Sample records for total tuning range

  1. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.

    PubMed

    Chen, Charlton J; Zheng, Jiangjun; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei

    2011-06-20

    We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

  2. Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Meyn, J P; Wallenstein, R; Beigang, R; Avetisyan, Y

    2001-04-23

    The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 microm which determines the maximum THz frequency in forward direction.

  3. All optical reconfiguration of optomechanical filters.

    PubMed

    Deotare, Parag B; Bulu, Irfan; Frank, Ian W; Quan, Qimin; Zhang, Yinan; Ilic, Rob; Loncar, Marko

    2012-05-22

    Reconfigurable optical filters are of great importance for applications in optical communication and information processing. Of particular interest are tuning techniques that take advantage of mechanical deformation of the devices, as they offer wider tuning range. Here we demonstrate reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over a wide wavelength range are used to actuate the structures and control the resonance of localized cavity modes. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method, we determine that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cutoff, we show high-speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures is also demonstrated.

  4. Non-Uniform Bias Enhancement of a Varactor-Tuned FSS used with a Low Profile 2.4 GHz Dipole Antenna

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas M.; Miranda, Felix A.

    2012-01-01

    In this paper a low profile antenna using a nonuniformly biased varactor-tuned frequency selective surface (FSS) is presented. The tunable FSS avoids the use of vias and has a simplified DC bias network. The voltages to the DC bias ports can be varied independently allowing adjustment in the frequency response and enhanced radiation properties. The measured data demonstrate tunability from 2.15 GHz to 2.63 GHz with peak efficiencies that range from 50% to 90% and instantaneous bandwidths of 50 MHz to 280 MHz within the tuning range. The total antenna thickness is approximately lambda/45.

  5. Multiple wavelength tunable surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei

    1991-06-01

    Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.

  6. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control.

    PubMed

    Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2014-05-19

    We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.

  7. Mode selection and tuning of single-frequency short-cavity VECSELs

    DOE PAGES

    Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.; ...

    2018-03-05

    Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.

  8. Enhanced magnetocaloric effect tuning efficiency in Ni-Mn-Sn alloy ribbons

    NASA Astrophysics Data System (ADS)

    Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Daniel-Perez, G.

    2017-11-01

    The present work was undertaken to investigate the effect of microstructure on the magnetic entropy change of Ni50Mn37Sn13 ribbon alloys. Unchanged sample composition and cell parameter of austenite allowed us to study strictly the correlation between the average grain size and the total magnetic field induced entropy change (ΔST). We found that a size-dependent martensitic transformation tuning results in a wide temperature range tailoring (>40 K) of the magnetic entropy change with a reasonably small variation on the peak value of the total field induced entropy change. The peak values varied from 6.0 J kg-1 K-1 to 7.7 J kg-1 K-1 for applied fields up to 2 T. Different tuning efficiencies obtained by diverse MCE tailoring approaches are compared to highlight the advantages of the herein proposed mechanism.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.

    Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.

  10. A low-voltage fully balanced CMFF transconductor with improved linearity

    NASA Astrophysics Data System (ADS)

    Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.

    2007-05-01

    This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.

  11. Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy.

    PubMed

    Hildebrandt, Lars; Knispel, Richard; Stry, Sandra; Sacher, Joachim R; Schael, Frank

    2003-04-20

    Commercially available GaN-based laser diodes were antireflection coated in our laboratory and operated in an external cavity in a Littrow configuration. A total tuning range of typically 4 nm and an optical output power of up to 30 mW were observed after optimization of the external cavity. The linewidth was measured with a beterodyne technique, and 0.8 MHz at a sweep time of 50 ms was obtained. The mode-hop-free tuning range was more than 50 GHz. We demonstrated the performance of the laser by detecting the saturated absorption spectrum of atomic indium at 410 nm, allowing observation of well-resolved Lamb dips.

  12. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    PubMed Central

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475

  13. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    PubMed

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  14. Improvement of the matching speed of AIMS for development of an automatic totally tuning system for hyperthermia treatment using a resonant cavity applicator.

    PubMed

    Shindo, Y; Kato, K; Tsuchiya, K; Hirashima, T; Suzuki, M

    2009-01-01

    In this paper, we discuss the improvement of the speed of AIMS (Automatic Impedance Matching System) to automatically make impedance matching for a re-entrant resonant cavity applicator for non-invasive deep brain tumors hyperthermia treatments. We have already discussed the effectiveness of the heating method using the AIMS, with experiments of heating agar phantoms. However, the operating time of AIMS was about 30 minutes. To develop the ATT System (Automatic Totally Tuning System) including the automatic frequency tuning system, we must improve this problem. Because, when using the ATTS, the AIMS is used repeatedly to find the resonant frequency. In order to improve the speed of impedance matching, we developed the new automatic impedance matching system program (AIMS2). In AIMS, the stepping motors were connected to the impedance matching unit's dials. These dials were turned to reduce the reflected power. AIMS consists of two phases: all range searching and detailed searching. We focused on the three factors affecting the operating speed and improved them. The first factor is the interval put between the turning of the motors and AD converter. The second factor is how the steps of the motor when operating all range searching. The third factor is the starting position of the motor when detail searching. We developed the simple ATT System (ATT-beta) based on the AIMS2. To evaluate the developed AIMS2 and ATT- beta, experiments with an agar phantom were performed. From these results, we found that the operating time of the AIMS2 is about 4 minutes, which was approximately 12% of AIMS. From ATT-beta results, it was shown that it is possible to tune frequency and automatically match impedance with the program based on the AIMS2.

  15. Displacement sensor based on intra-cavity tuning of dual-frequency gas laser

    NASA Astrophysics Data System (ADS)

    Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang

    2018-01-01

    A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.

  16. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    NASA Astrophysics Data System (ADS)

    Zia, Shahneel; Banerjee, Anirudh

    2016-05-01

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  17. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu

    2016-05-06

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  18. Tuning the sensing range of silicon pressure sensor by trench etching technology

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua

    2006-01-01

    The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.

  19. Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids

    NASA Astrophysics Data System (ADS)

    Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.

    2017-11-01

    We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.

  20. Wide range optofluidically tunable multimode interference fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; LiKamWa, P.; May-Arrioja, D. A.

    2014-08-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range.

  1. A CMOS Self-Contained Quadrature Signal Generator for SoC Impedance Spectroscopy.

    PubMed

    Márquez, Alejandro; Pérez-Bailón, Jorge; Calvo, Belén; Medrano, Nicolás; Martínez, Pedro A

    2018-04-30

    This paper presents a low-power fully integrated quadrature signal generator for system-on-chip (SoC) impedance spectroscopy applications. It has been designed in a 0.18 μm-1.8 V CMOS technology as a self-contained oscillator, without the need for an external reference clock. The frequency can be digitally tuned from 10 to 345 kHz with 12-bit accuracy and a relative mean error below 1.7%, thus supporting a wide range of impedance sensing applications. The proposal is experimentally validated in two impedance spectrometry examples, achieving good magnitude and phase recovery results compared to the results obtained using a commercial LCR-meter. Besides the wide frequency tuning range, the proposed programmable oscillator features a total power consumption lower than 0.77 mW and an active area of 0.129 mm², thus constituting a highly suitable choice as stimulation module for instrument-on-a-chip devices.

  2. Widely tunable (PbSn)Te lasers using etched cavities for mass production. [for infrared spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Miller, M. D.

    1980-01-01

    Lead salt diode lasers are being used increasingly as tunable sources of monochromatic infrared radiation in a variety of spectroscopic systems. These devices are particularly useful, both in the laboratory and in the field, because of their high spectral brightness (compared to thermal sources) and wide spectral coverage (compared to line-tunable gas lasers). While the primary commercial application of these lasers has been for ultrahigh resolution laboratory spectroscopy, there are numerous systems applications, including laser absorbtion pollution monitors and laser heterodyne radiometers, for which diode lasers have great potential utility. Problem areas related to the wider use of these components are identified. Among these are total tuning range, mode control, and high fabrication cost. A fabrication technique which specifically addresses the problems of tuning range and cost, and which also has potential application for mode control, is reported.

  3. The Importance of Short- and Long-Range Exchange on Various Excited State Properties of DNA Monomers, Stacked Complexes, and Watson-Crick Pairs.

    PubMed

    Raeber, Alexandra E; Wong, Bryan M

    2015-05-12

    We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.

  4. Supercomputer simulations of structure formation in the Universe

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2017-06-01

    We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.

  5. Frequency pulling in a low-voltage medium-power gyrotron

    NASA Astrophysics Data System (ADS)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  6. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  7. Widely tunable telecom MEMS-VCSEL for terahertz photomixing.

    PubMed

    Haidar, Mohammad Tanvir; Preu, Sascha; Paul, Sujoy; Gierl, Christian; Cesar, Julijan; Emsia, Ali; Küppers, Franko

    2015-10-01

    We report frequency-tunable terahertz (THz) generation with a photomixer driven by an ultra-broadband tunable micro-electro-mechanical system vertical-cavity surface-emitting laser (MEMS-VCSEL) and a fixed-wavelength VCSEL, as well as a tunable MEMS-VCSEL mixed with a distributed feedback (DFB) diode. A total frequency span of 3.4 THz is covered in direct detection mode and 3.23 THz in the homodyne mode. The tuning range is solely limited by the dynamic range of the photomixers and the Schottky diode/photoconductor used in the experiment.

  8. A 5GHz Band Low Noise and Wide Tuning Range Si-CMOS VCO with a Novel Varactors Pair Circuit

    NASA Astrophysics Data System (ADS)

    Ta, Tuan Thanh; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo

    In this paper, a fully integrated 5GHz voltage controlled oscillator (VCO) is presented. The VCO is designed with 0.18µm silicon complementary metal oxide semiconductor (Si-CMOS) process. To achieve low phase noise, a novel varactors pair circuit is proposed to cancel effects of capacitance fluctuation that makes harmonic currents which increase phase noise of VCO. The VCO with the proposed varactor circuit has tuning range from 5.1GHz to 6.1GHz (relative value of 17.9%) and phase noise of lower than -110.8dBc/Hz at 1MHz offset over the full tuning range. Figure-of-merit-with-tuning-range (FOMT) of the proposed VCO is -182dBc/Hz.

  9. Resource-Efficient, Hierarchical Auto-Tuning of a Hybrid Lattice Boltzmann Computation on the Cray XT4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Computational Research Division, Lawrence Berkeley National Laboratory; NERSC, Lawrence Berkeley National Laboratory; Computer Science Department, University of California, Berkeley

    2009-05-04

    We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance between MPI tasks and threads permore » MPI task. Our study presents a detailed performance analysis when moving along an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific applications.« less

  10. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  11. Silicon-Chip-Based Optical Frequency Combs

    DTIC Science & Technology

    2015-10-26

    waveform generation, frequency metrology, and astronomical spectrograph calibration [2,3,4]. Traditionally, modelocked solid-state and fiber lasers have...different external-cavity diode lasers covering a total tuning range between 1450 nm and 1640 nm. Lensed fibers are used to couple into and out of the...cavity resonance of a Si3N4 microring resonator with a single-frequency tunable diode laser amplified by a ytterbium-doped fiber amplifier. We use a

  12. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    PubMed Central

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-01-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327

  13. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    NASA Astrophysics Data System (ADS)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  14. Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2010-01-01

    Spectrally-isolated narrowband Cherenkov radiation from commercial nonlinear photonic crystal fibers is demonstrated as an ultrafast optical source with a visible tuning range of 485–690 nm, which complementarily extends the near-infrared tuning range of 690–1020 nm from the corresponding femtosecond Ti:sapphire pump laser. Pump-to-signal conversion efficiency routinely surpasses 10%, enabling multimilliwatt visible output across the entire tuning range. Appropriate selection of fiber parameters and pumping conditions efficiently suppresses the supercontinuum generation typically associated with Cherenkov radiation. PMID:19506636

  15. A 0.7 V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Da; Zhang, Jie

    2017-10-01

    The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is -110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about -1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about -180.7 and -191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.

  16. Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.

    2017-05-01

    The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.

  17. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional.

    PubMed

    Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara

    2017-07-28

    We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

  18. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  19. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  20. Test of a coaxial blade tuner at HTS FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pischalnikov, Y.; Barbanotti, S.; Harms, E.

    2011-03-01

    A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. Themore » stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.« less

  1. Pair-Wise and Many-Body Dispersive Interactions Coupled to an Optimally Tuned Range-Separated Hybrid Functional.

    PubMed

    Agrawal, Piyush; Tkatchenko, Alexandre; Kronik, Leeor

    2013-08-13

    We propose a nonempirical, pair-wise or many-body dispersion-corrected, optimally tuned range-separated hybrid functional. This functional retains the advantages of the optimal-tuning approach in the prediction of the electronic structure. At the same time, it gains accuracy in the prediction of binding energies for dispersively bound systems, as demonstrated on the S22 and S66 benchmark sets of weakly bound dimers.

  2. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    PubMed

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  3. Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films.

    PubMed

    Kang, Minhee; Ahn, Myeong-Su; Lee, Youngseop; Jeong, Ki-Hun

    2017-10-25

    Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.

  4. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    NASA Astrophysics Data System (ADS)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  5. Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.

    PubMed

    Neuhauser, Daniel; Rabani, Eran; Cytter, Yael; Baer, Roi

    2016-05-19

    We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach.

  6. Testing inferior colliculus neurons for selectivity to the rate or duration of frequency modulated sweeps

    NASA Astrophysics Data System (ADS)

    Faure, Paul A.; Morrison, James A.; Valdizón-Rodríguez, Roberto

    2018-05-01

    Here we propose a method for testing how the responses of so-called "FM duration-tuned neurons (DTNs)" encode temporal properties of frequency modulated (FM) sweeps to determine if the responses of so-called "FM duration-tuned neurons (DTNs)" are tuned to FM rate or FM duration. Based on previous studies it was unclear if the responses of "FM DTNs" were tuned to signal duration, like pure-tone DTNs, or FM sweep rate. We tested this using single-unit extracellular recording in the inferior colliculus (IC) of the big brown bat (Eptesicus fuscus). We presented IC cells with linear FM sweeps that were varied in FM center frequency (CEF) and spectral bandwidth (BW) to measure the FM rate tuning responses of a cell. We also varied FM signal duration to measure the best duration (BD) and temporal BW of duration tuning of a cell. We then doubled (and halved) the best FM BW, while keeping the CEF constant, and remeasured the BD and temporal BW of duration tuning with FM bandwidth manipulated signals. We reasoned that the range of excitatory signal durations should not change in a true FM DTN whose responses are tuned to signal duration; however, when stimulated with bandwidth manipulated FM sounds the range of excitatory signal durations should predictably vary in a FM rate-tuned cell. Preliminary data indicate that our stimulus paradigm can disambiguate whether the evoked responses of an IC neuron are FM sweep rate tuned or FM duration tuned.

  7. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  8. Tm:germanate Fiber Laser: Tuning And Q-switching

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J.; DeYoung, R. J.; Jiang, Shibin

    2007-01-01

    A Tm:germanate fiber laser produced >0.25 mJ/pulse in a 45 ns pulse. It is capable of producing multiple Q-switched pulses from a single p ump pulse. With the addition of a diffraction grating, Tm:germanate f iber lasers produced a wide, but length dependent, tuning range. By s electing the fiber length, the tuning range extends from 1.88 to 2.04 ?m. These traits make Tm:germanate lasers suitable for remote sensin g of water vapor.

  9. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  10. Feasibility study of electron transfer quantum well infrared photodetectors for spectral tuning in the long-wave infrared band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto

    An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less

  11. Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas

    2018-04-01

    An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.

  12. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less

  13. Dielectric Screening Meets Optimally Tuned Density Functionals.

    PubMed

    Kronik, Leeor; Kümmel, Stephan

    2018-04-17

    A short overview of recent attempts at merging two independently developed methods is presented. These are the optimal tuning of a range-separated hybrid (OT-RSH) functional, developed to provide an accurate first-principles description of the electronic structure and optical properties of gas-phase molecules, and the polarizable continuum model (PCM), developed to provide an approximate but computationally tractable description of a solvent in terms of an effective dielectric medium. After a brief overview of the OT-RSH approach, its combination with the PCM as a potentially accurate yet low-cost approach to the study of molecular assemblies and solids, particularly in the context of photocatalysis and photovoltaics, is discussed. First, solvated molecules are considered, with an emphasis on the challenge of balancing eigenvalue and total energy trends. Then, it is shown that the same merging of methods can also be used to study the electronic and optical properties of molecular solids, with a similar discussion of the pros and cons. Tuning of the effective scalar dielectric constant as one recent approach that mitigates some of the difficulties in merging the two approaches is considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    NASA Astrophysics Data System (ADS)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  15. Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.

    PubMed

    Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J

    2013-06-17

    We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.

  16. Twist-induced tuning in tapered fiber couplers.

    PubMed

    Birks, T A

    1989-10-01

    The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.

  17. Orbital-tuning of Marine Cyclic Sediments - Examples from the Neogene and Jurassic

    NASA Astrophysics Data System (ADS)

    Weedon, G. P.; Hall, I. R.; Wilson, G. S.

    2001-12-01

    Orbital-tuning of pre-Pleistocene sediments usually involves the use of variations in bulk compositional parameters, such as carbonate contents, rather than the oxygen-isotope time series available from Plio-Pleistocene marine strata. Consequently, ascertaining the relationship between orbital-climatic changes and sediment composition is not straightforward. Tuning is either conducted using a target curve (an orbital solution) for late Cenozoic records, or by using a sine wave with a specified period for earlier records - where a "floating" chronology is generated. Examples of each sort of tuning are discussed here. Drilling during Leg 181 of the Ocean Drilling Program yielded an essentially complete record of sediment-drift accumulation at Site 1123 off New Zealand for the past 20Ma. Dissolution of carbonate in the older part of the section precluded generation of isotopic records for tuning. Instead colour reflectance and magnetic susceptibility were used for tuning between 3 and 15Ma. Additionally, the mean size of sortable silt, a proxy for bottom-water flow speed, was used for orbital-tuning between 12 and 15Ma. Site 1123 possesses an exceptionally well-preserved record of geomagnetic reversals. Thus a preliminary time scale was established using the ages of 60 reversal events between 3 and 15.2Ma (based on Berggren et al., 1995). Since the sediment drift at this site accumulated under the influence of the Pacific deep western boundary current which incorporates circumpolar deep water, the sediment cyclicity is dominated by the 41ka orbital-tilt (obliquity) cycle. Tuning to the tilt cycle required relatively little revision to the ages of the magnetic reversals (maximum 65ka, average 23ka). Evolutionary spectra and band-pass filtering of the tuned reflectance time series reveal a pronounced increase in the amplitude of the stratigraphic record of the obliquity cycle after 7Ma. Eccentricity and precession cycles are evident for short intervals (less than one million years), but they are always subsidiary to the obliquity component - consistent with a high-latitude origin of the variability. The late Jurassic Kimmeridge Clay Formation is the principal oil-source rock in the North Sea Province. It is well-known for cyclic variations in organic-carbon contents linked to alternately oxic and anoxic bottom waters. During the Anatomy of a Source Rock Project, high-resolution (5-20cm) compositional records (e.g. carbonate, total organic carbon, magnetic susceptibility) were obtained from throughout the 550m Formation at the type section in Dorset, England. Spectral analysis indicates regular cyclicity in depth. The regular sedimentary cycles are interpreted as indirect climatic records of the Jurassic obliquity cycle and hence were tuned using a sine wave with a period of 38ka. Evolutionary spectral analysis of the tuned time series reveals small-amplitude 19ka precession cycles, but no evidence for 100 or 400ka orbital-eccentricity cycles. Hence, this record of Late Jurassic climatic variability in Britain implies a high-latitude forcing mechanism. The orbitally-tuned data indicate that ammonite zone durations ranged from 0.36 to 2.3Ma. Accumulation rates (post-compaction) ranged from 20-130m/Ma and organic carbon (post-diagenesis) had a flux of 0.2-2.25g/cm2/ka.

  18. Is there sufficient evidence for tuning fork tests in diagnosing fractures? A systematic review.

    PubMed

    Mugunthan, Kayalvili; Doust, Jenny; Kurz, Bodo; Glasziou, Paul

    2014-08-04

    To determine the diagnostic accuracy of tuning fork tests for detecting fractures. Systematic review of primary studies evaluating the diagnostic accuracy of tuning fork tests for the presence of fracture. We searched MEDLINE, CINAHL, AMED, EMBASE, Sports Discus, CAB Abstracts and Web of Science from commencement to November 2012. We manually searched the reference lists of any review papers and any identified relevant studies. Two reviewers independently reviewed the list of potentially eligible studies and rated the studies for quality using the QUADAS-2 tool. Data were extracted to form 2×2 contingency tables. The primary outcome measure was the accuracy of the test as measured by its sensitivity and specificity with 95% CIs. We included six studies (329 patients), with two types of tuning fork tests (pain induction and loss of sound transmission). The studies included patients with an age range 7-60 years. The prevalence of fracture ranged from 10% to 80%. The sensitivity of the tuning fork tests was high, ranging from 75% to 100%. The specificity of the tests was highly heterogeneous, ranging from 18% to 95%. Based on the studies in this review, tuning fork tests have some value in ruling out fractures, but are not sufficiently reliable or accurate for widespread clinical use. The small sample size of the studies and the observed heterogeneity make generalisable conclusion difficult. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. A tunable sound-absorbing metamaterial based on coiled-up space

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhao, Honggang; Yang, Haibin; Zhong, Jie; Zhao, Dan; Lu, Zhongliang; Wen, Jihong

    2018-05-01

    This paper presents a theoretical, numerical, and experimental investigation of a deep-subwavelength absorber based on the concept of coiled-up space. By adjusting a partition panel in the cavity to form an unequal-section channel, it is found that the resonance frequency of the absorber is easily tuned and near-total absorption is acquired under a fixed deep-subwavelength thickness. The absorption mechanism induced by nearly critical coupling is revealed by graphically analyzing the reflection coefficient in the complex plane. In contrast to conventional techniques, near-total absorption can be adjusted over a wider frequency range. To further enhance the absorption, we demonstrate a broadband absorber with a relative bandwidth up to 33.3%.

  20. 1THz synchronous tuning of two optical synthesizers

    NASA Astrophysics Data System (ADS)

    Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen

    2016-04-01

    Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.

  1. Engine Tune-Up Service. Unit 3: Primary Circuit. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This student guide is for Unit 3, Primary Circuit, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the primary ignition circuit. A companion review exercise book and posttests are available separately as CE 031 212-213. An introduction tells how this unit fits into the total tune-up service,…

  2. Engine Tune-up Service. Unit 2: Charging System. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Richardson, Roger L.; Bacon, E. Miles

    This student guide is for Unit 2, Charging System, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the charging system. A companion review exercise book and posttests are available separately as CE 031 209-210. An introduction tells how this unit fits into the total tune-up service, defines…

  3. Oxygen measurements at high pressures with vertical cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sanders, S. T.; Jeffries, J. B.; Hanson, R. K.

    Measurements of oxygen concentration at high pressures (to 10.9 bar) were made using diode-laser absorption of oxygen A-band transitions near 760 nm. The wide current-tuning frequency range (>30 cm-1) of vertical cavity surface-emitting lasers (VCSELs) was exploited to enable the first scanned-wavelength demonstration of diode-laser absorption at high pressures; this strategy is more robust than fixed-wavelength strategies, particularly in hostile environments. The wide tuning range and rapid frequency response of the current tuning were further exploited to demonstrate wavelength-modulation absorption spectroscopy in a high-pressure environment. The minimum detectable absorbance demonstrated, 1×10-4, corresponds to 800 ppm-m oxygen detectivity at room temperature and is limited by etalon noise. The rapid- and wide-frequency tunability of VCSELs should significantly expand the application domain of absorption-based sensors limited in the past by the small current-tuning frequency range (typically <2 cm-1) of conventional edge-emitting diode lasers.

  4. High-repetition-rate widely tunable LiF : \\mathbf{\\mathsf{F}}_\\mathbf{\\mathsf{2}}^{-} color center lasers

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Rao, Han; Zhang, Sasa; Liu, Yang; Zverev, Petr G.; Konyushkin, Vasily A.; Zhang, Xingyu

    2016-02-01

    High-repetition-rate tunable LiF:\\text{F}2- color center lasers pumped by quasi-continuous-wave diode-side-pumped acousto-optically Q-switched Nd:YAG laser are demonstrated. Littrow-grating and Littman-grating tuning schemes are studied respectively. In the Littrow-grating scheme, the tuning range was 1085 nm to 1275 nm, and the maximal average output power was 275 mW. In the Littman-grating scheme, the tuning range was 1105.5 nm to 1215.5 nm, and the maximal average output power was 135 mW.

  5. Dynamic tuning of chemiresistor sensitivity using mechanical strain

    DOEpatents

    Martin, James E; Read, Douglas H

    2014-09-30

    The sensitivity of a chemiresistor sensor can be dynamically tuned using mechanical strain. The increase in sensitivity is a smooth, continuous function of the applied strain, and the effect can be reversible. Sensitivity tuning enables the response curve of the sensor to be dynamically optimized for sensing analytes, such as volatile organic compounds, over a wide concentration range.

  6. Wavelength adjustability of frequency conversion light of Yb-doped fiber laser based on FBGs

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Tomihari, Yasuhiro; Imai, Koichi; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We focused on wavelength conversion of simple and compact CW Yb-Doped fiber laser based on FBGs with wavelength adjustable function. By controlling temperatures of FBGs in fiber laser, it was possible to tune oscillated wavelength from 1064.101 nm to 1064.414 nm with more than 20 W in CW operation mode. Based on this fundamental light, frequency converted light (SHG and THG) were generated by utilizing two PP:Mg-SLT devises. We obtained more than 3 W of SHG light with tuning range of 150 pm and more than 35 mW of THG with tuning range of 100 pm. By selecting FBG grating and QPM grating properly, we can realize adjustable wavelength laser with the same scheme from 1040 nm to 1090 nm and their SHG/THG. With this combination of FBG based fiber laser and QPM devices, it is possible to tune the wavelength just by temperature tuning without any changes of beam shape and beam pointing.

  7. Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm

    NASA Astrophysics Data System (ADS)

    Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.

    2018-06-01

    We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.

  8. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  9. Frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akulov, V A; Kablukov, S I; Babin, Sergei A

    2012-02-28

    This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less

  10. Current-controlled curvature of coated micromirrors

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Talghader, Joseph J.

    2003-06-01

    Precise control of micromirror curvature is critical in many optical microsystems. Micromirrors with current-controlled curvature are demonstrated. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2 mm over a current-induced temperature range from 22° to 72 °C. For fine focal-length tuning, the radius of curvature of a dielectric-coated (SiO2/Y2O3 λ/4 pairs) mirror was tuned from -0.68 to -0.64 mm over a current-induced temperature range from 22 to 84 °C. These results should be readily extendable to mirror flattening or real-time adaptive shape control.

  11. Self-tuning bandpass filter

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Hedlund, R. C. (Inventor)

    1973-01-01

    An electronic filter is described which simultaneously maintains a constant bandwidth and a constant center frequency gain as the input signal frequency varies, and remains self-tuning to that center frequency over a decade range. The filter utilizes a field effect transistor (FET) as a voltage variable resistance in the bandpass frequency determining circuit. The FET is responsive to a phase detector to achieve self-tuning.

  12. High energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator with a deformed pump and optimal crystal location for angle tuning.

    PubMed

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei

    2017-03-20

    A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300  MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.

  13. Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.

    2012-01-01

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  14. Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals.

    PubMed

    Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori

    2011-09-15

    Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.

  15. Tunable, diode side-pumped Er: YAG laser

    DOEpatents

    Hamilton, Charles E.; Furu, Laurence H.

    1997-01-01

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

  16. Tunable, diode side-pumped Er:YAG laser

    DOEpatents

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  17. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    PubMed

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  18. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide.

    PubMed

    Tsuchiya, Takashi; Tsuruoka, Tohru; Terabe, Kazuya; Aono, Masakazu

    2015-02-24

    In situ and nonvolatile tuning of photoluminescence (PL) has been achieved based on graphene oxide (GO), the PL of which is receiving much attention because of various potential applications of the oxide (e.g., display, lighting, and nano-biosensor). The technique is based on in situ and nonvolatile tuning of the sp(2) domain fraction to the sp(3) domain fraction (sp(2)/sp(3) fraction) in GO through an electrochemical redox reaction achieved by solid electrolyte thin films. The all-solid-state variable PL device was fabricated by GO and proton-conducting mesoporous SiO2 thin films, which showed an extremely low PL background. The device successfully tuned the PL peak wavelength in a very wide range from 393 to 712 nm, covering that for chemically tuned GO, by adjusting the applied DC voltage within several hundred seconds. We also demonstrate the sp(2)/sp(3) fraction tuning using a conductive atomic force microscope. The device achieved not only writing, but also erasing of the sp(2)/sp(3)-fraction-tuned nanodomain (both directions operation). The combination of these techniques is applicable to a wide range of nano-optoelectronic devices including nonvolatile PL memory devices and on-demand rewritable biosensors that can be integrated into nano- and microtips which are transparent, ultrathin, flexible, and inexpensive.

  19. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  20. Optically Tuned Fiber Gratings

    DTIC Science & Technology

    1998-03-01

    why we use a bulk polarization beam splitter . The fibre grating length was 50 cm with centre wavelength at 1550 nm. Fig.8 shows results of the...characteristics of glasses with enhanced non -linearity. In accordance with the specification, a fiber grating should be tuned within the range of 1...intensity pulse and has successfully demonstrated optically-tuned fiber grating. 19980617 115 14. SUBJECT TERMS Fibre Optics, Non -linear Optical

  1. Resonance Frequency Tuning of a Double Ring Resonator in GaInAsP/InP: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Rabus, Dominik Gerhard; Hamacher, Michael; Heidrich, Helmut

    2002-02-01

    A racetrack shaped double ring resonator (DRR) filter is demonstrated with radii of 200 μm. The double ring resonator contains two -3 dB multimode interference (MMI) couplers for I/O coupling and a -13 dB codirectional coupler in between the rings. A free spectral range of 50 GHz has been realized. A simulation model has been developed to describe the DRR. As fabrication tolerances do not allow the realization of two identical rings with required nm-circumference accuracy in the resonator, a frequency alignment of the resonator is indispensable. The resonance frequency tuning is performed thermally using platinum resistors which have been placed on top of the waveguides in both rings. An on-off ratio increase has been achieved of more than 3 dB, resulting in a total on-off ratio larger than 18 dB. The frequency alignment is inevitable in the case of multiple coupled micro ring resonators.

  2. Tuning Ferritin’s band gap through mixed metal oxide nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Embley, Jacob S.; Hansen, Kameron R.; Henrichsen, Andrew M.; Peterson, J. Ryan; Colton, John S.; Watt, Richard K.

    2017-05-01

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with {{{{MnO}}}4}- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin’s potential in solar-energy harvesting. Additionally, the success of using {{{{MnO}}}4}- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  3. On the accuracy of ERS-1 orbit predictions

    NASA Technical Reports Server (NTRS)

    Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.

    1993-01-01

    Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.

  4. Monolithic single mode interband cascade lasers with wide wavelength tunability

    NASA Astrophysics Data System (ADS)

    von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-11-01

    Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.

  5. Integrated programmable photonic filter on the silicon-on-insulator platform.

    PubMed

    Liao, Shasha; Ding, Yunhong; Peucheret, Christophe; Yang, Ting; Dong, Jianji; Zhang, Xinliang

    2014-12-29

    We propose and demonstrate a silicon-on-insulator (SOI) on-chip programmable filter based on a four-tap finite impulse response structure. The photonic filter is programmable thanks to amplitude and phase modulation of each tap controlled by thermal heaters. We further demonstrate the tunability of the filter central wavelength, bandwidth and variable passband shape. The tuning range of the central wavelength is at least 42% of the free spectral range. The bandwidth tuning range is at least half of the free spectral range. Our scheme has distinct advantages of compactness, capability for integrating with electronics.

  6. Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser.

    PubMed

    Numata, Kenji; Chen, Jeffrey R; Wu, Stewart T

    2012-06-18

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a ~40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than ~40 μs upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  7. Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator.

    PubMed

    Zhou, Yue; Cheung, Kim K Y; Li, Qin; Yang, Sigang; Chui, P C; Wong, Kenneth K Y

    2010-07-15

    We demonstrate a dispersion-tuned fiber optical parametric oscillator (FOPO)-based swept source with a sweep rate of 40 kHz and a wavelength tuning range of 109 nm around 1550 nm. The cumulative speed exceeds 4,000,000 nm/s. The FOPO is pumped by a sinusoidally modulated pump, which is driven by a clock sweeping linearly from 1 to 1.0006 GHz. A spool of dispersion-compensating fiber is added inside the cavity to perform dispersion tuning. The instantaneous linewidth is 0.8 nm without the use of any wavelength selective element inside the cavity. 1 GHz pulses with pulse width of 150 ps are generated.

  8. All-fiber, ultra-wideband tunable laser at 2 μm.

    PubMed

    Li, Z; Alam, S U; Jung, Y; Heidt, A M; Richardson, D J

    2013-11-15

    We report a direct diode-pumped all-fiber tunable laser source at 2 μm with a tuning range of more than 250 nm. A 3 dB power flatness of 200 nm with a maximum output power of 30 mW at 1930 nm was achieved. The laser has a high optical signal-to-noise ratio (OSNR) of more than 40 dB across the whole tuning range.

  9. Single-mode 140 nm swept light source realized by using SSG-DBR lasers

    NASA Astrophysics Data System (ADS)

    Fujiwara, N.; Yoshimura, R.; Kato, K.; Ishii, H.; Kano, F.; Kawaguchi, Y.; Kondo, Y.; Ohbayashi, K.; Oohashi, H.

