Total System Design (TSD) Methodology Assessment.
1983-01-01
hardware implementation. Author: Martin - Marietta Aerospace Title: Total System Design Methodology Source: Martin - Marietta Technical Report MCR -79-646...systematic, rational approach to computer systems design is needed. Martin - Marietta has produced a Total System Design Methodology to support such design...gathering and ordering. The purpose of the paper is to document the existing TSD methoeology at Martin - Marietta , describe the supporting tools, and
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1A: Summary
NASA Technical Reports Server (NTRS)
Miller, R. E., Jr.; Redhed, D. D.; Kawaguchi, A. S.; Hansen, S. D.; Southall, J. W.
1973-01-01
IPAD was defined as a total system oriented to the product design process. This total system was designed to recognize the product design process, individuals and their design process tasks, and the computer-based IPAD System to aid product design. Principal elements of the IPAD System include the host computer and its interactive system software, new executive and data management software, and an open-ended IPAD library of technical programs to match the intended product design process. The basic goal of the IPAD total system is to increase the productivity of the product design organization. Increases in individual productivity were feasible through automation and computer support of routine information handling. Such proven automation can directly decrease cost and flowtime in the product design process.
Space Shuttle food galley design concept
NASA Technical Reports Server (NTRS)
Heidelbaugh, N. D.; Smith, M. C.; Fischer, R.; Cooper, B.
1974-01-01
A food galley has been designed for the crew compartment of the NASA Space Shuttle Orbiter. The rationale for the definition of this design was based upon assignment of priorities to each functional element of the total food system. Principle priority categories were assigned in the following order: food quality, nutrition, food packaging, menu acceptance, meal preparation efficiency, total system weight, total system volume, and total power requirements. Hence, the galley was designed using an 'inside-out' approach which first considered the food and related biological functions and subsequently proceeded 'outward' from the food to encompass supporting hardware. The resulting galley is an optimal design incorporating appropriate priorities for trade-offs between biological and engineering constraints. This design approach is offered as a model for the design of life support systems.
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1988-01-01
An integrated autopilot/autothrottle system was designed using a total energy control design philosophy. This design ensures that the system can differentiate between maneuvers requiring a change in thrust to accomplish a net energy change, and those maneuvers which only require elevator control to redistribute energy. The system design, the development of the system, and a summary of simulation results are defined.
NASA Technical Reports Server (NTRS)
Keltner, D. J.
1975-01-01
This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.
Solar total energy project at Shenandoah, Georgia system design
NASA Technical Reports Server (NTRS)
Poche, A. J.
1980-01-01
The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.
Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane
NASA Astrophysics Data System (ADS)
Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.
2015-09-01
Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.
Determination of total sulfur content via sulfur-specific chemiluminescence detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.
A specially designed system, based upon sulfur-specific chemiluminescence detection (SSCD), was developed to permit the determination of total sulfur content in a variety of samples. This type of detection system possesses several advantages such as excellent linearity and selectivity, low minimum detectable levels, and an equimolar response to various sulfur compounds. This paper will focus on the design and application of a sulfur-specific chemiluminescence detection system for use in determining total sulfur content in gasoline.
ERIC Educational Resources Information Center
Lux, M. Janet
Aspects of the Total-System Design (TSD) approach to instructional design in medical laboratory science that was implemented at Creighton University are described. In a four-year project, TSD principles were used to produce the uniform, systematic, and complete definition of a medical technology major within a program of study leading to the…
Design of a portable artificial heart drive system based on efficiency analysis.
Kitamura, T
1986-11-01
This paper discusses a computer simulation of a pneumatic portable piston-type artificial heart drive system with a linear d-c-motor. The purpose of the design is to obtain an artificial heart drive system with high efficiency and small dimensions to enhance portability. The design employs two factors contributing the total efficiency of the drive system. First, the dimensions of the pneumatic actuator were optimized under a cost function of the total efficiency. Second, the motor performance was studied in terms of efficiency. More than 50 percent of the input energy of the actuator with practical loads is consumed in the armature circuit in all linear d-c-motors with brushes. An optimal design is: the piston cross-sectional area of 10.5 cm2 cylinder longitudinal length of 10 cm. The total efficiency could be up to 25 percent by improving the gasket to reduce the frictional force.
Residential solar-heating system-design package
NASA Technical Reports Server (NTRS)
1979-01-01
Design package for modular solar heating system includes performance specifications, design data, installation guidelines, and other information that should be valuable to those interested in system (or similar systems) for projected installation. When installed in insulated "energy saver" home, system can supply large percentage of total energy needs of building.
Designing for Annual Spacelift Performance
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Zapata, Edgar
2017-01-01
This paper presents a methodology for approaching space launch system design from a total architectural point of view. This different approach to conceptual design is contrasted with traditional approaches that focus on a single set of metrics for flight system performance, i.e., payload lift per flight, vehicle mass, specific impulse, etc. The approach presented works with a larger set of metrics, including annual system lift, or "spacelift" performance. Spacelift performance is more inclusive of the flight production capability of the total architecture, i.e., the flight and ground systems working together as a whole to produce flights on a repeated basis. In the proposed methodology, spacelift performance becomes an important design-for-support parameter for flight system concepts and truly advanced spaceport architectures of the future. The paper covers examples of existing system spacelift performance as benchmarks, points out specific attributes of space transportation systems that must be greatly improved over these existing designs, and outlines current activity in this area.
Adaptive Digital Signature Design and Short-Data-Record Adaptive Filtering
2008-04-01
rate BPSK binary phase shift keying CA − CFAR cell averaging− constant false alarm rate CDMA code − division multiple − access CFAR constant false...Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation criterion,” EURASIP Journal...415-428, Mar. 2002. [6] P. Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation
The use of synthetic ligaments in the design of an enhanced stability total knee joint replacement.
Stokes, Michael D; Greene, Brendan C; Pietrykowski, Luke W; Gambon, Taylor M; Bales, Caroline E; DesJardins, John D
2018-03-01
Current total knee replacement designs work to address clinically desired knee stability and range of motion through a balance of retained anatomy and added implant geometry. However, simplified implant geometries such as bearing surfaces, posts, and cams are often used to replace complex ligamentous constraints that are sacrificed during most total knee replacement procedures. This article evaluates a novel total knee replacement design that incorporates synthetic ligaments to enhance the stability of the total knee replacement system. It was hypothesized that by incorporating artificial cruciate ligaments into a total knee replacement design at specific locations and lengths, the stability of the total knee replacement could be significantly altered while maintaining active ranges of motion. The ligament attachment mechanisms used in the design were evaluated using a tensile test, and determined to have a safety factor of three with respect to expected ligamentous loading in vivo. Following initial computational modeling of possible ligament orientations, a physical prototype was constructed to verify the function of the design by performing anterior/posterior drawer tests under physiologic load. Synthetic ligament configurations were found to increase total knee replacement stability up to 94% compared to the no-ligament case, while maintaining total knee replacement flexion range of motion between 0° and 120°, indicating that a total knee replacement that incorporates synthetic ligaments with calibrated location and lengths should be able to significantly enhance and control the kinematic performance of a total knee replacement system.
Network-driven design principles for neuromorphic systems.
Partzsch, Johannes; Schüffny, Rene
2015-01-01
Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems.
Network-driven design principles for neuromorphic systems
Partzsch, Johannes; Schüffny, Rene
2015-01-01
Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems. PMID:26539079
Systems design analysis applied to launch vehicle configuration
NASA Technical Reports Server (NTRS)
Ryan, R.; Verderaime, V.
1993-01-01
As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
Comparative study of design and PCL-substituting systems of total knee prosthesis.
Adam, R; Orban, C; Orban, H
2014-01-01
The aim of this study is to assess postoperative results obtained by different knee implants. The main implant types differences are given by generally implant design and by PCL substituting systems that are used. Between 04.2004 - 02.2012 we have performed 506 total knee arthroplasties (TKA), on a group of 460 patients. Our choice, was for cemented total knee prostheses, using PCL-substituting systems. Regarding general design and PCL-substituting systems of the implant we had divided the main group in three lots. In order to assess post operative result we had used the American Knee Society Score(AKSS). All prostheses types that we had implanted, had registered satisfactory values of AKSS. Our study showed that one group scored higher values of AKSS, compared the other two, but there are not statistical semnificative differences (p=0,09). Celsius.
Optical design of laser zoom projective lens with variable total track
NASA Astrophysics Data System (ADS)
He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua
2017-02-01
In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2008-01-01
The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.
Power processing methodology. [computerized design of spacecraft electric power systems
NASA Technical Reports Server (NTRS)
Fegley, K. A.; Hansen, I. G.; Hayden, J. H.
1974-01-01
Discussion of the interim results of a program to investigate the feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems. The object of the total program is to develop a flexible engineering tool which will allow the power processor designer to effectively and rapidly assess and analyze the tradeoffs available by providing, in one comprehensive program, a mathematical model, an analysis of expected performance, simulation, and a comparative evaluation with alternative designs. This requires an understanding of electrical power source characteristics and the effects of load control, protection, and total system interaction.
A Next-Generation Parallel File System Environment for the OLCF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillow, David A; Fuller, Douglas; Gunasekaran, Raghul
2012-01-01
When deployed in 2008/2009 the Spider system at the Oak Ridge National Laboratory s Leadership Computing Facility (OLCF) was the world s largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF s diverse computational environment, Spider has since become a blueprint for shared Lustre environments deployed worldwide. Designed to support the parallel I/O requirements of the Jaguar XT5 system and other smallerscale platforms at the OLCF, the upgrade to the Titan XK6 heterogeneous system will begin to push the limits of Spider s originalmore » design by mid 2013. With a doubling in total system memory and a 10x increase in FLOPS, Titan will require both higher bandwidth and larger total capacity. Our goal is to provide a 4x increase in total I/O bandwidth from over 240GB=sec today to 1TB=sec and a doubling in total capacity. While aggregate bandwidth and total capacity remain important capabilities, an equally important goal in our efforts is dramatically increasing metadata performance, currently the Achilles heel of parallel file systems at leadership. We present in this paper an analysis of our current I/O workloads, our operational experiences with the Spider parallel file systems, the high-level design of our Spider upgrade, and our efforts in developing benchmarks that synthesize our performance requirements based on our workload characterization studies.« less
Free-cooling: A total HVAC design concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janeke, C.E.
1982-01-01
This paper discusses a total ''free cooling'' HVAC design concept in which mechanical refrigeration is practically obviated via the refined application of existing technological strategies and a new diffuser terminal. The principles being applied are as follows; Thermal Swing: This is the active contribution of programmed heat storage to overall HVAC system performance. Reverse Diffuser: This is a new air terminal design that facilitates manifesting the thermal storage gains. Developing the thermal storage equation system into a generalized simulation model, optimizing the thermal storage and operating strategies with a computer program and developing related algorithms are subsequently illustrated. Luminair Aspiration:more » This feature provides for exhausting all luminair heat totally out of the building envelope, via an exhaust duct system and insulated boots. Two/Three-Stage Evaporative Cooling: This concept comprises a system of air conditioning that entails a combination of closed and open loop evaporative cooling with standby refrigeration only.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-07-01
The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup.more » The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)« less
Total main rotor isolation system analysis
NASA Technical Reports Server (NTRS)
Halwes, D. R.
1981-01-01
The requirements for a preliminary design study and verification procedure for a total main rotor isolation system at n/rev are established. The system is developed and analyzed, and predesign drawings are created for an isolation system that achieves over 95 percent isolation of all six degrees of freedom.
Three-year clinical effectiveness of four total-etch dentinal adhesive systems in cervical lesions.
Van Meerbeek, B; Peumans, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G
1996-11-01
A 3-year follow-up clinical trial of two experimental Bayer total-etch adhesive systems and two commercial total-etch systems. Clearfil Liner Bond System and Scotchbond Multi-Purpose, was conducted to evaluate their clinical effectiveness in Class V cervical lesions. Four hundred twenty abrasion-erosion lesions were restored randomly using the four adhesive systems. There were two experimental cavity designs, in which the adjacent enamel margins either were or were not beveled and acid etched. Clearfil Liner Bond System and Scotchbond Multi-Purpose demonstrated high retention rates in both types of cavity design at 3 years. The two experimental Bayer systems scored much lower retention rates in both cavity designs at 3 years. None of the systems guaranteed margins free of microleakage for a long time. At 3 years, superficial, localized marginal discolorations were observed, the least for Clearfil Liner Bond System, followed by Scotchbond Multi-Purpose and the two experimental systems. Small marginal defects were recorded at the cervical dentin and the incisal enamel margin. Retention of Clearfil Liner Bond and Scotchbond Multi-Purpose appears to be clearly improved over earlier systems, but marginal sealing remains problematic. The two Bayer systems were found to be clinically unreliable.
Spacecraft systems engineering: An introduction to the process at GSFC
NASA Technical Reports Server (NTRS)
Fragomeni, Tony; Ryschkewitsch, Michael G.
1993-01-01
The main objective in systems engineering is to devise a coherent total system design capable of achieving the stated requirements. Requirements should be rigid. However, they should be continuously challenged, rechallenged and/or validated. The systems engineer must specify every requirement in order to design, document, implement and conduct the mission. Each and every requirement must be logically considered, traceable and evaluated through various analysis and trade studies in a total systems design. Margins must be determined to be realistic as well as adequate. The systems engineer must also continuously close the loop and verify system performance against the requirements. The fundamental role of the systems engineer, however, is to engineer, not manage. Yet, in large, complex missions, where more than one systems engineer is required, someone needs to manage the systems engineers, and we call them 'systems managers.' Systems engineering management is an overview function which plans, guides, monitors and controls the technical execution of a project as implemented by the systems engineers. As the project moves on through Phases A and B into Phase C/D, the systems engineering tasks become a small portion of the total effort. The systems management role increases since discipline subsystem engineers are conducting analyses and reviewing test data for final review and acceptance by the systems managers.
NASA Technical Reports Server (NTRS)
Ho, D.; Sobon, L. E.
1979-01-01
A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.
2006-01-01
A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.
Evaluation of total energy-rate feedback for glidescope tracking in wind shear
NASA Technical Reports Server (NTRS)
Belcastro, C. M.; Ostroff, A. J.
1986-01-01
Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.
NASA Technical Reports Server (NTRS)
Hurley, J. F.; Anson, L.; Wilson, C.
1978-01-01
This report describes the design configuration and method used to design the forced engine exhaust to bypass air mixing system for Lycoming's QCGAT engine. This mixer is an integral part of the total engine and nacelle system and was configured to reduce the propulsion system noise and fuel consumption levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None,
1979-01-01
This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less
SCATS: SRB Cost Accounting and Tracking System handbook
NASA Technical Reports Server (NTRS)
Zorv, R. B.; Stewart, R. D.; Coley, G.; Higginbotham, M.
1978-01-01
The Solid Rocket Booster Cost Accounting and Tracking System (SCATS) which is an automatic data processing system designed to keep a running account of the number, description, and estimated cost of Level 2, 3, and 4 changes is described. Although designed specifically for the Space Shuttle Solid Rocket Booster Program, the ADP system can be used for any other program that has a similar structure for recording, reporting, and summing numbers and costs of changes. The program stores the alpha-numeric designators for changes, government estimated costs, proposed costs, and negotiated value in a MIRADS (Marshall Information Retrieval and Display System) format which permits rapid access, manipulation, and reporting of current change status. Output reports listing all changes, totals of each level, and totals of all levels, can be derived for any calendar interval period.
Systems Engineering-Based Tool for Identifying Critical Research Systems
ERIC Educational Resources Information Center
Abbott, Rodman P.; Stracener, Jerrell
2016-01-01
This study investigates the relationship between the designated research project system independent variables of Labor, Travel, Equipment, and Contract total annual costs and the dependent variables of both the associated matching research project total annual academic publication output and thesis/dissertation number output. The Mahalanobis…
Total main rotor isolation system analysis
NASA Technical Reports Server (NTRS)
Sankewitsch, V.
1981-01-01
Requirements, preliminary design, and verification procedures for a total main rotor isolation system at n/rev are presented. The fuselage is isolated from the vibration inducing main rotor at one frequency in all degrees of freedom by four antiresonant isolation units. Effects of parametric variations on isolation system performance are evaluated.
Low cost miniature data collection platform
NASA Technical Reports Server (NTRS)
1977-01-01
The development of the RF elements of a telecommunications package involved detailed study and analysis of concepts and techniques followed by laboratory testing and evaluation of designs. The design goals for a complete telecommunications package excluding antenna were a total weight of 300 grams, in a total volume of 400 cu cm with a capability of unattended operation for a period of six months. Of utmost importance is extremely low cost when produced in lots of 10,000. Early in the program it became apparent that a single Miniature Data Collection Platform would not satisfy all users. A single high efficiency system would not satisfy a user who had available a large battery capacity but required a low cost system. Conversely, the low cost system would not satisfy the end user who had a very limited battery capacity. A system design to satisfy these varied requirements was implemented by designing several versions of the system building blocks and then constructing three systems from these building blocks.
1981-01-01
per-rev, ring weighting factor, etc.) and with compression system design . A detailed description of the SAE methodology is provided in Ref. 1...offers insights into the practical application of experimental aeromechanical procedures and establishes the process of valid design assessment, avoiding...considerations given to the total engine system. Design Verification in the Experimental Laboratory Certain key parameters are influencing the design of modern
Mockup Small-Diameter Air Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Poerschke and A. Rudd
2016-05-01
This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses anmore » additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.« less
Optimized design of total energy systems: The RETE project
NASA Astrophysics Data System (ADS)
Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.
1980-05-01
The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.
Space Shuttle 2 advanced space transportation system, volume 2
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference.
Program Helps Decompose Complex Design Systems
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Hall, Laura E.
1994-01-01
DeMAID (A Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Groups modular subsystems on basis of interactions among them. Saves considerable money and time in total design process, particularly in new design problem in which order of modules has not been defined. Available in two machine versions: Macintosh and Sun.
General specifications for the development of a PC-based simulator of the NASA RECON system
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros
1984-01-01
The general specifications for the design and implementation of an IBM PC/XT-based simulator of the NASA RECON system, including record designs, file structure designs, command language analysis, program design issues, error recovery considerations, and usage monitoring facilities are discussed. Once implemented, such a simulator will be utilized to evaluate the effectiveness of simulated information system access in addition to actual system usage as part of the total educational programs being developed within the NASA contract.
Design and realization of tourism spatial decision support system based on GIS
NASA Astrophysics Data System (ADS)
Ma, Zhangbao; Qi, Qingwen; Xu, Li
2008-10-01
In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.
Launch vehicle systems design analysis
NASA Technical Reports Server (NTRS)
Ryan, Robert; Verderaime, V.
1993-01-01
Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.
Economic analysis of the design and fabrication of a space qualified power system
NASA Technical Reports Server (NTRS)
Ruselowski, G.
1980-01-01
An economic analysis was performed to determine the cost of the design and fabrication of a low Earth orbit, 2 kW photovoltaic/battery, space qualified power system. A commercially available computer program called PRICE (programmed review of information for costing and evaluation) was used to conduct the analysis. The sensitivity of the various cost factors to the assumptions used is discussed. Total cost of the power system was found to be $2.46 million with the solar array accounting for 70.5%. Using the assumption that the prototype becomes the flight system, 77.3% of the total cost is associated with manufacturing. Results will be used to establish whether the cost of space qualified hardware can be reduced by the incorporation of commercial design, fabrication, and quality assurance methods.
SEPAC flight software detailed design specifications, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
The detailed design specifications (as built) for the SEPAC Flight Software are defined. The design includes a description of the total software system and of each individual module within the system. The design specifications describe the decomposition of the software system into its major components. The system structure is expressed in the following forms: the control-flow hierarchy of the system, the data-flow structure of the system, the task hierarchy, the memory structure, and the software to hardware configuration mapping. The component design description includes details on the following elements: register conventions, module (subroutines) invocaton, module functions, interrupt servicing, data definitions, and database structure.
Design-Tradeoff Model For Space Station
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.; Smith, Jeffrey L.; Borden, Chester S.; Deshpande, Govind K.; Fox, George; Duquette, William H.; Dilullo, Larry A.; Seeley, Larry; Shishko, Robert
1990-01-01
System Design Tradeoff Model (SDTM) computer program produces information which helps to enforce consistency of design objectives throughout system. Mathematical model of set of possible designs for Space Station Freedom. Program finds particular design enabling station to provide specified amounts of resources to users at lowest total (or life-cycle) cost. Compares alternative design concepts by changing set of possible designs, while holding specified services to users constant, and then comparing costs. Finally, both costs and services varied simultaneously when comparing different designs. Written in Turbo C 2.0.
System engineering of complex optical systems for mission assurance and affordability
NASA Astrophysics Data System (ADS)
Ahmad, Anees
2017-08-01
Affordability and reliability are equally important as the performance and development time for many optical systems for military, space and commercial applications. These characteristics are even more important for the systems meant for space and military applications where total lifecycle costs must be affordable. Most customers are looking for high performance optical systems that are not only affordable but are designed with "no doubt" mission assurance, reliability and maintainability in mind. Both US military and commercial customers are now demanding an optimum balance between performance, reliability and affordability. Therefore, it is important to employ a disciplined systems design approach for meeting the performance, cost and schedule targets while keeping affordability and reliability in mind. The US Missile Defense Agency (MDA) now requires all of their systems to be engineered, tested and produced according to the Mission Assurance Provisions (MAP). These provisions or requirements are meant to ensure complex and expensive military systems are designed, integrated, tested and produced with the reliability and total lifecycle costs in mind. This paper describes a system design approach based on the MAP document for developing sophisticated optical systems that are not only cost-effective but also deliver superior and reliable performance during their intended missions.
Design and Analysis of a Flexible, Reliable Deep Space Life Support System
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.
Human factor roles in design of teleoperator systems
NASA Technical Reports Server (NTRS)
Janow, C.; Malone, T. B.
1973-01-01
Teleoperator systems are considered, giving attention to types of teleoperators, a manned space vehicle attached manipulator, a free-flying teleoperator, a surface exploration roving vehicle, the human factors role in total system design, the manipulator system, the sensor system, the communication system, the control system, and the mobility system. The role of human factors in the development of teleoperator systems is also discussed, taking into account visual systems, an operator control station, and the manipulators.
Performance Analysis of a Modular Small-Diamter Air Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poerschke, Andrew; Rudd, Armin
2016-03-01
This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air handler unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses anmore » additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.« less
NASA Astrophysics Data System (ADS)
Jonrinaldi, Hadiguna, Rika Ampuh; Salastino, Rades
2017-11-01
Environmental consciousness has paid many attention nowadays. It is not only about how to recycle, remanufacture or reuse used end products but it is also how to optimize the operations of the reverse system. A previous research has proposed a design of reverse supply chain of biodiesel network from used cooking oil. However, the research focused on the design of the supply chain strategy not the operations of the supply chain. It only decided how to design the structure of the supply chain in the next few years, and the process of each stage will be conducted in the supply chain system in general. The supply chain system has not considered operational policies to be conducted by the companies in the supply chain. Companies need a policy for each stage of the supply chain operations to be conducted so as to produce the optimal supply chain system, including how to use all the resources that have been designed in order to achieve the objectives of the supply chain system. Therefore, this paper proposes a model to optimize the operational planning of a biodiesel supply chain network from used cooking oil. A mixed integer linear programming is developed to model the operational planning of biodiesel supply chain in order to minimize the total operational cost of the supply chain. Based on the implementation of the model developed, the total operational cost of the biodiesel supply chain incurred by the system is less than the total operational cost of supply chain based on the previous research during seven days of operational planning about amount of 2,743,470.00 or 0.186%. Production costs contributed to 74.6 % of total operational cost and the cost of purchasing the used cooking oil contributed to 24.1 % of total operational cost. So, the system should pay more attention to these two aspects as changes in the value of these aspects will cause significant effects to the change in the total operational cost of the supply chain.
A Total Information Management System For All Medical Images
NASA Astrophysics Data System (ADS)
Ouimette, Donald; Nudelman, Sol; Ramsby, Gale; Spackman, Thomas
1985-09-01
A PACS has been designed for the University of Connecticut Health Center to serve all departments acquiring images for diagnosis, surgery and therapy. It incorporates a multiple community communications architecture to provide complete information management for medical images, medical data and departmental administrative matter. The system is modular and expandable. It permits an initial installation for radiology and subsequent expansion to include other departments at the Health Center, beginning with internal medicine, surgery, ophthalmology and dentistry. The design permits sufficient expansion to offer the potential for accepting the additional burden of a hospital information system. Primary parameters that led to this system design were based on the anticipation that departments in time could achieve generating 60 to 90% of their images suited to insertion in a PACS, that a high network throughput for large block image transfers would be essen-tial and that total system reliability was fundamental to success.
Design and fabrication of metallic thermal protection systems for aerospace vehicles
NASA Technical Reports Server (NTRS)
Varisco, A.; Bell, P.; Wolter, W.
1978-01-01
A program was conducted to develop a lightweight, efficient metallic thermal protection system (TPS) for application to future shuttle-type reentry vehicles, advanced space transports, and hypersonic cruise vehicles. Technical requirements were generally derived from the space shuttle. A corrugation-stiffened beaded-skin TPS design was used as a baseline. The system was updated and modified to incorporate the latest technology developments and design criteria. The primary objective was to minimize mass for the total system.
Solar energy system installed at Mount Rushmore National Visitor Center in Keystone, South Dakota
NASA Technical Reports Server (NTRS)
1979-01-01
The design and installation of the solar energy system installed at the Mount Rushmore Visitor Center is described. The system was designed to furnish about 45 percent of the heating for the total facility and about 53 percent partial cooling for the 2000 square foot observatory.
Breadboard CO2 and humidity control system
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1976-01-01
A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
Development and Application of an Approach to Optimize Renewable Energy Systems in Afghanistan
2012-06-01
upon renewable energy sources for power production , the more desirable the system design. Total operations and maintenance cost has the third...Engineers (USACE) practices for implementing energy systems for ANSF infrastructure are limited to diesel generators, and, thus, preclude alternative...system attribute values: total O&M cost, renewable fraction, generator production , wind production , solar production , battery quantity, life cycle
Mach 6.5 air induction system design for the Beta 2 two-stage-to-orbit booster vehicle
NASA Technical Reports Server (NTRS)
Midea, Anthony C.
1991-01-01
A preliminary, two-dimensional, mixed compression air induction system is designed for the Beta II Two Stage to Orbit booster vehicle to minimize installation losses and efficiently deliver the required airflow. Design concepts, such as an external isentropic compression ramp and a bypass system were developed and evaluated for performance benefits. The design was optimized by maximizing installed propulsion/vehicle system performance. The resulting system design operating characteristics and performance are presented. The air induction system design has significantly lower transonic drag than similar designs and only requires about 1/3 of the bleed extraction. In addition, the design efficiently provides the integrated system required airflow, while maintaining adequate levels of total pressure recovery. The excellent performance of this highly integrated air induction system is essential for the successful completion of the Beta II booster vehicle mission.
ERIC Educational Resources Information Center
Meckler, Gershon
Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…
Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara; Scipioni, Antonio; Tan, Shiyu; Dong, Lichun; Gao, Suzhao
2013-10-01
The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity of warehouses, the market demand and some technological constraints. And an illustrative case of multiple-feedstock bioethanol system has been studied by the proposed method, and a global best solution by which the total ecological footprint is the minimal has been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Javad Kazemzadeh-Parsi, Mohammad; Daneshmand, Farhang; Ahmadfard, Mohammad Amin; Adamowski, Jan; Martel, Richard
2015-01-01
In the present study, an optimization approach based on the firefly algorithm (FA) is combined with a finite element simulation method (FEM) to determine the optimum design of pump and treat remediation systems. Three multi-objective functions in which pumping rate and clean-up time are design variables are considered and the proposed FA-FEM model is used to minimize operating costs, total pumping volumes and total pumping rates in three scenarios while meeting water quality requirements. The groundwater lift and contaminant concentration are also minimized through the optimization process. The obtained results show the applicability of the FA in conjunction with the FEM for the optimal design of groundwater remediation systems. The performance of the FA is also compared with the genetic algorithm (GA) and the FA is found to have a better convergence rate than the GA.
Optimizing the physical ergonomics indices for the use of partial pressure suits.
Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang
2015-03-01
This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Reducing Manpower for a Technologically Advanced Ship
2010-01-27
Watchstations by 84% (119 to 34) “ Autonomic ” Fire Suppression System AFSS is designed to automatically: (1) Isolate damage to firemain piping... System (IPS) Advanced VLS Autonomic Fire Suppression Hull Form Scale Models Total Ship Computing Environment (TSCE) Integrated Undersea...Warfare (IUSW) System ( AFSS ) 8 Total Ship Organization Ship C3I Engage Support Technical Director TSCEI Sense Integrated Product Teams TSSE Director
NASA Technical Reports Server (NTRS)
Jackson, L. R.; Dixon, S. C.
1980-01-01
The design and assessment of reusable surface insulation (RSI), metallic stand off and multiwall thermal protection systems (TPS) is discussed. Multiwall TPS is described in some detail, and analyses useful for design of multiwall are included. Results indicate that multiwall has the potential to satisfy the TPS design goals better than the other systems. The total mass of the stand-off TPS and of the metallic systems require less primary structure mass than the RSI system, since the nonbuckling skin criteria required for RSI may be removed. Continued development of multiwall TPS is required to verify its potential and to provide the necessary data base for design.
TOMS Near Realtime System design document
NASA Technical Reports Server (NTRS)
Puccinelli, E. F.
1981-01-01
The System Design Document for the TOMS (Total Mapping Spectrometer) Near Realtime System provides detailed definition of the system functions and records the system history from a data processing and development point-of-view. The system was designed to produce map products displaying ozone concentrations over the United States as measured by the TOMS flown on the NIMBUS 7 satellite. The maps were produced and delivered to the user within six hours of round receipt of the satellite data for the period March 1, 1981 through May 15, 1981 on a daily basis. Sample system products are shown and data archival locations are listed.
