PTV margin determination in conformal SRT of intracranial lesions
Parker, Brent C.; Shiu, Almon S.; Maor, Moshe H.; Lang, Frederick F.; Liu, H. Helen; White, R. Allen; Antolak, John A.
2002-01-01
The planning target volume (PTV) includes the clinical target volume (CTV) to be irradiated and a margin to account for uncertainties in the treatment process. Uncertainties in miniature multileaf collimator (mMLC) leaf positioning, CT scanner spatial localization, CT‐MRI image fusion spatial localization, and Gill‐Thomas‐Cosman (GTC) relocatable head frame repositioning were quantified for the purpose of determining a minimum PTV margin that still delivers a satisfactory CTV dose. The measured uncertainties were then incorporated into a simple Monte Carlo calculation for evaluation of various margin and fraction combinations. Satisfactory CTV dosimetric criteria were selected to be a minimum CTV dose of 95% of the PTV dose and at least 95% of the CTV receiving 100% of the PTV dose. The measured uncertainties were assumed to be Gaussian distributions. Systematic errors were added linearly and random errors were added in quadrature assuming no correlation to arrive at the total combined error. The Monte Carlo simulation written for this work examined the distribution of cumulative dose volume histograms for a large patient population using various margin and fraction combinations to determine the smallest margin required to meet the established criteria. The program examined 5 and 30 fraction treatments, since those are the only fractionation schemes currently used at our institution. The fractionation schemes were evaluated using no margin, a margin of just the systematic component of the total uncertainty, and a margin of the systematic component plus one standard deviation of the total uncertainty. It was concluded that (i) a margin of the systematic error plus one standard deviation of the total uncertainty is the smallest PTV margin necessary to achieve the established CTV dose criteria, and (ii) it is necessary to determine the uncertainties introduced by the specific equipment and procedures used at each institution since the uncertainties may vary among locations. PACS number(s): 87.53.Kn, 87.53.Ly PMID:12132939
Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler
2016-01-01
This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.
Efficiently estimating salmon escapement uncertainty using systematically sampled data
Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.
2007-01-01
Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.
Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty
Nicholson, T.L.; Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Bloom, B.J.; McNally, R.L.; Zhang, W.; Barrett, M.D.; Safronova, M.S.; Strouse, G.F.; Tew, W.L.; Ye, J.
2015-01-01
The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, new insights in quantum science, tighter limits on fundamental constant variation and improved tests of relativity. The record for the best stability and accuracy is currently held by optical lattice clocks. Here we take an important step towards realizing the full potential of a many-particle clock with a state-of-the-art stable laser. Our 87Sr optical lattice clock now achieves fractional stability of 2.2 × 10−16 at 1 s. With this improved stability, we perform a new accuracy evaluation of our clock, reducing many systematic uncertainties that limited our previous measurements, such as those in the lattice ac Stark shift, the atoms' thermal environment and the atomic response to room-temperature blackbody radiation. Our combined measurements have reduced the total uncertainty of the JILA Sr clock to 2.1 × 10−18 in fractional frequency units. PMID:25898253
Chatrchyan, Serguei
2015-05-19
Table 4 was incorrectly captioned in the originally published version. The correct caption is ‘Normalised differential tt - production cross section as a function of the number of additional jets with p T > 30 GeV in the lepton+jets channel. Furthermore, the statistical, systematic, and total uncertainties are also shown. Finally, the main experimental and model systematic uncertainties are displayed: JES and the combination of renormalisation and factorisation scales, jet-parton matching threshold, and hadronisation (in the table “Q 2/Match./Had.”)’.
Using PS1 and Type Ia Supernovae To Make Most Precise Measurement of Dark Energy To Date
NASA Astrophysics Data System (ADS)
Scolnic, Daniel; Pan-STARRS
2018-01-01
I will review recent results that present optical light curves, redshifts, and classifications for 361 spectroscopically confirmed Type Ia supernovae (SNeIa) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. I will go over improvements to the PS1 SN photometry, astrometry and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combined distances of PS1 SNe with distance estimates of SNIa from SDSS, SNLS, various low-z and HST samples to form the largest combined sample of SN Ia consisting of a total of ~1050 SN Ia ranging from 0.01 < z < 2.3, which we call the ‘Pantheon Sample’. Photometric calibration uncertainties have long dominated the systematic error budget of every major analysis of cosmological parameters with SNIa. Using the PS1 relative calibration, we have reduced these calibration systematics to the point where they are similar in magnitude to the other major sources of known systematic uncertainties: the nature of the intrinsic scatter of SNIa and modeling of selection effects. I will present measurements of dark energy which are now the most precise measurements of dark energy to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minamino, Akihiro
The Hyper-Kamiokande (Hyper-K) detector is a next generation underground water Chrenkov detector. The J-PARC to Hyper-K experiment has good potential for precision measurements of neutrino oscillation parameters and discovery reach for CP violation in the lepton sector. With a total exposure of 10 years to a neutrino beam produced by the 750 kW J-PARC proton synchrotron, it is expected that the CP phase δ can be determined to better than 18 degree for all possible values of δ if sin{sup 2} 2θ{sub 13} > 0.03 and the mass hierarchy is known. Control of systematic uncertainties is critical to make maximummore » use of the Hyper-K potential. Based on learning from T2K experience, a strategy to reduce systematic uncertainties in J-PARC/Hyper-K are developed.« less
How uncertain is model-based prediction of copper loads in stormwater runoff?
Lindblom, E; Ahlman, S; Mikkelsen, P S
2007-01-01
In this paper, we conduct a systematic analysis of the uncertainty related with estimating the total load of pollution (copper) from a separate stormwater drainage system, conditioned on a specific combination of input data, a dynamic conceptual pollutant accumulation-washout model and measurements (runoff volumes and pollutant masses). We use the generalized likelihood uncertainty estimation (GLUE) methodology and generate posterior parameter distributions that result in model outputs encompassing a significant number of the highly variable measurements. Given the applied pollution accumulation-washout model and a total of 57 measurements during one month, the total predicted copper masses can be predicted within a range of +/-50% of the median value. The message is that this relatively large uncertainty should be acknowledged in connection with posting statements about micropollutant loads as estimated from dynamic models, even when calibrated with on-site concentration data.
Instrument Drift Uncertainties and the Long-Term TOMS/SBUV Total Ozone Record
NASA Technical Reports Server (NTRS)
Solarski, Richard S.; Frith, Stacey
2005-01-01
Long-term climate records from satellites are often constructed from the measurements of a sequence of instruments launched at different times. Each of these instruments is calibrated prior to launch. After launch they are subjected to potential offsets and slow drifts in calibration. We illustrate these issues in the construction of a merged total ozone record from two TOMS and three SBUV instruments. This record extends from late 1978 through the present. The question is "How good are these records?". We have examined the uncertainty in determining the relative calibration of two instruments during an overlap period in their measurements. When comparing a TOMS instrument, such as that on Nimbus 7, with an SBUV instrument, also on Nimbus 7, we find systematic differences and random differences. We have combined these findings with estimates of individual instrument drift into a monte- carlo uncertainty propagation model. We estimate an instrument drift uncertainty of a little larger than 1 percent per decade over the 25-year history of the TOMS/SBUV measurements. We make an independent estimate of the drift uncertainty in the ground-based network of total ozone measurements and find it to be of similar, but slightly smaller magnitude. The implications of these uncertainties for trend and recovery determination will be discussed.
Amine, K; El Amrani, Y; Chemlali, S; Kissa, J
2018-02-01
The aim of this Systematic Review (SR) was to assess the clinical efficacy of alternatives procedures; Acellular Dermal Matrix (ADM), Xenogeneic Collagen Matrix (XCM), Enamel Matrix Derivative (EMD) and Platelet Rich Fibrin (PRF), compared to conventional procedures in the treatment of localized gingival recessions. Electronic searches were performed to identify randomized clinical trials (RCTs) on treatment of single gingival recession with at least 6 months of follow-up. Applying guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA). The risk of bias was assessed using the Cochrane Collaboration's Risk of Bias tool. Eighteen randomized controlled trials (RCTs) with a total of 390 treated patients (606 recessions) were included. This systematic review showed that: Coronally Advanced Flap (CAF) in conjunction with ADM was significantly better than CAF alone, while the comparison between CAF+ADM and CTG was affected by large uncertainty. The CAF+EMD was significantly better than CAF alone, whereas the comparison between CAF+EMD and CTG was affected by large uncertainty. No significant difference was recorded when comparing CAF+XCM with CAF alone, and the comparison between CAF+XCM and CTG was affected by large uncertainty. The comparison between PRF and others technique was affected by large uncertainty. ADM, XCM and EMD assisted to CAF might be considered alternatives of CTG in the treatment of Miller class I and II gingival recession. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ozone climatology series. Volume 1: Atlas of total ozone, April 1970 - December 1976
NASA Technical Reports Server (NTRS)
Heath, D. F.; Fleig, A. J.; Miller, A. J.; Rogers, T. G.; Nagatani, R. M.; Bowman, H. D., II; Kaveeshwar, V. G.; Klenk, K. F.; Bhartia, P. K.; Lee, K. D.
1982-01-01
Contours and gridded values are given for seven years of monthly mean total ozone data derived from observations with the Backscattered Ultraviolet instrument on Nimbus-4 for the Northern and Southern Hemispheres. The instrument, algorithm, uncertainties in derived ozone and systematic changes in the bias with respect to the international groundbased ozone network of Dobson instruments, are discussed.
Numerical Uncertainty Quantification for Radiation Analysis Tools
NASA Technical Reports Server (NTRS)
Anderson, Brooke; Blattnig, Steve; Clowdsley, Martha
2007-01-01
Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure. The question, then, is what is the number of thicknesses that is needed to get an accurate result. So convergence testing is performed to quantify the uncertainty associated with interpolating over different shield thickness spatial grids.
Christie, Janice; Gray, Trish A; Dumville, Jo C; Cullum, Nicky A
2018-01-01
Complex wounds such as leg and foot ulcers are common, resource intensive and have negative impacts on patients' wellbeing. Evidence-based decision-making, substantiated by high quality evidence such as from systematic reviews, is widely advocated for improving patient care and healthcare efficiency. Consequently, we set out to classify and map the extent to which up-to-date systematic reviews containing robust evidence exist for wound care uncertainties prioritised by community-based healthcare professionals. We asked healthcare professionals to prioritise uncertainties based on complex wound care decisions, and then classified 28 uncertainties according to the type and level of decision. For each uncertainty, we searched for relevant systematic reviews. Two independent reviewers screened abstracts and full texts of reviews against the following criteria: meeting an a priori definition of a systematic review, sufficiently addressing the uncertainty, published during or after 2012, and identifying high quality research evidence. The most common uncertainty type was 'interventions' 24/28 (85%); the majority concerned wound level decisions 15/28 (53%) however, service delivery level decisions (10/28) were given highest priority. Overall, we found 162 potentially relevant reviews of which 57 (35%) were not systematic reviews. Of 106 systematic reviews, only 28 were relevant to an uncertainty and 18 of these were published within the preceding five years; none identified high quality research evidence. Despite the growing volume of published primary research, healthcare professionals delivering wound care have important clinical uncertainties which are not addressed by up-to-date systematic reviews containing high certainty evidence. These are high priority topics requiring new research and systematic reviews which are regularly updated. To reduce clinical and research waste, we recommend systematic reviewers and researchers make greater efforts to ensure that research addresses important clinical uncertainties and is of sufficient rigour to inform practice.
Propagation of stage measurement uncertainties to streamflow time series
NASA Astrophysics Data System (ADS)
Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary
2016-04-01
Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.
Hybrid Gibbs Sampling and MCMC for CMB Analysis at Small Angular Scales
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; Wandelt, B. D.; Gorski, K. M.; Huey, G.; O'Dwyer, I. J.; Dickinson, C.; Banday, A. J.; Lawrence, C. R.
2008-01-01
A) Gibbs Sampling has now been validated as an efficient, statistically exact, and practically useful method for "low-L" (as demonstrated on WMAP temperature polarization data). B) We are extending Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters for the entire range of angular scales relevant for Planck. C) Made possible by inclusion of foreground model parameters in Gibbs sampling and hybrid MCMC and Gibbs sampling for the low signal to noise (high-L) regime. D) Future items to be included in the Bayesian framework include: 1) Integration with Hybrid Likelihood (or posterior) code for cosmological parameters; 2) Include other uncertainties in instrumental systematics? (I.e. beam uncertainties, noise estimation, calibration errors, other).
VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014)
NASA Astrophysics Data System (ADS)
Mendel, J. T.; Simard, L.; Palmer, M.; Ellison, S. L.; Patton, D. R.
2014-01-01
We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here. (4 data files).
Steginga, Suzanne K; Occhipinti, Stefano
2004-01-01
The study investigated the utility of the Heuristic-Systematic Processing Model as a framework for the investigation of patient decision making. A total of 111 men recently diagnosed with localized prostate cancer were assessed using Verbal Protocol Analysis and self-report measures. Study variables included men's use of nonsystematic and systematic information processing, desire for involvement in decision making, and the individual differences of health locus of control, tolerance of ambiguity, and decision-related uncertainty. Most men (68%) preferred that decision making be shared equally between them and their doctor. Men's use of the expert opinion heuristic was related to men's verbal reports of decisional uncertainty and having a positive orientation to their doctor and medical care; a desire for greater involvement in decision making was predicted by a high internal locus of health control. Trends were observed for systematic information processing to increase when the heuristic strategy used was negatively affect laden and when men were uncertain about the probabilities for cure and side effects. There was a trend for decreased systematic processing when the expert opinion heuristic was used. Findings were consistent with the Heuristic-Systematic Processing Model and suggest that this model has utility for future research in applied decision making about health.
Photoneutron cross sections for 59Co : Systematic uncertainties of data from various experiments
NASA Astrophysics Data System (ADS)
Varlamov, V. V.; Davydov, A. I.; Ishkhanov, B. S.
2017-09-01
Data on partial photoneutron reaction cross sections (γ ,1n), (γ ,2n), and (γ ,3n) for 59Co obtained in two experiments carried out at Livermore (USA) were analyzed. The sources of radiation in both experiments were the monoenergetic photon beams from the annihilation in flight of relativistic positrons. The total yield was sorted by the neutron multiplicity, taking into account the difference in the neutron energy spectra for different multiplicity. The two quoted studies differ in the method of determining the neutron. Significant systematic disagreements between the results of the two experiments exist. They are considered to be caused by large systematic uncertainties in partial cross sections, since they do not satisfy physical criteria for reliability of the data. To obtain reliable cross sections of partial and total photoneutron reactions a new method combining experimental data and theoretical evaluation was used. It is based on the experimental neutron yield cross section which is rather independent of neutron multiplicity and the transitional neutron multiplicity functions of the combined photonucleon reaction model (CPNRM). The model transitional multiplicity functions were used for the decomposition of the neutron yield cross section into the contributions of partial reactions. The results of the new evaluation noticeably differ from the partial cross sections obtained in the two experimental studies are under discussion.
Calculation of the detection limit in radiation measurements with systematic uncertainties
NASA Astrophysics Data System (ADS)
Kirkpatrick, J. M.; Russ, W.; Venkataraman, R.; Young, B. M.
2015-06-01
The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.
Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Verónica M; Savitz, David A; Bartell, Scott M
2016-01-01
Uncertainty in exposure estimates from models can result in exposure measurement error and can potentially affect the validity of epidemiological studies. We recently used a suite of environmental models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations and assess the association with preeclampsia from 1990 through 2006 for the C8 Health Project participants. The aims of the current study are to evaluate impact of uncertainty in estimated PFOA drinking-water concentrations on estimated serum concentrations and their reported epidemiological association with preeclampsia. For each individual public water district, we used Monte Carlo simulations to vary the year-by-year PFOA drinking-water concentration by randomly sampling from lognormal distributions for random error in the yearly public water district PFOA concentrations, systematic error specific to each water district, and global systematic error in the release assessment (using the estimated concentrations from the original fate and transport model as medians and a range of 2-, 5-, and 10-fold uncertainty). Uncertainty in PFOA water concentrations could cause major changes in estimated serum PFOA concentrations among participants. However, there is relatively little impact on the resulting epidemiological association in our simulations. The contribution of exposure uncertainty to the total uncertainty (including regression parameter variance) ranged from 5% to 31%, and bias was negligible. We found that correlated exposure uncertainty can substantially change estimated PFOA serum concentrations, but results in only minor impacts on the epidemiological association between PFOA and preeclampsia. Avanasi R, Shin HM, Vieira VM, Savitz DA, Bartell SM. 2016. Impact of exposure uncertainty on the association between perfluorooctanoate and preeclampsia in the C8 Health Project population. Environ Health Perspect 124:126-132; http://dx.doi.org/10.1289/ehp.1409044.
Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2014-01-01
This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.
Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters
NASA Astrophysics Data System (ADS)
Liman, Julian; Schröder, Marc; Fennig, Karsten; Andersson, Axel; Hollmann, Rainer
2018-03-01
Latent heat flux (LHF) is one of the main contributors to the global energy budget. As the density of in situ LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products have included estimates of systematic, random, and sampling uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching LHF-related pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3) to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground reference to be bias-free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large oceanic areas. Likewise, random uncertainties are derived, which include not only a retrieval component but also contributions from in situ measurement noise and the collocation procedure. A recently published random uncertainty decomposition approach is applied to isolate the random retrieval uncertainty of all LHF-related HOAPS parameters. It makes use of two combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise variances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterizations on monthly to multi-annual timescales. Results show that systematic LHF uncertainties range between 15 and 50 W m-2 with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions from qa (U) to the overall LHF uncertainty are on the order of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics with a global average of 37 W m-2. In a climatological sense, their magnitudes become negligible, as do respective sampling uncertainties. Regional and seasonal analyses suggest that largest total LHF uncertainties are seen over the Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the observed continuous global mean LHF increase up to 2009 needs to be treated with caution. The demonstrated approach can easily be transferred to other satellite retrievals, which increases the significance of the present work.
Long, Linda; Briscoe, Simon; Cooper, Chris; Hyde, Chris; Crathorne, Louise
2015-01-01
Lateral elbow tendinopathy (LET) is a common complaint causing characteristic pain in the lateral elbow and upper forearm, and tenderness of the forearm extensor muscles. It is thought to be an overuse injury and can have a major impact on the patient's social and professional life. The condition is challenging to treat and prone to recurrent episodes. The average duration of a typical episode ranges from 6 to 24 months, with most (89%) reporting recovery by 1 year. This systematic review aims to summarise the evidence concerning the clinical effectiveness and cost-effectiveness of conservative interventions for LET. A comprehensive search was conducted from database inception to 2012 in a range of databases including MEDLINE, EMBASE and Cochrane Databases. We conducted an overview of systematic reviews to summarise the current evidence concerning the clinical effectiveness and a systematic review for the cost-effectiveness of conservative interventions for LET. We identified additional randomised controlled trials (RCTs) that could contribute further evidence to existing systematic reviews. We searched MEDLINE, EMBASE, Allied and Complementary Medicine Database, Cumulative Index to Nursing and Allied Health Literature, Web of Science, The Cochrane Library and other important databases from inception to January 2013. A total of 29 systematic reviews published since 2003 matched our inclusion criteria. These were quality appraised using the Assessment of Multiple Systematic Reviews (AMSTAR) checklist; five were considered high quality and evaluated using a Grading of Recommendations, Assessment, Development and Evaluation approach. A total of 36 RCTs were identified that were not included in a systematic review and 29 RCTs were identified that had only been evaluated in an included systematic review of intermediate/low quality. These were then mapped to existing systematic reviews where further evidence could provide updates. Two economic evaluations were identified. The summary of findings from the review was based only on high-quality evidence (scoring of > 5 AMSTAR). Other limitations were that identified RCTs were not quality appraised and dichotomous outcomes were also not considered. Economic evaluations took effectiveness estimates from trials that had small sample sizes leading to uncertainty surrounding the effect sizes reported. This, in turn, led to uncertainty of the reported cost-effectiveness and, as such, no robust recommendations could be made in this respect. Clinical effectiveness evidence from the high-quality systematic reviews identified in this overview continues to suggest uncertainty as to the effectiveness of many conservative interventions for the treatment of LET. Although new RCT evidence has been identified with either placebo or active controls, there is uncertainty as to the size of effects reported within them because of the small sample size. Conclusions regarding cost-effectiveness are also unclear. We consider that, although updated or new systematic reviews may also be of value, the primary focus of future work should be on conducting large-scale, good-quality clinical trials using a core set of outcome measures (for defined time points) and appropriate follow-up. Subgroup analysis of existing RCT data may be beneficial to ascertain whether or not certain patient groups are more likely to respond to treatments. This study is registered as PROSPERO CRD42013003593. The National Institute for Health Research Health Technology Assessment programme.
The neutron transmission of natFe, 197Au and natW
NASA Astrophysics Data System (ADS)
Beyer, Roland; Junghans, Arnd R.; Schillebeeckx, Peter; Sirakov, Ivan; Song, Tae-Yung; Bemmerer, Daniel; Capote, Roberto; Ferrari, Anna; Hartmann, Andreas; Hannaske, Ronald; Heyse, Jan; Il Kim, Hyeon; Woon Kim, Jong; Kögler, Toni; Woo Lee, Cheol; Lee, Young-Ouk; Massarczyk, Ralph; Müller, Stefan E.; Reinhardt, Tobias P.; Röder, Marko; Schmidt, Konrad; Schwengner, Ronald; Szücs, Tamás; Takács, Marcell P.; Wagner, Andreas; Wagner, Louis; Yang, Sung-Chul
2018-05-01
Neutron total cross sections of natFe, 197Au and natW have been measured at the n ELBE neutron time-of-flight facility in the energy range 0.15-8MeV with an uncertainty due to counting statistics of up to 2% and a total uncertainty due to systematic effects of 1%. The neutrons are produced with the superconducting electron accelerator ELBE using a liquid lead circuit as photo-neutron target. By periodical sample-in-sample-out measurements the transmission of the sample materials has been determined using a low-threshold plastic scintillation detector. The resulting effective total cross sections show good agreement with previously measured data that cover only part of the energy range available at n ELBE. The results have also been compared to evaluated library files and recent calculations based on a dispersive coupled channel optical model potential.
Assessing theoretical uncertainties in fission barriers of superheavy nuclei
Agbemava, S. E.; Afanasjev, A. V.; Ray, D.; ...
2017-05-26
Here, theoretical uncertainties in the predictions of inner fission barrier heights in superheavy elements have been investigated in a systematic way for a set of state-of-the-art covariant energy density functionals which represent major classes of the functionals used in covariant density functional theory. They differ in basic model assumptions and fitting protocols. Both systematic and statistical uncertainties have been quantified where the former turn out to be larger. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental datamore » on fission barriers in the actinides allows to reduce the systematic theoretical uncertainties for the inner fission barriers of unknown superheavy elements. However, even then they on average increase on moving away from the region where benchmarking has been performed. In addition, a comparison with the results of non-relativistic approaches is performed in order to define full systematic theoretical uncertainties over the state-of-the-art models. Even for the models benchmarked in the actinides, the difference in the inner fission barrier height of some superheavy elements reaches $5-6$ MeV. This uncertainty in the fission barrier heights will translate into huge (many tens of the orders of magnitude) uncertainties in the spontaneous fission half-lives.« less
Disentangling dark energy and cosmic tests of gravity from weak lensing systematics
NASA Astrophysics Data System (ADS)
Laszlo, Istvan; Bean, Rachel; Kirk, Donnacha; Bridle, Sarah
2012-06-01
We consider the impact of key astrophysical and measurement systematics on constraints on dark energy and modifications to gravity on cosmic scales. We focus on upcoming photometric ‘stage III’ and ‘stage IV’ large-scale structure surveys such as the Dark Energy Survey (DES), the Subaru Measurement of Images and Redshifts survey, the Euclid survey, the Large Synoptic Survey Telescope (LSST) and Wide Field Infra-Red Space Telescope (WFIRST). We illustrate the different redshift dependencies of gravity modifications compared to intrinsic alignments, the main astrophysical systematic. The way in which systematic uncertainties, such as galaxy bias and intrinsic alignments, are modelled can change dark energy equation-of-state parameter and modified gravity figures of merit by a factor of 4. The inclusion of cross-correlations of cosmic shear and galaxy position measurements helps reduce the loss of constraining power from the lensing shear surveys. When forecasts for Planck cosmic microwave background and stage IV surveys are combined, constraints on the dark energy equation-of-state parameter and modified gravity model are recovered, relative to those from shear data with no systematic uncertainties, provided fewer than 36 free parameters in total are used to describe the galaxy bias and intrinsic alignment models as a function of scale and redshift. While some uncertainty in the intrinsic alignment (IA) model can be tolerated, it is going to be important to be able to parametrize IAs well in order to realize the full potential of upcoming surveys. To facilitate future investigations, we also provide a fitting function for the matter power spectrum arising from the phenomenological modified gravity model we consider.
Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian, Yudong
2011-01-01
Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.
NASA Astrophysics Data System (ADS)
Cacciari, Matteo; Czakon, Michał; Mangano, Michelangelo; Mitov, Alexander; Nason, Paolo
2012-04-01
Incorporating all recent theoretical advances, we resum soft-gluon corrections to the total ttbar cross-section at hadron colliders at the next-to-next-to-leading logarithmic (NNLL) order. We perform the resummation in the well established framework of Mellin N-space resummation. We exhaustively study the sources of systematic uncertainty like renormalization and factorization scale variation, power suppressed effects and missing two- and higher-loop corrections. The inclusion of soft-gluon resummation at NNLL brings only a minor decrease in the perturbative uncertainty with respect to the NLL approximation, and a small shift in the central value, consistent with the quoted uncertainties. These numerical predictions agree with the currently available measurements from the Tevatron and LHC and have uncertainty of similar size. We conclude that significant improvements in the ttbar cross-sections can potentially be expected only upon inclusion of the complete NNLO corrections.
Lee, ZhongPing; Arnone, Robert; Hu, Chuanmin; Werdell, P Jeremy; Lubac, Bertrand
2010-01-20
Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within +/-10% for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.
Searches For The Exclusive Higgs and the Charged Higgs Bosons with the ATLAS Detector at the LHC
NASA Astrophysics Data System (ADS)
Feremenga, Last
In this thesis, searches for the exclusive Standard Model (SM) and charged hMSSM Higgs bosons are performed. While observations of the SM Higgs boson in 2012 by ATLAS and CMS collaborations were ground-breaking, several of the SM Higgs boson properties such as its coupling strengths and branching ratios of its decays still carry large systematic uncertainties. Higgs boson candidates from exclusive production could lower these systematic uncertainties due to their cleaner production environment, improving knowledge of the SM Higgs boson sector. Since the charged Higgs boson is not included in the SM, its evidence would clearly indicate physics beyond the SM which could address the hierarchy problem. Since no signal is observed for either of these bosons, limits to their production cross sections are set. A 95% confidence-level upper limit on the total production cross-section for exclusive Higgs boson is set to 1.2 pb. Limits on the total production cross section of the charged Higgs boson times its branching ratio to taunu are set between 1.9 pb and 15 fb, for charged Higgs boson masses ranging from 200 to 2000 GeV.
Vitamin D: Moving Forward to Address Emerging Science
Sempos, Christopher T.; Davis, Cindy D.; Brannon, Patsy M.
2017-01-01
The science surrounding vitamin D presents both challenges and opportunities. Although many uncertainties are associated with the understandings concerning vitamin D, including its physiological function, the effects of excessive intake, and its role in health, it is at the same time a major interest in the research and health communities. The approach to evaluating and interpreting the available evidence about vitamin D should be founded on the quality of the data and on the conclusions that take into account the totality of the evidence. In addition, these activities can be used to identify critical data gaps and to help structure future research. The Office of Dietary Supplements (ODS) at the National Institutes of Health has as part of its mission the goal of supporting research and dialogues for topics with uncertain data, including vitamin D. This review considers vitamin D in the context of systematically addressing the uncertainty and in identifying research needs through the filter of the work of ODS. The focus includes the role of systematic reviews, activities that encompass considerations of the totality of the evidence, and collaborative activities to clarify unknowns or to fix methodological problems, as well as a case study using the relationship between cancer and vitamin D. PMID:29194368
HICOSMO: cosmology with a complete sample of galaxy clusters - II. Cosmological results
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-10-01
The X-ray bright, hot gas in the potential well of a galaxy cluster enables systematic X-ray studies of samples of galaxy clusters to constrain cosmological parameters. HIFLUGCS consists of the 64 X-ray brightest galaxy clusters in the Universe, building up a local sample. Here, we utilize this sample to determine, for the first time, individual hydrostatic mass estimates for all the clusters of the sample and, by making use of the completeness of the sample, we quantify constraints on the two interesting cosmological parameters, Ωm and σ8. We apply our total hydrostatic and gas mass estimates from the X-ray analysis to a Bayesian cosmological likelihood analysis and leave several parameters free to be constrained. We find Ωm = 0.30 ± 0.01 and σ8 = 0.79 ± 0.03 (statistical uncertainties, 68 per cent credibility level) using our default analysis strategy combining both a mass function analysis and the gas mass fraction results. The main sources of biases that we correct here are (1) the influence of galaxy groups (incompleteness in parent samples and differing behaviour of the Lx-M relation), (2) the hydrostatic mass bias, (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other physical effects (non-negligible neutrino mass). We find that galaxy groups introduce a strong bias, since their number density seems to be over predicted by the halo mass function. On the other hand, incorporating baryonic effects does not result in a significant change in the constraints. The total (uncorrected) systematic uncertainties (∼20 per cent) clearly dominate the statistical uncertainties on cosmological parameters for our sample.
Surman, Rebecca; Mumpower, Matthew; McLaughlin, Gail
2017-02-27
Unknown nuclear masses are a major source of nuclear physics uncertainty for r-process nucleosynthesis calculations. Here we examine the systematic and statistical uncertainties that arise in r-process abundance predictions due to uncertainties in the masses of nuclear species on the neutron-rich side of stability. There is a long history of examining systematic uncertainties by the application of a variety of different mass models to r-process calculations. Here we expand upon such efforts by examining six DFT mass models, where we capture the full impact of each mass model by updating the other nuclear properties — including neutron capture rates, β-decaymore » lifetimes, and β-delayed neutron emission probabilities — that depend on the masses. Unlike systematic effects, statistical uncertainties in the r-process pattern have just begun to be explored. Here we apply a global Monte Carlo approach, starting from the latest FRDM masses and considering random mass variations within the FRDM rms error. Here, we find in each approach that uncertain nuclear masses produce dramatic uncertainties in calculated r-process yields, which can be reduced in upcoming experimental campaigns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surman, Rebecca; Mumpower, Matthew; McLaughlin, Gail
Unknown nuclear masses are a major source of nuclear physics uncertainty for r-process nucleosynthesis calculations. Here we examine the systematic and statistical uncertainties that arise in r-process abundance predictions due to uncertainties in the masses of nuclear species on the neutron-rich side of stability. There is a long history of examining systematic uncertainties by the application of a variety of different mass models to r-process calculations. Here we expand upon such efforts by examining six DFT mass models, where we capture the full impact of each mass model by updating the other nuclear properties — including neutron capture rates, β-decaymore » lifetimes, and β-delayed neutron emission probabilities — that depend on the masses. Unlike systematic effects, statistical uncertainties in the r-process pattern have just begun to be explored. Here we apply a global Monte Carlo approach, starting from the latest FRDM masses and considering random mass variations within the FRDM rms error. Here, we find in each approach that uncertain nuclear masses produce dramatic uncertainties in calculated r-process yields, which can be reduced in upcoming experimental campaigns.« less
CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics
NASA Astrophysics Data System (ADS)
Joudaki, Shahab; Blake, Chris; Heymans, Catherine; Choi, Ami; Harnois-Deraps, Joachim; Hildebrandt, Hendrik; Joachimi, Benjamin; Johnson, Andrew; Mead, Alexander; Parkinson, David; Viola, Massimo; van Waerbeke, Ludovic
2017-02-01
We investigate the impact of astrophysical systematics on cosmic shear cosmological parameter constraints from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) and the concordance with cosmic microwave background measurements by Planck. We present updated CFHTLenS cosmic shear tomography measurements extended to degree scales using a covariance calibrated by a new suite of N-body simulations. We analyse these measurements with a new model fitting pipeline, accounting for key systematic uncertainties arising from intrinsic galaxy alignments, baryonic effects in the non-linear matter power spectrum, and photometric redshift uncertainties. We examine the impact of the systematic degrees of freedom on the cosmological parameter constraints, both independently and jointly. When the systematic uncertainties are considered independently, the intrinsic alignment amplitude is the only degree of freedom that is substantially preferred by the data. When the systematic uncertainties are considered jointly, there is no consistently strong preference in favour of the more complex models. We quantify the level of concordance between the CFHTLenS and Planck data sets by employing two distinct data concordance tests, grounded in Bayesian evidence and information theory. We find that the two data concordance tests largely agree with one another and that the level of concordance between the CFHTLenS and Planck data sets is sensitive to the exact details of the systematic uncertainties included in our analysis, ranging from decisive discordance to substantial concordance as the treatment of the systematic uncertainties becomes more conservative. The least conservative scenario is the one most favoured by the cosmic shear data, but it is also the one that shows the greatest degree of discordance with Planck. The data and analysis code are publicly available at https://github.com/sjoudaki/cfhtlens_revisited.
Can reduction of uncertainties in cervix cancer brachytherapy potentially improve clinical outcome?
Nesvacil, Nicole; Tanderup, Kari; Lindegaard, Jacob C; Pötter, Richard; Kirisits, Christian
2016-09-01
The aim of this study was to quantify the impact of different types and magnitudes of dosimetric uncertainties in cervix cancer brachytherapy (BT) on tumour control probability (TCP) and normal tissue complication probability (NTCP) curves. A dose-response simulation study was based on systematic and random dose uncertainties and TCP/NTCP models for CTV and rectum. Large patient cohorts were simulated assuming different levels of dosimetric uncertainties. TCP and NTCP were computed, based on the planned doses, the simulated dose uncertainty, and an underlying TCP/NTCP model. Systematic uncertainties of 3-20% and random uncertainties with a 5-30% standard deviation per BT fraction were analysed. Systematic dose uncertainties of 5% lead to a 1% decrease/increase of TCP/NTCP, while random uncertainties of 10% had negligible impact on the dose-response curve at clinically relevant dose levels for target and OAR. Random OAR dose uncertainties of 30% resulted in an NTCP increase of 3-4% for planned doses of 70-80Gy EQD2. TCP is robust to dosimetric uncertainties when dose prescription is in the more flat region of the dose-response curve at doses >75Gy. For OARs, improved clinical outcome is expected by reduction of uncertainties via sophisticated dose delivery and treatment verification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes
NASA Astrophysics Data System (ADS)
Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.
2017-11-01
Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.
Measurement time and statistics for a noise thermometer with a synthetic-noise reference
NASA Astrophysics Data System (ADS)
White, D. R.; Benz, S. P.; Labenski, J. R.; Nam, S. W.; Qu, J. F.; Rogalla, H.; Tew, W. L.
2008-08-01
This paper describes methods for reducing the statistical uncertainty in measurements made by noise thermometers using digital cross-correlators and, in particular, for thermometers using pseudo-random noise for the reference signal. First, a discrete-frequency expression for the correlation bandwidth for conventional noise thermometers is derived. It is shown how an alternative frequency-domain computation can be used to eliminate the spectral response of the correlator and increase the correlation bandwidth. The corresponding expressions for the uncertainty in the measurement of pseudo-random noise in the presence of uncorrelated thermal noise are then derived. The measurement uncertainty in this case is less than that for true thermal-noise measurements. For pseudo-random sources generating a frequency comb, an additional small reduction in uncertainty is possible, but at the cost of increasing the thermometer's sensitivity to non-linearity errors. A procedure is described for allocating integration times to further reduce the total uncertainty in temperature measurements. Finally, an important systematic error arising from the calculation of ratios of statistical variables is described.
Simplified model of pinhole imaging for quantifying systematic errors in image shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedetti, Laura Robin; Izumi, N.; Khan, S. F.
In this paper, we examine systematic errors in x-ray imaging by pinhole optics for quantifying uncertainties in the measurement of convergence and asymmetry in inertial confinement fusion implosions. We present a quantitative model for the total resolution of a pinhole optic with an imaging detector that more effectively describes the effect of diffraction than models that treat geometry and diffraction as independent. This model can be used to predict loss of shape detail due to imaging across the transition from geometric to diffractive optics. We find that fractional error in observable shapes is proportional to the total resolution element wemore » present and inversely proportional to the length scale of the asymmetry being observed. Finally, we have experimentally validated our results by imaging a single object with differently sized pinholes and with different magnifications.« less
Simplified model of pinhole imaging for quantifying systematic errors in image shape
Benedetti, Laura Robin; Izumi, N.; Khan, S. F.; ...
2017-10-30
In this paper, we examine systematic errors in x-ray imaging by pinhole optics for quantifying uncertainties in the measurement of convergence and asymmetry in inertial confinement fusion implosions. We present a quantitative model for the total resolution of a pinhole optic with an imaging detector that more effectively describes the effect of diffraction than models that treat geometry and diffraction as independent. This model can be used to predict loss of shape detail due to imaging across the transition from geometric to diffractive optics. We find that fractional error in observable shapes is proportional to the total resolution element wemore » present and inversely proportional to the length scale of the asymmetry being observed. Finally, we have experimentally validated our results by imaging a single object with differently sized pinholes and with different magnifications.« less
Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...
2016-11-14
Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roecker, Caleb; Bernstein, Adam; Marleau, Peter
Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less
Ashenafi, Michael S.; McDonald, Daniel G.; Vanek, Kenneth N.
2015-01-01
Beam scanning data collected on the tomotherapy linear accelerator using the TomoScanner water scanning system is primarily used to verify the golden beam profiles included in all Helical TomoTherapy treatment planning systems (TOMO TPSs). The user is not allowed to modify the beam profiles/parameters for beam modeling within the TOMO TPSs. The authors report the first feasibility study using the Blue Phantom Helix (BPH) as an alternative to the TomoScanner (TS) system. This work establishes a benchmark dataset using BPH for target commissioning and quality assurance (QA), and quantifies systematic uncertainties between TS and BPH. Reproducibility of scanning with BPH was tested by three experienced physicists taking five sets of measurements over a six‐month period. BPH provides several enhancements over TS, including a 3D scanning arm, which is able to acquire necessary beam‐data with one tank setup, a universal chamber mount, and the OmniPro software, which allows online data collection and analysis. Discrepancies between BPH and TS were estimated by acquiring datasets with each tank. In addition, data measured with BPH and TS was compared to the golden TOMO TPS beam data. The total systematic uncertainty, defined as the combination of scanning system and beam modeling uncertainties, was determined through numerical analysis and tabulated. OmniPro was used for all analysis to eliminate uncertainty due to different data processing algorithms. The setup reproducibility of BPH remained within 0.5 mm/0.5%. Comparing BPH, TS, and Golden TPS for PDDs beyond maximum depth, the total systematic uncertainties were within 1.4 mm/2.1%. Between BPH and TPS golden data, maximum differences in the field width and penumbra of in‐plane profiles were within 0.8 and 1.1 mm, respectively. Furthermore, in cross‐plane profiles, the field width differences increased at depth greater than 10 cm up to 2.5 mm, and maximum penumbra uncertainties were 5.6 mm and 4.6 mm from TS scanning system and TPS modeling, respectively. Use of BPH reduced measurement time by 1–2 hrs per session. The BPH has been assessed as an efficient, reproducible, and accurate scanning system capable of providing a reliable benchmark beam data. With this data, a physicist can utilize the BPH in a clinical setting with an understanding of the scan discrepancy that may be encountered while validating the TPS or during routine machine QA. Without the flexibility of modifying the TPS and without a golden beam dataset from the vendor or a TPS model generated from data collected with the BPH, this represents the best solution for current clinical use of the BPH. PACS number: 87.56.Fc
NASA Astrophysics Data System (ADS)
Gorbunov, Michael E.; Kirchengast, Gottfried
2018-01-01
A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and random uncertainties are propagated from excess phase to bending angle profiles, using a perturbation approach and the wave-optical method recently introduced by Gorbunov and Kirchengast (2015), starting with estimated excess phase uncertainties. The results are encouraging and this uncertainty propagation approach combined with BLB correction enables a robust reduction and quantification of the uncertainties of excess phases and bending angles in the lower troposphere.
Quantification of uncertainties in global grazing systems assessment
NASA Astrophysics Data System (ADS)
Fetzel, T.; Havlik, P.; Herrero, M.; Kaplan, J. O.; Kastner, T.; Kroisleitner, C.; Rolinski, S.; Searchinger, T.; Van Bodegom, P. M.; Wirsenius, S.; Erb, K.-H.
2017-07-01
Livestock systems play a key role in global sustainability challenges like food security and climate change, yet many unknowns and large uncertainties prevail. We present a systematic, spatially explicit assessment of uncertainties related to grazing intensity (GI), a key metric for assessing ecological impacts of grazing, by combining existing data sets on (a) grazing feed intake, (b) the spatial distribution of livestock, (c) the extent of grazing land, and (d) its net primary productivity (NPP). An analysis of the resulting 96 maps implies that on average 15% of the grazing land NPP is consumed by livestock. GI is low in most of the world's grazing lands, but hotspots of very high GI prevail in 1% of the total grazing area. The agreement between GI maps is good on one fifth of the world's grazing area, while on the remainder, it is low to very low. Largest uncertainties are found in global drylands and where grazing land bears trees (e.g., the Amazon basin or the Taiga belt). In some regions like India or Western Europe, massive uncertainties even result in GI > 100% estimates. Our sensitivity analysis indicates that the input data for NPP, animal distribution, and grazing area contribute about equally to the total variability in GI maps, while grazing feed intake is a less critical variable. We argue that a general improvement in quality of the available global level data sets is a precondition for improving the understanding of the role of livestock systems in the context of global environmental change or food security.
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.;
2013-01-01
In the published version of the paper, errors were made in calculating the exposure time due to an analysis mistake. While they do not affect gas emissivities of the R CrA and Cepheus & Polaris flare regions significantly (the differences are within the systematic uncertainty), that of the Chamaeleon region is increased by approx.20%. Although we claimed a difference of 50% in gas emissivity among these molecular cloud regions in the original paper, it is decreased to 30% (comparable to the sum of the statistical and systematic uncertainties) in the revised analysis. Therefore, our conclusion of the original paper, that a small variation (approx. 20%) of the CR density in the solar neighborhood exists, is not supported by the data if we take these uncertainties into account. On the other hand, the obtained XCO and XAv values, and the masses of gas calculated from them are not changed significantly (the differences are within the statistical errors). Errors and corrections in the original paper are summarized below. 1. In the Abstract (lines 5-6) and Section 3 (lines 4-5 in the 3rd paragraph) in the original paper, the gamma -ray emissivity above 250 MeV for the Chamaeleon region should be (7.2 +/- 0.1stat +/- 1.0sys) × 10(exp -27) photons/s/sr/H-atom, not (5.9 +/-0.1stat +0.9-1.0sys) × 10(exp -27) photons/s/sr/H-atom. 2. In the Abstract (lines 8-10), "Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by approx.20% in the neighborhood of the solar system, even if we consider the systematic uncertainties." should be changed to "The energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth. Although the measured emissivities from 250 MeV to 10 GeV differ by approx.30% among these molecular cloud regions, the difference is not significant if we take the systematic uncertainty into account." 3. Table 1 and Figure 13, which show gas emissivities and spectra for the Chamaeleon region in the original paper, should be changed to the Table 1 and Figure 1 as shown below. 4. Figure 16, which compares Hi gas emissivities among several regions in the original paper, should be changed to Figure 2 as shown below. 5. The text from the line 13 to the last one in the first paragraph of Section 4.1, "The spectral shapes for the three regions..., indicating a difference of the CR density between the Chamaeleon and the others as shown in Figure 16." should be changed to the paragraph that follows. "The shaded area of each spectrum indicates the systematic uncertainty as described in Section 3. We note that the systematic uncertainty of the LAT effective area (5% at 100 MeV and 20% at 10 GeV; Rando et al. 2009) does not affect the relative value of emissivities. The effect of unresolved point sources is small; we have verified that the obtained emissivities are almost unaffected by decreasing the threshold for point sources from TS = 100 to TS = 50. We also confirmed that the residual excess of photons around (l = 280deg to 288deg, b = -20deg to -12deg; see the bottom panel of Figure 8) in the Chamaeleon region does not affect the local Hi emissivity very much. Thus the total systematic uncertainty is reasonably expressed by the shaded area shown in Fig. 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, Elise; Wolf, Rachel; Sako, Masao
2016-11-09
Cosmological parameter estimation techniques that robustly account for systematic measurement uncertainties will be crucial for the next generation of cosmological surveys. We present a new analysis method, superABC, for obtaining cosmological constraints from Type Ia supernova (SN Ia) light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. The ABC method works by using a forward model simulation of the data where systematic uncertainties can be simulated and marginalized over. A key feature of the method presented here is the use of two distinct metrics, the `Tripp' and `Light Curve' metrics, which allow us to compare the simulated data to the observed data set. The Tripp metric takes as input the parameters of models fit to each light curve with the SALT-II method, whereas the Light Curve metric uses the measured fluxes directly without model fitting. We apply the superABC sampler to a simulated data set ofmore » $$\\sim$$1000 SNe corresponding to the first season of the Dark Energy Survey Supernova Program. Varying $$\\Omega_m, w_0, \\alpha$$ and $$\\beta$$ and a magnitude offset parameter, with no systematics we obtain $$\\Delta(w_0) = w_0^{\\rm true} - w_0^{\\rm best \\, fit} = -0.036\\pm0.109$$ (a $$\\sim11$$% 1$$\\sigma$$ uncertainty) using the Tripp metric and $$\\Delta(w_0) = -0.055\\pm0.068$$ (a $$\\sim7$$% 1$$\\sigma$$ uncertainty) using the Light Curve metric. Including 1% calibration uncertainties in four passbands, adding 4 more parameters, we obtain $$\\Delta(w_0) = -0.062\\pm0.132$$ (a $$\\sim14$$% 1$$\\sigma$$ uncertainty) using the Tripp metric. Overall we find a $17$% increase in the uncertainty on $$w_0$$ with systematics compared to without. We contrast this with a MCMC approach where systematic effects are approximately included. We find that the MCMC method slightly underestimates the impact of calibration uncertainties for this simulated data set.« less
Planck 2015 results. III. LFI systematic uncertainties
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Christensen, P. R.; Colombo, L. P. L.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Frailis, M.; Franceschet, C.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Pettorino, V.; Piacentini, F.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Stolyarov, V.; Stompor, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2016-09-01
We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (I) simulations based on measured data and physical models of the known systematic effects; and (II) analysis of difference maps containing the same sky signal ("null-maps"). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10-20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around 0.2σ on the reionization optical depth derived from the 70GHz EE spectrum using the 30 and 353GHz channels as foreground templates. At 30GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes.
Planck 2015 results: III. LFI systematic uncertainties
Ade, P. A. R.; Aumont, J.; Baccigalupi, C.; ...
2016-09-20
In this paper, we present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal (“null-maps”). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrummore » by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10–20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around 0.2σ on the reionization optical depth derived from the 70GHz EE spectrum using the 30 and 353GHz channels as foreground templates. At 30GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Finally, some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes.« less
Planck 2015 results: III. LFI systematic uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aumont, J.; Baccigalupi, C.
In this paper, we present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal (“null-maps”). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrummore » by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10–20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around 0.2σ on the reionization optical depth derived from the 70GHz EE spectrum using the 30 and 353GHz channels as foreground templates. At 30GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Finally, some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes.« less
Uncertainty in monitoring E. coli concentrations in streams and stormwater runoff
NASA Astrophysics Data System (ADS)
Harmel, R. D.; Hathaway, J. M.; Wagner, K. L.; Wolfe, J. E.; Karthikeyan, R.; Francesconi, W.; McCarthy, D. T.
2016-03-01
Microbial contamination of surface waters, a substantial public health concern throughout the world, is typically identified by fecal indicator bacteria such as Escherichia coli. Thus, monitoring E. coli concentrations is critical to evaluate current conditions, determine restoration effectiveness, and inform model development and calibration. An often overlooked component of these monitoring and modeling activities is understanding the inherent random and systematic uncertainty present in measured data. In this research, a review and subsequent analysis was performed to identify, document, and analyze measurement uncertainty of E. coli data collected in stream flow and stormwater runoff as individual discrete samples or throughout a single runoff event. Data on the uncertainty contributed by sample collection, sample preservation/storage, and laboratory analysis in measured E. coli concentrations were compiled and analyzed, and differences in sampling method and data quality scenarios were compared. The analysis showed that: (1) manual integrated sampling produced the lowest random and systematic uncertainty in individual samples, but automated sampling typically produced the lowest uncertainty when sampling throughout runoff events; (2) sample collection procedures often contributed the highest amount of uncertainty, although laboratory analysis introduced substantial random uncertainty and preservation/storage introduced substantial systematic uncertainty under some scenarios; and (3) the uncertainty in measured E. coli concentrations was greater than that of sediment and nutrients, but the difference was not as great as may be assumed. This comprehensive analysis of uncertainty in E. coli concentrations measured in streamflow and runoff should provide valuable insight for designing E. coli monitoring projects, reducing uncertainty in quality assurance efforts, regulatory and policy decision making, and fate and transport modeling.
Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2014-06-15
Purpose: To evaluate setup accuracy and quantify individual systematic and random errors for the various hardware and software components of the frameless 6D-BrainLAB ExacTrac system. Methods: 35 patients with cranial lesions, some with multiple isocenters (50 total lesions treated in 1, 3, 5 fractions), were investigated. All patients were simulated with a rigid head-and-neck mask and the BrainLAB localizer. CT images were transferred to the IPLAN treatment planning system where optimized plans were generated using stereotactic reference frame based on the localizer. The patients were setup initially with infrared (IR) positioning ExacTrac system. Stereoscopic X-ray images (XC: X-ray Correction) weremore » registered to their corresponding digitally-reconstructed-radiographs, based on bony anatomy matching, to calculate 6D-translational and rotational (Lateral, Longitudinal, Vertical, Pitch, Roll, Yaw) shifts. XC combines systematic errors of the mask, localizer, image registration, frame, and IR. If shifts were below tolerance (0.7 mm translational and 1 degree rotational), treatment was initiated; otherwise corrections were applied and additional X-rays were acquired to verify patient position (XV: X-ray Verification). Statistical analysis was used to extract systematic and random errors of the different components of the 6D-ExacTrac system and evaluate the cumulative setup accuracy. Results: Mask systematic errors (translational; rotational) were the largest and varied from one patient to another in the range (−15 to 4mm; −2.5 to 2.5degree) obtained from mean of XC for each patient. Setup uncertainty in IR positioning (0.97,2.47,1.62mm;0.65,0.84,0.96degree) was extracted from standard-deviation of XC. Combined systematic errors of the frame and localizer (0.32,−0.42,−1.21mm; −0.27,0.34,0.26degree) was extracted from mean of means of XC distributions. Final patient setup uncertainty was obtained from the standard deviations of XV (0.57,0.77,0.67mm,0.39,0.35,0.30degree). Conclusion: Statistical analysis was used to calculate cumulative and individual systematic errors from the different hardware and software components of the 6D-ExacTrac-system. Patients were treated with cumulative errors (<1mm,<1degree) with XV image guidance.« less
Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event
Strydom, Gerhard
2013-01-01
The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC) transientmore » PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS) or Latin Hypercube Sampling (LHS) data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.« less
Ni62(n,γ) and Ni63(n,γ) cross sections measured at the n_TOF facility at CERN
NASA Astrophysics Data System (ADS)
Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; Reifarth, R.; Schumann, D.; Wallner, A.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthier, B.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gurusamy, P.; Harrisopulos, S.; Heil, M.; Ioannides, K.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Karadimos, D.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Lebbos, E.; Leeb, H.; Leong, L. S.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Tlustos, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.; n TOF Collaboration
2014-02-01
The cross section of the Ni62(n,γ) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT=30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni63(n ,γ) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
Olea, Ricardo A.; Luppens, James A.