    2008-02-01

    We demonstrate a single-mode and fast wavelength swept light source by using Superestrucuture grating distributed Bragg reflector (SSG-DBR) lasers for use in optical frequency-domain reflectometry optical coherence tomography. The SSG-DBR lasers provide single-mode operation resulting in high coherency. Response of the wavelength tuning is very fast; several nanoseconds, but there was an unintentional wavelength drift resulting from a thermal drift due to injecting tuning current. The dri1ft unfortunately requires long time to converge; more than a few milliseconds. For suppressing the wavelength drift, we introduced Thermal Drift Compensation mesa (TDC) parallel to the laser mesa with the spacing of 20 μm. By controlling TDC current to satisfy the total electric power injected into both the laser mesa and the TDC mesa, the thermal drift can be suppressed. In the present work, we fabricated 4 wavelength's kinds of SSG-DBR laser, which covers respective wavelength band; S-band (1496-1529 nm), C-band (1529-1564 nm), L --band (1564-1601 nm), and L +-band (1601-1639). We set the frequency channel of each laser with the spacing 6.25 GHz and 700 channels. The total frequency channel number is 2800 channels (700 ch × 4 lasers). We simultaneously operated the 4 lasers with a time interval of 500 ns/channel. A wavelength tuning range of more than 140 nm was achieved within 350 μs. The output power was controlled to be 10 mW for all channels. A single-mode, accurate, wide, and fast wavelength sweep was demonstrated with the SSG-DBR lasers having TDC mesa structure for the first time.

  10. Tuning the resonance frequencies and mode shapes in a large range multi-degree of freedom micromirror.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Bishop, David J

    2017-04-03

    The ability to actively shift the primary resonance of a 2D scanning micromirror allows the user to set the scanning direction, set the scanning frequency, and lift otherwise degenerate modes in a symmetrically designed system. In most cases, resonant scanning micromirrors require frequency stability in order to perform imaging and projection functions properly. This paper suggests a method to tune the tip and tilt resonant frequencies in real time while actively suppressing or allowing degeneracy of the two modes in a symmetric electrothermal micromirror. We show resonant frequency tuning with a range of degeneracy separation of 470 Hz or by approximately ±15% and controllable coupling.

  11. Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm.

    PubMed

    Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing

    2014-10-20

    We demonstrate an all-fiber tunable Tm/Ho-codoped laser operating in the 2 μm wavelength region. The wavelength tuning range of the Tm/Ho-codoped fiber laser (THFL) with 1-m length of Tm/Ho-codoped fiber (THDF) was from 1727 nm to 2030 nm. Efficient short wavelength operation and ultra-wide wavelength tuning range of 303 nm were both achieved. To the best of our knowledge, this is the broadest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. By increasing the THDF length to 2 m, the obtainable wavelength of the THFL was further red-shifted to the range from 1768 nm to 2071 nm. The output power of the THFL was scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.

  12. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D.

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently,more » applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.« less

  13. A MEMS Multi-Cantilever Variable Capacitor On Metamaterial

    DTIC Science & Technology

    2009-03-26

    tuning range [38]. 21 Bakri- Kassem and Mansour [39] have developed a parallel-plate variable capac- itor with carrier beams between the plates to...downwards, however, the carrier beams slightly bend down with the movable plate, still prevent- ing it from pulling-in. Bakri- Kassem and Mansour’s... Kassem and R. R. Mansour, “A high-tuning-range mems variable ca- pacitor using carrier beams,” Canadian Journal of Electrical and Computer En- gineering

  14. Tradeoff between magnet volume and tuning capacitor in a free piston Stirling engine power generation system

    NASA Astrophysics Data System (ADS)

    Fu, Z. X.; Nasar, S. A.; Rosswurm, Mark

    This paper presents the criteria in selecting the size of the tuning capacitor, and the cost tradeoff between magnet volume and tuning capacitor in a free piston Stirling engine power generation system. The permissible range of capacitor size corresponding to different magnet volume, in order to prevent magnet demagnetization and stabilize the operation of the system, is determined. Within the permissible range suitable capacitor size may be selected to compensate the inductive load of the system to improve the overall power factor. If the capacitor size is not in the permissible range, there would exist a danger of losing magnet strength, or unstable operation of the engine that would destroy the engine due to unbounded amplitude of piston oscillations. The theory developed is then applied to a practical system, and the cost tradeoff between magnet volume and capacitor is studied.

  15. Optically Tuned MM-Wave IMPATT Source.

    DTIC Science & Technology

    1987-07-01

    phase of the work has been extended and generalised. Accuracy of the theory in predicting tuning at the higher oscillator voltage swings has been greatly...Accuracy of the theory in predicting tuning at the higher oscillator voltage swings has been greatly improved by reformulating the Bessel function...voltage modulation and a peak optically injected locking current of 100 pA the predicted ftl locking range would be 540MHz, a practicaUy useful value. 4

  16. A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors.

    PubMed

    Yao, Dong; Liu, Yi; Zhao, Wujun; Wei, Haotong; Luo, Xintao; Wu, Zhennan; Dong, Chunwei; Zhang, Hao; Yang, Bai

    2013-10-21

    Despite the developments in the wet chemical synthesis of high-quality semiconductor nanocrystals (NCs) with diverse elemental compositions, telluride NCs are still irreplaceable materials owing to their excellent photovoltaic and thermoelectric performances. Herein we demonstrate the dissolution of elemental tellurium (Te) in a series of alkylamides by sodium borohydride (NaBH4) reduction at relatively low temperature to produce highly reactive precursors for hot-injection synthesis of telluride NCs. The capability to tune the reactivity of Te precursors by selecting injection temperature permits control of NC size over a broad range. The current preparation of Te precursors is simple, economical, and totally phosphine-free, which will promote the commercial synthesis and applications of telluride NCs.

  17. Understanding Fire Through Improved Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.

  18. [History of the tuning fork. III: On the way to quantitative pure-tone measurement. Pictures from the history of otorhinolaryngology, represented by instruments from the collection of the Ingolstadt German Medical History Museum].

    PubMed

    Feldmann, H

    1997-07-01

    Weber's and Rinne's tuning-fork tests were for a long time considered unreliable, as they often seemed to yield inconsistent results. The sources of error were manifold and lay in the fields of physics, physiology, pathophysiology, and psychology. When the problems came to be understood, more sophisticated instruments and techniques were developed. The prongs of the tuning fork were fitted with clamps to deaden overtones when it was put into vibration (Politzer 1870). By shifting the clamps along the prongs the tone of the tuning fork could be varied in a range up to one octave (Könlg 1878). A knob of hom or metal was fixed to the end of the shaft to ensure a good coupling to the skull when testing bone conduction (Lucae 1886). A small hammer fixed to the shaft and driven by a spring would activate the tuning fork with reproducible strength (Lucae 1899). A wedge-shaped figure drawn on the lateral surface of the clamps would allow one to optically control the amplitude of vibration (Gradenigo 1899). The time during which a patient hears the tuning fork after it has been struck as compared to that of a normal hearing subject was measured as parameter of hearing acutiy (v. Conta 1864). A number of tuning forks at intervals of one octave each were assembled in sets to cover the whole frequency range of hearing. The most sophisticated example of these sets was the Bezold-Edelmann continuous tone series (1894). It comprised ten tuning forks with sliding clamps, two pipes of the organ type, and a Galton whistle. With this instrumentation it was possible to test the whole range of hearing. The results of testing the hearing via air conduction and bone conduction measured in duration and calculated as percentage of normal hearing were presented in charts (Hartmann 1885, Gradenigo 1893) which can be considered precursors of modern audiograms. The evolution of these instruments and methods is described in detail and illustrated by exhibits from the museum.

  19. Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness

    PubMed Central

    Samonds, Jason M.; Potetz, Brian R.; Lee, Tai Sing

    2014-01-01

    We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition. PMID:24555451

  20. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  1. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humansa

    PubMed Central

    Baiduc, Rachael R.; Lee, Jungmee; Dhar, Sumitrajit

    2014-01-01

    Hearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports. Microstructure would not be expected near these high-frequency SOAEs. Psychophysical tuning curves (PTCs), the expression of frequency selectivity, may also be altered by SOAEs. Prior comparisons of tuning between ears with and without SOAEs demonstrated sharper tuning in ears with emissions. Here, threshold microstructure and PTCs were compared at SOAE frequencies ranging between 1.2 and 13.9 kHz using subjects without SOAEs as controls. Results indicate: (1) Threshold microstructure is observable in the vicinity of SOAEs of all frequencies; (2) PTCs are influenced by SOAEs, resulting in shifted tuning curve tips, multiple tips, or inversion. High frequency SOAEs show a greater effect on PTC morphology. The influence of most SOAEs at high frequencies on threshold microstructure and PTCs is consistent with those at lower frequencies, suggesting that high-frequency SOAEs reflect the same cochlear processes that lead to SOAEs at lower frequencies. PMID:24437770

  2. Energy consumption optimization of the total-FETI solver by changing the CPU frequency

    NASA Astrophysics Data System (ADS)

    Horak, David; Riha, Lubomir; Sojka, Radim; Kruzik, Jakub; Beseda, Martin; Cermak, Martin; Schuchart, Joseph

    2017-07-01

    The energy consumption of supercomputers is one of the critical problems for the upcoming Exascale supercomputing era. The awareness of power and energy consumption is required on both software and hardware side. This paper deals with the energy consumption evaluation of the Finite Element Tearing and Interconnect (FETI) based solvers of linear systems, which is an established method for solving real-world engineering problems. We have evaluated the effect of the CPU frequency on the energy consumption of the FETI solver using a linear elasticity 3D cube synthetic benchmark. In this problem, we have evaluated the effect of frequency tuning on the energy consumption of the essential processing kernels of the FETI method. The paper provides results for two types of frequency tuning: (1) static tuning and (2) dynamic tuning. For static tuning experiments, the frequency is set before execution and kept constant during the runtime. For dynamic tuning, the frequency is changed during the program execution to adapt the system to the actual needs of the application. The paper shows that static tuning brings up 12% energy savings when compared to default CPU settings (the highest clock rate). The dynamic tuning improves this further by up to 3%.

  3. Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs.

    PubMed

    Han, Liangshun; Liang, Song; Wang, Huitao; Qiao, Lijun; Xu, Junjie; Zhao, Lingjuan; Zhu, Hongliang; Wang, Baojun; Wang, Wei

    2014-12-01

    We present an InP based distributed Bragg reflector (DBR) laser transmitter which has a wide wavelength tuning range and a high chip output power for wavelength division multiplexing passive optical network (WDM-PON) applications. By butt-jointing InGaAsP with 1.45 µm emission wavelength as the material of the grating section, the laser wavelength can be tuned for over 13 nm by the DBR current. Accompanied by varying the chip temperature, the tuning range can be further enlarged to 16 nm. With the help of the integrated semiconductor optical amplifier (SOA), the largest chip output power is over 30 mW. The electroabsorption modulator (EAM) is integrated into the device by the selective-area growth (SAG) technique. The 3 dB small signal modulation bandwidth of the EAM is over 13 GHz. The device has both a simple tuning scheme and a simple fabrication procedure, making it suitable for low cost massive production which is desirable for WDM-PON uses.

  4. Grating-assisted demodulation of interferometric optical sensors.

    PubMed

    Yu, Bing; Wang, Anbo

    2003-12-01

    Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.

  5. Output-Mirror-Tuning Terahertz-Wave Parametric Oscillator with an Asymmetrical Porro-Prism Resonator Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2017-06-01

    We demonstrate a terahertz-wave parametric oscillator (TPO) with an asymmetrical porro-prism (PP) resonator configuration, consisting of a close PP corner reflector and a distant output mirror relative to the MgO:LiNbO3 crystal. Based on this cavity, frequency tuning of Stokes and the accompanied terahertz (THz) waves is realized just by rotating the plane mirror. Furthermore, THz output with high efficiency and wide tuning range is obtained. Compared with a conventional TPO employing a plane-parallel resonator of the same cavity length and output loss, the low end of the frequency tuning range is extended to 0.96 THz from 1.2 THz. The highest output obtained at 1.28 THz is enhanced by about 25%, and the oscillation threshold pump energy measured at 1.66 THz is reduced by about 4.5%. This resonator configuration also shows some potential to simplify the structure and application for intracavity TPOs.

  6. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Adams, J. J., E-mail: jjadams2@ncsu.edu; Trlica, C.

    2015-05-21

    We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surface oxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antenna tunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltagesmore » to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.« less

  7. Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: estimates from across the human lifespan.

    PubMed

    Abdala, Carolina; Guérit, François; Luo, Ping; Shera, Christopher A

    2014-04-01

    A consistent relationship between reflection-emission delay and cochlear tuning has been demonstrated in a variety of mammalian species, as predicted by filter theory and models of otoacoustic emission (OAE) generation. As a step toward the goal of studying cochlear tuning throughout the human lifespan, this paper exploits the relationship and explores two strategies for estimating delay trends-energy weighting and peak picking-both of which emphasize data at the peaks of the magnitude fine structure. Distortion product otoacoustic emissions (DPOAEs) at 2f1-f2 were recorded, and their reflection components were extracted in 184 subjects ranging in age from prematurely born neonates to elderly adults. DPOAEs were measured from 0.5-4 kHz in all age groups and extended to 8 kHz in young adults. Delay trends were effectively estimated using either energy weighting or peak picking, with the former method yielding slightly shorter delays and the latter somewhat smaller confidence intervals. Delay and tuning estimates from young adults roughly match those obtained from SFOAEs. Although the match is imperfect, reflection-component delays showed the expected bend (apical-basal transition) near 1 kHz, consistent with a break in cochlear scaling. Consistent with other measures of tuning, the term newborn group showed the longest delays and sharpest tuning over much of the frequency range.

  8. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    NASA Astrophysics Data System (ADS)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  9. Asymmetric Operation of the Locomotor Central Pattern Generator in the Neonatal Mouse Spinal Cord

    PubMed Central

    Endo, Toshiaki; Kiehn, Ole

    2008-01-01

    The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a “push–pull” operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase–related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase–related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a multilayered and distributed structure of the network. PMID:18829847

  10. Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E.

    2014-03-28

    As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not onlymore » the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.« less

  11. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.

    PubMed

    Asin-Cayuela, Jordi; Manas, Abdul-Rahman B; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2004-07-30

    The mitochondria-targeted antioxidant MitoQ comprises a ubiquinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation. This cation drives the membrane potential-dependent accumulation of MitoQ into mitochondria, enabling the ubiquinol antioxidant to prevent mitochondrial oxidative damage far more effectively than untargeted antioxidants. We sought to fine-tune the hydrophobicity of MitoQ so as to control the extent of its membrane binding and penetration into the phospholipid bilayer, and thereby regulate its partitioning between the membrane and aqueous phases within mitochondria and cells. To do this, MitoQ variants with 3, 5, 10 and 15 carbon aliphatic chains were synthesised. These molecules had a wide range of hydrophobicities with octan-1-ol/phosphate buffered saline partition coefficients from 2.8 to 20000. All MitoQ variants were accumulated into mitochondria driven by the membrane potential, but their binding to phospholipid bilayers varied from negligible for MitoQ3 to essentially total for MitoQ15. Despite the span of hydrophobicites, all MitoQ variants were effective antioxidants. Therefore, it is possible to fine-tune the degree of membrane association of MitoQ and other mitochondria targeted compounds, without losing antioxidant efficacy. This indicates how the uptake and distribution of mitochondria-targeted compounds within mitochondria and cells can be controlled, thereby facilitating investigations of mitochondrial oxidative damage.

  13. Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.

    2013-11-18

    We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.

  14. Single mode, short cavity, Pb-salt diode lasers operating in the 5, 10, and 30-microns spectral regions

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1985-01-01

    Pb-salt diode lasers are being used as frequency-tunable infrared sources in high resolution spectroscopy and heterodyne detection applications. Recent advances in short cavity, stripe-geometry laser configurations have led to significant increases in maximum CW operating temperature, single mode operation, and increased single mode tuning range. This paper describes short cavity, stripe geometry lasers operating in the 5, 10, and 30-microns spectral regions, with single mode tuning ranges of over 6/cm.

  15. Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempel, Martin, E-mail: hempel@pdi-berlin.de; Röben, Benjamin; Schrottke, Lutz

    2016-05-09

    GaAs-based terahertz quantum-cascade lasers (QCLs) are continuously tuned in their emission frequency by illuminating the rear facet with a near-infrared, high-power diode laser. For QCLs emitting around 3.1 THz, the maximum tuning range amounts to 2.8 GHz for continuous-wave operation at a heat sink temperature of 55 K, while in pulsed mode 9.1 and 8.0 GHz are achieved at 35 and 55 K, respectively.

  16. All-fibre ytterbium laser tunable within 45 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullina, S R; Babin, S A; Vlasov, A A

    2007-12-31

    A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)

  17. Thermally tunable silicon racetrack resonators with ultralow tuning power.

    PubMed

    Dong, Po; Qian, Wei; Liang, Hong; Shafiiha, Roshanak; Feng, Dazeng; Li, Guoliang; Cunningham, John E; Krishnamoorthy, Ashok V; Asghari, Mehdi

    2010-09-13

    We present thermally tunable silicon racetrack resonators with an ultralow tuning power of 2.4 mW per free spectral range. The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without undercuts. The 10%-90% switching time is demonstrated to be ~170 µs. Such low-power tunable micro-resonators are particularly useful as multiplexing devices and wavelength-tunable silicon microcavity modulators.

  18. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches

    PubMed Central

    Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils’ carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms—including the model tuning and predictor selection—were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models’ predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction. PMID:27128736

  19. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.

    PubMed

    Ließ, Mareike; Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.

  20. The microprocessor-based synthesizer controller

    NASA Technical Reports Server (NTRS)

    Wick, M. R.

    1980-01-01

    Implementation and performance of the microprocessor-based controllers and Dana Digiphase Synthesizer (DCO) installed in the Deep Space Network exciter in the 64-meter and 34-meter subnets to support uplink tuning required for the Voyager-Saturn Encounter is discussed. Test data in tests conducted during the production of the controllers verified the design objective for phase control accuracy of 10 to the - 12 power cycles in eight hours during ramping. Tests conducted require a phase error between a theoretical calculated value and the actual phase of no greater than + or - 1 cycle. Tests included (1) a ramp over a period of eight hours using a ramp rate which covers the synthesizer tuning range (40-51 MHz) and (2) a ramp sequence using the maximum rate (+ or kHz/s) over the tuning range.

  1. Farm Tractor Tune-Up and Service Specifications.

    ERIC Educational Resources Information Center

    Bryant, J. G.; And Others

    Tune-up and service specifications for 10 major tractor manufacturers are presented in the handbook. In addition, the following tables are included: (1) spark plug heat-range comparisons, (2) freezing protection, (3) pressures for farm tractor tires, (4) use of calcium chloride for liquid weighting, (5) comparisons of American Petroleum Institute…

  2. Glottal behavior in the high soprano range and the transition to the whistle register.

    PubMed

    Garnier, Maëva; Henrich, Nathalie; Crevier-Buchman, Lise; Vincent, Coralie; Smith, John; Wolfe, Joe

    2012-01-01

    The high soprano range was investigated by acoustic and electroglottographic measurements of 12 sopranos and high-speed endoscopy of one of these. A single laryngeal transition was observed on glissandi above the primo passaggio. It supports the existence of two distinct laryngeal mechanisms in the high soprano range: M2 and M3, underlying head and whistle registers. The laryngeal transition occurred gradually over several tones within the interval D#5-D6. It occurred over a wider range and was completed at a higher pitch for trained than untrained sopranos. The upper limit of the laryngeal transition during glissandi was accompanied by pitch jumps or instabilities, but, for most singers, it did not coincide with the upper limit of R1:f(0) tuning (i.e., tuning the first resonance to the fundamental frequency). However, pitch jumps could also be associated with changes in resonance tuning. Four singers demonstrated an overlap range over which they could sing with a full head or fluty resonant quality. Glottal behaviors underlying these two qualities were similar to the M2 and M3 mechanisms respectively. Pitch jumps and discontinuous glottal and spectral changes characteristic of a M2-M3 laryngeal transition were observed on decrescendi produced within this overlap range. © 2012 Acoustical Society of America.

  3. Analysis and design of negative resistance oscillators using surface transverse wave-based single port resonators.

    PubMed

    Avramov, Ivan D

    2003-03-01

    This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.

  4. Characteristics of optical parametric oscillator synchronously pumped by Yb:KGW laser and based on periodically poled potassium titanyl phosphate crystal

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2018-03-01

    We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.

  5. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking.

    PubMed

    Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui

    2015-02-23

    A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

  6. A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.

  7. The Art and Science of Climate Model Tuning

    DOE PAGES

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew; ...

    2017-03-31

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  8. The Art and Science of Climate Model Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  9. Arrested of coalescence of emulsion droplets of arbitrary size

    NASA Astrophysics Data System (ADS)

    Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.

    2013-03-01

    With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.

  10. Distortion-product otoacoustic emission suppression tuning curves in humans

    PubMed Central

    Gorga, Michael P.; Neely, Stephen T.; Kopun, Judy; Tan, Hongyang

    2011-01-01

    Distortion-product otoacoustic emission (DPOAE) suppression data as a function of suppressor level (L3) for f2 frequencies from 0.5 to 8 kHz and L2 levels from 10 to 60 dB sensation level were used to construct suppression tuning curves (STCs). DPOAE levels in the presence of suppressors were converted into decrement versus L3 functions, and the L3 levels resulting in 3 dB decrements were derived by transformed linear regression. These L3 levels were plotted as a function of f3 to construct STCs. When f3 is represented on an octave scale, STCs were similar in shape across f2 frequency. These STCs were analyzed to provide estimates of gain (tip-to-tail difference) and tuning (QERB). Both gain and tuning decreased as L2 increased, regardless of f2, but the trend with f2 was not monotonic. A roughly linear relation was observed between gain and tuning at each frequency, such that gain increased by 4–16 dB (mean ≈ 5 dB) for every unit increase in QERB, although the pattern varied with frequency. These findings suggest consistent nonlinear processing across a wide frequency range in humans, although the nonlinear operation range is frequency dependent. PMID:21361440

  11. Wideband electromagnetic energy harvesting from ambient vibrations

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Podder, Pranay; Roy, Saibal

    2015-06-01

    Different bandwidth widening schemes of electromagnetic energy harvesters have been reported in this work. The devices are fabricated on FR4 substrate using laser micromachining techniques. The linear device operate in a narrow band around the resonance; in order to tune resonant frequency of the device electrically, two different types of complex load topologies are adopted. Using capacitive load, the resonant frequency is tuned in the low frequency direction whereas using inductive load, the resonant frequency is tuned in the high frequency direction. An overall tuning range of ˜2.4 Hz is obtained at 0.3g though the output power dropped significantly over the tuning range. In order to improve the off-resonance performance, nonlinear oscillation based systems are adopted. A specially designed spring arm with fixed-guided configuration produced single well nonlinear monostable configuration. With increasing input acceleration, wider bandwidth is obtained with such a system as large displacement, stretching nonlinearity comes into play and 9.55 Hz bandwidth is obtained at 0.5g. The repulsive force between one static and one vibrating oppositely polarized magnets are used to generate bistable nonlinear potential system. The distance between the mentioned magnets is varied between 4 to 10 mm to produce tunable nonlinearity with a maximum half power bandwidth over 3 Hz at 0.5g.

  12. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.

    PubMed

    Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D

    2012-10-01

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  13. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  14. Design and Testing of a Dynamically-Tuned Magnetostrictive Spring with Electrically-Controlled Stiffness

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-01-01

    This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi-active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.

  15. Even subtle cultural differences affect face tuning.

    PubMed

    Pavlova, Marina A; Heiz, Julie; Sokolov, Alexander N; Fallgatter, Andreas J; Barisnikov, Koviljka

    2018-01-01

    Culture shapes social cognition in many ways. Yet cultural impact on face tuning remains largely unclear. Here typically developing females and males from the French-speaking part of Switzerland were presented with a set of Arcimboldo-like Face-n-Food images composed of food ingredients and in different degree resembling a face. The outcome had been compared with previous findings obtained in young adults of the South-West Germany. In that study, males exhibit higher thresholds for face tuning on the Face-n-Food task than females. In Swiss participants, no gender differences exist in face tuning. Strikingly, males from the French-speaking part of Switzerland possess higher sensitivity to faces than their German peers, whereas no difference in face tuning occurs between females. The outcome indicates that even relatively subtle cultural differences as well as culture by gender interaction can modulate social cognition. Clarification of the nature of cultural impact on face tuning as well as social cognition at large is of substantial value for understanding a wide range of neuropsychiatric and neurodevelopmental conditions.

  16. Silver nanoparticles with planar twinned defects: effect of halides for precise tuning of plasmon resonance maxima from 400 to >900 nm.

    PubMed

    Cathcart, Nicole; Frank, Andrew J; Kitaev, Vladimir

    2009-12-14

    We studied effects of halides on morphology of planar twinned silver nanoparticles and demonstrated application of these effects to precisely tune silver surface plasmon resonance maxima in a broad vis-NIR range using a reliable two-stage modification protocol.

  17. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  18. Precise and versatile formula for birefringent filters

    NASA Astrophysics Data System (ADS)

    Shao, Zhongxing

    1996-07-01

    In an investigation of extraordinary-(E-) ray behavior and the index of refraction for E waves in a uniaxial crystal, a precise and versatile formula for birefringent filters, based on the exact construction of the optical path difference, is set up with neither the approximation Delta n = no - ne less than or equals no (or n e), nor the ambiguity sin( theta )/sin(rw) = ne. The exact construction gives the correct variation of the position and the dimension in each path, yielding the path difference while the filter is tuning. The formula is applicable not only to a filter with its optical axis parallel to the entrance surface (FAPS) but also to a filter with its axis inclined to the surface (FAIS). Also, the formula indicates that a FAIS allows laser wavelengths to be tuned over a wider range than does a FAPS. The origin of the wider range is interpreted to be the greater variation in the index for the FAIS while the filter is tuning. With the help of the formula we design a FAIS for tuning a cw 42.25.Lc.

  19. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter.

    PubMed

    Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P

    2015-01-01

    A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz.

  20. Novel Electrically Tunable Microwave Solenoid Inductor and Compact Phase Shifter Utilizing Permaloy and PZT Thin Films

    DOE PAGES

    Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...

    2017-08-03

    A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less

  1. Many-body localization in a long range XXZ model with random-field

    NASA Astrophysics Data System (ADS)

    Li, Bo

    2016-12-01

    Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.

  2. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    NASA Astrophysics Data System (ADS)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  3. rf measurements and tuning of the 750 MHz radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Koubek, Benjamin; Grudiev, Alexej; Timmins, Marc

    2017-08-01

    In the framework of the program on medical applications a compact 750 MHz RFQ has been designed and built to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5 λ which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning. In this paper we present the tuning algorithm, the tuning procedure and rf measurements of the RFQ.

  4. An electronically tuned wideband probehead for NQR spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann

    2016-10-01

    Nuclear quadrupole resonance spectroscopy is an analytical method which allows to characterize materials which contain quadrupolar nuclei, i.e. nuclei with spin ⩾1. The measurement technology is similar to that of NMR except that no static magnetic field is necessary. In contrast to NMR, however, it is frequently necessary to scan spectra with a very large bandwidth with a span of several tens of % of the central frequency so as to localize unknown peaks. Standard NMR probeheads which are typically constructed as resonators must be tuned and matched to comparatively narrow bands and must thus be re-tuned and re-matched very frequently when scanning over a whole NQR spectrum. At low frequencies up to few MHz dedicated circuits without the need for tuning and matching have been developed, but many quadrupole nuclei have transitions in the VHF range between several tens of MHz up to several hundreds of MHz. Currently available commercial NQR probeheads employ stepper motors for setting mechanically tuneable capacitors in standard NMR resonators. These yield high quality factors (Q) and thus high SNR but are relatively large and clumsy and do not allow for fast frequency sweeps. This article presents a new concept for a NQR probehead which combines a previously published no-tune no-match wideband concept for the transmit (TX) pulse with an electronically tuneable receive (RX) part employing varactor diodes. The prototype coil provides a TX frequency range of 57 MHz with a center frequency of 97.5 MHz with a return loss of ⩽-15 dB. During RX the resonator is tuned and matched automatically to the right frequency via control voltages which are read out from a previously generated lookup table, thus providing high SNR. The control voltages which bias the varactors settle very fast and allow for hopping to the next frequency point in the spectrum within less than 100 μs. Experiments with a test sample of ZnBr2 proved the feasibility of the method.

  5. A facetless regrowth-free single mode laser based on MMI couplers

    NASA Astrophysics Data System (ADS)

    Caro, Ludovic; Kelly, Niall P.; Dernaika, Mohamad; Shayesteh, Maryam; Morrissey, Padraic E.; Alexander, Justin K.; Peters, Frank H.

    2017-09-01

    This paper presents a facetless, tunable laser operating near 1575 nm, as well as a theoretical model predicting spectral features of the laser. The lasers were fabricated without regrowth or advanced lithography techniques, and are based on MMI couplers and etched facets. Coarse vernier tuning was achieved over a range of 25 nm, while fine, thermal tuning was also demonstrated over a range of 1.5 nm. SMSR values of 25 dB and higher were observed, with a measured laser linewidth of 600 kHz.

  6. A self-tuning automatic voltage regulator designed for an industrial environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, D.; Hogg, B.W.; Swidenbank, E.

    Examination of the performance of fixed parameter controllers has resulted in the development of self-tuning strategies for excitation control of turbogenerator systems. In conjunction with the advanced control algorithms, sophisticated measurement techniques have previously been adopted on micromachine systems to provide generator terminal quantities. In power stations, however, a minimalist hardware arrangement would be selected leading to relatively simple measurement techniques. The performance of a range of self-tuning schemes is investigated on an industrial test-bed, employing a typical industrial hardware measurement system. Individual controllers are implemented on a standard digital automatic voltage regulator, as installed in power stations. This employsmore » a VME platform, and the self-tuning algorithms are introduced by linking to a transputer network. The AVR includes all normal features, such as field forcing, VAR limiting and overflux protection. Self-tuning controller performance is compared with that of a fixed gain digital AVR.« less

  7. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    DOE PAGES

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; ...

    2017-02-21

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. Here, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by constructionmore » captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. This approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.« less

  8. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.

    2017-03-01

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.

  9. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  10. Adaptation and inhibition underlie responses to time-varying interaural phase cues in a model of inferior colliculus neurons.

    PubMed

    Borisyuk, Alla; Semple, Malcolm N; Rinzel, John

    2002-10-01

    A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on parameters), and inhibition blocking experiments (to study inhibitory tuning properties by observation of phase shifts).

  11. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  12. Business Plan for the JABEZ Records

    DTIC Science & Technology

    2003-12-01

    Even though iTunes and Napster must pay royalties for the music, record companies could gain more profit from Internet sales if they owned the...services such as Apple’s iTunes , and increasing sales retail stores. C. Gospel Trends Gospel music has evolved from a church-basement business to...5. Total Christian/Gospel albums sales (CD & cassette) 1996-2001...................41 Figure 6. Consumer demographics for Christian music buyers

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dontsova, E I; Kablukov, S I; Babin, Sergei A

    A cladding-pumped ytterbium-doped fibre laser has been tuned to shorter emission wavelengths (from 1040 to 1017 nm). The laser output power obtained has been compared to calculation results. We have studied frequency doubling of the laser in a KTiOPO{sub 4} (KTP) crystal with type II phase matching in the XY plane and demonstrated wavelength tuning in the range 510 - 520 nm. (lasers)

  14. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  15. Tunable narrow linewidth all-fiber thulium-doped fiber laser in a 2 µm-band using two Hi-Bi fiber optical loop mirrors

    NASA Astrophysics Data System (ADS)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Ibarra-Escamilla, B.; Hernández-Arriaga, M. V.; Sánchez-de-la-Llave, D.; Kuzin, E. A.

    2017-08-01

    We propose an all-fiber Tm-doped fiber laser with a tunable and narrow laser line generated in a wavelength region of 2 µm. A single laser line with a linewidth below 0.05 nm, tunable in a wavelength range of 44.25 nm, is obtained. The laser linewidth and the discrete wavelength tuning range depend on the characteristics of the two fiber optical loop mirrors with high birefringence in the loop that forms the cavity. Dual-wavelength laser operation is also observed at tuning range limits with a wavelength separation of 47 nm. Alternate wavelength switching is also observed.

  16. Neural tuning characteristics of auditory primary afferents in the chicken embryo.

    PubMed

    Jones, S M; Jones, T A

    1995-02-01

    Primary afferent activity was recorded from the cochlear ganglion in chicken embryos (Gallus domesticus) at 19 days of incubation (E19). The ganglion was accessed via the recessus scala tympani and impaled with glass micropipettes. Frequency tuning curves were obtained using a computerized threshold tracking procedure. Tuning curves were evaluated to determine characteristics frequencies (CFs), CF thresholds, slopes of low and high frequency flanks, and tip sharpness (Q10dB). The majority of tuning curves exhibited the typical 'V' shape described for older birds and, on average, appeared relatively mature based on mean values for CF thresholds (59.6 +/- 20.3 dBSPL) and tip sharpness (Q10dB = 5.2 +/- 3). The mean slopes of low (61.9 +/- 37 dB/octave) and high (64.6 +/- 33 dB/octave) frequency flanks although comparable were somewhat less than those reported for 21-day-old chickens. Approximately 14% of the tuning curves displayed an unusual 'saw-tooth' pattern. CFs ranged from 188 to 1623 Hz. The highest CF was well below those reported for post-hatch birds. In addition, a broader range of Q10dB values (1.2 to 16.9) may related to a greater variability in embryonic tuning curves. Overall, these data suggest that an impressive functional maturity exists in the embryo at E19. The most significant sign of immaturity was the limited expression of high frequencies. It is argued that the limited high CF in part may be due to the developing middle ear transfer function and/or to a functionally immature cochlear base.

  17. Neural tuning characteristics of auditory primary afferents in the chicken embryo

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    1995-01-01

    Primary afferent activity was recorded from the cochlear ganglion in chicken embryos (Gallus domesticus) at 19 days of incubation (E19). The ganglion was accessed via the recessus scala tympani and impaled with glass micropipettes. Frequency tuning curves were obtained using a computerized threshold tracking procedure. Tuning curves were evaluated to determine characteristics frequencies (CFs), CF thresholds, slopes of low and high frequency flanks, and tip sharpness (Q10dB). The majority of tuning curves exhibited the typical 'V' shape described for older birds and, on average, appeared relatively mature based on mean values for CF thresholds (59.6 +/- 20.3 dBSPL) and tip sharpness (Q10dB = 5.2 +/- 3). The mean slopes of low (61.9 +/- 37 dB/octave) and high (64.6 +/- 33 dB/octave) frequency flanks although comparable were somewhat less than those reported for 21-day-old chickens. Approximately 14% of the tuning curves displayed an unusual 'saw-tooth' pattern. CFs ranged from 188 to 1623 Hz. The highest CF was well below those reported for post-hatch birds. In addition, a broader range of Q10dB values (1.2 to 16.9) may related to a greater variability in embryonic tuning curves. Overall, these data suggest that an impressive functional maturity exists in the embryo at E19. The most significant sign of immaturity was the limited expression of high frequencies. It is argued that the limited high CF in part may be due to the developing middle ear transfer function and/or to a functionally immature cochlear base.