Natural Resource Information System. Volume 2: System operating procedures and instructions
NASA Technical Reports Server (NTRS)
1972-01-01
A total computer software system description is provided for the prototype Natural Resource Information System designed to store, process, and display data of maximum usefulness to land management decision making. Program modules are described, as are the computer file design, file updating methods, digitizing process, and paper tape conversion to magnetic tape. Operating instructions for the system, data output, printed output, and graphic output are also discussed.
Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system
NASA Astrophysics Data System (ADS)
Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham
2013-10-01
According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.
Solar-heating and cooling system design package
NASA Technical Reports Server (NTRS)
1980-01-01
Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.
Cataloging Expert Systems: Optimism and Frustrated Reality.
ERIC Educational Resources Information Center
Olmstadt, William J.
2000-01-01
Discusses artificial intelligence and attempts to catalog expert systems. Topics include the nature of expertise; examples of cataloging expert systems; barriers to implementation; and problems, including total automation, cataloging expertise, priorities, and system design. (LRW)
NASA Astrophysics Data System (ADS)
Sanaye, Sepehr; Katebi, Arash
2014-02-01
Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 kW-1 h-1, and payback period of about 6.3 years for the investment.
Development of system design information for carbon dioxide using an amine type sorber
NASA Technical Reports Server (NTRS)
Rankin, R. L.; Roehlich, F.; Vancheri, F.
1971-01-01
Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses anmore » additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.« less
Impact of production systems on swine confinement buildings bioaerosols.
Létourneau, Valérie; Nehmé, Benjamin; Mériaux, Anne; Massé, Daniel; Duchaine, Caroline
2010-02-01
Hog production has been substantially intensified in Eastern Canada. Hogs are now fattened in swine confinement buildings with controlled ventilation systems and high animal densities. Newly designed buildings are equipped with conventional manure handling and management systems, shallow or deep litter systems, or source separation systems to manage the large volumes of waste. However, the impacts of those alternative production systems on bioaerosol concentrations within the barns have never been evaluated. Bioaerosols were characterized in 18 modern swine confinement buildings, and the differences in bioaerosol composition in the three different production systems were evaluated. Total dust, endotoxins, culturable actinomycetes, fungi, and bacteria were collected with various apparatuses. The total DNA of the air samples was extracted, and quantitative polymerase chain reaction (PCR) was used to assess the total number of bacterial genomes, as a total (culturable and nonculturable) bacterial assessment. The measured total dust and endotoxin concentrations were not statistically different in the three studied production systems. In buildings with sawdust beds, actinomycetes and molds were found in higher concentrations than in the conventional barns. Aspergillus, Cladosporium, Penicillium, and Scopulariopsis species were identified in all the studied swine confinement buildings. A. flavus, A. terreus, and A. versicolor were abundantly present in the facilities with sawdust beds. Thermotolerant A. fumigatus and Mucor were usually found in all the buildings. The culturable bacteria concentrations were higher in the barns with litters than in the conventional buildings, while real-time PCR revealed nonstatistically different concentrations of total bacteria in all the studied swine confinement buildings. In terms of workers' respiratory health, barns equipped with a solid/liquid separation system may offer better air quality than conventional buildings or barns with sawdust beds. The impact of ventilation rates, air distribution, or building design still has to be explored.
NASA Astrophysics Data System (ADS)
Fajingbesi, F. E.; Midi, N. S.; Khan, S.
2017-06-01
Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.
Software Design Improvements. Part 2; Software Quality and the Design and Inspection Process
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom
1997-01-01
The application of assurance engineering techniques improves the duration of failure-free performance of software. The totality of features and characteristics of a software product are what determine its ability to satisfy customer needs. Software in safety-critical systems is very important to NASA. We follow the System Safety Working Groups definition for system safety software as: 'The optimization of system safety in the design, development, use and maintenance of software and its integration with safety-critical systems in an operational environment. 'If it is not safe, say so' has become our motto. This paper goes over methods that have been used by NASA to make software design improvements by focusing on software quality and the design and inspection process.
MSFC Sortie Laboratory Environmental Control System (ECS) phase B design study results
NASA Technical Reports Server (NTRS)
Ignatonis, A. J.; Mitchell, K. L.
1974-01-01
Phase B effort of the Sortie Lab program has concluded. Results of that effort are presented which pertain to the definitions of the environmental control system (ECS). Numerous design studies were performed in Phase B to investigate system feasibility, complexity, weight, and cost. The results and methods employed for these design studies are included. An autonomous Sortie Lab ECS was developed which utilizes a deployed space radiator. Total system weight was projected to be 1814.4 kg including the radiator and fluids. ECS power requirements were estimated at 950 watts.
A spin-recovery parachute system for light general-aviation airplanes
NASA Technical Reports Server (NTRS)
Bradshaw, C.
1980-01-01
A tail mounted spin recovery parachute system was designed and developed for use on light general aviation airplanes. The system was designed for use on typical airplane configurations, including low wing, high wing, single engine and twin engine designs. A mechanically triggered pyrotechnic slug gun is used to forcibly deploy a pilot parachute which extracts a bag that deploys a ring slot spin recovery parachute. The total system weighs 8.2 kg. System design factors included airplane wake effects on parachute deployment, prevention of premature parachute deployment, positive parachute jettison, compact size, low weight, system reliability, and pilot and ground crew safety. Extensive ground tests were conducted to qualify the system. The recovery parachute was used successfully in flight 17 times.
Integrated exhaust gas analysis system for aircraft turbine engine component testing
NASA Technical Reports Server (NTRS)
Summers, R. L.; Anderson, R. C.
1985-01-01
An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.
Design of mechanical arm for an automatic sorting system of recyclable cans
NASA Astrophysics Data System (ADS)
Resti, Y.; Mohruni, A. S.; Burlian, F.; Yani, I.; Amran, A.
2018-04-01
The use of a mechanical arm for an automatic sorting system of used cans should be designed carefully. The right design will result in a high precision sorting rate and a short sorting time. The design includes first; design manipulator,second; determine link and joint specifications, and third; build mechanical systems and control systems. This study aims to design the mechanical arm as a hardware system for automatic cans sorting system. The material used for the manipulator is the aluminum plate. The manipulator is designed using 6 links and 6 join where the 6th link is the end effectorand the 6th join is the gripper. As a driving motor used servo motor, while as a microcontroller used Arduino Uno which is connected with Matlab programming language. Based on testing, a mechanical arm designed for this recyclable canned recycling system has a precision sorting rate at 93%, where the average total time required for sorting is 10.82 seconds.
Composite rotor blades for large wind energy installations
NASA Technical Reports Server (NTRS)
Kussmann, A.; Molly, J.; Muser, D.
1980-01-01
The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.
Thoughts on a Design Framework for System Integration
2007-11-01
System Integration: Isenor, Anthony W.; Lapinski, Anna-Liesa S.; DRDC Atlantic TM 2006-143; R & D pour la défense Canada – Atlantique; Novembre 2007...of the VOI. DRDC Atlantic TM 2006-143 13 How will the integrated system continue to be effective? – Increased bandwidth between...DONNA WOOD, DST C4ISR 4 DRDC Corporate 305 Rideau Street Ottawa 13 TOTAL LIST PART 2 33 TOTAL COPIES REQUIRED
Development and evaluation of an instrumented linkage system for total knee surgery.
Walker, Peter S; Wei, Chih-Shing; Forman, Rachel E; Balicki, M A
2007-10-01
The principles and application of total knee surgery using optical tracking have been well demonstrated, but electromagnetic tracking may offer further advantages. We asked whether an instrumented linkage that attaches directly to the bone can maintain the accuracy of the optical and electromagnetic systems but be quicker, more convenient, and less expensive to use. Initial testing using a table-mounted digitizer to navigate a drill guide for placing pins to mount a cutting guide demonstrated the feasibility in terms of access and availability. A first version (called the Mark 1) instrumented linkage designed to fix directly to the bone was constructed and software was written to carry out a complete total knee replacement procedure. The results showed the system largely fulfilled these goals, but some surgeons found that using a visual display for pin placement was difficult and time consuming. As a result, a second version of a linkage system (called the K-Link) was designed to further develop the concept. User-friendly flexible software was developed for facilitating each step quickly and accurately while the placement of cutting guides was facilitated. We concluded that an instrumented linkage system could be a useful and potentially lower-cost option to the current systems for total knee replacement and could possibly have application to other surgical procedures.
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1989-01-01
An integrated autopilot/autothrottle was designed for flight test on the NASA TSRV B-737 aircraft. The system was designed using a total energy concept and is attended to achieve the following: (1) fuel efficiency by minimizing throttle activity; (2) low development and implementation costs by designing the control modes around a fixed inner loop design; and (3) maximum safety by preventing stall and engine overboost. The control law was designed initially using linear analysis; the system was developed using nonlinear simulations. All primary design requirements were satisfied.
Nonlinear multivariable design by total synthesis. [of gas turbine engine control systems
NASA Technical Reports Server (NTRS)
Sain, M. K.; Peczkowski, J. L.
1982-01-01
The Nominal Design Problem (NDP) is extended to nonlinear cases, and a new case study of robust feedback synthesis for gas turbine control design is presented. The discussion of NDP extends and builds on earlier Total Synthesis Problem theory and ideas. Some mathematical preliminaries are given in which a bijection from a set S onto a set T is considered, with T admitting the structure of an F-vector space. NDP is then discussed for a nonlinear plant, and nonlinear nominal design is defined and characterized. The design of local controllers for a turbojet and the scheduling of these controls into a global control are addressed.
Initial Design and Construction of a Mobil Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Maloney, Thomas; Hoberecht, Mark (Technical Monitor)
2003-01-01
The design and initial construction of a mobile regenerative power system is described. The main components of the power system consists of a photovoltaic array, regenerative fuel cell and electrolyzer. The system is mounted on a modified landscape trailer and is completely self contained. An operational analysis is also presented that shows predicted performance for the system at various times of the year. The operational analysis consists of performing an energy balance on the system based on array output and total desired operational time.
Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy Ai Wei; Mohamed Amin, Mohamed Afizal; Nolasco-Hipolito, Cirilo; Bujang, Kopli
2016-09-01
An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hypervelocity Technology Escape System Concepts. Volume 1. Development and Evaluation
1988-07-01
airplane escape systems. These include separation at high dynamic pressure, stability, impact attenuation , crew member accelerations, adequate...changes (TTS; 0 Shock attenuator design PTS) 0 Restraint system design * Limb flail * Non-auditory changes (gag, dec. visual acuity) * Reduced psycho-motor...detected by ultrasonic technique. The DCS symptoms may not appear until at slightly lower total pressures (8 N psia - 9 pals). Since the pressurization
NASA Astrophysics Data System (ADS)
Ferraro, R.; Danzeca, S.; Brucoli, M.; Masi, A.; Brugger, M.; Dilillo, L.
2017-04-01
The need for upgrading the Total Ionizing Dose (TID) measurement resolution of the current version of the Radiation Monitoring system for the LHC complex has driven the research of new TID sensors. The sensors being developed nowadays can be defined as Systems On Chip (SOC) with both analog and digital circuitries embedded in the same silicon. A radiation tolerant TID Monitoring System (TIDMon) has been designed to allow the placement of the entire dosimeter readout electronics in very harsh environments such as calibration rooms and even in the mixed radiation field such as the one of the LHC complex. The objective of the TIDMon is to measure the effect of the TID on the new prototype of Floating Gate Dosimeter (FGDOS) without using long cables and with a reliable measurement system. This work introduces the architecture of the TIDMon, the radiation tolerance techniques applied on the controlling electronics as well as the design choices adopted for the system. Finally, results of several tests of TIDMon under different radiation environments such as gamma rays or mixed radiation field at CHARM are presented.
The Design Manager's Aid for Intelligent Decomposition (DeMAID)
NASA Technical Reports Server (NTRS)
Rogers, James L.
1994-01-01
Before the design of new complex systems such as large space platforms can begin, the possible interactions among subsystems and their parts must be determined. Once this is completed, the proposed system can be decomposed to identify its hierarchical structure. The design manager's aid for intelligent decomposition (DeMAID) is a knowledge based system for ordering the sequence of modules and identifying a possible multilevel structure for design. Although DeMAID requires an investment of time to generate and refine the list of modules for input, it could save considerable money and time in the total design process, particularly in new design problems where the ordering of the modules has not been defined.
Mechanism and design of intermittent aeration activated sludge process for nitrogen removal.
Hanhan, Oytun; Insel, Güçlü; Yagci, Nevin Ozgur; Artan, Nazik; Orhon, Derin
2011-01-01
The paper provided a comprehensive evaluation of the mechanism and design of intermittent aeration activated sludge process for nitrogen removal. Based on the specific character of the process the total cycle time, (T(C)), the aerated fraction, (AF), and the cycle time ratio, (CTR) were defined as major design parameters, aside from the sludge age of the system. Their impact on system performance was evaluated by means of process simulation. A rational design procedure was developed on the basis of basic stochiometry and mass balance related to the oxidation and removal of nitrogen under aerobic and anoxic conditions, which enabled selected of operation parameters of optimum performance. The simulation results indicated that the total nitrogen level could be reduced to a minimum level by appropriate manipulation of the aerated fraction and cycle time ratio. They also showed that the effluent total nitrogen could be lowered to around 4.0 mgN/L by adjusting the dissolved oxygen set-point to 0.5 mg/L, a level which promotes simultaneous nitrification and denitrification.
Game Theory and Risk-Based Levee System Design
NASA Astrophysics Data System (ADS)
Hui, R.; Lund, J. R.; Madani, K.
2014-12-01
Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.
Systems design and comparative analysis of large antenna concepts
NASA Technical Reports Server (NTRS)
Garrett, L. B.; Ferebee, M. J., Jr.
1983-01-01
Conceptual designs are evaluated and comparative analyses conducted for several large antenna spacecraft for Land Mobile Satellite System (LMSS) communications missions. Structural configurations include trusses, hoop and column and radial rib. The study was conducted using the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. The current capabilities, development status, and near-term plans for the IDEAS system are reviewed. Overall capabilities are highlighted. IDEAS is an integrated system of computer-aided design and analysis software used to rapidly evaluate system concepts and technology needs for future advanced spacecraft such as large antennas, platforms, and space stations. The system was developed at Langley to meet a need for rapid, cost-effective, labor-saving approaches to the design and analysis of numerous missions and total spacecraft system options under consideration. IDEAS consists of about 40 technical modules efficient executive, data-base and file management software, and interactive graphics display capabilities.
NASA Technical Reports Server (NTRS)
Stow, W. K.; Cheeseman, C.; Dallam, W.; Dietrich, D.; Dorfman, G.; Fleming, R.; Fries, R.; Guard, W.; Jackson, F.; Jankowski, H.
1975-01-01
Economic benefits studies regarding the application of remote sensing to resource management and the Total Earth Resources for the Shuttle Era (TERSSE) study to outline the structure and development of future systems are used, along with experience from LANDSAT and LACIE, to define the system performance and economics of an operational Earth Resources system. The system is to be based on current (LANDSAT follow-on) technology and its application to high priority resource management missions, such as global crop inventory. The TERSSE Operational System Study (TOSS) investigated system-level design alternatives using economic performance as the evaluation criterion. As such, the TOSS effort represented a significant step forward in the systems engineering and economic analysis of Earth Resources programs. By parametrically relating engineering design parameters, such as sensor performance details, to the economic benefit mechanisms a new level of confidence in the conclusions concerning the implementation of such systems can be reached.
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, Charles D.; Hoffman, Nate; Murray, Kathy; Klein, Gail; Diaz, Franklin Chang
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short duration manned mission performance exceeding other technologies. A study was conducted to assess the systems aspects of inertial as applied to such missions, based on the conceptual engine design of Hyde (1983). The required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel is described. Preliminary design details are given for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days.
Defense Energy Information System (DEIS): DEIS-80 Design System Specification. Revision B,
1982-07-01
are samples of the queries that may be requested. - Display the data for DoDAAC = XXYMOX, Date = MMYY, Product Code = XXX. - What is the total...consumption in gallons. What is the percent change in total consumption (or average daily consumption) for Major Command = X---X, between this month and this...month a year ago (or this quarter and the previous 5 quarters) for distillates (or fuel oil)? What is the total consumption for each Service for the
Space station ventilation study
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Allen, G. E.
1972-01-01
A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.
Preliminary Design of Nano Satellite for Regional Navigation System
NASA Astrophysics Data System (ADS)
Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.
2018-04-01
A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.
Information transfer satellite concept study. Volume 4: computer manual
NASA Technical Reports Server (NTRS)
Bergin, P.; Kincade, C.; Kurpiewski, D.; Leinhaupel, F.; Millican, F.; Onstad, R.
1971-01-01
The Satellite Telecommunications Analysis and Modeling Program (STAMP) provides the user with a flexible and comprehensive tool for the analysis of ITS system requirements. While obtaining minimum cost design points, the program enables the user to perform studies over a wide range of user requirements and parametric demands. The program utilizes a total system approach wherein the ground uplink and downlink, the spacecraft, and the launch vehicle are simultaneously synthesized. A steepest descent algorithm is employed to determine the minimum total system cost design subject to the fixed user requirements and imposed constraints. In the process of converging to the solution, the pertinent subsystem tradeoffs are resolved. This report documents STAMP through a technical analysis and a description of the principal techniques employed in the program.
A system for the real time, direct measurement of natural gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, T.
1995-12-31
PMI/Badger Meter, Inc. with partial sponsorship from the Gas Research Institute, has designed and developed direct measurement total energy flow metering instrumentation. As industry demands for improved accuracy and speed of measurement have increased so has the complexity of the overall hardware and software systems. Considering traditional system approaches, few companies have the in house capability of maintaining a complete system. This paper addresses efforts to implement a direct, total gas energy flow metering system which is simple to use and cost effective.
Design and Manufacturing of Extremely Low Mass Flight Systems
NASA Technical Reports Server (NTRS)
Johnson, Michael R.
2002-01-01
Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.
Conceptual design study of a six-man solid electrolyte system for oxygen reclamation
NASA Technical Reports Server (NTRS)
Morris, J. P.; Wu, C. K.; Elikan, L.; Bifano, N. J.; Holman, R. R.
1972-01-01
A six-man solid electrolyte oxygen regeneration system (SEORS) that will produce 12.5 lbs/day of oxygen has been designed. The SEORS will simultaneously electrolyze both carbon dioxide and water vapor and be suitable for coupling with a carbon dioxide concentration system of either molecular sieve, solid amine or hydrogen depolarized electrochemical type. The total system will occupy approximately 19 cu ft (34.5 in. x .26 in. x 36 in. high) and will weigh approximately 500 pounds. It is estimated that the total electrical power required will be 1783 watts. The system consists of three major components; electrolyzer, hydrogen diffuser, and carbon deposition reactor. There are 108 electrolysis stacks of 12 cells each in the electrolyzer. Only 2/3 of the 108 stacks will be operated at a time; the remainder will be held in reserve. The design calls for 96 palladium membranes for hydrogen removal to give 60 percent redundancy. Four carbon deposition reactors are employed. The iron catalyst tube in each reactor weighs 7.1 lb and 100 percent redundancy is allowed.
Remediation System Design Optimization: Field Demonstration at the Umatilla Army Deport
NASA Astrophysics Data System (ADS)
Zheng, C.; Wang, P. P.
2002-05-01
Since the early 1980s, many researchers have shown that the simulation-optimization (S/O) approach is superior to the traditional trial-and-error method for designing cost-effective groundwater pump-and-treat systems. However, the application of the S/O approach to real field problems has remained limited. This paper describes the application of a new general simulation-optimization code to optimize an existing pump-and-treat system at the Umatilla Army Depot in Oregon, as part of a field demonstration project supported by the Environmental Security Technology Certification Program (ESTCP). Two optimization formulations were developed to minimize the total capital and operational costs under the current and possibly expanded treatment plant capacities. A third formulation was developed to minimize the total contaminant mass of RDX and TNT remaining in the shallow aquifer by the end of the project duration. For the first two formulations, this study produced an optimal pumping strategy that would achieve the cleanup goal in 4 years with a total cost of 1.66 million US dollars in net present value. For comparison, the existing design in operation was calculated to require 17 years for cleanup with a total cost of 3.83 million US dollars in net present value. Thus, the optimal pumping strategy represents a reduction of 13 years in cleanup time and a reduction of 56.6 percent in the expected total expenditure. For the third formulation, this study identified an optimal dynamic pumping strategy that would reduce the total mass remaining in the shallow aquifer by 89.5 percent compared with that calculated for the existing design. In spite of their intensive computational requirements, this study shows that the global optimization techniques including tabu search and genetic algorithms can be applied successfully to large-scale field problems involving multiple contaminants and complex hydrogeological conditions.
NASA Technical Reports Server (NTRS)
Rasche, R. W.
1979-01-01
General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.
Multi-Disciplinary Design Optimization Using WAVE
NASA Technical Reports Server (NTRS)
Irwin, Keith
2000-01-01
The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.
Electric Propulsion System Selection Process for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Landau, Damon; Chase, James; Kowalkowski, Theresa; Oh, David; Randolph, Thomas; Sims, Jon; Timmerman, Paul
2008-01-01
The disparate design problems of selecting an electric propulsion system, launch vehicle, and flight time all have a significant impact on the cost and robustness of a mission. The effects of these system choices combine into a single optimization of the total mission cost, where the design constraint is a required spacecraft neutral (non-electric propulsion) mass. Cost-optimal systems are designed for a range of mass margins to examine how the optimal design varies with mass growth. The resulting cost-optimal designs are compared with results generated via mass optimization methods. Additional optimizations with continuous system parameters address the impact on mission cost due to discrete sets of launch vehicle, power, and specific impulse. The examined mission set comprises a near-Earth asteroid sample return, multiple main belt asteroid rendezvous, comet rendezvous, comet sample return, and a mission to Saturn.
Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite
NASA Astrophysics Data System (ADS)
Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin
2017-09-01
State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.
1987-01-01
A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.
Operational Experience from Solar Thermal Energy Projects
NASA Technical Reports Server (NTRS)
Cameron, C. P.
1984-01-01
Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.
Early Design Choices: Capture, Model, Integrate, Analyze, Simulate
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2004-01-01
I. Designs are constructed incrementally to meet requirements and solve problems: a) Requirements types: objectives, scenarios, constraints, ilities. etc. b) Problem/issue types: risk/safety, cost/difficulty, interaction, conflict, etc. II. Capture requirements, problems and solutions: a) Collect design and analysis products and make them accessible for integration and analysis; b) Link changes in design requirements, problems and solutions; and c) Harvest design data for design models and choice structures. III. System designs are constructed by multiple groups designing interacting subsystems a) Diverse problems, choice criteria, analysis methods and point solutions. IV. Support integration and global analysis of repercussions: a) System implications of point solutions; b) Broad analysis of interactions beyond totals of mass, cost, etc.
Electrical Space Conditioning.
ERIC Educational Resources Information Center
General Electric Co., Cleveland, OH. Large Lamp Dept.
Integrated systems utilizing the heating potential of lighting equipment are discussed in terms of the implications for design and the methods for evaluation and control. General principles cover heat transfer, heat from lamps and luminaires, and control of lighting heat. Suggested systems include--(1) total control systems, (2) bleed-off systems,…
The Bartlesville System; TGISS Software Documentation.
ERIC Educational Resources Information Center
Roberts, Tommy L.; And Others
TGISS (Total Guidance Information Support System) is an information storage and retrieval system specifically designed to meet the needs and requirements of a counselor in the Bartlesville Public School environment. The system, which is a combination of man/machine capabilities, includes the hardware and software necessary to extend the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, B.
A specially designed wire line retrievable continuous coring system cored its initial project wells to total depth in hard rock formations in less than half the time that would have been required by conventional coring rigs. The hybrid wire line coring systems have since been used on other wells in similar lithologies, with a total of 38,000 m (124,640 ft) of hole cored and with penetration rates averaging 2.27 m/hr (7.45 ft/hr). This paper reports that Parker Drilling Co. designed the hybrid rigs and has recently been contracted to wire line core several holes for oil and gas exploration inmore » the Congo. The first core hole has been completed to 1,490 m, and total depth was reached in 21 days. The rig is now being mobilized to a second hole in the Congo.« less
Image recording requirements for earth observation applications in the next decade
NASA Technical Reports Server (NTRS)
Peavey, B.; Sos, J. Y.
1975-01-01
Future requirements for satellite-borne image recording systems are examined from the standpoints of system performance, system operation, product type, and product quality. Emphasis is on total system design while keeping in mind that the image recorder or scanner is the most crucial element which will affect the end product quality more than any other element within the system. Consideration of total system design and implementation for sustained operational usage must encompass the requirements for flexibility of input data and recording speed, pixel density, aspect ratio, and format size. To produce this type of system requires solution of challenging problems in interfacing the data source with the recorder, maintaining synchronization between the data source and the recorder, and maintaining a consistent level of quality. Film products of better quality than is currently achieved in a routine manner are needed. A 0.1 pixel geometric accuracy and 0.0001 d.u. radiometric accuracy on standard (240 mm) size format should be accepted as a goal to be reached in the near future.
Program Helps Decompose Complex Design Systems
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Hall, Laura E.
1995-01-01
DeMAID (Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problems such as large platforms in outer space. Groups modular subsystems on basis of interactions among them. Saves considerable amount of money and time in total design process, particularly in new design problem in which order of modules has not been defined. Originally written for design problems, also applicable to problems containing modules (processes) that take inputs and generate outputs. Available in three machine versions: Macintosh written in Symantec's Think C 3.01, Sun, and SGI IRIS in C language.
Two controller design approaches for decentralized systems
NASA Technical Reports Server (NTRS)
Ozguner, U.; Khorrami, F.; Iftar, A.
1988-01-01
Two different philosophies for designing the controllers of decentralized systems are considered within a quadratic regulator framework which is generalized to admit decentralized frequency weighting. In the first approach, the total system model is examined, and the feedback strategy for each channel or subsystem is determined. In the second approach, separate, possibly overlapping, and uncoupled models are analyzed for each channel, and the results can be combined to study the original system. The two methods are applied to the example of a model of the NASA COFS Mast Flight System.
Designing Ground Antennas for Maximum G/T: Cassegrain or Gregorian?
NASA Technical Reports Server (NTRS)
Imbriale, William A.
2005-01-01
For optimum performance, a ground antenna system must maximize the ratio of received signal to the receiving system noise power, defined as the ratio of antenna gain to system-noise temperature (G/T). The total system noise temperature is the linear combination of the receiver noise temperature (including the feed system losses) and the antenna noise contribution. Hence, for very low noise cryogenic receiver systems, antenna noise-temperature properties are very significant contributors to G/T.It is well known that, for dual reflector systems designed for maximum gain, the gain performance of the antenna system is the same for both Cassegrain and Gregorian configurations. For a12-meter antenna designed to be part of the large array based Deep Space Network, a Cassegrain configuration designed for maximum G/T at X-band was 0.7 dB higher than the equivalent Gregorian configuration. This study demonstrates that, for maximum GIT, the dual shaped Cassegrain design is always better than the Gregorian.
A cometary ion mass spectrometer
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Simpson, D. A.
1984-01-01
The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.
Appendix N. Implementation of the RUPS System in a Total School District.
ERIC Educational Resources Information Center
Jung, Charles; And Others
The implementation in a school district of the Research Utilization and Problem Solving (RUPS) System is demonstrated. RUPS is an instructional system for an inservice program designed to provide the needed competencies for an entire staff to engage in systems analysis and systems synthesis procedures prior to assessing educational needs and…
1979-06-01
also extended to the class of stabilizable systems and the required compensator shown to possess a separation property. Finally the design methodology...Page 1.1. Block diagram of transfer function given in (1.28) ........... 15 3.3.1. Compensator structure for controllable and stabilizable systems ...response will be stable. The implemented output feedback control law will stabilize the total closed loop system . n nn Let [uin and iJi= 1 be the
Total-System Approach To Design And Analysis Of Structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1995-01-01
Paper presents overview and study of, and comprehensive approach to, multidisciplinary engineering design and analysis of structures. Emphasizes issues related to design of semistatic structures in environments in which spacecraft launched, underlying concepts applicable to other structures within unique terrestrial, marine, or flight environments. Purpose of study to understand interactions among traditionally separate engineering design disciplines with view toward optimizing not only structure but also overall design process.
Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems
NASA Technical Reports Server (NTRS)
Arend, David J.; Tillman, Gregory; O'Brien, Walter F.
2012-01-01
The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.
Exploration of the horizontally staggered light guides for high concentration CPV applications.
Selimoglu, Ozgur; Turan, Rasit
2012-08-13
The material and processing costs are still the major drawbacks of the c-Si based photovoltaic (PV) technology. The wafer cost comprises up to 35-40% of the total module cost. New approaches and system designs are needed in order to reduce the share of the wafer cost in photovoltaic energy systems. Here we explore the horizontally staggered light guide solar optics for use in Concentrated Photovoltaic (CPV) applications. This optical system comprises a lens array system coupled to a horizontal light guide which directs the incoming light beam to its edge. We have designed and simulated this system using a commercial ray tracing software (Zemax). The system is more compact, thinner and more robust compared to the conventional CPV systems. Concentration levels as high as 1000x can easily be reached when the system is properly designed. With such a high concentration level, a good acceptance angle of + -1 degree is still be conserved. The analysis of the system reveals that the total optical efficiency of the system could be as high as %94.4 without any anti-reflection (AR) coating. Optical losses can be reduced by just accommodating a single layer AR coating on the initial lens array leading to a %96.5 optical efficiency. Thermal behavior of high concentration linear concentrator is also discussed and compared with a conventional point focus CPV system.
NASA Technical Reports Server (NTRS)
Kuhl, Christopher A.
2008-01-01
The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.
Multidisciplinary design integration system for a supersonic transport aircraft
NASA Technical Reports Server (NTRS)
Dovi, A. R.; Wrenn, G. A.; Barthelemy, J.-F. M.; Coen, P. G.; Hall, L. E.
1992-01-01
An aircraft preliminary design system which provides the multidisciplinary communications and couplings between several engineering disciplines is described. A primary benefit of this system is to demonstrate advanced technology multidisciplinary design integration methodologies. The current version includes the disciplines of aerodynamics and structures. Contributing engineering disciplines are coupled using the Global Sensitivity Equation approach to influence the global design optimization problem. A high speed civil transport configuration is used for configuration trade studies. Forty four independent design variables are used to control the cross-sectional areas of wing rib and spar caps and the thicknesses of wingskincover panels. A total of 300 stress, strain, buckling and displacement behavioral constraints and minimum gages on the design variables were used to optimize the idealized wing structure. The goal of the designs to resize the wing cover panels and internal structure for minimum mass.
