compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. C-ion RT for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at the National Institute of Radiological Sciences (NIRS), with the size and cost being reduced to one-third of those at NIRS. The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. Between March 2010 and July 2011, a total of 177 patients were treated at GHMC although a total of 100 patients was the design specification during the period in considering the optimal machine performance. In the present article, we introduce the facility set-up of GHMC, including the facility design, treatment planning systems, and clinical preparations.
Carbon Ion Radiotherapy at the Gunma University Heavy Ion Medical Center: New Facility Set-up
Ohno, Tatsuya; Kanai, Tatsuaki; Yamada, Satoru; Yusa, Ken; Tashiro, Mutsumi; Shimada, Hirofumi; Torikai, Kota; Yoshida, Yukari; Kitada, Yoko; Katoh, Hiroyuki; Ishii, Takayoshi; Nakano, Takashi
2011-01-01
Carbon ion radiotherapy (C-ion RT) offers superior dose conformity in the treatment of deep-seated tumors compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. C-ion RT for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at the National Institute of Radiological Sciences (NIRS), with the size and cost being reduced to one-third of those at NIRS. The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. Between March 2010 and July 2011, a total of 177 patients were treated at GHMC although a total of 100 patients was the design specification during the period in considering the optimal machine performance. In the present article, we introduce the facility set-up of GHMC, including the facility design, treatment planning systems, and clinical preparations. PMID:24213124
NASA Astrophysics Data System (ADS)
Ritchie, W. J.; Dowlatabadi, H.
2017-12-01
Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing (RF). Pathways for long-run fossil energy use that map to total forcing outcomes are commonly depicted with integrated assessment models (IAMs). IAMs structure outlooks for 21st-century emissions with various theories for developments in demographics, economics, land-use, energy markets and energy service demands. These concepts are applied to understand global changes in two key factors relevant for scenarios of carbon emissions: total energy use (E) this century and the carbon intensity of that energy (F/E). A simple analytical and graphical approach can also illustrate the full range of outcomes for these variables to determine if IAMs provide sufficient coverage of the uncertainty space for future energy use. In this talk, we present a method for understanding uncertainties relevant to RF scenario components in a phase space. The phase space of a dynamic system represents significant factors as axes to capture the full range of physically possible states. A two-dimensional phase space of E and F/E presents the possible system states that can lead to various levels of total 21st-century carbon emissions. Once defined in this way, a phase space of these energy system coordinates allows for rapid characterization of large IAM scenario sets with machine learning techniques. This phase space method is applied to the levels of RF described by the Representative Concentration Pathways (RCPs). The resulting RCP phase space identifies characteristics of the baseline energy system outlooks provided by IAMs for IPCC Working Group III. We conduct a k-means cluster analysis to distinguish the major features of IAM scenarios for each RCP range. Cluster analysis finds the IAM scenarios in AR5 illustrate RCPs with consistent combinations of energy resources. This suggests IAM scenarios understate uncertainty ranges for future fossil energy combustion and are overly constrained, implying it is likely easier to achieve a 1.5˚ climate policy goal than previously demonstrated.
NASA Astrophysics Data System (ADS)
Zeng, Ying; Yang, Chen
2018-02-01
The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.
Pelegrí; Christaki; Dolan; Rassoulzadegan
1999-05-01
> Abstract We established a budget of organic carbon utilization of a starved heterotrophic nanoflagellate, Pteridomonas danica, incubated in batch cultures with Escherichia coli as model prey. The cultures were sampled periodically for biomass determinations and total organic carbon dynamics: total organic carbon, total organic carbon <1 µm, and dissolved organic carbon (DOC, <0.2 µm). During the 22 h incubation period, P. danica underwent biovolume variations of 3.2-fold. Gross growth efficiency was 22% and net growth efficiency 40%. P. danica respired 33% and egested 44% of the ingested E. coli carbon during lag and exponential growth phases. The form of the organic carbon egested varied. Of the total ingested carbon, 9% was egested in the form of DOC and occurred mainly during the exponential growth phase; 35% was egested in the form of particulate organic carbon (POC), ranging in size from 0.2 to 1 µm, and took place during the lag phase. P. danica could have reingested as much of 58% of this previously produced POC during the exponential growth phase as food scarcity increased. We concluded that POC egestion by flagellates could represent a significant source of submicrometric particles and colloidal organic matter. In addition, flagellate reingestion of egested POC could play a nonnegligible role in the microbial food web. Finally, the methodology reported in this study has proved to be a useful tool in the study of carbon metabolism in aquatic microorganisms.http://link.springer-ny.com/link/service/journals/00248/bibs/37n4p276.html
The carbon footprint of Australian ambulance operations.