2012-01-01
There are multiple ways to characterize uncertainty in the assessment of coal resources, but not all of them are equally satisfactory. Increasingly, the tendency is toward borrowing from the statistical tools developed in the last 50 years for the quantitative assessment of other mineral commodities. Here, we briefly review the most recent of such methods and formulate a procedure for the systematic assessment of multi-seam coal deposits taking into account several geological factors, such as fluctuations in thickness, erosion, oxidation, and bed boundaries. A lignite deposit explored in three stages is used for validating models based on comparing a first set of drill holes against data from infill and development drilling. Results were fully consistent with reality, providing a variety of maps, histograms, and scatterplots characterizing the deposit and associated uncertainty in the assessments. The geostatistical approach was particularly informative in providing a probability distribution modeling deposit wide uncertainty about total resources and a cumulative distribution of coal tonnage as a function of local uncertainty.
A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables
NASA Astrophysics Data System (ADS)
Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.; Karpenka, Natallia V.; Lidman, Chris; Schmidt, Brian P.; Smith, Mathew
2017-10-01
Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis of fluctuations in the cosmic microwave background by Planck, and local measurements of the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory Supernova Search (LOSS) photometries, providing an independent validation of Riess et al. (2011). We obscure the value of H0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H_0 = 72.5 ± 3.1 ({stat}) ± 0.77 ({sys}) km s-1 Mpc-1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our error budget for H0 is dominated by statistical errors due to the small size of the SN sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.
NASA Astrophysics Data System (ADS)
Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.
2015-12-01
The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.
NASA Astrophysics Data System (ADS)
Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.
2018-04-01
Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data is available from multi-year Kepler photometry. We explore the internal systematics on the stellar properties, that is, associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from: (i) the inclusion of the diffusion of helium and heavy elements; and (ii) the uncertainty in solar metallicity mixture. We also assess the systematics arising from (iii) different surface correction methods used in optimisation/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5%, 0.8%, 2.1%, and 16% in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7% in mean density, 0.5% in radius, 1.4% in mass, and 6.7% in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1%, ˜1%, ˜2%, and ˜8% in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.
Probing the top-quark width using the charge identification of b jets
Giardino, Pier Paolo; Zhang, Cen
2017-07-18
We propose a new method for measuring the top-quark width based on the on-/off-shell ratio of b -charge asymmetry in pp → Wbj production at the LHC. The charge asymmetry removes virtually all backgrounds and related uncertainties, while remaining systematic and theoretical uncertainties can be taken under control by the ratio of cross sections. Limited only by statistical error, in an optimistic scenario, we find that our approach leads to good precision at high integrated luminosity, at a few hundred MeV assuming 300 – 3000 fb -1 at the LHC. The approach directly probes the total width, in such amore » way that model-dependence can be minimized. It is complementary to existing cross section measurements which always leave a degeneracy between the total rate and the branching ratio, and provides valuable information about the properties of the top quark. Here, the proposal opens up new opportunities for precision top measurements using a b-charge identification algorithm.« less
Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten
2017-01-01
Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.
Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran; ...
2017-03-09
Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran
Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less
HZETRN radiation transport validation using balloon-based experimental data
NASA Astrophysics Data System (ADS)
Warner, James E.; Norman, Ryan B.; Blattnig, Steve R.
2018-05-01
The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding ± 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm2 but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that improvements to the light ion production cross sections in HZETRN should be investigated.
Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions
Carlsson, Boris; Forssen, Christian; Fahlin Strömberg, D.; ...
2016-02-24
Chiral effective field theory ( ΧEFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, EFT is able to provide well-founded estimates of statistical and systematic uncertainties | although this unique advantage has not yet been fully exploited. We ll this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous t to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of EFT. Finally, we study the effect on other observables by demonstrating forward-error-propagation methodsmore » that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain e cient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to EFT and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling showing that statistical errors are in general small compared to systematic ones. In conclusion, we find that a simultaneous t to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in EFT. Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector; in particlar when varying the cutoff in the chiral potentials. The methodology and results presented in this Paper open a new frontier for uncertainty quantification in ab initio nuclear theory.« less
Gao, Qi; Zhou, Min; Han, Chengyin; Li, Shangyan; Zhang, Shuang; Yao, Yuan; Li, Bo; Qiao, Hao; Ai, Di; Lou, Ge; Zhang, Mengya; Jiang, Yanyi; Bi, Zhiyi; Ma, Longsheng; Xu, Xinye
2018-05-22
Optical clocks are the most precise measurement devices. Here we experimentally characterize one such clock based on the 1 S 0 - 3 P 0 transition of neutral 171 Yb atoms confined in an optical lattice. Given that the systematic evaluation using an interleaved stabilization scheme is unable to avoid noise from the clock laser, synchronous comparisons against a second 171 Yb lattice system were implemented to accelerate the evaluation. The fractional instability of one clock falls below 4 × 10 -17 after an averaging over a time of 5,000 seconds. The systematic frequency shifts were corrected with a total uncertainty of 1.7 × 10 -16 . The lattice polarizability shift currently contributes the largest source. This work paves the way to measuring the absolute clock transition frequency relative to the primary Cs standard or against the International System of Units (SI) second.
Charm dimuon production in neutrino-nucleon interactions in the NOMAD experiment
NASA Astrophysics Data System (ADS)
Petti, Roberto; Samoylov, Oleg
2012-09-01
We present our new measurement of charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15,340 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample (about 9 million events after all analysis cuts) to constrain the total systematic uncertainty to about 2%. The extraction of strange sea and charm production parameters is also discussed.
Charm dimuon production in neutrino-nucleon interactions in the NOMAD experiment
NASA Astrophysics Data System (ADS)
Petti, R.; Samoylov, O. B.
2011-12-01
We present our new measurement of charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15,340 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample (about 9 million events after all analysis cuts) to constrain the total systematic uncertainty to ˜2%. The extraction of strange sea and charm production parameters is also discussed.
Geodetic imaging of tectonic deformation with InSAR
NASA Astrophysics Data System (ADS)
Fattahi, Heresh
Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and evaluated the rate of strain accumulation along the Chaman fault system (Chapter 5). I also evaluate the co-seismic and post-seismic displacement of a moderate M5.5 earthquake on the Ghazaband fault (Chapter 6). The developed methods to mitigate the systematic noise from InSAR time-series, significantly improve the accuracy of the InSAR displacement time-series and velocity. The approaches to evaluate the effect of the stochastic components of noise in InSAR displacement time-series enable us to obtain the variance-covariance matrix of the InSAR displacement time-series and to express their uncertainties. The effect of the topographic residuals in the InSAR range-change time-series is proportional to the perpendicular baseline history of the set of SAR acquisitions. The proposed method for topographic residual correction, efficiently corrects the displacement time-series. Evaluation of the uncertainty of velocity due to the orbital errors shows that for modern SAR satellites with precise orbits such as TerraSAR-X and Sentinel-1, the uncertainty of 0.2 mm/yr per 100 km and for older satellites with less accurate orbits such as ERS and Envisat, the uncertainty of 1.5 and 0.5mm/yr per 100 km, respectively are achievable. However, the uncertainty due to the orbital errors depends on the orbital uncertainties, the number and time span of SAR acquisitions. Contribution of the tropospheric delay to the InSAR range-change time-series can be subdivided to systematic (seasonal delay) and stochastic components. The systematic component biases the displacement times-series and velocity field as a function of the acquisition time and the non-seasonal component significantly contributes to the InSAR uncertainty. Both components are spatially correlated and therefore the covariance of noise between pixels should be considered for evaluating the uncertainty due to the random tropospheric delay. The relative velocity uncertainty due to the random tropospheric delay depends on the scatter of the random tropospheric delay, and is inversely proportional to the number of acquisitions, and the total time span covered by the SAR acquisitions. InSAR observations across the Chaman fault system shows that relative motion between India and Eurasia in the western boundary is distributed among different faults. The InSAR velocity field indicates strain localization on the Chaman fault and Ghazaband fault with slip rates of ~8 and ~16 mm/yr, respectively. High rate of strain accumulation on the Ghazaband fault and lack of evidence for rupturing the fault during the 1935 Quetta earthquake indicates that enough strain has been accumulated for large (M>7) earthquake, which threatens Balochistan and the City of Quetta. Chaman fault from latitudes ~29.5 N to ~32.5 N is creeping with a maximum surface creep rate of 8 mm/yr, which indicates that Chaman fault is only partially locked and therefore moderate earthquakes (M<7) similar to what has been recorded in last 100 years are expected.
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy.
Bemmerer, D; Confortola, F; Costantini, H; Formicola, A; Gyürky, Gy; Bonetti, R; Broggini, C; Corvisiero, P; Elekes, Z; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Lozza, V; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P
2006-09-22
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weixuan; Lian, Jianming; Engel, Dave
2017-07-27
This paper presents a general uncertainty quantification (UQ) framework that provides a systematic analysis of the uncertainty involved in the modeling of a control system, and helps to improve the performance of a control strategy.
NASA Astrophysics Data System (ADS)
Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.
2018-06-01
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.
ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyunsook; Kashyap, Vinay L.; Drake, Jeremy J.
2011-04-20
While considerable advance has been made to account for statistical uncertainties in astronomical analyses, systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy data. We first present a method based on multiple imputation that can bemore » applied with any fitting method, but is necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible calibration files. This method is implemented using recently codified Chandra effective area uncertainties for low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.« less
NASA Astrophysics Data System (ADS)
Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.
2001-05-01
Long-term, tower-based measurements using the eddy-covariance method have revealed a wealth of detail about the temporal dynamics of netecosystem-atmosphere exchange (NEE) of CO2. The data also provide a measure of the annual net CO2 exchange. The area represented by these flux measurements, however, is limited, and doubts remain about possible systematic errors that may bias the annual net exchange measurements. Flux and mixing ratio measurements conducted at the WLEF tall tower as part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS) allow for unique assessment of the uncertainties in NEE of CO2. The synergy between flux and mixing ratio observations shows the potential for comparing inverse and eddy-covariance methods of estimating NEE of CO2. Such comparisons may strengthen confidence in both results and begin to bridge the huge gap in spatial scales (at least 3 orders of magnitude) between continental or hemispheric scale inverse studies and kilometer-scale eddy covariance flux measurements. Data from WLEF and Willow Creek, another ChEAS tower, are used to estimate random and systematic errors in NEE of CO2. Random uncertainty in seasonal exchange rates and the annual integrated NEE, including both turbulent sampling errors and variability in enviromental conditions, is small. Systematic errors are identified by examining changes in flux as a function of atmospheric stability and wind direction, and by comparing the multiple level flux measurements on the WLEF tower. Nighttime drainage is modest but evident. Systematic horizontal advection occurs during the morning turbulence transition. The potential total systematic error appears to be larger than random uncertainty, but still modest. The total systematic error, however, is difficult to assess. It appears that the WLEF region ecosystems were a small net sink of CO2 in 1997. It is clear that the summer uptake rate at WLEF is much smaller than that at most deciduous forest sites, including the nearby Willow Creek site. The WLEF tower also allows us to study the potential for monitoring continental CO2 mixing ratios from tower sites. Despite concerns about the proximity to ecosystem sources and sinks, it is clear that boundary layer CO2 mixing ratios can be monitored using typical surface layer towers. Seasonal and annual land-ocean mixing ratio gradients are readily detectable, providing the motivation for a flux-tower based mixing ratio observation network that could greatly improve the accuracy of inversion-based estimates of NEE of CO2, and enable inversions to be applied on smaller temporal and spatial scales. Results from the WLEF tower illustrate the degree to which local flux measurements represent interannual, seasonal and synoptic CO2 mixing ratio trends. This coherence between fluxes and mixing ratios serves to "regionalize" the eddy-covariance based local NEE observations.
NASA Astrophysics Data System (ADS)
Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart, H.; Burdin, S.; Burgess, T.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Crispin Ortuzar, M.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot, F.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mazzanti, M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisin, H.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schroer, N.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Su, J.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.
2015-01-01
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of TeV corresponding to an integrated luminosity of . Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti- algorithm with distance parameters or , and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a boson, for and pseudorapidities . The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region () for jets with . For central jets at lower , the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for TeV. The calibration of forward jets is derived from dijet balance measurements. The resulting uncertainty reaches its largest value of 6 % for low- jets at . Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.
Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images
NASA Astrophysics Data System (ADS)
Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.
2018-01-01
We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.
Determination of the number of J/ψ events with inclusive J/ψ decays
Ablikim, M.; Achasov, M. N.; Ai, X. C.; ...
2016-08-26
A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 10 6, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 10 6. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ±more » 7.0) × 10 6, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible.« less
Determination of the number of J/ψ events with inclusive J/ψ decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ai, X. C.
A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 10 6, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 10 6. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ±more » 7.0) × 10 6, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible.« less
NASA Astrophysics Data System (ADS)
Vargas-Magaña, Mariana; Ho, Shirley; Cuesta, Antonio J.; O'Connell, Ross; Ross, Ashley J.; Eisenstein, Daniel J.; Percival, Will J.; Grieb, Jan Niklas; Sánchez, Ariel G.; Tinker, Jeremy L.; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R.; Olmstead, Matthew; Thomas, Daniel
2018-06-01
We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in the isotropic dilation α and 0.003 in the quadrupolar dilation ɛ. The leading source of systematic uncertainty is related to the reconstruction techniques. Theoretical uncertainties are sub-dominant compared with the statistical uncertainties for BOSS survey, accounting 0.2σstat for α and 0.25σstat for ɛ (σα, stat ˜ 0.010 and σɛ, stat ˜ 0.012, respectively). We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance DA(z) and the Hubble parameter H(z), including both statistical and theoretical systematic uncertainties, are 1.5 per cent and 2.8 per cent at zeff = 0.38, 1.4 per cent and 2.4 per cent at zeff = 0.51, and 1.7 per cent and 2.6 per cent at zeff = 0.61. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are cross-checked with other BAO analysis in Alam et al. The systematic error budget concerning the methodology on post-reconstruction BAO analysis presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.
NASA Astrophysics Data System (ADS)
Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.
2018-02-01
The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.
Model Sensitivity Studies of the Decrease in Atmospheric Carbon Tetrachloride
NASA Technical Reports Server (NTRS)
Chipperfield, Martyn P.; Liang, Qing; Rigby, Matt; Hossaini, Ryan; Montzka, Stephen A.; Dhomse, Sandip; Feng, Wuhu; Prinn, Ronald G.; Weiss, Ray F.; Harth, Christina M.;
2016-01-01
Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74% of total), but a reported 10% uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9%of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17%of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year(exp -1), the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year(exp -1). Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.
Model sensitivity studies of the decrease in atmospheric carbon tetrachloride
NASA Astrophysics Data System (ADS)
Chipperfield, Martyn P.; Liang, Qing; Rigby, Matthew; Hossaini, Ryan; Montzka, Stephen A.; Dhomse, Sandip; Feng, Wuhu; Prinn, Ronald G.; Weiss, Ray F.; Harth, Christina M.; Salameh, Peter K.; Mühle, Jens; O'Doherty, Simon; Young, Dickon; Simmonds, Peter G.; Krummel, Paul B.; Fraser, Paul J.; Steele, L. Paul; Happell, James D.; Rhew, Robert C.; Butler, James; Yvon-Lewis, Shari A.; Hall, Bradley; Nance, David; Moore, Fred; Miller, Ben R.; Elkins, James W.; Harrison, Jeremy J.; Boone, Chris D.; Atlas, Elliot L.; Mahieu, Emmanuel
2016-12-01
Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % of total), but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year-1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year-1. Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.
A Systematic Review of the State of Economic Evaluation for Health Care in India.
Prinja, Shankar; Chauhan, Akashdeep Singh; Angell, Blake; Gupta, Indrani; Jan, Stephen
2015-12-01
Economic evaluations are one of the important tools in policy making for rational allocation of resources. Given the very low public investment in the health sector in India, it is critical that resources are used wisely on interventions proven to yield best results. Hence, we undertook this study to assess the extent and quality of evidence for economic evaluation of health-care interventions and programmes in India. A comprehensive search was conducted to search for published full economic evaluations pertaining to India and addressing a health-related intervention or programme. PubMed, Scopus, Embase, ScienceDirect, and York CRD database and websites of important research agencies were identified to search for economic evaluations published from January 1980 to the middle of November 2014. Two researchers independently assessed the quality of the studies based on Drummond and modelling checklist. Out of a total of 5013 articles enlisted after literature search, a total of 104 met the inclusion criteria for this systematic review. The majority of these papers were cost-effectiveness studies (64%), led by a clinician or public-health professional (77%), using decision analysis-based methods (59%), published in an international journal (80%) and addressing communicable diseases (58%). In addition, 42% were funded by an international funding agency or UN/bilateral aid agency, and 30% focussed on pharmaceuticals. The average quality score of these full economic evaluations was 65.1%. The major limitation was the inability to address uncertainties involved in modelling as only about one-third of the studies assessed modelling structural uncertainties (33%), or ran sub-group analyses to account for heterogeneity (36.5%) or analysed methodological uncertainty (32%). The existing literature on economic evaluations in India is inadequate to feed into sound policy making. There is an urgent need to generate awareness within the government of how economic evaluation can inform and benefit policy making, and at the same time build capacity of health-care professionals in understanding the economic principles of health-care delivery system.
NASA Astrophysics Data System (ADS)
Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.
2018-07-01
Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data are available from multiyear Kepler photometry. We explore the internal systematics on the stellar properties, that is associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from (i) the inclusion of the diffusion of helium and heavy elements; (ii) the uncertainty in solar metallicity mixture; and (iii) different surface correction methods used in optimization/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5 per cent, 0.8 per cent, 2.1 per cent, and 16 per cent in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7 per cent in mean density, 0.5 per cent in radius, 1.4 per cent in mass, and 6.7 per cent in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1 per cent, ˜1 per cent, ˜2 per cent, and ˜8 per cent in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.
Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond
NASA Astrophysics Data System (ADS)
Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko
2013-04-01
Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.
Tiedens, L Z; Linton, S
2001-12-01
The authors argued that emotions characterized by certainty appraisals promote heuristic processing, whereas emotions characterized by uncertainty appraisals result in systematic processing. The 1st experiment demonstrated that the certainty associated with an emotion affects the certainty experienced in subsequent situations. The next 3 experiments investigated effects on processing of emotions associated with certainty and uncertainty. Compared with emotions associated with uncertainty, emotions associated with certainty resulted in greater reliance on the expertise of a source of a persuasive message in Experiment 2, more stereotyping in Experiment 3, and less attention to argument quality in Experiment 4. In contrast to previous theories linking valence and processing, these findings suggest that the certainty appraisal content of emotions is also important in determining whether people engage in systematic or heuristic processing.
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
In-flight calibration of Hitomi Soft X-ray Spectrometer. (3) Effective area
NASA Astrophysics Data System (ADS)
Tsujimoto, Masahiro; Okajima, Takashi; Eckart, Megan E.; Hayashi, Takayuki; Hoshino, Akio; Iizuka, Ryo; Kelley, Richard L.; Kilbourne, Caroline A.; Leutenegger, Maurice A.; Maeda, Yoshitomo; Mori, Hideyuki; Porter, Frederick S.; Sato, Kosuke; Sato, Toshiki; Serlemitsos, Peter J.; Szymkowiak, Andrew; Yaqoob, Tahir
2018-03-01
We present the result of the in-flight calibration of the effective area of the Soft X-ray Spectrometer (SXS) on board the Hitomi X-ray satellite using an observation of the Crab nebula. We corrected for artifacts when observing high count rate sources with the X-ray microcalorimeter. We then constructed a spectrum in the 0.5-20 keV band, which we modeled with a single power-law continuum attenuated by interstellar extinction. We evaluated the systematic uncertainty of the spectral parameters by various calibration items. In the 2-12 keV band, the SXS result is consistent with the literature values in flux (2.20 ± 0.08 × 10-8 erg s-1 cm-2 with a 1 σ statistical uncertainty) but is softer in the power-law index (2.19 ± 0.11). The discrepancy is attributable to the systematic uncertainty of about +6%/-7% and +2%/-5% respectively for the flux and the power-law index. The softer spectrum is affected primarily by the systematic uncertainty of the Dewar gate valve transmission and the event screening.
NASA Astrophysics Data System (ADS)
Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.
2017-11-01
Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.
The Hubble Constant from Supernovae
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Macri, Lucas M.
The decades-long quest to obtain a precise and accurate measurement of the local expansion rate of the universe (the Hubble Constant or H0) has greatly benefited from the use of supernovae (SNe). Starting from humble beginnings (dispersions of ˜ 0.5 mag in the Hubble flow in the late 1960s/early 1970s), the increasingly more sophisticated understanding, classification, and analysis of these events turned type Ia SNe into the premiere choice for a secondary distance indicator by the early 1990s. While some systematic uncertainties specific to SNe and to Cepheid-based distances to the calibrating host galaxies still contribute to the H0 error budget, the major emphasis over the past two decades has been on reducing the statistical uncertainty by obtaining ever-larger samples of distances to SN hosts. Building on early efforts with the first-generation instruments on the Hubble Space Telescope, recent observations with the latest instruments on this facility have reduced the estimated total uncertainty on H0 to 2.4 % and shown a path to reach a 1 % measurement by the end of the decade, aided by Gaia and the James Webb Space Telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
A measurement of the total ppcross section at the LHC at √s=8TeV is presented. An integrated luminosity of 500 μb-1 was accumulated in a special run with high-β beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the -t range from 0.014GeV2 to 0.1GeV2 to extrapolate t→0, the total cross section, σtot(pp →X), is measured via the optical theorem to be σtot(pp→ X) = 96.07±0.18 (stat.)±0.85 (exp.)± 0.31 (extr.) mb,more » where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation t→0. In addition, the slope of the exponential function describing the elastic cross section at small t is determined to be B =19.74 ±0.05 (stat.) ±0.23 (syst.) GeV-2.« less
Gatti, M.
2018-02-22
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatti, M.
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
The older worker with osteoarthritis of the knee.
Palmer, Keith T
2012-06-01
Changing demographics mean that many patients with large joint arthritis will work beyond traditional retirement age. This review considers the impact of knee osteoarthritis (OA) on work participation and the relation between work and total knee replacement (TKR). Two systematic searches in Embase and Medline, supplemented by three systematic reviews. Probably, although evidence is limited, knee OA considerably impairs participation in work (labour force participation, work attendance and work productivity). AREAS OF UNCERTAINTY/RESEARCH NEED: Little is known about effective interventions (treatments, work changes and policies) to improve vocational participation in patients with knee OA; or how type of work affects long-term clinical outcomes (e.g. pain, function and the need for revision surgery) in patients with TKRs. The need for such research is pressing and opportune, as increasing numbers of patients with knee OA or TKR expect to work on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, C.; Hanany, S.; Baccigalupi, C.
We extend a general maximum likelihood foreground estimation for cosmic microwave background (CMB) polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the B-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMBmore » B-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10% polarized dust, a tensor to scalar ratio of r = 0.05, and the instrumental configuration of the E and B experiment balloon payload, the estimated CMB B-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4°.« less
Improving Photometric Calibration of Meteor Video Camera Systems
NASA Technical Reports Server (NTRS)
Ehlert, Steven; Kingery, Aaron; Suggs, Robert
2016-01-01
We present the results of new calibration tests performed by the NASA Meteoroid Environment Oce (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the rst point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric ux within the camera band-pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at 0:20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0:05 ?? 0:10 mag in both ltered and un ltered camera observations with no evidence for lingering systematics.
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.
2003-01-01
We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2009-12-01
We deal with the attempts to measure the Lense-Thirring effect with the Satellite Laser Ranging (SLR) technique applied to the existing LAGEOS and LAGEOS II terrestrial satellites and to the recently approved LARES spacecraft. According to general relativity, a central spinning body of mass M and angular momentum S like the Earth generates a gravitomagnetic field which induces small secular precessions of the orbit of a test particle geodesically moving around it. Extracting this signature from the data is a demanding task because of many classical orbital perturbations having the same pattern as the gravitomagnetic one, like those due to the centrifugal oblateness of the Earth which represents a major source of systematic bias. The first issue addressed here is: are the so far published evaluations of the systematic uncertainty induced by the bad knowledge of the even zonal harmonic coefficients J ℓ of the multipolar expansion of the Earth’s geopotential reliable and realistic? Our answer is negative. Indeed, if the differences Δ J ℓ among the even zonals estimated in different Earth’s gravity field global solutions from the dedicated GRACE mission are assumed for the uncertainties δ J ℓ instead of using their covariance sigmas σ_{J_{ell}} , it turns out that the systematic uncertainty δ μ in the Lense-Thirring test with the nodes Ω of LAGEOS and LAGEOS II may be up to 3 to 4 times larger than in the evaluations so far published (5-10%) based on the use of the sigmas of one model at a time separately. The second issue consists of the possibility of using a different approach in extracting the relativistic signature of interest from the LAGEOS-type data. The third issue is the possibility of reaching a realistic total accuracy of 1% with LAGEOS, LAGEOS II and LARES, which should be launched in November 2009 with a VEGA rocket. While LAGEOS and LAGEOS II fly at altitudes of about 6000 km, LARES will be likely placed at an altitude of 1450 km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS II. Their corrupting impact has been evaluated with the standard Kaula’s approach up to degree ℓ=60 by using Δ J ℓ and σ_{J_{ell }} ; it turns out that it may be as large as some tens percent. The different orbit of LARES may also have some consequences on the non-gravitational orbital perturbations affecting it which might further degrade the obtainable accuracy in the Lense-Thirring test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowdell, S; Grassberger, C; Paganetti, H
2014-06-01
Purpose: Evaluate the sensitivity of intensity-modulated proton therapy (IMPT) lung treatments to systematic and random setup uncertainties combined with motion effects. Methods: Treatment plans with single-field homogeneity restricted to ±20% (IMPT-20%) were compared to plans with no restriction (IMPT-full). 4D Monte Carlo simulations were performed for 10 lung patients using the patient CT geometry with either ±5mm systematic or random setup uncertainties applied over a 35 × 2.5Gy(RBE) fractionated treatment course. Intra-fraction, inter-field and inter-fraction motions were investigated. 50 fractionated treatments with systematic or random setup uncertainties applied to each fraction were generated for both IMPT delivery methods and threemore » energy-dependent spot sizes (big spots - BS σ=18-9mm, intermediate spots - IS σ=11-5mm, small spots - SS σ=4-2mm). These results were compared to a Monte Carlo recalculation of the original treatment plan, with results presented as the difference in EUD (ΔEUD), V{sub 95} (ΔV{sub 95}) and target homogeneity (ΔD{sub 1}–D{sub 99}) between the 4D simulations and the Monte Carlo calculation on the planning CT. Results: The standard deviations in the ΔEUD were 1.95±0.47(BS), 1.85±0.66(IS) and 1.31±0.35(SS) times higher in IMPT-full compared to IMPT-20% when ±5mm systematic setup uncertainties were applied. The ΔV{sub 95} variations were also 1.53±0.26(BS), 1.60±0.50(IS) and 1.38±0.38(SS) times higher for IMPT-full. For random setup uncertainties, the standard deviations of the ΔEUD from 50 simulated fractionated treatments were 1.94±0.90(BS), 2.13±1.08(IS) and 1.45±0.57(SS) times higher in IMPTfull compared to IMPT-20%. For all spot sizes considered, the ΔD{sub 1}-D{sub 99} coincided within the uncertainty limits for the two IMPT delivery methods, with the mean value always higher for IMPT-full. Statistical analysis showed significant differences between the IMPT-full and IMPT-20% dose distributions for the majority of scenarios studied. Conclusion: Lung IMPT-full treatments are more sensitive to both systematic and random setup uncertainties compared to IMPT-20%. This work was supported by the NIH R01 CA111590.« less
Flight Departure Delay and Rerouting Under Uncertainty in En Route Convective Weather
NASA Technical Reports Server (NTRS)
Mukherjee, Avijit; Grabbe, Shon; Sridhar, Banavar
2011-01-01
Delays caused by uncertainty in weather forecasts can be reduced by improving traffic flow management decisions. This paper presents a methodology for traffic flow management under uncertainty in convective weather forecasts. An algorithm for assigning departure delays and reroutes to aircraft is presented. Departure delay and route assignment are executed at multiple stages, during which, updated weather forecasts and flight schedules are used. At each stage, weather forecasts up to a certain look-ahead time are treated as deterministic and flight scheduling is done to mitigate the impact of weather on four-dimensional flight trajectories. Uncertainty in weather forecasts during departure scheduling results in tactical airborne holding of flights. The amount of airborne holding depends on the accuracy of forecasts as well as the look-ahead time included in the departure scheduling. The weather forecast look-ahead time is varied systematically within the experiments performed in this paper to analyze its effect on flight delays. Based on the results, longer look-ahead times cause higher departure delays and additional flying time due to reroutes. However, the amount of airborne holding necessary to prevent weather incursions reduces when the forecast look-ahead times are higher. For the chosen day of traffic and weather, setting the look-ahead time to 90 minutes yields the lowest total delay cost.
Uncertainty quantification of effective nuclear interactions
Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz
2016-03-02
We give a brief review on the development of phenomenological NN interactions and the corresponding quanti cation of statistical uncertainties. We look into the uncertainty of effective interactions broadly used in mean eld calculations through the Skyrme parameters and effective eld theory counter-terms by estimating both statistical and systematic uncertainties stemming from the NN interaction. We also comment on the role played by different tting strategies on the light of recent developments.
Uncertainty quantification of effective nuclear interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz
We give a brief review on the development of phenomenological NN interactions and the corresponding quanti cation of statistical uncertainties. We look into the uncertainty of effective interactions broadly used in mean eld calculations through the Skyrme parameters and effective eld theory counter-terms by estimating both statistical and systematic uncertainties stemming from the NN interaction. We also comment on the role played by different tting strategies on the light of recent developments.
NASA Astrophysics Data System (ADS)
Wear, James A.
Measurements of the production cross section sigma (e^+e^-to Z to hadrons) have been made with the ALEPH detector in a seven-point energy scan across the Z resonance at the LEP e^+e^ - collider. The selection of hadronic Z decays is performed with a systematic uncertainty of 0.3%, resulting in 147,836 events. The absolute luminosity has been determined with a systematic uncertainty of 0.9%. These hadronic cross sections and ALEPH's measurement of Z decay into charged leptons, sigma(e^+e^ -to Z to l^+l^ -), are used in fits to extract parameters of the Z resonance in a model-independent way. The Z mass and total width are measured to be M_{Z } = 91.177 +/- 0.010 _{exp} +/- 0.020_{LEP} GeV and Gamma_{Z} = 2.482 +/- 0.018_{exp} +/- 0.006_{LEP } GeV where the second errors are due to LEP beam energy uncertainties. The Z decay partial widths are measured to be Gamma_{h} = 1.738 +/- 0.016 GeV, Gamma_{l} = 83.45 +/- 0.76 MeV, and Gamma_ {inv} = 0.493 +/- 0.015 GeV. The Born-level peak hadronic cross section is sigma_sp{had}{0 } = 41.58 +/- 0.44 nb, R = Gamma_{h }/Gamma_{l} = 20.83 +/- 0.21, and Gamma_{inv}/Gamma _{l} = 5.91 +/- 0.18. The number of light neutrino generations is determined to be N_{nu} = 2.96 +/- 0.09 and the Standard Model electroweak mixing angle to be sin^2 theta_{W} = 0.2325 +/- 0.0027.
Murtagh, Fliss EM
2014-01-01
Background: Primary care has the potential to play significant roles in providing effective palliative care for non-cancer patients. Aim: To identify, critically appraise and synthesise the existing evidence on views on the provision of palliative care for non-cancer patients by primary care providers and reveal any gaps in the evidence. Design: Standard systematic review and narrative synthesis. Data sources: MEDLINE, Embase, CINAHL, PsycINFO, Applied Social Science Abstract and the Cochrane library were searched in 2012. Reference searching, hand searching, expert consultations and grey literature searches complemented these. Papers with the views of patients/carers or professionals on primary palliative care provision to non-cancer patients in the community were included. The amended Hawker’s criteria were used for quality assessment of included studies. Results: A total of 30 studies were included and represent the views of 719 patients, 605 carers and over 400 professionals. In all, 27 studies are from the United Kingdom. Patients and carers expect primary care physicians to provide compassionate care, have appropriate knowledge and play central roles in providing care. The roles of professionals are unclear to patients, carers and professionals themselves. Uncertainty of illness trajectory and lack of collaboration between health-care professionals were identified as barriers to effective care. Conclusions: Effective interprofessional work to deal with uncertainty and maintain coordinated care is needed for better palliative care provision to non-cancer patients in the community. Research into and development of a best model for effective interdisciplinary work are needed. PMID:24821710
Chatrchyan, S.
2015-07-10
In our Letter, there was a component of the statistical uncertainty from the simulated PbPb Monte Carlo samples. This uncertainty was not propagated to all of the results. Figures 3 and 4 have been updated to reflect this source of uncertainty. In this case, the statistical uncertainties remain smaller than the systematic uncertainties in all cases such that the conclusions of the Letter are unaltered.
NASA Astrophysics Data System (ADS)
Wang, Yang; Beirle, Steffen; Hendrick, Francois; Hilboll, Andreas; Jin, Junli; Kyuberis, Aleksandra A.; Lampel, Johannes; Li, Ang; Luo, Yuhan; Lodi, Lorenzo; Ma, Jianzhong; Navarro, Monica; Ortega, Ivan; Peters, Enno; Polyansky, Oleg L.; Remmers, Julia; Richter, Andreas; Puentedura, Olga; Van Roozendael, Michel; Seyler, André; Tennyson, Jonathan; Volkamer, Rainer; Xie, Pinhua; Zobov, Nikolai F.; Wagner, Thomas
2017-10-01
In order to promote the development of the passive DOAS technique the Multi Axis DOAS - Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3 × 1015 molecules cm-2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7 × 1015 molecules cm-2. Although the HONO delta SCDs are normally smaller than 6 × 1015 molecules cm-2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63 × 1015 molecules cm-2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3 × 1015 molecules cm-2, which is about half of the systematic difference between the real measurements.The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335-361, 335-373 and 335-390 nm are considerable (up to 0.57 × 1015 molecules cm-2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335-373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87 × 1015 molecules cm-2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16 × 1015 molecules cm-2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2 × 1015 molecules cm-2 with an uncertainty of ˜ 0.9 × 1015 molecules cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Thorsten
2005-06-17
In this thesis two searches for electroweak single top quark production with the CDF experiment have been presented, a cutbased search and an iterated discriminant analysis. Both searches find no significant evidence for electroweak single top production using a data set corresponding to an integrated luminosity of 162 pb -1 collected with CDF. Therefore limits on s- and t-channel single top production are determined using a likelihood technique. For the cutbased search a likelihood function based on lepton charge times pseudorapidity of the non-bottom jet was used if exactly one bottom jet was identified in the event. In case ofmore » two identified bottom jets a likelihood function based on the total number of observed events was used. The systematic uncertainties have been treated in a Bayesian approach, all sources of systematic uncertainties have been integrated out. An improved signal modeling using the MadEvent Monte Carlo program matched to NLO calculations has been used. The obtained limits for the s- and t-channel single top production cross sections are 13.6 pb and 10.1 pb, respectively. To date, these are most stringent limits published for the s- and the t-channel single top quark production modes.« less
Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I
2015-06-01
The objective of the study was to develop a life cycle assessment (LCA) for pig farming systems that would account for uncertainty and variability in input data and allow systematic environmental impact comparisons between production systems. The environmental impacts of commercial pig production for 2 regions in Canada (Eastern and Western) were compared using a cradle-to-farm gate LCA. These systems had important contrasting characteristics such as typical feed ingredients used, herd performance, and expected emission factors from manure management. The study used detailed production data supplied by the industry and incorporated uncertainty/variation in all major aspects of the system including life cycle inventory data for feed ingredients, animal performance, energy inputs, and emission factors. The impacts were defined using 5 metrics-global warming potential, acidification potential, eutrophication potential (EP), abiotic resource use, and nonrenewable energy use-and were expressed per kilogram carcass weight at farm gate. Eutrophication potential was further separated into marine EP (MEP) and freshwater EP (FEP). Uncertainties in the model inputs were separated into 2 types: uncertainty in the data used to describe the system (α uncertainties) and uncertainty in impact calculations or background data that affects all systems equally (β uncertainties). The impacts of pig production in the 2 regions were systematically compared based on the differences in the systems (α uncertainties). The method of ascribing uncertainty influenced the outcomes. In eastern systems, EP, MEP, and FEP were lower (P < 0.05) when assuming that all uncertainty in the emission factors for leaching from manure application was β. This was mainly due to increased EP resulting from field emissions for typical ingredients in western diets. When uncertainty in these emission factors was assumed to be α, only FEP was lower in eastern systems (P < 0.05). The environmental impacts for the other impact categories were not significantly different between the 2 systems, despite their aforementioned differences. In conclusion, a probabilistic approach was used to develop an LCA that systematically dealt with uncertainty in the data when comparing multiple environmental impacts measures in pig farming systems for the first time. The method was used to identify differences between Canadian pig production systems but can also be applied for comparisons between other agricultural systems that include inherent variation.
Systematic errors in long baseline oscillation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Deborah A.; /Fermilab
This article gives a brief overview of long baseline neutrino experiments and their goals, and then describes the different kinds of systematic errors that are encountered in these experiments. Particular attention is paid to the uncertainties that come about because of imperfect knowledge of neutrino cross sections and more generally how neutrinos interact in nuclei. Near detectors are planned for most of these experiments, and the extent to which certain uncertainties can be reduced by the presence of near detectors is also discussed.
Leaf area index uncertainty estimates for model-data fusion applications
Andrew D. Richardson; D. Bryan Dail; D.Y. Hollinger
2011-01-01
Estimates of data uncertainties are required to integrate different observational data streams as model constraints using model-data fusion. We describe an approach with which random and systematic uncertainties in optical measurements of leaf area index [LAI] can be quantified. We use data from a measurement campaign at the spruce-dominated Howland Forest AmeriFlux...
NASA Astrophysics Data System (ADS)
Möbius, E.; Bzowski, M.; Frisch, P. C.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Schwadron, N. A.; Sokół, J. M.; Swaczyna, P.; Wurz, P.
2015-10-01
The Interstellar Boundary Explorer (IBEX) samples the interstellar neutral (ISN) gas flow of several species every year from December through late March when the Earth moves into the incoming flow. The first quantitative analyses of these data resulted in a narrow tube in four-dimensional interstellar parameter space, which couples speed, flow latitude, flow longitude, and temperature, and center values with approximately 3° larger longitude and 3 km s-1 lower speed, but with temperatures similar to those obtained from observations by the Ulysses spacecraft. IBEX has now recorded six years of ISN flow observations, providing a large database over increasing solar activity and using varying viewing strategies. In this paper, we evaluate systematic effects that are important for the ISN flow vector and temperature determination. We find that all models in use return ISN parameters well within the observational uncertainties and that the derived ISN flow direction is resilient against uncertainties in the ionization rate. We establish observationally an effective IBEX-Lo pointing uncertainty of ±0.°18 in spin angle and confirm an uncertainty of ±0.°1 in longitude. We also show that the IBEX viewing strategy with different spin-axis orientations minimizes the impact of several systematic uncertainties, and thus improves the robustness of the measurement. The Helium Warm Breeze has likely contributed substantially to the somewhat different center values of the ISN flow vector. By separating the flow vector and temperature determination, we can mitigate these effects on the analysis, which returns an ISN flow vector very close to the Ulysses results, but with a substantially higher temperature. Due to coupling with the ISN flow speed along the ISN parameter tube, we provide the temperature {T}{VISN∞ }=8710+440/-680 K for {V}{ISN∞ }=26 {km} {{{s}}}-1 for comparison, where most of the uncertainty is systematic and likely due to the presence of the Warm Breeze.
Characterizing spatial uncertainty when integrating social data in conservation planning.
Lechner, A M; Raymond, C M; Adams, V M; Polyakov, M; Gordon, A; Rhodes, J R; Mills, M; Stein, A; Ives, C D; Lefroy, E C
2014-12-01
Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches. © 2014 Society for Conservation Biology.
Measurement of sigma(e+e- -->psi(3770)-->hadrons) at Ec.m.=3773 MeV.
Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Asner, D M; Edwards, K W
2006-03-10
We measure the cross section for e+e- -->psi(3770) -->hadrons at Ec.m.=3773 MeV to be (6.38+/-0.08(+0.41)(-0.30) nb using the CLEO detector at the CESR e+e- collider. The difference between this and the e+e- -->psi(3770) -->DD cross section at the same energy is found to be (-0.01+/-0.08(+0.41)(-0.30) nb. With the observed total cross section, we extract Gamma(ee)(psi(3770))=(0.204+/-0.003(+0.041)(-0.027) keV. Uncertainties shown are statistical and systematic, respectively.
Management of hepatocellular carcinoma: an overview of major findings from meta-analyses
Guo, Xiaozhong; Han, Guohong
2016-01-01
This paper aims to systematically review the major findings from meta-analyses comparing different treatment options for hepatocellular carcinoma (HCC). A total of 153 relevant papers were searched via the PubMed, EMBASE, and Cochrane library databases. They were classified according to the mainstay treatment modalities (i.e., liver transplantation, surgical resection, radiofrequency ablation, transarterial embolization or chemoembolization, sorafenib, and others). The primary outcome data, such as overall survival, diseases-free survival or recurrence-free survival, progression-free survival, and safety, were summarized. The recommendations and uncertainties regarding the treatment of HCC were also proposed. PMID:27167195
Uncertainty Assessment of Synthetic Design Hydrographs for Gauged and Ungauged Catchments
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Sikorska, Anna E.; Furrer, Reinhard; Favre, Anne-Catherine
2018-03-01
Design hydrographs described by peak discharge, hydrograph volume, and hydrograph shape are essential for engineering tasks involving storage. Such design hydrographs are inherently uncertain as are classical flood estimates focusing on peak discharge only. Various sources of uncertainty contribute to the total uncertainty of synthetic design hydrographs for gauged and ungauged catchments. These comprise model uncertainties, sampling uncertainty, and uncertainty due to the choice of a regionalization method. A quantification of the uncertainties associated with flood estimates is essential for reliable decision making and allows for the identification of important uncertainty sources. We therefore propose an uncertainty assessment framework for the quantification of the uncertainty associated with synthetic design hydrographs. The framework is based on bootstrap simulations and consists of three levels of complexity. On the first level, we assess the uncertainty due to individual uncertainty sources. On the second level, we quantify the total uncertainty of design hydrographs for gauged catchments and the total uncertainty of regionalizing them to ungauged catchments but independently from the construction uncertainty. On the third level, we assess the coupled uncertainty of synthetic design hydrographs in ungauged catchments, jointly considering construction and regionalization uncertainty. We find that the most important sources of uncertainty in design hydrograph construction are the record length and the choice of the flood sampling strategy. The total uncertainty of design hydrographs in ungauged catchments depends on the catchment properties and is not negligible in our case.
NASA Astrophysics Data System (ADS)
Sun, Youwen; Palm, Mathias; Liu, Cheng; Hase, Frank; Griffith, David; Weinzierl, Christine; Petri, Christof; Wang, Wei; Notholt, Justus
2018-05-01
We simulated instrumental line shape (ILS) degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change) gas. The sensitivities of the total column, the root mean square (rms) of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs), and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs) were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME) amplitude influence and phase error (PE) influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10 %), the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23 %, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75 %, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1 %, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13 %, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12 %, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being negligible.
GCR Environmental Models III: GCR Model Validation and Propagated Uncertainties in Effective Dose
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Xu, Xiaojing; Blattnig, Steve R.; Norman, Ryan B.
2014-01-01
This is the last of three papers focused on quantifying the uncertainty associated with galactic cosmic rays (GCR) models used for space radiation shielding applications. In the first paper, it was found that GCR ions with Z>2 and boundary energy below 500 MeV/nucleon induce less than 5% of the total effective dose behind shielding. This is an important finding since GCR model development and validation have been heavily biased toward Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer measurements below 500 MeV/nucleon. Weights were also developed that quantify the relative contribution of defined GCR energy and charge groups to effective dose behind shielding. In the second paper, it was shown that these weights could be used to efficiently propagate GCR model uncertainties into effective dose behind shielding. In this work, uncertainties are quantified for a few commonly used GCR models. A validation metric is developed that accounts for measurements uncertainty, and the metric is coupled to the fast uncertainty propagation method. For this work, the Badhwar-O'Neill (BON) 2010 and 2011 and the Matthia GCR models are compared to an extensive measurement database. It is shown that BON2011 systematically overestimates heavy ion fluxes in the range 0.5-4 GeV/nucleon. The BON2010 and BON2011 also show moderate and large errors in reproducing past solar activity near the 2000 solar maximum and 2010 solar minimum. It is found that all three models induce relative errors in effective dose in the interval [-20%, 20%] at a 68% confidence level. The BON2010 and Matthia models are found to have similar overall uncertainty estimates and are preferred for space radiation shielding applications.
Model sensitivity studies of the decrease in atmospheric carbon tetrachloride
Chipperfield, Martyn P.; Liang, Qing; Rigby, Matthew; ...
2016-12-20
Carbon tetrachloride (CCl 4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. But, the current observed rate of this decrease is known to be slower than expected based on reported CCl 4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl 4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % ofmore » total), but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl 4 decay. This is partly due to the limiting effect of the rate of transport of CCl 4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total) has the largest impact on modelled CCl 4 decay due to its sizeable contribution to CCl 4 loss and large lifetime uncertainty range (147 to 241 years). Furthermore, with an assumed CCl 4 emission rate of 39 Gg year -1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl 4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl 4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year -1. Further progress in constraining the CCl 4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. The observed differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl 4 sinks.« less
Model sensitivity studies of the decrease in atmospheric carbon tetrachloride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chipperfield, Martyn P.; Liang, Qing; Rigby, Matthew
Carbon tetrachloride (CCl 4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. But, the current observed rate of this decrease is known to be slower than expected based on reported CCl 4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl 4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % ofmore » total), but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl 4 decay. This is partly due to the limiting effect of the rate of transport of CCl 4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total) has the largest impact on modelled CCl 4 decay due to its sizeable contribution to CCl 4 loss and large lifetime uncertainty range (147 to 241 years). Furthermore, with an assumed CCl 4 emission rate of 39 Gg year -1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl 4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl 4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year -1. Further progress in constraining the CCl 4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. The observed differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl 4 sinks.« less
NASA Astrophysics Data System (ADS)
Magiera, Andrzej
2017-09-01
Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.
Improving Photometric Calibration of Meteor Video Camera Systems.
Ehlert, Steven; Kingery, Aaron; Suggs, Robert
2017-09-01
We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera band pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at ∼ 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to ∼ 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.
Improving Photometric Calibration of Meteor Video Camera Systems
NASA Technical Reports Server (NTRS)
Ehlert, Steven; Kingery, Aaron; Suggs, Robert
2017-01-01
We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2015-06-15
Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopicmore » x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine were (0.27,0.24,0.34mm) and kV-imager (0.15,−0.4,0.21mm). Conclusion: A statistical model was developed to evaluate the individual and cumulative systematic and random uncertainties induced by the different hardware and software components of the 6D-ExacTrac-system. The immobilization mask was associated with the largest positioning uncertainty.« less
Whalley, Ben; Thompson, David R; Taylor, Rod S
2014-02-01
Depression and anxiety are common in cardiac patients, and psychological interventions may also be used as part of general cardiac rehabilitation programs. This study aims to estimate effects of psychological interventions on mortality and psychological symptoms in this group, updating an existing Cochrane Review. Systematic review and meta-regression analyses of randomized trials evaluating a psychological treatment delivered by trained staff to patients with a diagnosed cardiac disease, with a follow-up of at least 6 months, were used. There was no strong evidence that psychological intervention reduced total deaths, risk of revascularization, or non-fatal infarction. Psychological intervention did result in small/moderate improvements in depression and anxiety, and there was a small effect for cardiac mortality. Psychological treatments appear effective in treating patients with psychological symptoms of coronary heart disease. Uncertainty remains regarding the subgroups of patients who would benefit most from treatment and the characteristics of successful interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesini, Danilo; Van Dokkum, Pieter G.; Foerster Schreiber, Natascha M.
2009-08-20
We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget;more » (2) simultaneously probe the high-mass end and the low-mass end (down to {approx}0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of {approx}17{sup +7}{sub -10} since z = 4.0, mostly driven by a change in the normalization {phi}*. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 10{sup 10} M{sub sun} at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high-mass galaxies. The discrepancy at the high-mass end is susceptible to uncertainties in the models and the data, but the discrepancy at the low-mass end may be more difficult to explain.« less
Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant
NASA Technical Reports Server (NTRS)
Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane
2012-01-01
Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savy, J.
New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the resultsmore » of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Amy; Watt, Elizabeth; Peacock, Michael
Purpose: This retrospective study aims to quantify the positional accuracy of seed delivery in permanent breast seed implant (PBSI) brachytherapy at the Tom Baker Cancer Centre (TBCC). Methods: Treatment planning and post-implant CT scans for 5 patients were rigidly registered using the MIM Symphony™ software (MIM Software, Cleveland, OH) and used to evaluate differences between planned and implanted seed positions. Total and directional seed displacements were calculated for each patient in a clinically relevant ‘needle coordinate system’, defined relative to the angle of fiducial needle insertion. Results: The overall average total seed displacement was 10±8 mm. Systematic seed displacements weremore » observed in individual patients and the magnitude and direction of these offsets varied among patients. One patient showed a significant directional seed displacement in the shallow-deep direction compared with the other four patients. With the exception of this one patient outlier, no significant systematic directional displacements in the needle coordinate system were observed for this cohort; the average directional displacements were −1±5 mm, 2±3 mm, and −2±4 mm in the shallow-deep, up-down, and right-left directions respectively. Conclusion: With the exception of one patient outlier, the magnitude of seed displacements were relatively consistent among patients. The results indicate that the shallow-deep direction possesses the largest uncertainty for the seed delivery method used at the TBCC. The relatively large uncertainty in seed placement in this direction is expected, as this is the direction of needle insertion. Further work will involve evaluating deflections of delivered needle tracks from their planned positions.« less
Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms
NASA Astrophysics Data System (ADS)
Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.
2017-08-01
Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.
OPTHYLIC: An Optimised Tool for Hybrid Limits Computation
NASA Astrophysics Data System (ADS)
Busato, Emmanuel; Calvet, David; Theveneaux-Pelzer, Timothée
2018-05-01
A software tool, computing observed and expected upper limits on Poissonian process rates using a hybrid frequentist-Bayesian CLs method, is presented. This tool can be used for simple counting experiments where only signal, background and observed yields are provided or for multi-bin experiments where binned distributions of discriminating variables are provided. It allows the combination of several channels and takes into account statistical and systematic uncertainties, as well as correlations of systematic uncertainties between channels. It has been validated against other software tools and analytical calculations, for several realistic cases.
A combined analysis of the hadronic and leptonic decays of the Z 0
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration
1990-04-01
We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of Mz=91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γz=2.536±0.045 GeV. The errors on Mz have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γee=81.2±2.6 MeV, Γμμ=82.6± 5.8 MeV, and Γττ=85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γℓ + ℓ - = 81.9±2.0 MeV. The hadronic partial width is Γhad=1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γinv=453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.
Measurement of the $B^-$ lifetime using a simulation free approach for trigger bias correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.