  18. Economy of scale: a motion sensor with variable speed tuning.

    PubMed

    Perrone, John A

    2005-01-26

    We have previously presented a model of how neurons in the primate middle temporal (MT/V5) area can develop selectivity for image speed by using common properties of the V1 neurons that precede them in the visual motion pathway (J. A. Perrone & A. Thiele, 2002). The motion sensor developed in this model is based on two broad classes of V1 complex neurons (sustained and transient). The S-type neuron has low-pass temporal frequency tuning, p(omega), and the T-type has band-pass temporal frequency tuning, m(omega). The outputs from the S and T neurons are combined in a special way (weighted intersection mechanism [WIM]) to generate a sensor tuned to a particular speed, v. Here I go on to show that if the S and T temporal frequency tuning functions have a particular form (i.e., p(omega)/(m(omega) = k/omega), then a motion sensor with variable speed tuning can be generated from just two V1 neurons. A simple scaling of the S- or T-type neuron output before it is incorporated into the WIM model produces a motion sensor that can be tuned to a wide continuous range of optimal speeds.

  19. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  20. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  1. Survey of Current Practice in the Fitting and Fine-Tuning of Common Signal-Processing Features in Hearing Aids for Adults.

    PubMed

    Anderson, Melinda C; Arehart, Kathryn H; Souza, Pamela E

    2018-02-01

    Current guidelines for adult hearing aid fittings recommend the use of a prescriptive fitting rationale with real-ear verification that considers the audiogram for the determination of frequency-specific gain and ratios for wide dynamic range compression. However, the guidelines lack recommendations for how other common signal-processing features (e.g., noise reduction, frequency lowering, directional microphones) should be considered during the provision of hearing aid fittings and fine-tunings for adult patients. The purpose of this survey was to identify how audiologists make clinical decisions regarding common signal-processing features for hearing aid provision in adults. An online survey was sent to audiologists across the United States. The 22 survey questions addressed four primary topics including demographics of the responding audiologists, factors affecting selection of hearing aid devices, the approaches used in the fitting of signal-processing features, and the strategies used in the fine-tuning of these features. A total of 251 audiologists who provide hearing aid fittings to adults completed the electronically distributed survey. The respondents worked in a variety of settings including private practice, physician offices, university clinics, and hospitals/medical centers. Data analysis was based on a qualitative analysis of the question responses. The survey results for each of the four topic areas (demographics, device selection, hearing aid fitting, and hearing aid fine-tuning) are summarized descriptively. Survey responses indicate that audiologists vary in the procedures they use in fitting and fine-tuning based on the specific feature, such that the approaches used for the fitting of frequency-specific gain differ from other types of features (i.e., compression time constants, frequency lowering parameters, noise reduction strength, directional microphones, feedback management). Audiologists commonly rely on prescriptive fitting formulas and probe microphone measures for the fitting of frequency-specific gain and rely on manufacturers' default settings and recommendations for both the initial fitting and the fine-tuning of signal-processing features other than frequency-specific gain. The survey results are consistent with a lack of published protocols and guidelines for fitting and adjusting signal-processing features beyond frequency-specific gain. To streamline current practice, a transparent evidence-based tool that enables clinicians to prescribe the setting of other features from individual patient characteristics would be desirable. American Academy of Audiology

  2. Broadband tunable integrated CMOS pulser with 80-ps minimum pulse width for gain-switched semiconductor lasers.

    PubMed

    Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi

    2017-07-31

    High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.

  3. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    PubMed

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  4. Modification of modulated plasma plumes for the quasi-phase-matching of high-order harmonics in different spectral ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495; Boltaev, G. S.

    We demonstrate the technique allowing the fine tuning of the distance between the laser-produced plasma plumes on the surfaces of different materials, as well as the variation of the sizes of these plumes. The modification of plasma formations is based on the tilting of the multi-slit mask placed between the heating laser beam and target surface, as well as the positioning of this mask in the telescope placed on the path of heating radiation. The modulated plasma plumes with the sizes of single plume ranging between 0.1 and 1 mm were produced on the manganese and silver targets. Modification of themore » geometrical parameters of plasma plumes proved to be useful for the fine tuning of the quasi-phase-matched high-order harmonics generated in such structures during propagation of the ultrashort laser pulses. We show the enhancement of some groups of harmonics along the plateau range and the tuning of maximally enhanced harmonic by variable modulation of the plasma.« less

  5. Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0-0 Electronic Excitation Energies.

    PubMed

    Jacquemin, Denis; Moore, Barry; Planchat, Aurélien; Adamo, Carlo; Autschbach, Jochen

    2014-04-08

    Using a set of 40 conjugated molecules, we assess the performance of an "optimally tuned" range-separated hybrid functional in reproducing the experimental 0-0 energies. The selected protocol accounts for the impact of solvation using a corrected linear-response continuum approach and vibrational corrections through calculations of the zero-point energies of both ground and excited-states and provides basis set converged data thanks to the systematic use of diffuse-containing atomic basis sets at all computational steps. It turns out that an optimally tuned long-range corrected hybrid form of the Perdew-Burke-Ernzerhof functional, LC-PBE*, delivers both the smallest mean absolute error (0.20 eV) and standard deviation (0.15 eV) of all tested approaches, while the obtained correlation (0.93) is large but remains slightly smaller than its M06-2X counterpart (0.95). In addition, the efficiency of two other recently developed exchange-correlation functionals, namely SOGGA11-X and ωB97X-D, has been determined in order to allow more complete comparisons with previously published data.

  6. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency.

    PubMed

    Taylor, Graham K; Nudds, Robert L; Thomas, Adrian L R

    2003-10-16

    Dimensionless numbers are important in biomechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. A dimensionless parameter that describes the tail or wing kinematics of swimming and flying animals is the Strouhal number, St = fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). St is known to govern a well-defined series of vortex growth and shedding regimes for airfoils undergoing pitching and heaving motions. Propulsive efficiency is high over a narrow range of St and usually peaks within the interval 0.2 < St < 0.4 (refs 3-8). Because natural selection is likely to tune animals for high propulsive efficiency, we expect it to constrain the range of St that animals use. This seems to be true for dolphins, sharks and bony fish, which swim at 0.2 < St < 0.4. Here we show that birds, bats and insects also converge on the same narrow range of St, but only when cruising. Tuning cruise kinematics to optimize St therefore seems to be a general principle of oscillatory lift-based propulsion.

  7. Low- ν Flux and Total Charged-current Cross Sections in MINERvA

    NASA Astrophysics Data System (ADS)

    Ren, Lu

    2014-03-01

    The MINER νA experiment measures neutrino and antineutrino interaction cross sections on carbon and other nuclei. Cross section measurements require accurate knowledge of the incident neutrino flux. The ``low- ν'' flux technique uses a standard-candle cross section for events with low energy transfer to to the hadronic system to determine the incident flux. MINER νA will use low- ν fluxes for neutrinos and antineutrinos to tune production models used in beam simulations and to extract total cross sections as a function of energy. We present the low- ν flux technique adapted for the MINER νA data samples and preliminary results for the extracted low- ν fluxes in MINER νA. MINER νA will extend the range of antineutino charged-current cross section measurements to lower energies which are of interest to future accelerator oscillation experiments.

  8. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers

    PubMed Central

    Jirauschek, Christian; Huber, Robert

    2015-01-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  9. Energy savings modelling of re-tuning energy conservation measures in large office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy asmore » an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the re-tuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.« less

  10. Tilt-tuned etalon locking for tunable laser stabilization.

    PubMed

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  11. Continuous wave room temperature external ring cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  12. A multiple degree of freedom electromechanical Helmholtz resonator.

    PubMed

    Liu, Fei; Horowitz, Stephen; Nishida, Toshikazu; Cattafesta, Louis; Sheplak, Mark

    2007-07-01

    The development of a tunable, multiple degree of freedom (MDOF) electromechanical Helmholtz resonator (EMHR) is presented. An EMHR consists of an orifice, backing cavity, and a compliant piezoelectric composite diaphragm. Electromechanical tuning of the acoustic impedance is achieved via passive electrical networks shunted across the piezoceramic. For resistive and capacitive loads, the EMHR is a 2DOF system possessing one acoustic and one mechanical DOF. When inductive ladder networks are employed, multiple electrical DOF are added. The dynamics of the multi-energy domain system are modeled using lumped elements and are represented in an equivalent electrical circuit, which is used to analyze the tunable acoustic input impedance of the EMHR. The two-microphone method is used to measure the acoustic impedance of two EMHR designs with a variety of resistive, capacitive, and inductive shunts. For the first design, the data demonstrate that the tuning range of the second resonant frequency for an EMHR with non-inductive shunts is limited by short- and open-circuit conditions, while an inductive shunt results in a 3DOF system possessing an enhanced tuning range. The second design achieves stronger coupling between the Helmholtz resonator and the piezoelectric backplate, and both resonant frequencies can be tuned with different non-inductive loads.

  13. Spectrum-agile hundred-watt-level high-power random fiber laser enabled by watt-level tunable optical filter

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Song, Jiaxin; Wu, Hanshuo; Zhang, Hanwei; Wu, Jian; Zhou, Pu

    2018-06-01

    Through high-fidelity numerical modeling and careful system-parameter design, we demonstrate the spectral manipulation of a hundred-watt-level high-power random fiber laser (RFL) by employing a watt-level tunable optical filter. Consequently, a >100-W RFL with the spectrum-agile property is achieved. The central wavelength can be continuously tuned with a range of ∼20 nm, and the tuning range of the full width at half maximum linewidth, which is closely related to the central wavelength, covers ∼1.1 to ∼2.7 times of the minimum linewidth.

  14. Multiple model self-tuning control for a class of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Huang, Miao; Wang, Xin; Wang, Zhenlei

    2015-10-01

    This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.

  15. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    NASA Astrophysics Data System (ADS)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  16. Ankle foot orthosis-footwear combination tuning: an investigation into common clinical practice in the United Kingdom.

    PubMed

    Eddison, Nicola; Chockalingam, Nachiappan; Osborne, Stephen

    2015-04-01

    Ankle foot orthoses are used to treat a wide variety of gait pathologies. Ankle foot orthosis-footwear combination tuning should be routine clinical practice when prescribing an ankle foot orthosis. Current research suggests that failure to tune ankle foot orthosis-footwear combinations can lead to immediate detrimental effect on function, and in the longer term, it may actually contribute to deterioration. The purpose of this preliminary study was to identify the current level of knowledge clinicians have in the United Kingdom regarding ankle foot orthosis-footwear combination tuning and to investigate common clinical practice regarding ankle foot orthosis-footwear combination tuning among UK orthotists. Cross-sectional survey. A prospective study employing a multi-item questionnaire was sent out to registered orthotists and uploaded on to the official website of British Association of Prosthetists and Orthotists to be accessed by their members. A total of 41 completed questionnaires were received. The results demonstrate that only 50% of participants use ankle foot orthosis-footwear combination tuning as standard clinical practice. The most prevalent factors preventing participants from carrying out ankle foot orthosis-footwear combination tuning are a lack of access to three-dimensional gait analysis equipment (37%) and a lack of time available in their clinics (27%). Although, ankle foot orthosis-footwear combination tuning has been identified as an essential aspect of the prescription of ankle foot orthoses, the results of this study show a lack of understanding of the key principles behind ankle foot orthosis-footwear combination tuning. © The International Society for Prosthetics and Orthotics 2014.

  17. Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice.

    PubMed

    Kundu, Iman; Dean, Paul; Valavanis, Alexander; Chen, Li; Li, Lianhe; Cunningham, John E; Linfield, Edmund H; Davies, A Giles

    2017-01-09

    We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

  18. Tunable dual-channel filter based on the photonic crystal with air defects.

    PubMed

    Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying

    2017-07-01

    We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

  19. Zeolites with Continuously Tuneable Porosity**

    PubMed Central

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  20. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers

    NASA Astrophysics Data System (ADS)

    Shi, Chengzhi; Shaw, Steven W.; Parker, Robert G.

    2016-12-01

    This paper investigates vibration reduction in a rigid rotor with tilting, rotational, and translational motions using centrifugal pendulum vibration absorbers (CPVAs). A linearized vibration model is derived for the system consisting of the rotor and multiple sets of absorbers tuned to different orders. Each group of absorbers lies in a given plane perpendicular to the rotor rotation axis. Gyroscopic system modal analysis is applied to derive the steady-state response of the absorbers and the rotor to external, rotor-order, periodic forces and torques with frequency mΩ, where Ω is the mean rotor speed and m is the engine order (rotor-order). It is found that an absorber group with tuning order m is effective at reducing the rotor translational, tilting, and rotational vibrations, provided certain conditions are met. When the periodic force and torque are caused by N substructures that are equally spaced around the rotor, the rotor translational and tilting vibrations at order j are addressed by two absorber groups with tuning orders jN±1. In this case, the rotor rotational vibration at order j can be attenuated by an absorber group with tuning order jN. The results show how the response depends on the load amplitudes and order, the rotor speed, and design parameters associated with the sets of absorbers, most importantly, their tuning, mass, and plane of placement. In the ideal case with zero damping and exact tuning of the absorber sets, the vibrations can be eliminated for a range of loads over which the linearized model holds. The response for systems with detuned absorbers is also determined, which is relevant to applications where small detuning is employed due to robustness issues, and to allow for a larger range of operating loads over which the absorbers are effective. The system also exhibits undesirable resonances very close to these tuning conditions, an issue that is difficult to resolve and deserves further investigation.

  1. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.

    PubMed

    Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S

    2016-08-16

    Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.

  2. Curvature and frontier orbital energies in density functional theory

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Baer, Roi

    2013-03-01

    Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump'' by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of DFT. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

  3. Effects of temperature on tuning of the auditory pathway in the cicada Tettigetta josei (Hemiptera, Tibicinidae).

    PubMed

    Fonseca, P J; Correia, T

    2007-05-01

    The effects of temperature on hearing in the cicada Tettigetta josei were studied. The activity of the auditory nerve and the responses of auditory interneurons to stimuli of different frequencies and intensities were recorded at different temperatures ranging from 16 degrees C to 29 degrees C. Firstly, in order to investigate the temperature dependence of hearing processes, we analyzed its effects on auditory tuning, sensitivity, latency and Q(10dB). Increasing temperature led to an upward shift of the characteristic hearing frequency, to an increase in sensitivity and to a decrease in the latency of the auditory response both in the auditory nerve recordings (periphery) and in some interneurons at the metathoracic-abdominal ganglionic complex (MAC). Characteristic frequency shifts were only observed at low frequency (3-8 kHz). No changes were seen in Q(10dB). Different tuning mechanisms underlying frequency selectivity may explain the results observed. Secondly, we investigated the role of the mechanical sensory structures that participate in the transduction process. Laser vibrometry measurements revealed that the vibrations of the tympanum and tympanal apodeme are temperature independent in the biologically relevant range (18-35 degrees C). Since the above mentioned effects of temperature are present in the auditory nerve recordings, the observed shifts in frequency tuning must be performed by mechanisms intrinsic to the receptor cells. Finally, the role of potassium channels in the response of the auditory system was investigated using a specific inhibitor of these channels, tetraethylammonium (TEA). TEA caused shifts on tuning and sensitivity of the summed response of the receptors similar to the effects of temperature. Thus, potassium channels are implicated in the tuning of the receptor cells.

  4. Fine-tuning gene networks using simple sequence repeats

    PubMed Central

    Egbert, Robert G.; Klavins, Eric

    2012-01-01

    The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch’s behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis—suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks. PMID:22927382

  5. Watt-level tunable 1.5  μm narrow linewidth fiber ring laser based on a temperature tuning π-phase-shifted fiber Bragg grating.

    PubMed

    Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia

    2017-11-10

    A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318  MHz (∼2.57  pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33  pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.

  6. Tuned range separated hybrid functionals for solvated low bandgap oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, Thiago B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de; Kümmel, Stephan

    2015-07-21

    The description of charge transfer excitations has long been a challenge to time dependent density functional theory. The recently developed concept of “optimally tuned range separated hybrid (OT-RSH) functionals” has proven to describe charge transfer excitations accurately in many cases. However, describing solvated or embedded systems is yet a challenge. This challenge is not only computational but also conceptual, because the tuning requires identifying a specific orbital, typically the highest occupied one of the molecule under study. For solvated molecules, this orbital may be delocalized over the solvent. We here demonstrate that one way of overcoming this problem is tomore » use a locally projected self-consistent field diagonalization on an absolutely localized molecular orbital expansion. We employ this approach to determine ionization energies and the optical gap of solvated oligothiophenes, i.e., paradigm low gap systems that are of relevance in organic electronics. Dioxane solvent molecules are explicitly represented in our calculations, and the ambiguities of straightforward parameter tuning in solution are elucidated. We show that a consistent estimate of the optimal range separated parameter (ω) at the limit of bulk solvation can be obtained by gradually extending the solvated system. In particular, ω is influenced by the solvent beyond the first coordination sphere. For determining ionization energies, a considerable number of solvent molecules on the first solvation shell must be taken into account. We demonstrate that accurately calculating optical gaps of solvated systems using OT-RSH can be done in three steps: (i) including the chemical environment when determining the range-separation parameter, (ii) taking into account the screening due to the solvent, and (iii) using realistic molecular geometries.« less

  7. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.

    PubMed

    Lee, Sang-Won; Song, Hyun-Woo; Jung, Moon-Youn; Kim, Seung-Hwan

    2011-10-24

    In this study, we demonstrated a wide tuning range wavelength-swept laser with a single semiconductor optical amplifier (SOA) at 1020 nm for ultrahigh resolution, Fourier-domain optical coherence tomography (UHR, FD-OCT). The wavelength-swept laser was constructed with an external line-cavity based on a Littman configuration. An optical wavelength selection filter consisted of a grating, a telescope, and a polygon scanner. Before constructing the optical wavelength selection filter, we observed that the optical power, the spectrum bandwidth, and the center wavelength of the SOA were affected by the temperature of the thermoelectric (TE) cooler in the SOA mount as well as the applied current. Therefore, to obtain a wide wavelength tuning range, we adjusted the temperature of the TE cooler in the SOA mount. When the temperature in the TE cooler was 9 °C, our swept source had a tuning range of 142 nm and a full-width at half-maximum (FWHM) of 121.5 nm at 18 kHz. The measured instantaneous spectral bandwidth (δλ) is 0.085 nm, which was measured by an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. This value corresponds to an imaging depth of 3.1 mm in air. Additionally, the averaged optical power of our swept source was 8.2 mW. In UHR, FD/SS-OCT using our swept laser, the measured axial resolution was 4.0 μm in air corresponding to 2.9 μm in tissue (n = 1.35). The sensitivity was measured to be 93.1 dB at a depth of 100 μm. Finally, we obtained retinal images (macular and optic disk) and a corneal image. © 2011 Optical Society of America

  8. Harmonic reduction by using single-tuned passive filter in plastic processing industry

    NASA Astrophysics Data System (ADS)

    Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.

    2018-02-01

    The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.

  9. Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers.

    PubMed

    Lancaster, D G; Gross, S; Withford, M J; Monro, T M

    2014-10-20

    We report widely tunable (≈ 260 nm) Tm(3+) and Ho(3+) doped fluorozirconate (ZBLAN) glass waveguide extended cavity lasers with close to diffraction limited beam quality (M(2) ≈ 1.3). The waveguides are based on ultrafast laser inscribed depressed claddings. A Ti:sapphire laser pumped Tm(3+)-doped chip laser continuously tunes from 1725 nm to 1975 nm, and a Tm(3+)-sensitized Tm(3+):Ho(3+) chip laser displays tuning across both ions evidenced by a red enhanced tuning range of 1810 to 2053 nm. We also demonstrate a compact 790 nm diode laser pumped Tm(3+)-doped chip laser which tunes from 1750 nm to 1998 nm at a 14% incident slope efficiency, and a beam quality of M(2) ≈ 1.2 for a large mode-area waveguide with 70 µm core diameter.

  10. Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN.

    PubMed

    Ahlawat, Meenu; Bostani, Ameneh; Tehranchi, Amirhossein; Kashyap, Raman

    2013-11-18

    We experimentally demonstrate tunable dual channel broadcasting of a signal over the C-band for wavelength division multiplexed (WDM) optical networks. This is based on cascaded χ(2) nonlinear mixing processes in a specially engineered, 20-mm-long step-chirped periodically poled lithium niobate with a broad 28-nm second harmonic (SH) bandwidth in the 1.55-μm spectral range. A 10-GHz picosecond mode-locked laser was used as a signal along with a CW pump to generate two pulsed idlers, which are simultaneously tuned across the C-band by detuning of the pump wavelength within the broad SH bandwidth. Variable-input, variable-output scheme of tuned idlers is successfully achieved by tuning the signal wavelength. Pump or signal wavelength tuning of ~10 nm results in the idlers spreading across 30 nm in the C-band.

  11. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, A., E-mail: alyakh@pranalytica.com; Barron-Jimenez, R.; Dunayevskiy, I.

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less thanmore » 20 μs.« less

  12. Determinants of Intention to Use Mobile Phone Caller Tunes to Promote Voluntary Blood Donation: Cross-Sectional Study

    PubMed Central

    Burdine, James N; Aftab, Ammar; Asamoah-Akuoko, Lucy; Anum, David A; Kretchy, Irene A; Samman, Elfreda W; Appiah, Patience B; Bates, Imelda

    2018-01-01

    Background Voluntary blood donation rates are low in sub-Saharan Africa. Sociobehavioral factors such as a belief that donated blood would be used for performing rituals deter people from donating blood. There is a need for culturally appropriate communication interventions to encourage individuals to donate blood. Health care interventions that use mobile phones have increased in developing countries, although many of them focus on SMS text messaging (short message service, SMS). A unique feature of mobile phones that has so far not been used for aiding blood donation is caller tunes. Caller tunes replace the ringing sound heard by a caller to a mobile phone before the called party answers the call. In African countries such as Ghana, instead of the typical ringing sound, a caller may hear a message or song. Despite the popularity of such caller tunes, there is a lack of empirical studies on their potential use for promoting blood donation. Objective The aim of this study was to use the technology acceptance model to explore the influence of the factors—perceived ease of use, perceived usefulness, attitude, and free of cost—on intentions of blood or nonblood donors to download blood donation-themed caller tunes to promote blood donation, if available. Methods A total of 478 blood donors and 477 nonblood donors were purposively sampled for an interviewer-administered questionnaire survey at blood donation sites in Accra, Ghana. Data were analyzed using descriptive statistics, exploratory factor analysis, and confirmatory factory analysis or structural equation modeling, leading to hypothesis testing to examine factors that determine intention to use caller tunes for blood donation among blood or nonblood donors who use or do not use mobile phone caller tunes. Results Perceived usefulness had a significant effect on intention to use caller tunes among blood donors with caller tunes (beta=.293, P<.001), blood donors without caller tunes (beta=.165, P=.02, nonblood donors with caller tunes (beta=.278, P<.001), and nonblood donors without caller tunes (beta=.164, P=.01). Attitudes had significant effect on intention to use caller tunes among blood donors without caller tunes (beta=.351, P<.001), nonblood donors with caller tunes (beta=.384, P<.001), nonblood donors without caller tunes (beta=.539, P<.001) but not among blood donors with caller tunes (beta=.056, P=.44). The effect of free-of-cost caller tunes on the intention to use for blood donation was statistically significant (beta=.169, P<.001) only in the case of nonblood donors without caller tunes, whereas this path was statistically not significant in other models. Conclusions Our results provide empirical evidence for designing caller tunes to promote blood donation in Ghana. The study found that making caller tunes free is particularly relevant for nonblood donors with no caller tunes. PMID:29728343

  13. Electrical birefringence tuning of VCSELs

    NASA Astrophysics Data System (ADS)

    Pusch, Tobias; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.; Michalzik, Rainer

    2018-02-01

    The birefringence splitting B, which is the frequency difference between the two fundamental linear polarization modes in vertical-cavity surface-emitting lasers (VCSELs), is the key parameter determining the polarization dynamics of spin-VCSELs that can be much faster than the intensity dynamics. For easy handling and control, electrical tuning of B is favored. This was realized in an integrated chip by thermally induced strain via asymmetric heating with a birefringence tuning range of 45 GHz. In this paper we present our work on VCSEL structures mounted on piezoelectric transducers for strain generation. Furthermore we show a combination of both techniques, namely VCSELs with piezo-thermal birefringence tunability.

  14. Simple, low-noise piezo driver with feed-forward for broad tuning of external cavity diode lasers.

    PubMed

    Doret, S Charles

    2018-02-01

    We present an inexpensive, low-noise (<260 μV rms , 0.1 Hz-100 kHz) design for a piezo driver suitable for frequency tuning of external-cavity diode lasers. This simple driver improves upon many commercially available drivers by incorporating circuitry to produce a "feed-forward" signal appropriate for making simultaneous adjustments to the piezo voltage and laser current, enabling dramatic improvements in a mode-hop-free laser frequency tuning range. We present the theory behind our driver's operation, characterize its output noise, and demonstrate its use in absorption spectroscopy on the rubidium D 1 line.

  15. An approach to tune the amplitude of surface ripple patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Tanuj; Kanjilal, D.; Kumar, Ashish

    An approach is presented to tune the amplitude of ripple patterns using ion beam. By varying the depth location of amorphous/crystalline interface, ripple patterns of different amplitude with similar wavelength were grown on the surface of Si (100) using 50 keV Ar{sup +} beam irradiation. Atomic force microscopy study demonstrates the tuning of amplitude of ripples patterns for wide range. Rutherford backscattering channeling measurement was performed to measure the depth location of amorphous/crystalline interface. It is postulated that the ion beam stimulated solid flow inside the amorphous layer controls the wavelength, whereas mass rearrangement at amorphous/crystalline interface controls the amplitude.

  16. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests.

    PubMed

    Veilleux, Carrie C; Cummings, Molly E

    2012-12-01

    Although variation in the color of light in terrestrial diurnal and twilight environments has been well documented, relatively little work has examined the color of light in nocturnal habitats. Understanding the range and sources of variation in nocturnal light environments has important implications for nocturnal vision, particularly following recent discoveries of nocturnal color vision. In this study, we measured nocturnal irradiance in a dry forest/woodland and a rainforest in Madagascar over 34 nights. We found that a simple linear model including the additive effects of lunar altitude, lunar phase and canopy openness successfully predicted total irradiance flux measurements across 242 clear sky measurements (r=0.85, P<0.0001). However, the relationship between these variables and spectral irradiance was more complex, as interactions between lunar altitude, lunar phase and canopy openness were also important predictors of spectral variation. Further, in contrast to diurnal conditions, nocturnal forests and woodlands share a yellow-green-dominant light environment with peak flux at 560 nm. To explore how nocturnal light environments influence nocturnal vision, we compared photoreceptor spectral tuning, habitat preference and diet in 32 nocturnal mammals. In many species, long-wavelength-sensitive cone spectral sensitivity matched the peak flux present in nocturnal forests and woodlands, suggesting a possible adaptation to maximize photon absorption at night. Further, controlling for phylogeny, we found that fruit/flower consumption significantly predicted short-wavelength-sensitive cone spectral tuning in nocturnal mammals (P=0.002). These results suggest that variation in nocturnal light environments and species ecology together influence cone spectral tuning and color vision in nocturnal mammals.

  17. DFTB Parameters for the Periodic Table, Part 2: Energies and Energy Gradients from Hydrogen to Calcium.

    PubMed

    Oliveira, Augusto F; Philipsen, Pier; Heine, Thomas

    2015-11-10

    In the first part of this series, we presented a parametrization strategy to obtain high-quality electronic band structures on the basis of density-functional-based tight-binding (DFTB) calculations and published a parameter set called QUASINANO2013.1. Here, we extend our parametrization effort to include the remaining terms that are needed to compute the total energy and its gradient, commonly referred to as repulsive potential. Instead of parametrizing these terms as a two-body potential, we calculate them explicitly from the DFTB analogues of the Kohn-Sham total energy expression. This strategy requires only two further numerical parameters per element. Thus, the atomic configuration and four real numbers per element are sufficient to define the DFTB model at this level of parametrization. The QUASINANO2015 parameter set allows the calculation of energy, structure, and electronic structure of all systems composed of elements ranging from H to Ca. Extensive benchmarks show that the overall accuracy of QUASINANO2015 is comparable to that of well-established methods, including PM7 and hand-tuned DFTB parameter sets, while coverage of a much larger range of chemical systems is available.

  18. Widely tunable chaotic fiber laser for WDM-PON detection

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian

    2014-05-01

    A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.

  19. Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: the Tuned Mass-Damper-Interter (TMDI)

    NASA Astrophysics Data System (ADS)

    Giaralis, Agathoklis; Marian, Laurentiu

    2016-04-01

    This paper explores the practical benefits of the recently proposed by the authors tuned mass-damper-inerter (TMDI) visà- vis the classical tuned mass-damper (TMD) for the passive vibration control of seismically excited linearly building structures assumed to respond linearly. Special attention is focused on showcasing that the TMDI requires considerably reduced attached mass/weight to achieve the same vibration suppression level as the classical TMD by exploiting the mass amplification effect of the ideal inerter device. The latter allows for increasing the inertial property of the TMDI without a significant increase to its physical weight. To this end, novel numerical results pertaining to a seismically excited 3-storey frame building equipped with optimally designed TMDIs for various values of attached mass and inertance (i.e., constant of proportionality of the inerter resisting force in mass units) are furnished. The seismic action is modelled by a non-stationary stochastic process compatible with the elastic acceleration response spectrum of the European seismic code (Eurocode 8), while the TMDIs are tuned to minimize the mean square top floor displacement. It is shown that the TMDI achieves the same level of performance as an unconventional "large mass" TMD for seismic protection (i.e., more than 10% of attached mass of the total building mass), by incorporating attached masses similar to the ones used for controlling wind-induced vibrations via TMDs (i.e., 1%-5% of the total building mass). Moreover, numerical data from response history analyses for a suite of Eurocode 8 compatible recorded ground motions further demonstrate that optimally tuned TMDIs for top floor displacement minimization achieve considerable reductions in terms of top floor acceleration and attached mass displacement (stroke) compared to the classical TMD with the same attached mass.

  20. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain

    PubMed Central

    Cazettes, Fanny; Fischer, Brian J; Pena, Jose L

    2014-01-01

    The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. DOI: http://dx.doi.org/10.7554/eLife.04854.001 PMID:25531067

  1. Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.

    PubMed

    St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei

    2015-12-01

    Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000  μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.

  2. Tunable Thin-Film Resonator Coupled to Two Qubits in a 3D Cavity

    NASA Astrophysics Data System (ADS)

    Ballard, Cody; Dutta, S. K.; Budoyo, R. P.; Voigt, K. D.; Lobb, C. J.; Wellstood, F. C.

    We present preliminary results on using a tunable, thin-film lumped element LC resonator to couple two transmon qubits in a 3D microwave cavity. The cavity, which is used for readout, is made of aluminum and has a TE101 mode at 6.3 GHz. The LC resonator has a base frequency of about 5 GHz and the inductor contains two loops, each having a single Josephson junction. Applying magnetic flux to the loops modulates the overall inductance of the resonator allowing tuning over a 500 MHz range. Two Al/AlOx/Al transmon qubits are fabricated on the same sapphire substrate as the resonator, and are designed to have a charging energy of 200 MHz and a frequency that falls within the tuning range of the resonator. Observing the perturbations of the resonant frequencies of the qubits and the cavity as the LC resonator is tuned allows us to determine the coupling strengths between each qubit and the LC resonator and between the LC resonator and the cavity.

  3. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm.

    PubMed

    Wei, Chen; Luo, Hongyu; Shi, Hongxia; Lyu, YanJia; Zhang, Han; Liu, Yong

    2017-04-17

    In this paper, we demonstrate a wavelength widely tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. The laser can be tuned over 170 nm (2699 nm~2869.9 nm) for various pump power levels, while maintaining stable μs-level single-pulse gain-switched operation with controllable output pulse duration at a selectable repetition rate. To the best of our knowledge, this is the first wavelength tunable gain-switched fiber laser in the 3 μm spectral region with the broadest tuning range (doubling the record tuning range) of the pulsed fiber lasers around 3 μm. Influences of pump energy and power on the output gain-switched laser performances are investigated in detail. This robust, simple, and versatile mid-infrared pulsed fiber laser source is highly suitable for many applications including laser surgery, material processing, sensing, spectroscopy, as well as serving as a practical seed source in master oscillator power amplifiers.

  4. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    PubMed

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tunable picosecond infrared pulses generated by stimulated electronic Raman scattering of a mode-locked Ti:Sapphire laser in potassium vapor

    NASA Astrophysics Data System (ADS)

    Ohde, H.; Lin, S.; Minoh, A.; Shimizu, F. O.; Aono, M.; Suzuki, T.

    1996-01-01

    A down-conversion to the mid-infrared region by using Stimulated Electronic Raman Scattering (SERS) in potassium vapor is described. The pump radiation is a frequency-doubled regeneratively amplified Ti:Sapphire laser with a pulse duration of 2 ps, pulse energy of 0.2 mJ, and repetition rate of 10 Hz. With the pumping frequency tuned around the potassium 4 s-5 p transition, nearly transform-limited infrared radiation tunable between 2.2 and 3.4 μm has been generated with a peak infrared energy of 12 µJ, corresponding to a quantum efficiency of 17%, and with a pulse duration of 2 ps. The present tuning range could be extended by extending the tuning range of the pump laser. In comparison, intense infrared radiation of 90 µJ energy but with a very narrow tunability around 2.9 μm has also been generated by SERS in barium vapor.

  6. Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.

