Sample records for total viable microorganisms

  1. In situ antimicrobial behavior of materials with copper-based additives in a hospital environment.

    PubMed

    Palza, Humberto; Nuñez, Mauricio; Bastías, Roberto; Delgado, Katherine

    2018-06-01

    Copper and its alloys are effective antimicrobial surface materials in the laboratory and in clinical trials. Copper has been used in the healthcare setting to reduce environmental contamination, and thus prevent healthcare-associated infections, complementing traditional protocols. The addition of copper nanoparticles to polymer/plastic matrices can also produce antimicrobial materials, as confirmed under laboratory conditions. However, there is a lack of studies validating the antimicrobial effects of these nanocomposite materials in clinical trials. To satisfy this issue, plastic waiting room chairs with embedded metal copper nanoparticles, and metal hospital IV pools coated with an organic paint with nanostructured zeolite/copper particles were produced and tested in a hospital environment. These prototypes were sampled once weekly for 10 weeks and the viable microorganisms were analysed and compared with the copper-free materials. In the waiting rooms, chairs with copper reduced by around 73% the total viable microorganisms present, showing activity regardless of the microorganism tested. Although there were only low levels of microorganisms in the IV pools installed in operating rooms because of rigorous hygiene protocols, samples with copper presented lower total viable microorganisms than unfilled materials. Some results did not have statistical significance because of the low load of microorganisms; however, during at least three weeks the IV pools with copper had reduced levels of microorganisms by a statistically significant 50%. These findings show for the first time the feasibility of utilizing the antimicrobial property of copper by adding nanosized fillers to other materials in a hospital environment. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. Bioaerosol assessment in naturally ventilated historical library building with restricted personnel access.

    PubMed

    Harkawy, Aleksander; Górny, Rafał L; Ogierman, Leonard; Wlazło, Agnieszka; Ławniczek-Wałczyk, Anna; Niesler, Anna

    2011-01-01

    The aim of this study was to check the degree and identify the sources of microbial contamination of the Jasna Gora (Bright Hill) monastery library 10 years after disinfection of the incunabula collection. The registered maximum viable indoor microbial concentrations were 1,875 and 7,100 cfu/m³ for stationary and personal measurements, whereas respective total concentrations were 71,000 and 100,000 counts/m3. There was no statistically significant difference between the concentrations of viable microorganisms measured in the stationary using Andersen, GSP, and Button samplers. Moreover, GSP and Button samplers can be interchangeably applied when viable or total microbial levels are stationary or personally measured. The culturable microorganisms constituted 0.5 - 3.9% of the total microflora only. Filamentous fungi were the most prevalent outdoors, whereas Gram-positive cocci and endospore forming Gram-positive rods dominated indoors in the air and settled dust, respectively. Hence, an unrestrained infiltration of ambient air through the draughtiness of the building envelope is probably the main process responsible for indoor fungal pollution, whereas bacterial contaminants have their major sources in the indoor environment. Moreover, even a chemically cleansed library collection, having a restricted personnel access, but under the influence of ambient air, can undergo microbial contamination and becomes an important microbial emission source.

  3. 21 CFR 160.115 - Liquid eggs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit the adding... liquid eggs free of viable Salmonella microorganisms, and that are not food additives as defined in...

  4. 21 CFR 160.115 - Liquid eggs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit the adding... liquid eggs free of viable Salmonella microorganisms, and that are not food additives as defined in...

  5. 21 CFR 160.115 - Liquid eggs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit the adding... liquid eggs free of viable Salmonella microorganisms, and that are not food additives as defined in...

  6. 21 CFR 160.180 - Egg yolks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... destroy all viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit... render the egg yolks free of viable Salmonella microorganisms, and that are not food additives as defined...

  7. 21 CFR 160.180 - Egg yolks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... destroy all viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit... render the egg yolks free of viable Salmonella microorganisms, and that are not food additives as defined...

  8. FIREFLY LUCIFERASE ATP ASSAY DEVELOPMENT FOR MONITORING BACTERIAL CONCENTRATIONS IN WATER SUPPLIES

    EPA Science Inventory

    This research program was initiated to develop a rapid, automatable system for measuring total viable microorganisms in potable drinking water supplies using the firefly luciferase ATP assay. The assay was adapted to an automatable flow system that provided comparable sensitivity...

  9. Investigation of Removal Capacities of Biofilters for Airborne Viable Micro-Organisms

    PubMed Central

    Soret, Rémi; Fanlo, Jean-Louis; Malhautier, Luc; Geiger, Philippe; Bayle, Sandrine

    2018-01-01

    New emerging issues appears regarding the possible aerosolization of micro-organisms from biofilters to the ambient air. Traditional bioaerosol sampling and cultural methods used in literature offer relative efficiencies. In this study, a new method revolving around a particle counter capable of detecting total and viable particles in real time was used. This counter (BioTrak 9510-BD) uses laser-induced fluorescence (LIF) technology to determine the biological nature of the particle. The concentration of viable particles was measured on two semi-industrial pilot scale biofilters in order to estimate the Removal Efficiency in viable particles (REvp) in stable conditions and to examine the influence of pollutant feeding and relative humidification of the gaseous effluent on the REvp. The REvp of biofilters reached near 80% and highlighted both the stability of that removal and the statistical equivalence between two identical biofilters. Pollutant deprivation periods of 12 h, 48 h and 30 days were shown to have no influence on the biofilters’ removal capacity, demonstrating the robustness and adaptation capacities of the flora. In contrast, a 90-day famine period turned the biofilters into emitters of viable particles. Finally, the humidification of the effluent was shown to negatively influence the removal capacity for viable particles, as drying off the air was shown to increase the REvp from 60 to 85%. PMID:29562709

  10. A Ratio of Spore to Viable Organisms: A Case Study of the JPL-SAF Cleanroom

    NASA Technical Reports Server (NTRS)