2010-04-01
The collection of a large number of B hadron decays to hadronic final states at the CDF II detector is possible due to the presence of a trigger that selects events based on track impact parameters. However, the nature of the selection requirements of the trigger introduces a large bias in the observed proper decay time distribution. A lifetime measurement must correct for this bias and the conventional approach has been to use a Monte Carlo simulation. The leading sources of systematic uncertainty in the conventional approach are due to differences between the data and the Monte Carlo simulation. Inmore » this paper they present an analytic method for bias correction without using simulation, thereby removing any uncertainty between data and simulation. This method is presented in the form of a measurement of the lifetime of the B{sup -} using the mode B{sup -} {yields} D{sup 0}{pi}{sup -}. The B{sup -} lifetime is measured as {tau}{sub B{sup -}} = 1.663 {+-} 0.023 {+-} 0.015 ps, where the first uncertainty is statistical and the second systematic. This new method results in a smaller systematic uncertainty in comparison to methods that use simulation to correct for the trigger bias.« less
Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahmadov, F; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Bunse, M; Burckhart, H; Burdin, S; Burgess, T; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Caso, C; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Christidi, I A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, B; Cole, S; Colijn, A P; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Crispin Ortuzar, M; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliot, F; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giuliani, C; Giunta, M; Gjelsten, B K; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Grybel, K; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haefner, P; Hageboeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernandez, C M; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattmann, J; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mazzanti, M; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Ntekas, K; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Grady, F; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petteni, M; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisin, H; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarkisyan-Grinbaum, E; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schramm, S; Schreyer, M; Schroeder, C; Schroer, N; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, J; Snyder, S; Sobie, R; Socher, F; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spighi, R; Spigo, G; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Su, J; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.
Aad, G.
2015-01-15
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of \\(\\sqrt{s}=7\\) TeV corresponding to an integrated luminosity of \\(4.7\\) \\(\\,\\,\\text{ fb }^{-1}\\). Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-\\(k_{t}\\) algorithm with distance parameters \\(R=0.4\\) or \\(R=0.6\\), and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transversemore » momentum balance between a jet and a reference object such as a photon or a \\(Z\\) boson, for \\({20} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{1000}\\, ~\\mathrm{GeV }\\) and pseudorapidities \\(|\\eta |<{4.5}\\). The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (\\(|\\eta |<{1.2}\\)) for jets with \\({55} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{500}\\, ~\\mathrm{GeV }\\). For central jets at lower \\(p_{\\mathrm {T}}\\), the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for \\(p_{\\mathrm {T}}^\\mathrm {jet}> 1\\) TeV. The calibration of forward jets is derived from dijet \\(p_{\\mathrm {T}}\\) balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-\\(p_{\\mathrm {T}}\\) jets at \\(|\\eta |=4.5\\). In addition, JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.« less
Using high-throughput literature mining to support read-across predictions of toxicity (SOT)
Building scientific confidence in the development and evaluation of read-across remains an ongoing challenge. Approaches include establishing systematic frameworks to identify sources of uncertainty and ways to address them. One source of uncertainty is related to characterizing ...
High-throughput literature mining to support read-across predictions of toxicity (ASCCT meeting)
Building scientific confidence in the development and evaluation of read-across remains an ongoing challenge. Approaches include establishing systematic frameworks to identify sources of uncertainty and ways to address them. One source of uncertainty is related to characterizing ...
Aerosol-type retrieval and uncertainty quantification from OMI data
NASA Astrophysics Data System (ADS)
Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna
2017-11-01
We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model selection. The posterior probability distribution can provide a comprehensive characterisation of the uncertainty in this kind of problem for aerosol-type selection. As a result, the proposed method can account for the model error and also include the model selection uncertainty in the total uncertainty budget.
NASA Astrophysics Data System (ADS)
Carroll, R. W.; Warwick, J. J.
2009-12-01
Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.
A review of uncertainty in in situ measurements and data sets of sea surface temperature
NASA Astrophysics Data System (ADS)
Kennedy, John J.
2014-03-01
Archives of in situ sea surface temperature (SST) measurements extend back more than 160 years. Quality of the measurements is variable, and the area of the oceans they sample is limited, especially early in the record and during the two world wars. Measurements of SST and the gridded data sets that are based on them are used in many applications so understanding and estimating the uncertainties are vital. The aim of this review is to give an overview of the various components that contribute to the overall uncertainty of SST measurements made in situ and of the data sets that are derived from them. In doing so, it also aims to identify current gaps in understanding. Uncertainties arise at the level of individual measurements with both systematic and random effects and, although these have been extensively studied, refinement of the error models continues. Recent improvements have been made in the understanding of the pervasive systematic errors that affect the assessment of long-term trends and variability. However, the adjustments applied to minimize these systematic errors are uncertain and these uncertainties are higher before the 1970s and particularly large in the period surrounding the Second World War owing to a lack of reliable metadata. The uncertainties associated with the choice of statistical methods used to create globally complete SST data sets have been explored using different analysis techniques, but they do not incorporate the latest understanding of measurement errors, and they want for a fair benchmark against which their skill can be objectively assessed. These problems can be addressed by the creation of new end-to-end SST analyses and by the recovery and digitization of data and metadata from ship log books and other contemporary literature.
Systematic Uncertainties in High-Energy Hadronic Interaction Models
NASA Astrophysics Data System (ADS)
Zha, M.; Knapp, J.; Ostapchenko, S.
2003-07-01
Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.
Systematic uncertainties in long-baseline neutrino-oscillation experiments
NASA Astrophysics Data System (ADS)
Ankowski, Artur M.; Mariani, Camillo
2017-05-01
Future neutrino-oscillation experiments are expected to bring definite answers to the questions of neutrino-mass hierarchy and violation of charge-parity symmetry in the lepton-sector. To realize this ambitious program it is necessary to ensure a significant reduction of uncertainties, particularly those related to neutrino-energy reconstruction. In this paper, we discuss different sources of systematic uncertainties, paying special attention to those arising from nuclear effects and detector response. By analyzing nuclear effects we show the importance of developing accurate theoretical models, capable of providing a quantitative description of neutrino cross sections, together with the relevance of their implementation in Monte Carlo generators and extensive testing against lepton-scattering data. We also point out the fundamental role of efforts aiming to determine detector responses in test-beam exposures.
Defining and Measuring Diagnostic Uncertainty in Medicine: A Systematic Review.
Bhise, Viraj; Rajan, Suja S; Sittig, Dean F; Morgan, Robert O; Chaudhary, Pooja; Singh, Hardeep
2018-01-01
Physicians routinely encounter diagnostic uncertainty in practice. Despite its impact on health care utilization, costs and error, measurement of diagnostic uncertainty is poorly understood. We conducted a systematic review to describe how diagnostic uncertainty is defined and measured in medical practice. We searched OVID Medline and PsycINFO databases from inception until May 2017 using a combination of keywords and Medical Subject Headings (MeSH). Additional search strategies included manual review of references identified in the primary search, use of a topic-specific database (AHRQ-PSNet) and expert input. We specifically focused on articles that (1) defined diagnostic uncertainty; (2) conceptualized diagnostic uncertainty in terms of its sources, complexity of its attributes or strategies for managing it; or (3) attempted to measure diagnostic uncertainty. We identified 123 articles for full review, none of which defined diagnostic uncertainty. Three attributes of diagnostic uncertainty were relevant for measurement: (1) it is a subjective perception experienced by the clinician; (2) it has the potential to impact diagnostic evaluation-for example, when inappropriately managed, it can lead to diagnostic delays; and (3) it is dynamic in nature, changing with time. Current methods for measuring diagnostic uncertainty in medical practice include: (1) asking clinicians about their perception of uncertainty (surveys and qualitative interviews), (2) evaluating the patient-clinician encounter (such as by reviews of medical records, transcripts of patient-clinician communication and observation), and (3) experimental techniques (patient vignette studies). The term "diagnostic uncertainty" lacks a clear definition, and there is no comprehensive framework for its measurement in medical practice. Based on review findings, we propose that diagnostic uncertainty be defined as a "subjective perception of an inability to provide an accurate explanation of the patient's health problem." Methodological advancements in measuring diagnostic uncertainty can improve our understanding of diagnostic decision-making and inform interventions to reduce diagnostic errors and overuse of health care resources.
A Systematic Analysis of Caustic Methods for Galaxy Cluster Masses
NASA Astrophysics Data System (ADS)
Gifford, Daniel; Miller, Christopher; Kern, Nicholas
2013-08-01
We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z <=0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to "orphan" galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit). We find that the caustic technique recovers the known halo masses (M 200) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N gal > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N gal = 150 (25), the caustic technique has a per cluster scatter in ln (M|M 200) of 0.3 (0.5) and bias 1% ± 3} (16% ± 5}) for clusters with masses >1014 M ⊙ at z < 0.15.
Colorful Investigations of Supernovae for WFIRST-AFTA
NASA Astrophysics Data System (ADS)
Foley, Ryan
Type Ia supernovae (SNe Ia) are extremely good probes of dark energy, and WFIRST-AFTA is particularly well suited to make the best SN distance measurements possible. For conservative assumptions, the WFIRST SN survey is projected to have twice the impact as its other probes. Considering that Euclid will only have a minimal SN survey, but strong programs for other dark energy probes, the WFIRST SN survey is especially unique and important. With an initial simulation of the WFIRST-AFTA survey, we have determined that the largest statistical and systematic uncertainties are related to SN color. SN distances strongly depend on the precise measurement of SN colors since we must make a dust extinction correction that depends on the observed color. The details of how the correction is applied and the possibility that the correction evolves with redshift combine with potential calibration systematics to limit the current effectiveness of the SN component of WFIRST-AFTA. Here, we propose to support two graduate students to (1) investigate how intrinsic color variations will impact WFIRST-AFTA systematic uncertainties, (2) determine improved methods for reducing the systematic uncertainties related to SN color, and (3) simulate survey strategies incorporating our results to obtain the highest dark energy figure of merit (DE-FoM).
Systematic uncertainties in RF-based measurement of superconducting cavity quality factors
Holzbauer, J. P.; Pischalnikov, Yu.; Sergatskov, D. A.; ...
2016-05-10
Q 0 determinations based on RF power measurements are subject to at least three potentially large systematic effects that have not been previously appreciated. Here, instrumental factors that can systematically bias RF based measurements of Q 0 are quantified and steps that can be taken to improve the determination of Q 0 are discussed.
NASA Astrophysics Data System (ADS)
Gillaspy, J. D.; Chantler, C. T.; Paterson, D.; Hudson, L. T.; Serpa, F. G.; Takács, E.
2010-04-01
The first measurement of hydrogen-like vanadium x-ray Lyman alpha transitions has been made. The measurement was made on an absolute scale, fully independent of atomic structure calculations. Sufficient signal was obtained to reduce the statistical uncertainty to a small fraction of the total uncertainty budget. Potential sources of systematic error due to Doppler shifts were eliminated by performing the measurement on trapped ions. The energies for Ly α1 (1s-2p3/2) and Ly α2 (1s-2p1/2) are found to be 5443.95(25) eV and 5431.10(25) eV, respectively. These results are within approximately 1.5 σ (experimental) of the theoretical values 5443.63 eV and 5430.70 eV. The results are discussed in terms of their relation to the Lamb shift and the development of an x-ray wavelength standard based on a compact source of trapped highly charged ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foight, Dillon R.; Slane, Patrick O.; Güver, Tolga
We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) themore » model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.« less
USDA-ARS?s Scientific Manuscript database
Simulation models are extensively used to predict agricultural productivity and greenhouse gas (GHG) emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multisp...
Exploring Uncertainty with Projectile Launchers
ERIC Educational Resources Information Center
Orzel, Chad; Reich, Gary; Marr, Jonathan
2012-01-01
The proper choice of a measurement technique that minimizes systematic and random uncertainty is an essential part of experimental physics. These issues are difficult to teach in the introductory laboratory, though. Because most experiments involve only a single measurement technique, students are often unable to make a clear distinction between…
MERLIN: a Franco-German LIDAR space mission for atmospheric methane
NASA Astrophysics Data System (ADS)
Bousquet, P.; Ehret, G.; Pierangelo, C.; Marshall, J.; Bacour, C.; Chevallier, F.; Gibert, F.; Armante, R.; Crevoisier, C. D.; Edouart, D.; Esteve, F.; Julien, E.; Kiemle, C.; Alpers, M.; Millet, B.
2017-12-01
The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total weighted methane (CH4) atmospheric columns. Atmospheric methane is the second most potent anthropogenic greenhouse gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. Its short lifetime ( 9 years) and the nature and variety of its anthropogenic sources also offer interesting mitigation options in regards to the 2° objective of the Paris agreement. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target ±27 ppb for a 50km aggregation along the trace) and accuracy (target <3.7 ppb at 68%) sufficient to significantly reduce the uncertainties on methane emissions. The very low targeted systematic error target is particularly ambitious compared to current passive methane space mission. It is achievable because of the differential active measurements of MERLIN, which guarantees almost no contamination by aerosols or water vapour cross-sensitivity. As an active mission, MERLIN will deliver global methane weighted columns (XCH4) for all seasons and all latitudes, day and night Here, we recall the MERLIN objectives and mission characteristics. We also propose an end-to-end error analysis, from the causes of random and systematic errors of the instrument, of the platform and of the data treatment, to the error on methane emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction on methane emissions brought by MERLIN XCH4. The originality of our inversion system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than usually provided in OSSE only using the random part of errors. Uncertainty reductions are presented using two different atmospheric transport models, TM3 and LMDZ, and compared with error reduction achieved with the GOSAT passive mission.
Total cross section for the γd-->π-pp reaction between 380 and 840 MeV
NASA Astrophysics Data System (ADS)
Asai, M.; Endo, I.; Harada, M.; Kasai, S.; Niki, K.; Sumi, Y.; Kato, S.; Maruyama, K.; Murata, Y.; Muto, M.; Yoshida, K.; Iwatani, K.; Hasai, H.; Ito, H.; Maki, T.; Rangacharyulu, C.; Shimizu, H.; Wada, Y.
1990-09-01
The total cross section for the γd-->π-pp reaction has been measured for incident photon energies from 380 to 840 MeV in steps of 10 MeV, with the best energy resolution attained so far. A large-acceptance detector was used to observe the reaction products. Overall uncertainties in the deduced cross sections are less than 9% (~4% statistical and ~8% systematic). The results are in excellent agreement with previous bubble chamber measurements and do not show any statistically significant structure which can be interpreted as evidence for the formation of dibaryon resonances. An upper limit at 95% confidence level of σpeakΓ<230 μb MeV is obtained for a resonance in the vicinity of photon energy 700 MeV (mass~2490 MeV).
Proton elastic form factor ratios to Q2=3.5GeV2 by polarization transfer
NASA Astrophysics Data System (ADS)
Punjabi, V.; Perdrisat, C. F.; Aniol, K. A.; Baker, F. T.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Besson, A.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Brown, D.; Calarco, J. R.; Cardman, L. S.; Chai, Z.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Churchwell, S.; Cisbani, E.; Dale, D. S.; Leo, R. De; Deur, A.; Diederich, B.; Domingo, J. J.; Epstein, M. B.; Ewell, L. A.; Fissum, K. G.; Fleck, A.; Fonvieille, H.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Green, A.; Hansen, J.-O.; Howell, C. R.; Huber, G. M.; Iodice, M.; de Jager, C. W.; Jaminion, S.; Jiang, X.; Jones, M. K.; Kahl, W.; Kelly, J. J.; Khayat, M.; Kramer, L. H.; Kumbartzki, G.; Kuss, M.; Lakuriki, E.; Laveissière, G.; Lerose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Macri, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; McIntyre, J. I.; Meer, R. L.; Michaels, R.; Milbrath, B. D.; Mougey, J. Y.; Nanda, S. K.; Offermann, E. A.; Papandreou, Z.; Pentchev, L.; Petratos, G. G.; Piskunov, N. M.; Pomatsalyuk, R. I.; Prout, D. L.; Quéméner, G.; Ransome, R. D.; Raue, B. A.; Roblin, Y.; Roche, R.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Smith, T. P.; Sorokin, P.; Strauch, S.; Suleiman, R.; Takahashi, K.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Wijesooriya, K.; Wojtsekhowski, B. B.; Woo, R. J.; Xiong, F.; Zainea, G. D.; Zhou, Z.-L.
2005-05-01
The ratio of the proton elastic electromagnetic form factors, GEp/GMp, was obtained by measuring Pt and Pℓ, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic e→p→ep→reaction in the four-momentum transfer squared range of 0.5 to 3.5GeV2. In the single-photon exchange approximation, GEp/GMp is directly proportional to Pt/Pℓ. The simultaneous measurement of Pt and Pℓ in a polarimeter reduces systematic uncertainties. The results for GEp/GMp show a systematic decrease with increasing Q2, indicating for the first time a definite difference in the distribution of charge and magnetization in the proton. The data have been reanalyzed and their systematic uncertainties have become significantly smaller than those reported previously.
An efficient energy response model for liquid scintillator detectors
NASA Astrophysics Data System (ADS)
Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin
2018-05-01
Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2011-01-01
The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA,more » utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the primary contributors to the output data uncertainties. It was found that the uncertainties in the decay heat, pebble bed and reflector thermal conductivities were responsible for the bulk of the propagated uncertainty in the DLOFC maximum fuel temperature. It was also determined that the two standard deviation (2s) uncertainty on the maximum fuel temperature was between ±58oC (3.6%) and ±76oC (4.7%) on a mean value of 1604 oC. These values mostly depended on the selection of the distributions types, and not on the number of model calculations above the required Wilks criteria (a (95%,95%) statement would usually require 93 model runs).« less
Individuals’ Uncertainty about Future Social Security Benefits and Portfolio Choice
Delavande, Adeline
2013-01-01
Summary Little is known about the degree to which individuals are uncertain about their future Social Security benefits, how this varies within the U.S. population, and whether this uncertainty influences financial decisions related to retirement planning. To illuminate these issues, we present empirical evidence from the Health and Retirement Study Internet Survey and document systematic variation in respondents’ uncertainty about their future Social Security benefits by individual characteristics. We find that respondents with higher levels of uncertainty about future benefits hold a smaller share of their wealth in stocks. PMID:23914049
NASA Astrophysics Data System (ADS)
Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.
2013-09-01
We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.
Mabilia, Rosanna; Cecinato, Angelo; Guerriero, Ettore; Possanzini, Massimiliano
2006-02-01
In this note we describe the speciated particle-phase PM2.5 polynuclear aromatic hydrocarbon (PAH) and gas-phase carbonyl emissions as collected from a heavy-duty diesel bus outfitted with an oxidation catalyst for exhaust after-treatment. The vehicle was run on a chassis dynamometer during a transient cycle test reproducing a typical city bus route (Azienda Tramviaria Municipalizzata cycle). The diluted tailpipe emissions were sampled for PAH using a 2.5 microm cut size cyclone glass fiber filter assembly, while carbonyls were absorbed onto dinitrophenyl hydrazine-coated silica cartridges. The former compounds were analysed by CGC-MS, the latter by HPLC-UV. Combining the two sets of speciation data resulting from 15 identical dynamometer tests provided a profile of both unregulated organic emissions. PAH emission rates decreased with the number of benzene fused rings. Fluoranthene and pyrene amounted to 90% of total PAHs quantified; six-ring PAHs accounted only for 0.5%. Similarly, formaldehyde and acetaldehyde accounted for approximately 80% of the total carbonyl emissions. Uncertainties of the method in the determination of individual emission factors were calculated. Statistical data processing revealed that all the measurements were quite unaffected by systematic errors and repeatability percentages did not exceed 50% for the majority of components of both groups.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2014-10-28
In this study, a measurement of the totalmore » $pp$ cross section at the LHC at $$\\sqrt{s}=7$$ TeV is presented. In a special run with high-$$\\beta^{\\star}$$ beam optics, an integrated luminosity of 80 µb -1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t| range from 0.01 GeV 2 to 0.1 GeV 2 to extrapolate to |t| → 0, the total cross section, σ tot($pp$ → X), is measured via the optical theorem to be: σ tot($pp$ → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0. In addition, the slope of the elastic cross section at small |t| is determined to be B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV -2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abbott, B.; Abdallah, J.
In this study, a measurement of the totalmore » $pp$ cross section at the LHC at $$\\sqrt{s}=7$$ TeV is presented. In a special run with high-$$\\beta^{\\star}$$ beam optics, an integrated luminosity of 80 µb -1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t| range from 0.01 GeV 2 to 0.1 GeV 2 to extrapolate to |t| → 0, the total cross section, σ tot($pp$ → X), is measured via the optical theorem to be: σ tot($pp$ → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0. In addition, the slope of the elastic cross section at small |t| is determined to be B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV -2.« less
Direct Aerosol Forcing Uncertainty
Mccomiskey, Allison
2008-01-15
Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.
Particle Dark Matter constraints: the effect of Galactic uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, Maria; Bernal, Nicolás; Iocco, Fabio
2017-02-01
Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less
W Boson Mass Measurement at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotwal, Ashutosh V.
2017-03-27
This is the closeout report for the grant for experimental research at the energy frontier in high energy physics. The report describes the precise measurement of the W boson mass at the CDF experiment at Fermilab, with an uncertainty of ≈ 12 MeV, using the full dataset of ≈ 9 fb -1 collected by the experiment up to the shutdown of the Tevatron in 2011. In this analysis, the statistical and most of the experimental systematic uncertainties have been reduced by a factor of two compared to the previous measurement with 2.2 fb -1 of CDF data. This research hasmore » been the culmination of the PI's track record of producing world-leading measurements of the W boson mass from the Tevatron. The PI performed the first and only measurement to date of the W boson mass using high-rapidity leptons using the D0 endcap calorimeters in Run 1. He has led this measurement in Run 2 at CDF, publishing two world-leading measurements in 2007 and 2012 with total uncertainties of 48 MeV and 19 MeV respectively. The analysis of the final dataset is currently under internal review in CDF. Upon approval of the internal review, the result will be available for public release.« less
Summary of long-baseline systematics session at CETUP*2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherdack, Daniel; Worcester, Elizabeth
2015-10-15
A session studying systematics in long-baseline neutrino oscillation physics was held July 14-18, 2014 as part of CETUP* 2014. Systematic effects from flux normalization and modeling, modeling of cross sections and nuclear interactions, and far detector effects were addressed. Experts presented the capabilities of existing and planned tools. A program of study to determine estimates of and requirements for the size of these effects was designed. This document summarizes the results of the CETUP* systematics workshop and the current status of systematic uncertainty studies in long-baseline neutrino oscillation measurements.
Transportable Optical Lattice Clock with 7×10^{-17} Uncertainty.
Koller, S B; Grotti, J; Vogt, St; Al-Masoudi, A; Dörscher, S; Häfner, S; Sterr, U; Lisdat, Ch
2017-02-17
We present a transportable optical clock (TOC) with ^{87}Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4×10^{-17}, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3×10^{-15}/sqrt[τ] with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1×10^{-17}. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.
Transportable Optical Lattice Clock with 7 ×10-17 Uncertainty
NASA Astrophysics Data System (ADS)
Koller, S. B.; Grotti, J.; Vogt, St.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Sterr, U.; Lisdat, Ch.
2017-02-01
We present a transportable optical clock (TOC) with
Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite
NASA Technical Reports Server (NTRS)
Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.
1996-01-01
The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.
Computer-tailored dietary behaviour change interventions: a systematic review
Neville, Leonie M.; O'Hara, Blythe; Milat, Andrew J.
2009-01-01
Improving dietary behaviours such as increasing fruit and vegetable consumption and reducing saturated fat intake are important in the promotion of better health. Computer tailoring has shown promise as a strategy to promote such behaviours. A narrative systematic review was conducted to describe the available evidence on ‘second’-generation computer-tailored primary prevention interventions for dietary behaviour change and to determine their effectiveness and key characteristics of success. Systematic literature searches were conducted through five databases: Medline, Embase, PsycINFO, CINAHL and All EBM Reviews and by examining the reference lists of relevant articles to identify studies published in English from January 1996 to 2008. Randomized controlled trials or quasi-experimental designs with pre-test and post-test behavioural outcome data were included. A total of 13 articles were reviewed, describing the evaluation of 12 interventions, seven of which found significant positive effects of the computer-tailored interventions for dietary behaviour outcomes, one also for weight reduction outcomes. Although the evidence of short-term efficacy for computer-tailored dietary behaviour change interventions is fairly strong, the uncertainty lies in whether the reported effects are generalizable and sustained long term. Further research is required to address these limitations of the evidence. PMID:19286893
Feasibility of constraining the curvature parameter of the symmetry energy using elliptic flow data
NASA Astrophysics Data System (ADS)
Cozma, M. D.
2018-03-01
A QMD transport model that employs a modified momentum dependent interaction (MDI2) potential, supplemented by a phase-space coalescence model fitted to FOPI experimental multiplicities of free nucleons and light clusters is used to study the density dependence of the symmetry energy above the saturation point by a comparison with experimental elliptic flow ratios measured by the FOPI-LAND and ASYEOS Collaborations in 197Au + 197Au collisions at 400 MeV/nucleon impact energy. A previous calculation using the same model has proven that neutron-to-proton and neutron-to-charged-particles elliptic flow ratios probe on average different densities allowing in principle the extraction of both the slope L and curvature K_{sym} parameters of the symmetry energy. To make use of this result a Gogny interaction inspired potential is modified by the addition of a density dependent, momentum independent term, while enforcing a close description of the empirical nucleon optical potential, allowing independent modifications of L and Ksym. Comparing theoretical predictions with experimental data for neutron-to-proton and neutron-to-charged-particles elliptic flow ratios the following constraint is extracted: L = 85 ± 22(exp) ± 20(th) ± 12(sys) MeV and K_{sym} = 96 ± 315(exp) ± 170(th) ± 166(sys) MeV. Theoretical errors include effects due to uncertainties in the isoscalar part of the equation of state, value of the isovector neutron-proton effective mass splitting, in-medium effects on the elastic nucleon-nucleon cross-sections, Pauli blocking algorithm variants and scenario considered for the conservation of the total energy of the system. Systematical uncertainties are generated by the inability of the transport model to reproduce experimental light-cluster-to-proton multiplicity ratios. A value for L free of systematical theoretical uncertainties can be extracted from the neutron-to-proton elliptic flow ratio alone: L = 84 ± 30(exp) ± 19(th) MeV. It is demonstrated that elliptic flow ratios reach a maximum sensitivity on the K_{sym} parameter in heavy-ion collisions of about 250 MeV/nucleon impact energy, allowing a reduction of its experimental component of uncertainty to about 150 MeV.
Probabilistic accounting of uncertainty in forecasts of species distributions under climate change
Wenger, Seth J.; Som, Nicholas A.; Dauwalter, Daniel C.; Isaak, Daniel J.; Neville, Helen M.; Luce, Charles H.; Dunham, Jason B.; Young, Michael K.; Fausch, Kurt D.; Rieman, Bruce E.
2013-01-01
Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site-specific frequency distributions of occurrence probabilities across a species’ range. We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 30.1–42.5 thousand km; this was predicted to decline to 0.5–7.9 thousand km by the 2080s. Projections for the 2080s showed that the great majority of stream segments would be unsuitable with high certainty, regardless of the climate data set or bull trout model employed. The largest contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution of possible outcomes for a species, and permits ready graphical display of uncertainty for individual locations and of total habitat.
Phase shifts in I = 2 ππ-scattering from two lattice approaches
NASA Astrophysics Data System (ADS)
Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.
2013-12-01
We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.
SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, J; Okuda, T; Sakaino, S
Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determinemore » the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However, an internal margin should be added to account for the total imaging uncertainty.« less
NASA Astrophysics Data System (ADS)
Vianello, Giacomo
2018-05-01
Several experiments in high-energy physics and astrophysics can be treated as on/off measurements, where an observation potentially containing a new source or effect (“on” measurement) is contrasted with a background-only observation free of the effect (“off” measurement). In counting experiments, the significance of the new source or effect can be estimated with a widely used formula from Li & Ma, which assumes that both measurements are Poisson random variables. In this paper we study three other cases: (i) the ideal case where the background measurement has no uncertainty, which can be used to study the maximum sensitivity that an instrument can achieve, (ii) the case where the background estimate b in the off measurement has an additional systematic uncertainty, and (iii) the case where b is a Gaussian random variable instead of a Poisson random variable. The latter case applies when b comes from a model fitted on archival or ancillary data, or from the interpolation of a function fitted on data surrounding the candidate new source/effect. Practitioners typically use a formula that is only valid when b is large and when its uncertainty is very small, while we derive a general formula that can be applied in all regimes. We also develop simple methods that can be used to assess how much an estimate of significance is sensitive to systematic uncertainties on the efficiency or on the background. Examples of applications include the detection of short gamma-ray bursts and of new X-ray or γ-ray sources. All the techniques presented in this paper are made available in a Python code that is ready to use.
Alternate methods for FAAT S-curve generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, A.M.
The FAAT (Foreign Asset Assessment Team) assessment methodology attempts to derive a probability of effect as a function of incident field strength. The probability of effect is the likelihood that the stress put on a system exceeds its strength. In the FAAT methodology, both the stress and strength are random variables whose statistical properties are estimated by experts. Each random variable has two components of uncertainty: systematic and random. The systematic uncertainty drives the confidence bounds in the FAAT assessment. Its variance can be reduced by improved information. The variance of the random uncertainty is not reducible. The FAAT methodologymore » uses an assessment code called ARES to generate probability of effect curves (S-curves) at various confidence levels. ARES assumes log normal distributions for all random variables. The S-curves themselves are log normal cumulants associated with the random portion of the uncertainty. The placement of the S-curves depends on confidence bounds. The systematic uncertainty in both stress and strength is usually described by a mode and an upper and lower variance. Such a description is not consistent with the log normal assumption of ARES and an unsatisfactory work around solution is used to obtain the required placement of the S-curves at each confidence level. We have looked into this situation and have found that significant errors are introduced by this work around. These errors are at least several dB-W/cm{sup 2} at all confidence levels, but they are especially bad in the estimate of the median. In this paper, we suggest two alternate solutions for the placement of S-curves. To compare these calculational methods, we have tabulated the common combinations of upper and lower variances and generated the relevant S-curves offsets from the mode difference of stress and strength.« less
Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty
NASA Technical Reports Server (NTRS)
Mather, Janice L.; Taylor, Shawn C.
2015-01-01
In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.
Aad, G.; Abajyan, T.; Abbott, B.; ...
2013-01-15
Measurements are presented of differential cross sections for top quark pair production in pp collisions at √s = 7 TeV relative to the total inclusive top quark pair production cross-section. A data sample of 2.05 fb -1 recorded by the ATLAS detector at the Large Hadron Collider is used. Relative differential cross-sections are derived as a function of the invariant mass, the transverse momentum and the rapidity of the top quark pair system. Events are selected in the lepton (electron or muon) + jets channel. The backgroundsubtracted differential distributions are corrected for detector effects, normalized to the total inclusive topmore » quark pair production cross-section and compared to theoretical predictions. The measurement uncertainties range typically between 10 % and 20 % and are generally dominated by systematic effects. No significant deviations from the Standard Model expectations are observed.« less
A comparison of advanced overlay technologies
NASA Astrophysics Data System (ADS)
Dasari, Prasad; Smith, Nigel; Goelzer, Gary; Liu, Zhuan; Li, Jie; Tan, Asher; Koh, Chin Hwee
2010-03-01
The extension of optical lithography to 22nm and beyond by Double Patterning Technology is often challenged by CDU and overlay control. With reduced overlay measurement error budgets in the sub-nm range, relying on traditional Total Measurement Uncertainty (TMU) estimates alone is no longer sufficient. In this paper we will report scatterometry overlay measurements data from a set of twelve test wafers, using four different target designs. The TMU of these measurements is under 0.4nm, within the process control requirements for the 22nm node. Comparing the measurement differences between DBO targets (using empirical and model based analysis) and with image-based overlay data indicates the presence of systematic and random measurement errors that exceeds the TMU estimate.
Quantifying Mixed Uncertainties in Cyber Attacker Payoffs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Samrat; Halappanavar, Mahantesh; Tipireddy, Ramakrishna
Representation and propagation of uncertainty in cyber attacker payoffs is a key aspect of security games. Past research has primarily focused on representing the defender’s beliefs about attacker payoffs as point utility estimates. More recently, within the physical security domain, attacker payoff uncertainties have been represented as Uniform and Gaussian probability distributions, and intervals. Within cyber-settings, continuous probability distributions may still be appropriate for addressing statistical (aleatory) uncertainties where the defender may assume that the attacker’s payoffs differ over time. However, systematic (epistemic) uncertainties may exist, where the defender may not have sufficient knowledge or there is insufficient information aboutmore » the attacker’s payoff generation mechanism. Such epistemic uncertainties are more suitably represented as probability boxes with intervals. In this study, we explore the mathematical treatment of such mixed payoff uncertainties.« less
A SYSTEMATIC ANALYSIS OF CAUSTIC METHODS FOR GALAXY CLUSTER MASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gifford, Daniel; Miller, Christopher; Kern, Nicholas
We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z {<=}0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to ''orphan'' galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit).more » We find that the caustic technique recovers the known halo masses (M{sub 200}) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N{sub gal} > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N{sub gal} = 150 (25), the caustic technique has a per cluster scatter in ln (M|M{sub 200}) of 0.3 (0.5) and bias 1% {+-} 3{r_brace} (16% {+-} 5{r_brace}) for clusters with masses >10{sup 14} M{sub Sun} at z < 0.15.« less
Jet energy measurement with the ATLAS detector in proton-proton collisions at √{s}=7 TeV
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beck, G. A.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Daly, C. H.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Debbe, R.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Fokitis, M.; Fonseca Martin, T.; Fopma, J.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Green, B.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Jung, C. A.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuze, M.; Kuzhir, P.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Notz, D.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, K. P.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savine, A. Y.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thompson, R. J.; Thun, R. P.; Tian, F.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Twomey, M. S.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vujicic, M.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, M.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhang, Q.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.
2013-03-01
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of sqrt{s}=7 TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti- k t algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta p T≥20 GeV and pseudorapidities | η|<4.5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2.5 % in the central calorimeter region (| η|<0.8) for jets with 60≤ p T<800 GeV, and is maximally 14 % for p T<30 GeV in the most forward region 3.2≤| η|<4.5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon p T, the sum of the transverse momenta of tracks associated to the jet, or a system of low- p T jets recoiling against a high- p T jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high- p T jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2013-03-02
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7 TeV corresponding to an integrated luminosity of 38 pb -1. Jets are reconstructed with the anti-k t algorithm with distance parameters R = 0.4 or R = 0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta p T ≥ 20 GeV and pseudorapidities |η| < 4.5. The jet energy systematic uncertainty is estimated using the single isolated hadron responsemore » measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2.5 % in the central calorimeter region (|η| < 0.8) for jets with 60 ≤ p T < 800 GeV, and is maximally 14 % for p T ≤ 30 GeV in the most forward region 3.2 ≤ |η| < 4.5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon p T, the sum of the transverse momenta of tracks associated to the jet, or a system of low-p T jets recoiling against a high-p T jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-p T jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined.« less
Environmental Scanning in Educational Planning: Establishing a Strategic Trend Information System.
ERIC Educational Resources Information Center
Morrison, James L.
The systematic evaluation of the macroenvironment is sometimes referred to as a strategic trend information system. Strategic trend intelligence systems are highly developed, systematic intelligence programs that focus on trends and events in the external environment and provide institutions with knowledge to reduce areas of uncertainty and with…
Key comparison CCPR-K1.a as an interlaboratory comparison of correlated color temperature
NASA Astrophysics Data System (ADS)
Kärhä, P.; Vaskuri, A.; Pulli, T.; Ikonen, E.
2018-02-01
We analyze the results of spectral irradiance key comparison CCPR-K1.a for correlated color temperature (CCT). For four participants out of 13, the uncertainties of CCT, calculated using traditional methods, not accounting for correlations, would be too small. The reason for the failure of traditional uncertainty calculation is spectral correlations, producing systematic deviations of the same sign over certain wavelength regions. The results highlight the importance of accounting for such correlations when calculating uncertainties of spectrally integrated quantities.
Uncertainties in climate data sets
NASA Technical Reports Server (NTRS)
Mcguirk, James P.
1992-01-01
Climate diagnostics are constructed from either analyzed fields or from observational data sets. Those that have been commonly used are normally considered ground truth. However, in most of these collections, errors and uncertainties exist which are generally ignored due to the consistency of usage over time. Examples of uncertainties and errors are described in NMC and ECMWF analyses and in satellite observational sets-OLR, TOVS, and SMMR. It is suggested that these errors can be large, systematic, and not negligible in climate analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eifler, Tim; Krause, Elisabeth; Dodelson, Scott
2014-05-28
Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulatedmore » likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.
Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less
Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...
2017-04-01
Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less
Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf
2011-06-01
To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights reserved.
Antibiotic prophylaxis in orthognathic surgery: A complex systematic review
Hultin, Margareta; Klinge, Anna; Klinge, Björn; Tranæus, Sofia; Lund, Bodil
2018-01-01
Objective In orthognathic surgery, antibiotics are prescribed to reduce the risk of postoperative infection. However, there is lack of consensus over the appropriate drug, the dose and duration of administration. The aim of this complex systematic review was to assess the effect of antibiotics on postoperative infections in orthognathic surgery. Methods Both systematic reviews and primary studies were assessed. Medline (OVID), The Cochrane Library (Wiley) and EMBASE (embase.com), PubMed (non-indexed articles) and Health Technology Assessment (HTA) publications were searched. The primary studies were assessed using GRADE and the systematic reviews by AMSTAR. Results Screening of abstracts yielded 6 systematic reviews and 36 primary studies warranting full text scrutiny. In total,14 primary studies were assessed for risk of bias. Assessment of the included systematic reviews identified two studies with a moderate risk of bias, due to inclusion in the meta-analyses of primary studies with a high risk of bias. Quality assessment of the primary studies disclosed one with a moderate risk of bias and one with a low risk. The former compared a single dose of antibiotic with 24 hour prophylaxis using the same antibiotic; the latter compared oral and intravenous administration of antibiotics. Given the limited number of acceptable studies, no statistical analysis was undertaken, as it was unlikely to contribute any relevant information. Conclusion With respect to antibiotic prophylaxis in orthognathic surgery, most of the studies to date have been poorly conducted and reported. Thus scientific uncertainty remains as to the preferred antibiotic and the optimal duration of administration. PMID:29385159
Uncertainties in the deprojection of the observed bar properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yanfei; Shen, Juntai; Li, Zhao-Yu, E-mail: jshen@shao.ac.cn
2014-08-10
In observations, it is important to deproject the two fundamental quantities characterizing a bar, i.e., its length (a) and ellipticity (e), to face-on values before any careful analyses. However, systematic estimation on the uncertainties of the commonly used deprojection methods is still lacking. Simulated galaxies are well suited in this study. We project two simulated barred galaxies onto a two-dimensional (2D) plane with different bar orientations and disk inclination angles (i). Bar properties are measured and deprojected with the popular deprojection methods in the literature. Generally speaking, deprojection uncertainties increase with increasing i. All of the deprojection methods behave badlymore » when i is larger than 60°, due to the vertical thickness of the bar. Thus, future statistical studies of barred galaxies should exclude galaxies more inclined than 60°. At moderate inclination angles (i ≤ 60°), 2D deprojection methods (analytical and image stretching), and Fourier-based methods (Fourier decomposition and bar-interbar contrast) perform reasonably well with uncertainties ∼10% in both the bar length and ellipticity, whereas the uncertainties of the one-dimensional (1D) analytical deprojection can be as high as 100% in certain extreme cases. We find that different bar measurement methods show systematic differences in the deprojection uncertainties. We further discuss the deprojection uncertainty factors with the emphasis on the most important one, i.e., the three-dimensional structure of the bar itself. We construct two triaxial toy bar models that can qualitatively reproduce the results of the 1D and 2D analytical deprojections; they confirm that the vertical thickness of the bar is the main source of uncertainties.« less
Madaniyazi, Lina; Guo, Yuming; Yu, Weiwei; Tong, Shilu
2015-02-01
Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc
2018-05-01
Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole RO retrieval chain for the benefit of climate monitoring and other applications.
Sampling in freshwater environments: suspended particle traps and variability in the final data.
Barbizzi, Sabrina; Pati, Alessandra
2008-11-01
This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of (137)Cs activity concentration (Bq kg(-1)) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for (137)Cs and 4.5% for total carbon. For (137)Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed.
A confirmation of the general relativistic prediction of the Lense-Thirring effect.
Ciufolini, I; Pavlis, E C
2004-10-21
An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error.
Stability of the Broad-line Region Geometry and Dynamics in Arp 151 Over Seven Years
NASA Astrophysics Data System (ADS)
Pancoast, A.; Barth, A. J.; Horne, K.; Treu, T.; Brewer, B. J.; Bennert, V. N.; Canalizo, G.; Gates, E. L.; Li, W.; Malkan, M. A.; Sand, D.; Schmidt, T.; Valenti, S.; Woo, J.-H.; Clubb, K. I.; Cooper, M. C.; Crawford, S. M.; Hönig, S. F.; Joner, M. D.; Kandrashoff, M. T.; Lazarova, M.; Nierenberg, A. M.; Romero-Colmenero, E.; Son, D.; Tollerud, E.; Walsh, J. L.; Winkler, H.
2018-04-01
The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning 2008–2015. We present modeling of these velocity-resolved reverberation mapping data sets using a geometric and dynamical model for the broad-line region (BLR). By modeling each of the three data sets independently, we infer the evolution of the BLR structure in Arp 151 over a total of 7 yr and constrain the systematic uncertainties in nonvarying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of ∼2. The dynamics of the BLR are dominated by inflow, and the inferred black hole mass is consistent for the three data sets, despite the increase in BLR size. Combining the inference for the three data sets yields a black hole mass and statistical uncertainty of log10({M}BH}/{M}ȯ ) = {6.82}-0.09+0.09 with a standard deviation in individual measurements of 0.13 dex.
Lunar-base construction equipment and methods evaluation
NASA Technical Reports Server (NTRS)
Boles, Walter W.; Ashley, David B.; Tucker, Richard L.
1993-01-01
A process for evaluating lunar-base construction equipment and methods concepts is presented. The process is driven by the need for more quantitative, systematic, and logical methods for assessing further research and development requirements in an area where uncertainties are high, dependence upon terrestrial heuristics is questionable, and quantitative methods are seldom applied. Decision theory concepts are used in determining the value of accurate information and the process is structured as a construction-equipment-and-methods selection methodology. Total construction-related, earth-launch mass is the measure of merit chosen for mathematical modeling purposes. The work is based upon the scope of the lunar base as described in the National Aeronautics and Space Administration's Office of Exploration's 'Exploration Studies Technical Report, FY 1989 Status'. Nine sets of conceptually designed construction equipment are selected as alternative concepts. It is concluded that the evaluation process is well suited for assisting in the establishment of research agendas in an approach that is first broad, with a low level of detail, followed by more-detailed investigations into areas that are identified as critical due to high degrees of uncertainty and sensitivity.
Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions
NASA Astrophysics Data System (ADS)
Gómez Iñesta, Á.; Iliadis, C.; Coc, A.
2017-11-01
The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by Big Bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on χ 2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. Here we present a similar analysis for two d+d reactions, d(d, n)3He and d(d, p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.
NASA Astrophysics Data System (ADS)
Kemppainen, R.; Vaara, T.; Joensuu, T.; Kiljunen, T.
2018-03-01
Background and Purpose. Magnetic resonance imaging (MRI) has in recent years emerged as an imaging modality to drive precise contouring of targets and organs at risk in external beam radiation therapy. Moreover, recent advances in MRI enable treatment of cancer without computed tomography (CT) simulation. A commercially available MR-only solution, MRCAT, offers a single-modality approach that provides density information for dose calculation and generation of positioning reference images. We evaluated the accuracy of patient positioning based on MRCAT digitally reconstructed radiographs (DRRs) by comparing to standard CT based workflow. Materials and Methods. Twenty consecutive prostate cancer patients being treated with external beam radiation therapy were included in the study. DRRs were generated for each patient based on the planning CT and MRCAT. The accuracy assessment was performed by manually registering the DRR images to planar kV setup images using bony landmarks. A Bayesian linear mixed effects model was used to separate systematic and random components (inter- and intra-observer variation) in the assessment. In addition, method agreement was assessed using a Bland-Altman analysis. Results. The systematic difference between MRCAT and CT based patient positioning, averaged over the study population, were found to be (mean [95% CI]) -0.49 [-0.85 to -0.13] mm, 0.11 [-0.33 to +0.57] mm and -0.05 [-0.23 to +0.36] mm in vertical, longitudinal and lateral directions, respectively. The increases in total random uncertainty were estimated to be below 0.5 mm for all directions, when using MR-only workflow instead of CT. Conclusions. The MRCAT pseudo-CT method provides clinically acceptable accuracy and precision for patient positioning for pelvic radiation therapy based on planar DRR images. Furthermore, due to the reduction of geometric uncertainty, compared to dual-modality workflow, the approach is likely to improve the total geometric accuracy of pelvic radiation therapy.
The global economic burden of dengue: a systematic analysis.
Shepard, Donald S; Undurraga, Eduardo A; Halasa, Yara A; Stanaway, Jeffrey D
2016-08-01
Dengue is a serious global burden. Unreported and unrecognised apparent dengue virus infections make it difficult to estimate the true extent of dengue and current estimates of the incidence and costs of dengue have substantial uncertainty. Objective, systematic, comparable measures of dengue burden are needed to track health progress, assess the application and financing of emerging preventive and control strategies, and inform health policy. We estimated the global economic burden of dengue by country and super-region (groups of epidemiologically similar countries). We used the latest dengue incidence estimates from the Institute for Health Metrics and Evaluation's Global Burden of Disease Study 2013 and several other data sources to assess the economic burden of symptomatic dengue cases in the 141 countries and territories with active dengue transmission. From the scientific literature and regressions, we estimated cases and costs by setting, including the non-medical setting, for all countries and territories. Our global estimates suggest that in 2013 there were a total of 58·40 million symptomatic dengue virus infections (95% uncertainty interval [95% UI] 24 million-122 million), including 13 586 fatal cases (95% UI 4200-34 700), and that the total annual global cost of dengue illness was US$8·9 billion (95% UI 3·7 billion-19·7 billion). The global distribution of dengue cases is 18% admitted to hospital, 48% ambulatory, and 34% non-medical. The global cost of dengue is substantial and, if control strategies could reduce dengue appreciably, billions of dollars could be saved globally. In estimating dengue costs by country and setting, this study contributes to the needs of policy makers, donors, developers, and researchers for economic assessments of dengue interventions, particularly with the licensure of the first dengue vaccine and promising developments in other technologies. Sanofi Pasteur. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oscillator strengths of the Si II 181 nanometer resonance multiplet
NASA Technical Reports Server (NTRS)
Bergeson, S. D.; Lawler, J. E.
1993-01-01
We report Si II experimental log (gf)-values of -2.38(4) for the 180.801 nm line, of -2.18(4) for the 181.693 nm line, and of -3.29(5) for the 181.745 nm line, where the number in parentheses is the uncertainty in the last digit. The overall uncertainties (about 10 percent) include the 1 sigma random uncertainty (about 6 percent) and an estimate of the systematic uncertainty. The oscillator strengths are determined by combining branching fractions and radiative lifetimes. The branching fractions are measured using standard spectroradiometry on an optically thin source; the radiative lifetimes are measured using time-resolved laser-induced fluorescence.
Application of radiosonde data to VERITAS simulations
NASA Astrophysics Data System (ADS)
Daniel, M. K.
The atmosphere is a vital component of the detector in an atmospheric Cherenkov telescope. In order to understand observations from these instruments and reduce systematic uncertainties and biases in their data it is important to correctly model the atmosphere in simulations of the extensive air showers they detect. The Very High Energy Telescope Array (VERITAS) is a system of 4 such telescopes located at the Whipple Observatory in Southern Arizona. Daily radiosonde measurements from the nearby Tucson airport allow an accurate model of the atmosphere for the VERITAS experiment to be constructed. Comparison of the radiosonde data to existing atmospheric models is performed and the expected effects on the systematic uncertainties are summarised here.
Multivariate analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendavid, Josh; Fisher, Wade C.; Junk, Thomas R.
2016-01-01
The end products of experimental data analysis are designed to be simple and easy to understand: hypothesis tests and measurements of parameters. But, the experimental data themselves are voluminous and complex. Furthermore, in modern collider experiments, many petabytes of data must be processed in search of rare new processes which occur together with much more copious background processes that are of less interest to the task at hand. The systematic uncertainties on the background may be larger than the expected signal in many cases. The statistical power of an analysis and its sensitivity to systematic uncertainty can therefore usually bothmore » be improved by separating signal events from background events with higher efficiency and purity.« less
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-10-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. Here, we are applying a consistent approach based on auto- and cross-covariance functions to quantify the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining data sets from several analysers and using simulations, we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time lag eliminates these effects (provided the time lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-03-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. We are here applying a consistent approach based on auto- and cross-covariance functions to quantifying the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time-lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time-lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining datasets from several analysers and using simulations we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time-lag eliminates these effects (provided the time-lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time-lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.
NASA Astrophysics Data System (ADS)
Scolnic, D. M.; Jones, D. O.; Rest, A.; Pan, Y. C.; Chornock, R.; Foley, R. J.; Huber, M. E.; Kessler, R.; Narayan, G.; Riess, A. G.; Rodney, S.; Berger, E.; Brout, D. J.; Challis, P. J.; Drout, M.; Finkbeiner, D.; Lunnan, R.; Kirshner, R. P.; Sanders, N. E.; Schlafly, E.; Smartt, S.; Stubbs, C. W.; Tonry, J.; Wood-Vasey, W. M.; Foley, M.; Hand, J.; Johnson, E.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Bresolin, F.; Gall, E.; Kotak, R.; McCrum, M.; Smith, K. W.
2018-06-01
We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the “Pantheon Sample.” When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find {{{Ω }}}m=0.307+/- 0.012 and w=-1.026+/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H 0 measurements, the analysis yields the most precise measurement of dark energy to date: {w}0=-1.007+/- 0.089 and {w}a=-0.222+/- 0.407 for the {w}0{w}aCDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.