    PubMed

    Recio-Spinoso, Alberto; Joris, Philip X

    2014-02-01

    Besides the rapid fluctuations in pressure that constitute the "fine structure" of a sound stimulus, slower fluctuations in the sound's envelope represent an important temporal feature. At various stages in the auditory system, neurons exhibit tuning to envelope frequency and have been described as modulation filters. We examine such tuning in the ventral nucleus of the lateral lemniscus (VNLL) of the pentobarbital-anesthetized cat. The VNLL is a large but poorly accessible auditory structure that provides a massive inhibitory input to the inferior colliculus. We test whether envelope filtering effectively applies to the envelope spectrum when multiple envelope components are simultaneously present. We find two broad classes of response with often complementary properties. The firing rate of onset neurons is tuned to a band of modulation frequencies, over which they also synchronize strongly to the envelope waveform. Although most sustained neurons show little firing rate dependence on modulation frequency, some of them are weakly tuned. The latter neurons are usually band-pass or low-pass tuned in synchronization, and a reverse-correlation approach demonstrates that their modulation tuning is preserved to nonperiodic, noisy envelope modulations of a tonal carrier. Modulation tuning to this type of stimulus is weaker for onset neurons. In response to broadband noise, sustained and onset neurons tend to filter out envelope components over a frequency range consistent with their modulation tuning to periodically modulated tones. The results support a role for VNLL in providing temporal reference signals to the auditory midbrain.

  7. High-pressure cell for terahertz time-domain spectroscopy.

    PubMed

    Zhang, Wei; Nickel, Daniel; Mittleman, Daniel

    2017-02-06

    We introduce a sample cell that can be used for pressure-dependent terahertz time-domain spectroscopy. Compared with traditional far-IR spectroscopy with a diamond anvil cell, the larger aperture permits measurements down to much lower frequencies as low as 3.3 cm-1 (0.1 THz), giving access to new spectroscopic results. The pressure tuning range reaches up to 34.4 MPa, while the temperature range is from 100 to 473 K. With this large range of tuning parameters, we are able to map out phase diagrams of materials based on their THz spectrum, as well as to track the changing of the THz spectrum within a single phase as a function of temperature and pressure. Pressure-dependent THz-TDS results for nitrogen and R-camphor are shown as an example.

  8. Hollow-Structured Graphene-Silicone-Composite-Based Piezoresistive Sensors: Decoupled Property Tuning and Bending Reliability.

    PubMed

    Luo, Ningqi; Huang, Yan; Liu, Jing; Chen, Shih-Chi; Wong, Ching Ping; Zhao, Ni

    2017-10-01

    A versatile flexible piezoresistive sensor should maintain high sensitivity in a wide linear range, and provide a stable and repeatable pressure reading under bending. These properties are often difficult to achieve simultaneously with conventional filler-matrix composite active materials, as tuning of one material component often results in change of multiple sensor properties. Here, a material strategy is developed to realize a 3D graphene-poly(dimethylsiloxane) hollow structure, where the electrical conductivity and mechanical elasticity of the composite can be tuned separately by varying the graphene layer number and the poly(dimethylsiloxane) composition ratio, respectively. As a result, the sensor sensitivity and linear range can be easily improved through a decoupled tuning process, reaching a sensitivity of 15.9 kPa -1 in a 60 kPa linear region, and the sensor also exhibits fast response (1.2 ms rising time) and high stability. Furthermore, by optimizing the density of the graphene percolation network and thickness of the composite, the stability and repeatability of the sensor output under bending are improved, achieving a measurement error below 6% under bending radius variations from -25 to +25 mm. Finally, the potential applications of these sensors in wearable medical devices and robotic vision are explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Alignment of defect levels and band edges through hybrid functionals: Effect of screening in the exchange term

    NASA Astrophysics Data System (ADS)

    Komsa, Hannu-Pekka; Broqvist, Peter; Pasquarello, Alfredo

    2010-05-01

    We investigate how various treatments of exact exchange affect defect charge transition levels and band edges in hybrid functional schemes for a variety of systems. We distinguish the effects of long-range vs short-range exchange and of local vs nonlocal exchange. This is achieved by the consideration of a set of four functionals, which comprise the semilocal Perdew-Burke-Ernzerhof (PBE) functional, the PBE hybrid (PBE0), the Heyd-Scuseria-Ernzerhof (HSE) functional, and a hybrid derived from PBE0 in which the Coulomb kernel in the exact exchange term is screened as in the HSE functional but which, unlike HSE, does not include a local expression compensating for the loss of the long-range exchange. We find that defect levels in PBE0 and in HSE almost coincide when aligned with respect to a common reference potential, due to the close total-energy differences in the two schemes. At variance, the HSE band edges determined within the same alignment scheme are found to shift significantly with respect to the PBE0 ones: the occupied and the unoccupied states undergo shifts of about +0.4eV and -0.4eV , respectively. These shifts are found to vary little among the materials considered. Through a rationale based on the behavior of local and nonlocal long-range exchange, this conclusion is generalized beyond the class of materials used in this study. Finally, we explicitly address the practice of tuning the band gap by adapting the fraction of exact exchange incorporated in the functional. When PBE0-like and HSE-like functionals are tuned to yield identical band gaps, their respective results for the positions of defect levels within the band gap and for the band alignments at interfaces are found to be very close.

  10. Stability enhancement and electronic tunability of two-dimensional SbIV compounds via surface functionalization

    NASA Astrophysics Data System (ADS)

    Zhou, Wenhan; Guo, Shiying; Liu, Xuhai; Cai, Bo; Song, Xiufeng; Zhu, Zhen; Zhang, Shengli

    2018-01-01

    We propose a family of hydrogenated- and halogenated-SbIV (SbIVX-2) materials that simultaneously have two-dimensional (2D) structures, high stability and appealing electronic properties. Based on first-principles total-energy and vibrational-spectra calculations, SbIVX-2 monolayers are found both thermally and dynamically stable. Varying IV and X elements can rationally tune the electronic properties of SbIVX-2 monolayers, effectively modulating the band gap from 0 to 3.42 eV. Regarding such superior stability and broad band-gap range, SbIVX-2 monolayers are expected to be synthesized in experiments and taken as promising candidates for low-dimensional electronic and optoelectronic devices, such as blue-to-ultraviolet light-emitting diodes (LED) and photodetectors.

  11. iTunes song-gifting is a low-cost, efficient recruitment tool to engage high-risk MSM in internet research.

    PubMed

    Holland, Christine M; Ritchie, Natalie D; Du Bois, Steve N

    2015-10-01

    This brief report describes methodology and results of a novel, efficient, and low-cost recruitment tool to engage high-risk MSM in online research. We developed an incentivization protocol using iTunes song-gifting to encourage participation of high-risk MSM in an Internet-based survey of HIV status, childhood sexual abuse, and adult behavior and functioning. Our recruitment methodology yielded 489 participants in 4.5 months at a total incentive cost of $1.43USD per participant. The sample comprised a critically high-risk group of MSM, including 71.0 % who reported recent condomless anal intercourse. We offer a "how-to" guide to aid future investigators in using iTunes song-gifting incentives.

  12. Analysis of tuning methods in semiconductor frequency-selective surfaces

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey; Palm, Dominic; Fip, Tassilo; Rahm, Marco

    2017-02-01

    Advanced technology, such as sensing and communication equipment, has recently begun to combine optically sensitive nano-scale structures with customizable semiconductor material systems. Included within this broad field of study is the aptly named frequency-selective surface; which is unique in that it can be artificially designed to produce a specific electromagnetic or optical response. With the inherent utility of a frequency-selective surface, there has been an increased interest in the area of dynamic frequency-selective surfaces, which can be altered through optical or electrical tuning. This area has had exciting break throughs as tuning methods have evolved; however, these methods are typically energy intensive (optical tuning) or have met with limited success (electrical tuning). As such, this work investigates multiple structures and processes which implement semiconductor electrical biasing and/or optical tuning. Within this study are surfaces ranging from transmission meta-structures to metamaterial surface-waves and the associated coupling schemes. This work shows the utility of each design, while highlighting potential methods for optimizing dynamic meta-surfaces. As an added constraint, the structures were also designed to operate in unison with a state-of-the-art Ti:Sapphire Spitfire Ace and Spitfire Ace PA dual system (12 Watt) with pulse front matching THz generation and an EOS detection system. Additionally, the Ti:Sapphire laser system would provide the means for optical tunablity, while electrical tuning can be obtained through external power supplies.

  13. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans*

    PubMed Central

    Lossow, Kristina; Hübner, Sandra; Roudnitzky, Natacha; Slack, Jay P.; Pollastro, Federica; Behrens, Maik; Meyerhof, Wolfgang

    2016-01-01

    One key to animal survival is the detection and avoidance of potentially harmful compounds by their bitter taste. Variable numbers of taste 2 receptor genes expressed in the gustatory end organs enable bony vertebrates (Euteleostomi) to recognize numerous bitter chemicals. It is believed that the receptive ranges of bitter taste receptor repertoires match the profiles of bitter chemicals that the species encounter in their diets. Human and mouse genomes contain pairs of orthologous bitter receptor genes that have been conserved throughout evolution. Moreover, expansions in both lineages generated species-specific sets of bitter taste receptor genes. It is assumed that the orthologous bitter taste receptor genes mediate the recognition of bitter toxins relevant for both species, whereas the lineage-specific receptors enable the detection of substances differently encountered by mice and humans. By challenging 34 mouse bitter taste receptors with 128 prototypical bitter substances in a heterologous expression system, we identified cognate compounds for 21 receptors, 19 of which were previously orphan receptors. We have demonstrated that mouse taste 2 receptors, like their human counterparts, vary greatly in their breadth of tuning, ranging from very broadly to extremely narrowly tuned receptors. However, when compared with humans, mice possess fewer broadly tuned receptors and an elevated number of narrowly tuned receptors, supporting the idea that a large receptor repertoire is the basis for the evolution of specialized receptors. Moreover, we have demonstrated that sequence-orthologous bitter taste receptors have distinct agonist profiles. Species-specific gene expansions have enabled further diversification of bitter substance recognition spectra. PMID:27226572

  14. Electronic frequency tuning of the acousto-optic mode-locking device of a laser

    NASA Astrophysics Data System (ADS)

    Magdich, L. N.; Balakshy, V. I.; Mantsevich, S. N.

    2017-11-01

    The effect of the electronic tuning of the acoustic resonances in an acousto-optic mode-locking device of a laser is investigated theoretically and experimentally. The problem of the excitation of a Fabry-Perot acoustic resonator by a plate-like piezoelectric transducer (PET) is solved in the approximation of plane acoustic waves taking into consideration the actual parameters of an RF generator and the elements for matching the PET to the generator. Resonances are tuned by changing the matching inductance that was connected in parallel to the transducer of the acousto-optic cell. The cell used in the experiment was manufactured from fused silica and included a lithium niobate PET. Changes in the matching inductance in the range of 0.025 to 0.2 μH provided the acoustic-resonance frequency tuning by 0.19 MHz, which exceeds the acoustic- resonance half-width.

  15. Phosphatase activity tunes two-component system sensor detection threshold.

    PubMed

    Landry, Brian P; Palanki, Rohan; Dyulgyarov, Nikola; Hartsough, Lucas A; Tabor, Jeffrey J

    2018-04-12

    Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.

  16. Determinants of Intention to Use Mobile Phone Caller Tunes to Promote Voluntary Blood Donation: Cross-Sectional Study.

    PubMed

    Appiah, Bernard; Burdine, James N; Aftab, Ammar; Asamoah-Akuoko, Lucy; Anum, David A; Kretchy, Irene A; Samman, Elfreda W; Appiah, Patience B; Bates, Imelda

    2018-05-04

    Voluntary blood donation rates are low in sub-Saharan Africa. Sociobehavioral factors such as a belief that donated blood would be used for performing rituals deter people from donating blood. There is a need for culturally appropriate communication interventions to encourage individuals to donate blood. Health care interventions that use mobile phones have increased in developing countries, although many of them focus on SMS text messaging (short message service, SMS). A unique feature of mobile phones that has so far not been used for aiding blood donation is caller tunes. Caller tunes replace the ringing sound heard by a caller to a mobile phone before the called party answers the call. In African countries such as Ghana, instead of the typical ringing sound, a caller may hear a message or song. Despite the popularity of such caller tunes, there is a lack of empirical studies on their potential use for promoting blood donation. The aim of this study was to use the technology acceptance model to explore the influence of the factors-perceived ease of use, perceived usefulness, attitude, and free of cost-on intentions of blood or nonblood donors to download blood donation-themed caller tunes to promote blood donation, if available. A total of 478 blood donors and 477 nonblood donors were purposively sampled for an interviewer-administered questionnaire survey at blood donation sites in Accra, Ghana. Data were analyzed using descriptive statistics, exploratory factor analysis, and confirmatory factory analysis or structural equation modeling, leading to hypothesis testing to examine factors that determine intention to use caller tunes for blood donation among blood or nonblood donors who use or do not use mobile phone caller tunes. Perceived usefulness had a significant effect on intention to use caller tunes among blood donors with caller tunes (beta=.293, P<.001), blood donors without caller tunes (beta=.165, P=.02, nonblood donors with caller tunes (beta=.278, P<.001), and nonblood donors without caller tunes (beta=.164, P=.01). Attitudes had significant effect on intention to use caller tunes among blood donors without caller tunes (beta=.351, P<.001), nonblood donors with caller tunes (beta=.384, P<.001), nonblood donors without caller tunes (beta=.539, P<.001) but not among blood donors with caller tunes (beta=.056, P=.44). The effect of free-of-cost caller tunes on the intention to use for blood donation was statistically significant (beta=.169, P<.001) only in the case of nonblood donors without caller tunes, whereas this path was statistically not significant in other models. Our results provide empirical evidence for designing caller tunes to promote blood donation in Ghana. The study found that making caller tunes free is particularly relevant for nonblood donors with no caller tunes. ©Bernard Appiah, James N Burdine, Ammar Aftab, Lucy Asamoah-Akuoko, David A Anum, Irene A Kretchy, Elfreda W Samman, Patience B Appiah, Imelda Bates. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 04.05.2018.

  17. The use of acoustically tuned resonators to improve the sound transmission loss of double panel partitions

    NASA Astrophysics Data System (ADS)

    Mason, J. M.; Fahy, F. J.

    1986-10-01

    The effectiveness of tuned Helmholtz resonators connected to the partition cavity in double-leaf partitions utilized in situations requiring low weight structures with high transmission loss is investigated as a method of improving sound transmission loss. This is demonstrated by a simple theoretical model and then experimentally verified. Results show that substantial improvements may be obtained at and around the mass-air-mass frequency for a total resonator volume 15 percent of the cavity volume.

  18. Demonstration of a wireless, self-powered, electroacoustic liner system.

    PubMed

    Phipps, Alex; Liu, Fei; Cattafesta, Louis; Sheplak, Mark; Nishida, Toshikazu

    2009-02-01

    This paper demonstrates the system operation of a self-powered active liner for the suppression of aircraft engine noise. The fundamental element of the active liner system is an electromechanical Helmholtz resonator (EMHR), which consists of a Helmholtz resonator with one of its rigid walls replaced with a circular piezoceramic composite plate. For this system demonstration, two EMHR elements are used, one for acoustic impedance tuning and one for energy harvesting. The EMHR used for acoustic impedance tuning is shunted with a variable resistive load, while the EMHR used for energy harvesting is shunted to a flyback power converter and storage element. The desired acoustic impedance conditions are determined externally, and wirelessly transmitted to the liner system. The power for the receiver and the impedance tuning circuitry in the liner are supplied by the harvested energy. Tuning of the active liner is demonstrated at three different sound pressure levels (148, 151, and 153 dB) in order to show the robustness of the energy harvesting and storage system. An acoustic tuning range of approximately 200 Hz is demonstrated for each of the three available power levels.

  19. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    PubMed Central

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-01-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503

  20. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits

    DOE PAGES

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; ...

    2016-05-05

    Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less

  1. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits

    PubMed Central

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T.

    2016-01-01

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices. PMID:27145872

  2. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    PubMed

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  3. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun

    2009-08-03

    We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

  4. Wavelength tuning of multimode interference bandpass filters by mechanical bending: experiment and theory in comparison

    NASA Astrophysics Data System (ADS)

    Walbaum, T.; Fallnich, C.

    2012-07-01

    We present the tuning of multimode interference bandpass filters made of standard fibers by mechanical bending. Our setup allows continuous adjustment of the bending radius from infinity down to about 5 cm. The impact of bending on the transmission spectrum and on polarization is investigated experimentally, and a filter with a continuous tuning range of 13.6 nm and 86 % peak transmission was realized. By use of numerical simulations employing a semi-analytical mode expansion approach, we obtain quantitative understanding of the underlying physics. Further breakdown of the governing equations enables us to identify the fiber parameters that are relevant for the design of customized filters.

  5. Fraunhofer filters to reduce solar background for optical communications

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1986-01-01

    A wavelength that lies within a spectral interval of reduced solar emission (a Fraunhofer line) can carry optical communications with reduced interference from direct or reflected background sunlight. Suitable Fraunhofer lines are located within the tuning range of good candidate lasers. The laser should be tunable dynamically to track Doppler shifts in the sunlight incident on any solar system body that may appear in the background as viewed by the receiver. A Fraunhofer filter used with a direct-detection receiver should be tuned to match the Doppler shifts of the source and background. The required tuning calculated here for various situations is also required if, instead, one uses a heterodyne receiver with limited post-detection bandwidth.

  6. Tuning thermal conduction via extended defects in graphene

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Xu, Yong; Zou, Xiaolong; Wu, Jian; Duan, Wenhui

    2013-05-01

    Designing materials for desired thermal conduction can be achieved via extended defects. We theoretically demonstrate the concept by investigating thermal transport in graphene nanoribbons (GNRs) with the extended line defects observed by recent experiments. Our nonequilibrium Green's function study excluding phonon-phonon interactions finds that thermal conductance can be tuned over wide ranges (more than 50% at room temperature), by controlling the orientation and the bond configuration of the embedded extended defect. Further transmission analysis reveals that the thermal-conduction tuning is attributed to two fundamentally different mechanisms, via modifying the phonon dispersion and/or tailoring the strength of defect scattering. The finding, applicable to other materials, provides useful guidance for designing materials with desired thermal conduction.

  7. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.

    2002-03-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.

  8. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  9. Wave propagation in elastic and damped structures with stabilized negative-stiffness components

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    2017-09-01

    Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.

  10. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    PubMed

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  11. Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser

    NASA Astrophysics Data System (ADS)

    Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.

    1982-04-01

    Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.

  12. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    PubMed

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  13. Quartz tuning-fork oscillations in He II and drag coefficient

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.

    2011-07-01

    The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.

  14. A cryostatic, fast scanning, wideband NQR spectrometer for the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann; Bödenler, Markus; Narnhofer, Dominik

    2018-01-01

    In the search for a novel MRI contrast agent which relies on T1 shortening due to quadrupolar interaction between Bi nuclei and protons, a fast scanning wideband system for zero-field nuclear quadrupole resonance (NQR) spectroscopy is required. Established NQR probeheads with motor-driven tune/match stages are usually bulky and slow, which can be prohibitive if it comes to Bi compounds with low SNR (excessive averaging) and long quadrupolar T1 times. Moreover many experiments yield better results at low temperatures such as 77 K (liquid nitrogen, LN) thus requiring easy to use cryo-probeheads. In this paper we present electronically tuned wideband probeheads for bands in the frequency range 20-120 MHz which can be immersed in LN and which enable very fast explorative scans over the whole range. To this end we apply an interleaved subspectrum sampling strategy (ISS) which relies on the electronic tuning capability. The superiority of the new concept is demonstrated with an experimental scan of triphenylbismuth from 24 to 116 MHz, both at room temperature and in LN. Especially for the first transition which exhibits extremely long T1 times (64 ms) the and low signal the new approach allows an acceleration factor by more than 100 when compared to classical methods.

  15. High Thermoelectric Power Factor of a Diketopyrrolopyrrole-Based Low Bandgap Polymer via Finely Tuned Doping Engineering

    PubMed Central

    Jung, In Hwan; Hong, Cheon Taek; Lee, Un-Hak; Kang, Young Hun; Jang, Kwang-Suk; Cho, Song Yun

    2017-01-01

    We studied the thermoelectric properties of a diketopyrrolopyrrole-based semiconductor (PDPP3T) via a precisely tuned doping process using Iron (III) chloride. In particular, the doping states of PDPP3T film were linearly controlled depending on the dopant concentration. The outstanding Seebeck coefficient of PDPP3T assisted the excellent power factors (PFs) over 200 μW m−1K−2 at the broad range of doping concentration (3–8 mM) and the maximum PF reached up to 276 μW m−1K−2, which is much higher than that of poly(3-hexylthiophene), 56 μW m−1K−2. The high-mobility of PDPP3T was beneficial to enhance the electrical conductivity and the low level of total dopant volume was important to maintain high Seebeck coefficients. In addition, the low bandgap PDPP3T polymer effiectively shifted its absorption into near infra-red area and became more colorless after doping, which is great advantage to realize transparent electronic devices. Our results give importance guidance to develop thermoelectric semiconducting polymers and we suggest that the use of low bandgap and high-mobility polymers, and the accurate control of the doping levels are key factors for obtaining the high thermoelectric PF. PMID:28317929

  16. Relativistic three-dimensional Lippmann-Schwinger cross sections for space radiation applications

    NASA Astrophysics Data System (ADS)

    Werneth, C. M.; Xu, X.; Norman, R. B.; Maung, K. M.

    2017-12-01

    Radiation transport codes require accurate nuclear cross sections to compute particle fluences inside shielding materials. The Tripathi semi-empirical reaction cross section, which includes over 60 parameters tuned to nucleon-nucleus (NA) and nucleus-nucleus (AA) data, has been used in many of the world's best-known transport codes. Although this parameterization fits well to reaction cross section data, the predictive capability of any parameterization is questionable when it is used beyond the range of the data to which it was tuned. Using uncertainty analysis, it is shown that a relativistic three-dimensional Lippmann-Schwinger (LS3D) equation model based on Multiple Scattering Theory (MST) that uses 5 parameterizations-3 fundamental parameterizations to nucleon-nucleon (NN) data and 2 nuclear charge density parameterizations-predicts NA and AA reaction cross sections as well as the Tripathi cross section parameterization for reactions in which the kinetic energy of the projectile in the laboratory frame (TLab) is greater than 220 MeV/n. The relativistic LS3D model has the additional advantage of being able to predict highly accurate total and elastic cross sections. Consequently, it is recommended that the relativistic LS3D model be used for space radiation applications in which TLab > 220MeV /n .

  17. [History of the tuning fork. I: Invention of the tuning fork, its course in music and natural sciences. Pictures from the history of otorhinolaryngology, presented by instruments from the collection of the Ingolstadt German Medical History Museum].

    PubMed

    Feldmann, H

    1997-02-01

    G. Cardano, physician, mathematician, and astrologer in Pavia, Italy, in 1550 described how sound may be perceived through the skull. A few years later H. Capivacci, also a physician in Padua, realized that this phenomenon might be used as a diagnostic tool for differentiating between hearing disorders located either in the middle ear or in the acoustic nerve. The German physician G. C. Schelhammer in 1684 was the first to use a common cutlery fork in further developing the experiments initiated by Cardano and Capivacci. For a long time to come, however, there was no demand for this in practical otology. The tuning fork was invented in 1711 by John Shore, trumpeter and lutenist to H. Purcell and G.F. Händel in London. A picture of Händel's own tuning fork, probably the oldest tuning fork in existence, is presented here for the first time. There are a number of anecdotes connected with the inventor of the tuning fork, using plays on words involving the name Shore, and mixing up pitch-pipe and pitchfork. Some of these are related here. The tuning fork as a musical instrument soon became a success throughout Europe. The German physicist E. F. F. Chladni in Wittenberg around 1800 was the first to systematically investigate the mode of vibration of the tuning fork with its nodal points. Besides this, he and others tried to construct a complete musical instrument based on sets of tuning forks, which, however, were not widely accepted. J. H. Scheibler in Germany in 1834 presented a set of 54 tuning forks covering the range from 220 Hz to 440 Hz, at intervals of 4 Hz. J. Lissajous in Paris constructed a very elaborate tuning fork with a resonance box, which was intended to represent the international standard of the musical note A with 435 vibrations per second, but this remained controversial. K. R. Koenig, a German physicist living in Paris, invented a tuning fork which was kept in continuous vibration by a clockwork. H. Helmholtz, physiologist in Heidelberg, in 1863 used sets of electromagnetically powered tuning forks for his famous experiments on the sensations of tone. Until the invention of the electronic valve, tuning forks remained indispensible instruments for producing defined sinusoidal vibrations. The history of this development is presented in detail. The diagnostic use of the tuning fork in otology will be described in a separate article.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shengqiang; Li, Jie; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn

    A color tuning index (I{sub CT}) parameter for evaluating the color change capability of color-tunable organic light-emitting diodes (CT-OLEDs) was proposed and formulated. And a series of CT-OLEDs, consisting of five different carrier/exciton adjusting interlayers (C/EALs) inserted between two complementary emitting layers, were fabricated and applied to disclose the relationship between I{sub CT} and C/EALs. The result showed that the trend of electroluminescence spectra behavior in CT-OLEDs has good accordance with I{sub CT} values, indicating that the I{sub CT} parameter is feasible for the evaluation of color variation. Meanwhile, by changing energy level and C/EAL thickness, the optimized device withmore » the widest color tuning range was based on N,N′-dicarbazolyl-3,5-benzene C/EAL, exhibiting the highest I{sub CT} value of 41.2%. Based on carrier quadratic hopping theory and exciton transfer model, two fitting I{sub CT} formulas derived from the highest occupied molecular orbital (HOMO) energy level and triplet energy level were simulated. Finally, a color tuning prediction (CTP) model was developed to deduce the I{sub CT} via C/EAL HOMO and triplet energy levels, and verified by the fabricated OLEDs with five different C/EALs. We believe that the CTP model assisted with I{sub CT} parameter will be helpful for fabricating high performance CT-OLEDs with a broad range of color tuning.« less

  19. Model-independent particle accelerator tuning

    DOE PAGES

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  20. Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K

    DOE PAGES

    Wu, Chongzhao; Jin, Yuan; Reno, John L.; ...

    2016-12-19

    A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning rangemore » compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.« less

  1. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, David C.; Nelson, Loren D.; O'Brien, Martin J.

    1996-01-01

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength.

  2. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, D.C.; Nelson, L.D.; O`Brien, M.J.

    1996-12-10

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength. 30 figs.

  3. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans.

    PubMed

    Lossow, Kristina; Hübner, Sandra; Roudnitzky, Natacha; Slack, Jay P; Pollastro, Federica; Behrens, Maik; Meyerhof, Wolfgang

    2016-07-15

    One key to animal survival is the detection and avoidance of potentially harmful compounds by their bitter taste. Variable numbers of taste 2 receptor genes expressed in the gustatory end organs enable bony vertebrates (Euteleostomi) to recognize numerous bitter chemicals. It is believed that the receptive ranges of bitter taste receptor repertoires match the profiles of bitter chemicals that the species encounter in their diets. Human and mouse genomes contain pairs of orthologous bitter receptor genes that have been conserved throughout evolution. Moreover, expansions in both lineages generated species-specific sets of bitter taste receptor genes. It is assumed that the orthologous bitter taste receptor genes mediate the recognition of bitter toxins relevant for both species, whereas the lineage-specific receptors enable the detection of substances differently encountered by mice and humans. By challenging 34 mouse bitter taste receptors with 128 prototypical bitter substances in a heterologous expression system, we identified cognate compounds for 21 receptors, 19 of which were previously orphan receptors. We have demonstrated that mouse taste 2 receptors, like their human counterparts, vary greatly in their breadth of tuning, ranging from very broadly to extremely narrowly tuned receptors. However, when compared with humans, mice possess fewer broadly tuned receptors and an elevated number of narrowly tuned receptors, supporting the idea that a large receptor repertoire is the basis for the evolution of specialized receptors. Moreover, we have demonstrated that sequence-orthologous bitter taste receptors have distinct agonist profiles. Species-specific gene expansions have enabled further diversification of bitter substance recognition spectra. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Simple color tuning of phosphorescent dendrimer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Frampton, Michael J.; Lo, Shih-Chun; Burn, Paul L.

    2005-04-01

    A simple way of tuning the emission color in solution processed phosphorescent organic light emitting diodes is demonstrated. For each color a single emissive spin-coated layer consisting of a blend of three materials, a fac-tris(2-phenylpyridyl)iridium (III) cored dendrimer (Ir-G1) as the green emitter, a heteroleptic [bis(2-phenylpyridyl)-2-(2'-benzo[4,5-α]thienyl)pyridyl]iridium (III) cored dendrimer [Ir(ppy)2btp] as the red emitter, and 4,4'-bis(N-carbazolyl) biphenyl (CBP) as the host was employed. By adjusting the relative amount of green and red dendrimers in the blends, the color of the light emission was tuned from green to red. High efficiency two layer devices were achieved by evaporating a layer of electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBI) on top of the spin-coated emissive layer. A brightness of 100cd/m2 was achieved at drive voltages in the range 5.3-7.3 V. The peak external efficiencies at this brightness ranged from 31cd/A(18lm/W) to 7cd/A(4lm/W).

  5. Injury depth control from combined wavelength and power tuning in scanned beam laser thermal therapy

    NASA Astrophysics Data System (ADS)

    Villiger, Martin; Soroka, Andrew; Tearney, Guillermo J.; Bouma, Brett E.; Vakoc, Benjamin J.

    2011-11-01

    Laser thermal therapy represents a possible method to treat premalignant epithelial lesions of the esophagus. Dynamically conforming the thermal injury profile to a specific lesion boundary is expected to improve the efficacy of such a treatment and avoid complications. In this work, we investigated wavelength tuning as a mechanism to achieve this aimed control over injury depth by using the strong variation of water absorption close to 1900 nm. We developed a numerical model simulating in steps the photon propagation in the tissue, the diffusion of the absorbed heat, and the resulting tissue damage. The model was compared with experimental results on porcine esophageal specimens ex vivo and showed good agreement. Combined with power tuning, the wavelength agility in the range of 1860 to 1895 nm extends the injury range compared to a fixed wavelength source beyond 1 mm, while at the same time improving control over shallow depths and avoiding vaporization at the tissue surface. The combination of two or three discrete wavelengths combined at variable ratios provides similar control, and may provide an improved strategy for the treatment of endothelial lesions.

  6. Tuning electronic properties of graphene nanoflake polyaromatic hydrocarbon through molecular charge-transfer interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Vaishali; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-05-01

    By means of first principles calculation we have tuned the electronic properties of graphene nanoflake polyaromatic hydrocarbon via molecular charge transfer. Acceptor/donor Tetracyanoquinodimethane (TCNQ) and Tetrathiafulvalene (TTF) organic molecules are adsorbed on polyaromatic hydrocarbons (PAH) in order to introduce the charge transfer. The substrate's n- or p- type nature depends on the accepting/donating behavior of dopant molecules. Two different classes of PAH (extended form of triangulene) namely Bow-tie graphene nanoflake (BTGNF) and triangular zigzag graphene nanoflake (TZGNF). It is revealed that all the TCNQ and TTF modified graphene nanoflakes exhibit significant changes in HOMO-LUMO gap in range from 0.58 eV to 0.64 eV and 0.01 eV to 0.05 eV respectively. The adsorption energies are in the range of -0.05 kcal/mol to -2.6 kcal/mol. The change in work function is also calculated and discussed, the maximum charge transfer is for TCNQ adsorbed BTGNF. These alluring findings in the tuning of electronic properties will be advantageous for promoting graphene nanoflake polyaromatic hydrocarbon for their applications in electronic devices.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyong, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Yan, Xiaojun, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies.more » Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.« less

  8. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    PubMed

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  9. An optofluidic prism tuned by two laminar flows.

    PubMed

    Xiong, S; Liu, A Q; Chin, L K; Yang, Y

    2011-06-07

    This paper presents a tunable optofluidic prism based on the configuration of two laminar flow streams with different refractive indices in a triangular chamber. The chambers with 70° and 90° apex angles are designed based on simulation results, which provide the optimum working range and avoid recirculating flows in the chambers. In addition, a hydrodynamic model has been developed to predict the tuning of the prisms by the variation in the flow rates. Prisms with different refractive indices are realized using benzyl alcohol and deionized (DI) water as the inner liquids, respectively. The mixture of ethylene glycol and DI water with an effective refractive index matched to that of the microchannel is used as the outer liquid. The apex angle of the prism is tuned from 75° to 135° by adjusting the ratio of the two flow rates. Subsequently, the deviation angle of the output light beam is tuned from -13.5° to 22°. One of the new features of this optofluidic prism is its capability to transform from a symmetric to an asymmetric prism with the assistance of a third flow. Two optical behaviours have been performed using the optofluidic prism. First, parallel light beam scanning is achieved with a constant deviation angle of 10° and a tuning range of 60 μm using the asymmetric prism. The detected output light intensity is increased by 65.7%. Second, light dispersion is experimentally demonstrated using 488-nm and 633-nm laser beams. The two laser beams become distinguishable with a deviation angle difference of 2.5° when the apex angle of the prism reaches 116°.

  10. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 um

    NASA Astrophysics Data System (ADS)

    Jelínková, Helena; Doroshenko, Maxim E.; Šulc, Jan; Němec, Michal; Jelínek, Michal; Osiko, Vjatcheslav V.; Badikov, Valerii V.; Badikov, Dmitri V.

    2016-03-01

    On the basis of our previous Dy3+:PbGa2S4 laser study, laser output wavelength temporal evolution as well as tuning possibilities in the range 4.3-4.7 μm were investigated. Active crystal was pumped by a fiber-coupled Brightlase Ultra- 50 diode laser (1.7 μm, max. power 7.5 W). Laser resonator was formed by flat dichroic pumping mirror (T = 70%@1.7 μm, R~100% @ 3.5 - 5 μm) and a concave (r = 200 mm) output coupler with R~99% @ 3.5 - 5 μm. The laser output wavelength dependence on the pump pulse duration and its evolution during the pulse was investigated first without any spectrally-selective element in the cavity. At pump pulse duration of 1 ms, generation just near Dy3+ fluorescence maximum of 4.35 μm has been observed. Prolongation of the pulse up to 5 ms led to similar lasing at 4.35 μm in the first millisecond, followed by simultaneous generation at 4.35 and 4.38 μm in the next millisecond, and further lasing at 4.6 μm till the end of the pump pulse. Increase of pump pulse duration up to 10 ms led to similar oscillation pulse development followed by generation at 4.6 μm only. Furthermore, output wavelength tuning using MgF2 birefringent filter as a cavity spectral selective element was investigated under 10 ms pumping. Almost continuous tuning without any significant dip has been observed within spectral range from 4.3 up to 4.7 μm. Due to practically closed cavity mean output power in the maximum of tuning curve was in the order of 400 μW.