Solar heating system final design package
NASA Technical Reports Server (NTRS)
1979-01-01
The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...
40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... include physical measurements and observations such as total flow treated and mechanical condition of the... engineering design review of the point-of-entry devices. (2) The design and application of the point-of-entry...
40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... include physical measurements and observations such as total flow treated and mechanical condition of the... engineering design review of the point-of-entry devices. (2) The design and application of the point-of-entry...
40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... include physical measurements and observations such as total flow treated and mechanical condition of the... engineering design review of the point-of-entry devices. (2) The design and application of the point-of-entry...
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Technical Reports Server (NTRS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-01-01
ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
Design, construction and performance of a horizontal subsurface flow wetland system in Australia.
Bolton, Lise M W; Bolton, Keith G E
2013-01-01
Malabugilmah is a remote Aboriginal community located in Clarence Valley, Northern NSW, Australia. In 2006, seven horizontal subsurface flow wetland clusters consisting of 3 m × 2 m wetland cells in series were designed and constructed to treat septic tank effluent to a secondary level (Total Suspended Solids (TSS) < 30 mg/L and Biochemical Oxygen Demand (BOD5) <20 mg/L) and achieve >50% Total Nitrogen (TN) reduction, no net Total Phosphorus (TP) export and ≥99.9% Faecal Coliform (FC) reduction. The wetland cell configuration allowed the wetlands to be located on steeper terrain, enabling effluent to be treated to a secondary level without the use of pumps. In addition to the water quality targets, the wetlands were designed and constructed to satisfy environmental, economic and social needs of the community. The wetland systems were planted with a local Australian wetland tree species which has become well established. Two wetland clusters have been monitored over the last 4 years. The wetlands have demonstrated to be robust over time, providing a high level of secondary treatment over an extended period.
NASA B737 flight test results of the Total Energy Control System
NASA Technical Reports Server (NTRS)
Bruce, K. R.; Kelly, J. R.; Person, L. H., Jr.
1986-01-01
The Total Energy Control System was developed and tested in September 1985 during five flights on the NASA Langley Transport System Research Vehicle, a modified Boeing B737. In the system, the total kinetic and potential energy of the aircraft is controlled by the throttles, and the energy distribution is controlled by the elevator. A common inner loop is used for each mode of the autopilot, and all the control functions of a conventional pitch autopilot and autothrottle are integrated into a single generalized control concept, providing decoupled flightpath and maneuver control, and a coordinated throttle response for all maneuvers. No instabilities or design problems requiring gain adjustment in flight were found, and comparison with simulation results showed excellent path tracking.
Alternative sampling designs and estimators for annual surveys
Paul C. Van Deusen
2000-01-01
Annual forest inventory systems in the United States have generally converged on sampling designs that: (1) measure equal proportions of the total number of plots each year; and (2) call for the plots to be systematically dispersed. However, there will inevitably be a need to deviate from the basic design to respond to special requests, natural disasters, and budgetary...
Optimal Design of Wind-PV-Diesel-Battery System using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Suryoatmojo, Heri; Hiyama, Takashi; Elbaset, Adel A.; Ashari, Mochamad
Application of diesel generators to supply the load demand on isolated islands in Indonesia has widely spread. With increases in oil price and the concerns about global warming, the integration of diesel generators with renewable energy systems have become an attractive energy sources for supplying the load demand. This paper performs an optimal design of integrated system involving Wind-PV-Diesel-Battery system for isolated island with CO2 emission evaluation by using genetic algorithm. The proposed system has been designed for the hybrid power generation in East Nusa Tenggara, Indonesia-latitude 09.30S, longitude 122.0E. From simulation results, the proposed system is able to minimize the total annual cost of the system under study and reduce CO2 emission generated by diesel generators.
Design and performance analysis of gas and liquid radial turbines
NASA Astrophysics Data System (ADS)
Tan, Xu
In the first part of the research, pumps running in reverse as turbines are studied. This work uses experimental data of wide range of pumps representing the centrifugal pumps' configurations in terms of specific speed. Based on specific speed and specific diameter an accurate correlation is developed to predict the performances at best efficiency point of the centrifugal pump in its turbine mode operation. The proposed prediction method yields very good results to date compared to previous such attempts. The present method is compared to nine previous methods found in the literature. The comparison results show that the method proposed in this paper is the most accurate. The proposed method can be further complemented and supplemented by more future tests to increase its accuracy. The proposed method is meaningful because it is based both specific speed and specific diameter. The second part of the research is focused on the design and analysis of the radial gas turbine. The specification of the turbine is obtained from the solar biogas hybrid system. The system is theoretically analyzed and constructed based on the purchased compressor. Theoretical analysis results in a specification of 100lb/min, 900ºC inlet total temperature and 1.575atm inlet total pressure. 1-D and 3-D geometry of the rotor is generated based on Aungier's method. 1-D loss model analysis and 3-D CFD simulations are performed to examine the performances of the rotor. The total-to-total efficiency of the rotor is more than 90%. With the help of CFD analysis, modifications on the preliminary design obtained optimized aerodynamic performances. At last, the theoretical performance analysis on the hybrid system is performed with the designed turbine.
Innovating Method of Existing Mechanical Product Based on TRIZ Theory
NASA Astrophysics Data System (ADS)
Zhao, Cunyou; Shi, Dongyan; Wu, Han
Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.
The role of criteria in design and management of space systems
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.
1992-01-01
Explicit requirements and standards arising in connection with space systems management serve as a framework for technical management and furnish legally binding control of development, verification, and operations. As a project develops, additional requirements are derived which are unique to the system in question; these are designated 'derived requirements'. The reliability and cost-effectiveness of a space system are best ensured where a balance has arisen between formal (legally binding) and informal. Attention is presently given to the development of criteria consistent with total quality management.
Reverse Shoulder Arthroplasty Prosthesis Design Classification System.
Routman, Howard D; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Hamilton, Matthew A; Roche, Christopher P
2015-12-01
Multiple different reverse total shoulder arthroplasty (rTSA) prosthesis designs are available in the global marketplace for surgeons to perform this growing procedure. Subtle differences in rTSA prosthesis design parameters have been shown to have significant biomechanical impact and clinical consequences. We propose an rTSA prosthesis design classification system to objectively identify and categorize different designs based upon their specific glenoid and humeral prosthetic characteristics for the purpose of standardizing nomenclature that will help the orthopaedic surgeon determine which combination of design configurations best suit a given clinical scenario. The impact of each prosthesis classification type on shoulder muscle length and deltoid wrapping are also described to illustrate how each prosthesis classification type impacts these biomechanical parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id
A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.
1978-01-01
A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.
A Robust Strategy for Total Ionizing Dose Testing of Field Programmable Gate Arrays
NASA Technical Reports Server (NTRS)
Wilcox, Edward; Berg, Melanie; Friendlich, Mark; Lakeman, Joseph; KIm, Hak; Pellish, Jonathan; LaBel, Kenneth
2012-01-01
We present a novel method of FPGA TID testing that measures propagation delay between flip-flops operating at maximum speed. Measurement is performed on-chip at-speed and provides a key design metric when building system-critical synchronous designs.
Design of a heat pipe governed thermal control system for the Solar Electric Propulsion Stage /SEPS/
NASA Technical Reports Server (NTRS)
Ruttner, L. E.; Wright, J. P.
1975-01-01
A 2200-w capacity spacecraft heat rejection system designed for the SEPS and utilizing heat pipe radiator panels has been investigated. The total thermal control system consists of two radiator panels connected to the heat source by variable conductance heat pipes (VCHP's). The system was designed to operate in the 223 to 333 temperature range. The radiators have an emittance of 0.88 at their operational temperature and a fin efficiency of approximately 80 percent. The radiators are thermally isolated from the SEPS and environment by multilayer insulation and thermal shields. Butane was selected as the working fluid for the VCHP because of its low freezing point (135), which is necessary to prevent diffusion freezeout of the liquid during the cold outbond missions. Helium was selected for the control gas. This paper describes the VCHP system, discusses the system design parameters and presents the results of the analyses.
Design of the klystron filament power supply control system for EAST LHCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zege; Wang, Mao; Hu, Huaichuan
A filament is a critical component of the klystron used to heat the cathode. There are totally 44 klystrons in experimental advanced superconducting tokamak (EAST) lower hybrid current drive (LHCD) systems. All klystron filaments are powered by AC power suppliers through isolated transformers. In order to achieve better klystron preheat, a klystron filament power supply control system is designed to obtain the automatic control of all filament power suppliers. Klystron filament current is measured by PLC and the interlock between filament current and klystron high voltage system is also implemented. This design has already been deployed in two LHCD systemsmore » and proves feasible completely.« less
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.
Control concepts for the alleviation of windshears and gusts
NASA Technical Reports Server (NTRS)
Rynaski, E. G.; Govindaraj, K. S.
1982-01-01
Automatic control system design methods for gust and shear alleviation were studied. It is shown that automatic gust/shear alleviation systems can be quite effective if both throttle and elevator are used in harmony to produce the forces and moments required to counter the effects of the windshear. Regulation with respect to ground speed or airspeed results in very similar system designs. The application of the NASA total energy probe in the detection of windshear and criteria for alleviation is considered. The theory and application of robust output observers is extended. Design examples show how implementation of the control laws can be accomplished using observers, and thereby resulting in less complex control system configurations.
Automatic Exposure Iris Control (AEIC) for data acquisition camera
NASA Technical Reports Server (NTRS)
Mcatee, G. E., Jr.; Stoap, L. J.; Solheim, C. D.; Sharpsteen, J. T.
1975-01-01
A lens design capable of operating over a total range of f/1.4 to f/11.0 with through the lens light sensing is presented along with a system which compensates for ASA film speeds as well as shutter openings. The space shuttle camera system package is designed so that it can be assembled on the existing 16 mm DAC with a minimum of alteration to the camera.
Aerodynamics as a subway design parameter
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1976-01-01
A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.
Method to adjust multilayer film stress induced deformation of optics
Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.
2000-01-01
Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.
Automated system for integration and display of physiological response data
NASA Technical Reports Server (NTRS)
1975-01-01
The system analysis approach was applied in a study of physiological systems in both 1-g and weightlessness, for short and long term experiments. A whole body, algorithm developed as the first step in the construction of a total body simulation system is described and an advanced biomedical computer system concept including interactive display/command consoles is discussed. The documentation of the design specifications, design and development studies, and user's instructions (which include program listings) for these delivered end-terms; the reports on the results of many research and feasibility studies; and many subcontract reports are cited in the bibliography.
Phase change thermal storage for a solar total energy system
NASA Technical Reports Server (NTRS)
Rice, R. E.; Cohen, B. M.
1978-01-01
An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.
Waste Handeling Building Conceptual Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.W. Rowe
2000-11-06
The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less
The 1980 Large space systems technology. Volume 2: Base technology
NASA Technical Reports Server (NTRS)
Kopriver, F., III (Compiler)
1981-01-01
Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems.
Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping
2014-09-01
This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manojlović, Stojadin M.; Barbarić, Žarko P.; Mitrović, Srđan T.
2015-06-01
A new tracking design for laser systems with different arrangements of a quadrant photodetector, based on the principle of active disturbance rejection control is suggested. The detailed models of quadrant photodetector with standard add-subtract, difference-over-sum and diagonal-difference-over-sum algorithms for displacement signals are included in the control loop. Target moving, non-linearity of a photodetector, parameter perturbations and exterior disturbances are treated as a total disturbance. Active disturbance rejection controllers with linear extended state observers for total disturbance estimation and rejection are designed. Proposed methods are analysed in frequency domain to quantify their stability characteristics and disturbance rejection performances. It is shown through simulations, that tracking errors are effectively compensated, providing the laser spot positioning in the area near the centre of quadrant photodetector where the mentioned algorithms have the highest sensitivity, which provides tracking of the manoeuvring targets with high accuracy.
In the next generation of monitoring the condition of very large aquatic systems, we need to explore designs that integrate across multiple aquatic resource types, including coastal subsystems, nearshore, and offshore components, which together make up the total hydroscape. This ...
Low-power circuits design for the wireless force measurement system of the total knee arthroplasty.
Chen, Hong; Liu, Ming; Wan, Weiyi; Jia, Chen; Zhang, Chun; Wang, Zihua
2010-01-01
This paper proposes a novel wireless force measurement system for the Total Knee Arthroplasty (TKA) to improve the ligament balancing procedure during TKA. The force measurement system is comprised of a Wireless Force Measurement Spacer (WFMS) and the display part. They communicate with each other by the Radio Frequency (RF) signal. The WFMS is designed to measure the force between the WFMS and the femoral component of the artificial implants and to transmit the force data wirelessly by a low power transceiver. The display part demonstrates the force data in 3D images in real time. The WFMS composes of a sensors array, a Universal Transducer Interfaces (UTIs) array, a low-power sub-threshold microprocessor and a transceiver. The sub-threshold 8-bit microprocessor is taped out with 0.18 microm CMOS technology. The testing results of the microprocessor show that the leakage power of 46nW and the dynamic power of 385nW@165kHz are achieved with the operating voltage of 350 mV. The test results of the system are given and the errors of the system are analyzed. The results verified the reliability of the system. The future work is to design the microprocessor and a lower power transceiver within a single chip.
Apollo experience report: Command and service module electrical power distribution on subsystem
NASA Technical Reports Server (NTRS)
Munford, R. E.; Hendrix, B.
1974-01-01
A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.
Trajectory correction propulsion for TOPS
NASA Technical Reports Server (NTRS)
Long, H. R.; Bjorklund, R. A.
1972-01-01
A blowdown-pressurized hydrazine propulsion system was selected to provide trajectory correction impulse for outer planet flyby spacecraft as the result of cost/mass/reliability tradeoff analyses. Present hydrazine component and system technology and component designs were evaluated for application to the Thermoelectric Outer Planet Spacecraft (TOPS); while general hydrazine technology was adequate, component design changes were deemed necessary for TOPS-type missions. A prototype hydrazine propulsion system was fabricated and fired nine times for a total of 1600 s to demonstrate the operation and performance of the TOPS propulsion configuration. A flight-weight trajectory correction propulsion subsystem (TCPS) was designed for the TOPS based on actual and estimated advanced components.
Pink-Beam, Highly-Accurate Compact Water Cooled Slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard
2007-01-19
Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less
Lunar Architecture Team - Phase 2 Habitat Volume Estimation: "Caution When Using Analogs"
NASA Technical Reports Server (NTRS)
Rudisill, Marianne; Howard, Robert; Griffin, Brand; Green, Jennifer; Toups, Larry; Kennedy, Kriss
2008-01-01
The lunar surface habitat will serve as the astronauts' home on the moon, providing a pressurized facility for all crew living functions and serving as the primary location for a number of crew work functions. Adequate volume is required for each of these functions in addition to that devoted to housing the habitat systems and crew consumables. The time constraints of the LAT-2 schedule precluded the Habitation Team from conducting a complete "bottoms-up" design of a lunar surface habitation system from which to derive true volumetric requirements. The objective of this analysis was to quickly derive an estimated total pressurized volume and pressurized net habitable volume per crewmember for a lunar surface habitat, using a principled, methodical approach in the absence of a detailed design. Five "heuristic methods" were used: historical spacecraft volumes, human/spacecraft integration standards and design guidance, Earth-based analogs, parametric "sizing" tools, and conceptual point designs. Estimates for total pressurized volume, total habitable volume, and volume per crewmember were derived using these methods. All method were found to provide some basis for volume estimates, but values were highly variable across a wide range, with no obvious convergence of values. Best current assumptions for required crew volume were provided as a range. Results of these analyses and future work are discussed.
A design approach for systems based on magnetic pulse compression.
Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P
2008-04-01
A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.
Aerospace Power Systems Design and Analysis (APSDA) Tool
NASA Technical Reports Server (NTRS)
Truong, Long V.
1998-01-01
The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
NASA B737 flight test results of the total energy control system
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1987-01-01
The Total Energy Control System (TECS) is an integrated autopilot/autothrottle developed by BCAC that was test flown on NASA Langley's Transport System Research Vehicle (i.e., a highly modified Boeing B737). This systems was developed using principles of total energy in which the total kinetic and potential energy of the airplane was controlled by the throttles, and the energy distribution controled by the elevator. TECS integrates all the control functions of a conventional pitch autopilot and autothrottle into a single generalized control concept. This integration provides decoupled flightpath and maneuver control, as well as a coordinated throttle response for all maneuvers. A mode hierarchy was established to preclude exceeding airplane safety and performance limits. The flight test of TECS took place as a series of five flights over a 33-week period during September 1985 at NASA Langley. Most of the original flight test plan was completed within the first three flights with the system not exhibiting any instabilities or design problems that required any gain adjustment during flight.
Development of a waste collection system for the space shuttle.
NASA Technical Reports Server (NTRS)
Behrend, A. F., Jr.; Swider, J. E., Jr.
1972-01-01
The development of a waste collection system to accommodate both male and female crew members for the space shuttle is discussed. The waste collection system, with emphasis on the collection and transfer of urine, is described. Human-interface requirements, zero-gravity influences and effects, and operational considerations required for total system design are discussed.
Content Analysis of Teenaged Interviews for Designing Drug Programs.
ERIC Educational Resources Information Center
Bell, Edward V.
1980-01-01
Analyses of the data and youths' prescriptions concerning prevention of abuse yielded 12 program recommendations. These programs can create the awareness that led to concerted programs to stop the war and pollution. When designing educational-information programs, one must be aware of the total system of causal factors. (Author/BEF)
A GUIDE FOR PLANNING PHYSICAL EDUCATION AND ATHLETIC FACILITIES.
ERIC Educational Resources Information Center
New Jersey State Dept. of Education, Trenton.
THIS STUDY EXAMINES PHYSICAL EDUCATION FACILITIES, THEIR PHYSICAL NEEDS, AND RELATED DESIGN CONSIDERATIONS. A SYSTEM OF DETERMINING THE TOTAL NUMBER OF TEACHING STATIONS NEEDED IS GIVEN TO AID INITIAL REQUIREMENT ANALYSIS. INDOOR FACILITIES ANALYZED INCLUDE--(1) THE GYMNASIUM, IN TERMS OF LOCATION, SIZE, DESIGN FEATURES, AND RELATED COMPONENTS,…
Flywheel energy storage for electromechanical actuation systems
NASA Technical Reports Server (NTRS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
1991-01-01
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
Flywheel energy storage for electromechanical actuation systems
NASA Astrophysics Data System (ADS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
Henninger, Heath B; King, Frank K; Tashjian, Robert Z; Burks, Robert T
2014-05-01
Numerous studies have examined the biomechanics of isolated variables in reverse total shoulder arthroplasty. This study directly compared the composite performance of two reverse total shoulder arthroplasty systems; each system was designed around either a medialized or a lateralized glenohumeral center of rotation. Seven pairs of shoulders were tested on a biomechanical simulator. Center of rotation, position of the humerus, passive and active range of motion, and force to abduct the arm were quantified. Native arms were tested, implanted with a Tornier Aequalis or DJO Surgical Reverse Shoulder Prosthesis (RSP), and then retested. Differences from the native state were then documented. Both systems shifted the center of rotation medially and inferiorly relative to native. Medial shifts were greater in the Aequalis implant (P < .037). All humeri shifted inferior compared with native but moved medially with the Aequalis (P < .001). Peak passive abduction, internal rotation, and external rotation did not differ between systems (P > .05). Both reverse total shoulder arthroplasty systems exhibited adduction deficits, but the RSP implant deficit was smaller (P = .046 between implants). Both systems reduced forces to abduct the arm compared with native, although the Aequalis required more force to initiate motion from the resting position (P = .022). Given the differences in system designs and configurations, outcome variables were generally comparable. The RSP implant allowed slightly more adduction, had a more lateralized humeral position, and required less force to initiate elevation. These factors may play roles in limiting scapular notching, improving active external rotation by normalizing the residual rotator cuff length, and limiting excessive stress on the deltoid. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene
1992-01-01
Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.
NASA Technical Reports Server (NTRS)
Sandusky, Robert
2002-01-01
Since its inception in December 1999, the program has provided support for a total of 11 Graduate Research Scholar Assistants, of these, 6 have completed their MS degree program. The program has generated 3 MS theses and a total of 4 publications/presentations.
Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.
Espinoza-Quiñones, Fernando R; Fornari, Marilda M T; Módenes, Aparecido N; Palácio, Soraya M; Trigueros, Daniela E G; Borba, Fernando H; Kroumov, Alexander D
2009-01-01
An electro-coagulation laboratory scale system using aluminium plates electrodes was studied for the removal of organic and inorganic pollutants as a by-product from leather finishing industrial process. A fractional factorial 2(3) experimental design was applied in order to obtain optimal values of the system state variables. The electro-coagulation (EC) process efficiency was based on the chemical oxygen demand (COD), turbidity, total suspended solid, total fixed solid, total volatile solid, and chemical element concentration values. Analysis of variance (ANOVA) for final pH, total fixed solid (TFS), turbidity and Ca concentration have confirmed the predicted models by the experimental design within a 95% confidence level. The reactor working conditions close to real effluent pH (7.6) and electrolysis time in the range 30-45 min were enough to achieve the cost effective reduction factors of organic and inorganic pollutants' concentrations. An appreciable improvement in COD removal efficiency was obtained for electro-coagulation treatment. Finally, the technical-economical analysis results have clearly shown that the electro-coagulation method is very promising for industrial application.
AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR MERCURY EMISSION SAMPLING SYSTEMS
CEMs - Tekran Instrument Corp. Series 3300 and Thermo Electron's Mercury Freedom System Continuous Emission Monitors (CEMs) for mercury are designed to determine total and/or chemically speciated vapor-phase mercury in combustion emissions. Performance for mercury CEMs are cont...
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-control system means any device, system, or element of design that controls or reduces the emissions of... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non....1001 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-control system means any device, system, or element of design that controls or reduces the emissions of... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non....1001 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...
The World's Largest Photovoltaic Concentrator System.
ERIC Educational Resources Information Center
Smith, Harry V.
1982-01-01
The Mississippi County Community College large-scale energy experiment, featuring the emerging high technology of solar electricity, is described. The project includes a building designed for solar electricity and a power plant consisting of a total energy photovoltaic system, and features two experimental developments. (MLW)
Computational Design of a Krueger Flap Targeting Conventional Slat Aerodynamics
NASA Technical Reports Server (NTRS)
Akaydin, H. Dogus; Housman, Jeffrey A.; Kiris, Cetin C.; Bahr, Christopher J.; Hutcheson, Florence V.
2016-01-01
In this study, we demonstrate the design of a Krueger flap as a substitute for a conventional slat in a high-lift system. This notional design, with the objective of matching equivalent-mission performance on aircraft approach, was required for a comparative aeroacoustic study with computational and experimental components. We generated a family of high-lift systems with Krueger flaps based on a set of design parameters. Then, we evaluated the high-lift systems using steady 2D RANS simulations to find a good match for the conventional slat, based on total lift coefficients in free-air. Finally, we evaluated the mean aerodynamics of the high-lift systems with Krueger flap and conventional slat as they were installed in an open-jet wind tunnel flow. The surface pressures predicted with the simulations agreed well with experimental results.
NASA Technical Reports Server (NTRS)
Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark
1989-01-01
The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.
NASA Astrophysics Data System (ADS)
Wang, Hong; Li, Xiufeng; Ge, Peng
2017-02-01
We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.
Simulation Enabled Safeguards Assessment Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Bean; Trond Bjornard; Thomas Larson
2007-09-01
It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements inmore » functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.« less
A variable structure approach to robust control of VTOL aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.; Kramer, F.
1982-01-01
This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the motion to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector velocity command defined in the body frame. For comparison purposes, a proportional controller was designed using optimal linear regulator theory. Both control designs were first evaluated for transient response performance using a linearized model, then a nonlinear simulation study of a hovering approach to landing was conducted. Wind turbulence was modeled using a 1052 destroyer class air wake model.
Design of the optical structure of airfield in-pavement LED runway edge lights
NASA Astrophysics Data System (ADS)
Ma, Xiaodan; Yang, Jianhong; Peng, Jun; Li, Lei
2017-02-01
Airfield lighting system is an important aiding system of civil aviation airport that guarantees the taking off, landing, taxiing of airplanes at night, with low visibility, or under other complicated weather conditions. In-pavement LED runway edge lights, with the highest degree of light intensity, are the most important lights for safe civil aviation and are most difficult to design within airfield lighting system. With LED as the source of light and the secondary optical design as the core, in light of basic laws of Fresnel loss and total reflection and the principles of edge-ray etendue conservation and the conservation of energy to design major optical elements as lens, prism of the lamp, the in-pavement LED runway edge lights design successfully solves the designing problem of high-power, high-intensity LED airfield lights with narrow beam angle at closed environment. This success is of great significance for the improvement of LED airfield lighting system in China.
New technologies - How to assess environmental effects
NASA Technical Reports Server (NTRS)
Sullivan, P. J.; Lavin, M. L.
1981-01-01
A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.
NASA Technical Reports Server (NTRS)
Kuchar, A. P.; Chamberlin, R.
1980-01-01
A scale model performance test was conducted as part of the NASA Energy Efficient Engine (E3) Program, to investigate the geometric variables that influence the aerodynamic design of exhaust system mixers for high-bypass, mixed-flow engines. Mixer configuration variables included lobe number, penetration and perimeter, as well as several cutback mixer geometries. Mixing effectiveness and mixer pressure loss were determined using measured thrust and nozzle exit total pressure and temperature surveys. Results provide a data base to aid the analysis and design development of the E3 mixed-flow exhaust system.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2003-01-01
This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.
Improving NAVFAC's total quality management of construction drawings with CLIPS
NASA Technical Reports Server (NTRS)
Antelman, Albert
1991-01-01
A diagnostic expert system to improve the quality of Naval Facilities Engineering Command (NAVFAC) construction drawings and specification is described. C Language Integrated Production System (CLIPS) and computer aided design layering standards are used in an expert system to check and coordinate construction drawings and specifications to eliminate errors and omissions.
Proposed system design for a 20 kW pulsed electrothermal thruster
NASA Technical Reports Server (NTRS)
Burton, R. L.; Goldstein, S. A.; Hilko, B. K.; Tidman, D. A.; Winsor, N. K.
1984-01-01
A conceptual design is presented for a Pulsed Electrothermal (PET) propulsion system for the Air Force Space Based Radar satellite, which has a mass of 7000 kg. The proposed system boosts the SBR satellite from 150 n.m. to 600 n.m. with a 4 deg plane change, for a total mission Delta v of 1 km/sec. Satellite power available is 50 kW, and 45 kW are used to drive two water-injected 20 kW PET thrusters, delivering 5.6 N thrust to the SBR at 1000 seconds specific impulse. The predicted mission trip time is 15 days. The proposed system consumes 850 kg of water propellant, stored in a central tank and injected with pressurized helium. Component mass estimates based on space-qualified hardware are presented for the propellant handling, power conditioning and thruster subsystems. The estimated total mass is 400 kg and the propulsion system specific mass is alpha = 10 kg/kW. The proposed system efficiency of 0.62 at 1000 seconds specific impulse is supported by experimental performance measurements.
Design of an Electronic Reminder System for Supporting the Integerity of Nursing Records.
Chen, Chien-Min; Hou, I-Ching; Chen, Hsiao-Ping; Weng, Yung-Ching
2016-01-01
The integrity of electronic nursing records (ENRs) stands for the quality of medical records. But patients' conditions are varied (e.g. not every patient had wound or need fall prevention), to achieve the integrity of ENRs depends much on clinical nurses' attention. Our study site, an one 2,300-bed hospital in northern Taiwan, there are a total of 20 ENRs including nursing assessments, nursing care plan, discharge planning etc. implemented in the whole hospital before 2014. It become important to help clinical nurses to decrease their human recall burden to complete these records. Thus, the purpose of this study was to design an ENRs reminder system (NRS) to facilitate nursing recording process. The research team consisted of an ENR engineer, a clinical head nurse and a nursing informatics specialist began to investigate NRS through three phases (e.g. information requirements; design and implementation). In early 2014, a qualitative research method was used to identify NRS information requirements through both groups (e.g. clinical nurses and their head nurses) focus interviews. According to the their requirements, one prototype was created by the nursing informatics specialist. Then the engineer used Microsoft Visual Studio 2012, C#, and Oracle to designed a web-based NRS (Figure 1). Then the integrity reminder system which including a total of twelve electronic nursing records was designed and the preliminary accuracy validation of the system was 100%. NRS could be used to support nursing recording process and prepared for implementing in the following phase.
A Novel Approach to the Design of Passive Filters in Electric Grids
NASA Astrophysics Data System (ADS)
Filho da Costa Castro, José; Lima, Lucas Ramalho; Belchior, Fernando Nunes; Ribeiro, Paulo Fernando
2016-12-01
The design of shunt passive filters has been a topic of constant research since the 70's. Due to the lower cost, passive shunt filters are still considered a preferred option. This paper presents a novel approach for the placement and sizing of passive filters through ranking solutions based on the minimization of the total harmonic distortion (THDV) of the supply system rather than one specific bus, without neglecting the individual harmonic distortions. The developed method was implemented using Matlab/Simulink and applied to a test system. The results shown that is possible to minimize the total voltage harmonic distortion using a system approach during the filter selection. Additionally, since the method is mainly based on a heurist approach, it avoids the complexity associated with of use of advanced mathematical tools such as artificial intelligence techniques. The analyses contemplate a sinusoidal voltage utility and also the condition with background distortion utility.
Experimental system for drilling simulated lunar rock in ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Roepke, W. W.
1975-01-01
An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.
Modelling hydrology of a single bioretention system with HYDRUS-1D.
Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan
2014-01-01
A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.