    Hendrickson, Ryan; Urbaniak, Camilla; Malli Mohan, Ganesh Babu; Aronson, Heidi; Venkateswaran, Kasthuri

    2017-01-01

    Spacecraft surfaces that are destined to land on potential life-harboring celestial bodies are required to be rigorously cleaned and continuously monitored for spore bioburden as a proxy for spacecraft cleanliness. The NASA standard assay (NSA), used for spacecraft bioburden estimates, specifically measures spores that are cultivable, aerobic, resistant to heat shock, and grow at 30 C in a nutrient-rich medium. Since the vast majority of microorganisms cannot be cultivated using the NSA, it is necessary to utilize state-of-the art molecular techniques to better understand the presence of all viable microorganisms, not just those measured with the NSA. In this study, the nutrient-deprived low biomass cleanrooms, where spacecraft are assembled, were used as a surrogate for spacecraft surfaces to measure the ratio of NSA spores in relation to the total viable microorganism population in order to make comparisons with the 2006 Space Studies Board (SSB) estimate of 1 spore per approximately 50,000 viable organisms. Ninety-eight surface wipe samples were collected from the Spacecraft Assembly Facility (SAF) cleanroom at the Jet Propulsion Laboratory (JPL) over a 6-month period. The samples were processed and analyzed using classical microbiology along with molecular methodology. Traditional microbiology plating methods were used to determine the cultivable bacterial, fungal, and spore populations. Molecular assays were used to determine the total organisms (TO, dead and live) and the viable organisms (VO, live). The TO was measured using adenosine triphosphate (ATP) and quantitative polymerase chain reaction (qPCR) assays. The VO was measured using internal ATP, propidium monoazide (PMA)-qPCR, and flow cytometry (after staining for viable microorganisms) assays. Based on the results, it was possible to establish a ratio between spore counts and VO for each viability assay. The ATP-based spore to VO ratio ranged from 149-746, and the bacterial PMA-qPCR assay-based ratio ranged from 314-1,491 VO, per spore. The most conservative estimate came from fluorescent-assisted cell sorting (FACS), which estimated the ratio to be 12,091 VO per 1 NSA spore. Since archaeal (less than 1%) and fungal (approximately 2%) populations were negligible, the spore to VO ratios were based on bacterial population estimates. The most conservative ratio from this study can be used as a replacement for the SSB estimate on nutrient-deprived (oligotrophic) desiccated spacecraft surfaces, to estimate the VO from NSA measurements without utilizing state-of-the art molecular methods that are costly and require more biomass than is typically found on spacecraft surfaces.

  11. COMPARISON OF METHODS FOR DETECTION AND ENUMERATION OF AIRBORNE MICROORGANISMS COLLECTED BY LIQUID IMPINGEMENT

    EPA Science Inventory

    Bacterial agents and cell components can be spread as bioaerosols, producing infections and asthmatic problems. This study compares four methods for the detection and enumeration of aerosolized bacteria collected in an AGI-30 impinger. Changes in the total and viable concentratio...

  12. In vitro study of bactericidal effect of low-level laser therapy in the presence of photosensitizer on cariogenic bacteria

    NASA Astrophysics Data System (ADS)

    Zanin, Iriana C. J.; Brugnera, Aldo, Jr.; Goncalves, Reginaldo B.

    2002-06-01

    The aim of this in vitro study was to determine whether low-level laser light in the presence of a photosensitizer could kill Streptococcus mutans and Streptococcus sobrinus. Suspensions of these microorganisms were exposed to a gallium-aluminium-arsenide laser light (660 nm) in the presence of photosensitizer toluidine blue O. Viable microorganisms were counted on brain heart agar plates after incubation at 37 degree(s)C in partial atmosphere of 10% CO2 for 48 hours. Their exposure to the laser light in the absence of the dye or the dye in the absence of the laser light presented no significant effect on the viability of the microorganisms. However, a decrease in the number of viable microorganisms was only verified when they were exposed to both the laser light and the dye at the same time. Their total growth inhibition was achieved with a dye concentration of 100 mg/mL and a light energy density of 28.8 J/cm2, after being exposed to laser light for 900 seconds. In conclusion, these results imply that these bacteria can be killed by low-power laser light in the presence of the photosensitizer.

  13. Microbiological Burden on the Surfaces of Explorer XXXIII Spacecraft1

    PubMed Central

    Powers, Edmund M.

    1967-01-01

    The Explorer XXXIII Spacecraft (Anchored Interplanetary Monitoring Platform, or AIMP) was decontaminated to prevent gross contamination of the moon with terrestrial microorganisms. Assay of the total spacecraft surface before and after decontamination showed that the decontamination procedure reduced the viable microbiological burden from 1.40 × 106 to 3.60 × 104. However, assembly of parts which were not decontaminated for engineering reasons or were not assembled under cleanroom conditions increased the viable microbial burden at the time of launch to 2.62 × 105. Images Fig. 2 PMID:6053173

  14. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.

    PubMed

    Laureys, D; De Vuyst, L

    2017-03-01

    To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.

  15. Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  16. MORPHOLOGICAL AND CULTURAL COMPARISON OF MICROORGANISMS IN SURFACE SOIL AND SUBSURFACE SEDIMENTS AT A PRISTINE STUDY SITE IN OKLAHOMA (JOURNAL VERSION)

    EPA Science Inventory

    Surface-soil and subsurface microfloras at the site of a shallow aquifer in Oklahoma were examined and compared with respect to (1) total and viable cell numbers, (2) colony and cell types that grew on various plating media, (3) cell morphologies seen in flotation films stripped ...

  17. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1011 Viable spores of the... characteristics of the parent strain or contamination by other microorganisms. (3) Each lot of spore preparation... production is a Bacillus thuringiensis strain which does not produce β-exotoxin under standard manufacturing...