  11. Progress of the volume FEL (VFEL) experiments in millimeter range

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.; Batrakov, K. G.; Gurinovich, A. A.; Ilienko, I. I.; Lobko, A. S.; Molchanov, P. V.; Moroz, V. I.; Sofronov, P. F.; Stolyarsky, V. I.

    2003-07-01

    Use of non-one-dimensional distributed feedback in Volume Free Electron Laser gives possibility of frequency tuning in wide range. In present work, dependence of lasing process on the angle between resonant diffraction grating grooves and direction of electron beam velocity is discussed.

  12. Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback

    NASA Technical Reports Server (NTRS)

    Maynard, William L.

    1989-01-01

    Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.

  13. Real-time spectroscopic sensing using a widely tunable external cavity-QCL with MOEMS diffraction grating

    NASA Astrophysics Data System (ADS)

    Ostendorf, Ralf; Butschek, Lorenz; Merten, André; Grahmann, Jan; Jarvis, Jan; Hugger, Stefan; Fuchs, Frank; Wagner, Joachim

    2016-02-01

    We present spectroscopic measurements performed with an EC-QCL combining a broadly tunable quantum cascade laser chip with a tuning range of more than 300 cm-1 and a resonantly driven MOEMS scanner with an integrated diffraction grating for wavelength selection in Littrow configuration. The grating geometry was optimized to provide high diffraction efficiency over the wide tuning range of the QCL, thus assuring high power density and high spectral resolution in the MIR range. The MOEMS scanner has a resonance frequency of 1 kHz, hence allowing for two full wavelength scans, one up and the other downwards, within 1 ms. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets as well as on gaseous samples of carbon monoxide. For the latter one, a large portion of the characteristic CO absorption band containing several absorption lines in the range of 2070 cm-1 to 2280 cm-1 can be monitored in real-time.

  14. Dynamic range adaptation in primary motor cortical populations

    PubMed Central

    Rasmussen, Robert G; Schwartz, Andrew; Chase, Steven M

    2017-01-01

    Neural populations from various sensory regions demonstrate dynamic range adaptation in response to changes in the statistical distribution of their input stimuli. These adaptations help optimize the transmission of information about sensory inputs. Here, we show a similar effect in the firing rates of primary motor cortical cells. We trained monkeys to operate a brain-computer interface in both two- and three-dimensional virtual environments. We found that neurons in primary motor cortex exhibited a change in the amplitude of their directional tuning curves between the two tasks. We then leveraged the simultaneous nature of the recordings to test several hypotheses about the population-based mechanisms driving these changes and found that the results are most consistent with dynamic range adaptation. Our results demonstrate that dynamic range adaptation is neither limited to sensory regions nor to rescaling of monotonic stimulus intensity tuning curves, but may rather represent a canonical feature of neural encoding. DOI: http://dx.doi.org/10.7554/eLife.21409.001 PMID:28417848

  15. Triplet Tuning - a New ``BLACK-BOX'' Computational Scheme for Photochemically Active Molecules

    NASA Astrophysics Data System (ADS)

    Lin, Zhou; Van Voorhis, Troy

    2017-06-01

    Density functional theory (DFT) is an efficient computational tool that plays an indispensable role in the design and screening of π-conjugated organic molecules with photochemical significance. However, due to intrinsic problems in DFT such as self-interaction error, the accurate prediction of energy levels is still a challenging task. Functionals can be parameterized to correct these problems, but the parameters that make a well-behaved functional are system-dependent rather than universal in most cases. To alleviate both problems, optimally tuned range-separated hybrid functionals were introduced, in which the range-separation parameter, ω, can be adjusted to impose Koopman's theorem, ɛ_{HOMO} = -I. These functionals turned out to be good estimators for asymptotic properties like ɛ_{HOMO} and ɛ_{LUMO}. In the present study, we propose a ``black-box'' procedure that allows an automatic construction of molecule-specific range-separated hybrid functionals following the idea of such optimal tuning. However, instead of focusing on ɛ_{HOMO} and ɛ_{LUMO}, we target more local, photochemistry-relevant energy levels such as the lowest triplet state, T_1. In practice, we minimize the difference between two E_{{T}_1}'s that are obtained from two DFT-based approaches, Δ-SCF and linear-response TDDFT. We achieve this minimization using a non-empirical adjustment of two parameters in the range-separated hybrid functional - ω, and the percentage of Hartree-Fock contribution in the short-range exchange, c_{HF}. We apply this triplet tuning scheme to a variety of organic molecules with important photochemical applications, including laser dyes, photovoltaics, and light-emitting diodes, and achieved good agreements with the spectroscopic measurements for E_{{T}_1}'s and related local properties. A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2015). O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006). L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer, J. Chem. Theory Comput. 8, 1515 (2012). Z. Lin and T. A. Van Voorhis, in preparation for submission to J. Chem. Theory Comput.

  16. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal

    PubMed Central

    Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Storey, John M. D.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter

    2016-01-01

    A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch p in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch p and thus the wavelength of lasing λ¯ can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with λ¯ spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLCOH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLCOH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography. PMID:27807135

  17. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal.

    PubMed

    Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D; Palffy-Muhoray, Peter

    2016-11-15

    A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch [Formula: see text] in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch [Formula: see text] and thus the wavelength of lasing [Formula: see text] can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with [Formula: see text] spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLC OH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLC OH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography.

  18. Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating

    DOE PAGES

    Crouse, Dustin; Simon, John; Schulte, Kevin L.; ...

    2018-01-31

    Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less

  19. Yb:Lu2SiO5 crystal : characterization of the laser emission along the three dielectric axes

    NASA Astrophysics Data System (ADS)

    Toci, Guido; Pirri, Angela; Beitlerova, Alena; Shoji, Yasuhiro; Yoshikawa, Akira; Hybler, Jiri; Nikl, Martin; Vannini, Matteo

    2015-05-01

    Yb:doped Lu2SiO5 (Lutetium orthosilicate, LSO) is an optically biaxial crystal with laser emission in the range 1000- 1100 nm. It features different absorption and emission spectra for polarization along its three dielectric axes. In this work we have characterized the laser emission properties of Yb:LSO along all the three dielectric axis, evidencing differences that can be exploited in the design of ultrafast laser sources. The material was tested in a longitudinally pumped laser cavity. The laser emission efficiency was found similar along all the three dielectric axes, with slope efficiencies around 90% in most cases. Regarding the tuning range, for the most favourable polarization direction we obtained a continuously tunable emission between 993 and 1088 nm (i. e. 95 nm) peaked at 1040 nm. The tuning curves along the three dielectric axes spanned similar ranges but with relevant differences in the shape.

  20. Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, Dustin; Simon, John; Schulte, Kevin L.

    Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less

  1. Clear Your Mind to Clear the Way: Mental Preparation

    DTIC Science & Technology

    2011-12-01

    for some reason, once I put that uniform on, or once I walked into that clubhouse , no matter what happened at home, I could totally get focused. I...focusing.” What does that mean to you? Aaron: That means tuning out everything else. You get to the ballpark sometimes and you see three or four guys...in on what they have to do. When you get to the ballpark, you ought to be able to get yourself in tune to knowing who the pitcher is that you’re

  2. Turbulence influence on optimum tip speed ratio for a 200 kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Möllerström, E.; Eriksson, S.; Goude, A.; Ottermo, F.; Hylander, J.

    2016-09-01

    The influence of turbulence intensity (TI) on the tip speed ratio for maximum power coefficient, here called λCp_max, is studied for a 200 kW VAWT H-rotor using logged data from a 14 month period with the H-rotor operating in wind speeds up to 9 m/s. The TI - λCp_max relation is examined by dividing 10 min mean values in different turbulence intensity ranges and producing multiple CP(λ) curves. A clear positive relation between TI and λCp_max is shown and is further strengthened as possible secondary effects are examined and deemed non-essential. The established relation makes it possible to tune the control strategy to enhance the total efficiency of the turbine.

  3. Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.

    2013-01-01

    Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521

  4. Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4

    NASA Astrophysics Data System (ADS)

    Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.

    2018-01-01

    The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.

  5. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun

    2011-08-01

    We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.

  6. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    PubMed

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  7. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    PubMed

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  8. Broadband terahertz-power extracting by using electron cyclotron maser.

    PubMed

    Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun

    2017-08-04

    Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.

  9. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

    PubMed

    Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-11-16

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.

  10. Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    PubMed Central

    Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-01-01

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927

  11. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  12. Tubular astigmatism-tunable fluidic lens.

    PubMed

    Kopp, Daniel; Zappe, Hans

    2016-06-15

    We demonstrate a new means to fabricate three-dimensional liquid lenses which may be tuned in focal length and astigmatism. Using actuation by electrowetting-on-dielectrics, astigmatism in arbitrary directions may be tuned independently, with almost no cross talk between orthogonal orientations. The lens is based on electrodes structured on planar polyimide foils and subsequently rolled, enabling high-resolution patterning of complex electrodes along the azimuthal and radial directions of the lens. Based on a design established through fluidic and optical simulations, the astigmatism tuning is experimentally verified by a change of the corresponding Zernike coefficients measured using a Shack-Hartmann wavefront sensor. It was seen that the back focal length can be tuned by 5 mm and 0° and 45° astigmatism by 3 μm through application of voltages in the range of 50  Vrms. It was observed that the cross talk with other aberrations is very low, suggesting a novel means for astigmatism control in imaging systems.

  13. Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers.

    PubMed

    Wang, Ruijun; Malik, Aditya; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Roelkens, Gunther

    2016-12-12

    2.0x µm widely tunable external cavity lasers realized by combining a GaSb gain chip with a silicon photonics waveguide circuit for wavelength selection are demonstrated. Wavelength tuning over 58 nm from 2.01 to 2.07 µm is demonstrated. In the silicon photonic integrated circuit, laser feedback is realized by using a silicon Bragg grating and continuous tuning is realized by using two thermally tuned silicon microring resonators (MRRs) and a phase section. The uncooled laser has maximum output power of 7.5 mW and threshold current density of 0.8 kA/cm2. The effect of the coupling gap of the MRRs on tunable laser performance is experimentally assessed. A side mode suppression ratio better than 52 dB over the full tuning range and in the optimum operation point of more than 60 dB is achieved for the laser with weakly coupled MRRs.

  14. Control of Ferromagnetic Resonance Frequency and Frequency Linewidth by Electrical Fields in FeCo/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32(011) Heterostructures

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2016-10-01

    We report our detailed investigation of the electrical tuning of the ferromagnetic resonance frequency and frequency linewidth in multiferroic heterostructures consisting of FeCo thin films grown onto [Pb(Mg1/3Nb2/3) O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates with NiFe underlayers. Our study shows that the electrical tuning range of both ferromagnetic resonance frequency and frequency linewidth in this FeCo/PMN-PT heterostructure can be very large. Specifically, the resonance frequency can be tuned from 1.8 GHz to 10.3 GHz, and the frequency linewidth can be changed from 1.6 GHz to 7.3 GHz. The electrical tuning of these microwave properties is discussed in conjunction with the result from the static magnetic characterization and is explained based on the strain-driven magnetoelectric heterostructured effect.

  15. All-fiber tunable MMI fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.

    2009-05-01

    We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.

  16. Superfluidity of 4He in dense aerogel studied using quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Okamoto, R.; Nakajima, A.; Abe, S.

    2018-03-01

    Superfluid 4He in aerogel is of interest because it has a normal component coupling to gel strand due to viscosity and a superfluid component with zero viscosity. Superfluid helium in aerogel has two sound modes, a slow critical mode and a fast one. In this study, quartz tuning fork was used in order to study acoustic properties of liquid 4He in aerogel with 90% porosity. Two pieces of aerogel were glued on both prongs of quartz tuning fork that had a resonance frequency of 33 kHz. The tuning fork was immersed in liquid 4He from 2 to 20 bar. The resonance frequency increased in the superfluid phase due to decrease in loaded mass. Temperature variation of resonance frequency was explained by that of superfluid density. Superfluid transition in aerogel was 2 mK lower than that without gel. Additional dissipation was observed in the temperature range between 1 K and transition temperature.

  17. Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hsien

    2015-10-01

    Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.

  18. [Dynamic Wavelength Characteristics of Semiconductor Laser in Electric Current Tuning Process].

    PubMed

    Liu, Jing-wang; Li, Zhong-yang; Zhang, Wei-zhong; Wang, Qing-chuan; An, Ying; Li, Yong-hui

    2015-11-01

    In order to measure the dynamic wavelength of semiconductor lasers under current tuning, an improved method of fi- ber delay self-heterodyne interferometer was proposed. The measurement principle, as well the beat frequency and dynamic wavelength of recursive relations are theoretically analyzed. The application of the experimental system measured the dynamic wavelength characteristics of distributed feedback semiconductor laser and the static wavelength characteristics measurement by the spectrometer. The comparison between the two values indicates that both dynamic and static wavelength characteristic with the current tuning are the similar non-linear curve. In 20-100 mA current tuning range, the difference of them is less than 0.002 nm. At the same time, according to the absorption lines of CO2 gas, and HITRAN spectrum library, we can identify the dynamic wavelength of the laser. Comparing it with dynamic wavelength calculated by the beat signal, the difference is only 0.001 nm, which verifies the reliability of the experimental system to measure the dynamic wavelength.

  19. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex

    PubMed Central

    Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David

    2016-01-01

    The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510

  20. ATLAS I/O performance optimization in as-deployed environments

    NASA Astrophysics Data System (ADS)

    Maier, T.; Benjamin, D.; Bhimji, W.; Elmsheuser, J.; van Gemmeren, P.; Malon, D.; Krumnack, N.

    2015-12-01

    This paper provides an overview of an integrated program of work underway within the ATLAS experiment to optimise I/O performance for large-scale physics data analysis in a range of deployment environments. It proceeds to examine in greater detail one component of that work, the tuning of job-level I/O parameters in response to changes to the ATLAS event data model, and considers the implications of such tuning for a number of measures of I/O performance.

  1. A Novel, High Energy-Density Electrical Storage Device for Electric Weapons

    DTIC Science & Technology

    1992-08-25

    the Navy’s Earth -to-Orbit coilgun, we used to be ever so careful in assembling thermopile rings on the projectile so that the current produced by the...chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz. possibly operating efficiently in the GHz range. 201 DISTRIBUTION...frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly

  2. Observing the Heterogeneous Electro-redox of Individual Single-Layer Graphene Sheets.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-27

    Electro-redox-induced heterogeneous fluorescence of an individual single-layer graphene sheet was observed in real time by a total internal reflection fluorescence microscope. It was found that the fluorescence intensity of an individual sheet can be tuned reversibly by applying periodic voltages to control the redox degree of graphene sheets. Accordingly, the oxidation and reduction kinetics of an individual single-layer graphene sheet was studied at different voltages. The electro-redox-induced reversible variation of fluorescence intensity of individual sheets indicates a reversible band gap tuning strategy. Furthermore, correlation analysis of redox rate constants on individual graphene sheets revealed a redox-induced spatiotemporal heterogeneity or dynamics of graphene sheets. The observed controllable redox kinetics can rationally guide the precise band gap tuning of individual graphene sheets and then help their extensive applications in optoelectronics and devices for renewable energy.

  3. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity losses. In order to maximize the output power, an analysis and optimization of the EC laser parameters has been performed. The parameters of the beam emitted from the gain medium, such as divergence angle, beam profile, and astigmatism, have been investigated. The gain medium has been fully characterized before and after each stage of modification. The main modification steps are coating one facet of the gain chip with a high reflectivity mirror and the other facet with an anti-reflection layer. Then the chip is mounted in the EC-QCL. The optomechanical design has been reviewed and improved to provide for precise collimation of the strongly divergent beam of the QCL and the tuning diffraction grating.

  4. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-05-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.

  5. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  6. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  7. The dynamics and tuning of orchestral crotales

    NASA Astrophysics Data System (ADS)

    Deutsch, Bradley M.; Ramirez, Cherie L.; Moore, Thomas R.

    2004-10-01

    An experimental and theoretical investigation of the acoustic and vibrational properties of orchestral crotales within the range C6 to C8 is reported. Interferograms of the acoustically important modes of vibration are presented and the frequencies are reported. It is shown that the acoustic spectra of crotales are not predicted by assuming that they are either thin circular plates or annular plates clamped at the center, despite the physical resemblance to these objects. Results from finite element analysis are presented that demonstrate how changing the size of the central mass affects the tuning of the instruments, and it is concluded that crotales are not currently designed to ensure optimal tuning. The possibility of using annular plates as crotales is also investigated and the physical parameters for such a set of instruments are presented. .

  8. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams.

    PubMed

    Zhang, Xiaoyong; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei; Yan, Xiaojun

    2016-06-01

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young's modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz-97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

  9. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning.

    PubMed

    Li, Guoliang; Zheng, Xuezhe; Yao, Jin; Thacker, Hiren; Shubin, Ivan; Luo, Ying; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V

    2011-10-10

    We report a high-speed ring modulator that fits many of the ideal qualities for optical interconnect in future exascale supercomputers. The device was fabricated in a 130 nm SOI CMOS process, with 7.5 μm ring radius. Its high-speed section, employing PN junction that works at carrier-depletion mode, enables 25 Gb/s modulation and an extinction ratio >5 dB with only 1V peak-to-peak driving. Its thermal tuning section allows the device to work in broad wavelength range, with a tuning efficiency of 0.19 nm/mW. Based on microwave characterization and circuit modeling, the modulation energy is estimated ~7 fJ/bit. The whole device fits in a compact 400 μm2 footprint.

  10. An L-band transit-time oscillator with mechanical frequency tunability

    NASA Astrophysics Data System (ADS)

    Song, Lili; He, Juntao; Ling, Junpu; Cao, Yibing

    2017-02-01

    An L-band coaxial Transit-time Oscillator (TTO) with mechanical frequency tunability is introduced in this paper. Particle-in-cell simulations have been done. The output power efficiency has been improved at least 20% under a 10.2 GW input power and with a tunable range from 1.57 GHz to 1.90 GHz by modulating the outer conductor. It is worth to note that the efficiency can reach as high as 41% at 1.75 GHz. The mechanical engineering method is also detailed in this work. The frequency tuning range of the coaxial TTO is 22.6% of the central frequency. On the other hand, the frequency can be tuned from 1.6 GHz to 1.85 GHz by modulating the inner conductor. The author highlights a hollow structure of the L-band coaxial TTO which can work from 1.03 GHz to 1.31 GHz via modulating the outer conductor in the rest of the article. The frequency tuning range of the hollow TTO is 21.4% of the central frequency. More importantly, the hollow TTO can be easily achieved after the inner conductor is removed from the coaxial TTO. The electric field distributions of the coaxial and hollow TTOs are analyzed, resulting in that the longitudinal and transverse working modes are TM01 and π mode, respectively. The same working mode from these two structures implies the stability of the TTOs mentioned above.

  11. A nonlinear filter-bank model of the guinea-pig cochlear nerve: Rate responses

    NASA Astrophysics Data System (ADS)

    Sumner, Christian J.; O'Mard, Lowel P.; Lopez-Poveda, Enrique A.; Meddis, Ray

    2003-06-01

    The aim of this study is to produce a functional model of the auditory nerve (AN) response of the guinea-pig that reproduces a wide range of important responses to auditory stimulation. The model is intended for use as an input to larger scale models of auditory processing in the brain-stem. A dual-resonance nonlinear filter architecture is used to reproduce the mechanical tuning of the cochlea. Transduction to the activity on the AN is accomplished with a recently proposed model of the inner-hair-cell. Together, these models have been shown to be able to reproduce the response of high-, medium-, and low-spontaneous rate fibers from the guinea-pig AN at high best frequencies (BFs). In this study we generate parameters that allow us to fit the AN model to data from a wide range of BFs. By varying the characteristics of the mechanical filtering as a function of the BF it was possible to reproduce the BF dependence of frequency-threshold tuning curves, AN rate-intensity functions at and away from BF, compression of the basilar membrane at BF as inferred from AN responses, and AN iso-intensity functions. The model is a convenient computational tool for the simulation of the range of nonlinear tuning and rate-responses found across the length of the guinea-pig cochlear nerve.

  12. Altered visual perception in long-term ecstasy (MDMA) users.

    PubMed

    White, Claire; Brown, John; Edwards, Mark

    2013-09-01

    The present study investigated the long-term consequences of ecstasy use on visual processes thought to reflect serotonergic functions in the occipital lobe. Evidence indicates that the main psychoactive ingredient in ecstasy (methylendioxymethamphetamine) causes long-term changes to the serotonin system in human users. Previous research has found that amphetamine-abstinent ecstasy users have disrupted visual processing in the occipital lobe which relies on serotonin, with researchers concluding that ecstasy broadens orientation tuning bandwidths. However, other processes may have accounted for these results. The aim of the present research was to determine if amphetamine-abstinent ecstasy users have changes in occipital lobe functioning, as revealed by two studies: a masking study that directly measured the width of orientation tuning bandwidths and a contour integration task that measured the strength of long-range connections in the visual cortex of drug users compared to controls. Participants were compared on the width of orientation tuning bandwidths (26 controls, 12 ecstasy users, 10 ecstasy + amphetamine users) and the strength of long-range connections (38 controls, 15 ecstasy user, 12 ecstasy + amphetamine users) in the occipital lobe. Amphetamine-abstinent ecstasy users had significantly broader orientation tuning bandwidths than controls and significantly lower contour detection thresholds (CDTs), indicating worse performance on the task, than both controls and ecstasy + amphetamine users. These results extend on previous research, which is consistent with the proposal that ecstasy may damage the serotonin system, resulting in behavioral changes on tests of visual perception processes which are thought to reflect serotonergic functions in the occipital lobe.

  13. Honey bee forager thoracic temperature inside the nest is tuned to broad-scale differences in recruitment motivation.

    PubMed

    Sadler, Nik; Nieh, James C

    2011-02-01

    Insects that regulate flight muscle temperatures serve as crucial pollinators in a broad range of ecosystems, in part because they forage over a wide span of temperatures. Honey bees are a classic example and maintain their thoracic muscles at temperatures (T(th)) tuned to the caloric benefits of floral resources. Using infrared thermography, we tested the hypothesis that forager motivation to recruit nestmates for a food source is positively correlated with T(th). We trained bees to a sucrose feeder located 5-100 m from the nest. Recruiting foragers had a significantly higher average T(th) (2.7°C higher) when returning from 2.5 mol l(-1) sucrose (65% w/w) than when returning from 1.0 mol l(-1) sucrose (31% w/w). Foragers exhibited significantly larger thermal fluctuations the longer they spent inside the nest between foraging trips. The difference between maximum and minimum temperatures during a nest visit (T(range)) increased with total duration of the nest visit (0.7°C increase per additional min spent inside the nest). Bees that recruited nestmates (waggle or round danced) were significantly warmer, with a 1.4-1.5 times higher ΔT(th) (difference between T(th) and nest ambient air temperature) than bees who tremble danced or simply walked on the nest floor without recruiting between foraging bouts. However, recruiter T(th) was not correlated with finer-scale measures of motivation: the number of waggle dance circuits or waggle dance return phase duration. These results support the hypothesis that forager T(th) within the nest is correlated to broad-scale differences in foraging motivation.

  14. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  15. Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range

    PubMed Central

    Ghosh, Batu; Shirahata, Naoto

    2014-01-01

    This review describes a series of representative synthesis processes, which have been developed in the last two decades to prepare silicon quantum dots (QDs). The methods include both top-down and bottom-up approaches, and their methodological advantages and disadvantages are presented. Considerable efforts in surface functionalization of QDs have categorized it into (i) a two-step process and (ii) in situ surface derivatization. Photophysical properties of QDs are summarized to highlight the continuous tuning of photoluminescence color from the near-UV through visible to the near-IR range. The emission features strongly depend on the silicon nanostructures including QD surface configurations. Possible mechanisms of photoluminescence have been summarized to ascertain the future challenges toward industrial use of silicon-based light emitters. PMID:27877634

  16. Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz

    2017-11-01

    Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.

  17. Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.

    PubMed

    Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei

    2012-08-27

    A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

  18. 2-Dimensional beamsteering using dispersive deflectors and wavelength tuning.

    PubMed

    Chan, Trevor; Myslivets, Evgeny; Ford, Joseph E

    2008-09-15

    We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3 degrees by 11 degrees output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.

  19. Frequency-reconfigurable water antenna of circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Meng; Pan, Jin; Shen, Zhongxiang, E-mail: ezxshen@ntu.edu.sg

    A circularly polarized frequency-reconfigurable water antenna with high radiation efficiency is proposed based on the design concept of combining a frequency-reconfigurable radiating structure with a frequency-independent feeding structure. In this letter, a resonator made of distilled water and an Archimedean spiral slot are employed as the radiating and feeding structures, respectively. The operating frequency of the antenna can be continuously tuned over a very wide range while maintaining good impendence matching and circular polarization by changing the dimensions of the water resonator. A prototype antenna is designed, fabricated, and measured. Simulated and measured results demonstrate that the designed antenna exhibitsmore » a wide tuning frequency range from 155 MHz to 400 MHz with an average radiation efficiency of about 90% and good circular polarization.« less

  20. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  1. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity

    NASA Astrophysics Data System (ADS)

    Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin

    2017-04-01

    We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.

  2. Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate.

    PubMed

    Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan

    2016-12-01

    We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02  K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.

  3. Fundamental frequency estimation of singing voice

    NASA Astrophysics Data System (ADS)

    de Cheveigné, Alain; Henrich, Nathalie

    2002-05-01

    A method of fundamental frequency (F0) estimation recently developped for speech [de Cheveigné and Kawahara, J. Acoust. Soc. Am. (to be published)] was applied to singing voice. An electroglottograph signal recorded together with the microphone provided a reference by which estimates could be validated. Using standard parameter settings as for speech, error rates were low despite the wide range of F0s (about 100 to 1600 Hz). Most ``errors'' were due to irregular vibration of the vocal folds, a sharp formant resonance that reduced the waveform to a single harmonic, or fast F0 changes such as in high-amplitude vibrato. Our database (18 singers from baritone to soprano) included examples of diphonic singing for which melody is carried by variations of the frequency of a narrow formant rather than F0. Varying a parameter (ratio of inharmonic to total power) the algorithm could be tuned to follow either frequency. Although the method has not been formally tested on a wide range of instruments, it seems appropriate for musical applications because it is accurate, accepts a wide range of F0s, and can be implemented with low latency for interactive applications. [Work supported by the Cognitique programme of the French Ministry of Research and Technology.

  4. Designing allostery-inspired response in mechanical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less

  5. Designing allostery-inspired response in mechanical networks

    DOE PAGES

    Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; ...

    2017-02-21

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less

  6. LSPR Tuning from 470 to 800 nm and Improved Stability of Au-Ag Nanoparticles Formed by Gold Deposition and Rebuilding in the Presence of Poly(styrenesulfonate).

    PubMed

    Cathcart, Nicole; Chen, Jennifer I L; Kitaev, Vladimir

    2018-01-16

    Stability and precise control over functional properties of metal nanoparticles remain a challenge for the realization of prospective applications. Our described process of shell formation and rebuilding can address both these challenges. Template silver nanoparticles (AgNPs) stabilized by poly(styrenesulfonate) are first transformed with gold deposition, after which the resulting shell rebuilds with the replaced silver. The shell formation and rebuilding are accompanied by large shifts in localized surface plasmon resonance (LSPR) peak position, which enables LSPR tuning in a range from 470 to 800 nm. Furthermore, chemical stability of Au-AgNPs is significantly improved compared to AgNPs due to gold stability. Silver templates of different shapes and sizes were demonstrated to transform to AuAg composite NPs to further extend the accessible LSPR range tuning. Stabilization of template AgNPs with poly(styrenesulfonate), in contrast to commonly used poly(vinylpyrrolidone), was found to be a key factor for shell rebuilding. The developed Au-AgNPs were shown to be advantageous for surface plasmon resonance (SPR) detection and surface-enhanced Raman spectroscopy (SERS) owing to their tunable LSPR and enhanced stability.

  7. Two kinds of novel tunable Thulium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong

    2014-11-01

    Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.

  8. Designing allostery-inspired response in mechanical networks

    PubMed Central

    Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.

    2017-01-01

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks. PMID:28223534

  9. Designing allostery-inspired response in mechanical networks.

    PubMed

    Rocks, Jason W; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P; Liu, Andrea J; Nagel, Sidney R

    2017-03-07

    Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.

  10. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    NASA Astrophysics Data System (ADS)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  11. Injury depth control from combined wavelength and power tuning in scanned beam laser thermal therapy

    PubMed Central

    Villiger, Martin; Soroka, Andrew; Tearney, Guillermo J.; Bouma, Brett E.; Vakoc, Benjamin J.

    2011-01-01

    Laser thermal therapy represents a possible method to treat premalignant epithelial lesions of the esophagus. Dynamically conforming the thermal injury profile to a specific lesion boundary is expected to improve the efficacy of such a treatment and avoid complications. In this work, we investigated wavelength tuning as a mechanism to achieve this aimed control over injury depth by using the strong variation of water absorption close to 1900 nm. We developed a numerical model simulating in steps the photon propagation in the tissue, the diffusion of the absorbed heat, and the resulting tissue damage. The model was compared with experimental results on porcine esophageal specimens ex vivo and showed good agreement. Combined with power tuning, the wavelength agility in the range of 1860 to 1895 nm extends the injury range compared to a fixed wavelength source beyond 1 mm, while at the same time improving control over shallow depths and avoiding vaporization at the tissue surface. The combination of two or three discrete wavelengths combined at variable ratios provides similar control, and may provide an improved strategy for the treatment of endothelial lesions. PMID:22112139

  12. Continuously tunable nucleic acid hybridization probes.

    PubMed

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; Evans, Emily R; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

  13. Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information

    PubMed Central

    Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén

    2016-01-01

    Numerous studies have shown that neuronal responses are modulated by stimulus properties, and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation, and vice versa. The information encoded by multiplicatively-modulated neurons increased with greater population activity, while that of additively-modulated neurons decreased. These effects offset each other, so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a `traffic light' that determines which subset of neurons are most informative. PMID:26924437

  14. Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping

    NASA Astrophysics Data System (ADS)

    Arbabzadah, E. A.; Damzen, M. J.

    2016-06-01

    We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.

  15. Level-tolerant duration selectivity in the auditory cortex of the velvety free-tailed bat Molossus molossus.

    PubMed

    Macías, Silvio; Hernández-Abad, Annette; Hechavarría, Julio C; Kössl, Manfred; Mora, Emanuel C

    2015-05-01

    It has been reported previously that in the inferior colliculus of the bat Molossus molossus, neuronal duration tuning is ambiguous because the tuning type of the neurons dramatically changes with the sound level. In the present study, duration tuning was examined in the auditory cortex of M. molossus to describe if it is as ambiguous as the collicular tuning. From a population of 174 cortical 104 (60 %) neurons did not show duration selectivity (all-pass). Around 5 % (9 units) responded preferentially to stimuli having longer durations showing long-pass duration response functions, 35 (20 %) responded to a narrow range of stimulus durations showing band-pass duration response functions, 24 (14 %) responded most strongly to short stimulus durations showing short-pass duration response functions and two neurons (1 %) responded best to two different stimulus durations showing a two-peaked duration-response function. The majority of neurons showing short- (16 out of 24) and band-pass (24 out 35) selectivity displayed "O-shaped" duration response areas. In contrast to the inferior colliculus, duration tuning in the auditory cortex of M. molossus appears level tolerant. That is, the type of duration selectivity and the stimulus duration eliciting the maximum response were unaffected by changing sound level.

  16. The influence of surround suppression on adaptation effects in primary visual cortex

    PubMed Central

    Wissig, Stephanie C.

    2012-01-01

    Adaptation, the prolonged presentation of stimuli, has been used to probe mechanisms of visual processing in physiological, imaging, and perceptual studies. Previous neurophysiological studies have measured adaptation effects by using stimuli tailored to evoke robust responses in individual neurons. This approach provides an incomplete view of how an adapter alters the representation of sensory stimuli by a population of neurons with diverse functional properties. We implanted microelectrode arrays in primary visual cortex (V1) of macaque monkeys and measured orientation tuning and contrast sensitivity in populations of neurons before and after prolonged adaptation. Whereas previous studies in V1 have reported that adaptation causes stimulus-specific suppression of responsivity and repulsive shifts in tuning preference, we have found that adaptation can also lead to response facilitation and shifts in tuning toward the adapter. To explain this range of effects, we have proposed and tested a simple model that employs stimulus-specific suppression in both the receptive field and the spatial surround. The predicted effects on tuning depend on the relative drive provided by the adapter to these two receptive field components. Our data reveal that adaptation can have a much richer repertoire of effects on neuronal responsivity and tuning than previously considered and suggest an intimate mechanistic relationship between spatial and temporal contextual effects. PMID:22423001

  17. PID tuning rules for SOPDT systems: review and some new results.

    PubMed

    Panda, Rames C; Yu, Cheng-Ching; Huang, Hsiao-Ping

    2004-04-01

    PID controllers are widely used in industries and so many tuning rules have been proposed over the past 50 years that users are often lost in the jungle of tuning formulas. Moreover, unlike PI control, different control laws and structures of implementation further complicate the use of the PID controller. In this work, five different tuning rules are taken for study to control second-order plus dead time systems with wide ranges of damping coefficients and dead time to time constant ratios (D/tau). Four of them are based on IMC design with different types of approximations on dead time and the other on desired closed-loop specifications (i.e., specified forward transfer function). The method of handling dead time in the IMC type of design is important especially for systems with large D/tau ratios. A systematic approach was followed to evaluate the performance of controllers. The regions of applicability of suitable tuning rules are highlighted and recommendations are also given. It turns out that IMC designed with the Maclaurin series expansion type PID is a better choice for both set point and load changes for systems with D/tau greater than 1. For systems with D/tau less than 1, the desired closed-loop specification approach is favored.

  18. Quantitative Simulations of MST Visual Receptive Field Properties Using a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, J. A.