Flexible, Smart, and Lethal: Adapting US SEAD Doctrine to Changing Threats
2016-01-01
into the format and design of the article. To gain total air supremacy in the modern age, air forces must not only render the enemy’s air force...assets that result in the greatest deg- 68 | Air & Space Power Journal Bucki radation of the enemy’s total system.” The focus is on key C2 nodes...40R6 / S-400 Triumf Self Propelled Air Defence System / SA-21,” Technical Report APA -TR-2009-0503, Air Power Australia, 27 January 2014, http
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine parameters. Emission-control system means any device, system, or element of design that controls.... Nonmethane hydrocarbon equivalent (NMHCE) means the sum of the carbon mass contributions of non-oxygenated... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non...
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine parameters. Emission-control system means any device, system, or element of design that controls.... Nonmethane hydrocarbon equivalent (NMHCE) means the sum of the carbon mass contributions of non-oxygenated... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non...
Solar energy: Technology and applications
NASA Technical Reports Server (NTRS)
Williams, J. R.
1974-01-01
It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.
Preliminary design of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.
Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I
2015-01-01
Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.
NASA Technical Reports Server (NTRS)
Ferlita, F.
1989-01-01
The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.
Application of structured analysis to a telerobotic system
NASA Technical Reports Server (NTRS)
Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven
1990-01-01
The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.
Equipment development for automated assembly of solar modules
NASA Technical Reports Server (NTRS)
Hagerty, J. J.
1982-01-01
Prototype equipment was developed which allows for totally automated assembly in the three major areas of module manufacture: cell stringing, encapsulant layup and cure and edge sealing. The equipment is designed to be used in conjunction with a standard Unimate 2000B industrial robot although the design is adaptable to other transport systems.
46 CFR 160.135-7 - Design, construction, and performance of lifeboats.
Code of Federal Regulations, 2013 CFR
2013-10-01
... materials equivalent or superior in strength, design, wet out, and efficiency will be given consideration on.... (8) Starting system batteries. Any battery fitted in a totally enclosed lifeboat must be stored in a... starting battery is required per engine. (9) Exhaust. Engine exhaust must be routed away from bilge and...
46 CFR 160.135-7 - Design, construction, and performance of lifeboats.
Code of Federal Regulations, 2012 CFR
2012-10-01
... materials equivalent or superior in strength, design, wet out, and efficiency will be given consideration on.... (8) Starting system batteries. Any battery fitted in a totally enclosed lifeboat must be stored in a... starting battery is required per engine. (9) Exhaust. Engine exhaust must be routed away from bilge and...
46 CFR 160.135-7 - Design, construction, and performance of lifeboats.
Code of Federal Regulations, 2014 CFR
2014-10-01
... materials equivalent or superior in strength, design, wet out, and efficiency will be given consideration on.... (8) Starting system batteries. Any battery fitted in a totally enclosed lifeboat must be stored in a... starting battery is required per engine. (9) Exhaust. Engine exhaust must be routed away from bilge and...
NASA Technical Reports Server (NTRS)
Kaufman, A.
1981-01-01
An integrated 5 kW power system based upon methanol fuel and a phosphoric acid fuel cell operating at about 473 K is described. Description includes test results of advanced fuel cell catalysts, a semiautomatic acid replenishment system and a completed 5 kW methanol/system reformer. The results of a preliminary system test on a reformer/stack/inverter combination are reported. An initial design for a 25 kW stack is presented. Experimental plans are outlined for data acquisition necessary for design of a 50 kW methanol/steam reformer. Activities related to complete mathematical modelling of the integrated power system, including wasteheat utilization, are described.
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Summers, R. L.
1981-01-01
An integrated gas analysis system designed to operate in automatic, semiautomatic, and manual modes from a remote control panel is described. The system measures the carbon monoxide, oxygen, water vapor, total hydrocarbons, carbon dioxide, and oxides of nitrogen. A pull through design provides increased reliability and eliminates the need for manual flow rate adjustment and pressure correction. The system contains two microprocessors to range the analyzers, calibrate the system, process the raw data to units of concentration, and provides information to the facility research computer and to the operator through terminal and the control panels. After initial setup, the system operates for several hours without significant operator attention.
NASA Technical Reports Server (NTRS)
Sizlo, T. R.; Berg, R. A.; Gilles, D. L.
1979-01-01
An augmentation system for a 230 passenger, twin engine aircraft designed with a relaxation of conventional longitudinal static stability was developed. The design criteria are established and candidate augmentation system control laws and hardware architectures are formulated and evaluated with respect to reliability, flying qualities, and flight path tracking performance. The selected systems are shown to satisfy the interpreted regulatory safety and reliability requirements while maintaining the present DC 10 (study baseline) level of maintainability and reliability for the total flight control system. The impact of certification of the relaxed static stability augmentation concept is also estimated with regard to affected federal regulations, system validation plan, and typical development/installation costs.
Computerized method and system for designing an aerodynamic focusing lens stack
Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA
2011-11-22
A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.
Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.
Schuler, Patrick J; Hoffmann, Thomas K; Veit, Johannes A; Rotter, Nicole; Friedrich, Daniel T; Greve, Jens; Scheithauer, Marc O
2017-06-01
Total laryngectomy is a standard procedure in head-and-neck surgery for the treatment of cancer patients. Recent clinical experiences have indicated a clinical benefit for patients undergoing transoral robot-assisted total laryngectomy (TORS-TL) with commercially available systems. Here, a new hybrid procedure for total laryngectomy is presented. TORS-TL was performed in human cadavers (n = 3) using a transoral-transcervical hybrid procedure. The transoral approach was performed with a robotic flexible robot-assisted surgical system (Flex®) and compatible flexible instruments. Transoral access and visualization of anatomical landmarks were studied in detail. Total laryngectomy is feasible with a combined transoral-transcervical approach using the flexible robot-assisted surgical system. Transoral visualization of all anatomical structures is sufficient. The flexible design of the robot is advantageous for transoral surgery of the laryngeal structures. Transoral robot assisted surgery has the potential to reduce morbidity, hospital time and fistula rates in a selected group of patients. Initial clinical studies and further development of supplemental tools are in progress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
40 CFR 1065.1001 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-control system means any device, system, or element of design that controls or reduces the emissions of... equivalent (NMHCE) means the sum of the carbon mass contributions of non-oxygenated nonmethane hydrocarbons... of 1.85:1. Total hydrocarbon equivalent (THCE) means the sum of the carbon mass contributions of non...
NASA Technical Reports Server (NTRS)
Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.
2005-01-01
This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).
System engineering toolbox for design-oriented engineers
NASA Technical Reports Server (NTRS)
Goldberg, B. E.; Everhart, K.; Stevens, R.; Babbitt, N., III; Clemens, P.; Stout, L.
1994-01-01
This system engineering toolbox is designed to provide tools and methodologies to the design-oriented systems engineer. A tool is defined as a set of procedures to accomplish a specific function. A methodology is defined as a collection of tools, rules, and postulates to accomplish a purpose. For each concept addressed in the toolbox, the following information is provided: (1) description, (2) application, (3) procedures, (4) examples, if practical, (5) advantages, (6) limitations, and (7) bibliography and/or references. The scope of the document includes concept development tools, system safety and reliability tools, design-related analytical tools, graphical data interpretation tools, a brief description of common statistical tools and methodologies, so-called total quality management tools, and trend analysis tools. Both relationship to project phase and primary functional usage of the tools are also delineated. The toolbox also includes a case study for illustrative purposes. Fifty-five tools are delineated in the text.
Design and Testing of Demonstration Unit for Maintaining Zero Cryogenic Propellant Boiloff
NASA Technical Reports Server (NTRS)
Dean, W. G.
2000-01-01
Launching of cryogenic propellants into earth orbit and beyond is very expensive. Each additional pound of payload delivered to low earth orbit requires approximately 35 pounds of additional weight at liftoff. There is therefore a critical need to minimize boiloff in spacecraft long term missions/systems. Various methods have been used to date, including superinsulation and thermodynamic vents to reduce boiloff. A system was designed and tested as described herein that will totally eliminate boiloff. This system is based on a closed-loop, two-stage pulse tube refrigerator with a net refrigeration of four watts at 15k for the recovery of hydrogen propellant. It is designed to operate at 30 Hz which is an order of magnitude higher than other typical pulse tube refrigerators. This high frequency allows the use of a much smaller, lighter weight compressor, This paper describes the system design, fabrication and test results.
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
Designing Temporary Systems: Exploring Local School Improvement Intentions in the Swedish Context
ERIC Educational Resources Information Center
Nordholm, Daniel; Blossing, Ulf
2014-01-01
This article targets local school improvement in Sweden and temporary systems as a model to organize improvement work. These data are based on a qualitative case study of teacher groups constituting a temporary system representing the different subjects in comprehensive school in a medium-sized urban municipality. A total of eight interviews were…
A Technical Description of the Officer Procurement Model (TOPOPS). Final Report.
ERIC Educational Resources Information Center
Akman, Allan; And Others
The Total Objective Plan for the Officer Procurement System (TOPOPS) is an aggregate-level, computer-based model of the Air Force Officer procurement system developed to operate on the UNIVAC 1108 system. It is designed to simulate officer accession and training and achieve optimal solutions in terms of either cost minimization or accession…
Software cost/resource modeling: Software quality tradeoff measurement
NASA Technical Reports Server (NTRS)
Lawler, R. W.
1980-01-01
A conceptual framework for treating software quality from a total system perspective is developed. Examples are given to show how system quality objectives may be allocated to hardware and software; to illustrate trades among quality factors, both hardware and software, to achieve system performance objectives; and to illustrate the impact of certain design choices on software functionality.
Design of laser afocal zoom expander system
NASA Astrophysics Data System (ADS)
Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian
2018-01-01
Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.
Design study of a HEAO-C spread spectrum transponder telemetry system for use with the TDRSS subnet
NASA Technical Reports Server (NTRS)
Weathers, G.
1975-01-01
The results of a design study of a spread spectrum transponder for use on the HEAO-C satellite were given. The transponder performs the functions of code turn-around for ground range and range-rate determination, ground command receiver, and telemetry data transmitter. The spacecraft transponder and associated communication system components will allow the HEAO-C satellite to utilize the Tracking and Data Relay Satellite System (TDRSS) subnet of the post 1978 STDN. The following areas were discussed in the report: TDRSS Subnet Description, TDRSS-HEAO-C System Configuration, Gold Code Generator, Convolutional Encoder Design and Decoder Algorithm, High Speed Sequence Generators, Statistical Evaluation of Candidate Code Sequences using Amplitude and Phase Moments, Code and Carrier Phase Lock Loops, Total Spread Spectrum Transponder System, and Reference Literature Search.
Performance and Feasibility Analysis of a Wind Turbine Power System for Use on Mars
NASA Technical Reports Server (NTRS)
Lichter, Matthew D.; Viterna, Larry
1999-01-01
A wind turbine power system for future missions to the Martian surface was studied for performance and feasibility. A C++ program was developed from existing FORTRAN code to analyze the power capabilities of wind turbines under different environments and design philosophies. Power output, efficiency, torque, thrust, and other performance criteria could be computed given design geometries, atmospheric conditions, and airfoil behavior. After reviewing performance of such a wind turbine, a conceptual system design was modeled to evaluate feasibility. More analysis code was developed to study and optimize the overall structural design. Findings of this preliminary study show that turbine power output on Mars could be as high as several hundred kilowatts. The optimized conceptual design examined here would have a power output of 104 kW, total mass of 1910 kg, and specific power of 54.6 W/kg.
Adapting New Space System Designs into Existing Ground Infrastructure
NASA Technical Reports Server (NTRS)
Delgado, Hector N.; McCleskey, Carey M.
2008-01-01
As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.
A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.
1982-01-01
A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.
Modular Multi-Sensor Display System Design Study. Volume 1. Requirements Analysis and Design Studies
1974-08-01
1 0.00001 0.00001 0.00003 Residual 1x2x3 1 0.01002 0.01002 0.0348 Total 11 0.28822 Gray Shade Quantization. The main effect of gray shade...Quantization 3 Tararets 1 x 2 1 x 3 Z x i 1x2x3 RppTiratjnns Totals Degrees Freedom 1 2 5 10 10 3j6 71 Sum Squares 0.6463 0.5985 1.2009...x 3 2x3 1x2x3 Replications Totals DF 1 2 5 2 5 10 10 36 71 5S 1708.8 1413.2 2355.5 39.6 1342.2 1563.9 1568.8 2583.8 12576.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, J.M.; Kaplan, N.; Wilkening, H.A. Jr.
AAI Corporation designed, constructed, and operated a solar heating system to provide hot water for curing concrete blocks at the York Building Products Co., Inc.'s new manufacturing facility near Harrisburg, PA. The objective of Phase III of this program was to operate, collect data, and evaluate the solar system for a three-year period. The solar facility utilizes 35 collectors with a total aperture area of 8,960 ft/sup 2/. The system is designed to deliver a water/ethylene glycol solution at 200/sup 0/F to a heat exchanger, which, in turn, supplies water at 180/sup 0/F to a rotoclave (underground tank) for themore » concrete-block curing process. A fossil-fuel boiler system also supplies the rotoclave with processed hot water to supplement the solar system. The system was operational 92.5% of the days during which the data acquisition system was functional. Sufficient solar heating was available to deliver hot water to the heat exchanger on 448 days, or 81.8% of the days on which reliable data was recorded. Total fuel saved during the three-year period was 10,284 gallons. Thus, this program has successfully demonstrated the technical feasibility of generating industrial process hot water with solar energy.« less
An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Benson, Thomas J.; Trefny, Charles J.
2010-01-01
This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.
Spacecraft expected cost analysis with k-out-of-n:G subsystems
NASA Technical Reports Server (NTRS)
Patterson, Richard; Suich, Ron
1991-01-01
In designing a subsystem for a spacecraft, the design engineer is often faced with a number of options ranging from planning an inexpensive subsystem with low reliability to selecting a highly reliable system that would cost much more. We minimize the total of the cost of the subsytem and the costs that would occur if the subsystem fails. We choose the subsystem with the lowest total. A k-out-of-n:G subsystem has n modules, of which k are required to be good for the subsystem to be good. We examine two models to illustrate the principles of the k-out-of-n:G subsystem designs. For the first model, the following assumptions are necessary: the probability of failure of any module in the system is not affected by the failure of any other module; and each of the modules has the same probabillity of success. For the second model we are also free to choose k in our subsystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skladany, G.J.
Successful biological treatment of ground waters, leachates, or industrial process waters requires the combined action of basic microbiological processes with sound process engineering designs. Such a treatment system is then able to both efficiently and cost-effectively remediate the contaminants present. In this case study, laboratory treatability studies were initially used to demonstrate that toluic acids present in an industrial landfill leachate were amenable to biological treatment. A continuous flow submerged fixed-film bioreactor was then chosen as the optimal equipment design for use at the site. The system was designed to treat a leachate flow of 800 to 2,000 gallons permore » day (gpd) containing total isomeric toluic acid concentrations of 300 to 400 parts per million (ppm). The treatment equipment has been in continuous operation since July 1987. During this period, the total influent isomertic toluic acid concentration has decreased to approximately 45 ppm, and specific effluent toluic acid concentrations have remained below the 0.5 ppm detection limit.« less
Preliminary design of a radiator shading device for a lunar outpost
NASA Technical Reports Server (NTRS)
Barron, Carlos; Castro, Norma I.; Phillips, Brian
1991-01-01
The National Aeronautics and Space Administration is designing a thermal control system for an outpost to be placed permanently on the Moon. One of the functions of the thermal control system is to reject waste heat, which can be accomplished through a radiator. At the lunar equator and during the lunar midday, an unshaded radiator absorbs more heat than it rejects. This problem can be solved by using a shading device to reduce radiation incident on the radiator. The design team was asked to develop concepts for reducing the radiation incident on the radiator and for deploying the radiator and shade system for a 10 kW and a 25 kW heat rejection system. The design team was also asked to develop the best concepts into preliminary design. From the several alternatives developed by the design team, the best one was selected using a decision matrix. Preliminary design of the best concept include support structure, stress analyses, and thermal performance. In addition, the team developed ideas for removing lunar dust from the shading device. The final design solution consisted of a winged radiator shading system with a rail support structure and a scissors mechanism for deployment. The total radiator area required was calculated to be 389 sq m for the 10 kW heat rejection system and 973 sq m for the 25 kW heat rejection system.
NASA Astrophysics Data System (ADS)
Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.
2013-10-01
The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.
POWER PLANT EVALUATION OF THE EFFECT OF SCR TECHNOLOGY ON MERCURY
The paper presents results of research on the impact that selective catalytic reduction (SCR) systems have on speciation and total emissions of mercury. Although SCR systems are designed to reduce nitrogen oxides (NOx), they may oxidize elemental mercury (Hg0) to Hg2+, which is m...
An Integrated Field-Based Approach to Building Teachers' Geoscience Skills
ERIC Educational Resources Information Center
Almquist, Heather; Stanley, George; Blank, Lisa; Hendrix, Marc; Rosenblatt, Megan; Hanfling, Seymour; Crews, Jeffrey
2011-01-01
The Paleo Exploration Project was a professional development program for K-12 teachers from rural eastern Montana. The curriculum was designed to incorporate geospatial technologies, including Global Positioning Systems (GPS), Geographic Information Systems (GIS), and total station laser surveying, with authentic field experiences in geology and…
Motel DHW Retrofit--Dallas, Texas
NASA Technical Reports Server (NTRS)
1982-01-01
Solar-energy system designed to provide 65% of total domestic-hot-water (DHW) demands for 100-room motel in Dallas, Texas is subject of a report now available. System is retrofit, and storage-tank size was limited to 1,000 gallons (3,785 1) by size of room where it is located.
A highly redundant robot system for inspection
NASA Technical Reports Server (NTRS)
Lee, Thomas S.; Ohms, Tim; Hayati, Samad
1994-01-01
The work on the serpentine inspection system at JPL is described. The configuration of the inspection system consists of 20 degrees of freedom in total. In particular, the design and development of the serpentine micromanipulator end-effector tool which has 12 degrees of freedom is described. The inspection system is used for application in JPL's Remote Surface Inspection project and as a research tool in redundant manipulator control.
Lombard-Latune, R; Pelus, L; Fina, N; L'Etang, F; Le Guennec, B; Molle, P
2018-06-10
Most of the tropical areas have sanitation problems to contend with. The French system of vertical-flow treatment wetlands (FS-VFTW) fed with raw wastewater could be a good water and sludge management solution. The purpose-adapted tropical design can reduce area requirement to below 1 m 2 /population equivalents (p.e.). The Taupinière FS-VFTW on Martinique Island was built according to this design, with one stage but with a saturated layer at the bottom of the filter and a simplified trickling filter (TF) added for further treatment to meet the high performances targeted. Unsaturated/saturated vertical-flow filters (US/S FS-VFTW) have shown improved performances on total nitrogen, carbon and suspended solids removal in temperate climates, but the performances in tropical conditions remain unknown. Here, we report on real-world-operation in the French Overseas Territories (FOT), the reliability and performances of this VFCW tropical-design. The system experienced loading conditions ranging from 30% to 165% of nominal carbonaceous biological oxygen demand (BOD 5 ), as well as tropical rainstorms that brought over 7 times the nominal hydraulic load. Over a period of 3 years, 29 campaigns collected 24-h flow-proportional samples at each treatment stage (raw wastewater, FS-VFTW outlet, TF outlet). When applied loads were close to nominal values, the US/S FS-VFTW itself guarantees 85/90/60/50% removal and 125/25/40/50 mg/L at the outlet for chemical oxygen demand (COD)/total suspended solids (TSS)/total Kjeldahl nitrogen (TKN)/total nitrogen (TN), respectively. By comparison with US/S systems in mainland France, it appears that the warmer tropical-climate temperatures facilitate both nitrification and denitrification kinetics. Performances in overload conditions confirm that the US/S FS-VFTW remains robust and reliable although COD and TKN removal are impacted, especially after strong tropical rain events. By adding a simple compact trickling filter to a US/S FS-VFTW, the treatment system delivers high-level performances (>95% removal for BOD 5 , COD, TSS and TKN) at less than 1 m 2 /p.e. Copyright © 2018 Elsevier B.V. All rights reserved.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.; Yurkovich, S.; Hill, J. P.; Kingler, T. A.
1983-01-01
The development of models of tensor type for a digital simulation of the quiet, clean safe engine (QCSE) gas turbine engine; the extension, to nonlinear multivariate control system design, of the concepts of total synthesis which trace their roots back to certain early investigations under this grant; the role of series descriptions as they relate to questions of scheduling in the control of gas turbine engines; the development of computer-aided design software for tensor modeling calculations; further enhancement of the softwares for linear total synthesis, mentioned above; and calculation of the first known examples using tensors for nonlinear feedback control are discussed.
Contribution of remote sensing to understand the Bay as a system
NASA Technical Reports Server (NTRS)
Park, A. B.; Anderson, D.; Bohn, C. G.; Chen, W. T.; Johnson, R. W.
1978-01-01
The natural resource management information system concept designed specifically for use with remote sensing is discussed in terms of understanding and studying the Chesapeake Bay as a total system. The Bay is defined as a system comprising the lithosphere, the hydrosphere, and the biosphere, that is the vertical profile encompassed by the systems and a two dimensional plane defining the total watershed of the Bay from the headwaters of its tributaries to a distance in the ocean defined by ten tidal cycles. The Chesapeake Bay system is assumed to be the ecosystem in the largest sense. Ecological partitioning, a methodology resulting from studies of land systems for partitioning the land into geobotanical landscape units, is included along with a breakdown of LANDSAT investigations according to subject area.
Design of a rear anamorphic attachment for digital cinematography
NASA Astrophysics Data System (ADS)
Cifuentes, A.; Valles, A.
2008-09-01
Digital taking systems for HDTV and now for the film industry present a particularly challenging design problem for rear adapters in general. The thick 3-channel prism block in the camera provides an important challenge in the design. In this paper the design of a 1.33x rear anamorphic attachment is presented. The new design departs significantly from the traditional Bravais condition due to the thick dichroic prism block. Design strategies for non-rotationally symmetric systems and fields of view are discussed. Anamorphic images intrinsically have a lower contrast and less resolution than their rotationally symmetric counterparts, therefore proper image evaluation must be considered. The interpretation of the traditional image quality methods applied to anamorphic images is also discussed in relation to the design process. The final design has a total track less than 50 mm, maintaining the telecentricity of the digital prime lens and taking full advantage of the f/1.4 prism block.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
Flat-plate photovoltaic array design optimization
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1980-01-01
An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.
CMOS array design automation techniques
NASA Technical Reports Server (NTRS)
Lombardi, T.; Feller, A.
1976-01-01
The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable.
Program Helps Decompose Complicated Design Problems
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.
1993-01-01
Time saved by intelligent decomposition into smaller, interrelated problems. DeMAID is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Displays modules in N x N matrix format. Requires investment of time to generate and refine list of modules for input, it saves considerable amount of money and time in total design process, particularly new design problems in which ordering of modules has not been defined. Program also implemented to examine assembly-line process or ordering of tasks and milestones.
Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S.S.
The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less
NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)
NASA Technical Reports Server (NTRS)
Hoover, Jay C.
2004-01-01
Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of this section; or...) Segregated ballast tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of... trim requirements in paragraph (d) of this section and that meet the design and equipment requirements...
Code of Federal Regulations, 2010 CFR
2010-07-01
... tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of this section; or...) Segregated ballast tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of... trim requirements in paragraph (d) of this section and that meet the design and equipment requirements...
You Can't Always Get What You Want: Change Management in Higher Education
ERIC Educational Resources Information Center
Brown, Stephen
2014-01-01
Purpose: The purpose of this paper is to qualitatively describe an attempt to enhance curriculum design and delivery processes in universities through the development and introduction of new information systems and procedures. Design/methodology/approach: The author examines the experiences of five out of the total 27 institutions involved in the…
Employee Engagement Is Vital for the Successful Selection of a Total Laboratory Automation System.
Yu, Hoi-Ying E; Wilkerson, Myra L
2017-11-08
To concretely outline a process for selecting a total laboratory automation system that connects clinical chemistry, hematology, and coagulation analyzers and to serve as a reference for other laboratories. In Phase I, a committee including the laboratory's directors and technologists conducted a review of 5 systems based on formal request for information process, site visits, and vendor presentations. We developed evaluation criteria and selected the 2 highest performing systems. In Phase II, we executed a detailed comparison of the 2 vendors based on cost, instrument layout, workflow design, and future potential. In addition to selecting a laboratory automation system, we used the process to ensure employee engagement in preparation for implementation. Selecting a total laboratory automation system is a complicated process. This paper provides practical guide in how a thorough selection process can be done with participation of key stakeholders. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Tutorial: Radiation Effects in Electronic Systems
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.
Don't Trust a Management Metric, Especially in Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2014-01-01
Goodhart's law states that metrics do not work. Metrics become distorted when used and they deflect effort away from more important goals. These well-known and unavoidable problems occurred when the closure and system mass metrics were used to manage life support research. The intent of life support research should be to develop flyable, operable, reliable systems, not merely to increase life support system closure or to reduce its total mass. It would be better to design life support systems to meet the anticipated mission requirements and user needs. Substituting the metrics of closure and total mass for these goals seems to have led life support research to solve the wrong problems.
Alpha LAMP Integration Facility
NASA Technical Reports Server (NTRS)
Oshiro, Richard; Sowers, Dennis; Gargiulo, Joe; Mcgahey, Mark
1994-01-01
This paper describes the activity recently completed to meet the simulated space environment requirements for the ground-based testing of an integrated Space Based Laser (SBL) system experiment. The need to maintain optical alignment in the challenging dynamic environment of the pressure recovery system required to simulate space dominated the design requirements. A robust system design was established which minimized the total program costs, most notably by reducing the cost of integrating the components of the experiment. The components of the experiment are integrated on an optical bench in a clean area adjacent to the vacuum chamber and moved on air bearings into the chamber for testing.
Engineering performance metrics
NASA Astrophysics Data System (ADS)
Delozier, R.; Snyder, N.
1993-03-01
Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles
NASA Technical Reports Server (NTRS)
DeYoung, Russell J.; Mead, Patricia F.
2004-01-01
This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.
Design and development of a fiber optic TDI CCD-based slot-scan digital mammography system
NASA Astrophysics Data System (ADS)
Toker, Emre; Piccaro, Michele F.
1993-12-01
We previously reported on the development, design, and clinical evaluation of a CCD-based, high performance, filmless imaging system for stereotactic needle biopsy procedures in mammography. The MammoVision system has a limited imaging area of 50 mm X 50 mm, since it is designed specifically for breast biopsy applications. We are currently developing a new filmless imaging system designed to cover the 18 cm X 24 cm imaging area required for screening and diagnostic mammography. The diagnostic mammography system is based on four 1100 X 330 pixel format, full-frame, scientific grade, front illuminated, MPP mode CCDs, with 24 micrometers X 24 micrometers square pixels Each CCD is coupled to an x-ray intensifying screen via a 1.7:1 fiber optic reducer. The detector assembly (180 mm long and 13.5 mm wide) is scanned across the patient's breast synchronously with the x-ray source, with the CCDs operated in time-delay integration (TDI) mode. The total scan time is 4.0 seconds.
A rotorcraft flight/propulsion control integration study
NASA Technical Reports Server (NTRS)
Ruttledge, D. G. C.
1986-01-01
An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.
NASA Technical Reports Server (NTRS)
Johnson, Sally C.; Boerschlein, David P.
1994-01-01
Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant system. However, the process of delineating all of the states and transitions in the model of a complex system can be devastatingly tedious and error-prone. Even with tools such as the Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST), the user must describe a system by specifying the rules governing the behavior of the system in order to generate the model. With the Table Oriented Translator to the ASSIST Language (TOTAL), the user can specify the components of a typical system and their attributes in the form of a table. The conditions that lead to system failure are also listed in a tabular form. The user can also abstractly specify dependencies with causes and effects. The level of information required is appropriate for system designers with little or no background in the details of reliability calculations. A menu-driven interface guides the user through the system description process, and the program updates the tables as new information is entered. The TOTAL program automatically generates an ASSIST input description to match the system description.
The Design and Evaluation of the Lighting Imaging Sensor Data Applications Display (LISDAD)
NASA Technical Reports Server (NTRS)
Boldi, B.; Hodanish, S.; Sharp, D.; Williams, E.; Goodman, Steven; Raghavan, R.; Matlin, A.; Weber, M.
1998-01-01
The design and evaluation of the Lightning Imaging Sensor Data Applications Display (LISDAD). The ultimate goal of the LISDAD system is to quantify the utility of total lightning information in short-term, severe-weather forecasting operations. To this end, scientists from NASA, NWS, and MIT organized an effort to study the relationship of lightning and severe-weather on a storm-by-storm, and even cell-by-cell basis for as many storms as possible near Melbourne, Florida. Melbourne was chosen as it offers a unique combination of high probability of severe weather and proximity to major relevant sensors - specifically: NASA's total lightning mapping system at Kennedy Space Center (the LDAR system at KSC); a NWS/NEXRAD radar (at Melbourne); and a prototype Integrated Terminal Weather System (ITWS, at Orlando), which obtains cloud-to-ground lightning Information from the National Lightning Detection Network (NLDN), and also uses NSSL's Severe Storm Algorithm (NSSL/SSAP) to obtain information about various storm-cell parameters. To assist in realizing this project's goal, an interactive, real-time data processing system (the LISDAD system) has been developed that supports both operational short-term weather forecasting and post facto severe-storm research. Suggestions have been drawn from the operational users (NWS/Melbourne) in the design of the data display and its salient behavior. The initial concept for the users Graphical Situation Display (GSD) was simply to overlay radar data with lightning data, but as the association between rapid upward trends in the total lightning rate and severe weather became evident, the display was significantly redesigned. The focus changed to support the display of time series of storm-parameter data and the automatic recognition of cells that display rapid changes in the total-lightning flash rate. The latter is calculated by grouping discrete LDAR radiation sources into lightning flashes using a time-space association algorithm. Specifically, the GSD presents the user with the Composite Maximum Reflectivity obtained from the NWS/NEXRAD. Superimposed upon this background image are placed small black circles indicating the locations of storm cells identified by the NSSL/SSA. The circles become cyan if lightning is detected within the storm-cell; if the cell has lightning rates indicative of a severe-storm, the circle turns red. This paper will: (1) review the design of LISDAD system; (2) present some examples of its data display; and shown results of the lightning based severe-weather prediction algorithm.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, Todd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2015-01-01
This paper describes the design of a unique suite of mechanisms which make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses 4 stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2016-01-01
This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
NASA Technical Reports Server (NTRS)
Aston, Graeme; Brophy, John R.