  18. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

    PubMed

    Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C

    2015-12-01

    Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

  19. Microbiological and experimental-histological investigations of lunar samples returned by the Lunar 16 automatic station

    NASA Technical Reports Server (NTRS)

    Kaulen, D. R.; Bulatova, T. I.; Fridenshteyn, A. Y.; Skvortsova, Y. B.

    1974-01-01

    Lunar surface material was studied for its content of viable microorganisms (aerobic and anaerobic, fungi, and viruses); the effect of the lunar surface material on the growth of microorganisms and its interaction with somatic cells of mammals was also observed. No viable microorganisms were detected; the samples exhibited neither stimulant or inhibitory action on the growth of microorganisms, and also showed no cytopathogenic action on tissue cultures. A suspension of lunar surface material particles was not toxic when parenterally administered to certain laboratory animals. The particles were subjected to intense phagocytosis by connective tissue cells in vivo and in vitro.

  20. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Hwang, Gi Byoung; Lee, Byung Uk; Lee, Seung Bok; Jurng, Jong Soo; Bae, Gwi Nam

    2010-01-15

    The ultraviolet aerodynamic particle sizer (UVAPS) spectrometer is a novel, commercially available aerosol counter for real-time, continuous monitoring of viable bioaerosols based on the fluorescence induced from living microorganisms. For aerosolization of liquid-based microorganisms, general aerosolization methods such as atomization or nebulization may not be adequate for an accurate and quantitative characterization of the microorganisms because of the formation of agglomerated particles. In such cases, biological electrospray techniques have an advantage because they generate nonagglomerated particles, attributable to the repulsive electrical forces among particles with unipolar charges. Biological electrosprays are quickly gaining potential for the detection and control of living organisms in applications ranging from mass spectrometry to developmental microbiology. In this study, we investigated the size distribution, total concentration, and fluorescence percentage of bacterial particles in a real-time manner by electrospray-assisted UVAPS. A suspension containing Escherichia coli as a test microorganism was sprayed in a steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration based on charge-reduced electrospray size spectrometry. With the electrospray process, 98% of the total E. coli particle number concentration had a size of <1 mum and the geometric mean diameter was 0.779 mum, as compared with the respective values of 78% and 0.907 mum after nebulization. The fractions of fluorescence responsive particles and of particles that contained viable organisms in culture were 12% and 7%, respectively, from the electrospray process and 34% and 24% from nebulization. These results demonstrate that (1) the presence of agglomerated particles can lead to markedly overestimated fluorescence and culturability percentages compared with the values obtained from nonagglomerated particles, and (2) electrospray-assisted UVAPS can provide more accurate and quantitative real-time characterization of liquid-based microorganisms, owing to the generation of nonagglomerated particles.

  1. Microbial Community Dynamics from Permafrost Across the Pleistocene-Holocene Boundary and Response to Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Mahony, M.; Froese, D. G.; Lanoil, B. D.

    2014-12-01

    Earth is currently undergoing rapid warming similar to that observed about 10,000 years ago at the end of the Pleistocene. We know a considerable amount about the adaptations and extinctions of mammals and plants at the Pleistocene/Holocene (P/H) boundary, but relatively little about changes at the microbial level. Due to permafrost soils' freezing anoxic conditions, they act as microbial diversity archives allowing us to determine how microbial communities adapted to the abrupt warming at the end of P. Since microbial community composition only helps differentiate viable and extant microorganisms in frozen permafrost, microbial activity in thawing permafrost must be investigated to provide a clear understanding of microbial response to climate change. Current increased temperatures will result in warming and potential thaw of permafrost and release of stored organic carbon, freeing it for microbial utilization; turning permafrost into a carbon source. Studying permafrost viable microbial communities' diversity and activity will provide a better understanding of how these microorganisms respond to soil edaphic variability due to climate change across the P/H boundary, providing insight into the changes that the soil community is currently undergoing in this modern era of rapid climate change. Modern soil, H and P permafrost cores were collected from Lucky Lady II site outside Dawson City, Yukon. 16S rRNA high throughput sequencing of permafrost DNA showed the same trends for total and viable community richness and diversity with both decreasing with permafrost depth and only the richness increasing in mid and early P. The modern, H and P soils had 50.9, 33.9, and 27.3% unique viable species and only 14% of the total number of viable species were shared by all soils. Gas flux measurements of thawed permafrost showed metabolic activity in modern and permafrost soils, aerobic CH­­4 consumption in modern, some H and P soils, and anaerobic CH­­4 production in one H sample. Soil chemistry analysis showed that older permafrost, P, had higher pH, lower total nitrogen, ammonium, and organic carbon than younger permafrost, H.

  2. Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  3. In-Flight Microbial Monitor

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mullenix, Pamela; Wheeler, Raymond M.; Ruby, Anna Maria

    2015-01-01

    Previous research has shown that potential human pathogens have been detected on the International Space Station (ISS). New microorganisms are introduced with every exchange of crew and cargo. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e., ECLSS, environmental control and life support systems). Current microbial characterization methods require a culture-based enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of microorganisms. The culture-based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS samples requires that the microbes be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, inflight method of microbial detection, identification, and enumeration is needed. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  4. Decontamination of an Extracorporeal Membrane Oxygenator Contaminated With Mycobacterium chimaera.

    PubMed

    Garvey, Mark I; Phillips, Natalie; Bradley, Craig W; Holden, Elisabeth

    2017-10-01

    Water samples taken from extracorporeal membrane oxygenator (ECMO) devices used at University Hospitals Birmingham yielded high total viable counts (TVCs) containing a variety of microorganisms, including M. chimaera. Disinfection resulted in the reduction of TVCs and eradication of Mycobacterium chimaera. Weekly disinfection and water sampling are required to manage the water quality in these devices. Infect Control Hosp Epidemiol 2017;38:1244-1246.