Improved measurements of two-photon widths of the χ c J states and helicity analysis for χ c 2 → γ γ
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2017-11-28
Based on 448.1 x 10 6 ψ(3686) events collected with the BESIII detector, the decays ψ(3686) → γχ cJ,χ cJ → γγ(J = 0,1,2) are studied in this paper. The decay branching fractions of χ c0,2 → γγ are measured to be β(χ c0 → γγ) = (1.93 ± 0.08 ± 0.05 ± 0.05) x 10 -4 and β(χ c2 → γγ) = (3.10 ± 0.09 ± 0.07 ± 0.11) x 10 -4, which correspond to two-photon decay widths of Γ γγ(χ c0) = 2.03 ± 0.08 ± 0.06 ± 0.13 keV and Γ γγ(χ c2) = 0.60 ± 0.02more » ± 0.01 ± 0.04 keV with a ratio of R = Γ γγ(χ c2)/Γ γγ(χ c0) = 0.295 ± 0.014 ± 0.007 ± 0.027, where the uncertainties are statistical, systematic and associated with the uncertainties of β(ψ(3686) → γχ c0,2) and the total widths Γ(χ c0,2), respectively. For the forbidden decay of χ c1 → γγ, no signal is observed, and an upper limit on the two-photon width is obtained to be Γ γγ(χ c1) < 5.3 eV at the 90% confidence level. Finally, the ratio of the two-photon widths between helicity-zero and helicity-two components in the decay χ c2 → γγ is also measured to be f 0/2 = Γ λ=0 γγ(χ c2)/Γ λ=2 γγ(χ c2) = (0.0 ± 0.6 ± 1.2) x 10 -2, where the uncertainties are statistical and systematic, respectively.« less
A fresh look at Jupiter's synchrotron from the Cassini RADAR flyby
NASA Astrophysics Data System (ADS)
Moeckel, Chris; Janssen, Michael A.; de Pater, Imke
2017-10-01
The temporal variability is one of the big remaining questions in synchrotron radiation. Most known processes affect the radiation belts on time scales of month and years, whereas variations on shorter time scales are still a subject of scientific debate. In this light, the extreme depletion of energetic electrons as revealed by the 2001 Cassini radio measurements during its flyby of Jupiter is very surprising. The obtained estimate of the ultra-relativistic electron number density is considerably lower when compared to model calculations and similar observation. It has long been suspected that the measurements suffered from large systematic uncertainties. The uncertainties were reduced by recalibrating the raw data the Cassini RADAR measurements based on an improved understanding of the instrument after a decade of operation at Titan. The uncertainties pertaining to spacecraft pointing and the Jovian thermal radiation were solved for by applying a Markov-Chain Monte-Carlo optimization to the full set of 20 Jupiter scans. The synchrotron radiation was then recovered by subtracting the thermal radiation extending from Jupiter’s upper atmosphere, which comprises up to 97% of the total signal strength in the Cassini frequency band. The excellent knowledge of the instrument allows for constraining the disk-averaged brightness temperature of 158.6K ± 2.4K and can be used to improve the calibration of radio telescope such as the Very Large Array. The new retrieval confirmed that systematic artifacts propagated into the initial analysis. The synchrotron radio flux was revised upwards to agree with model predictions of a depleted magnetosphere. Radio maps indicated an enhancement at higher latitudes of electrons, requiring processes to scatter particles to higher latitudes. Comparison with other radio maps demonstrated a positive correlation between the energy of the electrons and the scattering they experienced. This behavior is indicative of wave-particle interactions, which are known to be acting in the terrestrial van-Allen belts but have not so far been considered in the Jupiter models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
Based on 448.1 x 10 6 ψ(3686) events collected with the BESIII detector, the decays ψ(3686) → γχ cJ,χ cJ → γγ(J = 0,1,2) are studied in this paper. The decay branching fractions of χ c0,2 → γγ are measured to be β(χ c0 → γγ) = (1.93 ± 0.08 ± 0.05 ± 0.05) x 10 -4 and β(χ c2 → γγ) = (3.10 ± 0.09 ± 0.07 ± 0.11) x 10 -4, which correspond to two-photon decay widths of Γ γγ(χ c0) = 2.03 ± 0.08 ± 0.06 ± 0.13 keV and Γ γγ(χ c2) = 0.60 ± 0.02more » ± 0.01 ± 0.04 keV with a ratio of R = Γ γγ(χ c2)/Γ γγ(χ c0) = 0.295 ± 0.014 ± 0.007 ± 0.027, where the uncertainties are statistical, systematic and associated with the uncertainties of β(ψ(3686) → γχ c0,2) and the total widths Γ(χ c0,2), respectively. For the forbidden decay of χ c1 → γγ, no signal is observed, and an upper limit on the two-photon width is obtained to be Γ γγ(χ c1) < 5.3 eV at the 90% confidence level. Finally, the ratio of the two-photon widths between helicity-zero and helicity-two components in the decay χ c2 → γγ is also measured to be f 0/2 = Γ λ=0 γγ(χ c2)/Γ λ=2 γγ(χ c2) = (0.0 ± 0.6 ± 1.2) x 10 -2, where the uncertainties are statistical and systematic, respectively.« less
Improved measurements of two-photon widths of the χc J states and helicity analysis for χc 2→γ γ
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, J. J.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2017-11-01
Based on 448.1 ×106 ψ (3686 ) events collected with the BESIII detector, the decays ψ (3686 )→γ χc J,χc J→γ γ (J =0 ,1 ,2 ) are studied. The decay branching fractions of χc 0 ,2→γ γ are measured to be B (χc 0→γ γ )=(1.93 ±0.08 ±0.05 ±0.05 )×10-4 and B (χc 2→γ γ )=(3.10 ±0.09 ±0.07 ±0.11 )×10-4 , which correspond to two-photon decay widths of Γγ γ(χc 0)=2.03 ±0.08 ±0.06 ±0.13 keV and Γγ γ(χc 2)=0.60 ±0.02 ±0.01 ±0.04 keV with a ratio of R =Γγ γ(χc 2)/Γγ γ(χc 0)=0.295 ±0.014 ±0.007 ±0.027 , where the uncertainties are statistical, systematic and associated with the uncertainties of B (ψ (3686 )→γ χc 0 ,2) and the total widths Γ (χc 0 ,2), respectively. For the forbidden decay of χc 1→γ γ , no signal is observed, and an upper limit on the two-photon width is obtained to be Γγ γ(χc 1)<5.3 eV at the 90% confidence level. The ratio of the two-photon widths between helicity-zero and helicity-two components in the decay χc 2→γ γ is also measured to be f0 /2=Γγγ λ =0(χc 2)/Γγγ λ =2(χc 2)=(0.0 ±0.6 ±1.2 )×10-2 , where the uncertainties are statistical and systematic, respectively.
NASA Astrophysics Data System (ADS)
Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim
2017-09-01
Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.
Park, Hae-il; Chae, Hyojin; Kim, Myungshin; Lee, Jehoon; Kim, Yonggoo
2014-03-01
We developed a two-dimensional plot for viewing trueness that takes into account potential shift and variable quality requirements to verify trueness using certified reference material (CRM). Glucose, total cholesterol (TC), and creatinine levels were determined by two kinds of assay in two levels of a CRM. Available quality requirements were collected, codified, and sorted in an ascending order in the plot's header row. Centering on the mean of measured values from CRM, the "mean ± US CLIA '88 allowable total error" was located in the header of the leftmost and rightmost columns. Twenty points were created in intervening columns as potential shifts. Uncertainties were calculated according to regression between certified values and uncertainties of CRM, and positioned in the corresponding columns. Cells were assigned different colors where column and row intersected based on comparison of the 95% confidence interval of the percentage bias with each quality requirement. A glucose assay failed to meet the highest quality criteria, for which shift of +0.13-0.14 mmol/l was required. A TC assay met the quality requirement and a shift of ±0.03 mmol/l was tolerable. A creatinine assay also met the quality requirement but any shift was not tolerable. The plot provides a systematic view of the trueness of quantitative laboratory tests. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Abedi, S.; Mashhadian, M.; Noshadravan, A.
2015-12-01
Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.
Breaking through the uncertainty ceiling in LA-ICP-MS U-Pb geochronology
NASA Astrophysics Data System (ADS)
Horstwood, M.
2016-12-01
Sources of systematic uncertainty associated with session-to-session bias are the dominant contributor to the 2% (2s) uncertainty ceiling that currently limits the accuracy of LA-ICP-MS U-Pb geochronology. Sources include differential downhole fractionation (LIEF), `matrix effects' and ablation volume differences, which result in irreproducibility of the same reference material across sessions. Current mitigation methods include correcting for LIEF mathematically, using matrix-matched reference materials, annealing material to reduce or eliminate radiation damage effects and tuning for robust plasma conditions. Reducing the depth and volume of ablation can also mitigate these problems and should contribute to the reduction of the uncertainty ceiling. Reducing analysed volume leads to increased detection efficiency, reduced matrix-effects, eliminates LIEF, obviates ablation rate differences and reduces the likelihood of intercepting complex growth zones with depth, thereby apparently improving material homogeneity. High detection efficiencies (% level) and low sampling volumes (20um box, 1-2um deep) can now be achieved using MC-ICP-MS such that low volume ablations should be considered part of the toolbox of methods targeted at improving the reproducibility of LA-ICP-MS U-Pb geochronology. In combination with other strategies these improvements should be feasible on any ICP platform. However, reducing the volume of analysis reduces detected counts and requires a change of analytical approach in order to mitigate this. Appropriate strategies may include the use of high efficiency cell and torch technologies and the optimisation of acquisition protocols and data handling techniques such as condensing signal peaks, using log ratios and total signal integration. The tools required to break the 2% (2s) uncertainty ceiling in LA-ICP-MS U-Pb geochronology are likely now known but require a coherent strategy and change of approach to combine their implementation and realise this goal. This study will highlight these changes and efforts towards reducing the uncertainty contribution for LA-ICP-MS U-Pb geochronology.
SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devic, S; Tomic, N; DeBlois, F
2016-06-15
Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less
Decision Making Under Uncertainty
2010-11-01
A sound approach to rational decision making requires a decision maker to establish decision objectives, identify alternatives, and evaluate those...often violate the axioms of rationality when making decisions under uncertainty. The systematic description of such observations may lead to the...which leads to “anchoring” on the initial value. The fact that individuals have been shown to deviate from rationality when making decisions
Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone
NASA Technical Reports Server (NTRS)
Montesano, Paul Mannix; Neigh, Christopher S. R.; Sexton, Joseph; Feng, Min; Channan, Saurabh; Ranson, Kenneth J.; Townshend, John R.
2016-01-01
Monitoring current forest characteristics in the taiga-tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover greater than 80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010) by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.
Optimal integrated abundances for chemical tagging of extragalactic globular clusters
NASA Astrophysics Data System (ADS)
Sakari, Charli M.; Venn, Kim; Shetrone, Matthew; Dotter, Aaron; Mackey, Dougal
2014-09-01
High-resolution integrated light (IL) spectroscopy provides detailed abundances of distant globular clusters whose stars cannot be resolved. Abundance comparisons with other systems (e.g. for chemical tagging) require understanding the systematic offsets that can occur between clusters, such as those due to uncertainties in the underlying stellar population. This paper analyses high-resolution IL spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006, and M15 to (1) quantify potential systematic uncertainties in Fe, Ca, Ti, Ni, Ba, and Eu and (2) identify the most stable abundance ratios that will be useful in future analyses of unresolved targets. When stellar populations are well modelled, uncertainties are ˜0.1-0.2 dex based on sensitivities to the atmospheric parameters alone; in the worst-case scenarios, uncertainties can rise to 0.2-0.4 dex. The [Ca I/Fe I] ratio is identified as the optimal integrated [α/Fe] indicator (with offsets ≲ 0.1 dex), while [Ni I/Fe I] is also extremely stable to within ≲ 0.1 dex. The [Ba II/Eu II] ratios are also stable when the underlying populations are well modelled and may also be useful for chemical tagging.
A systematic uncertainty analysis for liner impedance eduction technology
NASA Astrophysics Data System (ADS)
Zhou, Lin; Bodén, Hans
2015-11-01
The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.
Uncertainties in scaling factors for ab initio vibrational zero-point energies
NASA Astrophysics Data System (ADS)
Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger
2009-03-01
Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.
Uncertainty Analysis in 3D Equilibrium Reconstruction
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
2018-02-21
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Uncertainty Analysis in 3D Equilibrium Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Role of atmospheric oxidation in recent methane growth
Rigby, Matthew; Montzka, Stephen A.; Prinn, Ronald G.; White, James W. C.; Young, Dickon; Lunt, Mark F.; Ganesan, Anita L.; Manning, Alistair J.; Simmonds, Peter G.; Salameh, Peter K.; Harth, Christina M.; Mühle, Jens; Weiss, Ray F.; Fraser, Paul J.; Steele, L. Paul; McCulloch, Archie; Park, Sunyoung
2017-01-01
The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64–70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6. Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered. PMID:28416657
[Status Quo, Uncertainties and Trends Analysis of Environmental Risk Assessment for PFASs].
Hao, Xue-wen; Li, Li; Wang, Jie; Cao, Yan; Liu, Jian-guo
2015-08-01
This study systematically combed the definition and change of terms, category and application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in international academic, focusing on the environmental risk and exposure assessment of PFASs, to comprehensively analyze the current status, uncertainties and trends of PFASs' environmental risk assessment. Overall, the risk assessment of PFASs is facing a complicated situation involving complex substance pedigrees, various types, complex derivative relations, confidential business information and risk uncertainties. Although the environmental risk of long-chain PFASs has been widely recognized, the short-chain PFASs and short-chain fluorotelomers as their alternatives still have many research gaps and uncertainties in environmental hazards, environmental fate and exposure risk. The scope of risk control of PFASs in the international community is still worth discussing. Due to trade secrets and market competition, the chemical structure and risk information of PFASs' alternatives are generally lack of openness and transparency. The environmental risk of most fluorinated and non-fluorinated alternatives is not clear. In total, the international research on PFASs risk assessment gradually transfer from long-chain perfluoroalkyl acids (PFAAs) represented by perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to short-chain PFAAs, and then extends to other PFASs. The main problems to be solved urgently and researched continuously are: the environmental hazardous assessment indexes, such as bioaccumulation and environmental migration, optimization method, the environmental release and multimedia environmental fate of short-chain PFASs; the environmental fate of neutral PFASs and the transformation and contribution as precursors of short-chain PFASs; the risk identification and assessment of fluorinated and non-fluorinated alternatives of PFASs.
The GeV Excess Shining Through: Background Systematics for the Inner Galaxy Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calore, Francesca; Cholis, Ilias; Weniger, Christoph
2015-02-10
Recently, a spatially extended excess of gamma rays collected by the Fermi-LAT from the inner region of the Milky Way has been detected by different groups and with increasingly sophisticated techniques. Yet, any final conclusion about the morphology and spectral properties of such an extended diffuse emission are subject to a number of potentially critical uncertainties, related to the high density of cosmic rays, gas, magnetic fields and abundance of point sources. We will present a thorough study of the systematic uncertainties related to the modelling of diffuse background and to the propagation of cosmic rays in the inner partmore » of our Galaxy. We will test a large set of models for the Galactic diffuse emission, generated by varying the propagation parameters within extreme conditions. By using those models in the fit of Fermi-LAT data as Galactic foreground, we will show that the gamma-ray excess survives and we will quantify the uncertainties on the excess emission morphology and energy spectrum.« less
Resolving the neutron lifetime puzzle
NASA Astrophysics Data System (ADS)
Mumm, Pieter
2018-05-01
Free electrons and protons are stable, but outside atomic nuclei, free neutrons decay into a proton, electron, and antineutrino through the weak interaction, with a lifetime of ∼880 s (see the figure). The most precise measurements have stated uncertainties below 1 s (0.1%), but different techniques, although internally consistent, disagree by 4 standard deviations given the quoted uncertainties. Resolving this “neutron lifetime puzzle” has spawned much experimental effort as well as exotic theoretical mechanisms, thus far without a clear explanation. On page 627 of this issue, Pattie et al. (1) present the most precise measurement of the neutron lifetime to date. A new method of measuring trapped neutrons in situ allows a more detailed exploration of one of the more pernicious systematic effects in neutron traps, neutron phase-space evolution (the changing orbits of neutrons in the trap), than do previous methods. The precision achieved, combined with a very different set of systematic uncertainties, gives hope that experiments such as this one can help resolve the current situation with the neutron lifetime.
Critical Analysis of Dual-Probe Heat-Pulse Technique Applied to Measuring Thermal Diffusivity
NASA Astrophysics Data System (ADS)
Bovesecchi, G.; Coppa, P.; Corasaniti, S.; Potenza, M.
2018-07-01
The paper presents an analysis of the experimental parameters involved in application of the dual-probe heat pulse technique, followed by a critical review of methods for processing thermal response data (e.g., maximum detection and nonlinear least square regression) and the consequent obtainable uncertainty. Glycerol was selected as testing liquid, and its thermal diffusivity was evaluated over the temperature range from - 20 °C to 60 °C. In addition, Monte Carlo simulation was used to assess the uncertainty propagation for maximum detection. It was concluded that maximum detection approach to process thermal response data gives the closest results to the reference data inasmuch nonlinear regression results are affected by major uncertainties due to partial correlation between the evaluated parameters. Besides, the interpolation of temperature data with a polynomial to find the maximum leads to a systematic difference between measured and reference data, as put into evidence by the Monte Carlo simulations; through its correction, this systematic error can be reduced to a negligible value, about 0.8 %.
Forecasting eruption size: what we know, what we don't know
NASA Astrophysics Data System (ADS)
Papale, Paolo
2017-04-01
Any eruption forecast includes an evaluation of the expected size of the forthcoming eruption, usually expressed as the probability associated to given size classes. Such evaluation is mostly based on the previous volcanic history at the specific volcano, or it is referred to a broader class of volcanoes constituting "analogues" of the one under specific consideration. In any case, use of knowledge from past eruptions implies considering the completeness of the reference catalogue, and most importantly, the existence of systematic biases in the catalogue, that may affect probability estimates and translate into biased volcanic hazard forecasts. An analysis of existing catalogues, with major reference to the catalogue from the Smithsonian Global Volcanism Program, suggests that systematic biases largely dominate at global, regional and local scale: volcanic histories reconstructed at individual volcanoes, often used as a reference for volcanic hazard forecasts, are the result of systematic loss of information with time and poor sample representativeness. That situation strictly requires the use of techniques to complete existing catalogues, as well as careful consideration of the uncertainties deriving from inadequate knowledge and model-dependent data elaboration. A reconstructed global eruption size distribution, obtained by merging information from different existing catalogues, shows a mode in the VEI 1-2 range, <0.1% incidence of eruptions with VEI 7 or larger, and substantial uncertainties associated with individual VEI frequencies. Even larger uncertainties are expected to derive from application to individual volcanoes or classes of analogue volcanoes, suggesting large to very large uncertainties associated to volcanic hazard forecasts virtually at any individual volcano worldwide.
Overview of the Special Issue: A Multi-Model Framework to ...
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impacts and damages in the United States are avoided or reduced due to global greenhouse gas (GHG) emissions mitigation scenarios. Scenarios are designed to explore key uncertainties around the measurement of these changes. The modeling exercise presented in this Special Issue includes two integrated assessment models and 15 sectoral models encompassing six broad impacts sectors - water resources, electric power, infrastructure, human health, ecosystems, and forests. Three consistent emissions scenarios are used to analyze the benefits of global GHG mitigation targets: a reference and two policy scenarios, with total radiative forcing in 2100 of 10.0W/m2, 4.5W/m2, and 3.7W/m2. A range of climate sensitivities, climate models, natural variability measures, and structural uncertainties of sectoral models are examined to explore the implications of key uncertainties. This overview paper describes the motivations, goals, design, and academic contribution of the CIRA modeling exercise and briefly summarizes the subsequent papers in this Special Issue. A summary of results across impact sectors is provided showing that: GHG mitigation provides benefits to the United States that increase over
NASA Astrophysics Data System (ADS)
Swallow, B.; Rigby, M. L.; Rougier, J.; Manning, A.; Thomson, D.; Webster, H. N.; Lunt, M. F.; O'Doherty, S.
2016-12-01
In order to understand underlying processes governing environmental and physical phenomena, a complex mathematical model is usually required. However, there is an inherent uncertainty related to the parameterisation of unresolved processes in these simulators. Here, we focus on the specific problem of accounting for uncertainty in parameter values in an atmospheric chemical transport model. Systematic errors introduced by failing to account for these uncertainties have the potential to have a large effect on resulting estimates in unknown quantities of interest. One approach that is being increasingly used to address this issue is known as emulation, in which a large number of forward runs of the simulator are carried out, in order to approximate the response of the output to changes in parameters. However, due to the complexity of some models, it is often unfeasible to run large numbers of training runs that is usually required for full statistical emulators of the environmental processes. We therefore present a simplified model reduction method for approximating uncertainties in complex environmental simulators without the need for very large numbers of training runs. We illustrate the method through an application to the Met Office's atmospheric transport model NAME. We show how our parameter estimation framework can be incorporated into a hierarchical Bayesian inversion, and demonstrate the impact on estimates of UK methane emissions, using atmospheric mole fraction data. We conclude that accounting for uncertainties in the parameterisation of complex atmospheric models is vital if systematic errors are to be minimized and all relevant uncertainties accounted for. We also note that investigations of this nature can prove extremely useful in highlighting deficiencies in the simulator that might otherwise be missed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
To investigate the nature of the (3770) resonance and to measure the cross section for e +e -→Dmore » $$\\bar{D}$$, a cross-section scan data sample, distributed among 41 center-of-mass energy points from 3.73 to 3.89 GeV, was taken with the BESIII detector operated at the BEPCII collider in the year 2010. By analyzing the large angle Bhabha scattering events, we measure the integrated luminosity of the data sample at each center-of-mass energy point. The total integrated luminosity of the data sample is 76.16±0.04±0.61 pb -1, where the first uncertainty is statistical and the second systematic.« less
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2018-05-01
To investigate the nature of the (3770) resonance and to measure the cross section for e +e -→Dmore » $$\\bar{D}$$, a cross-section scan data sample, distributed among 41 center-of-mass energy points from 3.73 to 3.89 GeV, was taken with the BESIII detector operated at the BEPCII collider in the year 2010. By analyzing the large angle Bhabha scattering events, we measure the integrated luminosity of the data sample at each center-of-mass energy point. The total integrated luminosity of the data sample is 76.16±0.04±0.61 pb -1, where the first uncertainty is statistical and the second systematic.« less
Multivariate Probabilistic Analysis of an Hydrological Model
NASA Astrophysics Data System (ADS)
Franceschini, Samuela; Marani, Marco
2010-05-01
Model predictions derived based on rainfall measurements and hydrological model results are often limited by the systematic error of measuring instruments, by the intrinsic variability of the natural processes and by the uncertainty of the mathematical representation. We propose a means to identify such sources of uncertainty and to quantify their effects based on point-estimate approaches, as a valid alternative to cumbersome Montecarlo methods. We present uncertainty analyses on the hydrologic response to selected meteorological events, in the mountain streamflow-generating portion of the Brenta basin at Bassano del Grappa, Italy. The Brenta river catchment has a relatively uniform morphology and quite a heterogeneous rainfall-pattern. In the present work, we evaluate two sources of uncertainty: data uncertainty (the uncertainty due to data handling and analysis) and model uncertainty (the uncertainty related to the formulation of the model). We thus evaluate the effects of the measurement error of tipping-bucket rain gauges, the uncertainty in estimating spatially-distributed rainfall through block kriging, and the uncertainty associated with estimated model parameters. To this end, we coupled a deterministic model based on the geomorphological theory of the hydrologic response to probabilistic methods. In particular we compare the results of Monte Carlo Simulations (MCS) to the results obtained, in the same conditions, using Li's Point Estimate Method (LiM). The LiM is a probabilistic technique that approximates the continuous probability distribution function of the considered stochastic variables by means of discrete points and associated weights. This allows to satisfactorily reproduce results with only few evaluations of the model function. The comparison between the LiM and MCS results highlights the pros and cons of using an approximating method. LiM is less computationally demanding than MCS, but has limited applicability especially when the model response is highly nonlinear. Higher-order approximations can provide more accurate estimations, but reduce the numerical advantage of the LiM. The results of the uncertainty analysis identify the main sources of uncertainty in the computation of river discharge. In this particular case the spatial variability of rainfall and the model parameters uncertainty are shown to have the greatest impact on discharge evaluation. This, in turn, highlights the need to support any estimated hydrological response with probability information and risk analysis results in order to provide a robust, systematic framework for decision making.
Approaches to Refining Estimates of Global Burden and Economics of Dengue
Shepard, Donald S.; Undurraga, Eduardo A.; Betancourt-Cravioto, Miguel; Guzmán, María G.; Halstead, Scott B.; Harris, Eva; Mudin, Rose Nani; Murray, Kristy O.; Tapia-Conyer, Roberto; Gubler, Duane J.
2014-01-01
Dengue presents a formidable and growing global economic and disease burden, with around half the world's population estimated to be at risk of infection. There is wide variation and substantial uncertainty in current estimates of dengue disease burden and, consequently, on economic burden estimates. Dengue disease varies across time, geography and persons affected. Variations in the transmission of four different viruses and interactions among vector density and host's immune status, age, pre-existing medical conditions, all contribute to the disease's complexity. This systematic review aims to identify and examine estimates of dengue disease burden and costs, discuss major sources of uncertainty, and suggest next steps to improve estimates. Economic analysis of dengue is mainly concerned with costs of illness, particularly in estimating total episodes of symptomatic dengue. However, national dengue disease reporting systems show a great diversity in design and implementation, hindering accurate global estimates of dengue episodes and country comparisons. A combination of immediate, short-, and long-term strategies could substantially improve estimates of disease and, consequently, of economic burden of dengue. Suggestions for immediate implementation include refining analysis of currently available data to adjust reported episodes and expanding data collection in empirical studies, such as documenting the number of ambulatory visits before and after hospitalization and including breakdowns by age. Short-term recommendations include merging multiple data sources, such as cohort and surveillance data to evaluate the accuracy of reporting rates (by health sector, treatment, severity, etc.), and using covariates to extrapolate dengue incidence to locations with no or limited reporting. Long-term efforts aim at strengthening capacity to document dengue transmission using serological methods to systematically analyze and relate to epidemiologic data. As promising tools for diagnosis, vaccination, vector control, and treatment are being developed, these recommended steps should improve objective, systematic measures of dengue burden to strengthen health policy decisions. PMID:25412506
Approaches to refining estimates of global burden and economics of dengue.
Shepard, Donald S; Undurraga, Eduardo A; Betancourt-Cravioto, Miguel; Guzmán, María G; Halstead, Scott B; Harris, Eva; Mudin, Rose Nani; Murray, Kristy O; Tapia-Conyer, Roberto; Gubler, Duane J
2014-11-01
Dengue presents a formidable and growing global economic and disease burden, with around half the world's population estimated to be at risk of infection. There is wide variation and substantial uncertainty in current estimates of dengue disease burden and, consequently, on economic burden estimates. Dengue disease varies across time, geography and persons affected. Variations in the transmission of four different viruses and interactions among vector density and host's immune status, age, pre-existing medical conditions, all contribute to the disease's complexity. This systematic review aims to identify and examine estimates of dengue disease burden and costs, discuss major sources of uncertainty, and suggest next steps to improve estimates. Economic analysis of dengue is mainly concerned with costs of illness, particularly in estimating total episodes of symptomatic dengue. However, national dengue disease reporting systems show a great diversity in design and implementation, hindering accurate global estimates of dengue episodes and country comparisons. A combination of immediate, short-, and long-term strategies could substantially improve estimates of disease and, consequently, of economic burden of dengue. Suggestions for immediate implementation include refining analysis of currently available data to adjust reported episodes and expanding data collection in empirical studies, such as documenting the number of ambulatory visits before and after hospitalization and including breakdowns by age. Short-term recommendations include merging multiple data sources, such as cohort and surveillance data to evaluate the accuracy of reporting rates (by health sector, treatment, severity, etc.), and using covariates to extrapolate dengue incidence to locations with no or limited reporting. Long-term efforts aim at strengthening capacity to document dengue transmission using serological methods to systematically analyze and relate to epidemiologic data. As promising tools for diagnosis, vaccination, vector control, and treatment are being developed, these recommended steps should improve objective, systematic measures of dengue burden to strengthen health policy decisions.
Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2010-01-01
The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.
The deuteron-radius puzzle is alive: A new analysis of nuclear structure uncertainties
NASA Astrophysics Data System (ADS)
Hernandez, O. J.; Ekström, A.; Nevo Dinur, N.; Ji, C.; Bacca, S.; Barnea, N.
2018-03-01
To shed light on the deuteron radius puzzle we analyze the theoretical uncertainties of the nuclear structure corrections to the Lamb shift in muonic deuterium. We find that the discrepancy between the calculated two-photon exchange correction and the corresponding experimentally inferred value by Pohl et al. [1] remain. The present result is consistent with our previous estimate, although the discrepancy is reduced from 2.6 σ to about 2 σ. The error analysis includes statistic as well as systematic uncertainties stemming from the use of nucleon-nucleon interactions derived from chiral effective field theory at various orders. We therefore conclude that nuclear theory uncertainty is more likely not the source of the discrepancy.
Onward through the Fog: Uncertainty and Management Adaptation in Systems Analysis and Design
1990-07-01
has fallen into stereotyped problem formulations and analytical ap- proaches. In particular, treatments of uncertainty are typically quite incomplete...and often conceptually wrong. This report argues that these shortcomings produce pervasive systematic biases in analyses. Problem formulations ...capability were lost. The expected number of aircraft that would not be fully mission capable thirty days later was roughly twice the num - ber
Lidar backscattering measurements of background stratospheric aerosols
NASA Technical Reports Server (NTRS)
Remsberg, E. E.; Northam, G. B.; Butler, C. F.
1979-01-01
A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.
The propagation of wind errors through ocean wave hindcasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holthuijsen, L.H.; Booij, N.; Bertotti, L.
1996-08-01
To estimate uncertainties in wave forecast and hindcasts, computations have been carried out for a location in the Mediterranean Sea using three different analyses of one historic wind field. These computations involve a systematic sensitivity analysis and estimated wind field errors. This technique enables a wave modeler to estimate such uncertainties in other forecasts and hindcasts if only one wind analysis is available.
Drought Persistence in Models and Observations
NASA Astrophysics Data System (ADS)
Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia
2017-04-01
Many regions of the world have experienced drought events that persisted several years and caused substantial economic and ecological impacts in the 20th century. However, it remains unclear whether there are significant trends in the frequency or severity of these prolonged drought events. In particular, an important issue is linked to systematic biases in the representation of persistent drought events in climate models, which impedes analysis related to the detection and attribution of drought trends. This study assesses drought persistence errors in global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5), in the period of 1901-2010. The model simulations are compared with five gridded observational data products. The analysis focuses on two aspects: the identification of systematic biases in the models and the partitioning of the spread of drought-persistence-error into four possible sources of uncertainty: model uncertainty, observation uncertainty, internal climate variability and the estimation error of drought persistence. We use monthly and yearly dry-to-dry transition probabilities as estimates for drought persistence with drought conditions defined as negative precipitation anomalies. For both time scales we find that most model simulations consistently underestimated drought persistence except in a few regions such as India and Eastern South America. Partitioning the spread of the drought-persistence-error shows that at the monthly time scale model uncertainty and observation uncertainty are dominant, while the contribution from internal variability does play a minor role in most cases. At the yearly scale, the spread of the drought-persistence-error is dominated by the estimation error, indicating that the partitioning is not statistically significant, due to a limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current climate models and highlight the main contributors of uncertainty of drought-persistence-error. Future analyses will focus on investigating the temporal propagation of drought persistence to better understand the causes for the identified errors in the representation of drought persistence in state-of-the-art climate models.
Parameterization of Model Validating Sets for Uncertainty Bound Optimizations. Revised
NASA Technical Reports Server (NTRS)
Lim, K. B.; Giesy, D. P.
2000-01-01
Given measurement data, a nominal model and a linear fractional transformation uncertainty structure with an allowance on unknown but bounded exogenous disturbances, easily computable tests for the existence of a model validating uncertainty set are given. Under mild conditions, these tests are necessary and sufficient for the case of complex, nonrepeated, block-diagonal structure. For the more general case which includes repeated and/or real scalar uncertainties, the tests are only necessary but become sufficient if a collinearity condition is also satisfied. With the satisfaction of these tests, it is shown that a parameterization of all model validating sets of plant models is possible. The new parameterization is used as a basis for a systematic way to construct or perform uncertainty tradeoff with model validating uncertainty sets which have specific linear fractional transformation structure for use in robust control design and analysis. An illustrative example which includes a comparison of candidate model validating sets is given.
Laranjeira, Fernanda O; de Andrade, Keitty R C; Figueiredo, Ana C M G; Silva, Everton N; Pereira, Mauricio G
2018-01-01
The comparison between long acting insulin analogues (LAIA) and human insulin (NPH) has been investigated for decades, with many randomized controlled trials (RCTs) and systematic reviews giving mixed results. This overlapping and contradictory evidence has increased uncertainty on coverage decisions at health systems level. To conduct an overview of systematic reviews and update existing reviews, preparing new meta-analysis to determine whether LAIA are effective for T1D patients compared to NPH. We identified systematic reviews of RCTs that evaluated the efficacy of LAIA glargine or detemir, compared to NPH insulin for T1D, assessing glycated hemoglobin (A1C) and hypoglycemia. Data sources included Pubmed, Cochrane Library, EMBASE and hand-searching. The methodological quality of studies was independently assessed by two reviewers, using AMSTAR and Jadad scale. We found 11 eligible systematic reviews that contained a total of 25 relevant clinical trials. Two reviewers independently abstracted data. We found evidence that LAIA are efficacious compared to NPH, with estimates showing a reduction in nocturnal hypoglycemia episodes (RR 0.66; 95% CI 0.57; 0.76) and A1C (95% CI 0.23; 0.12). No significance was found related to severe hypoglycemia (RR 0.94; 95% CI 0.71; 1.24). This study design has allowed us to carry out the most comprehensive assessment of RCTs on this subject, filling a gap in diabetes research. Our paper addresses a question that is important not only for decision makers but also for clinicians.
Improving the Calibration of the SN Ia Anchor Datasets with a Bayesian Hierarchal Model
NASA Astrophysics Data System (ADS)
Currie, Miles; Rubin, David
2018-01-01
Inter-survey calibration remains one of the largest systematic uncertainties in SN Ia cosmology today. Ideally, each survey would measure their system throughputs and observe well characterized spectrophotometric standard stars, but many important surveys have not done so. For these surveys, we calibrate using tertiary survey stars tied to SDSS and Pan-STARRS. We improve on previous efforts by taking the spatially variable response of each telescope/camera into account, and using improved color transformations in the surveys’ natural instrumental photometric system. We use a global hierarchical model of the data, automatically providing a covariance matrix of magnitude offsets and bandpass shifts which reduces the systematic uncertainty in inter-survey calibration, thereby providing better cosmological constraints.
Improved uncertainty quantification in nondestructive assay for nonproliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, Tom; Croft, Stephen; Jarman, Ken
2016-12-01
This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less
Smoke Flow Visualisation and Particle Image Velocimetry Measurements over a Generic Submarine Model
2014-03-01
Edisp), scaling uncertainty (Escale) and timing uncertainty (Etime), . tLX EEE u E t scale scaleX timescaledisp u u 222 222 2 2...this study may be calculated from [7] as, , EE upres λ=ω (C.3) UNCLASSIFIED DSTO-TR-2944 UNCLASSIFIED 46 where Eu is the total PIV velocity...uncertainty in the vorticity is calculated by, .22 biaspres EEE ωωω += (C.6) Where the total uncertainty in the vorticity is expressed as
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamatani, M.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, D. R.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2017-10-01
Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of √{s }=13 TeV , corresponding to an integrated luminosity of 3.2 fb-1 collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-kt algorithm with radius parameter R =0.4 . Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.
Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of √ s = 13 TeV , corresponding to an integrated luminosity of 3.2 fb -1 collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti- k t algorithm with radius parameter R = 0.4 . We calibrate jets with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference objectmore » such as a photon, Z boson, or multijet system for jets with 20 < p T < 2000 GeV and pseudorapidities of | η | < 4.5 , using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region ( | η | < 1.2 ) for jets with 100 < p T < 500 GeV . An uncertainty of about 4.5% is found for low- p T jets with p T = 20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets ( | η | > 0.8 ) is derived from dijet p T balance measurements. Furthermore, for jets of p T = 80 GeV , the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range | η | > 3.5 and in a narrow slice of 2.2 < | η | < 2.4 .« less
Aaboud, M.
2017-10-13
Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of √ s = 13 TeV , corresponding to an integrated luminosity of 3.2 fb -1 collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti- k t algorithm with radius parameter R = 0.4 . We calibrate jets with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference objectmore » such as a photon, Z boson, or multijet system for jets with 20 < p T < 2000 GeV and pseudorapidities of | η | < 4.5 , using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region ( | η | < 1.2 ) for jets with 100 < p T < 500 GeV . An uncertainty of about 4.5% is found for low- p T jets with p T = 20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets ( | η | > 0.8 ) is derived from dijet p T balance measurements. Furthermore, for jets of p T = 80 GeV , the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range | η | > 3.5 and in a narrow slice of 2.2 < | η | < 2.4 .« less
Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul
2012-11-26
The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.
John-Baptiste, Ava A.; Wu, Wei; Rochon, Paula; Anderson, Geoffrey M.; Bell, Chaim M.
2013-01-01
Background A key priority in developing policies for providing affordable cancer care is measuring the value for money of new therapies using cost-effectiveness analyses (CEAs). For CEA to be useful it should focus on relevant outcomes and include thorough investigation of uncertainty. Randomized controlled trials (RCTs) of five years of aromatase inhibitors (AI) versus five years of tamoxifen in the treatment of post-menopausal women with early stage breast cancer, show benefit of AI in terms of disease free survival (DFS) but not overall survival (OS) and indicate higher risk of fracture with AI. Policy-relevant CEA of AI versus tamoxifen should focus on OS and include analysis of uncertainty over key assumptions. Methods We conducted a systematic review of published CEAs comparing an AI to tamoxifen. We searched Ovid MEDLINE, EMBASE, PsychINFO, and the Cochrane Database of Systematic Reviews without language restrictions. We selected CEAs with outcomes expressed as cost per life year or cost per quality adjusted life year (QALY). We assessed quality using the Neumann checklist. Using structured forms two abstractors collected descriptive information, sources of data, baseline assumptions on effectiveness and adverse events, and recorded approaches to assessing parameter uncertainty, methodological uncertainty, and structural uncertainty. Results We identified 1,622 citations and 18 studies met inclusion criteria. All CE estimates assumed a survival benefit for aromatase inhibitors. Twelve studies performed sensitivity analysis on the risk of adverse events and 7 assumed no additional mortality risk with any adverse event. Sub-group analysis was limited; 6 studies examined older women, 2 examined women with low recurrence risk, and 1 examined women with multiple comorbidities. Conclusion Published CEAs comparing AIs to tamoxifen assumed an OS benefit though none has been shown in RCTs, leading to an overestimate of the cost-effectiveness of AIs. Results of these CEA analyses may be suboptimal for guiding policy. PMID:23671612
John-Baptiste, Ava A; Wu, Wei; Rochon, Paula; Anderson, Geoffrey M; Bell, Chaim M
2013-01-01
A key priority in developing policies for providing affordable cancer care is measuring the value for money of new therapies using cost-effectiveness analyses (CEAs). For CEA to be useful it should focus on relevant outcomes and include thorough investigation of uncertainty. Randomized controlled trials (RCTs) of five years of aromatase inhibitors (AI) versus five years of tamoxifen in the treatment of post-menopausal women with early stage breast cancer, show benefit of AI in terms of disease free survival (DFS) but not overall survival (OS) and indicate higher risk of fracture with AI. Policy-relevant CEA of AI versus tamoxifen should focus on OS and include analysis of uncertainty over key assumptions. We conducted a systematic review of published CEAs comparing an AI to tamoxifen. We searched Ovid MEDLINE, EMBASE, PsychINFO, and the Cochrane Database of Systematic Reviews without language restrictions. We selected CEAs with outcomes expressed as cost per life year or cost per quality adjusted life year (QALY). We assessed quality using the Neumann checklist. Using structured forms two abstractors collected descriptive information, sources of data, baseline assumptions on effectiveness and adverse events, and recorded approaches to assessing parameter uncertainty, methodological uncertainty, and structural uncertainty. We identified 1,622 citations and 18 studies met inclusion criteria. All CE estimates assumed a survival benefit for aromatase inhibitors. Twelve studies performed sensitivity analysis on the risk of adverse events and 7 assumed no additional mortality risk with any adverse event. Sub-group analysis was limited; 6 studies examined older women, 2 examined women with low recurrence risk, and 1 examined women with multiple comorbidities. Published CEAs comparing AIs to tamoxifen assumed an OS benefit though none has been shown in RCTs, leading to an overestimate of the cost-effectiveness of AIs. Results of these CEA analyses may be suboptimal for guiding policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. L. W.; La Russa, D. J.; Rogers, D. W. O.
In a previous study [Med. Phys. 35, 1747-1755 (2008)], the authors proposed two direct methods of calculating the replacement correction factors (P{sub repl} or p{sub cav}p{sub dis}) for ion chambers by Monte Carlo calculation. By ''direct'' we meant the stopping-power ratio evaluation is not necessary. The two methods were named as the high-density air (HDA) and low-density water (LDW) methods. Although the accuracy of these methods was briefly discussed, it turns out that the assumption made regarding the dose in an HDA slab as a function of slab thickness is not correct. This issue is reinvestigated in the current study,more » and the accuracy of the LDW method applied to ion chambers in a {sup 60}Co photon beam is also studied. It is found that the two direct methods are in fact not completely independent of the stopping-power ratio of the two materials involved. There is an implicit dependence of the calculated P{sub repl} values upon the stopping-power ratio evaluation through the choice of an appropriate energy cutoff {Delta}, which characterizes a cavity size in the Spencer-Attix cavity theory. Since the {Delta} value is not accurately defined in the theory, this dependence on the stopping-power ratio results in a systematic uncertainty on the calculated P{sub repl} values. For phantom materials of similar effective atomic number to air, such as water and graphite, this systematic uncertainty is at most 0.2% for most commonly used chambers for either electron or photon beams. This uncertainty level is good enough for current ion chamber dosimetry, and the merits of the two direct methods of calculating P{sub repl} values are maintained, i.e., there is no need to do a separate stopping-power ratio calculation. For high-Z materials, the inherent uncertainty would make it practically impossible to calculate reliable P{sub repl} values using the two direct methods.« less
Constituent quarks and systematic errors in mid-rapidity charged multiplicity dNch/dη distributions
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
2018-01-01
Centrality definition in A + A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p + p collision (50 ± 5% for PHENIX at RHIC). In A + A collisions where centrality is measured by the number of nucleon collisions, Ncoll, or the number of nucleon participants, Npart, or the number of constituent quark participants, Nqp, the error in the efficiency of the primary interaction trigger (Beam-Beam Counters) for a p + p collision leads to a correlated systematic uncertainty in Npart, Ncoll or Nqp which reduces binomially as the A + A collisions become more central. If this is not correctly accounted for in projections of A + A to p + p collisions, then mistaken conclusions can result. A recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant (dNch/dη)/Nqp in Au + Au at RHIC was the same as the value in p + p collisions.
Mitigating Provider Uncertainty in Service Provision Contracts
NASA Astrophysics Data System (ADS)
Smith, Chris; van Moorsel, Aad
Uncertainty is an inherent property of open, distributed and multiparty systems. The viability of the mutually beneficial relationships which motivate these systems relies on rational decision-making by each constituent party under uncertainty. Service provision in distributed systems is one such relationship. Uncertainty is experienced by the service provider in his ability to deliver a service with selected quality level guarantees due to inherent non-determinism, such as load fluctuations and hardware failures. Statistical estimators utilized to model this non-determinism introduce additional uncertainty through sampling error. Inability of the provider to accurately model and analyze uncertainty in the quality level guarantees can result in the formation of sub-optimal service provision contracts. Emblematic consequences include loss of revenue, inefficient resource utilization and erosion of reputation and consumer trust. We propose a utility model for contract-based service provision to provide a systematic approach to optimal service provision contract formation under uncertainty. Performance prediction methods to enable the derivation of statistical estimators for quality level are introduced, with analysis of their resultant accuracy and cost.
Ensembles vs. information theory: supporting science under uncertainty
NASA Astrophysics Data System (ADS)
Nearing, Grey S.; Gupta, Hoshin V.
2018-05-01
Multi-model ensembles are one of the most common ways to deal with epistemic uncertainty in hydrology. This is a problem because there is no known way to sample models such that the resulting ensemble admits a measure that has any systematic (i.e., asymptotic, bounded, or consistent) relationship with uncertainty. Multi-model ensembles are effectively sensitivity analyses and cannot - even partially - quantify uncertainty. One consequence of this is that multi-model approaches cannot support a consistent scientific method - in particular, multi-model approaches yield unbounded errors in inference. In contrast, information theory supports a coherent hypothesis test that is robust to (i.e., bounded under) arbitrary epistemic uncertainty. This paper may be understood as advocating a procedure for hypothesis testing that does not require quantifying uncertainty, but is coherent and reliable (i.e., bounded) in the presence of arbitrary (unknown and unknowable) uncertainty. We conclude by offering some suggestions about how this proposed philosophy of science suggests new ways to conceptualize and construct simulation models of complex, dynamical systems.
McLaughlin, Douglas B
2012-01-01
The utility of numeric nutrient criteria established for certain surface waters is likely to be affected by the uncertainty that exists in the presence of a causal link between nutrient stressor variables and designated use-related biological responses in those waters. This uncertainty can be difficult to characterize, interpret, and communicate to a broad audience of environmental stakeholders. The US Environmental Protection Agency (USEPA) has developed a systematic planning process to support a variety of environmental decisions, but this process is not generally applied to the development of national or state-level numeric nutrient criteria. This article describes a method for implementing such an approach and uses it to evaluate the numeric total P criteria recently proposed by USEPA for colored lakes in Florida, USA. An empirical, log-linear relationship between geometric mean concentrations of total P (a potential stressor variable) and chlorophyll a (a nutrient-related response variable) in these lakes-that is assumed to be causal in nature-forms the basis for the analysis. The use of the geometric mean total P concentration of a lake to correctly indicate designated use status, defined in terms of a 20 µg/L geometric mean chlorophyll a threshold, is evaluated. Rates of decision errors analogous to the Type I and Type II error rates familiar in hypothesis testing, and a 3rd error rate, E(ni) , referred to as the nutrient criterion-based impairment error rate, are estimated. The results show that USEPA's proposed "baseline" and "modified" nutrient criteria approach, in which data on both total P and chlorophyll a may be considered in establishing numeric nutrient criteria for a given lake within a specified range, provides a means for balancing and minimizing designated use attainment decision errors. Copyright © 2011 SETAC.
Wink, Krista C. J.; Roelofs, Erik; Solberg, Timothy; Lin, Liyong; Simone, Charles B.; Jakobi, Annika; Richter, Christian; Lambin, Philippe; Troost, Esther G. C.
2014-01-01
This review article provides a systematic overview of the currently available evidence on the clinical effectiveness of particle therapy for the treatment of non-small cell lung cancer and summarizes findings of in silico comparative planning studies. Furthermore, technical issues and dosimetric uncertainties with respect to thoracic particle therapy are discussed. PMID:25401087
Weak lensing measurement of the mass–richness relation of SDSS redMaPPer clusters
Simet, Melanie; McClintock, Tom; Mandelbaum, Rachel; ...
2016-12-15
Here, we perform a measurement of the mass–richness relation of the redMaPPer galaxy cluster catalogue using weak lensing data from the Sloan Digital Sky Survey. We carefully characterized a broad range of systematic uncertainties, including shear calibration errors, photo-zz biases, dilution by member galaxies, source obscuration, magnification bias, incorrect assumptions about cluster mass profiles, cluster centering, halo triaxiality, and projection effects. We then compare measurements of the lensing signal from two independently-produced shear and photometric redshift catalogues to characterize systematic errors in the lensing signal itself. Using a sample of 5,570 clusters from 0.1 ≤ zz ≤ 0.33, the normalization of our power-law mass vs. λ relation is log 10[M 200m/h -1 M ⊙] = 14.344 ± 0.021 (statistical) ±0.023 (systematic) at a richness λ = 40, a 7 per cent calibration uncertainty, with a power-law index of 1.33+0.09-0.101.33more » $$+0.09\\atop{-0.10}$$ (1σ). Finally, the detailed systematics characterization in this work renders it the definitive weak lensing mass calibration for SDSS redMaPPer clusters at this time.« less
NASA Astrophysics Data System (ADS)
Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu
2018-01-01
In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.
CHEERS: The chemical evolution RGS sample
NASA Astrophysics Data System (ADS)
de Plaa, J.; Kaastra, J. S.; Werner, N.; Pinto, C.; Kosec, P.; Zhang, Y.-Y.; Mernier, F.; Lovisari, L.; Akamatsu, H.; Schellenberger, G.; Hofmann, F.; Reiprich, T. H.; Finoguenov, A.; Ahoranta, J.; Sanders, J. S.; Fabian, A. C.; Pols, O.; Simionescu, A.; Vink, J.; Böhringer, H.
2017-11-01
Context. The chemical yields of supernovae and the metal enrichment of the intra-cluster medium (ICM) are not well understood. The hot gas in clusters of galaxies has been enriched with metals originating from billions of supernovae and provides a fair sample of large-scale metal enrichment in the Universe. High-resolution X-ray spectra of clusters of galaxies provide a unique way of measuring abundances in the hot intracluster medium (ICM). The abundance measurements can provide constraints on the supernova explosion mechanism and the initial-mass function of the stellar population. This paper introduces the CHEmical Enrichment RGS Sample (CHEERS), which is a sample of 44 bright local giant ellipticals, groups, and clusters of galaxies observed with XMM-Newton. Aims: The CHEERS project aims to provide the most accurate set of cluster abundances measured in X-rays using this sample. This paper focuses specifically on the abundance measurements of O and Fe using the reflection grating spectrometer (RGS) on board XMM-Newton. We aim to thoroughly discuss the cluster to cluster abundance variations and the robustness of the measurements. Methods: We have selected the CHEERS sample such that the oxygen abundance in each cluster is detected at a level of at least 5σ in the RGS. The dispersive nature of the RGS limits the sample to clusters with sharp surface brightness peaks. The deep exposures and the size of the sample allow us to quantify the intrinsic scatter and the systematic uncertainties in the abundances using spectral modeling techniques. Results: We report the oxygen and iron abundances as measured with RGS in the core regions of all 44 clusters in the sample. We do not find a significant trend of O/Fe as a function of cluster temperature, but we do find an intrinsic scatter in the O and Fe abundances from cluster to cluster. The level of systematic uncertainties in the O/Fe ratio is estimated to be around 20-30%, while the systematic uncertainties in the absolute O and Fe abundances can be as high as 50% in extreme cases. Thanks to the high statistics of the observations, we were able to identify and correct a systematic bias in the oxygen abundance determination that was due to an inaccuracy in the spectral model. Conclusions: The lack of dependence of O/Fe on temperature suggests that the enrichment of the ICM does not depend on cluster mass and that most of the enrichment likely took place before the ICM was formed. We find that the observed scatter in the O/Fe ratio is due to a combination of intrinsic scatter in the source and systematic uncertainties in the spectral fitting, which we are unable to separate. The astrophysical source of intrinsic scatter could be due to differences in active galactic nucleus activity and ongoing star formation in the brightest cluster galaxy. The systematic scatter is due to uncertainties in the spatial line broadening, absorption column, multi-temperature structure, and the thermal plasma models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compton, N.; Taylor, C. E.; Hicks, K.
Here, we report the first measurement of differential and total cross sections for themore » $${\\gamma}d \\to K^0{\\Lambda}(p)$$ reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8 - 3.6 GeV and 0.5 - 2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published cross sections for $$K^+ {\\Lambda}$$ photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis has been performed that describes the data without the introduction of new resonances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compton, N.; Taylor, C. E.; Hicks, K.
We report the first measurement of differential and total cross sections for the gamma d -> K-0 Lambda(p) reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8-3.6 GeV and 0.5-2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published crossmore » sections for K+Lambda photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis was performed that describes the data without the introduction of new resonances.« less
Forkey, Joseph N.; Quinlan, Margot E.; Goldman, Yale E.
2005-01-01
A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is ∼10° at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported. PMID:15894632
Compton, N.; Taylor, C. E.; Hicks, K.; ...
2017-12-04
Here, we report the first measurement of differential and total cross sections for themore » $${\\gamma}d \\to K^0{\\Lambda}(p)$$ reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8 - 3.6 GeV and 0.5 - 2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published cross sections for $$K^+ {\\Lambda}$$ photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis has been performed that describes the data without the introduction of new resonances.« less
Uncertainty Propagation in OMFIT
NASA Astrophysics Data System (ADS)
Smith, Sterling; Meneghini, Orso; Sung, Choongki
2017-10-01
A rigorous comparison of power balance fluxes and turbulent model fluxes requires the propagation of uncertainties in the kinetic profiles and their derivatives. Making extensive use of the python uncertainties package, the OMFIT framework has been used to propagate covariant uncertainties to provide an uncertainty in the power balance calculation from the ONETWO code, as well as through the turbulent fluxes calculated by the TGLF code. The covariant uncertainties arise from fitting 1D (constant on flux surface) density and temperature profiles and associated random errors with parameterized functions such as a modified tanh. The power balance and model fluxes can then be compared with quantification of the uncertainties. No effort is made at propagating systematic errors. A case study will be shown for the effects of resonant magnetic perturbations on the kinetic profiles and fluxes at the top of the pedestal. A separate attempt at modeling the random errors with Monte Carlo sampling will be compared to the method of propagating the fitting function parameter covariant uncertainties. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656.
Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph
2003-06-01
A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.
NASA Astrophysics Data System (ADS)
Perdigão, R. A. P.
2017-12-01
Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.
A Monte Carlo Uncertainty Analysis of Ozone Trend Predictions in a Two Dimensional Model. Revision
NASA Technical Reports Server (NTRS)
Considine, D. B.; Stolarski, R. S.; Hollandsworth, S. M.; Jackman, C. H.; Fleming, E. L.