    1997-01-01

    We previously developed a template model of primate visual self-motion processing that proposes a specific set of projections from MT-like local motion sensors onto output units to estimate heading and relative depth from optic flow. At the time, we showed that that the model output units have emergent properties similar to those of MSTd neurons, although there was little physiological evidence to test the model more directly. We have now systematically examined the properties of the model using stimulus paradigms used by others in recent single-unit studies of MST: 1) 2-D bell-shaped heading tuning. Most MSTd neurons and model output units show bell-shaped heading tuning. Furthermore, we found that most model output units and the finely-sampled example neuron in the Duffy-Wurtz study are well fit by a 2D gaussian (sigma approx. 35deg, r approx. 0.9). The bandwidth of model and real units can explain why Lappe et al. found apparent sigmoidal tuning using a restricted range of stimuli (+/-40deg). 2) Spiral Tuning and Invariance. Graziano et al. found that many MST neurons appear tuned to a specific combination of rotation and expansion (spiral flow) and that this tuning changes little for approx. 10deg shifts in stimulus placement. Simulations of model output units under the same conditions quantitatively replicate this result. We conclude that a template architecture may underlie MT inputs to MST.

  19. Widely tunable semiconductor lasers with three interferometric arms.

    PubMed

    Su, Guan-Lin; Wu, Ming C

    2017-09-04

    We present a comprehensive study for a new three-branch widely tunable semiconductor laser based on a self-imaging, lossless multi-mode interference (MMI) coupler. We have developed a general theoretical framework that is applicable to all types of interferometric lasers. Our analysis showed that the three-branch laser offers high side-mode suppression ratios (SMSRs) while maintaining a wide tuning range and a low threshold modal gain of the lasing mode. We also present the design rules for tuning over the dense-wavelength division multiplexing grid over the C-band.

  20. Tunable impedance matching network fundamental limits and practical considerations

    NASA Astrophysics Data System (ADS)

    Allen, Wesley N.

    As wireless devices continue to increase in utility while decreasing in dimension, design of the RF front-end becomes more complex. It is common for a single handheld device to operate on a plethora of frequency bands, utilize multiple antennae, and be subjected to a variety of environments. One complexity in particular which arises from these factors is that of impedance mismatch. Recently, tunable impedance matching networks have begun to be implemented to address this problem. This dissertation presents the first in-depth study on the frequency tuning range of tunable impedance matching networks. Both the fundamental limitations of ideal networks as well as practical considerations for design and implementation are addressed. Specifically, distributed matching networks with a single tuning element are investigated for use with parallel resistor-capacitor and series resistor-inductor loads. Analytical formulas are developed to directly calculate the frequency tuning range TR of ideal topologies. The theoretical limit of TR for these topologies is presented and discussed. Additional formulas are developed which address limitations in transmission line characteristic impedance and varactor range. Equations to predict loss due to varactor quality factor are demonstrated and the ability of parasitics to both increase and decrease TR are shown. Measured results exemplify i) the potential to develop matching networks with a small impact from parasitics, ii) the need for accurate knowledge of parasitics when designing near transition points in optimal parameters, iii) the importance of using a transmission line with the right characteristic impedance, and iv) the ability to achieve extremely low loss at the design frequency with a lossy varactor under the right conditions (measured loss of -0.07 dB). In the area of application, tunable matching networks are designed and measured for mobile handset antennas, demonstrating up to a 3 dB improvement in power delivered to a planar inverted-F antenna and up to 4--5.6 dB improvement in power delivered to the iPhone(TM) antenna. Additionally, a single-varactor matching network is measured to achieve greater tuning range than a two-varactor matching network (> 824--960 MHz versus 850--915 MHz) and yield higher power handling. Addressing miniaturization, an accurate model of metal loss in planar integrated inductors for low-loss substrates is developed and demonstrated. Finally, immediate future research directions are suggested: i) expanding the topologies, tuning elements, and loads analyzed; ii) performing a deep study into parasitics; and iii) investigating power handling with various varactor technologies.

  1. A wide-range 22-GHz LC-based CMOS voltage-controlled oscillator

    NASA Astrophysics Data System (ADS)

    Gharbieh, Karam; Ranneh, Mohammed; Abugharbieh, Khaldoon

    2018-06-01

    This work presents a novel voltage-controlled oscillator (VCO) design and simulations that combine a varactor bank with a transformer in the LC tank to achieve a high-frequency range. While the varactor bank is responsible for changing the capacitance in the LC tank, the transformer acts as a means to change the value of the inductance, hence allowing tune-ability in the two main components of the VCO. A control mechanism utilises a mixed-mode circuit consisting of comparators and a state machine. It allows efficient tuning of the VCO by controlling the capacitance and transformer in the LC tank. The VCO has a 10.75-22.43 GHz frequency range and the VCO gain, KVCO, is kept at a low value ranging from 98.6 to 175.7 MHz/V. The simulated phase noise is -111 dBc/Hz at 1 MHz offset from the 10.75 GHz oscillation frequency. The circuit is designed and simulated in 28 nm CMOS technology and uses a 1 V supply drawing a typical power of 14.74 mW.

  2. Automatic adjustment of astrochronologic correlations

    NASA Astrophysics Data System (ADS)

    Zeeden, Christian; Kaboth, Stefanie; Hilgen, Frederik; Laskar, Jacques

    2017-04-01

    Here we present an algorithm for the automated adjustment and optimisation of correlations between proxy data and an orbital tuning target (or similar datasets as e.g. ice models) for the R environment (R Development Core Team 2008), building on the 'astrochron' package (Meyers et al.2014). The basis of this approach is an initial tuning on orbital (precession, obliquity, eccentricity) scale. We use filters of orbital frequency ranges related to e.g. precession, obliquity or eccentricity of data and compare these filters to an ensemble of target data, which may consist of e.g. different combinations of obliquity and precession, different phases of precession and obliquity, a mix of orbital and other data (e.g. ice models), or different orbital solutions. This approach allows for the identification of an ideal mix of precession and obliquity to be used as tuning target. In addition, the uncertainty related to different tuning tie points (and also precession- and obliquity contributions of the tuning target) can easily be assessed. Our message is to suggest an initial tuning and then obtain a reproducible tuned time scale, avoiding arbitrary chosen tie points and replacing these by automatically chosen ones, representing filter maxima (or minima). We present and discuss the above outlined approach and apply it to artificial and geological data. Artificial data are assessed to find optimal filter settings; real datasets are used to demonstrate the possibilities of such an approach. References: Meyers, S.R. (2014). Astrochron: An R Package for Astrochronology. http://cran.r-project.org/package=astrochron R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

  3. Generation of tunable infrared radiation by stimulated Raman scattering on hydrogen in a prism-lens optical delay line

    NASA Astrophysics Data System (ADS)

    Andreev, R. B.; Butylkin, V. S.; Evtiushkin, V. A.; Fisher, P. S.; Khabarov, V. V.

    1983-03-01

    The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.

  4. BRIEF COMMUNICATIONS: Generation of tunable infrared radiation by stimulated Raman scattering on hydrogen in a prism-lens optical delay line

    NASA Astrophysics Data System (ADS)

    Andreev, R. B.; Butylkin, V. S.; Evtyushkin, V. A.; Fisher, P. S.; Khabarov, V. V.

    1983-03-01

    The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.

  5. Gate-tunable current partition in graphene-based topological zero lines

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Ren, Yafei; Deng, Xinzhou; Yang, Shengyuan A.; Jung, Jeil; Qiao, Zhenhua

    2017-06-01

    We demonstrate new mechanisms for gate-tunable current partition at topological zero-line intersections in a graphene-based current splitter. Based on numerical calculations of the nonequilibrium Green's functions and Landauer-Büttiker formula, we show that the presence of a perpendicular magnetic field on the order of a few Teslas allows for carrier sign dependent current routing. In the zero-field limit the control on current routing and partition can be achieved within a range of 10-90 % of the total incoming current by tuning the carrier density at tilted intersections or by modifying the relative magnitude of the bulk band gaps via gate voltage. We discuss the implications of our findings in the design of topological zero-line networks where finite orbital magnetic moments are expected when the current partition is asymmetric.

  6. Audiologist-driven versus patient-driven fine tuning of hearing instruments.

    PubMed

    Boymans, Monique; Dreschler, Wouter A

    2012-03-01

    Two methods of fine tuning the initial settings of hearing aids were compared: An audiologist-driven approach--using real ear measurements and a patient-driven fine-tuning approach--using feedback from real-life situations. The patient-driven fine tuning was conducted by employing the Amplifit(®) II system using audiovideo clips. The audiologist-driven fine tuning was based on the NAL-NL1 prescription rule. Both settings were compared using the same hearing aids in two 6-week trial periods following a randomized blinded cross-over design. After each trial period, the settings were evaluated by insertion-gain measurements. Performance was evaluated by speech tests in quiet, in noise, and in time-reversed speech, presented at 0° and with spatially separated sound sources. Subjective results were evaluated using extensive questionnaires and audiovisual video clips. A total of 73 participants were included. On average, higher gain values were found for the audiologist-driven settings than for the patient-driven settings, especially at 1000 and 2000 Hz. Better objective performance was obtained for the audiologist-driven settings for speech perception in quiet and in time-reversed speech. This was supported by better scores on a number of subjective judgments and in the subjective ratings of video clips. The perception of loud sounds scored higher than when patient-driven, but the overall preference was in favor of the audiologist-driven settings for 67% of the participants.

  7. Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Bo; Zeng, Yong Quan; Liang, Guozhen

    2015-09-14

    We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.

  8. Wideband fixed-tuned SIS receiver for 200-GHz operation

    NASA Technical Reports Server (NTRS)

    Blundell, Raymond; Tong, Cheuk-Yu E.; Papa, D. Cosmo; Leombruno, R. Louie; Zhang, Xiaolei; Paine, Scott; Stern, Jeffrey A.; Leduc, Henry G.; Bumble, Bruce

    1995-01-01

    We report on the design and development of a heterodyne receiver, designed to cover the frequency range 176-256 GHz. This receiver incorporates a niobium superconductor-insulator-superconductor (SIS) tunnel junction mixer, which, chiefly for reasons of reliability and ease of operation, is a fixed-tuned waveguide design. On-chip tuning is provided to resonate out the junction's geometric capacitance and produce a good match to the waveguide circuit. Laboratory measurements on the first test receiver indicate that the required input bandwidth (about 40%) is achieved with an average receiver noise temperature of below 50 K. Mixer conversion gain is observed at some frequencies, and the lowest measured receiver noise is less than 30 K. Furthermore, the SIS mixer used in this receiver is of simple construction, is easy to assemble and is therefore a good candidate for duplication.

  9. Mode selection in square resonator microlasers for widely tunable single mode lasing.

    PubMed

    Tang, Ming-Ying; Sui, Shao-Shuai; Yang, Yue-De; Xiao, Jin-Long; Du, Yun; Huang, Yong-Zhen

    2015-10-19

    Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.

  10. Carrier concentration tuning in thermoelectric thiospinel Cu2CoTi3S8 by oxidative extraction of copper

    NASA Astrophysics Data System (ADS)

    Hashikuni, Katsuaki; Suekuni, Koichiro; Watanabe, Kosuke; Bouyrie, Yohan; Ohta, Michihiro; Ohtaki, Michitaka; Takabatake, Toshiro

    2018-03-01

    We report a method for carrier concentration tuning in the thermoelectric thiospinel Cu2CoTi3S8, which exhibits an n-type metallic character and a high power factor. An oxidative Cu extraction treatment produced Cu defects, resulting in Cu2-xCoTi3S8 up to x = 0.62. The electron carrier concentration was effectively reduced by this treatment, leading to the decrease in power factor, whereas the electronic contribution to the thermal conductivity was suppressed. As a result, the dimensionless figure of merit ZT remained unchanged as 0.2 at 670 K in the whole range of x ≤ 0.62. The oxidative Cu extraction described in this paper offers an opportunity to tune the electron carrier concentration for Cu-containing thermoelectric materials.

  11. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  12. Experimental study of the novel tuned mass damper with inerter which enables changes of inertance

    NASA Astrophysics Data System (ADS)

    Brzeski, P.; Lazarek, M.; Perlikowski, P.

    2017-09-01

    In this paper we present the experimental verification of the novel tuned mass damper which enables changes of inertance. Characteristic feature of the proposed device is the presence of special type of inerter. This inerter incorporates a continuously variable transmission that enables stepless changes of inertance. Thus, it enables to adjust the parameters of the damping device to the current forcing characteristic. In the paper we present and describe the experimental rig that consists of the massive main oscillator forced kinematically and the prototype of the investigated damper. We perform a series of dedicated experiments to characterize the device and asses its damping efficiency. Moreover, we perform numerical simulations using the simple mathematical model of investigated system. Comparing the numerical results and the experimental data we legitimize the model and demonstrate the capabilities of the investigated tuned mass damper. Presented results prove that the concept of the novel type of tuned mass damper can be realized and enable to confirm its main advantages. Investigated prototype device offers excellent damping efficiency in a wide range of forcing frequencies.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei

    Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less

  14. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds

    PubMed Central

    Beke, S.; Anjum, F.; Tsushima, H.; Ceseracciu, L.; Chieregatti, E.; Diaspro, A.; Athanassiou, A.; Brandi, F.

    2012-01-01

    We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine. PMID:22696484

  15. The physics of solid-state neutron detector materials and geometries.

    PubMed

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  16. Fabrication of metasurface-based infrared absorber structures using direct laser write lithography

    NASA Astrophysics Data System (ADS)

    Fanyaeu, Ihar; Mizeikis, Vygantas

    2016-03-01

    We report fabrication and optical properties of ultra-thin polarization-invariant electromagnetic absorber metasurface for infra-red spectral. The absorber structure, which uses three-dimensional architecture is based on single-turn metallic helices arranged into a periodic square lattice on a metallic substrate, is expected to exhibit total resonant absorption due to balanced coupling between resonances of the helices. The structure was designed using numerical simulations aiming to tune the total absorption resonance to infra-red wavelength range by appropriately downscaling the unit cell of the structure, and taking into account dielectric dispersion and losses of the metal. The designed structures were subsequently fabricated using femtosecond direct laser write technique in a dielectric photoresist, and subsequent metallisation by gold sputtering. In accordance with the expectations, the structure was found to exhibit resonant absorption centred near the wavelength of 6 - 9 µm, with peak absorption in excess of 82%. The absorber metasurface may be applied in various areas of science and technology, such as harvesting infra-red radiation in thermal detectors and energy converters.

  17. Subcritical water extractor for Mars analog soil analysis.

    PubMed

    Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To

    2008-06-01

    Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).

  18. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications.

    PubMed

    Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim

    2018-06-21

    Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.

  19. Autonomous Soaring 2005 Flight Data Summary

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    Flight testing of the 14ft span CloudSwift UAV was conducted during the summer of 2005. Test maneuvers included aircraft checkout, Piccolo gain tuning, FTS range tests, and thermal soaring research flights.

  20. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  1. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    PubMed

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the auditory midbrain increases neural discrimination of complex vocalizations.

  2. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials.

    PubMed

    Petronijevic, E; Sibilia, C

    2016-12-26

    Electromagnetically induced transparency (EIT) is a pump-induced narrowband transparency window within an absorption line of the probe beam spectrum in an atomic system. In this paper we propose a way to bring together the all-dielectric metamaterials to have EIT-like effects and to optically tune the response by hybridizing them with a layer of a phase change material. We propose a design of the metamaterial based on Si nanoresonators that can support an EIT-like resonant response. On the top of the resonators we consider a thin layer of a chalcogenide phase change material, which we will use to tune the optical response. Our choice is Ge2Sb2Te5 (GST), since it has two stable phases at room temperature, namely amorphous and crystalline, between which it can be switched quickly, nonvolatively and reversibly, sustaining a large number of switching cycles. They differ in optical properties, while still having moderately low losses in telecom range. Since such dielectric resonators do not have non-radiative losses of metals around 1550nm, they can lead to a high-Q factor of the EIT-like response in this range. Firstly, we optimize the starting structure so that it gives an EIT-like response at 1550 nm when the GST layer is in the amorphous state. Our starting design uses glass as a substrate, but we also consider implementation in SOI technology. If we then switch the thin layer of GST to its crystalline phase, which has higher losses, the EIT-like response is red shifted, providing around 10:1 contrast at 1550nm. This reversible tuning can be done with an ns visible pulsed laser. We discuss the results of the simulation of the dielectric metasurface for different configurations and the tuning possibility.

  3. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    PubMed

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  4. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  5. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  6. Temperature-tuned erbium-doped fiber ring laser with Mach-Zehnder interferometer based on two quasi-abrupt tapered fiber sections

    NASA Astrophysics Data System (ADS)

    Selvas-Aguilar, R.; Martínez-Rios, A.; Anzueto-Sánchez, G.; Castillo-Guzmán, A.; Hernández-Luna, M. C.; Robledo-Fava, R.

    2014-10-01

    We present a wavelength tuning of an Erbium-Doped Fiber Ring Laser (EDFRL) based in a Mach-Zehnder fiber interferometer (MZFI) that consists on two tapers fabricated on commercial SMF28 from Corning as an intracavity filter. The MZFI spectral interference pattern is modified by external refractive index changes that alter the light transmission characteristics. In this work, the fiber device is immersed into a glycerol solution with higher dispersion in its refractive index in relation with temperature. Since the temperature sensitiveness of the glycerol is much higher than that of the fiber in a temperature range from 25-110 °C, therefore, the spectral changes are mainly due to the dispersion of glycerol refractive index when heat increases. Also, when this device is inserted into the EDFRL cavity, the gain spectrum of the EDF is modified accordingly and the changes, which can be controlled in an electrical heater, allow the tuning of the laser wavelength determined by the interference fringes. A wavelength shift as high as 180 pm/°C and a tunable range of 12 nm are obtained. The side mode suppression ratio (SMSR) of the fiber laser is around 25-30 dB depending on the notch filtering position. The insertion losses of the filter are below 0.3 dB and the measured wavelength shift has a quasilinear dependence as a function of temperature in the 80-110 °C. This method is very simple, portable and inexpensive over traditional methods to tune a fiber laser.

  7. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  8. A miniature electronically tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    O'Sullivan, B.; Pietraszewski, K. A. R.

    A miniature electronically tunable, servo controlled Fabry-Perot filter for use in fiber optic sensors, spectroscopy, data and telecommunications, and laser tuning has been developed. The servo control system utilizes capacitance micrometry and piezo technology to maintain stable cavity mirror separations with a noise of less than 0.9nm rms while enabling random access tuning to any wavelength in the design range in less than 0.5ms. Free spectral ranges from 75,000GHz to 300GHz (560nm to 1.5nm at 1500nm wavelength) are typical with finesses between 3 and 300. At present the device has been made commercially available in two formats: fiber optically coupled, with single-mode or multimode fiber, or with a 3mm clear aperture. The design and performance of the instrument are presented along with some typical application examples.

  9. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect

    DOE PAGES

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; ...

    2016-09-26

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a “pinched” p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. In conclusion, thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%–90% transition time, and withmore » efficiency of 3.2 μW/GHz.« less

  10. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source.

    PubMed

    Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  11. Entangled Biphoton Virtual-State Spectroscopy of the A(exp 2)Sigma(sup +)-X(exp 2)Pi System of OH

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2004-01-01

    This Letter describes the first application of entanglement-induced virtual-state spectroscopy to a molecular system. Non-classical, non-monotonic behavior in a two-photon absorption cross section of the OH A-X system, induced by an entangled biphoton state is theoretically demonstrated. A Fourier transform analysis of the biphoton cross section permits access to the energy eigenvalues of intermediate rovibronic states with a fixed excitation photon energy. The dependence of the Fourier spectrum on the tuning range of the entanglement time (T(sub e)) and the relative path delay (tau(sub e)) is discussed. Our analysis reveals that the implementation of molecular virtual-state spectroscopy for the OH A-X system requires the tuning of tau(sub e) over a pico-second range with femto-second resolution.

  12. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    NASA Astrophysics Data System (ADS)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  13. Entangled Biphoton Virtual-State Spectroscopy of the A(exp 2)Sigma(+) - X(exp 2)Pi System of OH

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2004-01-01

    This Letter describes the first application of entanglement-induced virtual-state spectroscopy to a molecular system. Non-classical, non-monotonic behavior in a two-photon absorption cross section of the OH A-X system, induced by an entangled biphoton state is theoretically demonstrated. A Fourier transform analysis of the biphoton cross section permits access to the energy eigenvalues of intermediate rovibronic states with a fixed excitation photon energy. The dependence of the Fourier spectrum on the tuning range of the entanglement time T(sub e), and the relative path delay tau(sub e) is discussed. Our analysis reveals that the implementation of molecular virtual-state spectroscopy for the OH A-X system requires the tuning of tau(sub e) over a pico-second range with femto-second resolution.

  14. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  15. Phase-locked loop design with fast-digital-calibration charge pump

    NASA Astrophysics Data System (ADS)

    Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji

    2016-02-01

    A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.

  16. OPTION(5) versus OPTION(12) instruments to appreciate the extent to which healthcare providers involve patients in decision-making.

    PubMed

    Stubenrouch, Fabienne E; Pieterse, Arwen H; Falkenberg, Rijan; Santema, T Katrien B; Stiggelbout, Anne M; van der Weijden, Trudy; Aarts, J Annemijn W M; Ubbink, Dirk T

    2016-06-01

    The 12-item "observing patient involvement" (OPTION(12))-instrument is commonly used to assess the extent to which healthcare providers involve patients in health-related decision-making. The five-item version (OPTION(5)) claims to be a more efficient measure. In this study we compared the Dutch versions of the OPTION-instruments in terms of inter-rater agreement and correlation in outpatient doctor-patient consultations in various settings, to learn if we can safely switch to the shorter OPTION(5)-instrument. Two raters coded 60 audiotaped vascular surgery and oncology patient consultations using OPTION(12) and OPTION(5). Unweighted Cohen's kappa was used to compute inter-rater agreement on item-level. The association between the total scores of the two OPTION-instruments was investigated using Pearson's correlation coefficient (r) and a Bland & Altman plot. After fine-tuning the OPTION-manuals, inter-rater agreement for OPTION(12) and OPTION(5) was good to excellent (kappa range 0.69-0.85 and 0.63-0.72, respectively). Mean total scores were 23.7 (OPTION(12); SD=7.8) and 39.3 (OPTION(5); SD=12.7). Correlation between the total scores was high (r=0.71; p=0.01). OPTION(5) scored systematically higher with a wider range than OPTION(12). Both OPTION-instruments had a good inter-rater agreement and correlated well. OPTION(5) seems to differentiate better between various levels of patient involvement. The OPTION(5)-instrument is recommended for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. The noseleaf of Rhinolophus formosae focuses the Frequency Modulated (FM) component of the calls

    PubMed Central

    Vanderelst, Dieter; Lee, Ya-Fu; Geipel, Inga; Kalko, Elisabeth K. V.; Kuo, Yen-Min; Peremans, Herbert

    2013-01-01

    Bats of the family Rhinolophidae emit their echolocation calls through their nostrils and feature elaborate noseleaves shaping the directionality of the emissions. The calls of these bats consist of a long constant-frequency component preceded and/or followed by short frequency-modulated sweeps. While Rhinolophidae are known for their physiological specializations for processing the constant frequency part of the calls, previous evidence suggests that the noseleaves of these animals are tuned to the frequencies in the frequency modulated components of the calls. In this paper, we seek further support for this hypothesis by simulating the emission beam pattern of the bat Rhinolophus formosae. Filling the furrows of lancet and removing the basal lappets (i.e., two flaps on the noseleaf) we find that these conspicuous features of the noseleaf focus the emitted energy mostly for frequencies in the frequency-modulated components. Based on the assumption that this component of the call is used by the bats for ranging, we develop a qualitative model to assess the increase in performance due to the furrows and/or the lappets. The model confirms that both structures decrease the ambiguity in selecting relevant targets for ranging. The lappets and the furrows shape the emission beam for different spatial regions and frequency ranges. Therefore, we conclude that the presented evidence is in line with the hypothesis that different parts of the noseleaves of Rhinolophidae are tuned to different frequency ranges with at least some of the most conspicuous ones being tuned to the frequency modulated components of the calls—thus yielding strong evidence for the sensory importance of the component. PMID:23882226

  18. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    NASA Astrophysics Data System (ADS)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  19. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer.

    PubMed

    Tiwari, Vivek; Peters, William K; Jonas, David M

    2017-10-21

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  20. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-03-01

    The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.

  1. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    NASA Astrophysics Data System (ADS)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  2. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy

    NASA Astrophysics Data System (ADS)

    Kataria, Devika; Krishnamoorthy, Kothandam; Iyer, S. Sundar Kumar

    2017-08-01

    Tuning metal nanoparticle (MNP) contact angle on the surface it is formed can help maximise the useful optical coupling in photovoltaic films by localized surface plasmon (LSP) resonance—opening up the possibility of building improved photovoltaic cells. In this work experimental demonstration of optical absorption increase in copper phthalocyanine (CuPc) films by tuning silver MNP shape by changing its contact angles with substrate has been reported. Thin films of poly3,4 ethylenedioxythiophene: sodium dodecycl sulphate (PEDOT:SDS) with different surface energies were formed on indium tin oxide (ITO) coated glass by electro-deposition. Silver MNPs thermally evaporated directly on ozonised ITO as well as on the PEDOT:SDS films showed contact angles ranging from 60° to 125°. The CuPc layer was deposited on top of the MNPs. For the samples studied, best optical absorption in the CuPc layer was for a contact angle of 110°.

  3. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  4. Viscoelastic property tuning for reducing noise radiated by switched-reluctance machines

    NASA Astrophysics Data System (ADS)

    Millithaler, Pierre; Dupont, Jean-Baptiste; Ouisse, Morvan; Sadoulet-Reboul, Émeline; Bouhaddi, Noureddine

    2017-10-01

    Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking advantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation. After introducing the aspects the tuning process will focus on, the article details a concrete application consisting in computing representative electromagnetic excitations and then the structural response of the stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This methodology is implementable for concrete industrial applications as it only relies on common commercial finite-element solvers.

  5. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  6. X2Y2 isomers: tuning structure and relative stability through electronegativity differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te).

    PubMed

    El-Hamdi, Majid; Poater, Jordi; Bickelhaupt, F Matthias; Solà, Miquel

    2013-03-04

    We have studied the XYYX and X2YY isomers of the X2Y2 species (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te) using density functional theory at the ZORA-BP86/QZ4P level. Our computations show that, over the entire range of our model systems, the XYYX isomers are more stable than the X2YY forms except for X = F and Y = S and Te, for which the F2SS and F2TeTe isomers are slightly more stable. Our results also point out that the Y-Y bond length can be tuned quite generally through the X-Y electronegativity difference. The mechanism behind this electronic tuning is the population or depopulation of the π* in the YY fragment.

  7. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  8. Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor

    2017-07-19

    Although perovskites have been widely used in catalysis, tuning their surface terminations to control reaction selectivities has not been well established. In this work, we employ multiple surface sensitive techniques to characterize the surface termination (one aspect of surface reconstruction) of SrTiO 3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface termination of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO 2. Densitymore » functional theory (DFT) calculations well explain the selectivity tuning and reaction mechanism on different surface terminations of STO. Similar catalytic tunability is also observed on BaZrO 3, highlighting the generality of the finding from this work.« less

  9. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Reid, Ray D. (Inventor); Hug, William F. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  10. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  11. Efficient receiver tuning using differential evolution strategies

    NASA Astrophysics Data System (ADS)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  12. Design and performance of clock-recovery GaAs ICs for high-speed optical communication systems

    NASA Astrophysics Data System (ADS)

    Imai, Yuhki; Sano, Eiichi; Nakamura, Makoto; Ishihara, Noboru; Kikuchi, Hiroyuki; Ono, Takashi

    1993-05-01

    Design and performance of clock-recovery GaAs ICs are presented. Four kinds of ICs were developed: a limiting amplifier, a tuning amplifier, a rectifier, and a differentiator. The cascaded limiting amplifier together with a tuning amplifier achieved a 58-dB gain and a 10-degree phase deviation with 20-dB input dynamic range at 10 GHz. A clock-recovery circuit successfully extracts a low-jitter 10-GHz clock signal of 1-dBm constant power from 10-Gb/s NRZ pseudorandom bit streams using a pulse pattern generator.

  13. Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores

    NASA Astrophysics Data System (ADS)

    Poon, Joyce K. S.; Huang, Yanyi; Paloczi, George T.; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2004-11-01

    We present a simple and effective method for the postfabrication trimming of optical microresonators. We photobleach CLD-1 chromophores to tune the resonance wavelengths of polymer microring resonator optical notch filters. A maximum wavelength shift of -8.73 nm is observed. The resonators are fabricated with a soft-lithography molding technique and have an intrinsic Q value of 2.6×10^4 and a finesse of 9.3. The maximum extinction ratio of the resonator filters is -34 dB, indicating that the critical coupling condition has been satisfied.

  14. Design of vein finder with multi tuning wavelength using RGB LED

    NASA Astrophysics Data System (ADS)

    Chandra, Franky; Wahyudianto, Aries; Yasin, M.

    2017-05-01

    Detection of intra vena is very important technique in the medical clinic applications. For intravenous detection, some nurses usually have a mistake which can cause a pain or injured to the patient. When the nurses are headed with this problem, it becomes dangerous for the patient. To solve the problem, in this paper, vein finder with multi-tuning wavelength for intra vena detection is proposed and investigated. Vein finder is tested to various skin colour and body mass. The results show that vein finder was successfully designed with controllable wavelength in the range of 600-696 nm using RGB LED.

  15. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    NASA Astrophysics Data System (ADS)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  16. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  17. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  18. Understanding temperature tuning of the all polymer co-extruded laser

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Andrews, Jim; Aviles, Michael; Dawson, Nathan; Petrus, Joshua; Mazzocco, Anthony; Singer, Ken; Baer, Eric; Song, Hyunmin

    2012-10-01

    We investigate the effects of elevated temperatures on a few types of all-polymer multilayer films that were fabricated using a co-extrusion melt-process technique. We report on the anisotropic thermal expansion of the multilayer films, which affects the photonic crystal structure via constituent wise induced anisotropic strains and a change in the relative refractive indices. In addition to the characterization of these films in the temperature range of approximately 20-95 degrees C, we show the application to non-contact temperature sensing and wavelength tuning of all polymer Distributed FeedBack (DFB) lasers and Distributed Bragg Reflector (DBR) lasers.

  19. A contribution to the design of wideband tunable second harmonic mode millimeter-wave InP-TED oscillators above 110 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-03-01

    Second harmonic InP-TED oscillators are investigated for frequencies above 110 GHz using different mounts and TED's. It is found that state of the art output powers, comparable to Schottky-varactor multipliers, of more than 2 mW can be generated above 190 GHz by reducing the capsule parasitics. Output power up to 216 GHz are observed. The tuning range above 110 GHz is found to be more than 40 percent. Using theoretical waveguide models the tuning behavior of the oscillators is also investigated.

  20. Laser induced fluorescence in Ar and He plasmas with a tunable diode laser

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Scime, E. E.

    2003-10-01

    A diode laser based laser induced fluorescence (LIF) diagnostic that uses an inexpensive diode laser system is described. This LIF diagnostic has been developed on the hot helicon experiment (HELIX) plasma device. The same diode laser is used to alternatively pump Ar II and He I transitions to obtain argon ion and atomic helium temperatures, respectively. The 1.5 MHz bandwidth diode laser has a Littrow external cavity with a mode-hop free tuning range up to 14 GHz (≈0.021 nm) and a total power output of about 12 mW. Wavelength scanning is achieved by varying the voltage on a piezoelectric controlled grating located within the laser cavity. The fluorescence radiation is monitored with a photomultiplier detector. A narrow band interference filter is used to eliminate all but the plasma radiation in the immediate vicinity of the fluorescence wavelength. Lock-in amplification is used to isolate the fluorescence signal from noise and electron-impact induced radiation. For the Ar ion, the laser tuned at 668.43 nm is used to pump the 3d 4F7/2 Ar II metastable level to the 4p 4D5/2 level. The 442.60 nm fluorescence radiation between the 4p 4D5/2 and the 4s 4P3/2 levels is captured by the photomultiplier tube. For atomic He, the laser is tuned at 667.82 nm to pump a fraction of the electron population from the 21P state to the 31D upper level. Although the 21P level is not a metastable, the close proximity of 21S metastable makes this new He I LIF scheme possible. In this scheme, a fraction of the laser-excited electrons undergo collisional excitation transfer from the 31D to the 31P level. In turn, the 31P state decays to the metastable 21S by emitting 501.57 nm fluorescence photons.

  1. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.

    PubMed

    Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne

    2015-11-01

    In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.

  2. Speed, spatial, and temporal tuning of rod and cone vision in mouse.

    PubMed

    Umino, Yumiko; Solessio, Eduardo; Barlow, Robert B

    2008-01-02

    Rods and cones subserve mouse vision over a 100 million-fold range of light intensity (-6 to 2 log cd m(-2)). Rod pathways tune vision to the temporal frequency of stimuli (peak, 0.75 Hz) and cone pathways to their speed (peak, approximately 12 degrees/s). Both pathways tune vision to the spatial components of stimuli (0.064-0.128 cycles/degree). The specific photoreceptor contributions were determined by two-alternative, forced-choice measures of contrast thresholds for optomotor responses of C57BL/6J mice with normal vision, Gnat2(cpfl3) mice without functional cones, and Gnat1-/- mice without functional rods. Gnat2(cpfl3) mice (threshold, -6.0 log cd m(-2)) cannot see rotating gratings above -2.0 log cd m(-2) (photopic vision), and Gnat1-/- mice (threshold, -4.0 log cd m(-2)) are blind below -4.0 log cd m(-2) (scotopic vision). Both genotypes can see in the transitional mesopic range (-4.0 to -2.0 log cd m(-2)). Mouse rod and cone sensitivities are similar to those of human. This parametric study characterizes the functional properties of the mouse visual system, revealing the rod and cone contributions to contrast sensitivity and to the temporal processing of visual stimuli.

  3. Frequency-tuning radiofrequency plasma source operated in inductively-coupled mode under a low magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Nakano, Yudai; Ando, Akira

    2017-07-01

    A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.

  4. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  5. Lattice structure and magnetization of LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Rata, A. D.; Herklotz, A.; Schultz, L.; Dörr, K.