  5. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  6. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  7. Interaction of legionella pneumophila and helicobacter pylori with bacterial species isolated from drinking water biofilms

    PubMed Central

    2011-01-01

    Background It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. Results Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA) probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe), possibly leading to the formation of viable but noncultivable (VBNC) cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. Conclusions It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone. PMID:21418578

  8. Biodegradation of Mustard

    DTIC Science & Technology

    1994-07-01

    hydrolyzed during incubation in the aqueous medium used for growth of the microorganism. Microorganisms possessing an enzyme system functional against mustard...indicated. Acidophilic Thiobacillus appear to have limited use for mustard breakdown except for the halotolerant T. DrosDerus, originally isolated from a...microorganisms for mustard breakdown is a viable alternative. Enzymes of halophilic and thermophilic microorganisms are able to function in the presence organic

  9. Occupational exposure to airborne microorganisms, endotoxins and β-glucans in poultry houses at different stages of the production cycle.

    PubMed

    Lawniczek-Walczyk, Anna; Górny, Rafal L; Golofit-Szymczak, Malgorzata; Niesler, Anna; Wlazlo, Agnieszka

    2013-01-01

    The aim of the presented study was to assess the exposure of poultry workers to airborne microorganisms, endotoxins and β-glucans during different stages of the chicken production cycle in 3 commercially-operated poultry houses. Personal and stationary sampling was carried out to assess exposure to both viable and total microbial aerosols. The stationary measurements of PM10 were performed to establish the level of endotoxins and β-glucans. The concentrations of bacterial and fungal aerosols ranged from 2.5×10(2) CFU/m(3)-2.9×10(6) CFU/m(3), and from 1.8×10(2) CFU/m(3)-1.8×10(5) CFU/m(3), respectively. The number of culturable microorganisms was significantly lower than their total counts, constituting from 0.0004%-6.4% of the total microbial flora. The level of PM10 in poultry facilities did not exceed 4.5 mg/m(3). After the flock entered the clean house, the level of endotoxins and β-glucans increased from below detection limit to 8,364 ng/m(3) and from 0.8 ng/m(3) to 6,886 ng/m(3), respectively. The presented study shows that professional activities in poultry farms are associated with constant exposure to bioaerosol, which may pose a health hazard to workers. It was found that workers' exposure to airborne microorganisms increased with consecutive stages of the chicken production cycle.

  10. New perspective on functional capabilities of microbiome associated with spacecraft assembly facilities

    NASA Astrophysics Data System (ADS)

    Vaishampayan, Parag

    2016-07-01

    In compliance with Planetary Protection policy, NASA monitors the total microbial burden of spacecraft and associated environments as a means for minimizing forward contamination. Despite numerous characterizations of microbial populations in spacecraft assembly cleanrooms, understanding the metabolic traits responsible for their persistence and survival remains a significant challenge. The principal objective of this study is to establish functional traits by exploring the entire gene content (metagenome) of the cleanroom microbial community. DNA-based techniques are incapable of distinguishing viable microorganisms from dead microbial cells in samples. Consequently, metagenomic analyses based on total environmental DNA extracts do not render a meaningful understanding of the metabolic and/or functional characteristics of living microorganisms in cleanrooms. A molecular viability marker was applied to samples collected from a cleanroom facility, and subsequent metagenomic sequencing experiments showed considerable differences between the resulting viable-only and total microbiomes. Nevertheless, analyses of sequence abundance suggested that the viable microbiome was influenced by both the human microbiome and the ambient ecosystem external to the facility, which resulted in a complex community profile. Also detected were the first viral signatures ever retrieved from a cleanroom facility: the genomes of human cyclovirus 7078A and Propionibacterium phage P14.4. We also wanted to evaluate if the strict cleaning and decontamination procedures selectively favor survival and growth of hardy microrganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: Dawn, Phoenix, and Mars Science Laboratory. Potential pathogens and their corresponding virulence factors were present in all the samples. Decreased microbial and pathogenic diversity during spacecraft assembly, compared to before and after, indicates that decontamination and preventative measures were effective and well implemented. The findings presented here, as well as the innovative methods that enabled their discovery, promise to have profound implications for the design and interpretation of ongoing and future studies in cleanrooms, indoor environments, and potential future human missions to Mars.

  11. Necromass as a source of energy to microorganisms in marine sediments.

    NASA Astrophysics Data System (ADS)

    Bradley, J.; Amend, J.; LaRowe, D.

    2017-12-01

    Marine sediments constitute one of the largest, most energy-limited biospheres on Earth. Despite increasing exploration and interest characterizing microbial communities in marine sediments, the production and role of microbial dead-matter (necromass) has largely been overlooked. Necromass is produced on a global scale, yet its significance as a power source to heterotrophic microorganisms remains unknown. We developed a physical, bio-energetic and geochemical model to quantify the total power supply from necromass oxidation and the total power demand of living microorganisms in marine sediments. This model is first applied to sediments from the oligotrophic South Pacific Gyre (SPG), where organic carbon and biomass concentrations are extremely low, yet microorganisms persist for millions of years in some of the lowest energy states on Earth. We show that necromass does not supply sufficient power to support the total demands of the living community (<39%) at SPG. Application of our model on a global scale, however, shows that necromass produced and subsequently oxidized can provide sufficient power to satisfy the maintenance demands of microorganisms in marine sediments for up to 60,000 years following burial. Our model assumes that all counted cells are viable. Yet, if only a fraction of counted cells are alive, the role of necromass as an electron donor in fueling microbial metabolisms is even greater. This new insight requires a reassessment of carbon fluxes in the deep biosphere. By extension, we also demonstrate a mechanism for microbial communities to persist by oxidizing necromass over geological timescales, and thereby endure unfavorable, low-energy settings that might be analogous to conditions on early Earth and on other planetary bodies.

  12. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site.

    PubMed

    Karra, Styliani; Katsivela, Eleftheria

    2007-03-01

    Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.

  13. Effect of gamma-irradiation on the occurrence of pathogenic microorganisms and nutritive value of four principal cereal grains.