1998-01-01
We use Monte Carlo analysis to estimate the uncertainty in predictions of total O3 trends between 1979 and 1995 made by the Goddard Space Flight Center (GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics. The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients, and heterogeneous reaction parameters which are model inputs. The uncertainty represents a lower bound to the total model uncertainty assuming the input parameter uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in 1970 and integrated for 26 model years through the end of 1995. This was repeated 419 times using input parameter sets generated by Latin Hypercube Sampling. The standard deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to quantify the model uncertainty. The 34% difference between the model trend in globally and annually averaged total O3 using nominal inputs and atmospheric trends calculated from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data is less than the 46% calculated 1 (sigma), model uncertainty, so there is no significant difference between the modeled and observed trends. In the northern hemisphere midlatitude spring the modeled and observed total 03 trends differ by more than 1(sigma) but less than 2(sigma), which we refer to as marginal significance. We perform a multiple linear regression analysis of the runs which suggests that only a few of the model reactions contribute significantly to the variance in the model predictions. The lack of significance in these comparisons suggests that they are of questionable use as guides for continuing model development. Large model/measurement differences which are many multiples of the input parameter uncertainty are seen in the meridional gradients of the trend and the peak-to-peak variations in the trends over an annual cycle. These discrepancies unambiguously indicate model formulation problems and provide a measure of model performance which can be used in attempts to improve such models.
Use of SUSA in Uncertainty and Sensitivity Analysis for INL VHTR Coupled Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2010-06-01
The need for a defendable and systematic Uncertainty and Sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008.The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This interim milestone report provides an overview of the current status of themore » implementation and testing of SUSA at the INL VHTR Project Office.« less
Shah, Kavita R.; Sarma, Karthik V.; Mahajan, Anish P.
2013-01-01
Despite the HIV “test-and-treat” strategy’s promise, questions about its clinical rationale, operational feasibility, and ethical appropriateness have led to vigorous debate in the global HIV community. We performed a systematic review of the literature published between January 2009 and May 2012 using PubMed, SCOPUS, Global Health, Web of Science, BIOSIS, Cochrane CENTRAL, EBSCO Africa-Wide Information, and EBSCO CINAHL Plus databases to summarize clinical uncertainties, health service challenges, and ethical complexities that may affect the test-and-treat strategy’s success. A thoughtful approach to research and implementation to address clinical and health service questions and meaningful community engagement regarding ethical complexities may bring us closer to safe, feasible, and effective test-and-treat implementation. PMID:23597344
Nuclear Effects in Quasi-Elastic and Delta Resonance Production at Low Momentum Transfer
NASA Astrophysics Data System (ADS)
Demgen, John Gibney
Analysis of data collected by the MINERvA experiment is done by showing the distribution of charged hadron energy for interactions that have low momentum transfer. This distribution reveals major discrepancies between the detector data and the standard MINERvA interaction model with only a simple global Fermi gas model. Adding additional model elements, the random phase approximation (RPA), meson exchange current (MEC), and a reduction of resonance delta production improve this discrepancy. Special attention is paid to resonance delta production systematic uncertainties, which do not make up these discrepancies even when added with resolution and biasing systematic uncertainties. Eye- scanning of events in this region also show a discrepancy, but we were insensitive to two-proton events, the predicted signature of the MEC process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, K.; Aihara, H.; Andreopoulos, C.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5more » MW × 107 sec integrated proton beam power (corresponding to 1.56×1022 protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP, and CP violation can be established with a statistical significance of more than 3σ (5σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νμ disappearance data, the expected 1σ uncertainty of sin2θ23 is 0.015(0.006) for sin2θ23=0.5(0.45).« less
Abe, K.; Aihara, H.; Andreopoulos, C.; ...
2015-05-19
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5more » MW × 107 sec integrated proton beam power (corresponding to 1.56×1022 protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP, and CP violation can be established with a statistical significance of more than 3σ (5σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νμ disappearance data, the expected 1σ uncertainty of sin2θ23 is 0.015(0.006) for sin2θ23=0.5(0.45).« less
Measurement of the W-boson mass in pp collisions at √{s}=7 TeV with the ATLAS detector
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bianco, M.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kravchenko, A.; Kremer, J. A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; Navarro, J. L. La Rosa; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Pais, P.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sopczak, A.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.
2018-02-01
A measurement of the mass of the W boson is presented based on proton-proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb^{-1} of integrated luminosity. The selected data sample consists of 7.8× 10^6 candidates in the W→ μ ν channel and 5.9× 10^6 candidates in the W→ e ν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding m_W = 80370&± 7 ( {stat.}) ± 11 ( {exp. syst.}) ± 14 ( {mod. syst.}) {MeV} = 80370± 19 {MeV}, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W^+ and W^- bosons yields m_{W^+}-m_{W^-} = - 29 ± 28 MeV.
New Assignment of Mass Values and Uncertainties to NIST Working Standards
Davis, Richard S.
1990-01-01
For some time it had been suspected that values assigned to NIST working standards of mass were some 0.17 mg/kg larger than mass values based on artifacts representing mass in the International System of Units (SI). This relatively small offset, now confirmed, has had minimal scientific or technological significance. The discrepancy was removed on January 1, 1990. We document the history of the discrepancy, the studies which allow its removal, and the methods in place to limit its effect and prevent its recurrence. For routine calibrations, we believe that our working standards now have a long-term stability of 0.033 mg/kg (3σ) with respect to the national prototype kilograms of the United States. We provisionally admit an additional uncertainty of 0.09 mg/kg (3σ), systematic to all NIST mass measurements, which represents the possible offset of our primary standards from standards maintained by the Bureau International des Poids et Mesures (BIPM). This systematic uncertainty may be significantly reduced after analysis of results from the 3rd verification of national prototype kilograms, which is now underway. PMID:28179759
SDRE controller for motion design of cable-suspended robot with uncertainties and moving obstacles
NASA Astrophysics Data System (ADS)
Behboodi, Ahad; Salehi, Seyedmohammad
2017-10-01
In this paper an optimal control approach for nonlinear dynamical systems was proposed based on State Dependent Riccati Equation (SDRE) and its robustness against uncertainties is shown by simulation results. The proposed method was applied on a spatial six-cable suspended robot, which was designed to carry loads or perform different tasks in huge workspaces. Motion planning for cable-suspended robots in such a big workspace is subjected to uncertainties and obstacles. First, we emphasized the ability of SDRE to construct a systematic basis and efficient design of controller for wide variety of nonlinear dynamical systems. Then we showed how this systematic design improved the robustness of the system and facilitated the integration of motion planning techniques with the controller. In particular, obstacle avoidance technique based on artificial potential field (APF) can be easily combined with SDRE controller with efficient performance. Due to difficulties of exact solution for SDRE, an approximation method was used based on power series expansion. The efficiency and robustness of the SDRE controller was illustrated on a six-cable suspended robot with proper simulations.
Prediction of the area affected by earthquake-induced landsliding based on seismological parameters
NASA Astrophysics Data System (ADS)
Marc, Odin; Meunier, Patrick; Hovius, Niels
2017-07-01
We present an analytical, seismologically consistent expression for the surface area of the region within which most landslides triggered by an earthquake are located (landslide distribution area). This expression is based on scaling laws relating seismic moment, source depth, and focal mechanism with ground shaking and fault rupture length and assumes a globally constant threshold of acceleration for onset of systematic mass wasting. The seismological assumptions are identical to those recently used to propose a seismologically consistent expression for the total volume and area of landslides triggered by an earthquake. To test the accuracy of the model we gathered geophysical information and estimates of the landslide distribution area for 83 earthquakes. To reduce uncertainties and inconsistencies in the estimation of the landslide distribution area, we propose an objective definition based on the shortest distance from the seismic wave emission line containing 95 % of the total landslide area. Without any empirical calibration the model explains 56 % of the variance in our dataset, and predicts 35 to 49 out of 83 cases within a factor of 2, depending on how we account for uncertainties on the seismic source depth. For most cases with comprehensive landslide inventories we show that our prediction compares well with the smallest region around the fault containing 95 % of the total landslide area. Aspects ignored by the model that could explain the residuals include local variations of the threshold of acceleration and processes modulating the surface ground shaking, such as the distribution of seismic energy release on the fault plane, the dynamic stress drop, and rupture directivity. Nevertheless, its simplicity and first-order accuracy suggest that the model can yield plausible and useful estimates of the landslide distribution area in near-real time, with earthquake parameters issued by standard detection routines.
NASA Astrophysics Data System (ADS)
Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.
2015-11-01
The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Veneziano, D.; Agarwal, A.; Karaca, E.
2009-01-01
The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Holcomb, Michael; McCulloch, Malcolm T.
2018-05-01
The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B/Ca partition coefficient (KD) between aragonite and seawater, measurements of coral skeleton δ11B and B/Ca can potentially constrain the full carbonate system. Two sets of abiogenic aragonite precipitation experiments designed to quantify KD have recently made possible the application of this proxy system. However, while different KD formulations have been proposed, there has not yet been a comprehensive analysis that considers both experimental datasets and explores the implications for interpreting coral skeletons. Here, we evaluate four potential KD formulations: three previously presented in the literature and one newly developed. We assess how well each formulation reconstructs the known fluid carbonate chemistry from the abiogenic experiments, and we evaluate the implications for deriving the carbonate chemistry of coral calcifying fluid. Three of the KD formulations performed similarly when applied to abiogenic aragonites precipitated from seawater and to coral skeletons. Critically, we find that some uncertainty remains in understanding the mechanism of boron elemental partitioning between aragonite and seawater, and addressing this question should be a target of additional abiogenic precipitation experiments. Despite this, boron systematics can already be applied to quantify the coral calcifying fluid carbonate system, although uncertainties associated with the proxy system should be carefully considered for each application. Finally, we present a user-friendly computer code that calculates coral calcifying fluid carbonate chemistry, including propagation of uncertainties, given inputs of boron systematics measured in coral skeleton.
NASA Technical Reports Server (NTRS)
Lemoine, M.; Vidal-Madjar, A.; Hebrard, G.; Desert, J.-M.; Ferlet, R.; LecavelierdesEtangs, A.; Howk, J. C.; Andre, M.; Blair, W. P.; Friedman, S. D.;
2002-01-01
High-resolution spectra of the hot white dwarf G191-B2B covering the wavelength region 905-1187A were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Telescope STIS observations to evaluate the total H(sub I), D(sub I), O(sub I) and N(sub I) column densities along the line of sight. Previous determinations of N(D(sub I)) based upon GHRS (Goddard High Resolution Spectrograph) and STIS (Space Telescope Imaging Spectrograph) observations were controversial due to the saturated strength of the D(sub I) Lyman alpha line. In the present analysis the column density of D(sub I) has been measured using only the unsaturated Lyman beta and Lyman gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental character series has been performed. The column densities derived are: log N(D(sub I)) = 13.40+/-0.07, log N(O(sub I)) = 14.86+/-0.07, and log N(N(sub I)) = 13.87+/-0.07 quoted with 2sigma, uncertainties. The measurement of the H(sub I) column density by profile fitting of the Lyman alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the H(sub I)) column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman alpha are excellent. The new estimate of N(H(sub I)) toward G191-B2B reads: logN(H (sub I)) = 18.18+/-0.18 (2sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H)= 1.66(+0.9/-0.6) x 10(exp -5) (2sigma uncertainty).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Hali, E-mail: hamorris@ualberta.ca; Meno
Purpose: To estimate the total dosimetric uncertainty at the tumor apex for ocular brachytherapy treatments delivered using 16 mm Collaborative Ocular Melanoma Study (COMS) and Super9 plaques loaded with {sup 125}I seeds in order to determine the size of the apex margin that would be required to ensure adequate dosimetric coverage of the tumor. Methods: The total dosimetric uncertainty was assessed for three reference tumor heights: 3, 5, and 10 mm, using the Guide to the expression of Uncertainty in Measurement/National Institute of Standards and Technology approach. Uncertainties pertaining to seed construction, source strength, plaque assembly, treatment planning calculations, tumormore » height measurement, plaque placement, and plaque tilt for a simple dome-shaped tumor were investigated and quantified to estimate the total dosimetric uncertainty at the tumor apex. Uncertainties in seed construction were determined using EBT3 Gafchromic film measurements around single seeds, plaque assembly uncertainties were determined using high resolution microCT scanning of loaded plaques to measure seed positions in the plaques, and all other uncertainties were determined from the previously published studies and recommended values. All dose calculations were performed using PLAQUESIMULATOR v5.7.6 ophthalmic treatment planning system with the inclusion of plaque heterogeneity corrections. Results: The total dosimetric uncertainties at 3, 5, and 10 mm tumor heights for the 16 mm COMS plaque were 17.3%, 16.1%, and 14.2%, respectively, and for the Super9 plaque were 18.2%, 14.4%, and 13.1%, respectively (all values with coverage factor k = 2). The apex margins at 3, 5, and 10 mm tumor heights required to adequately account for these uncertainties were 1.3, 1.3, and 1.4 mm, respectively, for the 16 mm COMS plaque, and 1.8, 1.4, and 1.2 mm, respectively, for the Super9 plaque. These uncertainties and associated margins are dependent on the dose gradient at the given prescription depth, thus resulting in the changing uncertainties and margins with depth. Conclusions: The margins determined in this work can be used as a guide for determining an appropriate apex margin for a given treatment, which can be chosen based on the tumor height. The required margin may need to be increased for more complex scenarios (mushroom shaped tumors, tumors close to the optic nerve, oblique muscle related tilt, etc.) than the simple dome-shaped tumor examined and should be chosen on a case-by-case basis. The sources of uncertainty contributing most significantly to the total dosimetric uncertainty are seed placement within the plaques, treatment planning calculations, tumor height measurement, and plaque tilt. This work presents an uncertainty-based, rational approach to estimating an appropriate apex margin.« less
Pulse Detonation Physiochemical and Exhaust Relaxation Processes
2006-05-01
based on total time to detonation and detonation percentage. Nomenclature A = Arrehenius Constant Ea = Activation Energy Ecrit = Critical...the precision uncertainties vary for each data point. Therefore, the total experimental uncertainty will vary by data point. A comprehensive bias
Sensitivity Analysis of Expected Wind Extremes over the Northwestern Sahara and High Atlas Region.
NASA Astrophysics Data System (ADS)
Garcia-Bustamante, E.; González-Rouco, F. J.; Navarro, J.
2017-12-01
A robust statistical framework in the scientific literature allows for the estimation of probabilities of occurrence of severe wind speeds and wind gusts, but does not prevent however from large uncertainties associated with the particular numerical estimates. An analysis of such uncertainties is thus required. A large portion of this uncertainty arises from the fact that historical observations are inherently shorter that the timescales of interest for the analysis of return periods. Additional uncertainties stem from the different choices of probability distributions and other aspects related to methodological issues or physical processes involved. The present study is focused on historical observations over the Ouarzazate Valley (Morocco) and in a high-resolution regional simulation of the wind in the area of interest. The aim is to provide extreme wind speed and wind gust return values and confidence ranges based on a systematic sampling of the uncertainty space for return periods up to 120 years.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
NASA Astrophysics Data System (ADS)
Beutler, Florian; Saito, Shun; Seo, Hee-Jong; Brinkmann, Jon; Dawson, Kyle S.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Ho, Shirley; McBride, Cameron K.; Montesano, Francesco; Percival, Will J.; Ross, Ashley J.; Ross, Nicholas P.; Samushia, Lado; Schlegel, David J.; Sánchez, Ariel G.; Tinker, Jeremy L.; Weaver, Benjamin A.
2014-09-01
We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 (DR11) sample, which consists of 690 827 galaxies in the redshift range 0.43 < z < 0.7 and has a sky coverage of 8498 deg2. We perform our analysis in Fourier space using a power spectrum estimator suggested by Yamamoto et al. We measure the multipole power spectra in a self-consistent manner for the first time in the sense that we provide a proper way to treat the survey window function and the integral constraint, without the commonly used assumption of an isotropic power spectrum and without the need to split the survey into subregions. The main cosmological signals exploited in our analysis are the baryon acoustic oscillations and the signal of redshift space distortions, both of which are distorted by the Alcock-Paczynski effect. Together, these signals allow us to constrain the distance ratio DV(zeff)/rs(zd) = 13.89 ± 0.18, the Alcock-Paczynski parameter FAP(zeff) = 0.679 ± 0.031 and the growth rate of structure f (zeff)σ8(zeff) = 0.419 ± 0.044 at the effective redshift zeff = 0.57. We emphasize that our constraints are robust against possible systematic uncertainties. In order to ensure this, we perform a detailed systematics study against CMASS mock galaxy catalogues and N-body simulations. We find that such systematics will lead to 3.1 per cent uncertainty for fσ8 if we limit our fitting range to k = 0.01-0.20 h Mpc-1, where the statistical uncertainty is expected to be three times larger. We did not find significant systematic uncertainties for DV/rs or FAP. Combining our data set with Planck to test General Relativity (GR) through the simple γ-parametrization, where the growth rate is given by f(z) = Ω ^{γ }_m(z), reveals a ˜2σ tension between the data and the prediction by GR. The tension between our result and GR can be traced back to a tension in the clustering amplitude σ8 between CMASS and Planck.
Detailed Uncertainty Analysis for Ares I Ascent Aerodynamics Wind Tunnel Database
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Hanke, Jeremy L.; Walker, Eric L.; Houlden, Heather P.
2008-01-01
A detailed uncertainty analysis for the Ares I ascent aero 6-DOF wind tunnel database is described. While the database itself is determined using only the test results for the latest configuration, the data used for the uncertainty analysis comes from four tests on two different configurations at the Boeing Polysonic Wind Tunnel in St. Louis and the Unitary Plan Wind Tunnel at NASA Langley Research Center. Four major error sources are considered: (1) systematic errors from the balance calibration curve fits and model + balance installation, (2) run-to-run repeatability, (3) boundary-layer transition fixing, and (4) tunnel-to-tunnel reproducibility.
Using spatial uncertainty to manipulate the size of the attention focus.
Huang, Dan; Xue, Linyan; Wang, Xin; Chen, Yao
2016-09-01
Preferentially processing behaviorally relevant information is vital for primate survival. In visuospatial attention studies, manipulating the spatial extent of attention focus is an important question. Although many studies have claimed to successfully adjust attention field size by either varying the uncertainty about the target location (spatial uncertainty) or adjusting the size of the cue orienting the attention focus, no systematic studies have assessed and compared the effectiveness of these methods. We used a multiple cue paradigm with 2.5° and 7.5° rings centered around a target position to measure the cue size effect, while the spatial uncertainty levels were manipulated by changing the number of cueing positions. We found that spatial uncertainty had a significant impact on reaction time during target detection, while the cue size effect was less robust. We also carefully varied the spatial scope of potential target locations within a small or large region and found that this amount of variation in spatial uncertainty can also significantly influence target detection speed. Our results indicate that adjusting spatial uncertainty is more effective than varying cue size when manipulating attention field size.
Uncertainty in simulating wheat yields under climate change
NASA Astrophysics Data System (ADS)
Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.
2013-09-01
Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.
The Calibration System of the E989 Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, Antonio
The muon anomaly aµ is one of the most precise quantity known in physics experimentally and theoretically. The high level of accuracy permits to use the measurement of aµ as a test of the Standard Model comparing with the theoretical calculation. After the impressive result obtained at Brookhaven National Laboratory in 2001 with a total accuracy of 0.54 ppm, a new experiment E989 is under construction at Fermilab, motivated by the diff of aexp SM µ - aµ ~ 3σ. The purpose of the E989 experiment is a fourfold reduction of the error, with a goal of 0.14 ppm,more » improving both the systematic and statistical uncertainty. With the use of the Fermilab beam complex a statistic of × 21 with respect to BNL will be reached in almost 2 years of data taking improving the statistical uncertainty to 0.1 ppm. Improvement on the systematic error involves the measurement technique of ωa and ωp, the anomalous precession frequency of the muon and the Larmor precession frequency of the proton respectively. The measurement of ωp involves the magnetic field measurement and improvements on this sector related to the uniformity of the field should reduce the systematic uncertainty with respect to BNL from 170 ppb to 70 ppb. A reduction from 180 ppb to 70 ppb is also required for the measurement of ωa; new DAQ, a faster electronics and new detectors and calibration system will be implemented with respect to E821 to reach this goal. In particular the laser calibration system will reduce the systematic error due to gain fl of the photodetectors from 0.12 to 0.02 ppm. The 0.02 ppm limit on systematic requires a system with a stability of 10 -4 on short time scale (700 µs) while on longer time scale the stability is at the percent level. The 10 -4 stability level required is almost an order of magnitude better than the existing laser calibration system in particle physics, making the calibration system a very challenging item. In addition to the high level of stability a particular environment, due to the presence of a 14 m diameter storage ring, a highly uniform magnetic field and the detector distribution around the storage ring, set specific guidelines and constraints. This thesis will focus on the final design of the Laser Calibration System developed for the E989 experiment. Chapter 1 introduces the subject of the anomalous magnetic moment of the muon; chapter 2 presents previous measurement of g -2, while chapter 3 discusses the Standard Model prediction and possible new physics scenario. Chapter 4 describes the E989 experiment. In this chapter will be described the experimental technique and also will be presented the experimental apparatus focusing on the improvements necessary to reduce the statistical and systematic errors. The main item of the thesis is discussed in the last two chapters: chapter 5 is focused on the Laser Calibration system while chapter 6 describes the Test Beam performed at the Beam Test Facility of Laboratori Nazionali di Frascati from the 29th February to the 7th March as a final test for the full calibrations system. An introduction explain the physics motivation of the system and the diff t devices implemented. In the final chapter the setup used will be described and some of the results obtained will be presented.« less
The DiskMass Survey. II. Error Budget
NASA Astrophysics Data System (ADS)
Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas
2010-06-01
We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
NASA Astrophysics Data System (ADS)
Botyánszki, János; Kasen, Daniel
2017-08-01
We present a radiative transfer code to model the nebular phase spectra of supernovae (SNe) in non-LTE (NLTE). We apply it to a systematic study of SNe Ia using parameterized 1D models and show how nebular spectral features depend on key physical parameters, such as the time since explosion, total ejecta mass, kinetic energy, radial density profile, and the masses of 56Ni, intermediate-mass elements, and stable iron-group elements. We also quantify the impact of uncertainties in atomic data inputs. We find the following. (1) The main features of SN Ia nebular spectra are relatively insensitive to most physical parameters. Degeneracy among parameters precludes a unique determination of the ejecta properties from spectral fitting. In particular, features can be equally well fit with generic Chandrasekhar mass ({M}{ch}), sub-{M}{Ch}, and super-{M}{Ch} models. (2) A sizable (≳0.1 {M}⊙ ) central region of stable iron-group elements, often claimed as evidence for {M}{Ch} models, is not essential to fit the optical spectra and may produce an unusual flat-top [Co III] profile. (3) The strength of [S III] emission near 9500 Å can provide a useful diagnostic of explosion nucleosynthesis. (4) Substantial amounts (≳0.1 {M}⊙ ) of unburned C/O mixed throughout the ejecta produce [O III] emission not seen in observations. (5) Shifts in the wavelength of line peaks can arise from line-blending effects. (6) The steepness of the ejecta density profile affects the line shapes, offering a constraint on explosion models. (7) Uncertainties in atomic data limit the ability to infer physical parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lees, J.P.
We present the first results on the Dalitz-plot structure and improved measurements of the time-dependent CP-violation parameters of the process B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0} obtained using 468 x 10{sup 6} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The Dalitz-plot structure is probed by a time-integrated amplitude analysis that does not distinguish between B{sup 0} and {bar B}{sup 0} decays. We measure the total inclusive branching fraction {Beta}(B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (6.19 {+-} 0.48 {+-} 0.15 {+-} 0.12) xmore » 10{sup -6}, where the first uncertainty is statistical, the second is systematic, and the third represents the Dalitz-plot signal model dependence. We also observe evidence for the intermediate resonant states f{sub 0}(980), f{sub 0}(1710), and f{sub 2}(2010). Their respective product branching fractions are measured to be (2.70{sub -1.19}{sup +1.25} {+-} 0.36 {+-} 1.17) x 10{sup -6}, (0.50{sub -0.24}{sup +0.46} {+-} 0.04 {+-} 0.10) x 10{sup -6}, and (0.54{sub -0.20}{sup +0.21} {+-} 0.03 {+-} 0.52) x 10{sup -6}. Additionally, we determine the mixing-induced CP-violation parameters to be S = -0.94{sub -0.21}{sup +0.24} {+-} 0.06 and C = -0.17 {+-} 0.18 {+-} 0.04, where the first uncertainty is statistical and the second is systematic. These values are in agreement with the standard model expectation.« less
The new g-2 experiment at Fermilab
NASA Astrophysics Data System (ADS)
Anastasi, A.
2017-04-01
There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with an uncertainty dominated by the theoretical error. Two new proposals - at Fermilab and J-PARC - plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
Robust control of the DC-DC boost converter based on the uncertainty and disturbance estimator
NASA Astrophysics Data System (ADS)
Oucheriah, Said
2017-11-01
In this paper, a robust non-linear controller based on the uncertainty and disturbance estimator (UDE) scheme is successfully developed and implemented for the output voltage regulation of the DC-DC boost converter. System uncertainties, external disturbances and unknown non-linear dynamics are lumped as a signal that is accurately estimated using a low-pass filter and their effects are cancelled by the controller. This methodology forms the basis of the UDE-based controller. A simple procedure is also developed that systematically determines the parameters of the controller to meet certain specifications. Using simulation, the effectiveness of the proposed controller is compared against the sliding-mode control (SMC). Experimental tests also show that the proposed controller is robust to system uncertainties, large input and load perturbations.
A multi-model assessment of pollution transport to the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shindell, D T; Chin, M; Dentener, F
2008-03-13
We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere.more » Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.« less
Prevalence of Pseudobulbar Affect following Stroke: A Systematic Review and Meta-Analysis.
Gillespie, David C; Cadden, Amy P; Lees, Rosalind; West, Robert M; Broomfield, Niall M
2016-03-01
Several studies have reported that emotional lability is a common consequence of stroke. However, there is uncertainty about the "true" prevalence of the condition because, across these studies, patients have been recruited at different stages of recovery, from different settings, and using different diagnostic methods. There have been no systematic reviews of the published evidence to ascertain how the prevalence of poststroke pseudobulbar affect (PBA) might vary according to these factors. A systematic review and meta-analysis of the published literature were undertaken. A total of 15 studies (n = 3391 participants) met inclusion criteria for the review. Meta-analysis estimated that the prevalence of PBA was 17% (95% confidence interval 12%-24%) acutely (<1 month post stroke), 20% (14%-29%) post acutely (1-6 months post stroke), and 12% (8%-17%) in the medium to longer term (>6 months post stroke). The evidence from the published literature, although limited, is that crying is a more common PBA presentation following stroke than laughter. PBA is a common condition that affects approximately 1 in 5 stroke survivors at the acute and postacute phases, and 1 in 8 survivors beyond 6 months post stroke. These prevalence data are very important for clinicians and the commissioners of services. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Constituent quarks and systematic errors in mid-rapidity charged multiplicity dN ch/dη distributions
Tannenbaum, M. J.
2018-01-10
Centrality definition in A + A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p + p collision (50 ± 5% for PHENIX at RHIC). In A + A collisions where centrality is measured by the number of nucleon collisions, N coll, or the number of nucleon participants, N part, or the number of constituent quark participants, N qp, the error in the efficiency of the primary interaction trigger (Beam–Beam Counters) for a p + p collision leads to a correlated systematic uncertainty in N part, Nmore » coll or N qp which reduces binomially as the A + A collisions become more central. If this is not correctly accounted for in projections of A + A to p + p collisions, then mistaken conclusions can result. Finally, a recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant d(N ch/dη)/N qp in Au + Au at RHIC was the same as the value in p + p collisions.« less
Constituent quarks and systematic errors in mid-rapidity charged multiplicity dN ch/dη distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tannenbaum, M. J.
Centrality definition in A + A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p + p collision (50 ± 5% for PHENIX at RHIC). In A + A collisions where centrality is measured by the number of nucleon collisions, N coll, or the number of nucleon participants, N part, or the number of constituent quark participants, N qp, the error in the efficiency of the primary interaction trigger (Beam–Beam Counters) for a p + p collision leads to a correlated systematic uncertainty in N part, Nmore » coll or N qp which reduces binomially as the A + A collisions become more central. If this is not correctly accounted for in projections of A + A to p + p collisions, then mistaken conclusions can result. Finally, a recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant d(N ch/dη)/N qp in Au + Au at RHIC was the same as the value in p + p collisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Oh, S; Yea, J
Purpose: This study evaluated the setup uncertainties for brain sites when using BrainLAB’s ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Methods: Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27–33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with themore » systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Results: Optimal PTV margins were calculated based on van Herk et al.’s [margin recipe = 2.5∑ + 0.7σ − 3 mm] and Stroom et al.’s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.’s and Stroom et al.’s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Conclusion: Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.∑σ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesini, Danilo; Whitaker, Katherine E.; Brammer, Gabriel
2010-12-10
We use the optical to mid-infrared coverage of the NEWFIRM Medium-Band Survey (NMBS) to characterize, for the first time, the properties of a mass-complete sample of 14 galaxies at 3.0 {<=} z < 4.0 with M{sub star}>2.5 x 10{sup 11} M{sub sun}, and to derive significantly more accurate measurements of the high-mass end of the stellar mass function (SMF) of galaxies at 3.0 {<=} z < 4.0. The accurate photometric redshifts and well-sampled spectral energy distributions (SEDs) provided by the NMBS combined with the large surveyed area result in significantly reduced contributions from photometric redshift errors and cosmic variance tomore » the total error budget of the SMF. The typical very massive galaxy at 3.0 {<=} z < 4.0 is red and faint in the observer's optical, with a median r-band magnitude of (r{sub tot}) = 26.1, and median rest-frame U - V colors of (U - V) = 1.6. About 60% of the mass-complete sample has optical colors satisfying either the U- or the B-dropout color criteria, although {approx}50% of these galaxies has r>25.5. We find that {approx}30% of the sample has star formation rates (SFRs) from SED modeling consistent with zero, although SFRs of up to {approx}1-18 M{sub sun} yr{sup -1} are also allowed within 1{sigma}. However, >80% of the sample is detected at 24 {mu}m, resulting in total infrared luminosities in the range (0.5-4.0) x 10{sup 13} L{sub sun}. This implies the presence of either dust-enshrouded starburst activity (with SFRs of 600-4300 M{sub sun} yr{sup -1}) and/or highly obscured active galactic nuclei (AGNs). The contribution of galaxies with M{sub star}>2.5 x 10{sup 11} M{sub sun} to the total stellar mass budget at 3.0 {<=} z < 4.0 is {approx}8{sup +13}{sub -3}%. Compared to recent estimates of the stellar mass density in galaxies with M{sub star} {approx} 10{sup 9}-10{sup 11} M{sub sun} at z {approx} 5 and z {approx} 6, we find an evolution by a factor of 2-7 and 3-22 from z {approx} 5 and z {approx} 6, respectively, to z = 3.5. The previously found disagreement at the high-mass end between observed and model-predicted SMFs is now significant at the 3{sigma} level when only random uncertainties are considered. However, systematic uncertainties dominate the total error budget, with errors up to a factor of {approx}8 in the densities at the high-mass end, bringing the observed SMF in marginal agreement with the predicted SMF. Additional systematic uncertainties on the high-mass end could be potentially introduced by either (1) the intense star formation and/or the very common AGN activities as inferred from the MIPS 24 {mu}m detections, and/or (2) contamination by a significant population of massive, old, and dusty galaxies at z {approx} 2.6.« less
Mueller, David S.
2017-01-01
This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when evaluating the uncertainty of moving-boat ADCP measurements.
Uncertainty in BRCA1 cancer susceptibility testing.
Baty, Bonnie J; Dudley, William N; Musters, Adrian; Kinney, Anita Y
2006-11-15
This study investigated uncertainty in individuals undergoing genetic counseling/testing for breast/ovarian cancer susceptibility. Sixty-three individuals from a single kindred with a known BRCA1 mutation rated uncertainty about 12 items on a five-point Likert scale before and 1 month after genetic counseling/testing. Factor analysis identified a five-item total uncertainty scale that was sensitive to changes before and after testing. The items in the scale were related to uncertainty about obtaining health care, positive changes after testing, and coping well with results. The majority of participants (76%) rated reducing uncertainty as an important reason for genetic testing. The importance of reducing uncertainty was stable across time and unrelated to anxiety or demographics. Yet, at baseline, total uncertainty was low and decreased after genetic counseling/testing (P = 0.004). Analysis of individual items showed that after genetic counseling/testing, there was less uncertainty about the participant detecting cancer early (P = 0.005) and coping well with their result (P < 0.001). Our findings support the importance to clients of genetic counseling/testing as a means of reducing uncertainty. Testing may help clients to reduce the uncertainty about items they can control, and it may be important to differentiate the sources of uncertainty that are more or less controllable. Genetic counselors can help clients by providing anticipatory guidance about the role of uncertainty in genetic testing. (c) 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Rubin, Adam; Gal-Yam, Avishay
2017-10-01
Modern transient surveys have begun discovering and following supernovae (SNe) shortly after first light—providing systematic measurements of the rise of Type II SNe. We explore how analytic models of early shock-cooling emission from core-collapse SNe can constrain the progenitor’s radius, explosion velocity, and local host extinction. We simulate synthetic photometry in several realistic observing scenarios; assuming the models describe the typical explosions well, we find that ultraviolet observations can constrain the progenitor’s radius to a statistical uncertainty of ±10%-15%, with a systematic uncertainty of ±20%. With these observations the local host extinction (A V ) can be constrained to a factor of two and the shock velocity to ±5% with a systematic uncertainty of ±10%. We also reanalyze the SN light curves presented by Garnavich et al. (2016) and find that KSN 2011a can be fit by a blue supergiant model with a progenitor radius of {R}s< 7.7+8.8({stat})+1.9({sys}) {R}⊙ , while KSN 2011d can be fit with a red supergiant model with a progenitor radius of {R}s={111}-21({stat)-1({sys})}+89({stat)+49({sys})} {R}⊙ . Our results do not agree with those of Garnavich et al. Moreover, we re-evaluate their claims and find that there is no statistically significant evidence for a shock-breakout flare in the light curve of KSN 2011d.
Error Detection and Recovery for Robot Motion Planning with Uncertainty.
1987-07-01
plans for these problems . This intuition-which is a heuristic claim, so the reader is advised to proceed with caution--should be verified or disproven...that might work. but fail in a --reasonable" way when they cannot. While EDR is largely motivated by the problems of uncertainty and model error. its...definition for EDR strategies and show how they can be computed. This theory represents what is perhaps the first systematic attack on the problem of
Drought Persistence Errors in Global Climate Models
NASA Astrophysics Data System (ADS)
Moon, H.; Gudmundsson, L.; Seneviratne, S. I.
2018-04-01
The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.
Scherman Rydhög, Jonas; Riisgaard de Blanck, Steen; Josipovic, Mirjana; Irming Jølck, Rasmus; Larsen, Klaus Richter; Clementsen, Paul; Lars Andersen, Thomas; Poulsen, Per Rugaard; Fredberg Persson, Gitte; Munck Af Rosenschold, Per
2017-04-01
The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath-hold (DIBH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients. Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm. A mean reduction of 2-6mm in marker excursion in DIBH versus FB was seen in the anterior-posterior (AP), left-right (LR) and cranio-caudal (CC) directions. Lymph node motion during DIBH originated from cardiac motion. The systematic- (standard deviation (SD) of all the mean marker positions) and random errors (root-mean-square of the intra-BH SD) during DIBH were 0.5 and 0.3mm (AP), 0.5 and 0.3mm (LR), 0.8 and 0.4mm (CC), respectively. The mean inter-breath-hold shifts were -0.3mm (AP), -0.2mm (LR), and -0.2mm (CC). Intra- and inter-breath-hold uncertainty of tumours and lymph nodes were small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. Copyright © 2017 Elsevier B.V. All rights reserved.
Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.
Spadavecchia, L; Williams, M; Law, B E
2011-07-01
We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly compensated for each other. The time scales on which precipitation errors occurred in the simulations were shorter than the temporal scales over which drought developed in the model, so drought events were reasonably simulated. The approach outlined here provides a means to assess the uncertainty and bias introduced by meteorological drivers in regional-scale ecological forecasting.
A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riess, Adam G.; Scolnic, Dan; Jones, David O.
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258more » have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST -based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST /FGS, HST /WFC3 spatial scanning and/or Hipparcos , and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s{sup 1} Mpc{sup 1}, respectively. Our best estimate of H {sub 0} = 73.24 ± 1.74 km s{sup 1} Mpc{sup 1} combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4 σ higher than 66.93 ± 0.62 km s{sup 1} Mpc{sup 1} predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1 σ relative to the prediction of 69.3 ± 0.7 km s{sup 1} Mpc{sup 1} based on the comparably precise combination of WMAP +ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H {sub 0} at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of Δ N {sub eff} ≈ 0.4–1. We anticipate further significant improvements in H {sub 0} from upcoming parallax measurements of long-period MW Cepheids.« less
A 2.4% Determination of the Local Value of the Hubble Constant
NASA Astrophysics Data System (ADS)
Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.; Scolnic, Dan; Casertano, Stefano; Filippenko, Alexei V.; Tucker, Brad E.; Reid, Mark J.; Jones, David O.; Silverman, Jeffrey M.; Chornock, Ryan; Challis, Peter; Yuan, Wenlong; Brown, Peter J.; Foley, Ryan J.
2016-07-01
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ˜300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (I) megamasers in NGC 4258, (II) 8 DEBs in the LMC, (III) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (IV) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s-1 Mpc-1, respectively. Our best estimate of H 0 = 73.24 ± 1.74 km s-1 Mpc-1 combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s-1 Mpc-1 predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s-1 Mpc-1 based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H 0 at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN eff ≈ 0.4-1. We anticipate further significant improvements in H 0 from upcoming parallax measurements of long-period MW Cepheids. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Optical Model and Cross Section Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman,M.W.; Pigni, M.T.; Dietrich, F.S.
2009-10-05
Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.
Surrogate gas prediction model as a proxy for Δ14C-based measurements of fossil fuel-CO2.
Coakley, Kevin J; Miller, John B; Montzka, Stephen A; Sweeney, Colm; Miller, Ben R
2016-06-27
The measured 14 C: 12 C isotopic ratio of atmospheric CO 2 (and its associated derived Δ 14 C value) is an ideal tracer for determination of the fossil fuel derived CO 2 enhancement contributing to any atmospheric CO 2 measurement ( C ff ). Given enough such measurements, independent top-down estimation of US fossil fuel-CO 2 emissions should be possible. However, the number of Δ 14 C measurements is presently constrained by cost, available sample volume, and availability of mass spectrometer measurement facilities. Δ 14 C is therefore measured in just a small fraction of samples obtained by ask air sampling networks around the world. Here, we develop a Projection Pursuit Regression (PPR) model to predict C ff as a function of multiple surrogate gases acquired within the NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured enhancements of various anthropogenic trace gases, including CO, SF 6 , and halo- and hydrocarbons acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 through 2010. Model performance for these sites is quantified based on predicted values corresponding to test data excluded from the model building process. Chi-square hypothesis test analysis indicates that these predictions and corresponding observations are consistent given our uncertainty budget which accounts for random effects and one particular systematic effect. However, quantification of the combined uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range of the observations and their relatively high fractional uncertainties at the sampling sites considered here. To account for the possibility of additional systematic effects, we incorporate another component of uncertainty into our budget. Expanding the number of Δ 14 C measurements in the NOAA GGGRN and building new PPR models at additional sites would improve our understanding of uncertainties and potentially increase the number of C ff estimates by approximately a factor of three. Provided that these estimates are of comparable quality to Δ 14 C-based estimates, we expect an improved determination of fossil fuel-CO 2 emissions.
Sabouri, Sarah; Gerber, Markus; Lemola, Sakari; Becker, Stephen P; Shamsi, Mahin; Shakouri, Zeinab; Sadeghi Bahmani, Dena; Kalak, Nadeem; Holsboer-Trachsler, Edith; Brand, Serge
2016-07-01
The Dark Triad (DT) describes a set of three closely related personality traits, Machiavellianism, narcissism, and psychopathy. The aim of this study was to examine the associations between DT traits, sleep disturbances, anxiety sensitivity and intolerance of uncertainty. A total of 341 adults (M=29years) completed a series of questionnaires related to the DT traits, sleep disturbances, anxiety sensitivity, and intolerance of uncertainty. A higher DT total score was associated with increased sleep disturbances, and higher scores for anxiety sensitivity and intolerance of uncertainty. In regression analyses Machiavellianism and psychopathy were predictors of sleep disturbances, anxiety sensitivity, and intolerance of uncertainty. Results indicate that specific DT traits, namely Machiavellianism and psychopathy, are associated with sleep disturbances, anxiety sensitivity and intolerance of uncertainty in young adults. Copyright © 2016 Elsevier Inc. All rights reserved.
Sources of uncertainty in annual forest inventory estimates
Ronald E. McRoberts
2000-01-01
Although design and estimation aspects of annual forest inventories have begun to receive considerable attention within the forestry and natural resources communities, little attention has been devoted to identifying the sources of uncertainty inherent in these systems or to assessing the impact of those uncertainties on the total uncertainties of inventory estimates....
NASA Astrophysics Data System (ADS)
Madruga de Brito, Mariana; Evers, Mariele
2016-04-01
Multi-Criteria Decision Making (MCDM) methods have received much attention from researchers and practitioners for solving flood risk management problems in the last decades due to its capacity to deal with multiple criteria, conflicting objectives as well as the knowledge arising from the participation of several actors. In order to consolidate recent research conducted in this area, this study presents a state-of-the-art literature review of MCDM applications to flood risk management, seeking to provide a better understanding of the current status of how participatory MCDM is being conducted and the way uncertainties are included in the decision-making process. Totally, 128 peer-reviewed papers published from 1995 to June 2015 in 72 different journals were systematically analyzed. Results indicated that the number of flood MCDM publications has exponentially grown during this period, with over 82% of all papers published since 2009. A wide range of application areas was identified, with most papers focusing on ranking alternatives for flood mitigation (22.78% of the total) followed by risk (21.11%) and vulnerability assessment (15%). The Analytical Hierarchy Process (AHP) was the most popular MCDM method (42.72%) followed by Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) (13.33%) and Weighted Sum Method (WSM) (12.73%). Although significant improvements have been made over the last decades, shortcomings remain in handling the uncertainty. Only eight papers (6.25%) have conducted uncertainty analysis, suggesting that a general procedure for performing it in MCDM does not yet exist. Researchers have applied the Monte Carlo simulation, Taylor's series error propagation method or assessed the uncertainty in qualitative ways, by describing its main sources or analyzing the stakeholders' degree of confidence. In addition, 35 articles (27.34%) have performed a sensitivity analysis of the criteria weights. Three distinct approaches were identified: one-way, global, and probabilistic sensitivity analysis. About half of the studies have acknowledged the involvement of multiple stakeholders. However, participation was fragmented and focused on particular stages of the decision-making process such as the elicitation of criteria weights. This segmentation may be related to methodological and time constraints since participatory decision making is time-consuming and costly. Policy makers and experts were the most participated stakeholders, with few papers considering the involvement of local community members. Another issue is that only four studies seek to obtain consensus and that decisions were often made by majority vote or averaging approaches. Therefore, greater rigor in addressing the uncertainties around stakeholders' judgments as well as in endorsing an active participation in all stages of the decision-making process should be undertaken in future applications. This could help to increase the quality of decisions and subsequent implementation of chosen measures.
Eljaiek, Roberto; Heylbroeck, Christophe; Dubois, Marc-Jacques
2017-02-01
The objective was to systematically review the literature summarizing the effect on mortality of albumin compared to non-albumin solutions during the fluid resuscitation phase of burn injured patients. We searched MEDLINE, EMBASE and CENTRAL and the content of two leading journals in burn care, Burns and Journal of Burn Care and Research. Two reviewers independently selected randomized controlled trials comparing albumin vs. non-albumin solutions for the acute resuscitation of patients with >20% body surface area involvement. Reviewers abstracted data independently and assessed methodological quality of the included trials using predefined criteria. A random effects model was used to assess mortality. We identified 164 trials of which, 4 trials involving 140 patients met our inclusion criteria. Overall, the methodological quality of the included trials was fair. We did not find a significant benefit of albumin solutions as resuscitation fluid on mortality in burn patients (relative risk (RR) 1.6; 95% confidence interval (CI), 0.63-4.08). Total volume of fluid infusion during the phase of resuscitation was lower in patients receiving albumin containing solution -1.00ml/kg/%TBSA (total body surface area) (95% CI, -1.42 to -0.58). The pooled estimate demonstrated a neutral effect on mortality in burn patients resuscitated acutely with albumin solutions. Due to limited evidence and uncertainty, an adequately powered, high quality trial could be required to assess the impact of albumin solutions on mortality in burn patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples
NASA Astrophysics Data System (ADS)
Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.; Chu, Pamela M.; Rhoderick, George C.; Guenther, Franklin R.
2002-02-01
The National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) are independently creating quantitative, approximately 0.10 cm-1 resolution, infrared spectral libraries of vapor phase compounds. The NIST library will consist of approximately 100 vapor phase spectra of volatile hazardous air pollutants (HAPs) and suspected greenhouse gases. The PNNL library will consist of approximately 400 vapor phase spectra associated with DOE's remediation mission. A critical part of creating and validating any quantitative work involves independent verification based on inter-laboratory comparisons. The two laboratories use significantly different sample preparation and handling techniques. NIST uses gravimetric dilution and a continuous flowing sample while PNNL uses partial pressure dilution and a static sample. Agreement is generally found to be within the statistical uncertainties of the Beer's law fit and less than 3 percent of the total integrated band areas for the 4 chemicals used in this comparison. There does appear to be a small systematic difference between the PNNL and NIST data, however. Possible sources of the systematic difference will be discussed as well as technical details concerning the sample preparation and the procedures for overcoming instrumental artifacts.
239Pu(n,γ) from 10 eV to 1.3 MeV
Mosby, Shea Morgan; Bredeweg, Todd Allen; Couture, Aaron Joseph; ...
2018-02-01
In this study, the 239Pu(n,γ) cross section has been measured from 10 eV to 1.3 MeV as part of an experimental campaign using the Detector for Advanced Neutron Capture Experiments (DANCE). The work represents a significant advance in experimental technique, with improved systematic uncertainties in key regions in the keV to MeV regime. In general the results of prior work are confirmed with improved uncertainties, particularly at the highest incident neutron energies.
239Pu(n,γ) from 10 eV to 1.3 MeV
NASA Astrophysics Data System (ADS)
Mosby, S.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Kawano, T.; Ullmann, J.; Henderson, R. A.; Wu, C. Y.
2018-02-01
The 239Pu(n,γ) cross section has been measured from 10 eV to 1.3 MeV as part of an experimental campaign using the Detector for Advanced Neutron Capture Experiments (DANCE). The work represents a significant advance in experimental technique, with improved systematic uncertainties in key regions in the keV to MeV regime. In general the results of prior work are confirmed with improved uncertainties, particularly at the highest incident neutron energies.
Certainty Equivalence M-MRAC for Systems with Unmatched Uncertainties
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
The paper presents a certainty equivalence state feedback indirect adaptive control design method for the systems of any relative degree with unmatched uncertainties. The approach is based on the parameter identification (estimation) model, which is completely separated from the control design and is capable of producing parameter estimates as fast as the computing power allows without generating high frequency oscillations. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters.
Afanasjev, Anatoli V.; Agbemava, S. E.; Ray, D.; ...
2017-01-01
Here, the analysis of statistical and systematic uncertainties and their propagation to nuclear extremes has been performed. Two extremes of nuclear landscape (neutron-rich nuclei and superheavy nuclei) have been investigated. For the first extreme, we focus on the ground state properties. For the second extreme, we pay a particular attention to theoretical uncertainties in the description of fission barriers of superheavy nuclei and their evolution on going to neutron-rich nuclei.
Measurement of the W-boson mass in pp collisions at $$\\sqrt{s}=7 TeV$$ with the ATLAS detector
Aaboud, M.; Aad, G.; Abbott, B.; ...
2018-02-06
A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb -1 of integrated luminosity. The selected data sample consists of 7.8 × 10 6 candidates in the W→μν channel and 5.9×10 6 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding m Wmore » =80370 ± 7 (stat.) ± 11 (exp.syst.) ±14 (mod.syst.) MeV = 80370 ± 19 MeV where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. Finally, a measurement of the mass difference between the W + and W - bosons yields m W + -m W = -29 ± 28 MeV.« less
Measurement of the top quark mass using charged particles in pp collisions at √s = 8 TeV
Khachatryan, Vardan
2016-05-18
A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 fb -1. By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected tomore » be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68±0.20(stat) -0.97 +1.58(syst) GeV is measured. Furthermore, the overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.« less
Analysis of determinations of the distance between the sun and the galactic center
NASA Astrophysics Data System (ADS)
Malkin, Z. M.
2013-02-01
The paper investigates the question of whether or not determinations of the distance between the Sun and the Galactic center R 0 are affected by the so-called "bandwagon effect", leading to selection effects in published data that tend to be close to expected values, as was suggested by some authors. It is difficult to estimate numerically a systematic uncertainty in R 0 due to the bandwagon effect; however, it is highly probable that, even if widely accepted values differ appreciably from the true value, the published results should eventually approach the true value despite the bandwagon effect. This should be manifest as a trend in the published R 0 data: if this trend is statistically significant, the presence of the bandwagon effect can be suspected in the data. Fifty two determinations of R 0 published over the last 20 years were analyzed. These data reveal no statistically significant trend, suggesting they are unlikely to involve any systematic uncertainty due to the bandwagon effect. At the same time, the published data show a gradual and statistically significant decrease in the uncertainties in the R 0 determinations with time.
An exacting transition probability measurement - a direct test of atomic many-body theories.
Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas
2016-07-19
A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.
Measurement of the W-boson mass in pp collisions at $$\\sqrt{s}=7 TeV$$ with the ATLAS detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb -1 of integrated luminosity. The selected data sample consists of 7.8 × 10 6 candidates in the W→μν channel and 5.9×10 6 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding m Wmore » =80370 ± 7 (stat.) ± 11 (exp.syst.) ±14 (mod.syst.) MeV = 80370 ± 19 MeV where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. Finally, a measurement of the mass difference between the W + and W - bosons yields m W + -m W = -29 ± 28 MeV.« less
The importance of policy in emissions inventory accuracy--a lesson from British Columbia, Canada.
Krzyzanowski, Judi
2009-04-01
Actual atmospheric emissions in northeast British Columbia, Canada, are much higher than reported emissions. The addition of upstream oil and gas sector sources not included in the year-2000 emissions inventory of Criteria Air Contaminants (CACs) increases annual totals of nitrogen oxides, sulfur oxides, and volatile organic compound emissions by 115.1, 89.9, and 109.5%, respectively. These emissions arise from numerous small and unregulated point sources (N = 10,129). CAC summaries are given by source type and source sector. An analysis of uncertainty and reporting policy suggests that inventory omissions are not limited to the study area and that Canadian pollutant emissions are systematically underestimated. The omissions suggest that major changes in reporting procedures are needed in Canada if true estimates of annual pollutant emissions are to be documented.