1987-01-01
Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.
Even illumination in total internal reflection fluorescence microscopy using laser light.
Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A
2008-01-01
In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc
ERIC Educational Resources Information Center
Jackman, Andrew
This exploration of evaluation strategies for systemic educational reform considers whether there is a way to design an assessment and delivery system that can accomplish the goals of the total educational process. A basic question that must be addressed in systemic reform is the role of education in the socialization processes of society. Beyond…
ERIC Educational Resources Information Center
Meyer, R. W.; Alexander, George
This study, conducted to determine which automated system would be the most appropriate to replicate or install at Clemson University to support the users of the library, screened 29 library automation systems to determine those most adaptable to Clemson's needs. In-depth comparisons were made with regard to functions available, features, start up…
Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)
NASA Astrophysics Data System (ADS)
Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.
2017-12-01
Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.
Development of a complex experimental system for controlled ecological life support technique
NASA Astrophysics Data System (ADS)
Guo, S.; Tang, Y.; Zhu, J.; Wang, X.; Feng, H.; Ai, W.; Qin, L.; Deng, Y.
A complex experimental system for controlled ecological life support technique can be used as a test platform for plant-man integrated experiments and material close-loop experiments of the controlled ecological life support system CELSS Based on lots of plan investigation plan design and drawing design the system was built through the steps of processing installation and joined debugging The system contains a volume of about 40 0m 3 its interior atmospheric parameters such as temperature relative humidity oxygen concentration carbon dioxide concentration total pressure lighting intensity photoperiod water content in the growing-matrix and ethylene concentration are all monitored and controlled automatically and effectively Its growing system consists of two rows of racks along its left-and-right sides separately and each of which holds two up-and-down layers eight growing beds hold a total area of about 8 4m 2 and their vertical distance can be adjusted automatically and independently lighting sources consist of both red and blue light-emitting diodes Successful development of the test platform will necessarily create an essential condition for next large-scale integrated study of controlled ecological life support technique
Solar Energy Systems for Lunar Oxygen Generation
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.
2010-01-01
An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.
Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie
2009-11-15
Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.
Tune-Up Your Fan Systems for Improved Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fans are used extensively in commercial buildings and represent approximately 6% of total energy consumed by commercial buildings. The U.S. Department of Energy (DOE) estimates that fans in commercial buildings consume 158 billion kWh of electricity annually. Maintaining fan systems in proper condition provides energy savings and ensures a comfortable and healthy environment. While many fan systems have significant energy savings opportunities available through improvements in fan selection, system design, and operational practices, it is not always apparent when a fan system needs maintenance or what opportunities are available for improvements. This resource is designed for facility managers and maintenancemore » staff to provide easy-to-implement actionable guidance on fan efficiency measures for existing ducted air systems.« less
Final Report. Solar Assist for Administration Building and Community Gym/Pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Synder, Randy; Bresette, Joseph
2015-06-23
Tonto Apache Tribe applied to the Department of Energy’s “Tribal Energy Program” for the “Community Scale Clean Energy Projects” in Indian Country in 2013 to implement a solar project to reduce energy use in two tribal buildings. Total estimated project cost was $804,140, with the Department and Tribe each providing 50% of the project costs. Photovoltaic systems totaling 75 kW on the Administration Building and 192 kW on the Gymnasium were installed. We used roof tops and installed canopies in adjacent parking areas for mounting the systems. The installed systems were designed to offset 65% of the facilities electric load.
LMSS communication network design
NASA Technical Reports Server (NTRS)
1982-01-01
The architecture of the telecommunication network as the first step in the design of the LMSS system is described. A set of functional requirements including the total number of users to be served by the LMSS are hypothesized. The design parameters are then defined at length and are systematically selected such that the resultant system is capable of serving the hypothesized number of users. The design of the backhaul link is presented. The number of multiple backhaul beams required for communication to the base stations is determined. A conceptual procedure for call-routing and locating a mobile subscriber within the LMSS network is presented. The various steps in placing a call are explained, and the relationship between the two sets of UHF and S-band multiple beams is developed. A summary of the design parameters is presented.
NASA Technical Reports Server (NTRS)
Mcdill, Paul L.
1986-01-01
A test program, utilizing a large scale model, was run in the NASA Lewis Research Center 10- by 10-ft wind tunnel to examine the influence on performance of design parameters of turboprop S-duct inlet/diffuser systems. The parametric test program investigated inlet lip thickness, inlet/diffuser cross-sectional geometry, throat design Mach number, and shaft fairing shape. The test program was run at angles of attack to 15 deg and tunnel Mach numbers to 0.35. Results of the program indicate that current design techniques can be used to design inlet/diffuser systems with acceptable total pressure recovery, but several of the design parameters, notably lip thickness (contraction ratio) and shaft fairing cross section, must be optimized to prevent excessive distortion at the compressor face.
Optimum design point for a closed-cycle OTEC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikegami, Yasuyuki; Uehara, Haruo
1994-12-31
Performance analysis is performed for optimum design point of a closed-cycle Ocean Thermal Energy Conversion (OTEC) system. Calculations are made for an OTEC model plant with a gross power of 100 MW, which was designed by the optimization method proposed by Uehara and Ikegami for the design conditions of 21 C--29 C warm sea water temperature and 4 C cold sea water temperature. Ammonia is used as working fluid. Plate type evaporator and condenser are used as heat exchangers. The length of the cold sea water pipe is 1,000 m. This model plant is a floating-type OTEC plant. The objectivemore » function of optimum design point is defined as the total heat transfer area of heat exchangers per the annual net power.« less
Design of a high-numerical-aperture digital micromirror device camera with high dynamic range.
Qiao, Yang; Xu, Xiping; Liu, Tao; Pan, Yue
2015-01-01
A high-NA imaging system with high dynamic range is presented based on a digital micromirror device (DMD). The DMD camera consists of an objective imaging system and a relay imaging system, connected by a DMD chip. With the introduction of a total internal reflection prism system, the objective imaging system is designed with a working F/# of 1.97, breaking through the F/2.45 limitation of conventional DMD projection lenses. As for the relay imaging system, an off-axis design that could correct off-axis aberrations of the tilt relay imaging system is developed. This structure has the advantage of increasing the NA of the imaging system while maintaining a compact size. Investigation revealed that the dynamic range of a DMD camera could be greatly increased, by 2.41 times. We built one prototype DMD camera with a working F/# of 1.23, and the field experiments proved the validity and reliability our work.
Employee Engagement and a Culture of Safety in the Intensive Care Unit.
Collier, Susan L; Fitzpatrick, Joyce J; Siedlecki, Sandra L; Dolansky, Mary A
2016-01-01
A descriptive, retrospective design was used to explore the relationship between employee engagement and culture of safety in ICUs within a large Midwestern healthcare system. Results demonstrated a strong positive relationship between total engagement score and total patient safety score (r = 0.645, P < .01) and positive relationships between total engagement score and the 12 safety culture dimensions. These findings have implications for improving managerial strategies relative to employee engagement that may ultimately impact perceptions of a safety culture.
Kong, Yong-Ku; Kim, Dae-Min
2015-01-01
The design and shape of hand tool handles are critical factors for preventing musculoskeletal disorders (MSDs) caused by the use of hand tools. We explored how these factors are related to total force and individual finger force in males and females with various hand anthropometrics. Using the MFFM system, we assessed four indices of anthropometry, and measured total force and individual finger force on various handle designs and shapes. Both total force and individual finger force were significant according to gender and handle shape. Total grip strength to the handle shape indicated the greatest strength with D shape and the least with A shape. From the regression analysis of hand anthropometric indices, the value of R was respectably high at 0.608-0.696. The current study examined the gender and handle shape factors affecting grip strength based on the force measurements from various handle types, in terms of influence on different hand anthropometric indices.
Need total sulfur content? Use chemiluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.
Regulations issued by the United States Environmental Protection Agency require petroleum refineries to reduce or control the amount of total sulfur present in their refined products. These legislative requirements have led many refineries to search for online instrumentation that can produce accurate and repeatable total sulfur measurements within allowed levels. Several analytical methods currently exist to measure total sulfur content. They include X-ray fluorescence (XRF), microcoulometry, lead acetate tape, and pyrofluorescence techniques. Sulfur-specific chemiluminescence detection (SSCD) has recently received much attention due to its linearity, selectivity, sensitivity, and equimolar response. However, its use has been largely confined to the areamore » of gas chromatography. This article focuses on the special design considerations and analytical utility of an SSCD system developed to determine total sulfur content in gasoline. The system exhibits excellent linearity and selectivity, the ability to detect low minimum levels, and an equimolar response to various sulfur compounds. 2 figs., 2 tabs.« less
Aerothermodynamic Design of the Mars Science Laboratory Backshell and Parachute Cone
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.
2009-01-01
Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule backshell and parachute cone. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux) design entry trajectories from a 2009 launch. Transient interference effects from reaction control system thruster plumes were included in the design environments when necessary. The limiting backshell design heating conditions of 6.3 W/sq cm for heat flux and 377 J/sq cm for total heat load are not influenced by thruster firings. Similarly, the thrusters do not affect the parachute cover lid design environments (13 W/sq cm and 499 J/sq cm). If thruster jet firings occur near peak dynamic pressure, they will augment the design environments at the interface between the backshell and parachute cone (7 W/sq cm and 174 J/sq cm). Localized heat fluxes are higher near the thruster fairing during jet firings, but these areas did not require additional thermal protection material. Finally, heating bump factors were developed for antenna radomes on the parachute cone
McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.
2012-01-01
Roving–roving and roving–access creel surveys are the primary techniques used to obtain information on harvest of Chinook salmon Oncorhynchus tshawytscha in Idaho sport fisheries. Once interviews are conducted using roving–roving or roving–access survey designs, mean catch rate can be estimated with the ratio-of-means (ROM) estimator, the mean-of-ratios (MOR) estimator, or the MOR estimator with exclusion of short-duration (≤0.5 h) trips. Our objective was to examine the relative bias and precision of total catch estimates obtained from use of the two survey designs and three catch rate estimators for Idaho Chinook salmon fisheries. Information on angling populations was obtained by direct visual observation of portions of Chinook salmon fisheries in three Idaho river systems over an 18-d period. Based on data from the angling populations, Monte Carlo simulations were performed to evaluate the properties of the catch rate estimators and survey designs. Among the three estimators, the ROM estimator provided the most accurate and precise estimates of mean catch rate and total catch for both roving–roving and roving–access surveys. On average, the root mean square error of simulated total catch estimates was 1.42 times greater and relative bias was 160.13 times greater for roving–roving surveys than for roving–access surveys. Length-of-stay bias and nonstationary catch rates in roving–roving surveys both appeared to affect catch rate and total catch estimates. Our results suggest that use of the ROM estimator in combination with an estimate of angler effort provided the least biased and most precise estimates of total catch for both survey designs. However, roving–access surveys were more accurate than roving–roving surveys for Chinook salmon fisheries in Idaho.
A total design and implementation of an intelligent mobile chemotherapy medication administration.
Kuo, Ming-Chuan; Chang, Polun
2014-01-01
The chemotherapy medication administration is a process involved many stakeholders and efforts. Therefore, the information support system cannot be well designed if the entire process was not carefully examined and reengineered first. We, from a 805-teaching medical center, did a process reengineering and involved physicians, pharmacists and IT engineers to work together to design a mobile support solution. System was implemented in March to July, 2013. A 6" android handheld device with 1D BCR was used as the main hardware. 18 nurses were invited to evaluate their perceived acceptance of system based on Technology Acceptance Model for Mobile Service Model. Time saved was also calculated to measure the effectiveness of system. The results showed positive support from nurses. The estimated time saved every year was about 288 nursing days. We believe our mobile chemotherapy medication administration support system is successful in terms of acceptance and real impacts.
An Affordability Comparison Tool (ACT) for Space Transportation
NASA Technical Reports Server (NTRS)
McCleskey, C. M.; Bollo, T. R.; Garcia, J. L.
2012-01-01
NASA bas recently emphasized the importance of affordability for Commercial Crew Development Program (CCDP), Space Launch Systems (SLS) and Multi-Purpose Crew Vehicle (MPCV). System architects and designers are challenged to come up with architectures and designs that do not bust the budget. This paper describes the Affordability Comparison Tool (ACT) analyzes different systems or architecture configurations for affordability that allows for a comparison of: total life cycle cost; annual recurring costs, affordability figures-of-merit, such as cost per pound, cost per seat, and cost per flight, as well as productivity measures, such as payload throughput. Although ACT is not a deterministic model, the paper develops algorithms and parametric factors that use characteristics of the architectures or systems being compared to produce important system outcomes (figures-of-merit). Example applications of outcome figures-of-merit are also documented to provide the designer with information on the relative affordability and productivity of different space transportation applications.
Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems
NASA Technical Reports Server (NTRS)
Seal, D. W.
1989-01-01
This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.
RFQ design for the RAON accelerator's ISOL system
NASA Astrophysics Data System (ADS)
Choi, Bong Hyuk; Hong, In-Seok
2015-10-01
The heavy-ion accelerator RAON has the advantage of having both an in-flight (IF) and an isotope separator on-line (ISOL) system. Two radio frequency quadrupoles (RFQs) will be installed in the RAON: the main linear accelerator (LINAC) RFQ will be used to accelerate the two-charge state 238U for the IF system, while the post-accelerator RFQ will be used to accelerate low-current isotope beams from the ISOL system. In this paper, the post-accelerator RFQ design for the ISOL system is reported. A beam current of 1 pμA was used, and the input beam and the output beam energies were 5 keV/u and 400 keV/u, respectively. Moreover, the design was optimized by reducing the total length and power, adjusting the beam quality. To quantify the influence of thermal expansion on the frequency, we calculated the frequency difference according to deference between the vane's tip and the body's diameter.
ERIC Educational Resources Information Center
Preuss, Gil A.
2003-01-01
A study of the effect of high-performance work systems on 935 nurses and 182 nurses aides indicated that quality of decision-making information depends on workers' interpretive skills and partially mediated effects of work design and total quality management on organizational performance. Providing relevant knowledge and opportunities to use…
18 CFR 301.4 - Exchange Period Average System Cost determination.
Code of Federal Regulations, 2010 CFR
2010-04-01
... paragraph (a)(3)(iv) of this section indicates that no escalation to the Account will be made. (5... the Exchange Period by the same rate of growth as total Contract System Load. (7) If any of the escalators specified in paragraph (a) of this section are no longer available, Bonneville will designate a...
18 CFR 301.4 - Exchange Period Average System Cost determination.
Code of Federal Regulations, 2011 CFR
2011-04-01
... paragraph (a)(3)(iv) of this section indicates that no escalation to the Account will be made. (5... the Exchange Period by the same rate of growth as total Contract System Load. (7) If any of the escalators specified in paragraph (a) of this section are no longer available, Bonneville will designate a...
18 CFR 301.4 - Exchange Period Average System Cost determination.
Code of Federal Regulations, 2013 CFR
2013-04-01
... paragraph (a)(3)(iv) of this section indicates that no escalation to the Account will be made. (5... the Exchange Period by the same rate of growth as total Contract System Load. (7) If any of the escalators specified in paragraph (a) of this section are no longer available, Bonneville will designate a...
18 CFR 301.4 - Exchange Period Average System Cost determination.
Code of Federal Regulations, 2012 CFR
2012-04-01
... paragraph (a)(3)(iv) of this section indicates that no escalation to the Account will be made. (5... the Exchange Period by the same rate of growth as total Contract System Load. (7) If any of the escalators specified in paragraph (a) of this section are no longer available, Bonneville will designate a...
18 CFR 301.4 - Exchange Period Average System Cost determination.
Code of Federal Regulations, 2014 CFR
2014-04-01
... paragraph (a)(3)(iv) of this section indicates that no escalation to the Account will be made. (5... the Exchange Period by the same rate of growth as total Contract System Load. (7) If any of the escalators specified in paragraph (a) of this section are no longer available, Bonneville will designate a...
Kansas Public Television Network (KPTN).
ERIC Educational Resources Information Center
Lemen, Jack A.
The plans of the Kansas Public Television Board (KPTB) for development of the Kansas Television Network are detailed for the period extending from FY 1979 to FY 1983; the proposed system is designed to serve the needs of the communities by extending existing capabilities and resources, sharing common resources, and enriching the total system.…
Microwave treatment of dairy manure for resource recovery: Reaction kinetics and energy analysis.
Srinivasan, Asha; Liao, Ping H; Lo, Kwang V
2016-12-01
A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H 2 O 2 -AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H 2 O 2 dosage (0.4% H 2 O 2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5-22 kJ mole -1 . The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H 2 O 2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H 2 O 2 -AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system.
Engineering the System and Technical Integration
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.
2011-01-01
Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.
Strategy Guideline: HVAC Equipment Sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understandingmore » of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noreen, D; LeChevalier, R; Choi, M
President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined inmore » the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.« less
Ebacher, G; Besner, M C; Clément, B; Prévost, M
2012-09-01
Intrusion events caused by transient low pressures may result in the contamination of a water distribution system (DS). This work aims at estimating the range of potential intrusion volumes that could result from a real downsurge event caused by a momentary pump shutdown. A model calibrated with transient low pressure recordings was used to simulate total intrusion volumes through leakage orifices and submerged air vacuum valves (AVVs). Four critical factors influencing intrusion volumes were varied: the external head of (untreated) water on leakage orifices, the external head of (untreated) water on submerged air vacuum valves, the leakage rate, and the diameter of AVVs' outlet orifice (represented by a multiplicative factor). Leakage orifices' head and AVVs' orifice head levels were assessed through fieldwork. Two sets of runs were generated as part of two statistically designed experiments. A first set of 81 runs was based on a complete factorial design in which each factor was varied over 3 levels. A second set of 40 runs was based on a latin hypercube design, better suited for experimental runs on a computer model. The simulations were conducted using commercially available transient analysis software. Responses, measured by total intrusion volumes, ranged from 10 to 366 L. A second degree polynomial was used to analyze the total intrusion volumes. Sensitivity analyses of both designs revealed that the relationship between the total intrusion volume and the four contributing factors is not monotonic, with the AVVs' orifice head being the most influential factor. When intrusion through both pathways occurs concurrently, interactions between the intrusion flows through leakage orifices and submerged AVVs influence intrusion volumes. When only intrusion through leakage orifices is considered, the total intrusion volume is more largely influenced by the leakage rate than by the leakage orifices' head. The latter mainly impacts the extent of the area affected by intrusion. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
dos Santos Fradinho, Jorge Miguel
2014-05-01
Our understanding of enterprise systems (ES) is gradually evolving towards a sense of design which leverages multidisciplinary bodies of knowledge that may bolster hybrid research designs and together further the characterisation of ES operation and performance. This article aims to contribute towards ES design theory with its hospital enterprise systems design (HESD) framework, which reflects a rich multidisciplinary literature and two in-depth hospital empirical cases from the US and UK. In doing so it leverages systems thinking principles and traditionally disparate bodies of knowledge to bolster the theoretical evolution and foundation of ES. A total of seven core ES design elements are identified and characterised with 24 main categories and 53 subcategories. In addition, it builds on recent work which suggests that hospital enterprises are comprised of multiple internal ES configurations which may generate different levels of performance. Multiple sources of evidence were collected including electronic medical records, 54 recorded interviews, observation, and internal documents. Both in-depth cases compare and contrast higher and lower performing ES configurations. Following literal replication across in-depth cases, this article concludes that hospital performance can be improved through an enriched understanding of hospital ES design.
USDA-ARS?s Scientific Manuscript database
A 4-unit dual-flow continuous culture fermentor system was used to evaluate the effects of herbage, a total mixed ration (TMR) and flaxseed on nutrient digestibility and microbial N synthesis. Treatments were randomly assigned to fermentors in a 4 x 4 Latin square design. Each fermentor was fed a to...
NASA Astrophysics Data System (ADS)
Samaras, C.; Lopez, T.
2016-12-01
Climate change is projected to increase the frequency and intensity of precipitation in many regions, which is relevant for stormwater engineering designs and resilience in the transportation sector. Existing and future stormwater infrastructure is generally designed for historical and stationary hydrologic conditions. For example, the design return period is based on statistical analysis of past precipitation events, often over a 50-year historical timeline. The design return period translates into how much peak precipitation volume a system is designed for in a state, and provides information about the performance of a drainage structure. The higher the design period used by an engineer for a given stormwater system, the more peak stormwater volume the system can convey. Therefore, design return periods can be associated with a design's near-term and long-term resilience. However, there is a tradeoff between the choice of design return period, the total infrastructure capital cost, and the resilience of a system to heavy precipitation events. This study analyzes current stormwater infrastructure design guidelines for state departments of transportation in the contiguous United States, in order to understand how stormwater design return periods vary across states and provide insight into the resilience of current stormwater systems design. The study found that the design return period varies considerably across the United States by roadway functional class and drainage classification, as well as within climate regions. Understanding this variation will help states identify possible vulnerabilities, highlight deficiencies across states and infrastructure types, and help in updating design return periods to increase the climate resilience of stormwater infrastructure.
Five-Segment Solid Rocket Motor Development Status
NASA Technical Reports Server (NTRS)
Priskos, Alex S.
2012-01-01
In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.
2002-01-08
new PAL with a total viewing angle of around 80° and suitable for foveal vision, it turned out that the optical design program ZEMAX EE we intended to...use was not capable for optimization. The reason was that ZEMAX -EE and all present optical design programs are based on see-through-window (STW
Development of a multiplexed bypass control system for aerospace batteries
NASA Technical Reports Server (NTRS)
Frank, H. A.
1977-01-01
A breadboard bypass control system was developed to control a battery comprised of 26 JPL-developed negative limited Ni-Cd cells. The system was designed to automatically remove cells from the circuit when their voltages exceeded a fixed limit on charge and fell below a fixed limit on discharge. Major components of the system consisted of a cell voltage monitor, a multiplexing circuit, and individual electromechanical relays for each cell. The system was found to function well in controlling the battery during a simulated 10-month MM-71 mission and a 2-month simulated low earth orbit cycling mission. A flight version of the bypass system was estimated to have a total parts count of 150 and total weight of 1.63 kg. When fully developed, the system shows promise for improving life and reliability of spacecraft batteries.
On-board processing for future satellite communications systems: Satellite-Routed FDMA
NASA Astrophysics Data System (ADS)
Berk, G.; Christopher, P. F.; Hoffman, M.; Jean, P. N.; Rotholz, E.; White, B. E.
1981-05-01
A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented.
On-board processing for future satellite communications systems: Satellite-Routed FDMA
NASA Technical Reports Server (NTRS)
Berk, G.; Christopher, P. F.; Hoffman, M.; Jean, P. N.; Rotholz, E.; White, B. E.
1981-01-01
A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented.
Iowa calibration of MEPDG performance prediction models.
DOT National Transportation Integrated Search
2013-06-01
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement : performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 : representative p...
Development of Human System Integration at NASA
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; McGuire, Kerry; Thompson, Shelby; Vos, Gordon
2012-01-01
Human Systems Integration seeks to design systems around the capabilities and limitations of the humans which use and interact with the system, ensuring greater efficiency of use, reduced error rates, and less rework in the design, manufacturing and operational deployment of hardware and software. One of the primary goals of HSI is to get the human factors practitioner involved early in the design process. In doing so, the aim is to reduce future budget costs and resources in redesign and training. By the preliminary design phase of a project nearly 80% of the total cost of the project is locked in. Potential design changes recommended by evaluations past this point will have little effect due to lack of funding or a huge cost in terms of resources to make changes. Three key concepts define an effective HSI program. First, systems are comprised of hardware, software, and the human, all of which operate within an environment. Too often, engineers and developers fail to consider the human capacity or requirements as part of the system. This leads to poor task allocation within the system. To promote ideal task allocation, it is critical that the human element be considered early in system development. Poor design, or designs that do not adequately consider the human component, could negatively affect physical or mental performance, as well as, social behavior. Second, successful HSI depends upon integration and collaboration of all the domains that represent acquisition efforts. Too often, these domains exist as independent disciplines due to the location of expertise within the service structure. Proper implementation of HSI through participation would help to integrate these domains and disciplines to leverage and apply their interdependencies to attain an optimal design. Via this process domain interests can be integrated to perform effective HSI through trade-offs and collaboration. This provides a common basis upon which to make knowledgeable decisions. Finally, HSI must be considered early in the requirements development phase of system design and acquisition. This will provide the best opportunity to maximize return on investment (ROI) and system performance. HSI requirements must be developed in conjunction with capability ]based requirements generation through functional. HSI requirements will drive HSI metrics and embed HSI issues within the system design. After a system is designed, implementation of HSI oversights can be very expensive. An HSI program should be included as an integral part of a total system approach to vehicle and habitat development. This would include, but not limited to, workstation design, D&C development, volumetric analysis, training, operations, and human -robotic interaction. HSI is a necessary process for Human Space Flight programs to meet the Agency Human ]System standards and thus mitigate human risks to acceptable levels. NASA has been involved in HSI planning, procedures development, process, and implementation for many years, and has been building several internal and publicly accessible products to facilitate HSI fs inclusion in the NASA Systems Engineering Lifecycle. Some of these products include: NASA STD 3001 Volumes 1 and 2, Human Integration Design Handbook, NASA HSI Implementation Plan, NASA HSI Implementation Plan Templates, NASA HSI Implementation Handbook, and a 2 ]hour short course on HSI delivered as part of the NASA Space and Life Sciences Directorate Academy. These products have been created leveraging industry best practices and lessons learned from other Federal Government agencies.
A spacecraft computer repairable via command.
NASA Technical Reports Server (NTRS)
Fimmel, R. O.; Baker, T. E.
1971-01-01
The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.
NASA Technical Reports Server (NTRS)
Kahler, S.; Krieger, A. S.
1978-01-01
The technique commonly used for the analysis of data from broad-band X-ray imaging systems for plasma diagnostics is the filter ratio method. This requires the use of two or more broad-band filters to derive temperatures and line-of-sight emission integrals or emission measure distributions as a function of temperature. Here an alternative analytical approach is proposed in which the temperature response of the imaging system is matched to the physical parameter being investigated. The temperature response of a system designed to measure the total radiated power along the line of sight of any coronal structure is calculated. Other examples are discussed.
Hilton, C; Fisher, W; Lopez, A; Sanders, C
1997-09-01
To design and test a simple, easily modifiable system for calculating faculty productivity in teaching, research, administration, and patient care in which all areas of endeavor would be recognized and high productivity in one area would produce results similar to high productivity in another at the Louisiana State University School of Medicine in New Orleans. A relative-value and time-based system was designed in 1996 so that similar efforts in the four areas would produce similar scores, and a profile reflecting the authors' estimates of high productivity ("super faculty") was developed for each area. The activity profiles of 17 faculty members were used to test the system. "Super-faculty" scores in all areas were similar. The faculty members' mean scores were higher for teaching and research than for administration and patient care, and all four mean scores were substantially lower than the respective totals for the "super faculty". In each category the scores of those faculty members who scored above the mean in that category were used to calculate new mean scores. The mean scores for these faculty members were similar to those for the "super faculty" in teaching and research but were substantially lower for administration and patient care. When the mean total score of the eight faculty members predicted to have total scores below the group mean was compared with the mean total score of the nine faculty members predicted to have total scores above the group mean, the difference was significant (p < .0001). For the former, every score in each category was below the mean, with the exception of one faculty member's score in one category. Of the latter, eight had higher scores in teaching and four had higher scores in teaching and research combined. This system provides a quantitative method for the equal recognition of faculty productivity in a number of areas, and it may be useful as a starting point for other academic units exploring similar issues.
NASA Astrophysics Data System (ADS)
Ayaz-Maierhafer, Birsen; Britt, Carl G.; August, Andrew J.; Qi, Hairong; Seifert, Carolyn E.; Hayward, Jason P.
2017-10-01
In this study, we report on a constrained optimization and tradeoff study of a hybrid, wearable detector array having directional sensing based upon gamma-ray occlusion. One resulting design uses CLYC detectors while the second feasibility design involves the coupling of gamma-ray-sensitive CsI scintillators and a rubber LiCaAlF6 (LiCAF) neutron detector. The detector systems' responses were investigated through simulation as a function of angle in a two-dimensional plane. The expected total counts, peak-to-total ratio, directionality performance, and detection of 40 K for accurate gain stabilization were considered in the optimization. Source directionality estimation was investigated using Bayesian algorithms. Gamma-ray energies of 122 keV, 662 keV, and 1332 keV were considered. The equivalent neutron capture response compared with 3 He was also investigated for both designs.
NASA Technical Reports Server (NTRS)
Mark, W. D.
1982-01-01
A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.
Space Station Freedom photovoltaic power module design status
NASA Technical Reports Server (NTRS)
Jimenez, Amador P.; Hoberecht, Mark A.
1989-01-01
Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.
Space Station Freedom photovoltaic power module design status
NASA Technical Reports Server (NTRS)
Jimenez, Amador P.; Hoberecht, Mark A.
1989-01-01
Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.
X-33/RLV System Health Management/Vehicle Health Management
NASA Technical Reports Server (NTRS)
Mouyos, William; Wangu, Srimal
1998-01-01
To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.