    PubMed

    Aziz, N H; Souzan, R M; Shahin Azza, A

    2006-12-01

    The effects of (60)Co gamma-photon-irradiation on the natural occurrence of pathogenic microorganisms in four principal cereal grains and on amino acids and vitamins in these cereals were investigated. The total numbers of aerobic bacteria were reduced by three logarithmic decades when grains were given a dose of 10kGy. Coliforms and "coagulase- positive" staphylococci were inhibited by a dose of 1kGy, whereas fungi were inhibited by a dose of 5kGy. The 15kGy dose eliminated viable microorganisms in cereal grains, and about 10-30 colony-forming units of Clostridium sp. per gram of grain survived after this dose. The dose of 10kGy did not cause any measurable destruction of total amino acids. Thiamin was reduced by 22-33% and riboflavin by 10-16% after a dose of 10kGy. Irradiation did not increase the acid values significantly, but did increase the peroxide values, which was not accompanied by the off-odors of cereals. We conclude that the overall dose of 10kGy is very effective for microbial decontamination of cereal grains, and does not adversely affect the nutritional quality of cereal grains.

  14. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for themore » monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.« less

  15. Microbiological profile of maize and rye flours, and sourdough used for the manufacture of traditional Portuguese bread.

    PubMed

    Rocha, João M; Malcata, F Xavier

    2012-08-01

    A thorough microbiological study of maize and rye flours, and sourdoughs obtained therefrom for eventual manufacture of broa--a dark sour bread typical in Northern Portugal, following artisanal practices, was carried out. Towards this purpose, samples were supplied by 14 artisanal producers, selected from 4 sub-regions, during two periods of the year. Total viable counts, as well as viable mesophilic and thermophilic microorganisms, yeasts and molds, Gram⁻ rods, endospore-forming and nonsporing Gram⁺ rods, and catalase⁺ and catalase⁻ Gram⁺ cocci were assayed for. The comprehensive experimental dataset unfolded a unique and rather complex wild microflora in flours and sourdoughs throughout the whole region, which did not discriminate among sub-regions or seasons, or flour source for that matter. However, fermentation played a major role upon the numbers of the various microbial groups: the viable counts of yeasts, lactobacilli, streptococci, lactococci, enterococci and leuconostocs increased, whereas those of molds, Enterobacteriaceae, Pseudomonadaceae, staphylococci and micrococci decreased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger.

    PubMed

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Negri, Melyssa Fernanda Norman; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima; de Oliveira, Kelly Mari Pires

    2017-01-01

    The roots of Cochlospermum regium , popularly known as "algodãozinho-do-cerrado," are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation.

  17. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger

    PubMed Central

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima

    2017-01-01

    The roots of Cochlospermum regium, popularly known as “algodãozinho-do-cerrado,” are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation. PMID:29375642

  18. Heterotrophic bacteria in soils of Larsemann Oasis of East Antarctica

    NASA Astrophysics Data System (ADS)

    Churilin, Nikita; Soina, Vera

    2015-04-01

    The study of diversity and functional state of microorganisms in subsurface rocks layers, their participation in the biochemical weathering and formation of organic horizons of soils is important for understanding ecology and microorganisms in Antarctic soils. The study of cultured forms of microorganisms and their potential viability is still relevant to characterize the physiological state, biological activity and resilience of microorganisms involved in the initial soil formation. Improvement of isolation techniques of viable bacteria from the extreme habitats has a particular importance for rising the efficiency of environmental monitoring. The aim of the study was to investigate the viable heterotrophic bacteria involved in the formation of soils from wet valleys Larsemann Oasis, which is one of the warmest ice-free space of East Antarctica. Soil samples were taken from the intermountain humid valleys, where silt-gravelly substrates formed moss, algae, lichen cover. We used nutrient solutions (trypticase soy, R2A and glucose-peptone) to isolate cultured bacteria and study their morphological types in the light microscope. The total number of microorganisms was determined by fluorescent microscopy with acridine orange. SEM was used for morphological studies of bacterial communities in situ. To activate the growth processes we added into nutrient solutions various regulatory metabolites that have dose-dependence and operate at the community level. Physiological and functional conditions were determined by the duration of the lag phase and specific growth rate of bacterial communities in nutrient solutions containing various organic substrates. Soils form under protection of «stone pavement» and organisms leave the surface, so the forming organo-mineral horizon occurs inside of rock, thus the microprofile can form on both sides of the organic horizons. UV radiation, lack of moisture and strong wind are main limiting factors for microorganisms' growth in Antarctic soils. Primitive soils and permafrost layer have a great unevenness in the number of cultivated and potentially viable cells in different horizons. This phenomenon is characteristic for habitats with stable and alternating negative temperatures that can be attributed to the irregular migration of cells during freezing and heterogeneity of microbial populations along the depth of dormancy. One of the identified features was the lack of correlation with the organic content. SEM study of microbial communities in native Antarctic soils revealed the presence of biofilms, which can play an important role in weathering of rocks and primary soil formation, by forming organic horizon and protecting cells from environmental impact. Biofilms can also influence on distribution of bacterial cells in forming soils. Growth regulators (indoleacetic acid, wheat germ agglutinin, alkylhydroxybenzenes, pyruvate Na and serotonin) were used in experiments on the growth reactivation using soil samples with low number of microorganisms. The results obtained by this analysis can be used for further research to develop methods of the most complete selection of viable bacteria from Antarctic soils. We also determined the physiological condition of bacterial populations and their maximum specific growth rate. This method determines the functional (trophic) diversity of microbial communities and the maximum specific growth rate that reflects the environmental strategy of bacterial growth. In spite of the extreme conditions, a variety of physiological and metabolic willingness to consume polymers hydrolytic bacterial associations of endolithic soil is highest in the surface horizon and sharply decreases in the mineral horizon.

  19. Dormant state in bacteria: Conceptions and implications for terrestrial biogeoscience and astrobiology

    NASA Astrophysics Data System (ADS)

    Mulyukin, A.