Measurement of Γee(J /ψ) with KEDR detector
NASA Astrophysics Data System (ADS)
Anashin, V. V.; Aulchenko, V. M.; Baldin, E. M.; Barladyan, A. K.; Barnyakov, A. Y.; Barnyakov, M. Y.; Baru, S. E.; Bedny, I. V.; Blinov, A. E.; Blinov, V. E.; Bobrov, A. V.; Bobrovnikov, V. S.; Bogomyagkov, A. V.; Bondar, A. E.; Bondarev, D. V.; Buzykaev, A. R.; Eidelman, S. I.; Glukhovchenko, Y. M.; Gulevich, V. V.; Gusev, D. V.; Karnaev, S. E.; Karpov, G. V.; Karpov, S. V.; Kharlamova, T. A.; Kiselev, V. A.; Kononov, S. A.; Kotov, K. Y.; Kravchenko, E. A.; Kulikov, V. F.; Kurkin, G. Y.; Kuper, E. A.; Levichev, E. B.; Maksimov, D. A.; Malyshev, V. M.; Maslennikov, A. L.; Medvedko, A. S.; Meshkov, O. I.; Mishnev, S. I.; Morozov, I. I.; Muchnoi, N. Y.; Neufeld, V. V.; Nikitin, S. A.; Nikolaev, I. B.; Okunev, I. N.; Onuchin, A. P.; Oreshkin, S. B.; Orlov, I. O.; Osipov, A. A.; Peleganchuk, S. V.; Pivovarov, S. G.; Piminov, P. A.; Petrov, V. V.; Poluektov, A. O.; Popkov, I. N.; Prisekin, V. G.; Rezanova, O. L.; Ruban, A. A.; Sandyrev, V. K.; Savinov, G. A.; Shamov, A. G.; Shatilov, D. N.; Shwartz, B. A.; Simonov, E. A.; Sinyatkin, S. V.; Skovpen, Y. I.; Skrinsky, A. N.; Smaluk, V. V.; Sokolov, A. V.; Sukharev, A. M.; Starostina, E. V.; Talyshev, A. A.; Tayursky, V. A.; Telnov, V. I.; Tikhonov, Y. A.; Todyshev, K. Y.; Tumaikin, G. M.; Usov, Y. V.; Vorobiov, A. I.; Yushkov, A. N.; Zhilich, V. N.; Zhulanov, V. V.; Zhuravlev, A. N.
2018-05-01
The product of the electronic width of the J/ψ meson and the branching fractions of its decay to hadrons and electrons has been measured using the KEDR detector at the VEPP-4M e + e - collider. The obtained values are Γ_{ee}(J/ψ )=5.550± 0.056± 0.089 Γ_{ee}(J/ψ )\\cdotp B_{hadrons}(J/ψ )=4.884± 0.048± 0.078 keV Γ_{ee}(J/ψ )\\cdotp B_{ee}(J/ψ )=0.3331± 0.0066± 0.0040 keV. The uncertainties shown are statistical and systematic, respectively. Using the result presented and the world-average value of the electronic branching fraction, one obtains the total width of the J/ψ meson: Γ =92.94± 1.83keV. These results are consistent with the previous experiments.
Telescope Scientist on the Advanced X-ray Astrophysics Observatory
NASA Technical Reports Server (NTRS)
Smith, Carl M. (Technical Monitor); VanSpeybroeck, Leon; Tananbaum, Harvey D.
2004-01-01
In this period, the Chandra X-ray Observatory continued to perform exceptionally well, with many scientific observations and spectacular results. The HRMA performance continues to be essentially identical to that predicted from ground calibration data. The Telescope Scientist Team has improved the mirror model to provide a more accurate description to the Chandra observers, enabling them to reduce the systematic errors and uncertainties in their data reduction. There also has been good progress in the scientific program. Using the Telescope Scientist GTO time, we carried out an extensive Chandra program to observe distant clusters of galaxies. The goals of this program were to use clusters to derive cosmological constraints and to investigate the physics and evolution of clusters. A total of 71 clusters were observed with ACIS-I; the last observations were completed in December 2003.
Measurement of the B0 production cross section in pp collisions at sqrt[s] = 7 TeV.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Pitzl, D; Raspereza, A; Raval, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schmanau, M; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Bansal, S; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Jafari, A; Khakzad, M; Mohammadi, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Ghezzi, A; Malberti, M; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Tancini, V; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D; Son, D C; Son, T; Kim, Zero; Kim, J Y; Song, S; Choi, S; Hong, B; Jeong, M S; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Seo, E; Shin, S; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Lopez-Fernandez, R; Magaña Villalba, R; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Tam, J; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Musella, P; Nayak, A; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Brona, G; Bunkowski, K; Camporesi, T; Cerminara, G; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Gennai, S; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Gomez-Reino Garrido, R; Gouzevitch, M; Govoni, P; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lourenço, C; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Polese, G; Racz, A; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiropulu, M; Stoye, M; Tropea, P; Tsirou, A; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Bortignon, P; Caminada, L; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Martinez Ruiz Del Arbol, P; Meridiani, P; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguiló, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Regenfus, C; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Dutta, S; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Kayis Topaksu, A; Nart, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Zorbilmez, C; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Hansen, M; Hartley, D; Heath, G P; Heath, H F; Jackson, J; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Macevoy, B C; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Bose, T; Carrera Jarrin, E; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Salur, S; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Chandra, A; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Long, O R; Luthra, A; Nguyen, H; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Cassel, D; Chatterjee, A; Das, S; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Nicolas Kaufman, G; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gunthoti, K; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Muniz, L; Pakhotin, Y; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Bandurin, D; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Quertenmont, L; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Guragain, S; Hohlmann, M; Kalakhety, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Wenger, E A; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cole, P; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Jones, J; Laird, E; Lopes Pegna, D; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Boulahouache, C; Cuplov, V; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Yan, M; Atramentov, O; Barker, A; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Patel, R; Richards, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Nguyen, C N; Osipenkov, I; Pivarski, J; Safonov, A; Sengupta, S; Tatarinov, A; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Efron, J; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Palmonari, F; Reeder, D; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M
2011-06-24
Measurements of the differential production cross sections dσ/dpTB and dσ/dyB for B0 mesons produced in pp collisions at sqrt[s] = 7 TeV are presented. The data set used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 pb-1. The production cross section is measured from B0 meson decays reconstructed in the exclusive final state J/ψKS0, with the subsequent decays J/ψ → μ + μ - and KS0 → π+}π-. The total cross section for pTB>5 GeV and |yB|<2.2 is measured to be 33.2 ± 2.5 ± 3.5 μb, where the first uncertainty is statistical and the second is systematic.
Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François
2006-01-27
We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).
Hard Constraints in Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.
2008-01-01
This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.
Development of Probabilistic Socio-Economic Emissions Scenarios (2012)
The purpose of this analysis is to help overcome these limitations through the development of a publically available library of socio-economic-emissions projections derived from a systematic examination of uncertainty in key underlying model parameters, w
Systematics for T2K/Hyper-K (Review Talk)
NASA Astrophysics Data System (ADS)
Shah, Raj
Hyper-Kamiokande is a proposed next generation underground water Cherenkov detector. Presented here is a review of sensitivities and dominant uncertainties associated with measurements of CP violation and non-maximal mixing in the 2-3 sector.
NASA Technical Reports Server (NTRS)
Wilheit, Thomas T.; Chandrasekar, V.; Li, Wanyu
2007-01-01
The variability of the drop size distribution (DSD) is one of the factors that must be considered in understanding the uncertainties in the retrieval of oceanic precipitation from passive microwave observations. Here, we have used observations from the Precipitation Radar on the Tropical Rainfall Measuring Mission spacecraft to infer the relationship between the DSD and the rain rate and the variability in this relationship. The impact on passive microwave rain rate retrievals varies with the frequency and rain rate. The total uncertainty for a given pixel can be slightly larger than 10% at the low end (ca. 10 GHz) of frequencies commonly used for this purpose and smaller at higher frequencies (up to 37 GHz). Since the error is not totally random, averaging many pixels, as in a monthly rainfall total, should roughly halve this uncertainty. The uncertainty may be lower at rain rates less than about 30 mm/h, but the lack of sensitivity of the surface reference technique to low rain rates makes it impossible to tell from the present data set.
NASA Astrophysics Data System (ADS)
Rubin, D.; Aldering, G.; Barbary, K.; Boone, K.; Chappell, G.; Currie, M.; Deustua, S.; Fagrelius, P.; Fruchter, A.; Hayden, B.; Lidman, C.; Nordin, J.; Perlmutter, S.; Saunders, C.; Sofiatti, C.; Supernova Cosmology Project, The
2015-11-01
While recent supernova (SN) cosmology research has benefited from improved measurements, current analysis approaches are not statistically optimal and will prove insufficient for future surveys. This paper discusses the limitations of current SN cosmological analyses in treating outliers, selection effects, shape- and color-standardization relations, unexplained dispersion, and heterogeneous observations. We present a new Bayesian framework, called UNITY (Unified Nonlinear Inference for Type-Ia cosmologY), that incorporates significant improvements in our ability to confront these effects. We apply the framework to real SN observations and demonstrate smaller statistical and systematic uncertainties. We verify earlier results that SNe Ia require nonlinear shape and color standardizations, but we now include these nonlinear relations in a statistically well-justified way. This analysis was primarily performed blinded, in that the basic framework was first validated on simulated data before transitioning to real data. We also discuss possible extensions of the method.
Laperrière, Hélène
2007-01-01
Several years of professional nursing practices, while living in the poorest neighbourhoods in the outlying areas of Brazil's Amazon region, have led the author to develop a better understanding of marginalized populations. Providing care to people with leprosy and sex workers in riverside communities has taken place in conditions of uncertainty, insecurity, unpredictability and institutional violence. The question raised is how we can develop community health nursing practices in this context. A systematization of personal experiences based on popular education is used and analyzed as a way of learning by obtaining scientific knowledge through critical analysis of field practices. Ties of solidarity and belonging developed in informal, mutual-help action groups are promising avenues for research and the development of knowledge in health promotion, prevention and community care and a necessary contribution to national public health programmers.
NASA Technical Reports Server (NTRS)
Reese, E. D.; Mohr, J. J.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Holzapfel, W. L.; Hughes, J. P.; Patel, S. K.
2000-01-01
We determine the distances to the z approximately equal to 0.55 galaxy clusters MS 0451.6-0305 and CL 0016+16 from a maximum likelihood joint fit to interferometric Sunyaev-Zel'dovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta-model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an OmegaM = 0.3, OmegaL = 0.7 cosmology, these distances imply a Hubble constant of 63(exp 12)(sub -9)(exp +21)(sub -21) km/s/Mpc, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best fit H(sub o) is 57 km/sec/Mpc for an open OmegaM = 0.3 universe and 52 km/s/Mpc for a flat Omega = 1 universe.
Sunyaev-Zeldovich Effect-Derived Distances to the High-Redshift Clusters
NASA Technical Reports Server (NTRS)
Reese, Erik D.; Mohr, Joseph J.; Carlstrom, John E.; Joy, Marshall; Grego, Laura; Holder, Gilbert P.; Holzapfel, William L.; Hughes, John P.; Patel, Sandeep K.; Donahue, Megan
2000-01-01
We determine the distances to the z approximately equals 0.55 galaxy clusters MS 0451.6 - 0305 and Cl 0016 + 16 from a maximum-likelihood joint fit to interferometric Sunyaev-Zeldovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an Omega(sub M) = 0.3, Omega(sub lambda) = 0.7 cosmology, these distances imply a Hubble constant of 63(sup +12) (sub -9) (sup + 21) (sub -21) km/s Mp/c, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best-fit H(sub 0) is 57 km/s Mp/c for an open (Omega(sub M) = 0.3) universe and 52 km/s Mp/c for a flat (Omega(sub M) = 1) universe.
Wesolowski, Edwin A.
1996-01-01
Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Not Normal: the uncertainties of scientific measurements
NASA Astrophysics Data System (ADS)
Bailey, David C.
2017-01-01
Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student's t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply.
Not Normal: the uncertainties of scientific measurements
2017-01-01
Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student’s t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply. PMID:28280557
Uncertainty in Simulating Wheat Yields Under Climate Change
NASA Technical Reports Server (NTRS)
Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.;
2013-01-01
Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Mapping (dis)agreement in hydrologic projections
NASA Astrophysics Data System (ADS)
Melsen, Lieke A.; Addor, Nans; Mizukami, Naoki; Newman, Andrew J.; Torfs, Paul J. J. F.; Clark, Martyn P.; Uijlenhoet, Remko; Teuling, Adriaan J.
2018-03-01
Hydrologic projections are of vital socio-economic importance. However, they are also prone to uncertainty. In order to establish a meaningful range of storylines to support water managers in decision making, we need to reveal the relevant sources of uncertainty. Here, we systematically and extensively investigate uncertainty in hydrologic projections for 605 basins throughout the contiguous US. We show that in the majority of the basins, the sign of change in average annual runoff and discharge timing for the period 2070-2100 compared to 1985-2008 differs among combinations of climate models, hydrologic models, and parameters. Mapping the results revealed that different sources of uncertainty dominate in different regions. Hydrologic model induced uncertainty in the sign of change in mean runoff was related to snow processes and aridity, whereas uncertainty in both mean runoff and discharge timing induced by the climate models was related to disagreement among the models regarding the change in precipitation. Overall, disagreement on the sign of change was more widespread for the mean runoff than for the discharge timing. The results demonstrate the need to define a wide range of quantitative hydrologic storylines, including parameter, hydrologic model, and climate model forcing uncertainty, to support water resource planning.
Predicting the Earth encounters of (99942) Apophis
NASA Technical Reports Server (NTRS)
Giorgini, Jon D.; Benner, Lance A. M.; Ostro, Steven J.; Nolan, Michael C.; Busch, Michael W.
2007-01-01
Arecibo delay-Doppler measurements of (99942) Apophis in 2005 and 2006 resulted in a five standard-deviation trajectory correction to the optically predicted close approach distance to Earth in 2029. The radar measurements reduced the volume of the statistical uncertainty region entering the encounter to 7.3% of the pre-radar solution, but increased the trajectory uncertainty growth rate across the encounter by 800% due to the closer predicted approach to the Earth. A small estimated Earth impact probability remained for 2036. With standard-deviation plane-of-sky position uncertainties for 2007-2010 already less than 0.2 arcsec, the best near-term ground-based optical astrometry can only weakly affect the trajectory estimate. While the potential for impact in 2036 will likely be excluded in 2013 (if not 2011) using ground-based optical measurements, approximations within the Standard Dynamical Model (SDM) used to estimate and predict the trajectory from the current era are sufficient to obscure the difference between a predicted impact and a miss in 2036 by altering the dynamics leading into the 2029 encounter. Normal impact probability assessments based on the SDM become problematic without knowledge of the object's physical properties; impact could be excluded while the actual dynamics still permit it. Calibrated position uncertainty intervals are developed to compensate for this by characterizing the minimum and maximum effect of physical parameters on the trajectory. Uncertainty in accelerations related to solar radiation can cause between 82 and 4720 Earth-radii of trajectory change relative to the SDM by 2036. If an actionable hazard exists, alteration by 2-10% of Apophis' total absorption of solar radiation in 2018 could be sufficient to produce a six standard-deviation trajectory change by 2036 given physical characterization; even a 0.5% change could produce a trajectory shift of one Earth-radius by 2036 for all possible spin-poles and likely masses. Planetary ephemeris uncertainties are the next greatest source of systematic error, causing up to 23 Earth-radii of uncertainty. The SDM Earth point-mass assumption introduces an additional 2.9 Earth-radii of prediction error by 2036. Unmodeled asteroid perturbations produce as much as 2.3 Earth-radii of error. We find no future small-body encounters likely to yield an Apophis mass determination prior to 2029. However, asteroid (144898) 2004 VD17, itself having a statistical Earth impact in 2102, will probably encounter Apophis at 6.7 lunar distances in 2034, their uncertainty regions coming as close as 1.6 lunar distances near the center of both SDM probability distributions.
Rivera-Rodriguez, Claudia L; Resch, Stephen; Haneuse, Sebastien
2018-01-01
In many low- and middle-income countries, the costs of delivering public health programs such as for HIV/AIDS, nutrition, and immunization are not routinely tracked. A number of recent studies have sought to estimate program costs on the basis of detailed information collected on a subsample of facilities. While unbiased estimates can be obtained via accurate measurement and appropriate analyses, they are subject to statistical uncertainty. Quantification of this uncertainty, for example, via standard errors and/or 95% confidence intervals, provides important contextual information for decision-makers and for the design of future costing studies. While other forms of uncertainty, such as that due to model misspecification, are considered and can be investigated through sensitivity analyses, statistical uncertainty is often not reported in studies estimating the total program costs. This may be due to a lack of awareness/understanding of (1) the technical details regarding uncertainty estimation and (2) the availability of software with which to calculate uncertainty for estimators resulting from complex surveys. We provide an overview of statistical uncertainty in the context of complex costing surveys, emphasizing the various potential specific sources that contribute to overall uncertainty. We describe how analysts can compute measures of uncertainty, either via appropriately derived formulae or through resampling techniques such as the bootstrap. We also provide an overview of calibration as a means of using additional auxiliary information that is readily available for the entire program, such as the total number of doses administered, to decrease uncertainty and thereby improve decision-making and the planning of future studies. A recent study of the national program for routine immunization in Honduras shows that uncertainty can be reduced by using information available prior to the study. This method can not only be used when estimating the total cost of delivering established health programs but also to decrease uncertainty when the interest lies in assessing the incremental effect of an intervention. Measures of statistical uncertainty associated with survey-based estimates of program costs, such as standard errors and 95% confidence intervals, provide important contextual information for health policy decision-making and key inputs for the design of future costing studies. Such measures are often not reported, possibly because of technical challenges associated with their calculation and a lack of awareness of appropriate software. Modern statistical analysis methods for survey data, such as calibration, provide a means to exploit additional information that is readily available but was not used in the design of the study to significantly improve the estimation of total cost through the reduction of statistical uncertainty.
Resch, Stephen
2018-01-01
Objectives: In many low- and middle-income countries, the costs of delivering public health programs such as for HIV/AIDS, nutrition, and immunization are not routinely tracked. A number of recent studies have sought to estimate program costs on the basis of detailed information collected on a subsample of facilities. While unbiased estimates can be obtained via accurate measurement and appropriate analyses, they are subject to statistical uncertainty. Quantification of this uncertainty, for example, via standard errors and/or 95% confidence intervals, provides important contextual information for decision-makers and for the design of future costing studies. While other forms of uncertainty, such as that due to model misspecification, are considered and can be investigated through sensitivity analyses, statistical uncertainty is often not reported in studies estimating the total program costs. This may be due to a lack of awareness/understanding of (1) the technical details regarding uncertainty estimation and (2) the availability of software with which to calculate uncertainty for estimators resulting from complex surveys. We provide an overview of statistical uncertainty in the context of complex costing surveys, emphasizing the various potential specific sources that contribute to overall uncertainty. Methods: We describe how analysts can compute measures of uncertainty, either via appropriately derived formulae or through resampling techniques such as the bootstrap. We also provide an overview of calibration as a means of using additional auxiliary information that is readily available for the entire program, such as the total number of doses administered, to decrease uncertainty and thereby improve decision-making and the planning of future studies. Results: A recent study of the national program for routine immunization in Honduras shows that uncertainty can be reduced by using information available prior to the study. This method can not only be used when estimating the total cost of delivering established health programs but also to decrease uncertainty when the interest lies in assessing the incremental effect of an intervention. Conclusion: Measures of statistical uncertainty associated with survey-based estimates of program costs, such as standard errors and 95% confidence intervals, provide important contextual information for health policy decision-making and key inputs for the design of future costing studies. Such measures are often not reported, possibly because of technical challenges associated with their calculation and a lack of awareness of appropriate software. Modern statistical analysis methods for survey data, such as calibration, provide a means to exploit additional information that is readily available but was not used in the design of the study to significantly improve the estimation of total cost through the reduction of statistical uncertainty. PMID:29636964
How well do elderly people cope with uncertainty in a learning task?
Chasseigne, G; Grau, S; Mullet, E; Cama, V
1999-11-01
The relation between age, task complexity and learning performance in a Multiple Cue Probability Learning task was studied by systematically varying the level of uncertainty present in the task, keeping constant the direction of relationships. Four age groups were constituted: young adults (mean age = 21), middle-aged adults (45), elderly people (69) and very elderly people (81). Five uncertainty levels were considered: predictability = 0.96, 0.80, 0.64, 0.48, and 0.32. All relationships involved were direct ones. A strong effect of uncertainty on 'control', a measure of the subject's consistency with respect to a linear model, was found. This effect was essentially a linear one. To each decrement in predictability of the task corresponded an equal decrement in participants' level of control. This level of decrement was the same, regardless of the age of the participant. It can be concluded that elderly people cope with uncertainty in probability learning tasks as well as young adults.
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, Vivianaluxa; Vienna, John D.; Kim, Dong-Sang
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable WOL was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of IHLW glass when no uncertainties were taken into accound. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimatedmore » glass mass 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). ILAW mass was predicted to be 282,350 MT without uncertainty and with weaste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MTG. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
Uncertainty quantification for optical model parameters
Lovell, A. E.; Nunes, F. M.; Sarich, J.; ...
2017-02-21
Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of our work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fitmore » and create corresponding 95% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. Here, we study a number of reactions involving neutron and deuteron projectiles with energies in the range of 5–25 MeV/u, on targets with mass A=12–208. We investigate the correlations between the parameters in the fit. The case of deuterons on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p) 13C transfer angular distributions, using both uncorrelated and correlated χ 2 minimization functions. The general features for all cases are compiled in a systematic manner to identify trends. This work shows that, in many cases, the correlated χ 2 functions (in comparison to the uncorrelated χ 2 functions) provide a more natural parameterization of the process. These correlated functions do, however, produce broader confidence bands. Further optimization may require improvement in the models themselves and/or more information included in the fit.« less
NASA Astrophysics Data System (ADS)
Hagos Subagadis, Yohannes; Schütze, Niels; Grundmann, Jens
2015-04-01
The planning and implementation of effective water resources management strategies need an assessment of multiple (physical, environmental, and socio-economic) issues, and often requires new research in which knowledge of diverse disciplines are combined in a unified methodological and operational frameworks. Such integrative research to link different knowledge domains faces several practical challenges. Such complexities are further compounded by multiple actors frequently with conflicting interests and multiple uncertainties about the consequences of potential management decisions. A fuzzy-stochastic multiple criteria decision analysis tool was developed in this study to systematically quantify both probabilistic and fuzzy uncertainties associated with complex hydrosystems management. It integrated physical process-based models, fuzzy logic, expert involvement and stochastic simulation within a general framework. Subsequently, the proposed new approach is applied to a water-scarce coastal arid region water management problem in northern Oman, where saltwater intrusion into a coastal aquifer due to excessive groundwater extraction for irrigated agriculture has affected the aquifer sustainability, endangering associated socio-economic conditions as well as traditional social structure. Results from the developed method have provided key decision alternatives which can serve as a platform for negotiation and further exploration. In addition, this approach has enabled to systematically quantify both probabilistic and fuzzy uncertainties associated with the decision problem. Sensitivity analysis applied within the developed tool has shown that the decision makers' risk aversion and risk taking attitude may yield in different ranking of decision alternatives. The developed approach can be applied to address the complexities and uncertainties inherent in water resources systems to support management decisions, while serving as a platform for stakeholder participation.
An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation
NASA Astrophysics Data System (ADS)
McLean, N. M.; Bowring, J. F.; Bowring, S. A.
2011-06-01
High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of calculated U-Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the U-Pb system, the equations, uncertainties, and correlations have been limited in number and subject to simplification during propagation through intermediary calculations. We derive and present a transparent U-Pb data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and systematic uncertainties for data comparison between other U-Pb labs and other geochronometers. The linear uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We propose that our algorithms be considered by the community for implementation to improve the collaborative science envisioned by the EARTHTIME initiative.
NASA Astrophysics Data System (ADS)
Munoz-Jaramillo, Andres
2017-08-01
Data products in heliospheric physics are very often provided without clear estimates of uncertainty. From helioseismology in the solar interior, all the way to in situ solar wind measurements beyond 1AU, uncertainty estimates are typically hard for users to find (buried inside long documents that are separate from the data products), or simply non-existent.There are two main reasons why uncertainty measurements are hard to find:1. Understanding instrumental systematic errors is given a much higher priority inside instrumental teams.2. The desire to perfectly understand all sources of uncertainty postpones indefinitely the actual quantification of uncertainty in our measurements.Using the cross calibration of 200 years of sunspot area measurements as a case study, in this presentation we will discuss the negative impact that inadequate measurements of uncertainty have on users, through the appearance of toxic and unnecessary controversies, and data providers, through the creation of unrealistic expectations regarding the information that can be extracted from their data. We will discuss how empirical estimates of uncertainty represent a very good alternative to not providing any estimates at all, and finalize by discussing the bare essentials that should become our standard practice for future instruments and surveys.
The Crucial Role of Error Correlation for Uncertainty Modeling of CFD-Based Aerodynamics Increments
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Walker, Eric L.
2011-01-01
The Ares I ascent aerodynamics database for Design Cycle 3 (DAC-3) was built from wind-tunnel test results and CFD solutions. The wind tunnel results were used to build the baseline response surfaces for wind-tunnel Reynolds numbers at power-off conditions. The CFD solutions were used to build increments to account for Reynolds number effects. We calculate the validation errors for the primary CFD code results at wind tunnel Reynolds number power-off conditions and would like to be able to use those errors to predict the validation errors for the CFD increments. However, the validation errors are large compared to the increments. We suggest a way forward that is consistent with common practice in wind tunnel testing which is to assume that systematic errors in the measurement process and/or the environment will subtract out when increments are calculated, thus making increments more reliable with smaller uncertainty than absolute values of the aerodynamic coefficients. A similar practice has arisen for the use of CFD to generate aerodynamic database increments. The basis of this practice is the assumption of strong correlation of the systematic errors inherent in each of the results used to generate an increment. The assumption of strong correlation is the inferential link between the observed validation uncertainties at wind-tunnel Reynolds numbers and the uncertainties to be predicted for flight. In this paper, we suggest a way to estimate the correlation coefficient and demonstrate the approach using code-to-code differences that were obtained for quality control purposes during the Ares I CFD campaign. Finally, since we can expect the increments to be relatively small compared to the baseline response surface and to be typically of the order of the baseline uncertainty, we find that it is necessary to be able to show that the correlation coefficients are close to unity to avoid overinflating the overall database uncertainty with the addition of the increments.
RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey
NASA Astrophysics Data System (ADS)
Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi
2018-06-01
Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.
A probabilistic approach to remote compositional analysis of planetary surfaces
Lapotre, Mathieu G.A.; Ehlmann, Bethany L.; Minson, Sarah E.
2017-01-01
Reflected light from planetary surfaces provides information, including mineral/ice compositions and grain sizes, by study of albedo and absorption features as a function of wavelength. However, deconvolving the compositional signal in spectra is complicated by the nonuniqueness of the inverse problem. Trade-offs between mineral abundances and grain sizes in setting reflectance, instrument noise, and systematic errors in the forward model are potential sources of uncertainty, which are often unquantified. Here we adopt a Bayesian implementation of the Hapke model to determine sets of acceptable-fit mineral assemblages, as opposed to single best fit solutions. We quantify errors and uncertainties in mineral abundances and grain sizes that arise from instrument noise, compositional end members, optical constants, and systematic forward model errors for two suites of ternary mixtures (olivine-enstatite-anorthite and olivine-nontronite-basaltic glass) in a series of six experiments in the visible-shortwave infrared (VSWIR) wavelength range. We show that grain sizes are generally poorly constrained from VSWIR spectroscopy. Abundance and grain size trade-offs lead to typical abundance errors of ≤1 wt % (occasionally up to ~5 wt %), while ~3% noise in the data increases errors by up to ~2 wt %. Systematic errors further increase inaccuracies by a factor of 4. Finally, phases with low spectral contrast or inaccurate optical constants can further increase errors. Overall, typical errors in abundance are <10%, but sometimes significantly increase for specific mixtures, prone to abundance/grain-size trade-offs that lead to high unmixing uncertainties. These results highlight the need for probabilistic approaches to remote determination of planetary surface composition.
Old, L.; Wojtak, R.; Pearce, F. R.; ...
2017-12-20
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Old, L.; Wojtak, R.; Pearce, F. R.
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
NASA Astrophysics Data System (ADS)
Schwanghart, Wolfgang; Worni, Raphael; Huggel, Christian; Stoffel, Markus; Korup, Oliver
2016-07-01
Himalayan water resources attract a rapidly growing number of hydroelectric power projects (HPP) to satisfy Asia’s soaring energy demands. Yet HPP operating or planned in steep, glacier-fed mountain rivers face hazards of glacial lake outburst floods (GLOFs) that can damage hydropower infrastructure, alter water and sediment yields, and compromise livelihoods downstream. Detailed appraisals of such GLOF hazards are limited to case studies, however, and a more comprehensive, systematic analysis remains elusive. To this end we estimate the regional exposure of 257 Himalayan HPP to GLOFs, using a flood-wave propagation model fed by Monte Carlo-derived outburst volumes of >2300 glacial lakes. We interpret the spread of thus modeled peak discharges as a predictive uncertainty that arises mainly from outburst volumes and dam-breach rates that are difficult to assess before dams fail. With 66% of sampled HPP are on potential GLOF tracks, up to one third of these HPP could experience GLOF discharges well above local design floods, as hydropower development continues to seek higher sites closer to glacial lakes. We compute that this systematic push of HPP into headwaters effectively doubles the uncertainty about GLOF peak discharge in these locations. Peak discharges farther downstream, in contrast, are easier to predict because GLOF waves attenuate rapidly. Considering this systematic pattern of regional GLOF exposure might aid the site selection of future Himalayan HPP. Our method can augment, and help to regularly update, current hazard assessments, given that global warming is likely changing the number and size of Himalayan meltwater lakes.
Test of Parameterized Post-Newtonian Gravity with Galaxy-scale Strong Lensing Systems
NASA Astrophysics Data System (ADS)
Cao, Shuo; Li, Xiaolei; Biesiada, Marek; Xu, Tengpeng; Cai, Yongzhi; Zhu, Zong-Hong
2017-01-01
Based on a mass-selected sample of galaxy-scale strong gravitational lenses from the SLACS, BELLS, LSD, and SL2S surveys and using a well-motivated fiducial set of lens-galaxy parameters, we tested the weak-field metric on kiloparsec scales and found a constraint on the post-Newtonian parameter γ ={0.995}-0.047+0.037 under the assumption of a flat ΛCDM universe with parameters taken from Planck observations. General relativity (GR) predicts exactly γ = 1. Uncertainties concerning the total mass density profile, anisotropy of the velocity dispersion, and the shape of the light profile combine to systematic uncertainties of ˜25%. By applying a cosmological model-independent method to the simulated future LSST data, we found a significant degeneracy between the PPN γ parameter and the spatial curvature of the universe. Setting a prior on the cosmic curvature parameter -0.007 < Ωk < 0.006, we obtained the constraint on the PPN parameter that γ ={1.000}-0.0025+0.0023. We conclude that strong lensing systems with measured stellar velocity dispersions may serve as another important probe to investigate validity of the GR, if the mass-dynamical structure of the lensing galaxies is accurately constrained in future lens surveys.
Multi-criteria decision-making for flood risk management: a survey of the current state of the art
NASA Astrophysics Data System (ADS)
Madruga de Brito, Mariana; Evers, Mariele
2016-04-01
This paper provides a review of multi-criteria decision-making (MCDM) applications to flood risk management, seeking to highlight trends and identify research gaps. A total of 128 peer-reviewed papers published from 1995 to June 2015 were systematically analysed. Results showed that the number of flood MCDM publications has exponentially grown during this period, with over 82 % of all papers published since 2009. A wide range of applications were identified, with most papers focusing on ranking alternatives for flood mitigation, followed by risk, hazard, and vulnerability assessment. The analytical hierarchy process (AHP) was the most popular method, followed by Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and Simple Additive Weighting (SAW). Although there is greater interest in MCDM, uncertainty analysis remains an issue and was seldom applied in flood-related studies. In addition, participation of multiple stakeholders has been generally fragmented, focusing on particular stages of the decision-making process, especially on the definition of criteria weights. Therefore, addressing the uncertainties around stakeholders' judgments and endorsing an active participation in all steps of the decision-making process should be explored in future applications. This could help to increase the quality of decisions and the implementation of chosen measures.
NASA Astrophysics Data System (ADS)
de Brito, M. M.; Evers, M.
2015-11-01
This paper provides a review of Multi-Criteria Decision Making (MCDM) applications to flood risk management, seeking to highlight trends and identify research gaps. Totally, 128 peer-reviewed papers published from 1995 to June 2015 were systematically analysed and classified into the following application areas: (1) ranking of alternatives for flood mitigation, (2) reservoir flood control, (3) susceptibility, (4) hazard, (5) vulnerability, (6) risk, (7) coping capacity, and (8) emergency management. Additionally, the articles were categorized based on the publication year, MCDM method, whether they were or were not carried out in a participatory process, and if uncertainty and sensitivity analysis were performed. Results showed that the number of flood MCDM publications has exponentially grown during this period, with over 82 % of all papers published since 2009. The Analytical Hierarchy Process (AHP) was the most popular technique, followed by Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and Simple Additive Weighting (SAW). Although there is greater interest on MCDM, uncertainty analysis remains an issue and is seldom applied in flood-related studies. In addition, participation of multiple stakeholders has been generally fragmented, focusing on particular stages of the decision-making process, especially on the definition of criteria weights. Based on the survey, some suggestions for further investigation are provided.
Are the World's Oceans Optically Different?
NASA Technical Reports Server (NTRS)
Szeto, M.; Werdell, P. J.; Moore, T. S.; Campbell, J. W.
2011-01-01
Regional differences in the Sea-viewing Wide Field-of-view Sensor chlorophyll algorithm uncertainty were observed in a large global data set containing coincident in situ measurements of chlorophyll a concentration (Chla) and spectral radiometry. The uncertainty was found to be systematic when the data were sorted by ocean: Atlantic, Pacific, Southern, and Indian Oceans. Artifacts associated with different instrumentation and analytical methods had been previously ruled out. Given these oceanic biases in the chlorophyll algorithm, we hypothesized that the oceans may be optically different, and their optical differences may be intrinsically related to regional differences in phytoplankton community structure or biogeochemical processes. The oceanic biases, originally observed using radiometric measurements, were independently verified using total absorption measurements in a subset of the data. Moreover, they were explained through oceanic differences in the absorption of colored detrital matter (CDM) and phytoplankton. Both effects were considered together in explaining the ocean biases through a stepwise linear regression analysis. Significant oceanic differences in the amount of CDM and in phytoplankton cell sizes and pigmentation would give rise to optical differences, but we raise a concern for the spatial coverage of the data. We do not suggest the application of ocean-based algorithms but rather emphasize the importance of consolidating regional data sets before reaching this conclusion.
Near IR Photolysis of HO2NO2: Supplemental Material
NASA Technical Reports Server (NTRS)
2002-01-01
MkIV measurements of the volume mixing ratio (VMR) of HO2NO2 at 35 deg N, sunset on Sept. 25, 1993 are given. Measurements of HO2NO2 made between approx. 65 and 70 deg N, sunrise on May 8, 1997 are listed. The uncertainties given are 1 sigma estimates of the measurement precision. Uncertainty in the HO2NO2 line strengths is estimated to be 20%; this is the dominant contribution to the systematic error of the HO2NO2 measurement. Model inputs for the simulations are given. The albedos were obtained from Total Ozone Mapping Spectrometer reflectively data (raw data at ftp://jwocky.gsfc.nasa.gov) for the time and place of observation. Profiles of sulfate aerosol surface area ("Surf. Area") were obtained from monthly, zonal mean profiles measured by SAGE II [Thomason et al., 1997 updated via private communication]. The profile of Be(y) is based on the Wamsley et al. relation with N2O, using MkIV measurements of N20O. All other model inputs given are based on direct MkIV measurements. Finally, we note the latitude of the MkIV tangent point varied considerably during sunrise on May 8, 1997. The simulations shown here were obtained using different latitudes for each altitude.
Heterogeneous Distribution of Chromium on Mercury
NASA Astrophysics Data System (ADS)
Nittler, L. R.; Boujibar, A.; Crapster-Pregont, E.; Frank, E. A.; McCoy, T. J.; McCubbin, F. M.; Starr, R. D.; Vander Kaaden, K. E.; Vorburger, A.; Weider, S. Z.
2018-05-01
Mercury's surface has an average Cr/Si ratio of 0.003 (Cr 800 ppm), with at least a factor of 2 systematic uncertainty. Cr is heterogeneously distributed and correlated with Mg, Ca, S, and Fe and anti-correlated with Al.
Benmarhnia, Tarik; Huang, Jonathan Y.; Jones, Catherine M.
2017-01-01
Background: Calls for evidence-informed public health policy, with implicit promises of greater program effectiveness, have intensified recently. The methods to produce such policies are not self-evident, requiring a conciliation of values and norms between policy-makers and evidence producers. In particular, the translation of uncertainty from empirical research findings, particularly issues of statistical variability and generalizability, is a persistent challenge because of the incremental nature of research and the iterative cycle of advancing knowledge and implementation. This paper aims to assess how the concept of uncertainty is considered and acknowledged in World Health Organization (WHO) policy recommendations and guidelines. Methods: We selected four WHO policy statements published between 2008-2013 regarding maternal and child nutrient supplementation, infant feeding, heat action plans, and malaria control to represent topics with a spectrum of available evidence bases. Each of these four statements was analyzed using a novel framework to assess the treatment of statistical variability and generalizability. Results: WHO currently provides substantial guidance on addressing statistical variability through GRADE (Grading of Recommendations Assessment, Development, and Evaluation) ratings for precision and consistency in their guideline documents. Accordingly, our analysis showed that policy-informing questions were addressed by systematic reviews and representations of statistical variability (eg, with numeric confidence intervals). In contrast, the presentation of contextual or "background" evidence regarding etiology or disease burden showed little consideration for this variability. Moreover, generalizability or "indirectness" was uniformly neglected, with little explicit consideration of study settings or subgroups. Conclusion: In this paper, we found that non-uniform treatment of statistical variability and generalizability factors that may contribute to uncertainty regarding recommendations were neglected, including the state of evidence informing background questions (prevalence, mechanisms, or burden or distributions of health problems) and little assessment of generalizability, alternate interventions, and additional outcomes not captured by systematic review. These other factors often form a basis for providing policy recommendations, particularly in the absence of a strong evidence base for intervention effects. Consequently, they should also be subject to stringent and systematic evaluation criteria. We suggest that more effort is needed to systematically acknowledge (1) when evidence is missing, conflicting, or equivocal, (2) what normative considerations were also employed, and (3) how additional evidence may be accrued. PMID:29179291
Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles
NASA Astrophysics Data System (ADS)
Dhawan, Suhail; Jha, Saurabh W.; Leibundgut, Bruno
2018-01-01
The most precise local measurements of H0 rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing H0 to the value inferred from CMB observations assuming ΛCDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local H0 measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where luminosity variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak J magnitude MJ = -18.524 ± 0.041 mag and H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic) km s-1 Mpc-1. The 2.2% statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak J magnitude scatter is just 0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing H0 distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in H0 with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak J-band magnitude.
Data analysis and systematic studies for the He-6 experiment
NASA Astrophysics Data System (ADS)
Bagdasarova, Yelena; Bailey, Kevin; Flechard, Xavier; Garcia, Alejandro; Hong, Ran; Leredde, Aranud; Mueller, Peter; Naviliat-Cuncic, Oscar; O'Connor, Tom P.; Sternberg, Matthew; Storm, Derek; Swanson, Erik; Wauters, Frederik; Zumwalt, David
2015-10-01
The He-6 experiment at the University of Washington aims to precisely measure the beta-neutrino angular correlation (aβν) in the beta decay of He-6, a parameter that is particularly sensitive to tensor-like currents in the electroweak interaction. The experiment is based on a coincidence detection of the beta and recoil ion emitted from laser trapped He-6 and seeks to ultimately measure aβν to the 0 . 1 % level. Monte-carlo simulations of the decay and detection scheme are essential to analyze the data and have been extensively used to quantify the effects of systematic uncertainties. Major efforts have been put in to limit their contributions to less than 1 % of aβν, the first goal of the experiment. This set of data will guide further improvements of the experiment towards the 0 . 1 % level measurement of aβν. The data analysis procedures and the current status of the experiment, including the achieved and projected systematic and statistical uncertainties, will be presented. This work is supported by DOE, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11357 and DE-FG02-97ER41020. Done...processed 665 records...13:57:12
Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty.
Lee, Jun Hyung; Choi, Jee-Hye; Youn, Jae Saeng; Cha, Young Joo; Song, Woonheung; Park, Ae Ja
2015-06-01
Measurement uncertainty is a metrological concept to quantify the variability of measurement results. There are two approaches to estimate measurement uncertainty. In this study, we sought to provide practical and detailed examples of the two approaches and compare the bottom-up and top-down approaches to estimating measurement uncertainty. We estimated measurement uncertainty of the concentration of glucose according to CLSI EP29-A guideline. Two different approaches were used. First, we performed a bottom-up approach. We identified the sources of uncertainty and made an uncertainty budget and assessed the measurement functions. We determined the uncertainties of each element and combined them. Second, we performed a top-down approach using internal quality control (IQC) data for 6 months. Then, we estimated and corrected systematic bias using certified reference material of glucose (NIST SRM 965b). The expanded uncertainties at the low glucose concentration (5.57 mmol/L) by the bottom-up approach and top-down approaches were ±0.18 mmol/L and ±0.17 mmol/L, respectively (all k=2). Those at the high glucose concentration (12.77 mmol/L) by the bottom-up and top-down approaches were ±0.34 mmol/L and ±0.36 mmol/L, respectively (all k=2). We presented practical and detailed examples for estimating measurement uncertainty by the two approaches. The uncertainties by the bottom-up approach were quite similar to those by the top-down approach. Thus, we demonstrated that the two approaches were approximately equivalent and interchangeable and concluded that clinical laboratories could determine measurement uncertainty by the simpler top-down approach.
First Observation of a Baryonic Bs0 Decay
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez, G.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maddock, B.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, C.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration
2017-07-01
We report the first observation of a baryonic Bs0 decay, Bs0→p Λ ¯K- , using proton-proton collision data recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb-1. The branching fraction is measured to be B (Bs0→p Λ ¯ K- )+B (Bs0→p ¯ Λ K+ )=[5.46 ±0.61 ±0.57 ±0.50 (B )±0.32 (fs/fd)] ×10-6 , where the first uncertainty is statistical and the second systematic, the third uncertainty accounts for the experimental uncertainty on the branching fraction of the B0→p Λ ¯π- decay used for normalization, and the fourth uncertainty relates to the knowledge of the ratio of b -quark hadronization probabilities fs/fd.
Confronting dynamics and uncertainty in optimal decision making for conservation
Williams, Byron K.; Johnson, Fred A.
2013-01-01
The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a critically endangered population through captive breeding, control of invasive species, construction of biodiversity reserves, design of landscapes to increase habitat connectivity, and resource exploitation. Although these decision making problems and their solutions present significant challenges, we suggest that a systematic and effective approach to dynamic decision making in conservation need not be an onerous undertaking. The requirements are shared with any systematic approach to decision making--a careful consideration of values, actions, and outcomes.
Confronting dynamics and uncertainty in optimal decision making for conservation
NASA Astrophysics Data System (ADS)
Williams, Byron K.; Johnson, Fred A.
2013-06-01
The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a critically endangered population through captive breeding, control of invasive species, construction of biodiversity reserves, design of landscapes to increase habitat connectivity, and resource exploitation. Although these decision making problems and their solutions present significant challenges, we suggest that a systematic and effective approach to dynamic decision making in conservation need not be an onerous undertaking. The requirements are shared with any systematic approach to decision making—a careful consideration of values, actions, and outcomes.
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
NASA Astrophysics Data System (ADS)
Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.
2014-10-01
Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the model output are outside relevant thresholds for AHEAD for 65 out of 111 countries, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. In 46 of the countries in the analysis, water-specific uncertainty is relevant to AHEAD. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy decisions.
Estimating uncertainty of Full Waveform Inversion with Ensemble-based methods
NASA Astrophysics Data System (ADS)
Thurin, J.; Brossier, R.; Métivier, L.
2017-12-01
Uncertainty estimation is one key feature of tomographic applications for robust interpretation. However, this information is often missing in the frame of large scale linearized inversions, and only the results at convergence are shown, despite the ill-posed nature of the problem. This issue is common in the Full Waveform Inversion community.While few methodologies have already been proposed in the literature, standard FWI workflows do not include any systematic uncertainty quantifications methods yet, but often try to assess the result's quality through cross-comparison with other results from seismic or comparison with other geophysical data. With the development of large seismic networks/surveys, the increase in computational power and the more and more systematic application of FWI, it is crucial to tackle this problem and to propose robust and affordable workflows, in order to address the uncertainty quantification problem faced for near surface targets, crustal exploration, as well as regional and global scales.In this work (Thurin et al., 2017a,b), we propose an approach which takes advantage of the Ensemble Transform Kalman Filter (ETKF) proposed by Bishop et al., (2001), in order to estimate a low-rank approximation of the posterior covariance matrix of the FWI problem, allowing us to evaluate some uncertainty information of the solution. Instead of solving the FWI problem through a Bayesian inversion with the ETKF, we chose to combine a conventional FWI, based on local optimization, and the ETKF strategies. This scheme allows combining the efficiency of local optimization for solving large scale inverse problems and make the sampling of the local solution space possible thanks to its embarrassingly parallel property. References:Bishop, C. H., Etherton, B. J. and Majumdar, S. J., 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly weather review, 129(3), 420-436.Thurin, J., Brossier, R. and Métivier, L. 2017,a.: Ensemble-Based Uncertainty Estimation in Full Waveform Inversion. 79th EAGE Conference and Exhibition 2017, (12 - 15 June, 2017)Thurin, J., Brossier, R. and Métivier, L. 2017,b.: An Ensemble-Transform Kalman Filter - Full Waveform Inversion scheme for Uncertainty estimation; SEG Technical Program Expanded Abstracts 2012
NASA Astrophysics Data System (ADS)
Follin, B.; Knox, L.
2018-03-01
Recent determination of the Hubble constant via Cepheid-calibrated supernovae by Riess et al. (2016) (R16) find ˜3σ tension with inferences based on cosmic microwave background temperature and polarization measurements from Planck. This tension could be an indication of inadequacies in the concordance ΛCDM model. Here we investigate the possibility that the discrepancy could instead be due to systematic bias or uncertainty in the Cepheid calibration step of the distance ladder measurement by R16. We consider variations in total-to-selective extinction of Cepheid flux as a function of line-of-sight, hidden structure in the period-luminosity relationship, and potentially different intrinsic colour distributions of Cepheids as a function of host galaxy. Considering all potential sources of error, our final determination of H0 = 73.3 ± 1.7 km/s/Mpc (not including systematic errors from the treatment of geometric distances or Type Ia Supernovae) shows remarkable robustness and agreement with R16. We conclude systematics from the modelling of Cepheid photometry, including Cepheid selection criteria, cannot explain the observed tension between Cepheid-variable and CMB-based inferences of the Hubble constant. Considering a `model-independent' approach to relating Cepheids in galaxies with known distances to Cepheids in galaxies hosting a Type Ia supernova and finding agreement with the R16 result, we conclude no generalization of the model relating anchor and host Cepheid magnitude measurements can introduce significant bias in the H0 inference.
Constraining the mass–richness relationship of redMaPPer clusters with angular clustering
Baxter, Eric J.; Rozo, Eduardo; Jain, Bhuvnesh; ...
2016-08-04
The potential of using cluster clustering for calibrating the mass–richness relation of galaxy clusters has been recognized theoretically for over a decade. In this paper, we demonstrate the feasibility of this technique to achieve high-precision mass calibration using redMaPPer clusters in the Sloan Digital Sky Survey North Galactic Cap. By including cross-correlations between several richness bins in our analysis, we significantly improve the statistical precision of our mass constraints. The amplitude of the mass–richness relation is constrained to 7 per cent statistical precision by our analysis. However, the error budget is systematics dominated, reaching a 19 per cent total errormore » that is dominated by theoretical uncertainty in the bias–mass relation for dark matter haloes. We confirm the result from Miyatake et al. that the clustering amplitude of redMaPPer clusters depends on galaxy concentration as defined therein, and we provide additional evidence that this dependence cannot be sourced by mass dependences: some other effect must account for the observed variation in clustering amplitude with galaxy concentration. Assuming that the observed dependence of redMaPPer clustering on galaxy concentration is a form of assembly bias, we find that such effects introduce a systematic error on the amplitude of the mass–richness relation that is comparable to the error bar from statistical noise. Finally, the results presented here demonstrate the power of cluster clustering for mass calibration and cosmology provided the current theoretical systematics can be ameliorated.« less
NASA Astrophysics Data System (ADS)
Follin, B.; Knox, L.
2018-07-01
Recent determination of the Hubble constant via Cepheid-calibrated supernovae by Riess et al.find ˜3σ tension with inferences based on cosmic microwave background (CMB) temperature and polarization measurements from Planck. This tension could be an indication of inadequacies in the concordance Λcold dark matter model. Here, we investigate the possibility that the discrepancy could instead be due to systematic bias or uncertainty in the Cepheid calibration step of the distance ladder measurement by Riess et al. We consider variations in total-to-selective extinction of Cepheid flux as a function of line of sight, hidden structure in the period-luminosity relationship, and potentially different intrinsic colour distributions of Cepheids as a function of host galaxy. Considering all potential sources of error, our final determination of H0 = 73.3 ± 1.7 km s-1Mpc-1 (not including systematic errors from the treatment of geometric distances or Type Ia supernovae) shows remarkable robustness and agreement with Riess et al. We conclude systematics from the modelling of Cepheid photometry, including Cepheid selection criteria, cannot explain the observed tension between Cepheid-variable and CMB-based inferences of the Hubble constant. Considering a `model-independent' approach to relating Cepheids in galaxies with known distances to Cepheids in galaxies hosting a Type Ia supernova and finding agreement with the Riess et al. result, we conclude no generalization of the model relating anchor and host Cepheid magnitude measurements can introduce significant bias in the H0 inference.
NASA Astrophysics Data System (ADS)
Jordan, Michelle
Uncertainty is ubiquitous in life, and learning is an activity particularly likely to be fraught with uncertainty. Previous research suggests that students and teachers struggle in their attempts to manage the psychological experience of uncertainty and that students often fail to experience uncertainty when uncertainty may be warranted. Yet, few educational researchers have explicitly and systematically observed what students do, their behaviors and strategies, as they attempt to manage the uncertainty they experience during academic tasks. In this study I investigated how students in one fifth grade class managed uncertainty they experienced while engaged in collaborative robotics engineering projects, focusing particularly on how uncertainty management was influenced by task structure and students' interactions with their peer collaborators. The study was initiated at the beginning of instruction related to robotics engineering and preceded through the completion of several long-term collaborative robotics projects, one of which was a design project. I relied primarily on naturalistic observation of group sessions, semi-structured interviews, and collection of artifacts. My data analysis was inductive and interpretive, using qualitative discourse analysis techniques and methods of grounded theory. Three theoretical frameworks influenced the conception and design of this study: community of practice, distributed cognition, and complex adaptive systems theory. Uncertainty was a pervasive experience for the students collaborating in this instructional context. Students experienced uncertainty related to the project activity and uncertainty related to the social system as they collaborated to fulfill the requirements of their robotics engineering projects. They managed their uncertainty through a diverse set of tactics for reducing, ignoring, maintaining, and increasing uncertainty. Students experienced uncertainty from more different sources and used more and different types of uncertainty management strategies in the less structured task setting than in the more structured task setting. Peer interaction was influential because students relied on supportive social response to enact most of their uncertainty management strategies. When students could not garner socially supportive response from their peers, their options for managing uncertainty were greatly reduced.
Judgment under Uncertainty: Heuristics and Biases.
Tversky, A; Kahneman, D
1974-09-27
This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.
Calibration procedure for a laser triangulation scanner with uncertainty evaluation
NASA Astrophysics Data System (ADS)
Genta, Gianfranco; Minetola, Paolo; Barbato, Giulio
2016-11-01
Most of low cost 3D scanning devices that are nowadays available on the market are sold without a user calibration procedure to correct measurement errors related to changes in environmental conditions. In addition, there is no specific international standard defining a procedure to check the performance of a 3D scanner along time. This paper aims at detailing a thorough methodology to calibrate a 3D scanner and assess its measurement uncertainty. The proposed procedure is based on the use of a reference ball plate and applied to a triangulation laser scanner. Experimental results show that the metrological performance of the instrument can be greatly improved by the application of the calibration procedure that corrects systematic errors and reduces the device's measurement uncertainty.