    2010-07-01

    We investigate the structure and magnetic properties of thin films of the LaCoO3 compound. Thin films are deposited by pulsed laser deposition on various substrates in order to tune the strain from compressive to tensile. Single-phase (001) oriented LaCoO3 layers were grown on all substrates despite large misfits. The tetragonal distortion of the films covers a wide range from -2% to 2.8%. Our LaCoO3 films are ferromagnetic with Curie temperature around 85 K, contrary to the bulk. The total magnetic moment is below 1 μ B /Co3+, a value relatively small for an exited spin-state of the Co3+ ions, but comparable to values reported in literature. A correlation of strain states and magnetic moment of Co3+ ions in LaCoO3 thin films is observed.

  6. An Integrated Approach to Thermal Management of International Space Station Logistics Flights, Improving the Efficiency

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Day, Greg; Roberts, Barry; Leahy, Frank

    2003-01-01

    The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented for the MPLM Mission Engineering were NASA firsts and all served to improve the overall operations activities. This paper will provide an explanation of how various issues were addressed and the resulting solutions. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation the goal was to "tune" the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.

  7. Spatial characterization of Bessel-like beams for strong-field physics.

    PubMed

    Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A

    2017-02-06

    We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.

  8. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    PubMed

    Salman, Karrar Naji; Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  9. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our currentmore » results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.« less

  10. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.

    PubMed

    Wu, Jun

    2018-03-01

    The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.

  11. Fast, precise, and widely tunable frequency control of an optical parametric oscillator referenced to a frequency comb.

    PubMed

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2017-03-01

    Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

  12. RF-MEMS tunable interdigitated capacitor and fixed spiral inductor for band pass filter applications

    NASA Astrophysics Data System (ADS)

    Bade, Ladon Ahmed; Dennis, John Ojur; Khir, M. Haris Md; Wen, Wong Peng

    2016-11-01

    This research presents the tunable Radio Frequency Micro Electromechanical Systems (RF-MEMS) coupled band-pass filter (BPF), which possess a wide tuning range and constructed by using the Chebyshev fourth degree equivalent circuit consisting of fixed inductors and interdigitated tunable capacitors. The suggested method was authenticated by designing a new tunable BPF with a 100% tuning range from 3.1 GHz to 4.9 GHz. The Metal Multi-User MEMS Process (Metal MUMPs) was involved in the process of design of this band-pass filter. It aimed to achieve the reconfiguration of frequencies and show high efficiency of RF in the applications that using Ultra Wide Band (UWB) such as wireless sensor networks. The RF performance of this filter was found to be very satisfactory due to its simple fabrication. Moreover, it showed less insertion loss of around 4 dB and high return loss of around 20 dB.

  13. Piezoelectric tunable microwave superconducting cavity

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Fan, Y.; Tobar, M. E.

    2016-09-01

    In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.

  14. Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics

    PubMed Central

    Varshney, Atul; Ghosh, Shankar; Bhattacharya, S.; Yethiraj, Anand

    2012-01-01

    Self organization of large-scale structures in nature - either coherent structures like crystals, or incoherent dynamic structures like clouds - is governed by long-range interactions. In many problems, hydrodynamics and electrostatics are the source of such long-range interactions. The tuning of electrostatic interactions has helped to elucidate when coherent crystalline structures or incoherent amorphous structures form in colloidal systems. However, there is little understanding of self organization in situations where both electrostatic and hydrodynamic interactions are present. We present a minimal two-component oil-in-oil model system where we can control the strength and lengthscale of the electrohydrodynamic interactions by tuning the amplitude and frequency of the imposed electric field. As a function of the hydrodynamic lengthscale, we observe a rich phenomenology of exotic structure and dynamics, from incoherent cloud-like structures and chaotic droplet dynamics, to polyhedral droplet phases, to coherent droplet arrays. PMID:23071902

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuharik, J.; Madrak, R.; Makarov, A.

    A second harmonic tunable RF cavity is being devel-oped for the Fermilab Booster. This device, which prom-ises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the mag-netic field in the garnet comes fairly close to the gyromag-netic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet mate-rial;more » thus, it is important to know the static magnetic prop-erties of the material to avoid significant increase in the lo-cal RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the mag-netic properties of the AL800 garnet material used to build the tuner of the cavity.« less

  16. Using non-empirically tuned range-separated functionals with simulated emission bands to model fluorescence lifetimes.

    PubMed

    Wong, Z C; Fan, W Y; Chwee, T S; Sullivan, Michael B

    2017-08-09

    Fluorescence lifetimes were evaluated using TD-DFT under different approximations for the emitting molecule and various exchange-correlation functionals, such as B3LYP, BMK, CAM-B3LYP, LC-BLYP, M06, M06-2X, M11, PBE0, ωB97, ωB97X, LC-BLYP*, and ωB97X* where the range-separation parameters in the last two functionals were tuned in a non-empirical fashion. Changes in the optimised molecular geometries between the ground and electronically excited states were found to affect the quality of the calculated lifetimes significantly, while the inclusion of vibronic features led to further improvements over the assumption of a vertical electronic transition. The LC-BLYP* functional was found to return the most accurate fluorescence lifetimes with unsigned errors that are mostly within 1.5 ns of experimental values.

  17. Fabrication of micromachined focusing mirrors with seamless reflective surface

    NASA Astrophysics Data System (ADS)

    Hou, Max Ti-Kuang; Liao, Ke-Min; Yeh, Hong-Zhen; Cheng, Bo-Wen; Hong, Pei-Yuan; Chen, Rongshun

    2003-01-01

    A surface-micromachined focusing mirror with variable focal length, which is controlled by adjusting the mirror"s curvature, is fabricated and characterized. The bowl-shaped micromirror, which is fabricated from the micro bilayer circular plate, focuses light beam through thermal actuation of the external heat source. Both the initial and operational curvatures are manipulated by the residual stresses in two layers of the mirror. Improper stresses would lead to the failure of the bowl-shaped structure. We analyze and design geometrical dimensions for simultaneously avoiding the structure failure and increasing the tuning range of the focal length. The interferometer has been used to measure the focal length and the focusing ability. Mirrors with nominal focal lengths approximately 730 μm, and tuning ranges of about 50 microns were demonstrated. The measurement directly through optical approach has also been tried, but requires further investigation, because the laser beam affects the focusing of the micromirror seriously.

  18. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjue, S. K. L., E-mail: sjue@lanl.gov; Mariam, F. G.; Merrill, F. E.

    2016-01-15

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the imagemore » plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  19. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGES

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  20. Wide-range tuning of the surface plasmon resonance of silver/gold core shell and alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Hubenthal, Frank; Ziegler, Torsten; Hendrich, Christian; Träger, Frank

    2004-03-01

    For many applications like surface enhanced Raman scattering in which the optical field enhancement associated with surface plasmon excitation is exploited, tunability of this collective resonance over a wide range is required. For this purpose we have prepared Ag/Au core shell and Ag/Au alloyed nanoparticles with different shell thicknesses and different percentages of the two metals. The nanoparticles were made by subsequent deposition of Ag and Au atoms on dielectric substrates followed by diffusion and nucleation or heat treatment. Depending on the Au shell thickness the plasmon frequency can be tuned, e.g. from 2.8 eV (442 nm) to 2.1 eV (590 nm). Annealing of the core-shell nanoparticles causes a shift of the resonance frequency to 2.6 eV. Theoretical modelling allows us to attribute this observation to the production of alloyed nanoparticles. Possible application of the Ag/Au nanoparticles will be discussed.

  1. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry

    PubMed Central

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-01

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859

  2. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.

    PubMed

    Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh

    2016-06-08

    Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm(-1)) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing.

  3. Mode Tracker for Mode-Hop-Free Operation of a Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Tittel, Frank K.; Curl, Robert F.

    2010-01-01

    A mode-tracking system that includes a mode-controlling subsystem has been incorporated into an external-cavity (EC) quantum cascade laser that operates in a mid-infrared wavelength range. The mode-tracking system makes it possible to perform mode-hop-free wavelength scans, as needed for high-resolution spectroscopy and detection of trace gases. The laser includes a gain chip, a beam-collimating lens, and a diffraction grating. The grating is mounted on a platform, the position of which can be varied to effect independent control of the EC length and the grating angle. The position actuators include a piezoelectric stage for translation control and a motorized stage for coarse rotation control equipped with a piezoelectric actuator for fine rotation control. Together, these actuators enable control of the EC length over a range of about 90 m with a resolution of 0.9 nm, and control of the grating angle over a coarse-tuning range of +/-6.3deg and a fine-tuning range of +/-520 microrad with a resolution of 10 nrad. A mirror mounted on the platform with the grating assures always the same direction of the output laser beam.

  4. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design

    PubMed Central

    Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh

    2016-01-01

    Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634

  5. A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach.

    PubMed

    Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao

    2018-05-01

    The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces

    NASA Astrophysics Data System (ADS)

    Long, Yun; Wang, Jian

    2014-06-01

    Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.

  7. All-semiconductor high-speed akinetic swept-source for OCT

    NASA Astrophysics Data System (ADS)

    Minneman, Michael P.; Ensher, Jason; Crawford, Michael; Derickson, Dennis

    2011-12-01

    A novel swept-wavelength laser for optical coherence tomography (OCT) using a monolithic semiconductor device with no moving parts is presented. The laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) structure exhibiting a single longitudinal mode. All-electronic wavelength tuning is achieved at a 200 kHz sweep repetition rate, 20 mW output power, over 100 nm sweep width and coherence length longer than 40 mm. OCT point-spread functions with 45- 55 dB dynamic range are demonstrated; lasers at 1550 nm, and now 1310 nm, have been developed. Because the laser's long-term tuning stability allows for electronic sample trigger generation at equal k-space intervals (electronic k-clock), the laser does not need an external optical k-clock for measurement interferometer sampling. The non-resonant, allelectronic tuning allows for continuously adjustable sweep repetition rates from mHz to 100s of kHz. Repetition rate duty cycles are continuously adjustable from single-trigger sweeps to over 99% duty cycle. The source includes a monolithically integrated power leveling feature allowing flat or Gaussian power vs. wavelength profiles. Laser fabrication is based on reliable semiconductor wafer-scale processes, leading to low and rapidly decreasing cost of manufacture.

  8. A Recurrent Network Model of Somatosensory Parametric Working Memory in the Prefrontal Cortex

    PubMed Central

    Miller, Paul; Brody, Carlos D; Romo, Ranulfo; Wang, Xiao-Jing

    2015-01-01

    A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex. PMID:14576212

  9. Differences between mechanical and neural tuning at the apex of the intact guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Recio-Spinoso, Alberto; Oghalai, John S.

    2018-05-01

    While most of human speech information is contained within frequencies < 3-4 kHz, only a few mechanical measurements have been made in cochlear regions responsive to such low frequencies. Furthermore, the data that do exist are difficult to interpret given the technical difficulties in performing the experiments and/or the artifacts that result from opening the otic capsule bone to visualize the organ of Corti. Here, we overcame historical technical limitations and non-invasively measured sound-induced vibrations within the apex of the guinea pig cochlea using volumetric optical coherence tomography vibrometry (VOCTV). We found that vibrations within apical cochlear regions, with neural tuning below 2 kHz, demonstrate low-pass filter characteristics. There was evidence of a low-level of broad-band cochlear amplification that did not sharpen frequency selectivity. We compared the vibratory responses we measured to previously-measured single-unit auditory nerve tuning curves in the same frequency range, and found that mechanical responses do not match neural responses. These data suggest that, for low frequency cochlear regions, inner hair cells not only transduce vibrations of the organ of Corti but also sharpen frequency tuning.

  10. Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits

    PubMed Central

    Wang, Huiliang; Wei, Peng; Li, Yaoxuan; Han, Jeff; Lee, Hye Ryoung; Naab, Benjamin D.; Liu, Nan; Wang, Chenggong; Adijanto, Eric; Tee, Benjamin C.-K.; Morishita, Satoshi; Li, Qiaochu; Gao, Yongli; Cui, Yi; Bao, Zhenan

    2014-01-01

    Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives processed via either solution coating or vacuum deposition. The threshold voltages of our polythiophene-sorted SWNT thin-film transistors can be tuned accurately and continuously over a wide range. Photoelectron spectroscopy measurements confirmed that the SWNT Fermi level shifted to the conduction band edge with increasing doping concentration. Using this doping approach, we proceeded to fabricate SWNT complementary inverters by inkjet printing of the dopants. We observed an unprecedented noise margin of 28 V at VDD = 80 V (70% of 1/2VDD) and a gain of 85. Additionally, robust SWNT complementary metal−oxide−semiconductor inverter (noise margin 72% of 1/2VDD) and logic gates with rail-to-rail output voltage swing and subnanowatt power consumption were fabricated onto a highly flexible substrate. PMID:24639537

  11. Continuously Tunable Nucleic Acid Hybridization Probes

    PubMed Central

    Wu, Lucia R.; Wang, J. Sherry; Fang, John Z.; Reiser, Emily; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J.; Beechem, Joseph; Zhang, David Yu

    2015-01-01

    In silico designed nucleic acid probes and primers often fail to achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. Here, we present a novel, on-the-fly method of tuning probe affinity and selectivity via the stoichiometry of auxiliary species, allowing independent and decoupled adjustment of hybridization yield for different probes in multiplexed assays. Using this method, we achieve near-continuous tuning of probe effective free energy (0.03 kcal·mol−1 granularity). As applications, we enforced uniform capture efficiency of 31 DNA molecules (GC content 0% – 100%), maximized signal difference for 11 pairs of single nucleotide variants, and performed tunable hybrid-capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples (FFPE). PMID:26480474

  12. Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station

    NASA Astrophysics Data System (ADS)

    Allabakash, S.; Yasodha, P.; Bianco, L.; Venkatramana Reddy, S.; Srinivasulu, P.; Lim, S.

    2017-09-01

    This paper presents the efficacy of a "tuned" fuzzy logic method at determining the height of the boundary layer using the measurements from a 1280 MHz lower atmospheric radar wind profiler located in Gadanki (13.5°N, 79°E, 375 mean sea level), India, and discusses the diurnal and seasonal variations of the measured convective boundary layer over this tropical station. The original fuzzy logic (FL) method estimates the height of the atmospheric boundary layer combining the information from the range-corrected signal-to-noise ratio, the Doppler spectral width of the vertical velocity, and the vertical velocity itself, measured by the radar, through a series of thresholds and rules, which did not prove to be optimal for our radar system and geographical location. For this reason the algorithm was tuned to perform better on our data set. Atmospheric boundary layer heights obtained by this tuned FL method, the original FL method, and by a "standard method" (that only uses the information from the range-corrected signal-to-noise ratio) are compared with those obtained from potential temperature profiles measured by collocated Global Positioning System Radio Sonde during years 2011 and 2013. The comparison shows that the tuned FL method is more accurate than the other methods. Maximum convective boundary layer heights are observed between 14:00 and 15:00 local time (LT = UTC + 5:30) for clear-sky days. These daily maxima are found to be lower during winter and postmonsoon seasons and higher during premonsoon and monsoon seasons, due to net surface radiation and convective processes over this region being more intense during premonsoon and monsoon seasons and less intense in winter and postmonsoon seasons.

  13. Bayesian LASSO, scale space and decision making in association genetics.

    PubMed

    Pasanen, Leena; Holmström, Lasse; Sillanpää, Mikko J

    2015-01-01

    LASSO is a penalized regression method that facilitates model fitting in situations where there are as many, or even more explanatory variables than observations, and only a few variables are relevant in explaining the data. We focus on the Bayesian version of LASSO and consider four problems that need special attention: (i) controlling false positives, (ii) multiple comparisons, (iii) collinearity among explanatory variables, and (iv) the choice of the tuning parameter that controls the amount of shrinkage and the sparsity of the estimates. The particular application considered is association genetics, where LASSO regression can be used to find links between chromosome locations and phenotypic traits in a biological organism. However, the proposed techniques are relevant also in other contexts where LASSO is used for variable selection. We separate the true associations from false positives using the posterior distribution of the effects (regression coefficients) provided by Bayesian LASSO. We propose to solve the multiple comparisons problem by using simultaneous inference based on the joint posterior distribution of the effects. Bayesian LASSO also tends to distribute an effect among collinear variables, making detection of an association difficult. We propose to solve this problem by considering not only individual effects but also their functionals (i.e. sums and differences). Finally, whereas in Bayesian LASSO the tuning parameter is often regarded as a random variable, we adopt a scale space view and consider a whole range of fixed tuning parameters, instead. The effect estimates and the associated inference are considered for all tuning parameters in the selected range and the results are visualized with color maps that provide useful insights into data and the association problem considered. The methods are illustrated using two sets of artificial data and one real data set, all representing typical settings in association genetics.

  14. Benchmark study of ionization potentials and electron affinities of armchair single-walled carbon nanotubes using density functional theory

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Hu, Zhubin; Jiang, Yanrong; He, Xiao; Sun, Zhenrong; Sun, Haitao

    2018-05-01

    The intrinsic parameters of carbon nanotubes (CNTs) such as ionization potential (IP) and electron affinity (EA) are closely related to their unique properties and associated applications. In this work, we demonstrated the success of optimal tuning method based on range-separated (RS) density functionals for both accurate and efficient prediction of vertical IPs and electron affinities (EAs) of a series of armchair single-walled carbon nanotubes C20n H20 (n  =  2–6) compared to the high-level IP/EA equation-of-motion coupled-cluster method with single and double substitutions (IP/EA-EOM-CCSD). Notably, the resulting frontier orbital energies (–ε HOMO and –ε LUMO) from the tuning method exhibit an excellent approximation to the corresponding IPs and EAs, that significantly outperform other conventional density functionals. In addition, it is suggested that the RS density functionals that possess both a fixed amount of exact exchange in the short-range and a correct long-range asymptotic behavior are suitable for calculating electronic structures of finite-sized CNTs. Next the performance of density functionals for description of various molecular properties such as chemical potential, hardness and electrophilicity are assessed as a function of tube length. Thanks to the efficiency and accuracy of this tuning method, the related behaviors of much longer armchair single-walled CNTs until C200H20 were studied. Lastly, the present work is proved to provide an efficient theoretical tool for future materials design and reliable characterization of other interesting properties of CNT-based systems.

  15. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  16. A case study of tuning MapReduce for efficient Bioinformatics in the cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lizhen; Wang, Zhong; Yu, Weikuan

    The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs. More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular characteristics of bioinformatics applications. In this paper, we aim to minimize the cloud computing cost spent on bioinformatics datamore » analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case. Experimental results show that, with the fine-tuned parameters, we achieve a total of 4× speedup compared with the original performance (using the default settings). Finally, this paper presents an exemplary case for tuning MapReduce-based bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance benefits.« less

  17. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    PubMed Central

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  18. Spatially tuned normalization explains attention modulation variance within neurons.

    PubMed

    Ni, Amy M; Maunsell, John H R

    2017-09-01

    Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical area can be largely explained by between-neuron differences in normalization strength. Here we demonstrate that attention modulation size varies within neurons as well and that this variance is largely explained by within-neuron differences in normalization strength. We provide a new spatially tuned normalization model that explains this broad range of observed normalization and attention effects. Copyright © 2017 the American Physiological Society.

  19. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkifli, M Z; Ahmad, H; Hassan, N A

    2011-07-31

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm tomore » 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)« less

  20. Extending the spectral range of CdSe/ZnSe quantum wells by strain engineering

    NASA Astrophysics Data System (ADS)

    Finke, A.; Ruth, M.; Scholz, S.; Ludwig, A.; Wieck, A. D.; Reuter, D.; Pawlis, A.

    2015-01-01

    We demonstrate efficient room-temperature photoluminescence and spectral tuning of epitaxially grown ZnSe/CdSe quantum well structures almost over the whole visible spectrum (470-600 nm wavelength). The key element to achieve the observed high quantum efficiency and enormous tuning range was the implementation of a special strain engineering technique, which allows us to suppress substantial lattice relaxation of CdSe on ZnSe. Previous studies indicated that a CdSe coverage exceeding 3 ML on ZnSe results in the formation of extensive lattice defects and complete quenching of the photoluminescence at low and room temperature. In contrast, our approach of strain engineering enables the deposition of planar CdSe quantum wells with a thickness ranging from 1 to 6 ML with excellent optical properties. We attribute the observed experimental features to a controllable strain compensation effect that is present in an alternating system of tensile and compressively strained epitaxial layers and supported this model by calculations of the transition energies of the ZnSe/CdSe quantum wells.

  1. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    PubMed

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  2. Pressure-tuning infrared and Raman microscopy study of the DNA bases: adenine, guanine, cytosine, and thymine.

    PubMed

    Yang, Seung Yun; Butler, Ian S

    2013-12-01

    Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45 kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28-31 kbar; for guanine at 16-19 kbar; and for thymine at 25-26 kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the -0.07-0.66 (low-pressure phase) and 0.06-0.91 (high-pressure phase) cm⁻¹/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from -0.07-0.31 (low-pressure phase) to 0.08-0.50 (high-pressure phase) cm⁻¹/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.

  3. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    PubMed

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  4. A novel frequency tuned wireless actuator with snake-like motion

    NASA Astrophysics Data System (ADS)

    Zhang, Kewei; Zhu, Qianke; Chai, Yuesheng

    2016-07-01

    In this work, we propose a novel wireless actuator which is composed of magnetostrictive material/copper bi-layer film. The actuator can be controlled to move like a snake bi-directionally along a pipe by tuning the frequency of external magnetic field near its first order resonant frequency. The governing equation for the actuator is established and the vibration mode shape function is derived. Theoretical analysis shows that motion of the actuator is achieved by asymmetric vibration mode shape, specific vibration bending deformation, and effective net total impacting force. The simulation and experimental results well confirm the theoretical analysis. This work provides contribution to the development of wireless micro robots and autonomous magnetostrictive sensors.

  5. Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control

    NASA Astrophysics Data System (ADS)

    Estève, Simon J.; Johnson, Marty E.

    2005-12-01

    This paper presents an adaptive-passive solution to control the broadband sound transmission into rocket payload fairings. The treatment is composed of passive distributed vibration absorbers (DVAs) and adaptive Helmholtz resonators (HR). Both the frequency domain and time-domain model of a simply supported cylinder excited by an external plane wave are developed. To tune vibration absorbers to tonal excitation, a tuning strategy, based on the phase information between the velocity of the absorber mass and the velocity of the host structure is used here in a new fashion to tune resonators to peaks in the broadband acoustic spectrum of a cavity. This tuning law, called the dot-product method, only uses two microphone signals local to each HR, which allows the adaptive Helmholtz resonator (AHR) to be manufactured as an autonomous device with power supply, sensor, actuator and controller integrated. Numerical simulations corresponding to a 2.8 m long 2.5 m diameter composite cylinder prototype demonstrate that, as long as the structure modes, which strongly couple to the acoustic cavity, are damped with a DVA treatment, the dot-product method tune multiple HRs to a near-optimal solution over a broad frequency range (40-160 Hz). An adaptive HR prototype with variable opening is built and characterized. Experiments conducted on the cylinder prototype with eight AHRs demonstrate the ability of resonators adapted with the dot-product method to converge to near-optimal noise attenuation in a frequency band including multiple resonances.

  6. Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1996-01-01

    Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.

  7. Internal Water Vapor Photoacoustic Calibration

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  8. Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits

    NASA Astrophysics Data System (ADS)

    Schmidgall, Emma R.; Chakravarthi, Srivatsa; Gould, Michael; Christen, Ian R.; Hestroffer, Karine; Hatami, Fariba; Fu, Kai-Mei C.

    2018-02-01

    Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.

  9. Programming and Tuning a Quantum Annealing Device to Solve Real World Problems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Smelyanskiy, Vadim

    2015-03-01

    Solving real-world applications with quantum algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language to tuning parameters of the quantum algorithm that have a significant impact on the performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. Although we will focus on applications of interest to NASA's Quantum Artificial Intelligence Laboratory, the methods and concepts presented here apply to a broader family of hard discrete optimization problems, including those that occur in many machine-learning algorithms.

  10. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    NASA Astrophysics Data System (ADS)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  11. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  12. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  13. Bichromatic laser cooling in a three-level system

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Xie, C.; Padua, S.; Batelaan, H.; Metcalf, H.

    1993-11-01

    We report a 1D study of optical forces on atoms in a two-frequency laser field. The light couples two ground state hyperfine structure levels to a common excited state of 85Rb, thus forming a Λ system. We observe a new type of sub-Doppler coupling with blue-tuned light that uses neither polarization gradients nor magnetic fields, efficient heating with red tuning, and the spatial phase dependence of these. We observed deflection from a rectified dipole force and determined its velocity dependence and capture range. We report velocity selective resonances associated with Raman transitions. A simplified semiclassical calculation agrees qualitatively with our measurements.

  14. Investigation of narrow-band thermal emission from intersubband transitions in quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Zoysa, M.; Hakubi Center, Kyoto University, Yoshida, Kyoto 606-8501; Asano, T.

    2015-09-14

    We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.

  15. Ultrafast Airy beam optical parametric oscillator

    PubMed Central

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  16. Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits.

    PubMed

    Schmidgall, Emma R; Chakravarthi, Srivatsa; Gould, Michael; Christen, Ian R; Hestroffer, Karine; Hatami, Fariba; Fu, Kai-Mei C

    2018-02-14

    Generating entangled graph states of qubits requires high entanglement rates with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.

  17. Understanding the role played by Fe on the tuning of magnetocaloric effect in Tb5Si2Ge2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Andre; Moreira Dos Santos, Antonio F; Magen Dominguez, Cesar

    2011-01-01

    In this work, it is shown that when replacing Ge by Fe in Tb5Si2Ge2 the structural transition still occurs and enhances the Magnetocaloric effect (up to 66%) with maximum of MCE at a critical Fe amount where the magnetic and structural transitions become fully coupled. It is observed that Fe concentration is able to mimic the e?ect of external pressure as it induces a complex microstructure, that tunes long range strain ?elds. This knowledge is crucial for the development of strategies towards materials with improved performance for e?cient magnetic refrigeration applications.

  18. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  19. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  20. Tuning selective reflection of light by surface anchoring in cholesteric cells with oblique helicoidal structures

    NASA Astrophysics Data System (ADS)

    Iadlovska, Olena S.; Maxwell, Graham R.; Babakhanova, Greta; Mehl, Georg H.; Welch, Christopher; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2018-04-01

    Selective reflection of light by oblique helicoidal cholesteric (ChOH) can be tuned in a very broad spectral range by an applied electric field. In this work, we demonstrate that the peak wavelength of the selective reflection can be controlled by surface alignment of the director in sandwich cells. The peak wavelength is blue-shifted when the surface alignment is perpendicular to the bounding plates and red-shifted when it is planar. The effect is explained by the electric field redistribution within the cell caused by spatially varying heliconical ChOH structure. The observed phenomenon can be used in sensing applications.

  1. Colorant modelling for on-line paper coloring: Evaluations of models and an extension to Kubelka-Munk model

    NASA Astrophysics Data System (ADS)

    Shakespeare, Tarja Tuulikki

    Traditionally, single constant Kubelka-Munk type colorant formulation algorithms have been used for color control in the paper industry. Tuning data is derived from colored handsheets representing dyeing of a particular color grade, applicable to a substrate of similar properties. Due to furnish variation and changes in the chemical environment, such tuning data is of limited accuracy in practice. Kubelka-Munk approaches have numerous other limitations, in part due to their physically unrealistic assumptions. In particular, they neglect fluorescence phenomena, the interdependence of absorption and scattering, and nonlinearities due to colorant interactions. This thesis addresses those problems. A set of colored handsheets was made, employing several anionic direct dyes and fluorescent colorants, individually and in various combinations. Both a spectrophotometer and a spectrofluorimeter were used for measuring color properties. An extended Langmuir adsorption isotherm was used in modelling the dye-on- fiber in each dyeing. Kubelka-Munk absorption and scattering coefficients were then modelled based on dye- on-fiber, and a number of the limitations of the Kubelka- Munk approach were clearly demonstrated. An extended phenomenological model was derived, incorporating fluorescence and interdependence of absorption and scattering. This model predicts illuminator-independent radiance transfer factors based on dye-on-fiber, from which total radiance factor responses under arbitrary illumination can be computed. It requires spectrofluorometric measurements to characterize the coloring process. A new reflectance factor model, based on the same adsorption isotherm approach, was derived for non- fluorescent colorants. A corresponding total radiance factor model, which is illuminator-dependent, was derived for fluorescent colorants. These models have provision for phenomena such as broadening of absorption and scattering bands, which are encountered in practice. Being based on spectrophotometric measurements, they are directly applicable in industrial settings, and predict colorant responses reliably under wider ranges of conditions than the Kubelka-Munk approach.

  2. Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Phillips, Mark C.

    2015-07-01

    A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.

  3. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis

    EPA Science Inventory

    Core–shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as ...

  4. Convergent validity of six methods to assess physical activity in daily life.

    PubMed

    Macfarlane, Duncan J; Lee, Cherry C Y; Ho, Edmond Y K; Chan, K L; Chan, Dionise

    2006-11-01

    The purpose was to examine the agreement (convergent validity) between six common measures of habitual physical activity to estimate durations of light, moderate, vigorous, and total activity in a range of free-living individuals. Over 7 consecutive days, 49 ethnic Chinese (30 men, 19 women), aged 15-55 yr, wore a Polar heart rate monitor, a uniaxial MTI, and triaxial Tritrac accelerometer, plus a Yamax pedometer for > or = 600 min/day. They also completed a daily physical activity log and on day 8 a Chinese version of the 7-day International Physical Activity Questionnaire. At each level of activity, there was good agreement between the two questionnaire-derived instruments and the two accelerometry-derived instruments, but wide variation across different instruments, with two- to fourfold differences in mean durations often seen. The heart rate monitor overestimated light activity and underestimated moderate activity compared with all other measures. Spearman correlation coefficients were low to moderate (0.2-0.5) across most measures of activity, with the pedometer showing correlations with total activity that were often superior to the other movement sensors. We conclude that, with the use of commonly accepted cut points for defining light, moderate, vigorous, and total activity, little convergent validity across the instruments was evident, suggesting these measures are sampling different levels of habitual physical activity and care is needed when comparing their results. To provide a more stable comparison of activity among different people, across studies, or against accepted physical activity promotion guidelines, further work is needed to fine tune the different cut points across a range of common activity monitors to provide more consistent results during free-living conditions.

  5. Model-free aftershock forecasts constructed from similar sequences in the past

    NASA Astrophysics Data System (ADS)

    van der Elst, N.; Page, M. T.

    2017-12-01

    The basic premise behind aftershock forecasting is that sequences in the future will be similar to those in the past. Forecast models typically use empirically tuned parametric distributions to approximate past sequences, and project those distributions into the future to make a forecast. While parametric models do a good job of describing average outcomes, they are not explicitly designed to capture the full range of variability between sequences, and can suffer from over-tuning of the parameters. In particular, parametric forecasts may produce a high rate of "surprises" - sequences that land outside the forecast range. Here we present a non-parametric forecast method that cuts out the parametric "middleman" between training data and forecast. The method is based on finding past sequences that are similar to the target sequence, and evaluating their outcomes. We quantify similarity as the Poisson probability that the observed event count in a past sequence reflects the same underlying intensity as the observed event count in the target sequence. Event counts are defined in terms of differential magnitude relative to the mainshock. The forecast is then constructed from the distribution of past sequences outcomes, weighted by their similarity. We compare the similarity forecast with the Reasenberg and Jones (RJ95) method, for a set of 2807 global aftershock sequences of M≥6 mainshocks. We implement a sequence-specific RJ95 forecast using a global average prior and Bayesian updating, but do not propagate epistemic uncertainty. The RJ95 forecast is somewhat more precise than the similarity forecast: 90% of observed sequences fall within a factor of two of the median RJ95 forecast value, whereas the fraction is 85% for the similarity forecast. However, the surprise rate is much higher for the RJ95 forecast; 10% of observed sequences fall in the upper 2.5% of the (Poissonian) forecast range. The surprise rate is less than 3% for the similarity forecast. The similarity forecast may be useful to emergency managers and non-specialists when confidence or expertise in parametric forecasting may be lacking. The method makes over-tuning impossible, and minimizes the rate of surprises. At the least, this forecast constitutes a useful benchmark for more precisely tuned parametric forecasts.

  6. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    PubMed

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-09

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  7. Research on tunable multiwavelength fiber lasers with two-section birefringence fibers and a nonlinear optical loop

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang

    2018-05-01

    Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.

  8. Total Synthesis of Tiacumicin A. Total Synthesis, Relay Synthesis, and Degradation Studies of Fidaxomicin (Tiacumicin B, Lipiarmycin A3).

    PubMed

    Hattori, Hiromu; Kaufmann, Elias; Miyatake-Ondozabal, Hideki; Berg, Regina; Gademann, Karl

    2018-04-12

    The commercial macrolide antibiotic fidaxomicin was synthesized in a highly convergent manner. Salient features of this synthesis include a β-selective noviosylation, a β-selective rhamnosylation, a ring-closing metathesis, a Suzuki coupling, and a vinylogous Mukaiyama aldol reaction. Careful choice of protecting groups and fine-tuning of the glycosylation reactions led to the first total synthesis of fidaxomicin. In addition, a relay synthesis of fidaxomicin was established, which gives access to a conveniently protected intermediate from the natural material for derivatization. The first total synthesis of a related congener, tiacumicin A, is presented.

  9. Internally resonating lattices for bandgap generation and low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Baravelli, Emanuele; Ruzzene, Massimo

    2013-12-01

    The paper reports on a structural concept for high stiffness and high damping performance. A stiff external frame and an internal resonating lattice are combined in a beam-like assembly which is characterized by high frequency bandgaps and tuned vibration attenuation at low frequencies. The resonating lattice consists of an elastomeric material arranged according to a chiral topology which is designed to resonate at selected frequencies. The concept achieves high damping performance by combining the frequency-selective properties of internally resonating structures, with the energy dissipation characteristics of their constituent material. The flexible ligaments, the circular nodes and the non-central interactions of the chiral topology lead to dynamic deformation patterns which are beneficial to energy dissipation. Furthermore, tuning and grading of the elements of the lattice allows for tailoring of the resonating properties so that vibration attenuation is obtained over desired frequency ranges. Numerical and experimental results demonstrate the tuning flexibility of this concept and suggest its potential application for load-carrying structural members parts of vibration and shock prone systems.