    2003-04-01

    Gaining insight into strategies and mechanisms that ensure long term-preservation of microorganisms in various environments, including cold habitats, is a very important issue for terrestrial biogeoscience and astrobiology. This communication has a focus on the analysis of the published and our experimental data regarding the dormant state of different microorganisms, with an emphasis on non-spore-forming bacteria, which are widely spread in numerous ecological niches (e.g. permafrost sediments). Albeit it is recognized that one of the strategies to endure environmental stresses is entering of non-spore-forming bacteria into the viable-but-non-culturable state, a question of whether these microorganisms have the resting stage remains unclear. However, our previous studies showed that non-spore-forming bacteria and yeast could form cyst-like cells that possess many attributes of constitutively resting cells. As applied to the survival strategy of non-spore-forming bacteria in permafrost sediments, recognizing a very important role of the viable-but-nonculturable state in asporogenous bacteria, we however believe that their long-term maintenance in such habitats is due to the formation of cyst-like cells. Interestingly, bacterial isolates from permafrost sediments showed a greater productivity of autoregulatory factors, favoring the transition of cells into the resting state, and a more elevated resistance to some stresses than closely related collection strains. This suggests a greater potentiality of the permafrost isolates to enter the resting stage and thereby to survive for millennia years in natural habitats. However, it is known that only a little part of microorganisms that are present in environmental samples can be enumerated by standard plating on agar media, and a discrepancy between the total number of cells and those capable of forming colonies is a rather common case. Such a discrepancy can be due to either the actual non-culturability of microbial cells and to that the conditions that are most appropriate to wake resting cells to growth are unknown to microbiologists. Furthermore, resting bacterial cells of just the same species differ in their ability to recover the growth and multiplication and profundity of the dormant state, so special 'reanimation' procedures are required. To overcome obstacles due to an expectable underestimation of total cell number in the environmental samples, it is important to find out the criteria, which allow one to distinguish between microbial cells of different physiological state, including the resting cells, by direct methods. Some of such approaches to revealing the specific features of potentially viable resting cells (in laboratory cultures) were developed in our works and used for a primary detection of microbial cells in situ and for appraisal of their physiological state. So, it is worth to discuss what we can propose for a better understanding of the phenomenon of long-term preservation of microorganisms in cold terrestrial ecosystems and whether resting cells of non-spore-forming-bacteria can be regarded as a target in exobiological explorations.

  20. 40 CFR 725.205 - Persons who may report under this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... viable improvement of a product already on the market; or (ii) The researcher has sought or is seeking... microorganism, including as part of a mixture, is processed, distributed in commerce, or used, for any commercial purpose other than research and development. (e) Quantities of the inactivated microorganism, or...

  1. Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples.

    PubMed

    Joachimsthal, Eva L; Ivanov, Volodymyr; Tay, Joo-Hwa; Tay, Stephen T-L

    2003-03-01

    Conventional methods for bacteriological testing of water quality take long periods of time to complete. This makes them inappropriate for a shipping industry that is attempting to comply with the International Maritime Organization's anticipated regulations for ballast water discharge. Flow cytometry for the analysis of marine and ship's ballast water is a comparatively fast and accurate method. Compared to a 5% standard error for flow cytometry analysis the standard methods of culturing and epifluorescence analysis have errors of 2-58% and 10-30%, respectively. Also, unlike culturing methods, flow cytometry is capable of detecting both non-viable and viable but non-culturable microorganisms which can still pose health risks. The great variability in both cell concentrations and microbial content for the samples tested is an indication of the difficulties facing microbial monitoring programmes. The concentration of microorganisms in the ballast tank was generally lower than in local seawater. The proportion of aerobic, microaerophilic, and facultative anaerobic microorganisms present appeared to be influenced by conditions in the ballast tank. The gradual creation of anaerobic conditions in a ballast tank could lead to the accumulation of facultative anaerobic microorganisms, which might represent a potential source of pathogenic species.

  2. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets.

    PubMed

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides-Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut.

  3. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets

    PubMed Central

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides–Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut. PMID:28293225

  4. EVALUATION OF THE USE OF DIFFERENT ANTIBIOTICS IN THE DIRECT VIABLE COUNT METHOD TO DETECT FECAL ENTEROCOCCI

    EPA Science Inventory

    The detection of fecal pollution is performed via culturing methods in spite of the fact that culturable counts can severely underestimate the densities of fecal microorganisms. One approach that has been used to enumerate bacteria is the direct viable count method (DVC). The ob...

  5. High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide.

    PubMed

    Ingham, Colin; Bomer, Johan; Sprenkels, Ad; van den Berg, Albert; de Vos, Willem; van Hylckama Vlieg, Johan

    2010-06-07

    Handling microorganisms in high throughput and their deployment into miniaturized platforms presents significant challenges. Contact printing can be used to create dense arrays of viable microorganisms. Such "living arrays", potentially with multiple identical replicates, are useful in the selection of improved industrial microorganisms, screening antimicrobials, clinical diagnostics, strain storage, and for research into microbial genetics. A high throughput method to print microorganisms at high density was devised, employing a microscope and a stamp with a massive array of PDMS pins. Viable bacteria (Lactobacillus plantarum, Esherichia coli), yeast (Candida albicans) and fungal spores (Aspergillus fumigatus) were deposited onto porous aluminium oxide (PAO) using arrays of pins with areas from 5 x 5 to 20 x 20 microm. Printing onto PAO with up to 8100 pins of 20 x 20 microm area with 3 replicates was achieved. Printing with up to 200 pins onto PAO culture chips (divided into 40 x 40 microm culture areas) allowed inoculation followed by effective segregation of microcolonies during outgrowth. Additionally, it was possible to print mixtures of C. albicans and spores of A. fumigatus with a degree of selectivity by capture onto a chemically modified PAO surface. High resolution printing of microorganisms within segregated compartments and on functionalized PAO surfaces has significant advantages over what is possible on semi-solid surfaces such as agar.