Isendahl, Nicola; Dewulf, Art; Pahl-Wostl, Claudia
2010-01-01
By now, the need for addressing uncertainty in the management of water resources is widely recognized, yet there is little expertise and experience how to effectively deal with uncertainty in practice. Uncertainties in water management practice so far are mostly dealt with intuitively or based on experience. That way decisions can be quickly taken but analytic processes of deliberate reasoning are bypassed. To meet the desire of practitioners for better guidance and tools how to deal with uncertainty more practice-oriented systematic approaches are needed. For that purpose we consider it important to understand how practitioners frame uncertainties. In this paper we present an approach where water managers developed criteria of relevance to understand and address uncertainties. The empirical research took place in the Doñana region of the Guadalquivir estuary in southern Spain making use of the method of card sorting. Through the card sorting exercise a broad range of criteria to make sense of and describe uncertainties was produced by different subgroups, which were then merged into a shared list of criteria. That way framing differences were made explicit and communication on uncertainty and on framing differences was enhanced. In that, the present approach constitutes a first step to enabling reframing and overcoming framing differences, which are important features on the way to robust decision-making. Moreover, the elaborated criteria build a basis for the development of more structured approaches to deal with uncertainties in water management practice. Copyright 2009 Elsevier Ltd. All rights reserved.
Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas
2014-03-01
GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.
NASA Astrophysics Data System (ADS)
Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas
2014-03-01
GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.
NASA Astrophysics Data System (ADS)
Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu
2017-09-01
The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.
NASA Astrophysics Data System (ADS)
Marchesini, Danilo; van Dokkum, Pieter G.; Förster Schreiber, Natascha M.; Franx, Marijn; Labbé, Ivo; Wuyts, Stijn
2009-08-01
We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to ~0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of ~17+7 -10 since z = 4.0, mostly driven by a change in the normalization Φsstarf. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 1010 M sun at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high-mass galaxies. The discrepancy at the high-mass end is susceptible to uncertainties in the models and the data, but the discrepancy at the low-mass end may be more difficult to explain. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology under NASA contract 1407. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Based on observations collected at the European Southern Observatories, Chile (ESO Programme LP164.O-0612, 168.A-0485, 170.A-0788, 074.A-0709, 275.A-5060, and 171.A-3045). Based on observations obtained at the Cerro Tololo Inter-American Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
Use of Total Possibilistic Uncertainty as a Measure of Students' Modelling Capacities
ERIC Educational Resources Information Center
Voskoglou, Michael Gr.
2010-01-01
We represent the main stages of the process of mathematical modelling as fuzzy sets in the set of the linguistic labels of negligible, low intermediate, high and complete success by students in each of these stages and we use the total possibilistic uncertainty as a measure of students' modelling capacities. A classroom experiment is also…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit
It is essential to apply a traceable and standard approach to determine the uncertainty of solar resource data. Solar resource data are used for all phases of solar energy conversion projects, from the conceptual phase to routine solar power plant operation, and to determine performance guarantees of solar energy conversion systems. These guarantees are based on the available solar resource derived from a measurement station or modeled data set such as the National Solar Radiation Database (NSRDB). Therefore, quantifying the uncertainty of these data sets provides confidence to financiers, developers, and site operators of solar energy conversion systems and ultimatelymore » reduces deployment costs. In this study, we implemented the Guide to the Expression of Uncertainty in Measurement (GUM) 1 to quantify the overall uncertainty of the NSRDB data. First, we start with quantifying measurement uncertainty, then we determine each uncertainty statistic of the NSRDB data, and we combine them using the root-sum-of-the-squares method. The statistics were derived by comparing the NSRDB data to the seven measurement stations from the National Oceanic and Atmospheric Administration's Surface Radiation Budget Network, National Renewable Energy Laboratory's Solar Radiation Research Laboratory, and the Atmospheric Radiation Measurement program's Southern Great Plains Central Facility, in Billings, Oklahoma. The evaluation was conducted for hourly values, daily totals, monthly mean daily totals, and annual mean monthly mean daily totals. Varying time averages assist to capture the temporal uncertainty of the specific modeled solar resource data required for each phase of a solar energy project; some phases require higher temporal resolution than others. Overall, by including the uncertainty of measurements of solar radiation made at ground stations, bias, and root mean square error, the NSRDB data demonstrated expanded uncertainty of 17 percent - 29 percent on hourly and an approximate 5 percent - 8 percent annual bases.« less
Zhang, Hongqi; Guo, Chaofeng; Tang, Mingxing; Liu, Shaohua; Li, Jinsong; Guo, Qiang; Chen, Lizhang; Zhu, Yong; Zhao, Shushan
2015-01-01
Systematic review and meta-analysis of published prevalence of scoliosis among primary and middle school students in Mainland China. To evaluate the prevalence of scoliosis among primary and middle school students in Mainland China. There is substantial uncertainty regarding the prevalence of scoliosis in Mainland China among the primary and middle school students. We conducted a systematic review aiming to describe the prevalence of scoliosis in Mainland China. We systematically reviewed the published epidemiological studies or reports on the prevalence of scoliosis in Chinese cities. Scopus, PubMed, WanFang Database, CNKI, China National Science and Technology Digital Library, and WeiPu Database were searched for studies reporting a prevalence estimate for scoliosis in primary and middle school students. Meta-analyses were performed to estimate the pooled prevalence of scoliosis by STATA 12.0. Subgroup analyses were conducted according to the sex, age, and geographical area. A total of 38 articles, including 697,043 patients, were eligible for inclusion in this review. Meta-analyses revealed the prevalence of scoliosis to be 1.02% (95% [confidence interval] CI, 0.85-1.18) among the primary and middle school students in Mainland China. The female to male ratio was 1.54 (95% CI, 1.35-1.74; P < 0.001). According to the subgroup analysis by different ages, the prevalence of scoliosis increased from 0.73% (95% CI, 0.55-0.90) to 1.14% (95% CI, 0.86-1.42). Meta-analyses showed that the prevalence of scoliosis in Mainland China was 1.02% among the primary and middle school students. The prevalence of scoliosis in females was higher than in males and the ratio was 1.54. As they grew older, the prevalence of scoliosis increased in the students.
How Well Can We Assess Atmospheric Ozone Changes? The OzoneSonde Data Quality Assessment (O3S-DQA)
NASA Astrophysics Data System (ADS)
Tarasick, D. W.; Smit, H. G. J.; Thompson, A. M.; Morris, G. A.; Witte, J. C.; Davies, J.
2017-12-01
Ozonesondes are the backbone of the global ozone observing network, making inexpensive, accurate measurements of ozone from the ground to 30km, with high vertical resolution ( 100 m), for more than 50 years. The data are used extensively for validation of satellite data products, and are also part of merged satellite data sets and climatologies that are used for trend analyses and as a priori data for satellite retrievals. The importance of ECC sondes for trend analyses and as a stable reference for satellite validation recommends research effort to better quantify uncertainties in ECC data and to understand changes therein. Comparison with UV-absorption measurements in a number of studies (e.g. JOSIE, BESOS) has shown that small changes in sensor type, preparation or sensing solution can introduce significant inhomogenities in long-term sounding records. The major goal of the O3S-DQA is the homogenization of ozonesonde data sets. Essential aspects of this are the detailed estimation of uncertainties and documentation of the reprocessing. Corrections to historical data for known issues may reduce biases but introduce additional uncertainties. We take a systematic approach to quantifying these uncertainties by considering the physical and chemical processes involved, and attempt to place our estimates on a firm theoretical or empirical footing. We discuss stoichiometry, sensing solutions, background current, humidity and temperature corrections to pump flow rate, altitude-dependent pump flow corrections, variations in radiosonde pressure offsets, and normalization of sonde total ozone to spectrophotometric measurements. In the past 20 years ozonesonde precision has improved by a factor of 2, primarily through the adoption of strict standard operating procedures. We identify remaining quality assurance issues that can be better evaluated with further research. We present a "roadmap" for achieving a goal of better than 5% overall uncertainty throughout the global ozonesonde network. Finally, we note that the global network is very uneven. Additional sites would be of global benefit. Objective methods of quantifying spatial representativeness can optimize future network design. International cooperation and data sharing will continue to be of immense importance.
Collocation mismatch uncertainties in satellite aerosol retrieval validation
NASA Astrophysics Data System (ADS)
Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit
2018-02-01
Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the retrieval errors to the total uncertainty estimates including the CMU in the validation. We find that accounting for CMU increases the fraction of consistent observations.
Rising temperatures reduce global wheat production
USDA-ARS?s Scientific Manuscript database
Crop models are essential to assess the threat of climate change for food production but have not been systematically tested against temperature experiments, despite demonstrated uncertainty in temperature response. Herein, we compare 30 different wheat crop models against field experiments in which...
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, V.; Kim, D. S.; Vienna, J. D.
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints, and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increasemore » in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
Improved entrance optic for global irradiance measurements with a Brewer spectrophotometer.
Gröbner, Julian
2003-06-20
A new entrance optic for a Brewer spectrophotometer has been designed and tested both in the laboratory and during solar measurements. The integrated cosine response deviates by 2.4% from the ideal, with an uncertainty of +/- 1%. The systematic uncertainties of global solar irradiance measurements with this new entrance optic are considerably reduced compared with measurements with the traditional design. Simultaneous solar irradiance measurements between the Brewer spectrophotometer and a spectroradiometer equipped with a state-of-the-art shaped diffuser agreed to within +/- 2% during a five-day measurement period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Cheryl
The MINERvA detector is situated in Fermilab's NuMI beam, which provides neutrinos and antineutrinos in the 1-20 GeV range. It is designed to make precision cross-section measurements for scattering processes on various nuclei. These proceedings summarize the differential cross-section distributions measured for several different processes. Comparison of these with various models hints at additional nuclear effects not included in common simulations. These results will help constrain generators' nuclear models and reduce systematic uncertainties on their predictions. An accurate cross-section model, with minimal uncertainties, is vital to oscillation experiments.
Cooke, Georga; Tapley, Amanda; Holliday, Elizabeth; Morgan, Simon; Henderson, Kim; Ball, Jean; van Driel, Mieke; Spike, Neil; Kerr, Rohan; Magin, Parker
2017-12-01
Tolerance for ambiguity is essential for optimal learning and professional competence. General practice trainees must be, or must learn to be, adept at managing clinical uncertainty. However, few studies have examined associations of intolerance of uncertainty in this group. The aim of this study was to establish levels of tolerance of uncertainty in Australian general practice trainees and associations of uncertainty with demographic, educational and training practice factors. A cross-sectional analysis was performed on the Registrar Clinical Encounters in Training (ReCEnT) project, an ongoing multi-site cohort study. Scores on three of the four independent subscales of the Physicians' Reaction to Uncertainty (PRU) instrument were analysed as outcome variables in linear regression models with trainee and practice factors as independent variables. A total of 594 trainees contributed data on a total of 1209 occasions. Trainees in earlier training terms had higher scores for 'Anxiety due to uncertainty', 'Concern about bad outcomes' and 'Reluctance to disclose diagnosis/treatment uncertainty to patients'. Beyond this, findings suggest two distinct sets of associations regarding reaction to uncertainty. Firstly, affective aspects of uncertainty (the 'Anxiety' and 'Concern' subscales) were associated with female gender, less experience in hospital prior to commencing general practice training, and graduation overseas. Secondly, a maladaptive response to uncertainty (the 'Reluctance to disclose' subscale) was associated with urban practice, health qualifications prior to studying medicine, practice in an area of higher socio-economic status, and being Australian-trained. This study has established levels of three measures of trainees' responses to uncertainty and associations with these responses. The current findings suggest differing 'phenotypes' of trainees with high 'affective' responses to uncertainty and those reluctant to disclose uncertainty to patients. More research is needed to examine the relationship between clinical uncertainty and clinical outcomes, temporal changes in tolerance for uncertainty, and strategies that might assist physicians in developing adaptive responses to clinical uncertainty. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Evaluation and attribution of OCO-2 XCO2 uncertainties
NASA Astrophysics Data System (ADS)
Worden, John R.; Doran, Gary; Kulawik, Susan; Eldering, Annmarie; Crisp, David; Frankenberg, Christian; O'Dell, Chris; Bowman, Kevin
2017-07-01
Evaluating and attributing uncertainties in total column atmospheric CO2 measurements (XCO2) from the OCO-2 instrument is critical for testing hypotheses related to the underlying processes controlling XCO2 and for developing quality flags needed to choose those measurements that are usable for carbon cycle science.Here we test the reported uncertainties of version 7 OCO-2 XCO2 measurements by examining variations of the XCO2 measurements and their calculated uncertainties within small regions (˜ 100 km × 10.5 km) in which natural CO2 variability is expected to be small relative to variations imparted by noise or interferences. Over 39 000 of these small neighborhoods
comprised of approximately 190 observations per neighborhood are used for this analysis. We find that a typical ocean measurement has a precision and accuracy of 0.35 and 0.24 ppm respectively for calculated precisions larger than ˜ 0.25 ppm. These values are approximately consistent with the calculated errors of 0.33 and 0.14 ppm for the noise and interference error, assuming that the accuracy is bounded by the calculated interference error. The actual precision for ocean data becomes worse as the signal-to-noise increases or the calculated precision decreases below 0.25 ppm for reasons that are not well understood. A typical land measurement, both nadir and glint, is found to have a precision and accuracy of approximately 0.75 and 0.65 ppm respectively as compared to the calculated precision and accuracy of approximately 0.36 and 0.2 ppm. The differences in accuracy between ocean and land suggests that the accuracy of XCO2 data is likely related to interferences such as aerosols or surface albedo as they vary less over ocean than land. The accuracy as derived here is also likely a lower bound as it does not account for possible systematic biases between the regions used in this analysis.
NASA Astrophysics Data System (ADS)
Wysocka, Irena; Vassileva, Emilia
2017-02-01
Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.
NASA Astrophysics Data System (ADS)
Bertincourt, B.; Lagache, G.; Martin, P. G.; Schulz, B.; Conversi, L.; Dassas, K.; Maurin, L.; Abergel, A.; Beelen, A.; Bernard, J.-P.; Crill, B. P.; Dole, H.; Eales, S.; Gudmundsson, J. E.; Lellouch, E.; Moreno, R.; Perdereau, O.
2016-04-01
We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz/500 μm and 857 GHz/350 μm. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE/HFI relative gains are 1.047 (±0.0069) and 1.003 (±0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor, highlighting that as a focus for refinement.
Impact of magnitude uncertainties on seismic catalogue properties
NASA Astrophysics Data System (ADS)
Leptokaropoulos, K. M.; Adamaki, A. K.; Roberts, R. G.; Gkarlaouni, C. G.; Paradisopoulou, P. M.
2018-05-01
Catalogue-based studies are of central importance in seismological research, to investigate the temporal, spatial and size distribution of earthquakes in specified study areas. Methods for estimating the fundamental catalogue parameters like the Gutenberg-Richter (G-R) b-value and the completeness magnitude (Mc) are well established and routinely applied. However, the magnitudes reported in seismicity catalogues contain measurement uncertainties which may significantly distort the estimation of the derived parameters. In this study, we use numerical simulations of synthetic data sets to assess the reliability of different methods for determining b-value and Mc, assuming the G-R law validity. After contaminating the synthetic catalogues with Gaussian noise (with selected standard deviations), the analysis is performed for numerous data sets of different sample size (N). The noise introduced to the data generally leads to a systematic overestimation of magnitudes close to and above Mc. This fact causes an increase of the average number of events above Mc, which in turn leads to an apparent decrease of the b-value. This may result to a significant overestimation of seismicity rate even well above the actual completeness level. The b-value can in general be reliably estimated even for relatively small data sets (N < 1000) when only magnitudes higher than the actual completeness level are used. Nevertheless, a correction of the total number of events belonging in each magnitude class (i.e. 0.1 unit) should be considered, to deal with the magnitude uncertainty effect. Because magnitude uncertainties (here with the form of Gaussian noise) are inevitable in all instrumental catalogues, this finding is fundamental for seismicity rate and seismic hazard assessment analyses. Also important is that for some data analyses significant bias cannot necessarily be avoided by choosing a high Mc value for analysis. In such cases, there may be a risk of severe miscalculation of seismicity rate regardless the selected magnitude threshold, unless possible bias is properly assessed.
Finer, S; Robb, P; Cowan, K; Daly, A; Shah, K; Farmer, A
2018-07-01
To describe processes and outcomes of a priority setting partnership to identify the 'top 10 research priorities' in Type 2 diabetes, involving people living with the condition, their carers, and healthcare professionals. We followed the four-step James Lind Alliance Priority Setting Partnership process which involved: gathering uncertainties using a questionnaire survey distributed to 70 000 people living with Type 2 diabetes and their carers, and healthcare professionals; organizing the uncertainties; interim priority setting by resampling of participants with a second survey; and final priority setting in an independent group of participants, using the nominal group technique. At each step the steering group closely monitored and guided the process. In the first survey, 8227 uncertainties were proposed by 2587 participants, of whom 18% were from black, Asian and minority ethnic groups. Uncertainties were formatted and collated into 114 indicative questions. A total of 1506 people contributed to a second survey, generating a shortlist of 24 questions equally weighted to the contributions of people living with diabetes and their carers and those of healthcare professionals. In the final step the 'top 10 research priorities' were selected, including questions on cure and reversal, risk identification and prevention, and self-management approaches in Type 2 diabetes. Systematic and transparent methodology was used to identify research priorities in a large and genuine partnership of people with lived and professional experience of Type 2 diabetes. The top 10 questions represent consensus areas of research priority to guide future research, deliver responsive and strategic allocation of research resources, and improve the future health and well-being of people living with, and at risk of, Type 2 diabetes. © 2018 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.
Siebert, Uwe; Rochau, Ursula; Claxton, Karl
2013-01-01
Decision analysis (DA) and value-of-information (VOI) analysis provide a systematic, quantitative methodological framework that explicitly considers the uncertainty surrounding the currently available evidence to guide healthcare decisions. In medical decision making under uncertainty, there are two fundamental questions: 1) What decision should be made now given the best available evidence (and its uncertainty)?; 2) Subsequent to the current decision and given the magnitude of the remaining uncertainty, should we gather further evidence (i.e., perform additional studies), and if yes, which studies should be undertaken (e.g., efficacy, side effects, quality of life, costs), and what sample sizes are needed? Using the currently best available evidence, VoI analysis focuses on the likelihood of making a wrong decision if the new intervention is adopted. The value of performing further studies and gathering additional evidence is based on the extent to which the additional information will reduce this uncertainty. A quantitative framework allows for the valuation of the additional information that is generated by further research, and considers the decision maker's objectives and resource constraints. Claxton et al. summarise: "Value of information analysis can be used to inform a range of policy questions including whether a new technology should be approved based on existing evidence, whether it should be approved but additional research conducted or whether approval should be withheld until the additional evidence becomes available." [Claxton K. Value of information entry in Encyclopaedia of Health Economics, Elsevier, forthcoming 2014.] The purpose of this tutorial is to introduce the framework of systematic VoI analysis to guide further research. In our tutorial article, we explain the theoretical foundations and practical methods of decision analysis and value-of-information analysis. To illustrate, we use a simple case example of a foot ulcer (e.g., with diabetes) as well as key references from the literature, including examples for the use of the decision-analytic VoI framework by health technology assessment agencies to guide further research. These concepts may guide stakeholders involved or interested in how to determine whether or not and, if so, which additional evidence is needed to make decisions. Copyright © 2013. Published by Elsevier GmbH.
Lash, Timothy L
2007-11-26
The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is likely to lead to overconfidence regarding the potential for causal associations, whereas the former safeguards against such overinterpretations. Furthermore, such analyses, once programmed, allow rapid implementation of alternative assignments of probability distributions to the bias parameters, so elevate the plane of discussion regarding study bias from characterizing studies as "valid" or "invalid" to a critical and quantitative discussion of sources of uncertainty.
Measurements of Absolute Hadronic Branching Fractions of the Λ_{c}^{+} Baryon.
Ablikim, M; Achasov, M N; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Eren, E E; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H
2016-02-05
We report the first measurement of absolute hadronic branching fractions of Λ_{c}^{+} baryon at the Λ_{c}^{+}Λ[over ¯]_{c}^{-} production threshold, in the 30 years since the Λ_{c}^{+} discovery. In total, 12 Cabibbo-favored Λ_{c}^{+} hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb^{-1} of e^{+}e^{-} collisions at sqrt[s]=4.599 GeV recorded with the BESIII detector. A global least-squares fitter is utilized to improve the measured precision. Among the measurements for twelve Λ_{c}^{+} decay modes, the branching fraction for Λ_{c}^{+}→pK^{-}π^{+} is determined to be (5.84±0.27±0.23)%, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other 11 Cabibbo-favored hadronic decay modes are significantly improved.
New measurement of inclusive deep inelastic scattering cross sections at HERA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picuric, Ivana
2016-03-25
A combined measurement is presented of all inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised e{sup ±}p scattering at HERA. The H1 and ZEUS collaborations collected total integrated luminosities of approximately 500 pb{sup −1} each, divided about equally between e{sup +}p and e{sup −}p scattering. They include data taken at electron (positron) beam energy of 27.5 GeV and proton beam energies of 920, 820, 575 and 460 GeV corresponding to centre-of-mass energy of 320, 300, 251 and 225 GeV respectively. This enabled the two collaborations to explore a large phasemore » space in Bjorken x and negative four-momentum-transfer squared, Q{sup 2}. The combination method takes the correlations of the systematic uncertainties into account, resulting in improved accuracy.« less
Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.
Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward
2015-02-01
Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.
Measurement of the B⁰ Production Cross Section in pp Collisions at √s=7 TeV
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...
2011-06-20
Measurements of the differential production cross sections dσ/dp B T and dσ/dy B for B⁰ mesons produced in pp collisions at √s=7 TeV are presented. The data set used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 pb⁻¹. The production cross section is measured from B⁰ meson decays reconstructed in the exclusive final state J/ψK 0 S, with the subsequent decays J/ψ→μ⁺μ⁻ and K 0 S→π⁺π⁻. The total cross section for p B T>5 GeV and |y B|<2.2 is measured to be 33.2±2.5±3.5 μb, where the first uncertainty is statistical andmore » the second is systematic.« less
Assessing uncertainties in land cover projections.
Alexander, Peter; Prestele, Reinhard; Verburg, Peter H; Arneth, Almut; Baranzelli, Claudia; Batista E Silva, Filipe; Brown, Calum; Butler, Adam; Calvin, Katherine; Dendoncker, Nicolas; Doelman, Jonathan C; Dunford, Robert; Engström, Kerstin; Eitelberg, David; Fujimori, Shinichiro; Harrison, Paula A; Hasegawa, Tomoko; Havlik, Petr; Holzhauer, Sascha; Humpenöder, Florian; Jacobs-Crisioni, Chris; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Lavalle, Carlo; Lenton, Tim; Liu, Jiayi; Meiyappan, Prasanth; Popp, Alexander; Powell, Tom; Sands, Ronald D; Schaldach, Rüdiger; Stehfest, Elke; Steinbuks, Jevgenijs; Tabeau, Andrzej; van Meijl, Hans; Wise, Marshall A; Rounsevell, Mark D A
2017-02-01
Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. © 2016 John Wiley & Sons Ltd.
Uncertainty Calculations in the First Introductory Physics Laboratory
NASA Astrophysics Data System (ADS)
Rahman, Shafiqur
2005-03-01
Uncertainty in a measured quantity is an integral part of reporting any experimental data. Consequently, Introductory Physics laboratories at many institutions require that students report the values of the quantities being measured as well as their uncertainties. Unfortunately, given that there are three main ways of calculating uncertainty, each suitable for particular situations (which is usually not explained in the lab manual), this is also an area that students feel highly confused about. It frequently generates large number of complaints in the end-of-the semester course evaluations. Students at some institutions are not asked to calculate uncertainty at all, which gives them a fall sense of the nature of experimental data. Taking advantage of the increased sophistication in the use of computers and spreadsheets that students are coming to college with, we have completely restructured our first Introductory Physics Lab to address this problem. Always in the context of a typical lab, we now systematically and sequentially introduce the various ways of calculating uncertainty including a theoretical understanding as opposed to a cookbook approach, all within the context of six three-hour labs. Complaints about the lab in student evaluations have dropped by 80%. * supported by a grant from A. V. Davis Foundation
Uncertainty Analysis of Sonic Boom Levels Measured in a Simulator at NASA Langley
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Ely, Jeffry W.
2012-01-01
A sonic boom simulator has been constructed at NASA Langley Research Center for testing the human response to sonic booms heard indoors. Like all measured quantities, sonic boom levels in the simulator are subject to systematic and random errors. To quantify these errors, and their net influence on the measurement result, a formal uncertainty analysis is conducted. Knowledge of the measurement uncertainty, or range of values attributable to the quantity being measured, enables reliable comparisons among measurements at different locations in the simulator as well as comparisons with field data or laboratory data from other simulators. The analysis reported here accounts for acoustic excitation from two sets of loudspeakers: one loudspeaker set at the facility exterior that reproduces the exterior sonic boom waveform and a second set of interior loudspeakers for reproducing indoor rattle sounds. The analysis also addresses the effect of pressure fluctuations generated when exterior doors of the building housing the simulator are opened. An uncertainty budget is assembled to document each uncertainty component, its sensitivity coefficient, and the combined standard uncertainty. The latter quantity will be reported alongside measurement results in future research reports to indicate data reliability.
The Fermi Galactic Center GeV Excess and Implications for Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Buehler, R.; Ajello, M.
2017-05-01
The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties inmore » the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented usingmore » the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.« less
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.
2015-04-01
China's anthropogenic emissions of atmospheric mercury (Hg) are effectively constrained by national air pollution control and energy efficiency policies. In this study, improved methods, based on available data from domestic field measurements, are developed to quantify the benefits of Hg abatement by various emission control measures. Those measures include increased use of (1) flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems in power generation; (2) precalciner kilns with fabric filters (FF) in cement production; (3) mechanized coking ovens with electrostatic precipitators (ESP) in iron and steel production; and (4) advanced production technologies in nonferrous metal smelting. Investigation reveals declining trends in emission factors for each of these sources, which together drive a much slower growth of total Hg emissions than the growth of China's energy consumption and economy, from 679 metric tons (t) in 2005 to 750 t in 2012. In particular, estimated emissions from the above-mentioned four source types declined 3% from 2005 to 2012, which can be attributed to expanded deployment of technologies with higher energy efficiencies and air pollutant removal rates. Emissions from other anthropogenic sources are estimated to increase by 22% during the period. The species shares of total Hg emissions have been stable in recent years, with mass fractions of around 55, 39, and 6% for gaseous elemental Hg (Hg0), reactive gaseous mercury (Hg2+), and particle-bound mercury (Hgp), respectively. The higher estimate of total Hg emissions than previous inventories is supported by limited simulation of atmospheric chemistry and transport. With improved implementation of emission controls and energy saving, a 23% reduction in annual Hg emissions from 2012 to 2030, to below 600 t, is expected at the most. While growth in Hg emissions has been gradually constrained, uncertainties quantified by Monte Carlo simulation for recent years have increased, particularly for the power sector and particular industrial sources. The uncertainty (expressed as 95% confidence intervals) of Hg emissions from coal-fired power plants, for example, increased from -48-+73% in 2005 to -50-+89% in 2012. This is attributed mainly to increased penetration of advanced manufacturing and pollutant control technologies; the unclear operational status and relatively small sample sizes of field measurements of those processes have resulted in lower but highly varied emission factors. To reduce uncertainty and further confirm the benefits of pollution control and energy polices, therefore, systematic investigation of specific Hg pollution sources is recommended. The variability of temporal trends and spatial distributions of Hg emissions needs to be better tracked during the ongoing dramatic changes in China's economy, energy use, and air pollution status.
Processing of higher count rates in Troitsk nu-mass experiment
NASA Astrophysics Data System (ADS)
Nozik, Alexander; Chernov, Vaslily
2018-04-01
In this article we give a short outline of current status of search for sterile neutrinos with masses up to 4 keV in "Troitsk nu-mass experiment". We also discuss major sources of systematic uncertainties and methods to lower them.
DOT National Transportation Integrated Search
2009-01-01
Due to uncertainty in the nature of soils, a systematic study of the performance of geotechnical structures and its match with predictions is extremely important. Therefore, considerable research effort is being devoted to geotechnical engineering th...
Margaret Wheatley on Leadership for Change.
ERIC Educational Resources Information Center
Steinberger, Elizabeth Donohoe
1995-01-01
Wheatley's 1992 bestseller, "Leadership and the New Science," argues that across scientific disciplines, our rational, systematic quest for order, control, stability, and predictability are yielding to a deeper appreciation for chaos, complexity, uncertainty, and change. In this interview, Wheatley shows how breakthroughs in biology,…
Uncertainty of Comparative Judgments and Multidimensional Structure
ERIC Educational Resources Information Center
Sjoberg, Lennart
1975-01-01
An analysis of preferences with respect to silhouette drawings of nude females is presented. Systematic intransitivities were discovered. The dispersions of differences (comparatal dispersons) were shown to reflect the multidimensional structure of the stimuli, a finding expected on the basis of prior work. (Author)
The Sunyaev-Zel'dovich Effect in Abell 370
NASA Technical Reports Server (NTRS)
Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.
1999-01-01
We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).
Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, I.; Myers, D.; Stoffel, T.
2008-12-01
Pyranometers are used outdoors to measure solar irradiance. By design, this type of radiometer can measure the; total hemispheric (global) or diffuse (sky) irradiance when the detector is unshaded or shaded from the sun disk, respectively. These measurements are used in a variety of applications including solar energy conversion, atmospheric studies, agriculture, and materials science. Proper calibration of pyranometers is essential to ensure measurement quality. This paper describes a step-by-step method for calculating and reporting the uncertainty of the calibration, using the guidelines of the ISO 'Guide to the Expression of Uncertainty in Measurement' or GUM, that is applied tomore » the pyranometer; calibration procedures used at the National Renewable Energy Laboratory (NREL). The NREL technique; characterizes a responsivity function of a pyranometer as a function of the zenith angle, as well as reporting a single; calibration responsivity value for a zenith angle of 45 ..deg... The uncertainty analysis shows that a lower uncertainty can be achieved by using the response function of a pyranometer determined as a function of zenith angle, in lieu of just using; the average value at 45..deg... By presenting the contribution of each uncertainty source to the total uncertainty; users will be able to troubleshoot and improve their calibration process. The uncertainty analysis method can also be used to determine the uncertainty of different calibration techniques and applications, such as deriving the uncertainty of field measurements.« less
NASA Astrophysics Data System (ADS)
Innerkofler, Josef; Pock, Christian; Kirchengast, Gottfried; Schwaerz, Marc; Jaeggi, Adrian; Schwarz, Jakob
2016-04-01
The GNSS Radio Occultation (RO) measurement technique is highly valuable for climate monitoring of the atmosphere as it provides accurate and precise measurements in the troposphere and stratosphere regions with global coverage, long-term stability, and virtually all-weather capability. The novel Reference Occultation Processing System (rOPS), currently under development at the WEGC at University of Graz aims to process raw RO measurements into essential climate variables, such as temperature, pressure, and tropospheric water vapor, in a way which is SI-traceable to the universal time standard and which includes rigorous uncertainty propagation. As part of this rOPS climate-quality processing system, accurate atmospheric excess phase profiles with new approaches integrating uncertainty propagation are derived from the raw occultation tracking data and orbit data. Regarding the latter, highly accurate orbit positions and velocities of the GNSS transmitter satellites and the RO receiver satellites in low Earth orbit (LEO) need to be determined, in order to enable high accuracy of the excess phase profiles. Using several representative test days of GPS orbit data from the CODE and IGS archives, which are available at accuracies of about 3 cm (position) / 0.03 mm/s (velocity), and employing Bernese 5.2 and Napeos 3.3.1 software packages for the LEO orbit determination of the CHAMP, GRACE, and MetOp RO satellites, we achieved robust SI-traced LEO orbit uncertainty estimates of about 5 cm (position) / 0.05 mm/s (velocity) for the daily orbits, including estimates of systematic uncertainty bounds and of propagated random uncertainties. For COSMIC RO satellites, we found decreased accuracy estimates near 10-15 cm (position) / 0.1-0.15 mm/s (velocity), since the characteristics of the small COSMIC satellite platforms and antennas provide somewhat less favorable orbit determination conditions. We present the setup of how we (I) used the Bernese and Napeos package in mutual cross-check for this purpose, (II) integrated satellite laser-ranging validation of the estimated systematic uncertainty bounds, (III) expanded the Bernese 5.2 software for propagating random uncertainties from the GPS orbit data and LEO navigation tracking data input to the LEO data output. Preliminary excess phase results including propagated uncertainty estimates will also be shown. Except for disturbed space weather conditions, we expect a robust performance at millimeter level for the derived excess phases, which after large-scale processing of the RO data of many years can provide a new SI-traced fundamental climate data record.
NASA Astrophysics Data System (ADS)
Wilbert, Stefan; Kleindiek, Stefan; Nouri, Bijan; Geuder, Norbert; Habte, Aron; Schwandt, Marko; Vignola, Frank
2016-05-01
Concentrating solar power projects require accurate direct normal irradiance (DNI) data including uncertainty specifications for plant layout and cost calculations. Ground measured data are necessary to obtain the required level of accuracy and are often obtained with Rotating Shadowband Irradiometers (RSI) that use photodiode pyranometers and correction functions to account for systematic effects. The uncertainty of Si-pyranometers has been investigated, but so far basically empirical studies were published or decisive uncertainty influences had to be estimated based on experience in analytical studies. One of the most crucial estimated influences is the spectral irradiance error because Si-photodiode-pyranometers only detect visible and color infrared radiation and have a spectral response that varies strongly within this wavelength interval. Furthermore, analytic studies did not discuss the role of correction functions and the uncertainty introduced by imperfect shading. In order to further improve the bankability of RSI and Si-pyranometer data, a detailed uncertainty analysis following the Guide to the Expression of Uncertainty in Measurement (GUM) has been carried out. The study defines a method for the derivation of the spectral error and spectral uncertainties and presents quantitative values of the spectral and overall uncertainties. Data from the PSA station in southern Spain was selected for the analysis. Average standard uncertainties for corrected 10 min data of 2 % for global horizontal irradiance (GHI), and 2.9 % for DNI (for GHI and DNI over 300 W/m²) were found for the 2012 yearly dataset when separate GHI and DHI calibration constants were used. Also the uncertainty in 1 min resolution was analyzed. The effect of correction functions is significant. The uncertainties found in this study are consistent with results of previous empirical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbert, Stefan; Kleindiek, Stefan; Nouri, Bijan
2016-05-31
Concentrating solar power projects require accurate direct normal irradiance (DNI) data including uncertainty specifications for plant layout and cost calculations. Ground measured data are necessary to obtain the required level of accuracy and are often obtained with Rotating Shadowband Irradiometers (RSI) that use photodiode pyranometers and correction functions to account for systematic effects. The uncertainty of Si-pyranometers has been investigated, but so far basically empirical studies were published or decisive uncertainty influences had to be estimated based on experience in analytical studies. One of the most crucial estimated influences is the spectral irradiance error because Si-photodiode-pyranometers only detect visible andmore » color infrared radiation and have a spectral response that varies strongly within this wavelength interval. Furthermore, analytic studies did not discuss the role of correction functions and the uncertainty introduced by imperfect shading. In order to further improve the bankability of RSI and Si-pyranometer data, a detailed uncertainty analysis following the Guide to the Expression of Uncertainty in Measurement (GUM) has been carried out. The study defines a method for the derivation of the spectral error and spectral uncertainties and presents quantitative values of the spectral and overall uncertainties. Data from the PSA station in southern Spain was selected for the analysis. Average standard uncertainties for corrected 10 min data of 2% for global horizontal irradiance (GHI), and 2.9% for DNI (for GHI and DNI over 300 W/m2) were found for the 2012 yearly dataset when separate GHI and DHI calibration constants were used. Also the uncertainty in 1 min resolution was analyzed. The effect of correction functions is significant. The uncertainties found in this study are consistent with results of previous empirical studies.« less
Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.
Marroquin, Elsa Y León; Herrera González, José A; Camacho López, Miguel A; Barajas, José E Villarreal; García-Garduño, Olivia A
2016-09-08
Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty of the film orientation and film homogeneity. © 2016 The Authors.
Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density
Marroquin, Elsa Y. León; Herrera González, José A.; Camacho López, Miguel A.; Barajas, José E. Villarreal
2016-01-01
Radiochromic film has become an important tool to verify dose distributions for intensity‐modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side‐orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose uncertainty of the film orientation and film homogeneity. PACS number(s): 87.53.Bn PMID:27685125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Andrew D.; Croft, Stephen; McElroy, Robert Dennis
2017-08-01
The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically provide error bars and also partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the total mass estimate in multiple items. Uncertainty Quantification (UQ) for NDA has always been important, but itmore » is recognized that greater rigor is needed and achievable using modern statistical methods.« less
Initial Results of Aperture Area Comparisons for Exo-Atmospheric Total Solar Irradiance Measurements
NASA Technical Reports Server (NTRS)
Johnson, B. Carol; Litorja, Maritoni; Fowler, Joel B.; Butler, James J.
2009-01-01
In the measurement of exo-atmospheric total solar irradiance (TSI), instrument aperture area is a critical component in converting solar radiant flux to irradiance. In a May 2000 calibration workshop for the Total Irradiance Monitor (TIM) on the Earth Observing System (EOS) Solar Radiation and Climate Experiment (SORCE), the solar irradiance measurement community recommended that NASA and NISI coordinate an aperture area measurement comparison to quantify and validate aperture area uncertainties and their overall effect on TSI uncertainties. From May 2003 to February 2006, apertures from 4 institutions with links to the historical TSI database were measured by NIST and the results were compared to the aperture area determined by each institution. The initial results of these comparisons are presented and preliminary assessments of the participants' uncertainties are discussed.
NASA Astrophysics Data System (ADS)
Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Rest, A.; Kirshner, R. P.; Berger, E.; Kessler, R.; Pan, Y.-C.; Foley, R. J.; Chornock, R.; Ortega, C. A.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Tonry, J.; Wainscoat, R. J.; Waters, C.; Gall, E. E. E.; Kotak, R.; McCrum, M.; Smartt, S. J.; Smith, K. W.
2018-04-01
We use 1169 Pan-STARRS supernovae (SNe) and 195 low-z (z < 0.1) SNe Ia to measure cosmological parameters. Though most Pan-STARRS SNe lack spectroscopic classifications, in a previous paper we demonstrated that photometrically classified SNe can be used to infer unbiased cosmological parameters by using a Bayesian methodology that marginalizes over core-collapse (CC) SN contamination. Our sample contains nearly twice as many SNe as the largest previous SN Ia compilation. Combining SNe with cosmic microwave background (CMB) constraints from Planck, we measure the dark energy equation-of-state parameter w to be ‑0.989 ± 0.057 (stat+sys). If w evolves with redshift as w(a) = w 0 + w a (1 ‑ a), we find w 0 = ‑0.912 ± 0.149 and w a = ‑0.513 ± 0.826. These results are consistent with cosmological parameters from the Joint Light-curve Analysis and the Pantheon sample. We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling CC SN contamination, finding that no variant gives a w differing by more than 2% from the baseline measurement. The systematic uncertainty on w due to marginalizing over CC SN contamination, {σ }wCC}=0.012, is the third-smallest source of systematic uncertainty in this work. We find limited (1.6σ) evidence for evolution of the SN color-luminosity relation with redshift, a possible systematic that could constitute a significant uncertainty in future high-z analyses. Our data provide one of the best current constraints on w, demonstrating that samples with ∼5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.
Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas
2014-01-01
GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster–Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty–sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights. PMID:25843987
Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)
NASA Astrophysics Data System (ADS)
Manning, M. R.; Swart, R.
2009-12-01
Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that assessment [IPCC, 2005]. This paper extends a review of the treatment of uncertainty in the IPCC assessments by Swart et al [2009]. It is shown that progress towards consistency has been made but that there also appears to be a need for continued use of several complementary approaches in order to cover the wide range of circumstances across different disciplines involved in climate change. While this reflects the situation in the science community, it also raises the level of complexity for policymakers and other users of the assessments who would prefer one common consensus approach. References IPCC (2005), Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties, IPCC, Geneva. Manning, M., et al. (2004), IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk and of Options. IPCC Moss, R., and S. Schneider (2000), Uncertainties, in Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC, edited by R. Pachauri, et al., Intergovernmental Panel on Climate Change (IPCC), Geneva. Swart, R., et al. (2009), Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC Climatic Change, 92(1-2), 1 - 29.
Analytical Algorithms to Quantify the Uncertainty in Remaining Useful Life Prediction
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Saxena, Abhinav; Daigle, Matthew; Goebel, Kai
2013-01-01
This paper investigates the use of analytical algorithms to quantify the uncertainty in the remaining useful life (RUL) estimate of components used in aerospace applications. The prediction of RUL is affected by several sources of uncertainty and it is important to systematically quantify their combined effect by computing the uncertainty in the RUL prediction in order to aid risk assessment, risk mitigation, and decisionmaking. While sampling-based algorithms have been conventionally used for quantifying the uncertainty in RUL, analytical algorithms are computationally cheaper and sometimes, are better suited for online decision-making. While exact analytical algorithms are available only for certain special cases (for e.g., linear models with Gaussian variables), effective approximations can be made using the the first-order second moment method (FOSM), the first-order reliability method (FORM), and the inverse first-order reliability method (Inverse FORM). These methods can be used not only to calculate the entire probability distribution of RUL but also to obtain probability bounds on RUL. This paper explains these three methods in detail and illustrates them using the state-space model of a lithium-ion battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.
1998-04-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less
NASA Astrophysics Data System (ADS)
Scheingraber, Christoph; Käser, Martin; Allmann, Alexander
2017-04-01
Probabilistic seismic risk analysis (PSRA) is a well-established method for modelling loss from earthquake events. In the insurance industry, it is widely employed for probabilistic modelling of loss to a distributed portfolio. In this context, precise exposure locations are often unknown, which results in considerable loss uncertainty. The treatment of exposure uncertainty has already been identified as an area where PSRA would benefit from increased research attention. However, so far, epistemic location uncertainty has not been in the focus of a large amount of research. We propose a new framework for efficient treatment of location uncertainty. To demonstrate the usefulness of this novel method, a large number of synthetic portfolios resembling real-world portfolios is systematically analyzed. We investigate the effect of portfolio characteristics such as value distribution, portfolio size, or proportion of risk items with unknown coordinates on loss variability. Several sampling criteria to increase the computational efficiency of the framework are proposed and put into the wider context of well-established Monte-Carlo variance reduction techniques. The performance of each of the proposed criteria is analyzed.
NASA Astrophysics Data System (ADS)
Mulholland, Jonathan; NBL3 Collaboration
2014-09-01
The decay of the free neutron is the prototypical charged current semi-leptonic weak process. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial He4 abundance from the theory of Big Bang Nucleosynthesis. Plans are being made for an in-beam measurement of the neutron lifetime with an anticipated 0.3s of uncertainty or better. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Advances in neutron fluence measurement, used in to provide the best existing in-beam determination of the neutron lifetime, as well as new silicon detector technology, in use now at LANSCE, address the two largest contributors to the uncertainty of in-beam measurements-the statistical uncertainty associated with proton counting and the systematic uncertainty in the neutron fluence measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.
NASA Astrophysics Data System (ADS)
Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb
2017-10-01
In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.
VizieR Online Data Catalog: Distances of Gaia DR1 TGAS sources (Astraatmadja+, 2016)
NASA Astrophysics Data System (ADS)
Astraatmadja, T. L.; Bailer-Jones, C. A. L.
2016-09-01
This is a catalogue of distances and their asymmetric uncertainties inferred from the parallaxes published in the Gaia DR1 catalogue. Two priors are used: The exponentially decreasing space density and the Milky Way prior. For the exponentially decreasing space density prior, two scale lengths are used: 110pc and 1350pc. The former is based on a fitting of the true distance distribution of a subset of the GUMS catalogue (Robin et al., 2012, Cat. VI/137) which are limited to V<11. This is the magnitude at which Tycho-2 is 99% complete. The latter is based on the same procedure but limited to G=20.7, which is the expected limiting magnitude of Gaia. For the Milky Way prior, the parameters are described in the paper. We report the mode of the posterior PDF, the median, the 90% credible interval, and a standard deviation in distance which are calculated by scaling the 90% into 68.3%. The Cepheids data used for the validation of the results are included here as well. They are taken from Groenewegen (2013, Cat. J/A+A/550/A70) and cross-matched with Hipparcos and/or Tycho by making a Simbad query of each Cepheids and finding the corresponding Hipparcos and/or Tyho identifier. The distances are inferred either by neglecting the systematic uncertainties of 0.3mas (Gaia Collaboration et al., 2016, Cat. I/337) for reasons described in the paper, or by adding a systematic uncertainties of 0.3mas in quadrature with the random parallax uncertainties. We provide both results here. (4 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kegel, T.M.
Calibration laboratories are faced with the need to become accredited or registered to one or more quality standards. One requirement common to all of these standards is the need to have in place a measurement assurance program. What is a measurement assurance program? Brian Belanger, in Measurement Assurance Programs: Part 1, describes it as a {open_quotes}quality assurance program for a measurement process that quantifies the total uncertainty of the measurements (both random and systematic components of error) with respect to national or designated standards and demonstrates that the total uncertainty is sufficiently small to meet the user`s requirements.{close_quotes} Rolf Schumachermore » is more specific in Measurement Assurance in Your Own Laboratory. He states, {open_quotes}Measurement assurance is the application of broad quality control principles to measurements of calibrations.{close_quotes} Here, the focus is on one important part of any measurement assurance program: implementation of statistical process control (SPC). Paraphrasing Juran`s Quality Control Handbook, a process is in statistical control if the only observed variations are those that can be attributed to random causes. Conversely, a process that exhibits variations due to assignable causes is not in a state of statistical control. Finally, Carrol Croarkin states, {open_quotes}In the measurement assurance context the measurement algorithm including instrumentation, reference standards and operator interactions is the process that is to be controlled, and its direct product is the measurement per se. The measurements are assumed to be valid if the measurement algorithm is operating in a state of control.{close_quotes} Implicit in this statement is the important fact that an out-of-control process cannot produce valid measurements. 7 figs.« less
NASA Astrophysics Data System (ADS)
González-Lópezlira, Rosa A.; Lomelí-Núñez, Luis; Álamo-Martínez, Karla; Órdenes-Briceño, Yasna; Loinard, Laurent; Georgiev, Iskren Y.; Muñoz, Roberto P.; Puzia, Thomas H.; Bruzual A., Gustavo; Gwyn, Stephen
2017-02-01
We aim to explore the relationship between globular cluster total number, {N}{GC}, and central black hole mass, M •, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada-France-Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the ({u}* -{I}\\prime ) versus ({I}\\prime -{K}s) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total {N}{GC}=144+/- {31}-36+38 (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M • and {N}{GC}. NGC 4258 has a specific frequency {S}{{N}}=0.4+/- 0.1 (random uncertainty), and is consistent within 2σ with the {N}{GC} versus M • correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.
Prüss-Ustün, Annette; Bartram, Jamie; Clasen, Thomas; Colford, John M; Cumming, Oliver; Curtis, Valerie; Bonjour, Sophie; Dangour, Alan D; De France, Jennifer; Fewtrell, Lorna; Freeman, Matthew C; Gordon, Bruce; Hunter, Paul R; Johnston, Richard B; Mathers, Colin; Mäusezahl, Daniel; Medlicott, Kate; Neira, Maria; Stocks, Meredith; Wolf, Jennyfer; Cairncross, Sandy
2014-01-01
Objective To estimate the burden of diarrhoeal diseases from exposure to inadequate water, sanitation and hand hygiene in low- and middle-income settings and provide an overview of the impact on other diseases. Methods For estimating the impact of water, sanitation and hygiene on diarrhoea, we selected exposure levels with both sufficient global exposure data and a matching exposure-risk relationship. Global exposure data were estimated for the year 2012, and risk estimates were taken from the most recent systematic analyses. We estimated attributable deaths and disability-adjusted life years (DALYs) by country, age and sex for inadequate water, sanitation and hand hygiene separately, and as a cluster of risk factors. Uncertainty estimates were computed on the basis of uncertainty surrounding exposure estimates and relative risks. Results In 2012, 502 000 diarrhoea deaths were estimated to be caused by inadequate drinking water and 280 000 deaths by inadequate sanitation. The most likely estimate of disease burden from inadequate hand hygiene amounts to 297 000 deaths. In total, 842 000 diarrhoea deaths are estimated to be caused by this cluster of risk factors, which amounts to 1.5% of the total disease burden and 58% of diarrhoeal diseases. In children under 5 years old, 361 000 deaths could be prevented, representing 5.5% of deaths in that age group. Conclusions This estimate confirms the importance of improving water and sanitation in low- and middle-income settings for the prevention of diarrhoeal disease burden. It also underscores the need for better data on exposure and risk reductions that can be achieved with provision of reliable piped water, community sewage with treatment and hand hygiene. PMID:24779548
Prüss-Ustün, Annette; Bartram, Jamie; Clasen, Thomas; Colford, John M; Cumming, Oliver; Curtis, Valerie; Bonjour, Sophie; Dangour, Alan D; De France, Jennifer; Fewtrell, Lorna; Freeman, Matthew C; Gordon, Bruce; Hunter, Paul R; Johnston, Richard B; Mathers, Colin; Mäusezahl, Daniel; Medlicott, Kate; Neira, Maria; Stocks, Meredith; Wolf, Jennyfer; Cairncross, Sandy
2014-08-01
To estimate the burden of diarrhoeal diseases from exposure to inadequate water, sanitation and hand hygiene in low- and middle-income settings and provide an overview of the impact on other diseases. For estimating the impact of water, sanitation and hygiene on diarrhoea, we selected exposure levels with both sufficient global exposure data and a matching exposure-risk relationship. Global exposure data were estimated for the year 2012, and risk estimates were taken from the most recent systematic analyses. We estimated attributable deaths and disability-adjusted life years (DALYs) by country, age and sex for inadequate water, sanitation and hand hygiene separately, and as a cluster of risk factors. Uncertainty estimates were computed on the basis of uncertainty surrounding exposure estimates and relative risks. In 2012, 502,000 diarrhoea deaths were estimated to be caused by inadequate drinking water and 280,000 deaths by inadequate sanitation. The most likely estimate of disease burden from inadequate hand hygiene amounts to 297,000 deaths. In total, 842,000 diarrhoea deaths are estimated to be caused by this cluster of risk factors, which amounts to 1.5% of the total disease burden and 58% of diarrhoeal diseases. In children under 5 years old, 361,000 deaths could be prevented, representing 5.5% of deaths in that age group. This estimate confirms the importance of improving water and sanitation in low- and middle-income settings for the prevention of diarrhoeal disease burden. It also underscores the need for better data on exposure and risk reductions that can be achieved with provision of reliable piped water, community sewage with treatment and hand hygiene. © 2014 The Authors. Tropical Medicine and International Health published by John Wiley & Sons Ltd.
Nielsen, Marie Katrine Klose; Johansen, Sys Stybe; Linnet, Kristian
2014-01-01
Assessment of total uncertainty of analytical methods for the measurements of drugs in human hair has mainly been derived from the analytical variation. However, in hair analysis several other sources of uncertainty will contribute to the total uncertainty. Particularly, in segmental hair analysis pre-analytical variations associated with the sampling and segmentation may be significant factors in the assessment of the total uncertainty budget. The aim of this study was to develop and validate a method for the analysis of 31 common drugs in hair using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with focus on the assessment of both the analytical and pre-analytical sampling variations. The validated method was specific, accurate (80-120%), and precise (CV≤20%) across a wide linear concentration range from 0.025-25 ng/mg for most compounds. The analytical variation was estimated to be less than 15% for almost all compounds. The method was successfully applied to 25 segmented hair specimens from deceased drug addicts showing a broad pattern of poly-drug use. The pre-analytical sampling variation was estimated from the genuine duplicate measurements of two bundles of hair collected from each subject after subtraction of the analytical component. For the most frequently detected analytes, the pre-analytical variation was estimated to be 26-69%. Thus, the pre-analytical variation was 3-7 folds larger than the analytical variation (7-13%) and hence the dominant component in the total variation (29-70%). The present study demonstrated the importance of including the pre-analytical variation in the assessment of the total uncertainty budget and in the setting of the 95%-uncertainty interval (±2CVT). Excluding the pre-analytical sampling variation could significantly affect the interpretation of results from segmental hair analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene
2018-03-01
Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.