Brown, Lawrence H; Canyon, Deon V; Buettner, Petra G; Crawford, J Mac; Judd, Jenni
2012-12-01
To determine the greenhouse gas emissions associated with the energy consumption of Australian ambulance operations, and to identify the predominant energy sources that contribute to those emissions. A two-phase study of operational and financial data from a convenience sample of Australian ambulance operations to inventory their energy consumption and greenhouse gas emissions for 1 year. State- and territory-based ambulance systems serving 58% of Australia's population and performing 59% of Australia's ambulance responses provided data for the study. Emissions for the participating systems totalled 67 390 metric tons of carbon dioxide equivalents. For ground ambulance operations, emissions averaged 22 kg of carbon dioxide equivalents per ambulance response, 30 kg of carbon dioxide equivalents per patient transport and 3 kg of carbon dioxide equivalents per capita. Vehicle fuels accounted for 58% of the emissions from ground ambulance operations, with the remainder primarily attributable to electricity consumption. Emissions from air ambulance transport were nearly 200 times those for ground ambulance transport. On a national level, emissions from Australian ambulance operations are estimated to be between 110 000 and 120 000 tons of carbon dioxide equivalents each year. Vehicle fuels are the primary source of emissions for ground ambulance operations. Emissions from air ambulance transport are substantially higher than those for ground ambulance transport. © 2012 The Authors. EMA © 2012 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Hackley, Paul C.; Karlsen, Alexander W.
2014-01-01
Carbonate lithofacies of the Lower Cretaceous Sligo Formation and James Limestone were regionally evaluated using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources. The assessed area is within the Upper Jurassic–Cretaceous–Tertiary Composite total petroleum system, which was defined for the assessment. Hydrocarbons reservoired in carbonate platform Sligo-James oil and gas accumulations are interpreted to originate primarily from the Jurassic Smackover Formation. Emplacement of hydrocarbons occurred via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir facies include porous patch reefs developed over paleostructural salt highs, carbonate shoals, and stacked linear reefs at the carbonate shelf margin. Hydrocarbon traps dominantly are combination structural-stratigraphic. Sealing lithologies include micrite, calcareous shale, and argillaceous lime mudstone. A geologic model, supported by discovery history analysis of petroleum geology data, was used to define a single regional assessment unit (AU) for conventional reservoirs in carbonate facies of the Sligo Formation and James Limestone. The AU is formally entitled Sligo-James Carbonate Platform Oil and Gas (50490121). A fully risked mean undiscovered technically recoverable resource in the AU of 50 million barrels of oil (MMBO), 791 billion cubic feet of natural gas (BCFG), and 26 million barrels of natural gas liquids was estimated. Substantial new development through horizontal drilling has occurred since the time of this assessment (2010), resulting in cumulative production of >200 BCFG and >1 MMBO.
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
Three-Man Solid Electrolyte Carbon Dioxide Electrolysis Breadboard
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.
1989-01-01
The development of the Three-Man (2.2 lb CO2/man-day) Solid Electrolyte CO2 Electrolysis Breadboard consisted of a Phase 1 and 2 effort. The Phase 1 effort constituted fabrication of three electrolysis cell types and performing parametric testing, off-design testing, and cell life testing. The Phase 2 consisted of the preliminary design, incorporation of palladium (Pd) tubes for hydrogen separation from the electrolyzer cathode feed gases, design support testing, final design, fabrication, and performance testing of the breadboard system. The results of performance tests demonstrated that CO2 electrolysis in an oxygen reclamation system for long duration space-based habitats is feasible. Closure of the oxygen system loop, therefore, can be achieved by CO2 electrolysis. In a two step process the metabolic CO2 and H2O vapor are electrolyzed into O2, H2, and CO. The CO can subsequently be disproportionated into carbon and CO2 in a carbon deposition reactor and the CO2 in turn be recycled and electrolyzed for total O2 recovery. The development effort demonstrated electrolyzer system can be designed and built to operate safely and reliably and the incorporation of Pd tubes for hydrogen diffusion can be integrated safely with predictable performance.