CFD Analysis of a Penta-hulled, Air-Entrapment, High-Speed Planning Vessel
2008-03-01
INTRODUCTION A. BACKGROUND The 2007 Total Ship Systems Engineering (TSSE) class was tasked with designing a new riverine craft or specialized...the concept of operations, for our defined system architecture (combined Specialized Command and Control Craft / Mobile Operating Base). This also...of an integration process that requires both systems and equipment optimization while meeting predetermined requirements set for by the Concept of
Seef, Sameh; Jeppsson, Anders; Stafström, Martin
2013-01-01
Cardiovascular diseases are a public health concern everywhere, especially ischemic or coronary heart diseases (CHD) which are on top of causes list of mortality and morbidity in both genders globally. From which nearly 80% can be because of modifiable risks. In Egypt, there is a lack of studies on the knowledge of people about coronary heart diseases and its modifiable risks. So, this research reported here we designed to measure the dimensions of peoples knowledge about CHD and their attitude towards prevention, and to identify the main risk reduction barriers. By using comprehensive cross-sectional, descriptive research design, all adult individuals attending the family health clinic at Suez Canal University Hospital were eligible for inclusion with total number 125 participants. An interview questionnaire designed and used to collect data. The study revealed that (10.4%) of participants had a history of CHD, and (7.2%) had a family history of CHD. 79.2% Had a satisfactory total knowledge about CHD, and (94.4%) had a positive total attitude towards prevention. Risk reduction barriers as a medical setting barriers were (24%), patient related barriers were (22.4%). Community-societal barriers were almost the same as knowledge barriers which were around (16%). At last the systemic-organizational barriers were (9.6%). The findings settled that, total knowledge about CHD was satisfactory but lower than the level total of attitude. More effort the health system needs to improve the settings and engage patients in their plans and breaking related barriers, with development of health education programs based on needs assessment. Further studies we recommend to explore the reasons and follow up the changes.
Flight evaluation of a simple total energy-rate system with potential wind-shear application
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Hueschen, R. M.; Hellbaum, R. F.; Creedon, J. F.
1981-01-01
Wind shears can create havoc during aircraft terminal area operations and have been cited as the primary cause of several major aircraft accidents. A simple sensor, potentially having application to the wind-shear problem, was developed to rapidly measure aircraft total energy relative to the air mass. Combining this sensor with either a variometer or a rate-of-climb indicator provides a total energy-rate system which was successfully applied in soaring flight. The measured rate of change of aircraft energy can potentially be used on display/control systems of powered aircraft to reduce glide-slope deviations caused by wind shear. The experimental flight configuration and evaluations of the energy-rate system are described. Two mathematical models are developed: the first describes operation of the energy probe in a linear design region and the second model is for the nonlinear region. The calculated total rate is compared with measured signals for many different flight tests. Time history plots show the tow curves to be almost the same for the linear operating region and very close for the nonlinear region.
AgIIS, Agricultural Irrigation Imaging System, design and application
NASA Astrophysics Data System (ADS)
Haberland, Julio Andres
Remote sensing is a tool that is increasingly used in agriculture for crop management purposes. A ground-based remote sensing data acquisition system was designed, constructed, and implemented to collect high spatial and temporal resolution data in irrigated agriculture. The system was composed of a rail that mounts on a linear move irrigation machine, and a small cart that runs back and forth on the rail. The cart was equipped with a sensors package that measured reflectance in four discrete wavelengths (550 nm, 660 nm, 720 nm, and 810 nm, all 10 nm bandwidth) and an infrared thermometer. A global positioning system and triggers on the rail indicated cart position. The data was postprocessed in order to generate vegetation maps, N and water status maps and other indices relevant for site-specific crop management. A geographic information system (GIS) was used to generate images of the field on any desired day. The system was named AgIIS (A&barbelow;gricultural I&barbelow;rrigation I&barbelow;maging S&barbelow;ystem). This ground based remote sensing acquisition system was developed at the Agricultural and Biosystems Engineering Department at the University of Arizona in conjunction with the U.S. Water Conservation Laboratory in Phoenix, as part of a cooperative study primarily funded by the Idaho National Environmental and Engineering Laboratory. A second phase of the study utilized data acquired with AgIIS during the 1999 cotton growing season to model petiole nitrate (PNO3 -) and total leaf N. A latin square experimental design with optimal and low water and optimal and low N was used to evaluate N status under water and no water stress conditions. Multivariable models were generated with neural networks (NN) and multilinear regression (MLR). Single variable models were generated from chlorophyll meter readings (SPAD) and from the Canopy Chlorophyll Content Index (CCCI). All models were evaluated against observed PNO3- and total leaf N levels. The NN models showed the highest correlation with PNO3- and total leaf N. AgIIS was a reliable and efficient data acquisition system for research and also showed potential for use in commercial farming systems.
Development of LOX/LH2 tank system for H-I launch vehicle
NASA Astrophysics Data System (ADS)
Nozaki, Y.; Takamatsu, H.; Morino, Y.; Imagawa, K.
Design features of the second stage of the prospective Japanese H-1 launch vehicle are described. The stage will use an LO2/LH2 fueled engine. The fuels will be contained in a 2219 Al alloy tank insulated with sprayed polyurethane foam. The total stage length will be 5.5 m, the volume 6.8 m, pressure 3.2 kg/sq cm (LOX) and 2.5 kg/sq cm (LH2). The diameter is 2.5 m and total fuel mass is 8.7 tons. Design verification tests, consisting of burning tests and thermal evaluation, are scheduled for the near future.
RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.
Lefkoff, L. Jeff; Gorelick, Steven M.; ,
1985-01-01
A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.
1982-11-01
ment, S,(1rct se’lection, design reviews, au- forwarded to HQ USAF/RDM. dits. valiatin.verification (of computer prgrams s), testinr, ani acceptance...Development phases of the system acquisition in order to prevent duplication. (7) Test planning during the production and post deployment phase will be designed...response to AIRTASKS will be idcntificd in the SLCL to prevent duplication and permit disseninacion of the total information available, concerning the
Redesigning a risk-management process for tracking injuries.
Wenzel, G R
1998-01-01
The changing responsibilities of registered nurses are challenging even the most dedicated professionals. To survive within her newly-defined roles, one nurse used a total quality improvement model to understand, analyze, and improve a medical center's system for tracking inpatient injuries. This process led to the drafting of an original software design that implemented a nursing informatics tracking system. It has resulted in significant savings of time and money and has far surpassed the accuracy, efficiency, and scope of the previous method. This article presents an overview of the design process.
Total chemical management in photographic processing
Luden, Charles; Schultz, Ronald
1985-01-01
The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.
Valve Health Monitoring System Utilizing Smart Instrumentation
NASA Technical Reports Server (NTRS)
Jensen, Scott L.; Drouant, George J.
2006-01-01
The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station
Valve health monitoring system utilizing smart instrumentation
NASA Astrophysics Data System (ADS)
Jensen, Scott L.; Drouant, George J.
2006-05-01
The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.
Optimization of conventional water treatment plant using dynamic programming.
Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras
2015-12-01
In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants. © The Author(s) 2013.
Mathematical analysis and coordinated current allocation control in battery power module systems
NASA Astrophysics Data System (ADS)
Han, Weiji; Zhang, Liang
2017-12-01
As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.
NASA Astrophysics Data System (ADS)
Drews, Jürgen; Wolf, R.; Fehrmann, G.; Staub, R.
An implantable defibrillator battery has to provide pulse power capabilities as well as high energy density. Low self-discharge rates are mandatory and a way to check the remaining available capacity is necessary. These requirements are accomplished by a system consisting of a lithium/manganese dioxide 6 V battery, plus a lithium/iodine-cell. The use of a high rate 6 V double-cell design in combination with a high energy density cell reduces the total volume required by the power source within an implantable defibrillator. The design features and performance data of the hybrid system are described.
Data on the configuration design of internet-connected home cooling systems by engineering students.
McComb, Christopher; Cagan, Jonathan; Kotovsky, Kenneth
2017-10-01
This experiment was carried out to record the step-by-step actions that humans take in solving a configuration design problem, either in small teams or individually. Specifically, study participants were tasked with configuring an internet-connected system of products to maintain temperature within a home, subject to cost constraints. Every participant was given access to a computer-based design interface that allowed them to construct and assess solutions. The interface was also used to record the data that is presented here. In total, data was collected for 68 participants, and each participant was allowed to perform 50 design actions in solving the configuration design problem. Major results based on the data presented here have been reported separately, including initial behavioral analysis (McComb et al.) [1], [2] and design pattern assessments via Markovian modeling (McComb et al., 2017; McComb et al., 2017) [3], [4].
A scientific operations plan for the large space telescope. [ground support system design
NASA Technical Reports Server (NTRS)
West, D. K.
1977-01-01
The paper describes an LST ground system which is compatible with the operational requirements of the LST. The goal of the approach is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of LST science. Attention is given to cost constraints and guidelines, the telemetry operations processing systems (TELOPS), the image processing facility, ground system planning and data flow, and scientific interfaces.
Ground Vehicle System Integration (GVSI) and Design Optimization Model.
1996-07-30
number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will
NASA Technical Reports Server (NTRS)
Nuttall, L. J.; Titterington, W. A.
1974-01-01
Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.
Solar-Diesel Hybrid Power System Optimization and Experimental Validation
NASA Astrophysics Data System (ADS)
Jacobus, Headley Stewart
As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.
NASA Technical Reports Server (NTRS)
Meyer, G.; Cicolani, L.
1981-01-01
A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.
Integrated Avionics System (IAS)
NASA Technical Reports Server (NTRS)
Hunter, D. J.
2001-01-01
As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.
Free-form surface design method for a collimator TIR lens.
Tsai, Chung-Yu
2016-04-01
A free-form (FF) surface design method is proposed for a general axial-symmetrical collimator system consisting of a light source and a total internal reflection lens with two coupled FF boundary surfaces. The profiles of the boundary surfaces are designed using a FF surface construction method such that each incident ray is directed (refracted and reflected) in such a way as to form a specified image pattern on the target plane. The light ray paths within the system are analyzed using an exact analytical model and a skew-ray tracing approach. In addition, the validity of the proposed FF design method is demonstrated by means of ZEMAX simulations. It is shown that the illumination distribution formed on the target plane is in good agreement with that specified by the user. The proposed surface construction method is mathematically straightforward and easily implemented in computer code. As such, it provides a useful tool for the design and analysis of general axial-symmetrical optical systems.
van den Boom, Lennard GH; Brouwer, Reinoud W; van den Akker-Scheek, Inge; Bulstra, Sjoerd K; van Raaij, Jos JAM
2009-01-01
Background Prosthetic design for the use in primary total knee arthroplasty has evolved into designs that preserve the posterior cruciate ligament (PCL) and those in which the ligament is routinely sacrificed (posterior stabilized). In patients with a functional PCL the decision which design is chosen depends largely on the favour and training of the surgeon. The objective of this study is to determine whether the patient's perceived outcome and speed of recovery differs between a posterior cruciate retaining total knee arthroplasty and a posterior stabilized total knee arthroplasty. Methods/Design A randomized controlled trial will be conducted. Patients who are admitted for primary unilateral TKA due to primary osteoarthrosis are included when the following inclusion criteria are met: non-fixed fixed varus or valgus deformity less than 10 degrees, age between 55 and 85 years, body mass index less than 35 kg/m2 and ASA score (American Society of Anaesthesiologists) I or II. Patients are randomized in 2 groups. Patients in the posterior cruciate retaining group will receive a prosthesis with a posterior cut-out for the posterior cruciate ligament and relatively flat topography. In patients allocated to the posterior stabilized group, in which the posterior cruciate ligament is excised, the design may substitute for this function by an intercondylar tibial prominence that articulates with the femur in flexion. Measurements will take place preoperatively and 6 weeks, 3 months, 6 months and 1 year postoperatively. At all measurement points patient's perceived outcome will be assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Secondary outcome measures are quality of life (SF-36) and physician reported functional status and range of motion as determined with the Knee Society Clinical Rating System (KSS). Discussion In the current practice both posterior cruciate retaining and posterior stabilized designs for total knee arthroplasty are being used. To date no studies have been performed determining whether there is a difference in patient's perceived outcome between the two designs. Additionally, there is a lack of studies determining the speed of recovery in both designs as most studies only determine the final outcome. This randomised controlled study has been designed to determine whether the patient's perceived outcome and speed of recovery differs between a posterior cruciate retaining total knee arthroplasty and a posterior stabilized total knee arthroplasty. Trial Registration The trial is registered in the Netherlands Trial Registry (NTR1673). PMID:19793397
Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2011-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing, improved operational availability, and optimized maintenance and logistic support infrastructure. This paper discusses the role of R&M in a program acquisition phase and the potential impact of R&M on safety, mission success, operational availability, and affordability. This includes discussion of the R&M elements that need to be addressed and the R&M analyses that need to be performed in order to support a safe and affordable system design. The paper also provides some lessons learned from the Space Shuttle program on the impact of R&M on safety and affordability.
Rosenberg, Nahum; Neumann, Lars; Modi, Amit; Mersich, Istvan J; Wallace, Angus W
2007-01-01
Background The uncemented Nottingham Total Shoulder Replacement prosthesis system (Nottingham TSR) was developed from the previous BioModular® shoulder prosthesis taking into consideration the causes of the initial implant's failure. We investigated the impact of changes in the design of Nottingham TSR prosthesis on its survivorship rate. Methods Survivorship analyses of three types of uncemented total shoulder arthroplasty prostheses (BioModular®, initial Nottingham TSR and current Nottingham TSR systems with 11, 8 and 4 year survivorship data respectively) were compared. All these prostheses were implanted for the treatment of disabling pain in the shoulder due to primary and secondary osteoarthritis or rheumatoid arthritis. Each type of the prosthesis studied was implanted in consecutive group of patients – 90 patients with BioModular® system, 103 with the initial Nottingham TSR and 34 patients with the current Nottingham TSR system. The comparison of the annual cumulative survivorship values in the compatible time range between the three groups was done according to the paired t test. Results The 8-year and 11-year survivorship rates for the initially used modified BioModular® uncemented prosthesis were relatively low (75.6% and 71.7% respectively) comparing to the reported survivorship of the conventional cemented implants. The 8-year survivorship for the uncemented Nottingham TSR prosthesis was significantly higher (81.8%), but still not in the desired range of above 90%, that is found in other cemented designs. Glenoid component loosening was the main factor of prosthesis failure in both prostheses and mainly occurred in the first 4 postoperative years. The 4-year survivorship of the currently re-designed Nottingham TSR prosthesis, with hydroxylapatite coating of the glenoid baseplate, was significantly higher, 93.1% as compared to 85.1% of the previous Nottingham TSR. Conclusion The initial Nottingham shoulder prosthesis showed significantly higher survivorship than the BioModular® uncemented prosthesis, but lower than expected. Subsequently re-designed Nottingham TSR system presented a high short term survivorship rate that encourages its ongoing use PMID:17683577
NASA Technical Reports Server (NTRS)
Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.
2013-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.
Minimizing energy dissipation of matrix multiplication kernel on Virtex-II
NASA Astrophysics Data System (ADS)
Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook
2002-07-01
In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.
Development of the ITER ICH Transmission Line and Matching System
NASA Astrophysics Data System (ADS)
Rasmussen, D. A.; Goulding, R. H.; Pesavento, P. V.; Peters, B.; Swain, D. W.; Fredd, E. H.; Hosea, J.; Greenough, N.
2011-10-01
The ITER Ion Cyclotron Heating (ICH) System is designed to couple 20 MW of heating power for ion and electron heating. Prototype components for the ITER Ion Cyclotron Heating (ICH) transmission line and matching system are being designed and tested. The ICH transmission lines are pressurized 300 mm diameter coaxial lines with water-cooled aluminum outer conductor and gas-cooled and water-cooled copper inner conductor. Each ICH transmission line is designed to handle 40-55 MHz power at up to 6 MW/line. A total of 8 lines split to 16 antenna inputs on two ICH antennas. Industrial suppliers have designed coaxial transmission line and matching components and prototypes will be manufactured. The prototype components will be qualified on a test stand operating at the full power and pulse length needed for ITER. The matching system must accommodated dynamic changes in the plasma loading due to ELMS and the L to H-mode transition. Passive ELM tolerance will be performed using hybrid couplers and loads, which can absorb the transient reflected power. The system is also designed to compensate for the mutual inductances of the antenna current straps to limit the peak voltages on the antenna array elements.
Bourke, Alan K; van de Ven, Pepijn W J; Chaya, Amy E; OLaighin, Gearóid M; Nelson, John
2008-01-01
A fall detection system and algorithm, incorporated into a custom designed garment has been developed. The developed fall detection system uses a tri-axial accelerometer, microcontroller, battery and Bluetooth module. This sensor is attached to a custom designed vest, designed to be worn by the elderly person under clothing. The fall detection algorithm was developed and incorporates both impact and posture detection capability. The vest and fall algorithm was tested on young healthy subjects performing normal activities of daily living (ADL) and falls onto crash mats, while wearing the best and sensor. Results show that falls can de distinguished from normal activities with a sensitivity >90% and a specificity of >99%, from a total data set of 264 falls and 165 normal ADL. By incorporating the fall-detection sensor into a custom designed garment it is anticipated that greater compliance when wearing a fall-detection system can be achieved and will help reduce the incidence of the long-lie, when falls occur in the elderly population. However further long-term testing using elderly subjects is required to validate the systems performance.
A next generation, pilot-scale continuous sterilization system for fermentation media
Lester, M.; Brix, T.; Wong, D.; Nuechterlein, J.
2006-01-01
A new continuous sterilization system was designed, constructed, started up, and qualified for media sterilization for secondary metabolite cultivations, bioconversions, and enzyme production. An existing Honeywell Total Distributed Control 3000-based control system was extended using redundant High performance Process Manager controllers for 98 I/O (input/output) points. This new equipment was retrofitted into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Design strategies of this new continuous sterilizer system and the expanded control system are described and compared with the literature (including dairy and bio-waste inactivation applications) and the weaknesses of the prior installation for expected effectiveness. In addition, the reasoning behind selection of some of these improved features has been incorporated. Examples of enhancements adopted include sanitary heat exchanger (HEX) design, incorporation of a “flash” cooling HEX, on-line calculation of Fo and Ro, and use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation. Sterilizer performance also was characterized over the expected range of operating conditions. Differences between design and observed temperature, pressure, and other profiles were quantified and investigated. PMID:16496186
NASA Technical Reports Server (NTRS)
Smith, G. A.; Meyer, G.
1980-01-01
The results of a simulation study of an alternative design concept for an automatic landing control system are presented. The alternative design concept for an automatic landing control system is described. The design concept is the total aircraft flight control system (TAFCOS). TAFCOS is an open loop, feed forward system that commands the proper instantaneous thrust, angle of attack, and roll angle to achieve the forces required to follow the desired trajector. These dynamic trim conditions are determined by an inversion of the aircraft nonlinear force characteristics. The concept was applied to an A-7E aircraft approaching an aircraft carrier. The implementation details with an airborne digital computer are discussed. The automatic carrier landing situation is described. The simulation results are presented for a carrier approach with atmospheric disturbances, an approach with no disturbances, and for tailwind and headwind gusts.
NASA Technical Reports Server (NTRS)
Liu, G.
1985-01-01
One of the major concerns in the design of an active control system is obtaining the information needed for effective feedback. This involves the combination of sensing and estimation. A sensor location index is defined as the weighted sum of the mean square estimation errors in which the sensor locations can be regarded as estimator design parameters. The design goal is to choose these locations to minimize the sensor location index. The choice of the number of sensors is a tradeoff between the estimation quality based upon the same performance index and the total costs of installing and maintaining extra sensors. An experimental study for choosing the sensor location was conducted on an aeroelastic system. The system modeling which includes the unsteady aerodynamics model developed by Stephen Rock was improved. Experimental results verify the trend of the theoretical predictions of the sensor location index for different sensor locations at various wind speeds.
Thermal design of a Mars oxygen production plant
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Iyer, Venkatesh A.
1991-01-01
The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.
Characterization of Microbial Communities Found in Bioreactor Effluent
NASA Technical Reports Server (NTRS)
Flowe, Candice
2013-01-01
The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.
Thermal-structural design study of an airframe-integrated Scramjet
NASA Technical Reports Server (NTRS)
Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.
1978-01-01
Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.
1982-05-01
discovered during posttest inspection. The unit had experienced 2 As- designed damper, 0.92-1-.14 grams 8 tests for a total of 330 seconds of opera- 3...a Modeling DAMPED STRUCTURE DESIGN USING FINITE ELEMENT ANALYSIS M. F. Klunmner and M. L. Drake, University of Dayti-n Resatch Institute, Dayton, OH...IN DYNAMICS T. E. Simkins, U.S. Army Armament Research and Development Command, Watervliet, NY Stucturd Dynamics A PROCEDURE FOR DESIGNING OVERDAMPED
Sensing systems efficiency evaluation and comparison for homeland security and homeland defense
NASA Astrophysics Data System (ADS)
Pakhomov, Alexander A.
2010-04-01
Designers and consumers of various security, intelligence, surveillance and reconnaissance (ISR) systems as well as various unattended ground sensors pay most attention to their commonly used performance characteristics such as probability of a target detection and probability of a false alarm. These characteristics are used for systems comparison and evaluation. However, it is not enough for end-users of these systems as well as for their total/final effectiveness assessment. This article presents and discusses a system approach to an efficiency estimation of the security and ISR systems. Presented approach aims at final result of the system's function and use. It allows setting up reasonable technical and structural requirements for the security and ISR systems, to make trustworthy comparison and practical application planning of such systems. It also allows finding forward-looking, perspective ways of systems development. Presented results can be guidance to both designers and consumers.
Formal functional test designs with a test representation language
NASA Technical Reports Server (NTRS)
Hops, J. M.
1993-01-01
The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.
1993-01-01
The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.
NASA Technical Reports Server (NTRS)
Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.
1993-01-01
The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.
NASA Astrophysics Data System (ADS)
Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.
2018-03-01
An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.
Large Horizontal-Axis Wind Turbines
NASA Technical Reports Server (NTRS)
Thresher, R. W. (Editor)
1982-01-01
The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.
Kum, Oyeon
2018-06-01
An optimized air ventilation system design for a treatment room in Heavy-ion Medical Facility is an important issue in the aspects of nuclear safety because the activated air produced in a treatment room can directly affect the medical staff and the general public in the radiation-free area. Optimized design criteria of air ventilation system for a clinical room in 430 MeV/u carbon ion beam medical accelerator facility was performed by using a combination of MCNPX2.7.0 and CINDER'90 codes. Effective dose rate and its accumulated effective dose by inhalation and residual gamma were calculated for a normal treatment scenario (2 min irradiation for one fraction) as a function of decay time. Natural doses around the site were measured before construction and used as reference data. With no air ventilation system, the maximum effective dose rate was about 3 μSv/h (total dose of 90 mSv/y) and minimum 0.2 μSv/h (total dose of 6 mSv/y), which are over the legal limits for medical staff and for the general public. Although inhalation dose contribution was relatively small, it was considered seriously because of its long-lasting effects in the body. The integrated dose per year was 1.8 mSv/y in the radiation-free area with the 20-min rate of air ventilation system. An optimal air ventilation rate of 20 min is proposed for a clinical room, which also agrees with the best mechanical design value. © 2018 American Association of Physicists in Medicine.
The Noise Level Optimization for Induction Magnetometer of SEP System
NASA Astrophysics Data System (ADS)
Zhu, W.; Fang, G.
2011-12-01
The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
Assessing pretreatment reactor scaling through empirical analysis
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...
2016-10-10
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Assessing pretreatment reactor scaling through empirical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Conceptual design of a water treatment system to support a manned Mars colony
NASA Technical Reports Server (NTRS)
1988-01-01
The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.
Improved Speed Control System for the 87,000 HP Wind Tunnel Drive
NASA Technical Reports Server (NTRS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Improved speed control system for the 87,000 HP wind tunnel drive
NASA Astrophysics Data System (ADS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
A feasibility study on solar utility total energy system /SUTES/
NASA Astrophysics Data System (ADS)
Bilgen, E.
1980-11-01
A fully dedicated central receiver solar utility (CRSU) designed to meet domestic energy requirements for space heating and hot water has been synthesized and assessed at the conceptual level. The solar utility total energy system (SUTES) integrates (1) a central receiver solar utility (CRSU), (2) an electrical power generating system (EPGS), (3) a hydrogen production plant (HPP), (4) a water chilling system for cooling, heat pump system (HPS), (5) necessary thermal energy storage systems (TES), (6) a district heating and cooling system (DH&CS). All subsystems are close-coupled. Using consistent costing bases, it has been found that the SUTES concept provides energy costs which are lower than those provided by a CRSU. Representative costs are $3.14/GJ versus $8.56/GJ for 10 percent recovery factor and $12.55/GJ versus $13.47/GJ for 17.5 percent recovery factor.
Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico
NASA Technical Reports Server (NTRS)
1980-01-01
A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo
A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less
Design of a Hypermedia-Based Educating System for the Construction of Knowledge
1989-09-01
the variety they confront, promote short-term learning . This thesis provides the required background for developing an educating system which promotes...an effective educating system stems frm ever-increasing requirements for learning . Ine Total Quality Management (TQM) program, a Department of Defense...Japan has realized that best efforts ’nly pay off when the workforce is properly educated . Learning has become a pivotal element in the Japanese
Optimum Repair Level Analysis (ORLA) for the Space Transportation System (STS)
NASA Technical Reports Server (NTRS)
Henry, W. R.
1979-01-01
A repair level analysis method applied to a space shuttle scenario is presented. A determination of the most cost effective level of repair for reparable hardware, the location for the repair, and a system which will accrue minimum total support costs within operational and technical constraints over the system design are defined. The method includes cost equations for comparison of selected costs to completion for assumed repair alternates.
Biomedical engineering support. Final report, June 15, 1971--June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolff, W.J.; Sandquist, G.; Olsen, D.B.
On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of themore » system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, J.M.; Kaplan, N.; Wilkening, H.A. Jr.
Under contract from the Department of Energy, AAI Corporation designed, constructed, and operated a solar heating system to provide hot water for curing concrete blocks at the York Building Products Co., Inc.'s new manufacturing facility near Harrisburg, PA. The objective of Phase III of this program was to operate, collect data, and evaluate the solar system for a three-year period (September 1978 to September 1981). The solar facility utilizes 35 collectors with a total aperture area of 8960 ft/sup 2/. The sysem is designed to deliver a water/ethylene glycol solution at 200/sup 0/F to a heat exchanger, which, in turn,more » supplies water at 180/sup 0/F to a rotoclave (underground tank) for the concrete-block curing process. A fossil-fuel boiler system also supplies the rotoclave with processed hot water to supplement the solar system. The system was operational 92.5% of the days during which the data acquisition system was functional. Sufficient solar heating was available to deliver hot water to the heat exchanger on 448 days, or 81.8% of the days on which reliable data was recorded. Total fuel saved during the three-year period was 10,284 gallons. Thus, this program has successfully demonstrated the technical feasibility of generating industrial process hot water with solar energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Science Applications, Inc., has designed a photovoltaic power system for the Oklahoma Center for Science and Arts in Oklahoma City. The system, with a basic rating of 250 kW, is enhanced to a summer peak output of 350 kW through the use of augmentation glass mirror reflectors which are arranged to maximize summer output and to match the summer output to the summer load. The baseline system consists of 3780 photovoltaic collector modules, utilizing polycrystalline silicon cells, and companion mirror reflectors arranged in modular fashion on the roof of the Center. Total system output is more than 450 MWh, ofmore » which over 420 MWh is used on-site to displace about 65 percent of the current on site load, or about 43 percent of the projected (1981) load. Another 30 MWh is returned to the utility under a buyback agreement. The total amount of energy displaced per year is approximately 850 barrels of oil, or Btu equivalent. The entire system is fully automatic, and is designed for safety and ease in maintenance and repair. It is equipped with the appropriate controls, a power monitoring system, a weather station, and other sensors for acquisition of experimental data.« less
Designing for Maintainability and System Availability
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.; Packard, Michael H.
1997-01-01
The final goal for a delivered system (whether a car, aircraft, avionics box or computer) should be its availability to operate and perform its intended function over its expected design life. Hence, in designing a system, we cannot think in terms of delivering the system and just walking away. The system supplier needs to provide support throughout the operating life of the product. Here, supportability requires an effective combination of reliability, maintainability, logistics and operations engineering (as well as safety engineering) to have a system that is available for its intended use throughout its designated mission lifetime. Maintainability is a key driving element in the effective support and upkeep of the system as well as providing the ability to modify and upgrade the system throughout its lifetime. This paper then, will concentrate on maintainability and its integration into the system engineering and design process. The topics to be covered include elements of maintainability, the total cost of ownership, how system availability, maintenance and logistics costs and spare parts cost effect the overall program costs. System analysis and maintainability will show how maintainability fits into the overall systems approach to project development. Maintainability processes and documents will focus on how maintainability is to be performed and what documents are typically generated for a large scale program. Maintainability analysis shows how trade-offs can be performed for various alternative components. The conclusions summarize the paper and are followed by specific problems for hands-on training.
Status of 20 kHz space station power distribution technology
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1988-01-01
Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.
Chemical pump study for Pioneer Venus program
NASA Technical Reports Server (NTRS)
Rotheram, M.
1973-01-01
Two chemical pumps were designed for the Pioneer Venus large probe mass spectrometer. Factors involved in the design selection are reviewed. One pump is designed to process a sample of the Venus atmosphere to remove the major component, carbon dioxide, so that the minor, inert components may be measured with greater sensitivity. The other pump is designed to promote flow of atmospheric gas through a pressure reduction inlet system. This pump, located downstream from the mass spectrometer sampling point, provides the pressure differential required for flow through the inlet system. Both pumps utilize the reaction of carbon dioxide with lithium hydroxide. The available data for this reaction was reviewed with respect to the proposed applications, and certain deficiencies in reaction rate data at higher carbon dioxide pressures noted. The chemical pump designed for the inert gas experiment has an estimated volume of 30 cu cm and weight of 80 grams, exclusive of the four valves required for the operation. The chemical pump for the pressure reduction inlet system is designed for a total sample of 0.3 bar liter during the Venus descent.
Radiation 101: Effects on Hardware and Robotic Systems
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2015-01-01
We present basic information on different types of radiation effects, including total ionizing dose, displacement damage, and single-event effects. The content is designed to educate space weather professionals, space operations professionals, and other science and engineering stakeholders.
Solar-energy-system performance evaluation, October 1980-August 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, P.E.