NASA Astrophysics Data System (ADS)
Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.
2016-05-01
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.
Numerical modelling of instantaneous plate tectonics
NASA Technical Reports Server (NTRS)
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Samrat; Tipireddy, Ramakrishna; Oster, Matthew R.
Quantification and propagation of uncertainties in cyber attacker payoffs is a key aspect within multiplayer, stochastic security games. These payoffs may represent penalties or rewards associated with player actions and are subject to various sources of uncertainty, including: (1) cyber-system state, (2) attacker type, (3) choice of player actions, and (4) cyber-system state transitions over time. Past research has primarily focused on representing defender beliefs about attacker payoffs as point utility estimates. More recently, within the physical security domain, attacker payoff uncertainties have been represented as Uniform and Gaussian probability distributions, and mathematical intervals. For cyber-systems, probability distributions may helpmore » address statistical (aleatory) uncertainties where the defender may assume inherent variability or randomness in the factors contributing to the attacker payoffs. However, systematic (epistemic) uncertainties may exist, where the defender may not have sufficient knowledge or there is insufficient information about the attacker’s payoff generation mechanism. Such epistemic uncertainties are more suitably represented as generalizations of probability boxes. This paper explores the mathematical treatment of such mixed payoff uncertainties. A conditional probabilistic reasoning approach is adopted to organize the dependencies between a cyber-system’s state, attacker type, player actions, and state transitions. This also enables the application of probabilistic theories to propagate various uncertainties in the attacker payoffs. An example implementation of this probabilistic framework and resulting attacker payoff distributions are discussed. A goal of this paper is also to highlight this uncertainty quantification problem space to the cyber security research community and encourage further advancements in this area.« less
Phu, Jack; Kalloniatis, Michael; Khuu, Sieu K.
2018-01-01
Purpose Current clinical perimetric test paradigms present stimuli randomly to various locations across the visual field (VF), inherently introducing spatial uncertainty, which reduces contrast sensitivity. In the present study, we determined the extent to which spatial uncertainty affects contrast sensitivity in glaucoma patients by minimizing spatial uncertainty through attentional cueing. Methods Six patients with open-angle glaucoma and six healthy subjects underwent laboratory-based psychophysical testing to measure contrast sensitivity at preselected locations at two eccentricities (9.5° and 17.5°) with two stimulus sizes (Goldmann sizes III and V) under different cueing conditions: 1, 2, 4, or 8 points verbally cued. Method of Constant Stimuli and a single-interval forced-choice procedure were used to generate frequency of seeing (FOS) curves at locations with and without VF defects. Results At locations with VF defects, cueing minimizes spatial uncertainty and improves sensitivity under all conditions. The effect of cueing was maximal when one point was cued, and rapidly diminished when more points were cued (no change to baseline with 8 points cued). The slope of the FOS curve steepened with reduced spatial uncertainty. Locations with normal sensitivity in glaucomatous eyes had similar performance to that of healthy subjects. There was a systematic increase in uncertainty with the depth of VF loss. Conclusions Sensitivity measurements across the VF are negatively affected by spatial uncertainty, which increases with greater VF loss. Minimizing uncertainty can improve sensitivity at locations of deficit. Translational Relevance Current perimetric techniques introduce spatial uncertainty and may therefore underestimate sensitivity in regions of VF loss. PMID:29600116
Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data
NASA Astrophysics Data System (ADS)
Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.
2017-03-01
We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2011-04-27
Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at √s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of μ, the average number of inelastic interactions per bunch crossing. Residual time- and μ-dependence between the methods is less than 2% for 0 < μ < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have amore » common systematic uncertainty of ±11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most ±2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.« less
Decorrelated jet substructure tagging using adversarial neural networks
NASA Astrophysics Data System (ADS)
Shimmin, Chase; Sadowski, Peter; Baldi, Pierre; Weik, Edison; Whiteson, Daniel; Goul, Edward; Søgaard, Andreas
2017-10-01
We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained using an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating from a boosted resonance decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the presence of systematic uncertainties on the background rate, our adversarially trained, decorrelated tagger considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-background separation power. We generalize the adversarial training technique to include a parametric dependence on the signal hypothesis, training a single network that provides optimized, interpolatable decorrelated jet tagging across a continuous range of hypothetical resonance masses, after training on discrete choices of the signal mass.
NASA Astrophysics Data System (ADS)
Brogniez, Helene; English, Stephen; Mahfouf, Jean-Francois; Behrendt, Andreas; Berg, Wesley; Boukabara, Sid; Buehler, Stefan Alexander; Chambon, Philippe; Gambacorta, Antonia; Geer, Alan; Ingram, William; Kursinski, E. Robert; Matricardi, Marco; Odintsova, Tatyana A.; Payne, Vivienne H.; Thorne, Peter W.; Tretyakov, Mikhail Yu.; Wang, Junhong
2016-05-01
Several recent studies have observed systematic differences between measurements in the 183.31 GHz water vapor line by space-borne sounders and calculations using radiative transfer models, with inputs from either radiosondes (radiosonde observations, RAOBs) or short-range forecasts by numerical weather prediction (NWP) models. This paper discusses all the relevant categories of observation-based or model-based data, quantifies their uncertainties and separates biases that could be common to all causes from those attributable to a particular cause. Reference observations from radiosondes, Global Navigation Satellite System (GNSS) receivers, differential absorption lidar (DIAL) and Raman lidar are thus overviewed. Biases arising from their calibration procedures, NWP models and data assimilation, instrument biases and radiative transfer models (both the models themselves and the underlying spectroscopy) are presented and discussed. Although presently no single process in the comparisons seems capable of explaining the observed structure of bias, recommendations are made in order to better understand the causes.
Precision Compton polarimetry for the QWeak experiment at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wouter Deconinck
2011-10-01
The Q Weak experiment, scheduled to run in 2010-2012 in Hall C at Jefferson Lab, will measure the parity-violating asymmetry in elastic electron-proton scattering at 1.1 GeV to determine the weak charge of the proton, Q{sub Weak}{sup p} = 1 - 4 sin{sup 2} {theta}{sub W}. The dominant experimental systematic uncertainty will be the knowledge of the electron beam polarization. With a new Compton polarimeter we aim to measure the beam polarization with a statistical precision of 1% in one hour and a systematic uncertainty of 1%. A low-gain Fabry-Perot cavity laser system provides the circularly polarized photons. The scatteredmore » electrons are detected in radiation-hard diamond strip detectors, and form the basis for a coincidence trigger using distributed logic boards. The photon detector uses a fast, undoped CsI crystal with simultaneous sampling and integrating read-out. Coincident events are used to cross-calibrate the photon and electron detectors.« less
An update on the analysis of the Princeton 19Ne beta asymmetry measurement
NASA Astrophysics Data System (ADS)
Combs, Dustin; Calaprice, Frank; Jones, Gordon; Pattie, Robert; Young, Albert
2013-10-01
We report on the progress of a new analysis of the 1994 19Ne beta asymmetry measurement conducted at Princeton University. In this experiment, a beam of 19Ne atoms were polarized with a Stern-Gerlach magnet and then entered a thin-walled mylar cell through a slit fabricated from a piece of micro channel plate. A pair of Si(Li) detectors at either end of the apparatus were aligned with the direction of spin polarization (one parallel and one anti-parallel to the spin of the 19Ne) and detected positrons from the decays. The difference in the rate in the two detectors was used to calculate the asymmetry. A new analysis procedure has been undertaken using the Monte Carlo package PENELOPE with the goal of determining the systematic uncertainty due to positrons scattering from the face of the detectors causing the incorrect reconstruction of the initial direction of the positron momentum. This was a leading cause of systematic uncertainty in the experiment in 1994.
Cosmology with EMSS Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark
1999-01-01
We use ASCA observations of the Extended Medium Sensitivity Survey sample of clusters of galaxies to construct the first z = 0.5 - 0.8 cluster temperature function. This distant cluster temperature function, when compared to local z approximately 0 and to a similar moderate redshift (z = 0.3 - 0.4) temperature function strongly constrains the matter density of the universe. Best fits to the distributions of temperatures and redshifts of these cluster samples results in Omega(sub M) = 0.45 +/- 0.1 if Lambda = 0 and Omega = 0.27 +/- 0.1 if Lambda + Omega(sub M) = 1. The uncertainties are 1sigma statistical. We examine the systematics of our approach and find that systematics, stemming mainly from model assumptions and not measurement errors, are about the same size as the statistical uncertainty +/- 0.1. In this poster proceedings, we clarify the issue of a8 as reported in our paper Donahue & Voit (1999), since this was a matter of discussion at the meeting.
Variations in AmLi source spectra and their estimation utilizing the 5 Ring Multiplicity Counter
NASA Astrophysics Data System (ADS)
Weinmann-Smith, R.; Beddingfield, D. H.; Enqvist, A.; Swinhoe, M. T.
2017-06-01
Active-mode assay systems are widely used for the safeguards of uranium items to verify compliance with the Non-Proliferation Treaty. Systems such as the Active-Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL) use americium-lithium (AmLi) neutron sources to induce fissions which are measured to determine the sample mass. These systems have historically relied on calibrations derived from well-defined standards. Recently, restricted access to standards or more difficult measurements have resulted in a reliance on modeling and simulation for the calibration of systems, which introduces potential simulation biases. The AmLi source energy spectra commonly used in the safeguards community do not accurately represent measurement results and the spectrum uncertainty can represent a large contribution to the total modeling uncertainty in active-mode systems. The 5-Ring Multiplicity Counter (5RMC) has been used to measure 17 AmLi sources. The measurements showed a significant spectral variation between different sources. Utilization of a spectrum that is specific to an individual source or a series of sources will give improved results over historical general spectra when modeling AmLi sources. Candidate AmLi neutron spectra were calculated in MCNP and SOURCES4C for a range of physical AmLi characteristics. The measurement and simulation data were used to fit reliable and accurate AmLi spectra for use in the simulation of active-mode systems. Spectra were created for average Gammatron C, Gammatron N, and MRC series sources, and for individual sources. The systematic uncertainty introduced by physical aspects of the AmLi source were characterized through simulations. The accuracy of spectra from the literature was compared.
Zagmutt, Francisco J; Sempier, Stephen H; Hanson, Terril R
2013-10-01
Emerging diseases (ED) can have devastating effects on agriculture. Consequently, agricultural insurance for ED can develop if basic insurability criteria are met, including the capability to estimate the severity of ED outbreaks with associated uncertainty. The U.S. farm-raised channel catfish (Ictalurus punctatus) industry was used to evaluate the feasibility of using a disease spread simulation modeling framework to estimate the potential losses from new ED for agricultural insurance purposes. Two stochastic models were used to simulate the spread of ED between and within channel catfish ponds in Mississippi (MS) under high, medium, and low disease impact scenarios. The mean (95% prediction interval (PI)) proportion of ponds infected within disease-impacted farms was 7.6% (3.8%, 22.8%), 24.5% (3.8%, 72.0%), and 45.6% (4.0%, 92.3%), and the mean (95% PI) proportion of fish mortalities in ponds affected by the disease was 9.8% (1.4%, 26.7%), 49.2% (4.7%, 60.7%), and 88.3% (85.9%, 90.5%) for the low, medium, and high impact scenarios, respectively. The farm-level mortality losses from an ED were up to 40.3% of the total farm inventory and can be used for insurance premium rate development. Disease spread modeling provides a systematic way to organize the current knowledge on the ED perils and, ultimately, use this information to help develop actuarially sound agricultural insurance policies and premiums. However, the estimates obtained will include a large amount of uncertainty driven by the stochastic nature of disease outbreaks, by the uncertainty in the frequency of future ED occurrences, and by the often sparse data available from past outbreaks. © 2013 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.
2015-06-01
The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and the need to develop and employ models that can predict the impact of groundwater contamination on human health risk under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases. However, natural attenuation can lead to the production of daughter species of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health depends on the interplay between the complex structure of the geological media and the toxicity of each pollutant byproduct. This work addresses human health risk for chemical mixtures resulting from the sequential degradation of a contaminant (such as a chlorinated solvent) under uncertainty through high-resolution three-dimensional numerical simulations. We systematically investigate the interaction between aquifer heterogeneity, flow connectivity, contaminant injection model, and chemical toxicity in the probabilistic characterization of health risk. We illustrate how chemical-specific travel times control the regime of the expected risk and its corresponding uncertainties. Results indicate conditions where preferential flow paths can favor the reduction of the overall risk of the chemical mixture. The overall human risk response to aquifer connectivity is shown to be nontrivial for multispecies transport. This nontriviality is a result of the interaction between aquifer heterogeneity and chemical toxicity. To quantify the joint effect of connectivity and toxicity in health risk, we propose a toxicity-based Damköhler number. Furthermore, we provide a statistical characterization in terms of low-order moments and the probability density function of the individual and total risks.
NASA Astrophysics Data System (ADS)
Mutch, E. J. F.; Blundy, J. D.; Tattitch, B. C.; Cooper, F. J.; Brooker, R. A.
2016-10-01
We report new experimental data on the composition of magmatic amphiboles synthesised from a variety of granite (sensu lato) bulk compositions at near-solidus temperatures and pressures of 0.8-10 kbar. The total aluminium content (Altot) of the synthetic calcic amphiboles varies systematically with pressure ( P), although the relationship is nonlinear at low pressures (<2.5 kbar). At higher pressures, the relationship resembles that of other experimental studies, which suggests of a general relationship between Altot and P that is relatively insensitive to bulk composition. We have developed a new Al-in-hornblende geobarometer that is applicable to granitic rocks with the low-variance mineral assemblage: amphibole + plagioclase (An15-80) + biotite + quartz + alkali feldspar + ilmenite/titanite + magnetite + apatite. Amphibole analyses should be taken from the rims of grains, in contact with plagioclase and in apparent textural equilibrium with the rest of the mineral assemblage at temperatures close to the haplogranite solidus (725 ± 75 °C), as determined from amphibole-plagioclase thermometry. Mean amphibole rim compositions that meet these criteria can then be used to calculate P (in kbar) from Altot (in atoms per formula unit, apfu) according to the expression: {it{P }}( {{kbar}} ) = 0.5 + 0.331( 8 ) × {{Al}}^{{tot}} + 0.995( 4 ) × ( {{{Al}}^{{tot}} } )2 This expression recovers equilibration pressures of our calibrant dataset, comprising both new and published experimental and natural data, to within ±16 % relative uncertainty. An uncertainty of 10 % relative for a typical Altot value of 1.5 apfu translates to an uncertainty in pressure estimate of 0.5 kbar, or 15 % relative. Thus the accuracy of the barometer expression is comparable to the precision with which near-solidus amphibole rim composition can be characterised.
Tranexamic acid in epistaxis: a systematic review.
Kamhieh, Y; Fox, H
2016-12-01
The role of tranexamic acid in the management of epistaxis remains unclear. There is uncertainty about its safety and about the contraindications for its use. We performed a systematic review of the use of systemic and topical tranexamic acid in epistaxis and a comparative review of its use in other specialties. This review assesses and summarises the existing evidence for the efficacy and safety of tranexamic acid in the management of epistaxis. Systematic review. MEDLINE and EMBASE were searched for 'epistaxis' and equivalent MESH terms, combined with the Boolean operator 'OR' and 'tranexamic acid'. The Cochrane library and society guidelines were reviewed for evidence regarding the use of tranexamic acid in other specialties. All five relevant RCTs were included in the review and were evaluated according to the recommendations of the Cochrane Handbook for Systematic Reviews. Three RCTS pertained to spontaneous epistaxis; of these, one trial found no benefit of oral tranexamic acid in acute epistaxis, one trial found no significant benefit of topical tranexamic acid, but the largest of the trials showed significant benefit of topical tranexamic acid in acute epistaxis management. Two RCTs examined oral tranexamic acid for prophylaxis of recurrent epistaxes in patients with hereditary haemorrhagic telangiectasia; both showed significant reduction in severity and frequency. Tranexamic acid, as a WHO 'essential medicine', is a powerful, readily available tool, the use of which in epistaxis has been limited by uncertainty over its efficacy and its safety profile. This systematic review summarises the existing evidence and extrapolates from the wealth of data for other specialties to address the clinical question - does TXA have a role in epistaxis management? © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.
Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z≲0.03), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, thesemore » extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N-body cosmological simulation and demonstrate that the limits are robust, at O(1) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Lastly, our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.« less
NASA Astrophysics Data System (ADS)
Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Wechsler, Risa H.
2018-03-01
Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z ≲0.03 ), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, these extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N -body cosmological simulation and demonstrate that the limits are robust, at O (1 ) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.
The impact of the orbital decay of the LAGEOS satellites on the frame-dragging tests
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2016-01-01
The laser-tracked geodetic satellites LAGEOS, LAGEOS II and LARES are currently employed, among other things, to measure the general relativistic Lense-Thirring effect in the gravitomagnetic field of the spinning Earth with the hope of providing a more accurate test of such a prediction of the Einstein's theory of gravitation than the existing ones. The secular decay a ˙ of the semimajor axes a of such spacecrafts, recently measured in an independent way to a σȧ ≈ 0.1-0.01 m yr-1 accuracy level, may indirectly impact the proposed relativistic experiment through its connection with the classical orbital precessions induced by the Earth's oblateness J2 . Indeed, the systematic bias due to the current measurement errors σȧ is of the same order of magnitude of, or even larger than, the expected relativistic signal itself; moreover, it grows linearly with the time span T of the analysis. Therefore, the parameter-fitting algorithms must be properly updated in order to suitably cope with such a new source of systematic uncertainty. Otherwise, an improvement of one-two orders of magnitude in measuring the orbital decay of the satellites of the LAGEOS family would be required to reduce this source of systematic uncertainty to a percent fraction of the Lense-Thirring signature.
The effect of rainfall measurement uncertainties on rainfall-runoff processes modelling.
Stransky, D; Bares, V; Fatka, P
2007-01-01
Rainfall data are a crucial input for various tasks concerning the wet weather period. Nevertheless, their measurement is affected by random and systematic errors that cause an underestimation of the rainfall volume. Therefore, the general objective of the presented work was to assess the credibility of measured rainfall data and to evaluate the effect of measurement errors on urban drainage modelling tasks. Within the project, the methodology of the tipping bucket rain gauge (TBR) was defined and assessed in terms of uncertainty analysis. A set of 18 TBRs was calibrated and the results were compared to the previous calibration. This enables us to evaluate the ageing of TBRs. A propagation of calibration and other systematic errors through the rainfall-runoff model was performed on experimental catchment. It was found that the TBR calibration is important mainly for tasks connected with the assessment of peak values and high flow durations. The omission of calibration leads to up to 30% underestimation and the effect of other systematic errors can add a further 15%. The TBR calibration should be done every two years in order to catch up the ageing of TBR mechanics. Further, the authors recommend to adjust the dynamic test duration proportionally to generated rainfall intensity.
NASA Astrophysics Data System (ADS)
Del Giudice, Dario; Löwe, Roland; Madsen, Henrik; Mikkelsen, Peter Steen; Rieckermann, Jörg
2015-07-01
In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can provide probabilistic predictions of wastewater discharge in a similarly reliable way, both for periods ranging from a few hours up to more than 1 week ahead of time. The EBD produces more accurate predictions on long horizons but relies on computationally heavy MCMC routines for parameter inferences. These properties make it more suitable for off-line applications. The IND can help in diagnosing the causes of output errors and is computationally inexpensive. It produces best results on short forecast horizons that are typical for online applications.
Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; ...
2018-03-09
Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z≲0.03), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, thesemore » extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N-body cosmological simulation and demonstrate that the limits are robust, at O(1) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Lastly, our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Amrendra
2015-05-01
The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scatteredmore » photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a high radiation environment and it has enabled us to achieve the desired precision in the measurement of the electron beam polarization which in turn has allowed the most precise determination of the weak charge of the proton.« less
Phobos laser ranging: Numerical Geodesy experiments for Martian system science
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.; Noomen, R.; Visser, P. N. A. M.
2014-09-01
Laser ranging is emerging as a technology for use over (inter)planetary distances, having the advantage of high (mm-cm) precision and accuracy and low mass and power consumption. We have performed numerical simulations to assess the science return in terms of geodetic observables of a hypothetical Phobos lander performing active two-way laser ranging with Earth-based stations. We focus our analysis on the estimation of Phobos and Mars gravitational, tidal and rotational parameters. We explicitly include systematic error sources in addition to uncorrelated random observation errors. This is achieved through the use of consider covariance parameters, specifically the ground station position and observation biases. Uncertainties for the consider parameters are set at 5 mm and at 1 mm for the Gaussian uncorrelated observation noise (for an observation integration time of 60 s). We perform the analysis for a mission duration up to 5 years. It is shown that a Phobos Laser Ranging (PLR) can contribute to a better understanding of the Martian system, opening the possibility for improved determination of a variety of physical parameters of Mars and Phobos. The simulations show that the mission concept is especially suited for estimating Mars tidal deformation parameters, estimating degree 2 Love numbers with absolute uncertainties at the 10-2 to 10-4 level after 1 and 4 years, respectively and providing separate estimates for the Martian quality factors at Sun and Phobos-forced frequencies. The estimation of Phobos libration amplitudes and gravity field coefficients provides an estimate of Phobos' relative equatorial and polar moments of inertia with an absolute uncertainty of 10-4 and 10-7, respectively, after 1 year. The observation of Phobos tidal deformation will be able to differentiate between a rubble pile and monolithic interior within 2 years. For all parameters, systematic errors have a much stronger influence (per unit uncertainty) than the uncorrelated Gaussian observation noise. This indicates the need for the inclusion of systematic errors in simulation studies and special attention to the mitigation of these errors in mission and system design.
NASA Astrophysics Data System (ADS)
Narayan, Amrendra
The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (~1GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a high radiation environment and it has enabled us to achieve the desired precision in the measurement of the electron beam polarization which in turn has allowed the most precise determination of the weak charge of the proton.
NASA Astrophysics Data System (ADS)
Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie
2017-09-01
Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.
Relative Gains, Losses, and Reference Points in Probabilistic Choice in Rats
Marshall, Andrew T.; Kirkpatrick, Kimberly
2015-01-01
Theoretical reference points have been proposed to differentiate probabilistic gains from probabilistic losses in humans, but such a phenomenon in non-human animals has yet to be thoroughly elucidated. Three experiments evaluated the effect of reward magnitude on probabilistic choice in rats, seeking to determine reference point use by examining the effect of previous outcome magnitude(s) on subsequent choice behavior. Rats were trained to choose between an outcome that always delivered reward (low-uncertainty choice) and one that probabilistically delivered reward (high-uncertainty). The probability of high-uncertainty outcome receipt and the magnitudes of low-uncertainty and high-uncertainty outcomes were manipulated within and between experiments. Both the low- and high-uncertainty outcomes involved variable reward magnitudes, so that either a smaller or larger magnitude was probabilistically delivered, as well as reward omission following high-uncertainty choices. In Experiments 1 and 2, the between groups factor was the magnitude of the high-uncertainty-smaller (H-S) and high-uncertainty-larger (H-L) outcome, respectively. The H-S magnitude manipulation differentiated the groups, while the H-L magnitude manipulation did not. Experiment 3 showed that manipulating the probability of differential losses as well as the expected value of the low-uncertainty choice produced systematic effects on choice behavior. The results suggest that the reference point for probabilistic gains and losses was the expected value of the low-uncertainty choice. Current theories of probabilistic choice behavior have difficulty accounting for the present results, so an integrated theoretical framework is proposed. Overall, the present results have implications for understanding individual differences and corresponding underlying mechanisms of probabilistic choice behavior. PMID:25658448
NASA Astrophysics Data System (ADS)
Griffin, Patrick; Rochman, Dimitri; Koning, Arjan
2017-09-01
A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.
Comparison between Brewer spectrometer, M 124 filter ozonometer and Dobson spectrophotometer
NASA Technical Reports Server (NTRS)
Feister, U.
1994-01-01
Concurrent measurements were taken using the Brewer spectrometer no. 30, the filter ozonometer M 124 no. 200 and the Dobson spectrophotometer no. 71 from September 1987 to December 1988 at Potsdam. The performance of the instrument types and the compatibility of ozone data was checked under the conditions of a field measuring station. Total ozone values derived from Dobson AD direct sun measurements were considered as standard. The Dobson instrument had been calibrated at intercomparisons with the World Standard Dobson instrument no. 83 (Boulder) and with the Regional Standard instrument no. 64 (Potsdam), while the Brewer instrument was calibrated several times with the Travelling Standard Brewer no. 17 (Canada). The differences between individual Brewer DS (direct sun) ozone data and Dobson ADDS are within plus or minus 3 percent with half of all differences within plus or minus 1 percent. Less than 0.7 percent of the systematic difference can be due to atmospheric SO2. Due to inadequate regression coefficients Brewer ZB (zenith blue) ozone measurements are by (3...4) percent higher than Dobson ADDS ozone values. M124 DS ozone data are systematically by (1...2) percent higher than Dobson ADDS ozone with 50 percent of the differences within plus or minus 4 percent, but with extreme differences up to plus or minus (20...25) percent. M124 ZB ozone values are by (3...5) percent higher than Dobson ADDS with all the differences within plus or minus 10 percent, i.e. the scatter of differences is smaller for ZB than for M 124 DS measurements, Results for differences in the daily mean ozone values are also addressed. The differences include the uncertainties in the ozone values derived from both types of measurements. They provide an indication of the uncertainty in ozone data and the comparability of ozone values derived from different types of instruments.
Electromagnetic Dissociation of Uranium in Heavy Ion Collisions at 120 Mev/a
NASA Astrophysics Data System (ADS)
Justice, Marvin Lealon
The heavy-ion induced electromagnetic dissociation (EMD) of a 120 MeV/A ^{238}U beam incident on five targets (^9Be, ^{27}Al, ^ {nat}Cu, ^{nat} Ag, and ^{nat}U) has been studied experimentally. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution (~25%) of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state DeltaE-E detectors, allowing the charges of the fragments to be determined to within +/- .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events (i.e. those leading to charge sums of approximately 92) were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties associated with the normalization of the data make quantitative comparisons with theory difficult, however. The systematic uncertainties are discussed and suggestions for improving the experiment are given.
Joury, Easter; Bernabe, Eduardo; Sabbah, Wael; Nakhleh, Kamal; Gurusamy, Kurinchi
2017-03-01
The current study aimed to evaluate the effectiveness of school-based dental screening versus no screening on improving oral health in children aged 3-18 years by a systematic review and meta-analysis of randomised controlled trials. Three sets of independent reviewers searched MEDLINE, EMBASE, Web of Science and other sources through April 2016 to identify published and nonpublished studies without language restrictions and extracted data. Primary outcomes included prevalence and mean number of teeth with caries, incidence of dental attendance and harms of screening. Cochrane's criteria for risk of bias assessment were used. A total of five cluster RCTs (of unclear or high risk of bias), including 28,442 children, were meta-analysed. For an intracluster correlation coefficient of 0.030, there was no statistically significant difference in dental attendance between children who received dental screening and those who did not receive dental screening (RR 1.11, 95% 0.97, 1.27). The Chi-square test for heterogeneity and the Higgin's I 2 value indicated a substantial heterogeneity. Only one study reported the prevalence and mean number of deciduous and permanent teeth with dental caries and found no significant differences between the screening and no screening groups. There is currently no evidence to support or refute the clinical benefits or harms of dental screening. Routine dental screening may not increase the dental attendance of school children, but there is a lot of uncertainty in this finding because of the quality of evidence. Evidence from the reviewed trials suggests no clinical benefit from school-based screening in improving children's oral health. However, there is a lot of uncertainty in this finding because of the quality of evidence. There is a need to conduct a well-designed trial with an intensive follow-up arm and cost-effectiveness analysis. CRD42016038828 (PROSPERO database). Copyright © 2016 Elsevier Ltd. All rights reserved.
Real-world experience with colorectal cancer chemotherapies: patient web forum analysis.
Beusterien, Kathleen; Tsay, Sarah; Gholizadeh, Shadi; Su, Yun
2013-01-01
In contrast to clinical trials, patient web forums provide a unique opportunity for patients to spontaneously post their experiences and thoughts about diseases and treatments. This study explored the impact of colorectal cancer (CRC) treatments in these forums. This was a systematic cross-sectional qualitative analysis. Two active CRC web forums were identified based on four criteria: active for ≥five years, >12,000 total posts, >20 individuals currently browsing, and ≥10 new posts/day. All relevant threads (set of messages focusing on a topic) relating to treatment posted in July and December 2010 and February to March 2011 were reviewed and coded using MaxQDA software. A content analysis was performed identifying key themes. The threads included 1522 posts by 264 individuals. Demographics were identified for 83% of the posters. Of these, 83% were CRC patients and 17% were family members; 76% were females, and the mean patient age was 49 years. The majority had advanced cancer (44% stage IV or metastatic, 40% stage III). The most common themes were side effects (62.3% of posts), treatment response (13%), and impact on personal, social, and work lives, and emotional distress (23.9%). The posters came to the online forums to have an emotional outlet, share experience, and seek advice. The emotional impacts primarily exemplified resilience and positive coping strategies. Formal knowledge regarding the likelihood of treatment response, magnitude of benefit, or side effects was lacking, which lead to uncertainty and anxiety. However, patients expressed appreciation for the availability of treatment options and the hope they provide. Online CRC communities provide patients with convenient and valuable emotional support and disease information. CRC and treatments may have profound impacts beyond efficacy and toxicity. Systematic information and decision tools may help to minimise uncertainties and help patients manage expectations and emotional distress.
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.
2003-06-01
We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
NASA Astrophysics Data System (ADS)
Engeland, K.; Steinsland, I.; Petersen-Øverleir, A.; Johansen, S.
2012-04-01
The aim of this study is to assess the uncertainties in streamflow simulations when uncertainties in both observed inputs (precipitation and temperature) and streamflow observations used in the calibration of the hydrological model are explicitly accounted for. To achieve this goal we applied the elevation distributed HBV model operating on daily time steps to a small catchment in high elevation in Southern Norway where the seasonal snow cover is important. The uncertainties in precipitation inputs were quantified using conditional simulation. This procedure accounts for the uncertainty related to the density of the precipitation network, but neglects uncertainties related to measurement bias/errors and eventual elevation gradients in precipitation. The uncertainties in temperature inputs were quantified using a Bayesian temperature interpolation procedure where the temperature lapse rate is re-estimated every day. The uncertainty in the lapse rate was accounted for whereas the sampling uncertainty related to network density was neglected. For every day a random sample of precipitation and temperature inputs were drawn to be applied as inputs to the hydrologic model. The uncertainties in observed streamflow were assessed based on the uncertainties in the rating curve model. A Bayesian procedure was applied to estimate the probability for rating curve models with 1 to 3 segments and the uncertainties in their parameters. This method neglects uncertainties related to errors in observed water levels. Note that one rating curve was drawn to make one realisation of a whole time series of streamflow, thus the rating curve errors lead to a systematic bias in the streamflow observations. All these uncertainty sources were linked together in both calibration and evaluation of the hydrologic model using a DREAM based MCMC routine. Effects of having less information (e.g. missing one streamflow measurement for defining the rating curve or missing one precipitation station) was also investigated.
Kyu, Hmwe H; Bachman, Victoria F; Alexander, Lily T; Mumford, John Everett; Afshin, Ashkan; Estep, Kara; Veerman, J Lennert; Delwiche, Kristen; Iannarone, Marissa L; Moyer, Madeline L; Cercy, Kelly; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H
2016-08-09
To quantify the dose-response associations between total physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events. Systematic review and Bayesian dose-response meta-analysis. PubMed and Embase from 1980 to 27 February 2016, and references from relevant systematic reviews. Data from the Study on Global AGEing and Adult Health conducted in China, Ghana, India, Mexico, Russia, and South Africa from 2007 to 2010 and the US National Health and Nutrition Examination Surveys from 1999 to 2011 were used to map domain specific physical activity (reported in included studies) to total activity. Prospective cohort studies examining the associations between physical activity (any domain) and at least one of the five diseases studied. 174 articles were identified: 35 for breast cancer, 19 for colon cancer, 55 for diabetes, 43 for ischemic heart disease, and 26 for ischemic stroke (some articles included multiple outcomes). Although higher levels of total physical activity were significantly associated with lower risk for all outcomes, major gains occurred at lower levels of activity (up to 3000-4000 metabolic equivalent (MET) minutes/week). For example, individuals with a total activity level of 600 MET minutes/week (the minimum recommended level) had a 2% lower risk of diabetes compared with those reporting no physical activity. An increase from 600 to 3600 MET minutes/week reduced the risk by an additional 19%. The same amount of increase yielded much smaller returns at higher levels of activity: an increase of total activity from 9000 to 12 000 MET minutes/week reduced the risk of diabetes by only 0.6%. Compared with insufficiently active individuals (total activity <600 MET minutes/week), the risk reduction for those in the highly active category (≥8000 MET minutes/week) was 14% (relative risk 0.863, 95% uncertainty interval 0.829 to 0.900) for breast cancer; 21% (0.789, 0.735 to 0.850) for colon cancer; 28% (0.722, 0.678 to 0.768) for diabetes; 25% (0.754, 0.704 to 0.809) for ischemic heart disease; and 26% (0.736, 0.659 to 0.811) for ischemic stroke. People who achieve total physical activity levels several times higher than the current recommended minimum level have a significant reduction in the risk of the five diseases studied. More studies with detailed quantification of total physical activity will help to find more precise relative risk estimates for different levels of activity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
How measurement science can improve confidence in research results.
Plant, Anne L; Becker, Chandler A; Hanisch, Robert J; Boisvert, Ronald F; Possolo, Antonio M; Elliott, John T
2018-04-01
The current push for rigor and reproducibility is driven by a desire for confidence in research results. Here, we suggest a framework for a systematic process, based on consensus principles of measurement science, to guide researchers and reviewers in assessing, documenting, and mitigating the sources of uncertainty in a study. All study results have associated ambiguities that are not always clarified by simply establishing reproducibility. By explicitly considering sources of uncertainty, noting aspects of the experimental system that are difficult to characterize quantitatively, and proposing alternative interpretations, the researcher provides information that enhances comparability and reproducibility.
NASA Astrophysics Data System (ADS)
Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.
2015-07-01
A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.
Bagneux, Virginie; Bollon, Thierry; Dantzer, Cécile
2012-01-01
According to the Appraisal-Tendency Framework (Han, Lerner, & Keltner, 2007), certainty-associated emotions increase risk taking compared with uncertainty-associated emotions. To date, this general effect has only been shown in static judgement and decision-making paradigms; therefore, the present study tested the effect of certainty on risk taking in a sequential decision-making task. We hypothesised that the effect would be reversed due to the kind of processing involved, as certainty is considered to encourage heuristic processing that takes into account the emotional cues arising from previous decisions, whereas uncertainty leads to more systematic processing. One hundred and one female participants were induced to feel one of three emotions (film clips) before performing a decision-making task involving risk (Game of Dice Task; Brand et al., 2005). As expected, the angry and happy participants (certainty-associated emotions) were more likely than the fearful participants (uncertainty-associated emotion) to make safe decisions (vs. risky decisions).
Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin
2012-01-01
This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).
First Observation of a Baryonic B_{s}^{0} Decay.
Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Chubykin, A; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maddock, B; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, C; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S
2017-07-28
We report the first observation of a baryonic B_{s}^{0} decay, B_{s}^{0}→pΛ[over ¯]K^{-}, using proton-proton collision data recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb^{-1}. The branching fraction is measured to be B(B_{s}^{0}→pΛ[over ¯]K^{-})+B(B_{s}^{0}→p[over ¯]ΛK^{+})=[5.46±0.61±0.57±0.50(B)±0.32(f_{s}/f_{d})]×10^{-6}, where the first uncertainty is statistical and the second systematic, the third uncertainty accounts for the experimental uncertainty on the branching fraction of the B^{0}→pΛ[over ¯]π^{-} decay used for normalization, and the fourth uncertainty relates to the knowledge of the ratio of b-quark hadronization probabilities f_{s}/f_{d}.
High-voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy
NASA Astrophysics Data System (ADS)
Krämer, J.; König, K.; Geppert, Ch; Imgram, P.; Maaß, B.; Meisner, J.; Otten, E. W.; Passon, S.; Ratajczyk, T.; Ullmann, J.; Nörtershäuser, W.
2018-04-01
We present the results of high-voltage collinear laser spectroscopy measurements on the 5 ppm relative uncertainty level using a pump and probe scheme at the 4s ^2S1/2 → 4p ^2P3/2 transition of {\\hspace{0pt}}40Ca+ involving the 3d ^2D5/2 metastable state. With two-stage laser interaction and a reference measurement we can eliminate systematic effects such as differences in the contact potentials due to different electrode materials and thermoelectric voltages, and the unknown starting potential of the ions in the ion source. Voltage measurements were performed between -5 kV and -19 kV and parallel measurements with stable high-voltage dividers calibrated to 5 ppm relative uncertainty were used as a reference. Our measurements are compatible with the uncertainty limits of the high-voltage dividers and demonstrate an unprecedented (factor of 20) increase in the precision of direct laser-based high-voltage measurements.
TU-EF-304-03: 4D Monte Carlo Robustness Test for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Sterpin, E; Lee, J
Purpose: Breathing motion and approximate dose calculation engines may increase proton range uncertainties. We address these two issues using a comprehensive 4D robustness evaluation tool based on an efficient Monte Carlo (MC) engine, which can simulate breathing with no significant increase in computation time. Methods: To assess the robustness of the treatment plan, multiple scenarios of uncertainties are simulated, taking into account the systematic and random setup errors, range uncertainties, and organ motion. Our fast MC dose engine, called MCsquare, implements optimized models on a massively-parallel computation architecture and allows us to accurately simulate a scenario in less than onemore » minute. The deviations of the uncertainty scenarios are then reported on a DVH-band and compared to the nominal plan.The robustness evaluation tool is illustrated in a lung case by comparing three 60Gy treatment plans. First, a plan is optimized on a PTV obtained by extending the CTV with an 8mm margin, in order to take into account systematic geometrical uncertainties, like in our current practice in radiotherapy. No specific strategy is employed to correct for tumor and organ motions. The second plan involves a PTV generated from the ITV, which encompasses the tumor volume in all breathing phases. The last plan results from robust optimization performed on the ITV, with robustness parameters of 3% for tissue density and 8 mm for positioning errors. Results: The robustness test revealed that the first two plans could not properly cover the target in the presence of uncertainties. CTV-coverage (D95) in the three plans ranged respectively between 39.4–55.5Gy, 50.2–57.5Gy, and 55.1–58.6Gy. Conclusion: A realistic robustness verification tool based on a fast MC dose engine has been developed. This test is essential to assess the quality of proton therapy plan and very useful to study various planning strategies for mobile tumors. This work is partly funded by IBA (Louvain-la-Neuve, Belgium)« less
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
NASA Astrophysics Data System (ADS)
Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.
2014-03-01
Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target-measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models as well as greenhouse gas scenarios are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure Adequate Human livelihood conditions for wEll-being And Development (AHEAD). Based on a transdisciplinary sample of influential concepts addressing human well-being, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows identifying and differentiating uncertainty of climate and impact model projections. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that in many countries today, livelihood conditions are compromised by water scarcity. However, more often, AHEAD fulfilment is limited through other elements. Moreover, the analysis shows that for 44 out of 111 countries, the water-specific uncertainty ranges are outside relevant thresholds for AHEAD, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy-decisions.
Quantifying confidence in density functional theory predictions of magnetic ground states
NASA Astrophysics Data System (ADS)
Houchins, Gregory; Viswanathan, Venkatasubramanian
2017-10-01
Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.
Stöber, Paul; Bénet, Sylvie; Hischenhuber, Claudia
2004-04-21
A simplified method to determine total fructans in food and pet food has been developed and validated. It follows the principle of AOAC method 997.08, i.e., high-performance anion exchange chromatographic (HPAEC) determination of total fructose released from fructans (F(f)) and total glucose released from fructans (G(f)) after enzymatic fructan hydrolysis. Unlike AOAC method 997.08, calculation of total fructans is based on the determination of F(f) alone. This is motivated by the inherent difficulty to accurately determine low amounts of G(f) since many food and pet food products contain other sources of total glucose (e.g., starch and sucrose). In this case, a correction factor g can be used (1.05 by default) to take into account the theoretical contribution of G(f). At levels >5% of total fructans and in commercial fructan ingredients, both F(f) and G(f) can and should be accurately determined; hence, no correction factor g is required. The method is suitable to quantify total fructans in various food and pet food products at concentrations >or=0.2% providing that the product does not contain other significant sources of total fructose such as free fructose or sucrose. Recovery rates in commercial fructan ingredients and in selected food and pet food ranged from 97 to 102%. As part of a measurement uncertainty estimation study, individual contributions to the total uncertainty (u) of the total fructan content were identified and quantified by using the validation data available. As a result, a correlation between the sucrose content and the total uncertainty of the total fructan content was established allowing us to define a limit of quantitation as a function of the sucrose content. One can conclude that this method is limited to food products where the sucrose content does not exceed about three times the total fructan content. Despite this limitation, which is inherent to any total fructan method based on the same approach, this procedure represents an excellent compromise with regard to accuracy, applicability, and convenience.
A new algorithm for five-hole probe calibration, data reduction, and uncertainty analysis
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.; Wendt, Bruce J.
1994-01-01
A new algorithm for five-hole probe calibration and data reduction using a non-nulling method is developed. The significant features of the algorithm are: (1) two components of the unit vector in the flow direction replace pitch and yaw angles as flow direction variables; and (2) symmetry rules are developed that greatly simplify Taylor's series representations of the calibration data. In data reduction, four pressure coefficients allow total pressure, static pressure, and flow direction to be calculated directly. The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify uncertainty of five-hole results (e.g., total pressure, static pressure, and flow direction) and determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance to improve measurement technique. The new algorithm is applied to calibrate and reduce data from a rake of five-hole probes. Here, ten individual probes are mounted on a single probe shaft and used simultaneously. Use of this probe is made practical by the simplicity afforded by this algorithm.
Uncertainty in assessing value of oncology treatments.
Mullins, C Daniel; Montgomery, Russ; Tunis, Sean
2010-01-01
Patients, clinicians, payers, and policymakers face an environment of significant evidentiary uncertainty as they attempt to achieve maximum value, or the greatest level of benefit possible at a given level of cost in their respective health care decisions. This is particularly true in the area of oncology, for which published evidence from clinical trials is often incongruent with real-world patient care, and a substantial portion of clinical use is for off-label indications that have not been systematically evaluated. It is this uncertainty in the knowledge of the clinical harms and benefits associated with oncology treatments that prevents postregulatory decision makers from making accurate assessments of the value of these treatments. Because of the incentives inherent in the clinical research enterprise, randomized control trials (RCTs) are designed for the specific purpose of regulatory approval and maximizing market penetration. The pursuit of these goals results in RCT study designs that achieve maximal internal validity at the expense of generalizability to diverse real-world patient populations that may have significant comorbidities and other clinically mitigating factors. As such, systematic reviews for the purposes of coverage and treatment decisions often find relevant and high-quality evidence to be limited or nonexistent. For a number of reasons, including frequent off-label use of medications and the expedited approval process for cancer drugs by the U.S. Food and Drug Administration, this situation is exacerbated in the area of oncology. This paper investigates the convergence of incentives and circumstances that lead to widespread uncertainty in oncology and proposes new paradigms for clinical research, including pragmatic clinical trials, methodological guidance, and coverage with evidence development. Each of these initiatives would support the design of clinical research that is more informative for postregulatory decision makers, and would therefore reduce uncertainty and provide greater confidence in conclusions about the value of these treatments.
ISA implementation and uncertainty: a literature review and expert elicitation study.
van der Pas, J W G M; Marchau, V A W J; Walker, W E; van Wee, G P; Vlassenroot, S H
2012-09-01
Each day, an average of over 116 people die from traffic accidents in the European Union. One out of three fatalities is estimated to be the result of speeding. The current state of technology makes it possible to make speeding more difficult, or even impossible, by placing intelligent speed limiters (so called ISA devices) in vehicles. Although the ISA technology has been available for some years now, and reducing the number of road traffic fatalities and injuries has been high on the European political agenda, implementation still seems to be far away. Experts indicate that there are still too many uncertainties surrounding ISA implementation, and dealing with these uncertainties is essential for implementing ISA. In this paper, a systematic and representative inventory of the uncertainties is made based upon the literature. Furthermore, experts in the field of ISA were surveyed and asked which uncertainties are barriers for ISA implementation, and how uncertain these uncertainties are. We found that the long-term effects and the effects of large-scale implementation of ISA are still uncertain and are the most important barriers for the implementation of the most effective types of ISA. One way to deal with these uncertainties would be to start implementation on a small scale and gradually expand the penetration, in order to learn how ISA influences the transport system over time. Copyright © 2010 Elsevier Ltd. All rights reserved.
A systematic uncertainty analysis of an evaluative fate and exposure model.
Hertwich, E G; McKone, T E; Pease, W S
2000-08-01
Multimedia fate and exposure models are widely used to regulate the release of toxic chemicals, to set cleanup standards for contaminated sites, and to evaluate emissions in life-cycle assessment. CalTOX, one of these models, is used to calculate the potential dose, an outcome that is combined with the toxicity of the chemical to determine the Human Toxicity Potential (HTP), used to aggregate and compare emissions. The comprehensive assessment of the uncertainty in the potential dose calculation in this article serves to provide the information necessary to evaluate the reliability of decisions based on the HTP A framework for uncertainty analysis in multimedia risk assessment is proposed and evaluated with four types of uncertainty. Parameter uncertainty is assessed through Monte Carlo analysis. The variability in landscape parameters is assessed through a comparison of potential dose calculations for different regions in the United States. Decision rule uncertainty is explored through a comparison of the HTP values under open and closed system boundaries. Model uncertainty is evaluated through two case studies, one using alternative formulations for calculating the plant concentration and the other testing the steady state assumption for wet deposition. This investigation shows that steady state conditions for the removal of chemicals from the atmosphere are not appropriate and result in an underestimate of the potential dose for 25% of the 336 chemicals evaluated.
NASA Astrophysics Data System (ADS)
Hampel, B.; Liu, B.; Nording, F.; Ostermann, J.; Struszewski, P.; Langfahl-Klabes, J.; Bieler, M.; Bosse, H.; Güttler, B.; Lemmens, P.; Schilling, M.; Tutsch, R.
2018-03-01
In many cases, the determination of the measurement uncertainty of complex nanosystems provides unexpected challenges. This is in particular true for complex systems with many degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate output quantities. The aim of this paper is to address specific questions arising during the uncertainty calculation of such systems. This includes the division of the measurement system into subsystems and the distinction between systematic and statistical influences. We demonstrate that, even if the physical systems under investigation are very different, the corresponding uncertainty calculation can always be realized in a similar manner. This is exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast electro-optical sampling of complex time-domain signals. For these examples the approach for uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) is explained, in which correlations between multivariate output quantities are captured. To illustate the versatility of the proposed approach, its application to other experiments, namely nanometrological instruments for terahertz microscopy, dimensional scanning probe microscopy, and measurement of concentration of molecules using surface enhanced Raman scattering, is shortly discussed in the appendix. We believe that the proposed approach provides a simple but comprehensive orientation for uncertainty calculation in the discussed measurement scenarios and can also be applied to similar or related situations.
Asteroid approach covariance analysis for the Clementine mission
NASA Technical Reports Server (NTRS)
Ionasescu, Rodica; Sonnabend, David
1993-01-01
The Clementine mission is designed to test Strategic Defense Initiative Organization (SDIO) technology, the Brilliant Pebbles and Brilliant Eyes sensors, by mapping the moon surface and flying by the asteroid Geographos. The capability of two of the instruments available on board the spacecraft, the lidar (laser radar) and the UV/Visible camera is used in the covariance analysis to obtain the spacecraft delivery uncertainties at the asteroid. These uncertainties are due primarily to asteroid ephemeris uncertainties. On board optical navigation reduces the uncertainty in the knowledge of the spacecraft position in the direction perpendicular to the incoming asymptote to a one-sigma value of under 1 km, at the closest approach distance of 100 km. The uncertainty in the knowledge of the encounter time is about 0.1 seconds for a flyby velocity of 10.85 km/s. The magnitude of these uncertainties is due largely to Center Finding Errors (CFE). These systematic errors represent the accuracy expected in locating the center of the asteroid in the optical navigation images, in the absence of a topographic model for the asteroid. The direction of the incoming asymptote cannot be estimated accurately until minutes before the asteroid flyby, and correcting for it would require autonomous navigation. Orbit determination errors dominate over maneuver execution errors, and the final delivery accuracy attained is basically the orbit determination uncertainty before the final maneuver.
Sources of Uncertainty in Predicting Land Surface Fluxes Using Diverse Data and Models
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Nemani, Ramakrishma
2010-01-01
In the domain of predicting land surface fluxes, models are used to bring data from large observation networks and satellite remote sensing together to make predictions about present and future states of the Earth. Characterizing the uncertainty about such predictions is a complex process and one that is not yet fully understood. Uncertainty exists about initialization, measurement and interpolation of input variables; model parameters; model structure; and mixed spatial and temporal supports. Multiple models or structures often exist to describe the same processes. Uncertainty about structure is currently addressed by running an ensemble of different models and examining the distribution of model outputs. To illustrate structural uncertainty, a multi-model ensemble experiment we have been conducting using the Terrestrial Observation and Prediction System (TOPS) will be discussed. TOPS uses public versions of process-based ecosystem models that use satellite-derived inputs along with surface climate data and land surface characterization to produce predictions of ecosystem fluxes including gross and net primary production and net ecosystem exchange. Using the TOPS framework, we have explored the uncertainty arising from the application of models with different assumptions, structures, parameters, and variable definitions. With a small number of models, this only begins to capture the range of possible spatial fields of ecosystem fluxes. Few attempts have been made to systematically address the components of uncertainty in such a framework. We discuss the characterization of uncertainty for this approach including both quantifiable and poorly known aspects.
Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul
2013-11-01
This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.
Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment
Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.
2012-01-01
Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278
Precision determination of absolute neutron flux
Yue, A. T.; Anderson, E. S.; Dewey, M. S.; ...
2018-06-08
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
Precision determination of absolute neutron flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, A. T.; Anderson, E. S.; Dewey, M. S.
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
Estimates of global and regional prevalence of neural tube defects for 2015: a systematic analysis.
Blencowe, Hannah; Kancherla, Vijaya; Moorthie, Sowmiya; Darlison, Matthew W; Modell, Bernadette
2018-02-01
Neural tube defects (NTDs) are associated with substantial mortality, morbidity, disability, and psychological and economic costs. Many are preventable with folic acid, and access to appropriate services for those affected can improve survival and quality of life. We used a compartmental model to estimate global and regional birth prevalence of NTDs (live births, stillbirths, and elective terminations of pregnancy) and subsequent under-5 mortality. Data were identified through web-based reviews of birth defect registry databases and systematic literature reviews. Meta-analyses were undertaken where appropriate. For 2015, our model estimated 260,100 (uncertainty interval (UI): 213,800-322,000) NTD-affected birth outcomes worldwide (prevalence 18.6 (15.3-23.0)/10,000 live births). Approximately 50% of cases were elective terminations of pregnancy for fetal anomalies (UI: 59,300 (47,900-74,500)) or stillbirths (57,800 (UI: 35,000-88,600)). Of NTD-affected live births, 117,900 (∼75%) (UI: 105,500-186,600) resulted in under-5 deaths. Our systematic review showed a paucity of high-quality data in the regions of the world with the highest burden. Despite knowledge about prevention, NTDs remain highly prevalent worldwide. Lack of surveillance and incomplete ascertainment of affected pregnancies make NTDs invisible to policy makers. Improved surveillance of all adverse outcomes is needed to improve the robustness of total NTD prevalence estimation, evaluate effectiveness of prevention through folic acid fortification, and improve outcomes through care and rehabilitation. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of New York Academy of Sciences.
Uncertainty quantification in fission cross section measurements at LANSCE
Tovesson, F.
2015-01-09
Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.