  10. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  11. Tunable filters based on an SOI nano-wire waveguide micro ring resonator

    NASA Astrophysics Data System (ADS)

    Shuai, Li; Yuanda, Wu; Xiaojie, Yin; Junming, An; Jianguang, Li; Hongjie, Wang; Xiongwei, Hu

    2011-08-01

    Micro ring resonator (MRR) filters based on a silicon on insulator (SOI) nanowire waveguide are fabricated by electron beam photolithography (EBL) and inductive coupled plasma (ICP) etching technology. The cross-section size of the strip waveguides is 450 × 220 nm2, and the bending radius of the micro ring is around 5 μm. The test results from the tunable filter based on a single ring show that the free spectral range (FSR) is 16.8 nm and the extinction ratio (ER) around the wavelength 1550 nm is 18.1 dB. After thermal tuning, the filter's tuning bandwidth reaches 4.8 nm with a tuning efficiency of 0.12 nm/°C Meanwhile, we fabricated and studied multi-channel filters based on a single ring and a double ring. After measurement, we drew the following conclusions: during the signal transmission of multi-channel filters, crosstalk exists mainly among different transmission channels and are fairly distinct when there are signals input to add ports.

  12. Nonlinear electro-optic tuning of plasmonic nano-filter

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-03-01

    Efficient, easy and accurate tuning techniques to a plasmonic nano-filter are investigated. The proposed filter supports both blue and red shift in the resonance wavelength. By varying the refractive index with a very small change (in the order of 10-3), the resonance wavelength can be controlled efficiently. Using Pockels material, an electrical tuning to the response of the filter is demonstrated. In addition, the behavior of the proposed filter can be controlled optically using Kerr material. A new approach of multi-stage electro-optic controlling is introduced. By cascading two stages and filling the first stage with pockels material and the second stage with kerr material, the output response of the second stage can be controlled by controlling the output response of the first stage electrically. Due to the sharp response of the proposed filter, 60nm shift in the resonance wavelength per 10 voltages is achieved. This nano-filter has compact size, low loss, sharp response and wide range of tunabilty which is highly demandable in many biological and sensing applications.

  13. Dial-in Topological Metamaterials Based on Bistable Stewart Platform.

    PubMed

    Wu, Ying; Chaunsali, Rajesh; Yasuda, Hiromi; Yu, Kaiping; Yang, Jinkyu

    2018-01-08

    Recently, there have been significant efforts to guide mechanical energy in structures by relying on a novel topological framework popularized by the discovery of topological insulators. Here, we propose a topological metamaterial system based on the design of the Stewart Platform, which can not only guide mechanical waves robustly in a desired path, but also can be tuned in situ to change this wave path at will. Without resorting to any active materials, the current system harnesses bistablilty in its unit cells, such that tuning can be performed simply by a dial-in action. Consequently, a topological transition mechanism inspired by the quantum valley Hall effect can be achieved. We show the possibility of tuning in a variety of topological and traditional waveguides in the same system, and numerically investigate key qualitative and quantitative differences between them. We observe that even though both types of waveguides can lead to significant wave transmission for a certain frequency range, topological waveguides are distinctive as they support robust, back scattering immune, one-way wave propagation.

  14. Far-field emission characteristics and linewidth measurements of surface micro-machined MEMS tunable VCSELs

    NASA Astrophysics Data System (ADS)

    Paul, Sujoy; Gierl, Christian; Gründl, Tobias; Zogal, Karolina; Meissner, Peter; Amann, Markus-Christian; Küppers, Franko

    2013-03-01

    In this paper, we demonstrate for the first time the far-field experimental results and the linewidth characteris- tics for widely tunable surface-micromachined micro-electro-mechanical system (MEMS) vertical-cavity surface- emitting lasers (VCSELs) operating at 1550 nm. The fundamental Gaussian mode emission is confirmed by optimizing the radius of curvature of top distributed Bragg reflector (DBR) membrane and by choosing an ap- propriate diameter of circular buried tunnel junctions (BTJs) so that only the fundamental Gaussian mode can sustain. For these VCSELs, a mode-hop free continuous tuning over 100 nm has already been demonstrated, which is achieved by electro-thermal tuning of the MEMS mirror. The fiber-coupled optical power of 2mW over the entire tuning range has been reported. The singlemode laser emission has more than 40 dB of side-mode suppression ratio (SMSR). The smallest linewidth achieved with these of MEMS tunable VCSELs is 98MHz which is one order of magnitude higher than that of fixed-wavelength VCSELs.

  15. Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure

    DOE PAGES

    Liu, Sheng; Li, Changyi; Figiel, Jeffrey J.; ...

    2015-04-27

    In this paper, we report continuous, dynamic, reversible, and widely tunable lasing from 367 to 337 nm from single GaN nanowires (NWs) by applying hydrostatic pressure up to ~7 GPa. The GaN NW lasers, with heights of 4–5 μm and diameters ~140 nm, are fabricated using a lithographically defined two-step top-down technique. The wavelength tuning is caused by an increasing Γ direct bandgap of GaN with increasing pressure and is precisely controllable to subnanometer resolution. The observed pressure coefficients of the NWs are ~40% larger compared with GaN microstructures fabricated from the same material or from reported bulk GaN values,more » revealing a nanoscale-related effect that significantly enhances the tuning range using this approach. Finally, this approach can be generally applied to other semiconductor NW lasers to potentially achieve full spectral coverage from the UV to IR.« less

  16. Analytical design of modified Smith predictor for unstable second-order processes with time delay

    NASA Astrophysics Data System (ADS)

    Ajmeri, Moina; Ali, Ahmad

    2017-06-01

    In this paper, a modified Smith predictor using three controllers, namely, stabilising (Gc), set-point tracking (Gc1), and load disturbance rejection (Gc2) controllers is proposed for second-order unstable processes with time delay. Controllers of the proposed structure are tuned using direct synthesis approach as this method enables the user to achieve a trade-off between the performance and robustness by adjusting a single design parameter. Furthermore, suitable values of the tuning parameters are recommended after studying their effect on the closed-loop performance and robustness. This is the main advantage of the proposed work over other recently published manuscripts, where authors provide only suitable ranges for the tuning parameters in spite of giving their suitable values. Simulation studies show that the proposed method results in satisfactory performance and improved robustness as compared to the recently reported control schemes. It is observed that the proposed scheme is able to work in the noisy environment also.

  17. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  18. Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo

    2018-07-01

    In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.

  19. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Rajiyah, Harindra (Inventor); Pla, Frederic G. (Inventor); Hedeen, Robert A. (Inventor); Renshaw, Anthony A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  20. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor); Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  1. Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms

    NASA Astrophysics Data System (ADS)

    Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2012-02-01

    We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).

  2. Orientation Tuning in the Visual Cortex of 3-Month-old Human Infants

    PubMed Central

    Baker, Thomas J.; Norcia, Anthony M.; Candy, T. Rowan

    2016-01-01

    Sensitivity to orientation is critical for making a whole and complete picture of the world. We measured the orientation tuning of mechanisms inthe visual cortex of typically developing 3-month-olds and adults using a nonlinear analysis of the two-input steady-state visually evoked potential (VEP). Two gratings, one a fixed test and the other a variable orientation masker were tagged with distinct temporal frequencies and the corresponding evoked responses were measured at the harmonics of the test and masker frequencies and at a frequency equal to the sum of the two stimulus frequencies. The magnitude of the sum frequency component depended strongly on the relative orientation of the test and masker in both infants and adults. The VEP tuning bandwidths of the 3-month-olds measured at the sum frequency were similar to those of adults, suggesting that behavioral immaturities in functions such as orientation discrimination and contour integration may result from other immaturities in long-range lateral projections or feedback mechanisms. PMID:21236289

  3. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    PubMed Central

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  4. Switching Hole and Electron Transports of Molecules on Metal Oxides by Energy Level Alignment Tuning.

    PubMed

    Bao, Zhong-Min; Xu, Rui-Peng; Li, Chi; Xie, Zhong-Zhi; Zhao, Xin-Dong; Zhang, Yi-Bo; Li, Yan-Qing; Tang, Jian-Xin

    2016-08-31

    Charge transport at organic/inorganic hybrid contacts significantly affects the performance of organic optoelectronic devices because the unfavorable energy level offsets at these interfaces can hinder charge injection or extraction due to large barrier heights. Herein, we report a technologically relevant method to functionalize a traditional hole-transport layer of solution-processed nickel oxide (NiOx) with various interlayers. The photoemission spectroscopy measurements reveal the continuous tuning of the NiOx substrate work function ranging from 2.5 to 6.6 eV, enabling the alignment transition of energy levels between the Schottky-Mott limit and Fermi level pinning at the organic/composite NiOx interface. As a result, switching hole and electron transport for the active organic material on the composite NiOx layer is achieved due to the controlled carrier injection/extraction barriers. The experimental findings indicate that tuning the work function of metal oxides with optimum energy level offsets can facilitate the charge transport at organic/electrode contacts.

  5. Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.

    PubMed

    Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D

    2016-04-14

    Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe p K a is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe p K a in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe p K a values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the p K a of an optical liposome sensor for optimal pH sensing performance.

  6. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Leong, Eunice Sok Ping; Rukavina, Michael; Nagao, Tadaaki; Liu, Yan Jun; Zheng, Yuebing

    2015-06-01

    Molecular plasmonics explores and exploits the molecule-plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP). Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional) of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

  7. Optimum design of a novel pounding tuned mass damper under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Wang, Wenxi; Hua, Xugang; Wang, Xiuyong; Chen, Zhengqing; Song, Gangbing

    2017-05-01

    In this paper, a novel pounding tuned mass damper (PTMD) utilizing pounding damping is proposed to reduce structural vibration by increasing the damping ratio of a lightly damped structure. The pounding boundary covered by viscoelastic material is fixed right next to the tuned mass when the spring-mass system is in the equilibrium position. The dynamic properties of the proposed PTMD, including the natural frequency and the equivalent damping ratio, are derived theoretically. Moreover, the numerical simulation method by using an impact force model to study the PTMD is proposed and validated by pounding experiments. To minimize the maximum dynamic magnification factor under harmonic excitations, an optimum design of the PTMD is developed. Finally, the optimal PTMD is implemented to control a lightly damped frame structure. A comparison of experimental and simulated results reveals that the proposed impact force model can accurately model the pounding force. Furthermore, the proposed PTMD is effective to control the vibration in a wide frequency range, as demonstrated experimentally.

  8. SEMICONDUCTOR INTEGRATED CIRCUITS 8.64-11.62 GHz CMOS VCO and divider in a zero-IF 802.11a/b/g WLAN and Bluetooth application

    NASA Astrophysics Data System (ADS)

    Yu, Sun; Niansong, Mei; Bo, Lu; Yumei, Huang; Zhiliang, Hong

    2010-10-01

    A fully integrated VCO and divider implemented in SMIC 0.13-μm RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of—113 dBc @ 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOMT) of the VCO is -192.6 dBc/Hz.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elimelech, Orian; Liu, Jing; Plonka, Anna M.

    Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sizedmore » NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.« less

  10. Adjustable Tuning Spring for Bellows Pump

    NASA Technical Reports Server (NTRS)

    Green, G. L.; Tu Duc, D.; Hooper, S.

    1985-01-01

    Adjustable leaf spring increases maximum operating pressure of pump from 2 to over 60 psi (13 to over 400 kN/m2). Small commercial bellows pump using ac-powered electromagnet to vibrate bellows at mechanical resonance modified to operate over wider pressure range.

  11. Si photonics technology for future optical interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Krishnamoorthy, Ashok V.

    2011-12-01

    Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.

  12. The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex.

    PubMed

    Taubert, Jessica; Goffaux, Valerie; Van Belle, Goedele; Vanduffel, Wim; Vogels, Rufin

    2016-02-16

    Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scrambled faces that were filtered to selectively preserve horizontal or vertical information. Guided by functional maps, we recorded neurons in the lateral middle patch (ML), the lateral anterior patch (AL), and an additional region located outside of the functionally defined face-patches (CONTROL). We found that neurons in ML preferred horizontal-passed faces over their vertical-passed counterparts. Neurons in AL, however, had a preference for vertical-passed faces, while neurons in CONTROL had no systematic preference. Importantly, orientation filtering did not modulate the firing rate of neurons to phase-scrambled face stimuli in any recording region. Together these results suggest that face-selective neurons found in the face-selective patches are differentially tuned to orientation content, with horizontal tuning in area ML and vertical tuning in area AL.

  13. A near-field scanning microwave microscope for characterization of inhomogeneous photovoltaics.

    PubMed

    Weber, J C; Schlager, J B; Sanford, N A; Imtiaz, A; Wallis, T M; Mansfield, L M; Coakley, K J; Bertness, K A; Kabos, P; Bright, V M

    2012-08-01

    We present a near-field scanning microwave microscope (NSMM) that has been configured for imaging photovoltaic samples. Our system incorporates a Pt-Ir tip inserted into an open-ended coaxial cable to form a weakly coupled resonator, allowing the microwave reflection S(11) signal to be measured across a sample over a frequency range of 1 GHz - 5 GHz. A phase-tuning circuit increased impedance-measurement sensitivity by allowing for tuning of the S(11) minimum down to -78 dBm. A bias-T and preamplifier enabled simultaneous, non-contact measurement of the DC tip-sample current, and a tuning fork feedback system provided simultaneous topographic data. Light-free tuning fork feedback provided characterization of photovoltaic samples both in the dark and under illumination at 405 nm. NSMM measurements were obtained on an inhomogeneous, third-generation Cu(In,Ga)Se(2) (CIGS) sample. The S(11) and DC current features were found to spatially broaden around grain boundaries with the sample under illumination. The broadening is attributed to optically generated charge that becomes trapped and changes the local depletion of the grain boundaries, thereby modifying the local capacitance. Imaging provided by the NSMM offers a new RF methodology to resolve and characterize nanoscale electrical features in photovoltaic materials and devices.

  14. Echo-level compensation and delay tuning in the auditory cortex of the mustached bat.

    PubMed

    Macías, Silvio; Mora, Emanuel C; Hechavarría, Julio C; Kössl, Manfred

    2016-06-01

    During echolocation, bats continuously perform audio-motor adjustments to optimize detection efficiency. It has been demonstrated that bats adjust the amplitude of their biosonar vocalizations (known as 'pulses') to stabilize the amplitude of the returning echo. Here, we investigated this echo-level compensation behaviour by swinging mustached bats on a pendulum towards a reflective surface. In such a situation, the bats lower the amplitude of their emitted pulses to maintain the amplitude of incoming echoes at a constant level as they approach a target. We report that cortical auditory neurons that encode target distance have receptive fields that are optimized for dealing with echo-level compensation. In most cortical delay-tuned neurons, the echo amplitude eliciting the maximum response matches the echo amplitudes measured from the bats' biosonar vocalizations while they are swung in a pendulum. In addition, neurons tuned to short target distances are maximally responsive to low pulse amplitudes while neurons tuned to long target distances respond maximally to high pulse amplitudes. Our results suggest that bats dynamically adjust biosonar pulse amplitude to match the encoding of target range and to keep the amplitude of the returning echo within the bounds of the cortical map of echo delays. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Thermal tuning On narrow linewidth fiber laser

    NASA Astrophysics Data System (ADS)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  16. Cooperation in group-structured populations with two layers of interactions

    PubMed Central

    Zhang, Yanling; Fu, Feng; Chen, Xiaojie; Xie, Guangming; Wang, Long

    2015-01-01

    Recently there has been a growing interest in studying multiplex networks where individuals are structured in multiple network layers. Previous agent-based simulations of games on multiplex networks reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured populations with two layers of interactions. In our model, an individual is engaged in two layers of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary competition of individuals is determined by the total payoffs accrued from two layers of interactions. We also consider migration which allows individuals to move to a new group within each layer. An approach combining the coalescence theory with the theory of random walks is established to overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” migration patterns, particularly for migration tuned with varying ranges. When the two layers use one game, the optimal migration ranges are proved identical across layers and become smaller as the migration probability grows. PMID:26632251

  17. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution provides the information for a designer that shows how design trade-offs can be used to satisfy specific design requirements. The optimization design of the EMHR with inductive loads aims at optimal tuning of these three resonant fiequencies. The results indicate that it is possible to keep the acoustic reactance of the resonator close to a constant over a given frequency range. An effort to mimic the second layer of the NASA 2DOF liner using a piezoelectric composite diaphragm has been made. The optimal acoustic reactance of the second layer of the NASA 2DOF liner is achieved using a thin PVDF composite diaphragm, but matching the acoustic resistance requires further investigation. Acoustic energy harvesting is achieved by connecting the EMHR to an energy reclamation circuit that converts the ac voltage signal across the piezoceramic to a conditioned dc signal. Energy harvesting experiment yields 16 m W continuous power for an incident SPL of 153 dB. Such a level is sufficient to power a variety of low power electronic devices. Finally, technology transfer has been achieved by converting the original NASA ZKTL FORTRAN code to a MATLAB code while incorporating the models of the EMHR. Initial studies indicate that the EMHR is a promising technology that may enable lowpower, light weight, tunable engine nacelle liners. This technology, however, is very immature, and additional developments are required. Recommendations for future work include testing of sample EMHR liner designs in NASA Langley s normal incidence dual-waveguide and the grazing-incidence flow facility to evaluating both the impedance characteristics as well as the energy reclamation abilities. Additional design work is required for more complex tuning circuits with greater performance. Poor electromechanical coupling limited the electromechanical tuning capabilities of the proof of concept EMHR. Different materials than those studies and perhaps novel composite material systems may dramatically improvehe electromechanical coupling. Such improvements are essential to improved mimicking of existing double layer liners.

  18. Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?

    NASA Astrophysics Data System (ADS)

    Chen, Shuangling; Hu, Chuanmin; Cai, Wei-Jun; Yang, Bo

    2017-12-01

    Various approaches and models have been proposed to remotely estimate surface pCO2 in the ocean, with variable performance as they were designed for different environments. Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has shown its advantage for its explicit inclusion of physical and biological forcing in the model, yet its general applicability is unknown. Here, with extensive in situ measurements of surface pCO2, the MeSAA, originally developed for the summertime East China Sea, was tested in the northern Gulf of Mexico (GOM) where river plumes dominate water's biogeochemical properties during summer. Specifically, the MeSAA-predicted surface pCO2 was estimated by combining the dominating effects of thermodynamics, river-ocean mixing and biological activities on surface pCO2. Firstly, effects of thermodynamics and river-ocean mixing (pCO2@Hmixing) were estimated with a two-endmember mixing model, assuming conservative mixing. Secondly, pCO2 variations caused by biological activities (ΔpCO2@bio) was determined through an empirical relationship between sea surface temperature (SST)-normalized pCO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) 8-day composite chlorophyll concentration (CHL). The MeSAA-modeled pCO2 (sum of pCO2@Hmixing and ΔpCO2@bio) was compared with the field-measured pCO2. The Root Mean Square Error (RMSE) was 22.94 μatm (5.91%), with coefficient of determination (R2) of 0.25, mean bias (MB) of - 0.23 μatm and mean ratio (MR) of 1.001, for pCO2 ranging between 316 and 452 μatm. To improve the model performance, a locally tuned MeSAA was developed through the use of a locally tuned ΔpCO2@bio term. A multi-variate empirical regression model was also developed using the same dataset. Both the locally tuned MeSAA and the regression models showed improved performance comparing to the original MeSAA, with R2 of 0.78 and 0.84, RMSE of 12.36 μatm (3.14%) and 10.66 μatm (2.68%), MB of 0.00 μatm and - 0.10 μatm, MR of 1.001 and 1.000, respectively. A sensitivity analysis was conducted to study the uncertainties in the predicted pCO2 as a result of the uncertainties in the input variables of each model. Although the MeSAA was more sensitive to variations in SST and CHL than in sea surface salinity (SSS), and the locally tuned MeSAA and the empirical regression models were more sensitive to changes in SST and SSS than in CHL, generally for these three models the bias induced by the uncertainties in the empirically derived parameters (river endmember total alkalinity (TA) and dissolved inorganic carbon (DIC), biological coefficient of the MeSAA and locally tuned MeSAA models) and environmental variables (SST, SSS, CHL) was within or close to the uncertainty of each model. While all these three models showed that surface pCO2 was positively correlated to SST, the MeSAA showed negative correlation between surface pCO2 and SSS and CHL but the locally tuned MeSAA and the empirical regression showed the opposite. These results suggest that the locally tuned MeSAA worked better in the river-dominated northern GOM than the original MeSAA, with slightly worse statistics but more meaningful physical and biogeochemical interpretations than the empirical regression model. Because data from abnormal upwelling were not used to train the models, they are not applicable for waters with strong upwelling, yet the empirical regression approach showed ability to be further tuned to adapt to such cases.

  19. Tuning the electronic and optical properties of NDT-based conjugated polymers by adopting fused heterocycles as acceptor units: a theoretical study.

    PubMed

    Cheng, Na; Zhang, Changqiao; Liu, Yongjun

    2017-08-01

    Donor-acceptor conjugated polymers have been successfully applied in bulk heterojunction solar cell devices. Tuning their donor and acceptor units allows the design of new polymers with desired electronic and optical properties. Here, to screen new candidate polymers based on a newly synthesized donor unit, dithieo[2,3-d:2',3'-d']naphtho[1,2-b:3,4-b']dithiophene (NDT), a series of model polymers with different acceptor units were designed and denoted NDT-A 0 to NDT-A 12 , and the structures and optical properties of those polymers were investigated using DFT and TDDFT calculations. The results of the calculations revealed that the electronic and optical properties of these polymers depend on the acceptor unit present; specifically, their HOMO energies ranged from -4.89 to -5.38 eV, their HOMO-LUMO gaps ranged from 1.30 to 2.80 eV, and their wavelengths of maximum absorption ranged from 538 to 1212 nm. The absorption spectra of NDT-A 1 to NDT-A 6 , NDT-A 8 , NDT-A 9 , and NDT-A 12 occur within the visible region (<900 nm), indicating that these polymers are potential candidates for use in solar cells. On the other hand, the absorption spectra of NDT-A 7 , NDT-A 10 , and NDT-A 11 extend much further into the near-infrared region, implying that they absorb near-infrared light. These polymers could meet the requirements of donor units for use in tandem and ternary solar cells. Graphical abstract Theoretical calculations by TD-DFT reveal that the optical properties of NDT-based conjugated polymers can be well tuned by adopting different acceptor units, and these ploymers are potential donor materials for tandem and ternary solar cells.

  20. Combining Step Gradients and Linear Gradients in Density.

    PubMed

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  1. Comparison of tunable lasers based on diode pumped Tm-doped crystals

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Koranda, Petr; Černý, Pavel; Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek; Urata, Yoshiharu; Higuchi, Mikio

    2008-12-01

    We report on continuously tunable operation of a diode pumped lasers based on Tm-doped materials, emitting in the 1.8 - 2.μ1 m spectral band. In our study we compare results obtained with three various single crystals doped by Tm3+ ions: Yttrium Aluminum perovskite YAP (YAlO3), Gadolinium orthovanadate GdVO4, and Yttrium Lithium Fluoride YLF (YLiF4). Following samples were available: the 3mm long a-cut crystal rod of Tm:YAP with 4% at. Tm/Y (diameter 3 mm); the 8mm long b-cut crystal rod of Tm:YLF with 3.5% at. Tm/Y (diameter 3 mm); the 2.7mm long a-cut crystal block of Tm:GdVO4 with 2% at. Tm/Gd (crystal face 5×3 mm). For active medium pumping, the laser diode radiation was used. Because the tested samples differs significantly in absorption spectra, two fibre-coupled (core diameter 400 µm) temperature-tuned laser diodes were used: first operating at wavelength 793nm was used for Tm:YAP and Tm:YLF; the second operating at wavelength 802nm was used for Tm:GdVO4. In both cases, the continuous power up to 20W was available for pumping. The diode radiation was focused into the active crystal by two achromatic doublet lenses with the focal length f = 75 mm. The measured radius of pumping beam focus inside the crystal was 260 µm. The longitudinally diode pumped crystals were tested in linear, 80mm long, hemispherical laser cavity. The curved (radius 150mm) output coupler reflectivity was ~ 97 % in range from 1.8 up to 2.1 μm. The pumping flat mirror had maximal reflectivity in this range and it had high transmission around 0.8 μm. A 1.5mm thick birefringent plate made from quartz (Lyot filter) inserted under a Brewster's angle was used as a tuning element. This plate was placed inside the resonator between the crystal and the output coupler. Using Tm:YAP crystal, the maximal output power of 2.8W in this set-up was obtained. The laser could be tuned from 1865nm up to 2036nm with a maximum at 1985 nm. Laser based on Tm:YLF crystal was tunable from 1835nm up to 2010nm with a maximum at 1928 nm (3.0W was reached). Using the Tm:GdVO4 tunable operation with greater that 1W output at 1920nm and 130nm tuning range (1842-1972 nm) was demonstrated. The overall reached tuning range of over 200nm covers many important atmospheric absorption lines and contains also the local absorption peak of liquid water, making them attractive for applications such as high resolution spectroscopy, atmospheric remote sensing, laser radar, and laser microsurgery.

  2. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements.

    PubMed

    Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto

    2009-04-15

    In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.

  3. Ion related problems for the XLS ring

    NASA Astrophysics Data System (ADS)

    Bozoki, Eva S.; Halama, Henry

    1991-10-01

    The electron beam in a storage ring collides with the residual gas in the vacuum chamber. As a consequence, low velocity positive ions are produced and trapped in the potential well of the electron beam. They perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions can lead to partial or total neutralization of the beam, causing both a decrease of lifetime and a change in the vertical tunes as well as an increase in the tune spread. It can also cause coherent and incoherent transverse instabilities. An electrostatic clearing electrodes system was designed to keep the neutralization below a desired limit. The location and the geometry of the clearing electrodes as well as the applied clearing voltage is based on the study of the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles, beam self-electric field, beam potential, critical mass for ion capture in the bunched beam and the bounce frequencies of the ions, tune shift and pressure rise due to trapped ions.

  4. Nanocluster-based white-light-emitting material employing surface tuning

    DOEpatents

    Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM; Thoma, Steven G [Albuquerque, NM

    2007-06-26

    A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.

  5. High power, widely tunable dual-wavelength 2 μm laser based on intracavity KTP optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Yan, Dexian; Wang, Yuye; Xu, Degang; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Mei, Jialin; Shi, Jia; Yao, Jianquan

    2017-01-01

    We presented a high power, widely tunable narrowband 2 μm dual-wavelength source employing intracavity optical parametric oscillator with potassium titanium oxide phosphate (KTP) crystal. Two identical KTP crystals were oriented oppositely in the OPO cavity to compensate the walk-off effect. The output average power of dual-wavelength 2 μm laser was up to 18.18 W at 10 kHz with the peak power of 165 kW. The two wavelengths can be tuned in the range of 2070.7 nm to 2191.1 nm for ordinary light while in the range of 2190.7 nm to 2065.9 nm for extraordinary light with the full width at half maximum (FWHM) about 0.8 nm. The pulse width of the tunable laser was as narrow as 11 ns. The beam quality factor M 2 was less than 4 during wavelength tuning.

  6. Design of Strain-Engineered GeSn/GeSiSn Quantum Dots for Mid-IR Direct Bandgap Emission on Si Substrate

    NASA Astrophysics Data System (ADS)

    Al-Saigh, Reem; Baira, Mourad; Salem, Bassem; Ilahi, Bouraoui

    2018-06-01

    Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn surrounding layer has been tuned between - 2.3 and - 4.5% through the variation of the Sn barrier composition for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 μm opening new perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.

  7. Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser

    NASA Astrophysics Data System (ADS)

    Fukuoka, D.; Muro, K.; Noda, K.

    2016-02-01

    A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.

  8. Scaling analysis of field-tuned superconductor-insulator transition in two-dimensional tantalum thin films.

    PubMed

    Park, Sungyu; Shin, Junghyun; Kim, Eunseong

    2017-02-20

    The superconductor-insulator (SI) transition in two-dimensional Ta thin films is investigated by controlling both film thickness and magnetic field. An intriguing metallic phase appears between a superconducting and an insulating phase within a range of film thickness and magnetic field. The temperature and electric field scaling analyses are performed to investigate the nature of the SI transition in the thickness-tuned metallic and superconducting samples. The critical exponents product of νz obtained from the temperature scaling analysis is found to be approximately 0.67 in the entire range of film thickness. On the other hand, an apparent discrepancy is measured in the product of ν(z + 1) by the electric filed analysis. The product values are found to be about 1.37 for the superconducting films and about 1.86 for the metallic films respectively. We find that the discrepancy is the direct consequence of electron heating that introduces additional dissipation channels in the metallic Ta films.

  9. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    PubMed Central

    Śmietana, Mateusz; Myśliwiec, Marcin; Mikulic, Predrag; Witkowski, Bartłomiej S.; Bock, Wojtek J.

    2013-01-01

    This work presents an application of thin aluminum oxide (Al2O3) films obtained using atomic layer deposition (ALD) for fine tuning the spectral response and refractive-index (RI) sensitivity of long-period gratings (LPGs) induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ∼ 0.12 nm) of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device's RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range) Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  10. An automatic data system for vibration modal tuning and evaluation

    NASA Technical Reports Server (NTRS)

    Salyer, R. A.; Jung, E. J., Jr.; Huggins, S. L.; Stephens, B. L.

    1975-01-01

    A digitally based automatic modal tuning and analysis system developed to provide an operational capability beginning at 0.1 hertz is described. The elements of the system, which provides unique control features, maximum operator visibility, and rapid data reduction and documentation, are briefly described; and the operational flow is discussed to illustrate the full range of capabilities and the flexibility of application. The successful application of the system to a modal survey of the Skylab payload is described. Information about the Skylab test article, coincident-quadrature analysis of modal response data, orthogonality, and damping calculations is included in the appendixes. Recommendations for future application of the system are also made.

  11. Broadband tunable mid-IR Cr2+:CdSe lasers for medical applications

    NASA Astrophysics Data System (ADS)

    Tarabrin, Mikhail K.; Lasarev, Vladimir A.; Tomilov, Sergey M.; Karasik, Valery E.; Tuchin, Valery V.

    2018-04-01

    Currently, lasers are widely used for surgery, medical diagnostics and oncology research. Unfortunately, most of the used laser sources have a significant drawback - the lack of operating wavelength tuning possibility, which imposes significant limitations on the investigation of biological tissues spectral properties and searching for the optimal mode of their treatment. Comparison between different promising mid-IR sources was made. We report on development of mid-infrared (mid-IR) tunable lasers based on the Cr2+:CdSe single-crystals. These lasers operate in CW mode with the maximum output power of up to 2 W and possible tuning range from 2.2 to 3.6 μm.

  12. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    PubMed

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  13. Optimizing of a high-order digital filter using PSO algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Fuchun

    2018-04-01

    A self-adaptive high-order digital filter, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance, is presented in this paper. The parameters of traditional digital filter are mainly tuned by complex calculation, whereas this paper presents a 5th order digital filter to obtain outstanding performance and the parameters of the proposed filter are optimized by swarm intelligent algorithm. Simulation results with respect to the proposed 5th order digital filter, SNR>122dB and the noise floor under -170dB are obtained in frequency range of [5-150Hz]. In further simulation, the robustness of the proposed 5th order digital is analyzed.

  14. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    NASA Astrophysics Data System (ADS)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  15. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector.

    PubMed

    Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S

    2010-12-06

    An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.

  16. Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4 μm.

    PubMed

    Xie, Feng; Caneau, C; Leblanc, H; Ho, M-T; Zah, C

    2015-09-01

    We present a quantum cascade laser structure with an ultra-broad gain profile that covers the wavelength range from 6.5 to 10.4 μm. In a grating-tuned external cavity, we demonstrated continuous tuning from 1027  cm(-1) to 1492  cm(-1) with this broad gain laser chip. We also fabricated distributed feedback quantum cascade laser arrays with this active region design and varied grating periods. We demonstrated single wavelength lasing from 962 (10.4) to 1542  cm(-1) (6.5 μm). The frequency coverage (580  cm(-1)) is about 46% of center frequency.

  17. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    PubMed

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  18. New possibilities for tuning ultrathin cobalt film magnetic properties by a noble metal overlayer.

    PubMed

    Kisielewski, M; Maziewski, A; Tekielak, M; Wawro, A; Baczewski, L T

    2002-08-19

    Complementary multiscale magneto-optical studies based on the polar Kerr effect are carried out on an ultrathin cobalt wedge covered with a silver wedge and subsequently with the Au thick layer. A few monolayers of Ag are found to have a substantial effect on magnetic anisotropy, the coercivity field, and Kerr rotation. The silver overlayer thickness-driven magnetic reorientation from easy axis to easy plane generates a new type of 90 degrees magnetic wall for cobalt thicknesses between 1.3 and 1.8 nm. The tuning of the wall width in a wide range is possible. Tailoring of the overlayer structure can be used for ultrathin film magnetic patterning.

  19. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.

  20. Open-Loop Pitch Table Optimization for the Maximum Dynamic Pressure Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan A.

    2009-01-01

    NASA has scheduled the retirement of the space shuttle orbiter fleet at the end of 2010. The Constellation program was created to develop the next generation of human spaceflight vehicles and launch vehicles, known as Orion and Ares respectively. The Orion vehicle is a return to the capsule configuration that was used in the Mercury, Gemini, and Apollo programs. This configuration allows for the inclusion of an abort system that safely removes the capsule from the booster in the event of a failure on launch. The Flight Test Office at NASA's Dryden Flight Research Center has been tasked with the flight testing of the abort system to ensure proper functionality and safety. The abort system will be tested in various scenarios to approximate the conditions encountered during an actual Orion launch. Every abort will have a closed-loop controller with an open-loop backup that will direct the vehicle during the abort. In order to provide the best fit for the desired total angle of attack profile with the open-loop pitch table, the table is tuned using simulated abort trajectories. A pitch table optimization program was created to tune the trajectories in an automated fashion. The program development was divided into three phases. Phase 1 used only the simulated nominal run to tune the open-loop pitch table. Phase 2 used the simulated nominal and three simulated off nominal runs to tune the open-loop pitch table. Phase 3 used the simulated nominal and sixteen simulated off nominal runs to tune the open-loop pitch table. The optimization program allowed for a quicker and more accurate fit to the desired profile as well as allowing for expanded resolution of the pitch table.

Top