The solar site is an Animal Quarantine Center in Upton, New York, using 2484 ft/sup 2/ of flat-plate collectors and 5300 gallons of solar hot water storage located outside and above ground. The system was designed to provide 20% of the annual heating load and 100% of the annual domestic hot water load. The solar system actually provided 5% of the total system load. Many control and mechanical malfunctions contributed to the poor performance. (MHR)
Solar hot water system installed at Las Vegas, Nevada
NASA Technical Reports Server (NTRS)
1981-01-01
A solar energy hot water system installed in a motor inn at Las Vegas, Nevada is described. The inn is a three story building with a flat roof for installation of the solar panels. The system consists of 1,200 square feet of liquid flat plate collectors, a 2,500 gallon insulated vertical steel storage tank, two heat exchangers, and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.
High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabaan, Rakan
The objective of this project is to develop, implement, and demonstrate a wireless power transfer (WPT) system that is capable of the following metrics: Total system efficiencies of more than 85 percent with minimum 20 cm coil-to-coil gap; System output power at least 6.6 kW; but design system up to 19.2 kW for future higher power study; Maximum lateral positioning tolerance achievable while meeting regulatory emission guidelines.
Plug nozzles: The ultimate customer driven propulsion system
NASA Technical Reports Server (NTRS)
Aukerman, Carl A.
1991-01-01
This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.
NASA Technical Reports Server (NTRS)
Aukerman, Carl A.
1991-01-01
This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in the study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.
Advanced turbine blade tip seal system
NASA Technical Reports Server (NTRS)
Zelahy, J. W.
1981-01-01
An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.
A pumped, two-phase flow heat transport system for orbiting instrument payloads
NASA Technical Reports Server (NTRS)
Fowle, A. A.
1981-01-01
A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.
Moorthy, Arun S; Eberl, Hermann J
2014-04-01
Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.
2014-01-01
A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.
Telemetry and control system for interplatform crude loading at the Statfjord field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malmin, P.C.; Lassa, P.
1988-04-01
A control system for crude loading to tankers at Statfjord field has been designed to allow tanker loading to the place at all times to prevent production shutdowns caused by loading-buoy problems. This paper discusses how the control system was designed to maximize the flexibility of loading operations and to meet all safety and regulatory requirements. The experience gained from more than 4 years of operation of the system is reviewed. The system has allowed maximum use of total field crude oil storage capacity while loading to 125,000-DWT (127 000-Mg) tankers nearly every day throughout the year. It has beenmore » possible to maintain a high production rate even through the periods of difficult weather conditions experienced in the northern North Sea.« less
Krause, Fabian G; Di Silvestro, Matthew; Penner, Murray J; Wing, Kevin J; Glazebrook, Mark A; Daniels, Timothy R; Lau, Johnny T C; Younger, Alastair S E
2012-02-01
End-stage ankle arthritis is operatively treated with numerous designs of total ankle replacement and different techniques for ankle fusion. For superior comparison of these procedures, outcome research requires a classification system to stratify patients appropriately. A postoperative 4-type classification system was designed by 6 fellowship-trained foot and ankle surgeons. Four surgeons reviewed blinded patient profiles and radiographs on 2 occasions to determine the interobserver and intraobserver reliability of the classification. Excellent interobserver reliability (κ = .89) and intraobserver reproducibility (κ = .87) were demonstrated for the postoperative classification system. In conclusion, the postoperative Canadian Orthopaedic Foot and Ankle Society (COFAS) end-stage ankle arthritis classification system appears to be a valid tool to evaluate the outcome of patients operated for end-stage ankle arthritis.
Large Space Systems Technology, Part 2, 1981
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1982-01-01
Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.
Total analysis systems with Thermochromic Etching Discs technology.
Avella-Oliver, Miquel; Morais, Sergi; Carrascosa, Javier; Puchades, Rosa; Maquieira, Ángel
2014-12-16
A new analytical system based on Thermochromic Etching Discs (TED) technology is presented. TED comprises a number of attractive features such as track independency, selective irradiation, a high power laser, and the capability to create useful assay platforms. The analytical versatility of this tool opens up a wide range of possibilities to design new compact disc-based total analysis systems applicable in chemistry and life sciences. In this paper, TED analytical implementation is described and discussed, and their analytical potential is supported by several applications. Microarray immunoassay, immunofiltration assay, solution measurement, and cell culture approaches are herein addressed in order to demonstrate the practical capacity of this system. The analytical usefulness of TED technology is herein demonstrated, describing how to exploit this tool for developing truly integrated analytical systems that provide solutions within the point of care framework.
Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Karen A.; Swinhoe, Martyn T.; Menlove, Howard O.
2012-05-02
The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied tomore » determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.« less
Fast analytical model of MZI micro-opto-mechanical pressure sensor
NASA Astrophysics Data System (ADS)
Rochus, V.; Jansen, R.; Goyvaerts, J.; Neutens, P.; O’Callaghan, J.; Rottenberg, X.
2018-06-01
This paper presents a fast analytical procedure in order to design a micro-opto-mechanical pressure sensor (MOMPS) taking into account the mechanical nonlinearity and the optical losses. A realistic model of the photonic MZI is proposed, strongly coupled to a nonlinear mechanical model of the membrane. Based on the membrane dimensions, the residual stress, the position of the waveguide, the optical wavelength and the phase variation due to the opto-mechanical coupling, we derive an analytical model which allows us to predict the response of the total system. The effect of the nonlinearity and the losses on the total performance are carefully studied and measurements on fabricated devices are used to validate the model. Finally, a design procedure is proposed in order to realize fast design of this new type of pressure sensor.
HiRel - Reliability/availability integrated workstation tool
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Dugan, Joanne B.
1992-01-01
The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.
NASA Technical Reports Server (NTRS)
Crosby, Robert H.
1992-01-01
The Integrated Receiver/Decoder (IRD) currently used on the Space Shuttle was designed in the 1980 and prior time frame. Over the past 12 years, several parts have become obsolete or difficult to obtain. As directed by the Marshall Space Flight Center, a primary objective is to investigate updating the IRD design using the latest technology subsystems. To take advantage of experience with the current designs, an analysis of failures and a review of discrepancy reports, material review board actions, scrap, etc. are given. A recommended new design designated as the Advanced Receiver/Decoder (ARD) is presented. This design uses the latest technology components to simplify circuits, improve performance, reduce size and cost, and improve reliability. A self-test command is recommended that can improve and simplify operational procedures. Here, the new design is contrasted with the old. Possible simplification of the total Range Safety System is discussed, as is a single-step crypto technique that can improve and simplify operational procedures.
Baseline spacecraft and mission design for the SP-100 flight experiment
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1989-01-01
The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kWe ammonia arcjet system operating at an experimentally-measured specific impulse of 1030 s and an efficiency of 42 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kWe SRPS is assumed. The total spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission and an orbit raising round trip corresponding to possible orbit transfer vehicle missions. Launches from Kennedy Space Center using the Titan IV expendable launch vehicle are assumed.
Case study: Lockheed-Georgia Company integrated design process
NASA Technical Reports Server (NTRS)
Waldrop, C. T.
1980-01-01
A case study of the development of an Integrated Design Process is presented. The approach taken in preparing for the development of an integrated design process includes some of the IPAD approaches such as developing a Design Process Model, cataloging Technical Program Elements (TPE's), and examining data characteristics and interfaces between contiguous TPE's. The implementation plan is based on an incremental development of capabilities over a period of time with each step directed toward, and consistent with, the final architecture of a total integrated system. Because of time schedules and different computer hardware, this system will not be the same as the final IPAD release; however, many IPAD concepts will no doubt prove applicable as the best approach. Full advantage will be taken of the IPAD development experience. A scenario that could be typical for many companies, even outside the aerospace industry, in developing an integrated design process for an IPAD-type environment is represented.
Space shuttle environmental control/life support systems
NASA Technical Reports Server (NTRS)
1972-01-01
This study analyzes and defines a baseline Environmental Control/Life Support System (EC/LSS) for a four-man, seven-day orbital shuttle. In addition, the impact of various mission parameters, crew size, mission length, etc. are examined for their influence on the selected system. Pacing technology items are identified to serve as a guide for application of effort to enhance the total system optimization. A fail safe-fail operation philosophy was utilized in designing the system. This has resulted in a system that requires only one daily routine operation. All other critical item malfunctions are automatically resolved by switching to redundant modes of operation. As a result of this study, it is evident that a practical, flexible, simple and long life, EC/LSS can be designed and manufactured for the shuttle orbiter within the time phase required.
Definition of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.
Optimal control theory (OWEM) applied to a helicopter in the hover and approach phase
NASA Technical Reports Server (NTRS)
Born, G. J.; Kai, T.
1975-01-01
A major difficulty in the practical application of linear-quadratic regulator theory is how to choose the weighting matrices in quadratic cost functions. The control system design with optimal weighting matrices was applied to a helicopter in the hover and approach phase. The weighting matrices were calculated to extremize the closed loop total system damping subject to constraints on the determinants. The extremization is really a minimization of the effects of disturbances, and interpreted as a compromise between the generalized system accuracy and the generalized system response speed. The trade-off between the accuracy and the response speed is adjusted by a single parameter, the ratio of determinants. By this approach an objective measure can be obtained for the design of a control system. The measure is to be determined by the system requirements.
Lau, Eric HY; So, Hau Chi; Xiao, Jingyi; Lam, Chi Kin; Fang, Vicky J; Tam, Yat Hung; Leung, Gabriel M; Cowling, Benjamin J
2017-01-01
Background School-aged children have the highest incidence of respiratory virus infections each year, and transmission of respiratory viruses such as influenza virus can be a major concern in school settings. School absenteeism data have been employed as a component of influenza surveillance systems in some locations. Data timeliness and system acceptance remain as key determinants affecting the usefulness of a prospective surveillance system. Objective The aim of this study was to assess the feasibility of implementing an electronic school absenteeism surveillance system using smart card–based technology for influenza-like illness (ILI) surveillance among a representative network of local primary and secondary schools in Hong Kong. Methods We designed and implemented a surveillance system according to the Protocol for a Standardized information infrastructure for Pandemic and Emerging infectious disease Response (PROSPER). We employed an existing smart card–based education and school administration platform for data capture, customized the user interface, and used additional back end systems built for other downstream surveillance steps. We invited local schools to participate and collected absenteeism data by the implemented system. We compared temporal trend of the absenteeism data with data from existing community sentinel and laboratory surveillance data. Results We designed and implemented an ILI surveillance system utilizing smart card–based attendance tracking approach for data capture. We implemented the surveillance system in a total of 107 schools (including 66 primary schools and 41 secondary schools), covering a total of 75,052 children. The system successfully captured information on absences for 2 consecutive academic years (2012-2013 and 2013-2014). The absenteeism data we collected from the system reflected ILI activity in the community, with an upsurge in disease activity detected up to 1 to 2 weeks preceding other existing surveillance systems. Conclusions We designed and implemented a novel smart card technology–based school absenteeism surveillance system. Our study demonstrated the feasibility of building a large-scale surveillance system riding on a routinely adopted data collection approach and the use of simple system enhancement to minimize workload implication and enhance system acceptability. Data from this system have potential value in supplementing existing sentinel influenza surveillance for situational awareness of influenza activity in the community. PMID:28986338
An Analysis of Total Quality Management in Aeronautical Systems Division
1991-09-01
Annual Review ..... ......... . 3-51 Disease 4: Mobility of Top Management ................... .3-52 Disease 5: Running a Company on Visible Figures...range Planning .................... 5-4 Merit Rating Systems and Annual Evaluation of Performance .. ..... ........... 5-4 Mobility of Management...generations of careful quality-conscious buyers. The indus- trial engine ran on the talents of designers, packagers, and advertisers . Turning out new
The human context and natural character of wilderness lands
H. Ken Cordell; Danielle Murphy; Kurt H. Riitters; J.E. Harvard
2005-01-01
This chapter describes the lands that make up the National Wilderness Preservation System (NWPS). The first section includes statistics on trends in designations since the creation of the NWPS and describes the current size of the System in total land area and number of areas across the country. Also included are descriptions of the prevalence of NWPS lands by states...
Code of Federal Regulations, 2012 CFR
2012-07-01
... each . . . You must . . . 1. Group 1 transfer rack a. Reduce emissions of total organic HAP by ≥98... through a closed-vent system to any combination of control devices (except a flare); or b. Reduce....982(d) and the requirements referenced therein; or d. Use a vapor balancing system designed and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... each . . . You must . . . 1. Group 1 transfer rack a. Reduce emissions of total organic HAP by ≥98... through a closed-vent system to any combination of control devices (except a flare); or b. Reduce....982(d) and the requirements referenced therein; or d. Use a vapor balancing system designed and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... each . . . You must . . . 1. Group 1 transfer rack a. Reduce emissions of total organic HAP by ≥98... through a closed-vent system to any combination of control devices (except a flare); or b. Reduce....982(d) and the requirements referenced therein; or d. Use a vapor balancing system designed and...
Code of Federal Regulations, 2010 CFR
2010-01-01
...'s true energy consumption characteristics as to provide materially inaccurate comparative data... clothes washers should be totally representative of the design, construction, and control system that will...
Code of Federal Regulations, 2012 CFR
2012-01-01
...'s true energy consumption characteristics as to provide materially inaccurate comparative data... clothes washers should be totally representative of the design, construction, and control system that will...
Code of Federal Regulations, 2011 CFR
2011-01-01
...'s true energy consumption characteristics as to provide materially inaccurate comparative data... clothes washers should be totally representative of the design, construction, and control system that will...
Energy Systems Integration Facility Named Lab of the Year | News | NREL
series of LEED Platinum high-performance buildings at NREL. Constructed by the design-build team of medium voltage outdoor testing areas. The total cost to build and equip ESIF was $135 million. "To
Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods
NASA Astrophysics Data System (ADS)
Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi
2010-06-01
Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.
2015-12-21
Entrepreneurship competation, April, 2015 3rd Place, EE Technology Symposium, UTSA, April, 2015 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number...that deal with concentration and focus. The senior design project won the 2nd place in the UTSA Center for Innovation and Technology Entrepreneurship ...focus. The senior design project won the 2nd place in the UTSA Center for Innovation and Technology Entrepreneurship (CITE) competition and 3rd
ERIC Educational Resources Information Center
Bohl, Alex A.; Phelan, Elizabeth A.; Fishman, Paul A.; Harris, Jeffrey R.
2012-01-01
Purpose of the Study: To examine the components of cost that drive increased total costs after a medical fall over time, stratified by injury severity. Design and Methods: We used 2004-2007 cost and utilization data for persons enrolled in an integrated care delivery system. We used a longitudinal cohort study design, where each individual…
The Advanced Gamma-ray Imageing System (AGIS): Simulation Design Studies
NASA Astrophysics Data System (ADS)
Bugaev, V.; Buckley, J.; Digel, S.; Fegan, S.; Funk, S.; Konopelko, A.; Krawczynski, H.; Lebohec, S.; Maier, G.; Vassiliev, V.
2008-04-01
We present design studies for AGIS, a proposed array of ˜100 imaging atmospheric Cherenkov telescopes for gamma-rays astronomy in the 40GeV to 100 TeV energy regime. We describe optimization studies for the array configuration, pixel size and field of view aimed at achieving the best sensitivity over the entire energy range and best angular resolution for a fixed project total cost.
Study of quiet turbofan STOL aircraft for short haul transportation
NASA Technical Reports Server (NTRS)
Higgins, T. P.; Stout, E. G.; Sweet, H. S.
1973-01-01
Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.
Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1974-01-01
Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. The total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.
Design Activity in the Software Cost Reduction Project.
1986-08-18
PM Physical Model S G System Generation SS Shared Services SU System Utilities . NOV M N 1600SEP A 0 JUL TOTAL 14000 MAAR cc 100 FEB :IESGN 0o 10000...iy---- .... ;’ TESTING Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85 M3ITH Fig. 7 - Shared services activities A F 0 U E C 1600 G B T...DISCUSSING 200M Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85 Fig 13 - Shared services design activities 5.~ S% 12 ......,ooU7 . . NRL REPORT 8974 A
Apollo experience report: Voice communications techniques and performance
NASA Technical Reports Server (NTRS)
Dabbs, J. H.; Schmidt, O. L.
1972-01-01
The primary performance requirement of the spaceborne Apollo voice communications system is percent word intelligibility, which is related to other link/channel parameters. The effect of percent word intelligibility on voice channel design and a description of the verification procedures are included. Development and testing performance problems and the techniques used to solve the problems are also discussed. Voice communications performance requirements should be comprehensive and verified easily; the total system must be considered in component design, and the necessity of voice processing and the associated effect on noise, distortion, and cross talk should be examined carefully.
NASA Technical Reports Server (NTRS)
Garrocq, C. A.; Hurley, M. J.; Dublin, M.
1973-01-01
A baseline implementation plan, including alternative implementation approaches for critical software elements and variants to the plan, was developed. The basic philosophy was aimed at: (1) a progressive release of capability for three major computing systems, (2) an end product that was a working tool, (3) giving participation to industry, government agencies, and universities, and (4) emphasizing the development of critical elements of the IPAD framework software. The results of these tasks indicate an IPAD first release capability 45 months after go-ahead, a five year total implementation schedule, and a total developmental cost of 2027 man-months and 1074 computer hours. Several areas of operational cost increases were identified mainly due to the impact of additional equipment needed and additional computer overhead. The benefits of an IPAD system were related mainly to potential savings in engineering man-hours, reduction of design-cycle calendar time, and indirect upgrading of product quality and performance.
Performance of a Haynes 188 metallic standoff thermal protection system at Mach 7
NASA Technical Reports Server (NTRS)
Avery, D. E.
1981-01-01
A flight weight, metallic thermal protection system (TPS) model applicable to reentry and hypersonic vehicles was subjected to multiple cycles of both radiant and aerothermal heating to evaluate its aerothermal performance and structural integrity. The TPS was designed for a maximum operating temperature of 1255 K and featured a shingled, corrugation stiffened corrugated skin heat shield of Haynes 188, a cobalt base alloy. The model was subjected to 3 radiant preheat/aerothermal tests for a total of 67 seconds and to 15 radiant heating tests for a total of 85.9 minutes at 1255 K. The TPS limited the primary structure to temperatures below 430 K in all tests. No catastrophic failures occurred in the heat shields, supports, or insulation system. The TPS continued to function even after exposure to a differential temperature 4 times the design value produced thermal buckles in the outer skin. The shingled thermal expansion joint effectively allowed for thermal expansion of the heat shield without allowing any appreciable hot gas flow into the model cavity, even though the overlap gap between shields increased after several thermal cycles.
An advanced generation land mobile satellite system and its critical technologies
NASA Technical Reports Server (NTRS)
Naderi, F.
1982-01-01
A conceptual design for a Land Mobile Satellite System (LMSS) for the 1990s is presented. LMSS involves small tranceivers accessing satellites directly, with ground reception through small car-top antennas. The satellite would have a large antenna and blanket coverage areas in the UHF. The call may originate from a home, be carried by wire to a gateway, transmitted to satellite on the S-band, converted to UHF on the satellite, and transmitted to the vehicle. The system design is constrained by the number of users in an area during the busiest hours, Shuttle storage, controllability factors, and the total area served. A 55-m antenna has been selected, with 87 spot beams and two 10 MHz UHF bands in the 806-890 MHz band. A 17 dB interbeam isolation level is required, implying that sufficient sub-bands can be generated to assure 8265 total channels. The mobile satellite (MSAT) would have an 83 m mast lower segment, a 34 m upper segment, and a second, 10 m antenna made of a deployable mesh. Various antenna function modes are considered.
Avco Lycoming QCGAT program design cycle, demonstrated performance and emissions
NASA Technical Reports Server (NTRS)
Fogel, P.; Koschier, A.
1980-01-01
A high bypass ratio, twin spool turbofan engine of modular design which incorporates a front fan module driven by a modified LTS101 core engine was tested. The engine is housed in a nacelle incorporating full length fan ducting with sound treatment in both the inlet and fan discharge flow paths. Design goals of components and results of component tests are presented together with full engine test results. The rationale behind the combustor design selected for the engine is presented as well as the emissions test results. Total system (engine and nacelle) test results are included.
Telemetry and control system for interplatform crude loading at the Statfjord Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malmin, P.C.; Lassa, P.
1986-01-01
A control system for crude loading to tankers at the Statfjord field has been designed by Mobil Exploration Norway Inc. The objective of the interplatform crude tieline and control system was to allow tanker loading to take place at all times in order to prevent production shutdowns due to loading buoy problems. The control system has been designed to maximize the flexibility of loading operations and meet all safety and regulatory requirements. This paper discusses the design criteria for the crude tieline control system, and describes how these were met by utilizing fail safe telemetry equipment, hardwired permissive relay logicmore » and programmable logic controllers (PLC's). The experience gained from more than three years of operation of the system is reviewed. The system has allowed maximum use of total field storage capacity while loading crude to 125000 DWT tankers nearly every day throughout the year. It has been possible to maintain a high production rate event through periods of difficult weather conditions as experienced in the northern North Sea.« less
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray;
2013-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew
2012-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Modeling an enhanced ridesharing system with meet points and time windows
Li, Xin; Hu, Sangen; Deng, Kai
2018-01-01
With the rising of e-hailing services in urban areas, ride sharing is becoming a common mode of transportation. This paper presents a mathematical model to design an enhanced ridesharing system with meet points and users’ preferable time windows. The introduction of meet points allows ridesharing operators to trade off the benefits of saving en-route delays and the cost of additional walking for some passengers to be collectively picked up or dropped off. This extension to the traditional door-to-door ridesharing problem brings more operation flexibility in urban areas (where potential requests may be densely distributed in neighborhood), and thus could achieve better system performance in terms of reducing the total travel time and increasing the served passengers. We design and implement a Tabu-based meta-heuristic algorithm to solve the proposed mixed integer linear program (MILP). To evaluate the validation and effectiveness of the proposed model and solution algorithm, several scenarios are designed and also resolved to optimality by CPLEX. Results demonstrate that (i) detailed route plan associated with passenger assignment to meet points can be obtained with en-route delay savings; (ii) as compared to CPLEX, the meta-heuristic algorithm bears the advantage of higher computation efficiency and produces good quality solutions with 8%~15% difference from the global optima; and (iii) introducing meet points to ridesharing system saves the total travel time by 2.7%-3.8% for small-scale ridesharing systems. More benefits are expected for ridesharing systems with large size of fleet. This study provides a new tool to efficiently operate the ridesharing system, particularly when the ride sharing vehicles are in short supply during peak hours. Traffic congestion mitigation will also be expected. PMID:29715302
High-power converters for space applications
NASA Technical Reports Server (NTRS)
Park, J. N.; Cooper, Randy
1991-01-01
Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.
New approach to isometric transformations in oblique local coordinate systems of reference
NASA Astrophysics Data System (ADS)
Stępień, Grzegorz; Zalas, Ewa; Ziębka, Tomasz
2017-12-01
The research article describes a method of isometric transformation and determining an exterior orientation of a measurement instrument. The method is based on a designation of a "virtual" translation of two relative oblique orthogonal systems to a common, known in the both systems, point. The relative angle orientation of the systems does not change as each of the systems is moved along its axis. The next step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles), transformation of the system convoluted at the calculated angles and moving the system to the initial position where the primary coordinate system was. This way eliminates movements of the systems from the calculations and makes it possible to calculate angles of mutual rotation angles of two orthogonal systems primarily involved in the movement. The research article covers laboratory calculations for simulated data. The accuracy of the results is 10-6 m (10-3 regarding the accuracy of the input data). This confi rmed the correctness of the assumed calculation method. In the following step the method was verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The proposed method enabled to make the measurements with the oblique and uncentered instrument, e.g. total station instrument set over an unknown point. This is the reason why the method was named by the authors as Total Free Station - TFS. The method may be also used for isometric transformations for photogrammetric purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, C.K.; Pandit, D.R.; Kwon, S.G.
The paper describes the hydraulic design and hydraulic transient analysis of the re-circulating water cooling system of the combined cyclo Sipco power cogeneration plant in Thailand. The power plant of 450 MW total capacity is proposed to be built in two stages. Stage one will produce 300 MW of power and will consist of two gas turbine generators (GTG) and one steam turbine generator (STG). Stage two will produce 150 MW of power and will consist of one GTG and one STG. The cooling system will consist of one GTG and one STG. The cooling system will consist of coolingmore » towers, a combined collecting basin and pump intake sump, pumps and motors, and separate conveyance systems and condensers for the generator units in the two stages. In a re-circulating water cooling system, cold water is pumped from the pump intake sump to the condensers through the conveyance system and hot water from the condensers is carried through the returning pipeline system to the cooling towers, whence the water after cooling is drained into the sump at the base of the towers. Total cooling water requirement for the system in stage one is estimated to be 112,000 gallons per minute (GPM), and that in stage two, 56,000 GPM. The sump is designed using the computer program HEC-2, developed by the US Army Corps of Engineers (COE) and the pump intake basin, following the recommendations of the Hydraulic Institute. The pumps were sized by computing the head loss in the system, and, the steady state and transient performances (during pump start-up and shut-down procedures and due to possible power or mechanical failure of one or all pumps) of the system were analyzed by mathematically modeling the system using the computer program WHAMO (Water Hammer nd Mass Oscillations), also developed by the COE.« less
Reliability studies of Integrated Modular Engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of Integrated Modular Engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
NASA Technical Reports Server (NTRS)
1980-01-01
The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.
Ship Underwater Threat Response System (SUTRS): A Feasibility Study of Organic Mine Point-Defense
2012-09-01
by implementing and testing the design until a final product has been established that addresses (and has been traced throughout to) the...The assumptions used to evaluate those TPMs are as follows: • The threshold Probability of Success for the total system should be 90% survival...Threat Response System xviii TOA Table of Allowance TPM Technical Performance Measures TTP Tactics Techniques and Procedures U.S. United
NASA Technical Reports Server (NTRS)
1982-01-01
Primary and automatic flight controls are combined for a total flight control reliability and maintenance cost data base using information from two previous reports and additional cost data gathered from a major airline. A comparison of the current B-747 flight control system effects on reliability and operating cost with that of a B-747 designed for an active control wing load alleviation system is provided.
Arrúa, Alejandra; Curutchet, María Rosa; Rey, Natalia; Barreto, Patricia; Golovchenko, Nadya; Sellanes, Andrea; Velazco, Guillermo; Winokur, Medy; Giménez, Ana; Ares, Gastón
2017-09-01
Research on the relative influence of package features on children's perception of food products is still necessary to aid policy design and development. The aim of the present work was to evaluate the relative influence of two front-of-pack (FOP) nutrition labelling schemes, the traffic light system and Chilean warning system, and label design on children's choice of two popular snack foods in Uruguay, wafer cookies and orange juice. A total of 442 children in grades 4 to 6 from 12 primary schools in Montevideo (Uruguay) participated in the study. They were asked to complete a choice-conjoint task with wafer cookies and orange juice labels, varying in label design and the inclusion of FOP nutrition information. Half of the children completed the task with labels featuring the traffic-light system (n = 217) and the other half with labels featuring the Chilean warning system (n = 225). Children's choices of wafer cookies and juice labels was significantly influenced by both label design and FOP nutritional labels. The relative impact of FOP nutritional labelling on children's choices was higher for the warning system compared to the traffic-light system. Results from the present work stress the need to regulate the design of packages and the inclusion of nutrient claims, and provide preliminary evidence of the potential of warnings to discourage children's choice of unhealthful products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design and implementation of low power clock gated 64-bit ALU on ultra scale FPGA
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Murgai, Shruti; Gulati, Anmol; Kumar, Pradeep
2016-03-01
64-bit energy efficient Arithmetic and Logic Unit using negative latch based clock gating technique is designed in this paper. The 64-bit ALU is designed using multiplexer based full adder cell. We have designed a 64-bit ALU with a gated clock. We have used negative latch based circuit for generating gated clock. This gated clock is used to control the multiplexer based 64-bit ALU. The circuit has been synthesized on kintex FPGA through Xilinx ISE Design Suite 14.7 using 28 nm technology in Verilog HDL. The circuit has been simulated on Modelsim 10.3c. The design is verified using System Verilog on QuestaSim in UVM environment. We have achieved 74.07%, 92. 93% and 95.53% reduction in total clock power, 89.73%, 91.35% and 92.85% reduction in I/Os power, 67.14%, 62.84% and 74.34% reduction in dynamic power and 25.47%, 29.05% and 46.13% reduction in total supply power at 20 MHz, 200 MHz and 2 GHz frequency respectively. The power has been calculated using XPower Analyzer tool of Xilinx ISE Design Suite 14.3.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
Solid Hydrogen Experiments for Atomic Propellants: Image Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2002-01-01
This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
Thermal/structural design verification strategies for large space structures
NASA Technical Reports Server (NTRS)
Benton, David
1988-01-01
Requirements for space structures of increasing size, complexity, and precision have engendered a search for thermal design verification methods that do not impose unreasonable costs, that fit within the capabilities of existing facilities, and that still adequately reduce technical risk. This requires a combination of analytical and testing methods. This requires two approaches. The first is to limit thermal testing to sub-elements of the total system only in a compact configuration (i.e., not fully deployed). The second approach is to use a simplified environment to correlate analytical models with test results. These models can then be used to predict flight performance. In practice, a combination of these approaches is needed to verify the thermal/structural design of future very large space systems.
Nishino, K; Hayashi, T; Suzuki, Y; Koga, Y; Omori, G
1999-01-01
The function and integrity of the knee joint following total knee arthroplasty (TKA) is determined at first by the design and implantation of the prosthesis, and later by the tension of soft tissues surrounding it. Accurate post-TKA motion data obtained intraoperatively could be used not only to optimize implantation techniques from a kinematic standpoint, but also to improve prosthetic design. We therefore developed a system specifically geared to photostereometric measurement of 6 d.o.f. knee motion. A total of eight LEDs are mounted on the prosthetic components in two sets of four by means of connecting measuring-bows. The positions of the LEDs are detected in three-dimensions by two sets of three linear CCD cameras, located bilaterally relative to the knee. The position and orientation of the femoral component relative to the tibial one are estimated from the positions of all LEDs in the sense of least-squares. Based upon results of various accuracy validation experiments performed after precise camera calibration, static overall accuracy and spatial resolution were considered to lie within 0.52 and 0.11 mm, respectively, at any point on the femoral articular surface.
NASA Technical Reports Server (NTRS)
Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.