Energy Games - A Grade 5 Competition, The Data Analysis and Lessons Learned
NASA Astrophysics Data System (ADS)
Kao, W. H.
2016-12-01
ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase that happened during February to June 2016, has included retrofitting nine Grade 5 classrooms. In this program, the daily energy usage data from these classrooms were shown. The Grade 5 students received feedback on their energy use in real time, as they competed over four months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition has successfully given the 180 Grade 5 students initiative to decrease their energy use, leading to a significant decrease in energy usage throughout this competition, compared to the baseline recorded in late 2015. The winning classroom's total energy usage was around 30% lower than the average total energy usage, showing that by using energy efficiently, energy usage in a school can be decreased by a lot. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. The detectors monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. Further analysis can also be calculated with current data that is collected in the Phase 1 experiment, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. This data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place. In Phase 2, the energy tracking system would be expanded to all classrooms in the old buildings, while in Phase 3, the system would be expanded the all classrooms throughout the whole campus.
Indirect Human Impacts Reverse Centuries of Carbon Sequestration and Salt Marsh Accretion
Coverdale, Tyler C.; Brisson, Caitlin P.; Young, Eric W.; Yin, Stephanie F.; Donnelly, Jeffrey P.; Bertness, Mark D.
2014-01-01
Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions. PMID:24675669
Iceland as a demonstrator for a transition to low carbon economy?
NASA Astrophysics Data System (ADS)
Asbjornsson, Einar Jon; Stefansson, Hlynur; Finger, David Christian
2017-04-01
The energy supply in Iceland is quite unique, about 85% of the total primary energy is coming from renewable resources. Nevertheless, the ecological footprint of an average Icelander is with 6.5 worlds, one of the highest worldwide and the energy consumption per capita is about 7 times higher than the European average. Recent developments have shown that there is a great potential to reduce the footprint and develop towards low carbon economy. With its small population, well educated and governed society and clear system boundaries to the outside world, Iceland is a good research laboratory and an ideal demonstrator for a transition towards a low carbon economy. This presentation will outline how several innovative research projects at Reykjavik University could lead Iceland towards a sustainable and low carbon economy. The presentations will conclude with a visionary outlook how Iceland can become a demonstration nation towards a prosperous, low carbon and sustainable economy, helping stabilize global warming at an acceptable level.
Regulation of statoconia mineralization in Aplysia californica in vitro
NASA Technical Reports Server (NTRS)
Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Wiederhold, M. L.; Boyan, B. D.
1996-01-01
Statoconia are calcium carbonate inclusions in the lumen of the gravity-sensing organ, the statocyst, of Aplysia californica. The aim of the present study was to examine the role of carbonic anhydrase and urease in statoconia mineralization in vitro. The experiments were performed using a previously described culture system (Pedrozo et al., J. Comp. Physiol. (A) 177:415-425). Inhibition of carbonic anhydrase by acetazolamide decreased statoconia production and volume, while inhibition of urease by acetohydroxamic acid reduced total statoconia number, but had no affect on statoconia volume. Inhibition of carbonic anhydrase initially increased and then decreased the statocyst pH, whereas inhibition of urease decreased statocyst pH at all times examined; simultaneous addition of both inhibitors also decreased pH. These effects were dose and time dependent. The results show that carbonic anhydrase and urease are required for statoconia formation and homeostasis, and for regulation of statocyst pH. This suggests that these two enzymes regulate mineralization at least partially through regulation of statocyst pH.
Modeling the value of integrated U.S. and Canadian power sector expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.
The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less
Modeling the value of integrated U.S. and Canadian power sector expansion
Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.
2017-03-15
The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less
Fabrication and evaluation of polymeric early-warning fire-alarm devices. [combustion products
NASA Technical Reports Server (NTRS)
Senturia, S. D.
1975-01-01
The electrical resistivities were investigated of some polymers known to be enhanced by the presence of certain gases. This was done to make a device capable of providing early warning to fire through its response with the gases produced in the early phases of combustion. Eight polymers were investigated: poly(phenyl acetylene), poly(p-aminophenyl acetylene), poly(p-nitrophenyl acetylene), poly(p-formamidophenyl acetylene), poly(ethynyl ferrocene), poly(ethynyl carborane), poly(ethynyl pyridine), and the polymer made from 1,2,3,6 tetramethyl pyridazine. A total of 40 usable thin-film sandwich devices and a total of 70 usable interdigitated-electrode lock-and-key devices were fabricated. The sandwich devices were used for measurements of contact linearity, polymer conductivity, and polymer dielectric constant. The lock-and-key devices were used to determine the response of the polymers to a spectrum of gases that included ammonia, carbon nonoxide, carbon dioxide, sulfur dioxide, ethylene, acrolein, water vapor, and normal laboratory air. Strongest responses were to water vapor, ammonia, and acrolein, and depending on the polymer, weaker responses to carbon dioxide, sulfur dioxide, and carbon monoxide were observed. A quantitative theory of device operation, capable of accounting for observed device leakage current and sensitivity, was developed. A prototype detection/alarm system was designed and built for use in demonstrating sensor performance.