  6. Microbial Check Valve for Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.; Sauer, R. L.

    1978-01-01

    The Microbial Check Valve (MCV) is a device developed for the Space Shuttle that prevents the transfer of viable microorganisms within water systems. The device is essentially a bed of resin material, impregnated with iodine, that kills microorganisms on contact. It prevents the cross-contamination of microorganisms from a nonpotable system into the potable water system when these systems are interconnected. In this regard, the function of the device is similar to that of the 'air gap' found in conventional one-gravity systems. Basic design data are presented including pressure drop, scaling factors, sizing criteria, and the results of challenging the device with suspensions of seven microorganisms including aerobes, anaerobes and spore formers.

  7. [Initial stages of steel biocorrosion].

    PubMed

    Zhigletsova, S K; Rodin, V B; Kobelev, V S; Aleksandrova, N V; Rasulova, G E; Kholodenko, V P

    2000-01-01

    Initial stages of corrosion of mild steel induced by Klebsiela rhinoscleromatis BO2 were studied in various media. The effect of the microorganism was detected 8-10 h after inoculation. The number of viable cells were virtually unchanged within one month in all media, but the corrosive activity of the strain decreased. The corrosive activity of microorganisms can be determined by spectrophotometry even only after incubation for 24 h. At a low level of organic substrate, even strong colonization with microorganisms does not inevitably result in a significant damage to metals.

  8. 21 CFR 186.1275 - Dextrans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...

  9. 21 CFR 186.1275 - Dextrans.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...

  10. 21 CFR 186.1275 - Dextrans.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...

  11. 21 CFR 186.1275 - Dextrans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...

  12. [Survival of probiotic microorganisms in the conditions in vitro imitating the process of human digestion].

    PubMed

    Darmov, I V; Chicherin, I Iu; Pogorel'skiĭ, I P; Lundovskikh, I A

    2011-01-01

    Assessment of survival bifidobacteria and lactobacteria under the conditions in vitro, simulating digestion in human stomach and intestine, and study of survival probiotic and indigenous microorganisms in co-cultivation on solid nutrient medium. Probiotic microorganisms from commercial preparations Bifidobacterin and Lactobacterin, clinical isolates lactobacillus (Lactobacillus acidophilus No 1, L. brevis No 2) were used in experiments. Survival study of probiotic microorganisms was performed on a model in vitro, simulating the process of digestion in the human body. Assessment of the relationship of probiotic microorganisms and indigenous microorganisms was carried out in co-cultivation in vitro on solid nutrient medium. A significant reduction in the number of viable probiotic microorganisms during their incubation in model media was set as well as suppression of probiotic microorganisms growth by cultures of a clinical strains of lactobacillus, corresponding to biocompatibility by type "host against probiotic". While choosing probiotics in the treatment of dysbacterioses the character of relationship between probiotic microorganisms and indigenous microorganisms of a patient is recommended to be preliminarily tested. Also microorganisms of own microflora should be stimulated using modern prebiotics.

  13. Viable Legionella Pneumophila Not Detectable by Culture on Agar Media

    DTIC Science & Technology

    1987-09-01

    iom’microorganisms released to the enirnmet becomesa primary factors in risk assessment. Cul- prime consideration in risk assessment. The ability to ture methods have...detection of microorganisms in the not always be culturable. We surveyed environment. In this sense, LegioneIla pnesanopliila, the environmental ...samples collected from agent of Legionnaires’ pneumonia and related illnesses, poses a microbiological dilemma for environmental morn- * sources

  14. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  15. Preparation of an novel botanic biopreservative and its efficacy in keeping quality of peeled Penaeus vannamei.

    PubMed

    Chen, Jing; Deng, Shanggui; Li, Jianrong

    2013-06-01

    A novel botanic biopreservative was successfully prepared by the combination of the bamboo leaves extracts and ebony extracts, designated as ebony-bamboo leaves complex extracts (EBLCE), whose antimicrobial activity was assessed according to an inhibition zone method against 10 common pathogenic and spoilage microorganisms. It was found that EBLCE was more effective from all the chosen microorganisms, as compared by potassium sorbate. Due to its excellent antimicrobial activity, and some additional properties like edibility, safety and economy, EBLCE was selected for further study to evaluate the efficacy in prolonging shelf life and improving the quality of peeled Penaeus vannamei during storage at 4 °C, based on periodical microbiological, chemical and sensory analysis. As a result, EBLCE was observed to prevent spoilage of peeled P. vannamei efficiently as reflected by a distinct decrease in total viable count, pH and total volatile basic nitrogen, as well as a slower decline in the sensory evaluation scores. Therefore, a prolonged shelf life of 16 days was obtained for EBLCE pre-treated peeled shrimps with comparison of 6 days for the control group, demonstrating EBLCE as a promising alternative for preserving food.

  16. Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions

    NASA Astrophysics Data System (ADS)

    Guglielmi, Camila De Almeida B.; Simionato, Maria Regina L.; Ramalho, Karen Müller; Imparato, José Carlos P.; Pinheiro, Sérgio Luiz; Luz, Maria A. A. C.

    2011-08-01

    The purpose of this study was to assess photodynamic antimicrobial chemotherapy (PACT) via irradiation, using a low power laser associated with a photosensitization dye, as an alternative to remove cariogenic microorganisms by drilling. Remaining dentinal samples in deep carious lesions on permanent molars (n = 26) were treated with 0.01% methylene blue dye and irradiated with a low power laser (InGaAIP - indium gallium aluminum phosphide; λ = 660 nm; 100 mW; 320 Jcm-2 90 s; 9J). Samples of dentin from the pulpal wall region were collected with a micropunch before and immediately after PACT and kept in a transport medium for microbiological analysis. Samples were cultured in plates of Brucella blood agar, Mitis Salivarius Bacitracin agar and Rogosa SL agar to determine the total viable bacteria, mutans streptococci and Lactobacillus spp. counts, respectively. After incubation, colony-forming units were counted and microbial reduction was calculated for each group of bacteria. PACT led to statistically significant reductions in mutans streptococci (1.38 log), Lactobacillus spp. (0.93 log), and total viable bacteria (0.91 log). This therapy may be an appropriate approach for the treatment of deep carious lesions using minimally invasive procedures.