1980-01-01
Technologies including accelerated technology that are critical to performance and/or provide cost advantages for future space transportation systems are identified. Mission models are scoped and include priority missions, and cargo missions. Summary data, providing primary design concepts and features, are given for the SSTO, HLLV, POTV, and LCOTV vehicles. Significant system costs and total system costs in terms of life cycle costs in both discounted and undiscounted dollars are summarized for each of the vehicles.
Solar hot water system installed at Anderson, South Carolina
NASA Technical Reports Server (NTRS)
1978-01-01
A description is given of the solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina. The building is a low-rise, two-story 114-room motel. The solar system was designed to provide 40 percent of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.
Total quality management in blood transfusion.
Smit-Sibinga, C T
2000-01-01
Quality management is an ongoing development resulting in consistency products and services and ever increasing customer satisfaction. The ultimum is Total Quality Management. Quality systems and quality management in transfusion medicine have gained considerable attention since the outbreak of the AIDS epidemic. Where product orientation has long been applied through quality control, Good Manufacturing Practice (GMP) principles were introduced, shifting the developments in the direction of process orientation. Globally, and particularly in the more industrialised world people and system orientation has come along with the introduction of the ISO9001 concept. Harmonisation and a degree of uniformity are needed to implement a universally applicable Quality System and related Quality Management. Where the American Association of Blood Banks (AABB) is the professional organisation with the most extensive experience in quality systems in blood transfusion, the European Union and the Council of Europe now are in the process to design a quality system and management applicable to a larger variety of countries, based on a hybrid of current GMP and ISO9001 principles. The International Federation of Red Cross and Red Crescent Societies has developed a more universally to implement Quality Manual, with a pilot project in Honduras. It is recommendable to harmonise the various designs and bring the approaches under one common denominator.
Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Drobnik, R. F.
1979-01-01
The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.
Committed HSE management Vs TQM: Is there any difference?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitken, J.D.; McMath, C.R.; Lombardo, G.J.
1996-11-01
Safe performance of oilfield service operations at unfamiliar customer installations requires service personnel that are highly trained and motivated. When such operations are made in over sixty countries with an independent, multi-cultural work force, an additional level of difficulty in achieving an improved level of HSE (Health, Safety & Environment) performance is introduced. Recognizing these challenges, one company set out in 1989 to implement a comprehensive HSE management system suited to this environment. The system, described here, was launched with total commitment and participation of all levels of management and was designed to empower the work force rather than forcemore » them into compliance. This included a realignment of management priorities to give HSE a primary place along with other management responsibilities. One central theme of the system is a single standard applied to all HSE actions, throughout the world and at all levels of the Company. Thus, for example, all employees including all managers go through the same basic HSE training courses on a regular basis. After six years, a cultural change has taken place, along with a notable reduction in both accident frequency and severity, measured in terms of lost workdays. This reduction in lost workdays is an easily quantifiable cost saving which by far outweighs the total cost of the HSE system implementation. While the HSE management system was designed to specifically meet the needs of the company, the techniques used closely parallel those of Total Quality Management (TQM), which, in the last years, has gained momentum as a {open_quotes}new paradigm{close_quotes} in the HSE field. In this company`s experience, a common sense application of sound management to the HSE process has led to a TQM system.« less
Three-Man Solid Electrolyte Carbon Dioxide Electrolysis Breadboard
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.
1989-01-01
The development of the Three-Man (2.2 lb CO2/man-day) Solid Electrolyte CO2 Electrolysis Breadboard consisted of a Phase 1 and 2 effort. The Phase 1 effort constituted fabrication of three electrolysis cell types and performing parametric testing, off-design testing, and cell life testing. The Phase 2 consisted of the preliminary design, incorporation of palladium (Pd) tubes for hydrogen separation from the electrolyzer cathode feed gases, design support testing, final design, fabrication, and performance testing of the breadboard system. The results of performance tests demonstrated that CO2 electrolysis in an oxygen reclamation system for long duration space-based habitats is feasible. Closure of the oxygen system loop, therefore, can be achieved by CO2 electrolysis. In a two step process the metabolic CO2 and H2O vapor are electrolyzed into O2, H2, and CO. The CO can subsequently be disproportionated into carbon and CO2 in a carbon deposition reactor and the CO2 in turn be recycled and electrolyzed for total O2 recovery. The development effort demonstrated electrolyzer system can be designed and built to operate safely and reliably and the incorporation of Pd tubes for hydrogen diffusion can be integrated safely with predictable performance.
Dong, Zhao; Nath, Anjali; Guo, Jing; Bhaumik, Urmi; Chin, May Y; Dong, Sherry; Marshall, Erica; Murphy, Johnna S; Sandel, Megan T; Sommer, Susan J; Ursprung, W W Sanouri; Woods, Elizabeth R; Reid, Margaret; Adamkiewicz, Gary
2018-01-01
To test the applicability of the Environmental Scoring System, a quick and simple approach for quantitatively measuring environmental triggers collected during home visits, and to evaluate its contribution to improving asthma outcomes among various child asthma programs. We pooled and analyzed data from multiple child asthma programs in the Greater Boston Area, Massachusetts, collected in 2011 to 2016, to examine the association of environmental scores (ES) with measures of asthma outcomes and compare the results across programs. Our analysis showed that demographics were important contributors to variability in asthma outcomes and total ES, and largely explained the differences among programs at baseline. Among all programs in general, we found that asthma outcomes were significantly improved and total ES significantly reduced over visits, with the total Asthma Control Test score negatively associated with total ES. Our study demonstrated that the Environmental Scoring System is a useful tool for measuring home asthma triggers and can be applied regardless of program and survey designs, and that demographics of the target population may influence the improvement in asthma outcomes.
40 CFR 63.1413 - Compliance demonstration procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... HAP concentration. (iii) For a carbon adsorption system that regenerates the carbon bed directly... organic compound concentration level, adsorption cycle time, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total regeneration stream mass or...
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)
1983-01-01
Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.
Climate Conditioning for the Learning Environment.
ERIC Educational Resources Information Center
Perkins and Will, Architects, Chicago, IL.
Discusses heating, cooling, and ventilation for the classroom in relationship to students' learning abilities. It is designed to assist school boards, administrators, architects and engineers in understanding the beneficial effects of total climate control, and in evaluating the climate conditioning systems available for schools. Discussion…
Aerothermodynamic Design of the Mars Science Laboratory Heatshield
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.
2009-01-01
Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.
Bread Basket: a gaming model for estimating home-energy costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An instructional manual for answering the twenty variables on COLORADO ENERGY's computerized program estimating home energy costs. The program will generate home-energy cost estimates based on individual household data, such as total square footage, number of windows and doors, number and variety of appliances, heating system design, etc., and will print out detailed costs, showing the percentages of the total household budget that energy costs will amount to over a twenty-year span. Using the program, homeowners and policymakers alike can predict the effects of rising energy prices on total spending by Colorado households.
The current development status of the Orbiting Carbon Observatory (OCO) instrument optical design
NASA Technical Reports Server (NTRS)
Haring, Robert; Sutin, Brian; Crisp, David; Pollock, Randy; Sundstrand, Hamilton
2005-01-01
The status of the OCO instrument optical design is presented in this paper. The optical bench assembly comprises three cooled grating spectrometers coupled to an all-reflective telescope/relay system. Dichroic beam splitters are used to separate the light from a common telescope into the three spectral bands. The three bore sighted spectrometers allow the total column CO2 absorption path to be corrected for optical path and surface pressure uncertainties, aerosols, and water vapor. The design of the instrument is based on classic flight proven technologies.
OVERMODED HIGH-POWER RF MAGNETIC SWITCHES AND CIRCULATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tantawi, Sami
2002-08-20
We present design methodology for active rf magnetic components which are suitable for pulse compression systems of future X-band linear colliders. These components comprise an array of active elements arranged together so that the total electromagnetic field is reduced and the power handling capabilities are increased. The active element of choice is a magnetic material (garnet), which can be switched by changing a biasing magnetic field. A novel design allows these components to operate in the low loss circular waveguide mode TE{sub 01}. We describe the design methodology, the switching elements and circuits.
NASA Astrophysics Data System (ADS)
Sadeghi, Pegah; Safavinejad, Ali
2017-11-01
Radiative entropy generation through a gray absorbing, emitting, and scattering planar medium at radiative equilibrium with diffuse-gray walls is investigated. The radiative transfer equation and radiative entropy generation equations are solved using discrete ordinates method. Components of the radiative entropy generation are considered for two different boundary conditions: two walls are at a prescribed temperature and mixed boundary conditions, which one wall is at a prescribed temperature and the other is at a prescribed heat flux. The effect of wall emissivities, optical thickness, single scattering albedo, and anisotropic-scattering factor on the entropy generation is attentively investigated. The results reveal that entropy generation in the system mainly arises from irreversible radiative transfer at wall with lower temperature. Total entropy generation rate for the system with prescribed temperature at walls remarkably increases as wall emissivity increases; conversely, for system with mixed boundary conditions, total entropy generation rate slightly decreases. Furthermore, as the optical thickness increases, total entropy generation rate remarkably decreases for the system with prescribed temperature at walls; nevertheless, for the system with mixed boundary conditions, total entropy generation rate increases. The variation of single scattering albedo does not considerably affect total entropy generation rate. This parametric analysis demonstrates that the optical thickness and wall emissivities have a significant effect on the entropy generation in the system at radiative equilibrium. Considering the parameters affecting radiative entropy generation significantly, provides an opportunity to optimally design or increase overall performance and efficiency by applying entropy minimization techniques for the systems at radiative equilibrium.
Office of university affairs management information system: Users guide and documentation
NASA Technical Reports Server (NTRS)
Distin, J.; Goodwin, D.; Greene, W. A.
1977-01-01
Data on the NASA-University relationship are reported that encompass research in over 600 schools through several thousand grants and contracts. This user-driven system is capable of producing a variety of cyclical and query-type reports describing the total NASA-University profile. The capabilities, designed as part of the system, require a minimum of user maintenance in order to ensure system efficiency and data validity to meet the recurrent Statutory and Executive Branch information requirements as well as ad hoc inquiries from NASA general management, Congress, other Federal agencies, private sector organizations, universities and individuals. The data base contains information on each university, the individual projects and the financial details, current and historic, on all contracts and grants. Complete details are given on the system from its unique design features to the actual steps required for daily operation.
The architecture and conservation pattern of whole-cell control circuitry.
McAdams, Harley H; Shapiro, Lucy
2011-05-27
The control circuitry that directs and paces Caulobacter cell cycle progression involves the entire cell operating as an integrated system. This control circuitry monitors the environment and the internal state of the cell, including the cell topology, as it orchestrates orderly activation of cell cycle subsystems and Caulobacter's asymmetric cell division. The proteins of the Caulobacter cell cycle control system and its internal organization are co-conserved across many alphaproteobacteria species, but there are great differences in the regulatory apparatus' functionality and peripheral connectivity to other cellular subsystems from species to species. This pattern is similar to that observed for the "kernels" of the regulatory networks that regulate development of metazoan body plans. The Caulobacter cell cycle control system has been exquisitely optimized as a total system for robust operation in the face of internal stochastic noise and environmental uncertainty. When sufficient details accumulate, as for Caulobacter cell cycle regulation, the system design has been found to be eminently rational and indeed consistent with good design practices for human-designed asynchronous control systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Does unbelted safety requirement affect protection for belted occupants?
Hu, Jingwen; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Narayanaswamy, Prabha; Reed, Matthew P; Andreen, Margaret; Neal, Mark; Lin, Chin-Hsu
2017-05-29
Federal regulations in the United States require vehicles to meet occupant performance requirements with unbelted test dummies. Removing the test requirements with unbelted occupants might encourage the deployment of seat belt interlocks and allow restraint optimization to focus on belted occupants. The objective of this study is to compare the performance of restraint systems optimized for belted-only occupants with those optimized for both belted and unbelted occupants using computer simulations and field crash data analyses. In this study, 2 validated finite element (FE) vehicle/occupant models (a midsize sedan and a midsize SUV) were selected. Restraint design optimizations under standardized crash conditions (U.S.-NCAP and FMVSS 208) with and without unbelted requirements were conducted using Hybrid III (HIII) small female and midsize male anthropomorphic test devices (ATDs) in both vehicles on both driver and right front passenger positions. A total of 10 to 12 design parameters were varied in each optimization using a combination of response surface method (RSM) and genetic algorithm. To evaluate the field performance of restraints optimized with and without unbelted requirements, 55 frontal crash conditions covering a greater variety of crash types than those in the standardized crashes were selected. A total of 1,760 FE simulations were conducted for the field performance evaluation. Frontal crashes in the NASS-CDS database from 2002 to 2012 were used to develop injury risk curves and to provide the baseline performance of current restraint system and estimate the injury risk change by removing the unbelted requirement. Unbelted requirements do not affect the optimal seat belt and airbag design parameters in 3 out of 4 vehicle/occupant position conditions, except for the SUV passenger side. Overall, compared to the optimal designs with unbelted requirements, optimal designs without unbelted requirements generated the same or lower total injury risks for belted occupants depending on statistical methods used for the analysis, but they could also increase the total injury risks for unbelted occupants. This study demonstrated potential for reducing injury risks to belted occupants if the unbelted requirements are eliminated. Further investigations are necessary to confirm these findings.
Solar power satellite system definition study. Volume 4: Solid State SPS Analysis, Phase 3
NASA Technical Reports Server (NTRS)
1980-01-01
A 2500 megawatt solid ground output Solar Power Satellite (SPS) of conventional configuration was designed and analyzed. Because the power per receiving antenna is halved, as compared with the klystron reference, twice the number of receiving antennas are needed to deliver the same total power. The solid state approach appears feasible with a slightly greater specific mass and slightly higher cost than the klystron SPS design.
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
Autonomous GPS/INS navigation experiment for Space Transfer Vehicle
NASA Technical Reports Server (NTRS)
Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.
1993-01-01
An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.
Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)
NASA Technical Reports Server (NTRS)
Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne
1991-01-01
An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.
Autonomous GPS/INS navigation experiment for Space Transfer Vehicle
NASA Astrophysics Data System (ADS)
Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.
1993-07-01
An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.
NASA Technical Reports Server (NTRS)
Sinha, A. K.
1989-01-01
The Wrap-Rib Antenna is a deployable lightweight shaped reflector. It consists of a central hub, parabolic ribs, and an rf reflector mesh. The wrap-rib reflector approximates the desired surface by means of pie-shaped segments of parabolic cylinders. The elements of the total system and the feasibility of the system are discussed.
ERIC Educational Resources Information Center
Saif, Perveen; Reba, Amjad; ud Din, Jalal
2017-01-01
This study was designed to compare the subject knowledge of B.Ed graduates of formal and non-formal teacher education systems. The population of the study included all teachers from Girls High and Higher Secondary Schools both from private and public sectors from the district of Peshawar. Out of the total population, twenty schools were randomly…
Optimization of municipal pressure pumping station layout and sewage pipe network design
NASA Astrophysics Data System (ADS)
Tian, Jiandong; Cheng, Jilin; Gong, Yi
2018-03-01
Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.
Cryogenic solid Schmidt camera as a base for future wide-field IR systems
NASA Astrophysics Data System (ADS)
Yudin, Alexey N.
2011-11-01
Work is focused on study of capability of solid Schmidt camera to serve as a wide-field infrared lens for aircraft system with whole sphere coverage, working in 8-14 um spectral range, coupled with spherical focal array of megapixel class. Designs of 16 mm f/0.2 lens with 60 and 90 degrees sensor diagonal are presented, their image quality is compared with conventional solid design. Achromatic design with significantly improved performance, containing enclosed soft correcting lens behind protective front lens is proposed. One of the main goals of the work is to estimate benefits from curved detector arrays in 8-14 um spectral range wide-field systems. Coupling of photodetector with solid Schmidt camera by means of frustrated total internal reflection is considered, with corresponding tolerance analysis. The whole lens, except front element, is considered to be cryogenic, with solid Schmidt unit to be flown by hydrogen for improvement of bulk transmission.
Optical Design with Narrow-Band Imaging for a Capsule Endoscope.
Yen, Chih-Ta; Lai, Zong-Wei; Lin, Yu-Ting; Cheng, Hsu-Chih
2018-01-01
The study proposes narrow-band imaging (NBI) lens design of 415 nm and 540 nm of a capsule endoscope (CE). The researches show that in terms of the rate of accuracy in detecting and screening neoplastic and nonneoplastic intestinal lesions, the NBI system outperformed that of traditional endoscopes and rivaled that of chromoendoscopes. In the proposed NBI CE optical system, the simulation result shows the field of view (FOV) was 109.8°; the modulation transfer function (MTF) could achieve 12.5% at 285 lp/mm and 34.1% at 144 lp/mm. The relative illumination reaches more than 60%, and the system total length was less than 4 mm. Finally, this design provides high-quality images for a 300-megapixel 1/4 ″ CMOS image sensor with a pixel size of 1.75 μ m.
Analysis of inlet flow distortion and turbulence effects on compressor stability
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.
1973-01-01
The effect of steady state circumferential total pressure distortion on the loss in compressor stall pressure ratio has been established by analytical techniques. Full scale engine and compressor/fan component test data were used to provide direct evaluation of the analysis. Specifically, since a circumferential total pressure distortion in an inlet system will result in unsteady flow in the coordinate system of the rotor blades, analysis of this type distortion must be performed from an unsteady aerodynamic point of view. By application of the fundamental aerothermodynamic laws to the inlet/compressor system, parameters important in the design of such a system for compatible operation have been identified. A time constant, directly related to the compressor rotor chord, was found to be significant, indicating compressor sensitivity to circumferential distortion is directly dependent on the rotor chord.
NASA Astrophysics Data System (ADS)
Geressu, Robel T.; Harou, Julien J.
2015-12-01
Multi-reservoir system planners should consider how new dams impact downstream reservoirs and the potential contribution of each component to coordinated management. We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. This proof-of concept study shows that recommended Blue Nile system designs would depend on whether monthly firm energy or annual energy is prioritized. 39 TWh/yr of energy potential is available from the proposed Blue Nile reservoirs. The results show that depending on the amount of energy deemed sufficient, the current maximum capacities of the planned reservoirs could be larger than they need to be. The method can also be used to inform which of the proposed reservoir type and their storage sizes would allow for the highest downstream benefits to Sudan in different objectives of upstream operating objectives (i.e., operated to maximize either average annual energy or firm energy). The proposed approach identifies the most promising system designs, reveals how they imply different trade-offs between metrics of system performance, and helps system planners asses the sensitivity of overall performance to the design parameters of component reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascough, II, James Clifford
1992-05-01
The capability to objectively evaluate design performance of shallow landfill burial (SLB) systems is of great interest to diverse scientific disciplines, including hydrologists, engineers, environmental scientists, and SLB regulators. The goal of this work was to develop and validate a procedure for the nonsubjective evaluation of SLB designs under actual or simulated environmental conditions. A multiobjective decision module (MDM) based on scoring functions (Wymore, 1988) was implemented to evaluate SLB design performance. Input values to the MDM are provided by hydrologic models. The MDM assigns a total score to each SLB design alternative, thereby allowing for rapid and repeatable designmore » performance evaluation. The MDM was validated for a wide range of SLB designs under different climatic conditions. Rigorous assessment of SLB performance also requires incorporation of hydrologic probabilistic analysis and hydrologic risk into the overall design. This was accomplished through the development of a frequency analysis module. The frequency analysis module allows SLB design event magnitudes to be calculated based on the hydrologic return period. The multiobjective decision and freqeuncy anslysis modules were integrated in a decision support system (DSS) framework, SLEUTH (Shallow Landfill Evaluation Using Transport and Hydrology). SLEUTH is a Microsoft Windows {trademark} application, and is written in the Knowledge Pro Windows (Knowledge Garden, Inc., 1991) development language.« less
Controls on the quality of harvested rainwater in residential systems
NASA Astrophysics Data System (ADS)
Sojka, S. L.; Phung, D.; Hollingsworth, C.
2014-12-01
Rainwater harvesting systems, in which runoff from roofs is collected and used for irrigation, toilets and other purposes, present a viable solution to limited freshwater supplies and excess stormwater runoff. However, a lack of data on the quality of harvested rainwater hinders adoption of rainwater harvesting systems and makes development of rainwater harvesting regulations difficult. We conducted monthly surveys of 6 existing residential rainwater harvesting systems ranging in age from 1 to 11 years measuring pH, temperature, dissolved oxygen, total suspended solids, dissolved organic carbon, and coliform bacteria. We also examined a subset of the samples for iron, lead, mercury and arsenic. Many of the systems routinely met the water quality requirements for non-potable use without additional treatment, which is often required by regulations. In addition, while previous studies have shown that roof runoff contains heavy metals, the water in all systems showed very low or undetectable levels of metal contamination. Coliform bacteria concentration ranged from 20 to greater than 1400 CFU's per 100 mL and correlated with total suspended solids, which ranged from 2 - 7 mg l-1. The relationship between suspended solids and bacteria population was confirmed in a controlled experiment on the impact of filtering the rainwater before storage. Filtration decreased total suspended solids and total coliforms and increased dissolved oxygen concentration. This project provides insight into the effects of system design and a baseline assessment of the quality of harvested rainwater in existing systems.
Zhang, Hui; Cowling, David W; Facer, Matthew
2017-12-01
Various health insurance benefit designs based on value-based purchasing have been promoted to steer patients to high-value providers, but little is known about the designs' relative effectiveness and underlying mechanisms. We compared the impact of two designs implemented by the California Public Employees' Retirement System on inpatient hospital total hip or knee replacement: a reference-based pricing design for preferred provider organizations (PPOs) and a centers-of-excellence design for health maintenance organizations (HMOs). Payment and utilization data for the procedures in the period 2008-13 were evaluated using pre-post and quasi-experimental designs at the system and health plan levels, adjusting for demographic characteristics, case-mix, and other confounders. We found that both designs prompted higher use of designated low-price high-quality facilities and reduced average replacement expenses per member at the plan and system levels. However, the designs used different routes: The reference-based pricing design reduced average replacement payments per case in PPOs by 26.7 percent in the first year, compared to HMOs, but did not lower PPO members' utilization rates. In contrast, the centers-of-excellence design lowered HMO members' utilization rates by 29.2 percent in the first year, compared to PPOs, but did not reduce HMO average replacement payments per case. The reference-based pricing design appears more suitable for reducing price variation, and the centers-of-excellence design for addressing variation in use.
Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware
NASA Astrophysics Data System (ADS)
Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.
2007-12-01
We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.
Fire Safety Analysis of the Polar Icebreaker Replacement Design. Volume 2
1987-10-01
report. ; iote : At t tne -3f incident only five or sx men were aboard: therefore, they could not atterrot to attack a fire of this intensmtp t hemse I...fire extinguisher (PKP) AUTOMATIC: A1301 Halon 1301 total flooding system - remotely actuated AF AFFF (3%) sprinkler system - remotely actuated AFM...simulate wind effects, we have found that its judicious use along with the vent and shaft routines allows for the modelling of simple HVAC systems
Prototype Wash Water Renovation System Integration with Government-Furnished Wash Fixture
NASA Technical Reports Server (NTRS)
1983-01-01
A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.
Fenna, D
1977-09-01
For nearly two decades, the development of computerized information systems has struggled for acceptable compromises between the unattainable "total system" and the unacceptable separate applications. Integration of related applications is essential if the computer is to be exploited fully, yet relative simplicity is necessary for systems to be implemented in a reasonable time-scale. This paper discusses a system being progressively developed from minimal beginnings but which, from the outset, had a highly flexible and fully integrated system basis. The system is for batch processing, but can accommodate on-line data input; it is similar in its approach to many transaction-processing real-time systems.
Traditionally, pervaporation systems have been operated using a total condenser to deliver the final permeate liquid product. Over the past two years, we have investigated the use of a condensation process called "dephlegmation" to enhance the separation performance of pervapora...
45 CFR 205.36 - State plan requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., of an automated statewide management information system designed effectively and efficiently, to assist management in the administration of an approved AFDC State plan. The submission process to amend... account for— (1) All the factors in the total eligibility determination process under the plan for aid...
Open inlet conversion: Water quality benefits of two designs
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...
Experimental investigation of a 2.5 centimeter diameter Kaufman microthruster
NASA Technical Reports Server (NTRS)
Cohen, A. J.
1973-01-01
A 2.5-centimeter-diameter Kaufman electron bombardment microthruster was fabricated and tested. The microthruster design was based on the 15-centimeter-diameter SERT 2 and 5-centimeter-diameter Lewis experimental thruster designs. The microthruster with a two-grid system, operating at a net accelerating potential of 600 volts and an accelerator potential of 500 volts, produced a calculated 445 micronewton thrust when it was run with a 9-milliampere beam current. A glass grid was initially used in testing. Later a two-grid system was successfully incorporated. Both the propellant utilization efficiency and the total power efficiency were lower than for large-size advanced thrusters, as expected; but they were sufficiently high that 2.5-centimeter thrusters show promise for future space applications. Total power of the microthruster with an assumed 7-watt hollow-cathode neutralizer was less than 30 watts at a thrust level of 445 micronewton (100 Nu LBf). The hollow cathode was operated at zero tip heater power for power requirement tests.
Satellite switched FDMA advanced communication technology satellite program
NASA Technical Reports Server (NTRS)
Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.
1982-01-01
The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.
A Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state of the art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the H2-O2 coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One dimensional equilibrium chemistry was used in the energy release analysis of the combustion chamber. A 3-D conduction and/or 1-D advection analysis is used to predict heat transfer and coolant channel wall temperature distributions, in addition to coolant temperature and pressure drop. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
A rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state-of-the-art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the hydrogen-oxygen coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One-dimensional equilibrium chemistry was employed in the energy release analysis of the combustion chamber and three-dimensional finite-difference analysis of the regenerative cooling channels was used to calculate the pressure drop along the channels and the coolant temperature as it exits the coolant circuit. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
Fabrication of Flex Joint Utilizing Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Eddleman, David; Richard, Jim
2015-01-01
The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.
Importance of implementing an analytical quality control system in a core laboratory.
Marques-Garcia, F; Garcia-Codesal, M F; Caro-Narros, M R; Contreras-SanFeliciano, T
2015-01-01
The aim of the clinical laboratory is to provide useful information for screening, diagnosis and monitoring of disease. The laboratory should ensure the quality of extra-analytical and analytical process, based on set criteria. To do this, it develops and implements a system of internal quality control, designed to detect errors, and compare its data with other laboratories, through external quality control. In this way it has a tool to detect the fulfillment of the objectives set, and in case of errors, allowing corrective actions to be made, and ensure the reliability of the results. This article sets out to describe the design and implementation of an internal quality control protocol, as well as its periodical assessment intervals (6 months) to determine compliance with pre-determined specifications (Stockholm Consensus(1)). A total of 40 biochemical and 15 immunochemical methods were evaluated using three different control materials. Next, a standard operation procedure was planned to develop a system of internal quality control that included calculating the error of the analytical process, setting quality specifications, and verifying compliance. The quality control data were then statistically depicted as means, standard deviations, and coefficients of variation, as well as systematic, random, and total errors. The quality specifications were then fixed and the operational rules to apply in the analytical process were calculated. Finally, our data were compared with those of other laboratories through an external quality assurance program. The development of an analytical quality control system is a highly structured process. This should be designed to detect errors that compromise the stability of the analytical process. The laboratory should review its quality indicators, systematic, random and total error at regular intervals, in order to ensure that they are meeting pre-determined specifications, and if not, apply the appropriate corrective actions. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, D. A.; Park, C. A.
1975-01-01
A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities.
NASA Technical Reports Server (NTRS)
Moore, B., III; Kaufmann, R.; Reinhold, C.
1981-01-01
Systems analysis and control theory consideration are given to simulations of both individual components and total systems, in order to develop a reliable control strategy for a Controlled Ecological Life Support System (CELSS) which includes complex biological components. Because of the numerous nonlinearities and tight coupling within the biological component, classical control theory may be inadequate and the statistical analysis of factorial experiments more useful. The range in control characteristics of particular species may simplify the overall task by providing an appropriate balance of stability and controllability to match species function in the overall design. The ultimate goal of this research is the coordination of biological and mechanical subsystems in order to achieve a self-supporting environment.
Total cost of 46-Mw Borax cogen system put at $30M
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Biasi, V.
1983-03-01
The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in lessmore » than 5 years of service.« less
NASA Technical Reports Server (NTRS)
Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.
1982-01-01
The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.
Ding, Bao-Fen; Chang, Polun; Wang, Ping; Li, Hai-Ting; Kuo, Ming-Chuan
2017-01-01
With an in-depth analysis of nursing work in 14 hospitals over a period of two years, one unique total nursing information system framework was established where the nursing clinical pathways are used as the main frame and the nursing orders as the nodes on the frame. We used the nursing order concept with the principles of nursing process. A closed-loop management model composed of the nursing orders was set up to solve nursing problems. Based on the principles of traditional Chinese medicine, we further designed an intelligent support module to automatically deduct clinical nursing pathways to promote standardized management and improve the quality of nursing care. The system has successfully been implemented in some facilities since 2015.
ADDJUST - An automated system for steering Centaur launch vehicles in measured winds
NASA Technical Reports Server (NTRS)
Swanson, D. C.
1977-01-01
ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.
CuOF: an electrical to optical interface for the upgrade of the CMS muon Drift Tubes system
NASA Astrophysics Data System (ADS)
Dattola, D.; De Remigis, P.; Maselli, S.; Mazza, G.; Rotondo, F.; Wheadon, R.
2013-02-01
The upgrade of the Drift Tube system of the CMS experiment foresee the relocation of the electronics actually sitting on the racks beside the magnet from the cavern to the counting room. It is thus required to convert the signals from electrical to optical, for a total number of 3500 channels that run at up to 480 Mb/s. A Copper to Optical Fiber board is currently under design. The board is divided into a mother board, which hosts the slow control system based on Field Programmable Gate Array, and four mezzanine cards, each with 8 conversion channels. A prototype of the mezzanine board has been designed and tested under irradiation.
Hybrid Continuous-Flow Total Artificial Heart.
Fox, Carson; Chopski, Steven; Murad, Nohra; Allaire, Paul; Mentzer, Robert; Rossano, Joseph; Arabia, Francisco; Throckmorton, Amy
2018-05-01
Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.