Setting cumulative emissions targets to reduce the risk of dangerous climate change.
Zickfeld, Kirsten; Eby, Michael; Matthews, H Damon; Weaver, Andrew J
2009-09-22
Avoiding "dangerous anthropogenic interference with the climate system" requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for "dangerous anthropogenic interference," taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 degrees C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 degrees C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, -220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions.
Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements.
Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin
2017-03-01
We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km 2 ) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km 2 ). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km 2 ) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.
Tracking urban carbon footprints from production and consumption perspectives
NASA Astrophysics Data System (ADS)
Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu
2015-05-01
Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city.
Lightweight, High-Temperature Radiator for Space Propulsion
NASA Technical Reports Server (NTRS)
Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.
2012-01-01
For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.
Terrestrial nitrogen–carbon cycle interactions at the global scale
Zaehle, S.
2013-01-01
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing. PMID:23713123
Terrestrial nitrogen-carbon cycle interactions at the global scale.
Zaehle, S
2013-07-05
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.
Healy, M G; Burke, P; Rodgers, M
2010-10-01
The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.
Alternative industrial carbon emissions benchmark based on input-output analysis
NASA Astrophysics Data System (ADS)
Han, Mengyao; Ji, Xi
2016-12-01
Some problems exist in the current carbon emissions benchmark setting systems. The primary consideration for industrial carbon emissions standards highly relate to direct carbon emissions (power-related emissions) and only a portion of indirect emissions are considered in the current carbon emissions accounting processes. This practice is insufficient and may cause double counting to some extent due to mixed emission sources. To better integrate and quantify direct and indirect carbon emissions, an embodied industrial carbon emissions benchmark setting method is proposed to guide the establishment of carbon emissions benchmarks based on input-output analysis. This method attempts to link direct carbon emissions with inter-industrial economic exchanges and systematically quantifies carbon emissions embodied in total product delivery chains. The purpose of this study is to design a practical new set of embodied intensity-based benchmarks for both direct and indirect carbon emissions. Beijing, at the first level of carbon emissions trading pilot schemes in China, plays a significant role in the establishment of these schemes and is chosen as an example in this study. The newly proposed method tends to relate emissions directly to each responsibility in a practical way through the measurement of complex production and supply chains and reduce carbon emissions from their original sources. This method is expected to be developed under uncertain internal and external contexts and is further expected to be generalized to guide the establishment of industrial benchmarks for carbon emissions trading schemes in China and other countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyr, Alex
This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb 14C system parameters performed during the A16S_2005 cruise, which took place from January 11 to February 24, 2005, aboard research vessel (R/V) Ronald H. Brown under the auspices of the National Oceanic and Atmospheric Administration (NOAA). The R/V Ronald H. Brown departed Punta Arenas, Chile, on January 11, 2005, and ended its cruise in Fortaleza, Brazil, on February 24, 2005. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and themore » National Science Foundation as part of the CLIVAR/CO 2/repeat hydrography/tracer program. Samples were taken from 36 depths at 121 stations. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO 2), fugacity of CO 2 (fCO 2), total alkalinity (TALK), pH, dissolved organic carbon (DOC), CFC, 14C, hydrographic, and other chemical measurements. The R/V Ronald H. Brown A16S_2005 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.« less
Airborne characterization of smoke marker ratios from prescribed burning
A. P. Sullivan; A. A. May; T. Lee; G. R. McMeeking; S. M. Kreidenweis; S. K. Akagi; R. J. Yokelson; S. P. Urbanski; J. L. Collett
2014-01-01
A Particle-Into-Liquid Sampler - Total Organic Carbon (PILS-TOC) and fraction collector system was flown aboard a Twin Otter aircraft sampling prescribed burning emissions in South Carolina in November 2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated offline samples for carbohydrate (i.e., smoke markers levoglucosan,...
Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. Approximately 600 DBPs, less than half of the total organic carbon in drinking water have been identified. We are developing an in vitro system to i...
Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann
2016-01-01
A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.
Electricity system based on 100% renewable energy for India and SAARC.
Gulagi, Ashish; Choudhary, Piyush; Bogdanov, Dmitrii; Breyer, Christian
2017-01-01
The developing region of SAARC (South Asian Association for Regional Cooperation) is home to a large number of people living below the poverty line. In future, providing affordable, universally accessible, reliable, low to zero carbon electricity in this region will be the main aim. A cost optimal 100% renewable energy system is simulated for SAARC for the year 2030 on an hourly resolved basis. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC) grid connections. The results obtained for a total system levelised cost of electricity (LCOE) showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand, and showed the system cost decreased by 5% and total electricity generation decreased by 1%. The results show that a 100% renewable energy system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than nuclear and fossil carbon capture and storage (CCS) alternatives. One of the limitations of this study is the cost of land for installation of renewables which is not included in the LCOE calculations, but regarded as a minor contribution.
Electricity system based on 100% renewable energy for India and SAARC
Gulagi, Ashish; Choudhary, Piyush; Bogdanov, Dmitrii; Breyer, Christian
2017-01-01
The developing region of SAARC (South Asian Association for Regional Cooperation) is home to a large number of people living below the poverty line. In future, providing affordable, universally accessible, reliable, low to zero carbon electricity in this region will be the main aim. A cost optimal 100% renewable energy system is simulated for SAARC for the year 2030 on an hourly resolved basis. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC) grid connections. The results obtained for a total system levelised cost of electricity (LCOE) showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand, and showed the system cost decreased by 5% and total electricity generation decreased by 1%. The results show that a 100% renewable energy system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than nuclear and fossil carbon capture and storage (CCS) alternatives. One of the limitations of this study is the cost of land for installation of renewables which is not included in the LCOE calculations, but regarded as a minor contribution. PMID:28723937
Accounting for black carbon lowers estimates of blue carbon storage services.
Chew, Swee Theng; Gallagher, John B
2018-02-07
The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.
Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich
2016-01-01
One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1–1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity. PMID:26927428
Soil CO2 emissions as a proxy for heat and mass flow assessment, Taupō Volcanic Zone, New Zealand
Bloomberg, S.; Werner, Cynthia A.; Rissmann, C.F.; Mazot, A.; Horton, Travis B.; Gravley, D; Kennedy, B.; Oze, C
2014-01-01
The quantification of heat and mass flow between deep reservoirs and the surface is important for understanding magmatic and hydrothermal systems. Here, we use high-resolution measurement of carbon dioxide flux (φCO2) and heat flow at the surface to characterize the mass (CO2 and steam) and heat released to the atmosphere from two magma-hydrothermal systems. Our soil gas and heat flow surveys at Rotokawa and White Island in the Taupō Volcanic Zone, New Zealand, include over 3000 direct measurements of φCO2 and soil temperature and 60 carbon isotopic values on soil gases. Carbon dioxide flux was separated into background and magmatic/hydrothermal populations based on the measured values and isotopic characterization. Total CO2 emission rates (ΣCO2) of 441 ± 84 t d−1 and 124 ± 18 t d−1were calculated for Rotokawa (2.9 km2) and for the crater floor at White Island (0.3 km2), respectively. The total CO2 emissions differ from previously published values by +386 t d−1 at Rotokawa and +25 t d−1 at White Island, demonstrating that earlier research underestimated emissions by 700% (Rotokawa) and 25% (White Island). These differences suggest that soil CO2 emissions facilitate more robust estimates of the thermal energy and mass flux in geothermal systems than traditional approaches. Combining the magmatic/hydrothermal-sourced CO2 emission (constrained using stable isotopes) with reservoir H2O:CO2mass ratios and the enthalpy of evaporation, the surface expression of thermal energy release for the Rotokawa hydrothermal system (226 MWt) is 10 times greater than the White Island crater floor (22.5 MWt).
Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich
2016-01-01
One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.
NASA Astrophysics Data System (ADS)
Adloff, Markus; Reick, Christian H.; Claussen, Martin
2018-04-01
In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment. For PI, ocean and land contributions to the total feedback are of similar size, while in the LGM case the terrestrial feedback is dominant.