  17. Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes.

    PubMed

    Neves, Marcelo S; da Silva, Marlei Gomes; Ventura, Grasiella M; Côrtes, Patrícia Barbur; Duarte, Rafael Silva; de Souza, Heitor S

    2016-05-01

    Attention to patient safety has increased recently due to outbreaks of nosocomial infections associated with GI endoscopy. The aim of this study was to evaluate current cleaning and disinfection procedures of endoscope channels with high bioburden and biofilm analysis, including the use of resistant mycobacteria associated with postsurgical infections in Brazil. Twenty-seven original endoscope channels were contaminated with organic soil containing 10(8) colony-forming units/mL of Pseudomonas aeruginosa, Staphylococcus aureus, or Mycobacterium abscessus subsp bolletii. Biofilms with the same microorganisms were developed on the inner surface of channels with the initial inoculum of 10(5) colony-forming units/mL. Channels were reprocessed following current protocol, and samples from cleaning and disinfection steps were analyzed by bioluminescence for adenosine triphosphate, cultures for viable microorganisms, and confocal microscopy. After contamination, adenosine triphosphate levels increased dramatically, and high bacterial growth was observed in all cultures. After cleaning, adenosine triphosphate levels decreased to values comparable to precontamination levels, and bacterial growth was demonstrated in 5 of 27 catheters, 2 with P aeruginosa and 3 with M abscessus. With regard to induced biofilm, a remarkable reduction occurred after cleaning, but significant microbial growth inhibition occurred only after disinfection. Nevertheless, viable microorganisms within the biofilm were still detected by confocal microscopy, more so with glutaraldehyde than with peracetic acid or O-phataladehyde. After the complete disinfection procedure, viable microorganisms could still be detected within the biofilm on endoscope channels. Prevention of biofilm development within endoscope channels should be a priority in disinfection procedures, particularly for ERCP and EUS. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  18. 21 CFR 173.160 - Candida guilliermondii.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION Enzyme Preparations and Microorganisms § 173.160 Candida guilliermondii. The food additive Candida... the following conditions: (a) The food additive is the enzyme system of the viable organism Candida...

  19. 21 CFR 173.160 - Candida guilliermondii.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION Enzyme Preparations and Microorganisms § 173.160 Candida guilliermondii. The food additive Candida... the following conditions: (a) The food additive is the enzyme system of the viable organism Candida...

  20. 21 CFR 173.160 - Candida guilliermondii.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION Enzyme Preparations and Microorganisms § 173.160 Candida guilliermondii. The food additive Candida... the following conditions: (a) The food additive is the enzyme system of the viable organism Candida...

  1. Food-Associated Lactobacillus plantarum and Yeasts Inhibit the Genotoxic Effect of 4-Nitroquinoline-1-Oxide

    PubMed Central

    Prete, Roberta; Tofalo, Rosanna; Federici, Ermanno; Ciarrocchi, Aurora; Cenci, Giovanni; Corsetti, Aldo

    2017-01-01

    Lactic acid bacteria and yeasts, representing the prevailing microbiota associated with different foods generally consumed without any cooking, were identified and characterized in vitro for some functional properties, such as acid-bile tolerance and antigenotoxic activity. In particular, 22 Lactobacillus plantarum strains and 14 yeasts were studied. The gastro-intestinal tract tolerance of all the strains was determined by exposing washed cell suspensions at 37°C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and to a simulated small intestinal juice (pH 8.0), containing pancreatin (1 mg mL-1) and bile extract (0.5%), thus monitoring changes in total viable count. In general, following a strain-dependent behavior, all the tested strains persisted alive after combined acid-bile challenge. Moreover, many strains showed high in vitro inhibitory activity against a model genotoxin, 4-nitroquinoline-1-oxide (4-NQO), as determined by the short-term method, SOS-Chromotest. Interestingly, the supernatants from bacteria- or yeasts-genotoxin co-incubations exhibited a suppression on SOS-induction produced by 4-NQO on the tester strain Escherichia coli PQ37 (sfiA::lacZ) exceeding, in general, the value of 75%. The results highlight that food associated microorganisms may reach the gut in viable form and prevent genotoxin DNA damage in situ. Our experiments can contribute to elucidate the functional role of food-associated microorganisms general recognized as safe ingested with foods as a part of the diet. PMID:29234315

  2. Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut.

    PubMed

    Audisio, M C; Sabaté, D C; Benítez-Ahrendts, M R

    2015-01-01

    Lactobacillus johnsonii CRL1647, isolated from the intestinal tract of a worker-bee in Salta, Argentina, was delivered to Apis mellifera L. honey bee colonies according to two different administration schedules: 1×10(5) cfu/ml every 15 days (2011) or monthly (2012). The effect of each treatment on the bee-colony performance was monitored by measuring honey production, and the prevalence of varroasis and nosemosis. Worker bees from each assay were randomly captured 3 days after administration and assayed for the following intestinal culturable and defined bacterial populations: total aerobic microorganisms, Bacillus spp. spores, Lactobacillus spp., Enterococcus spp. and enterobacteria. Interestingly, both treatments generated a similar increase in honey production in treated colonies compared to controls: 36.8% (every 15 days) and 36.3% (monthly). Nosema index always exhibited a reduction when lactobacilli were administered; in turn, Varroa incidence was lower when the lactobacilli were administered once a month. Moreover, the administration of L. johnsonii CRL1647 every 15 days produced an increase in the total number of aerobic microorganisms and in bacteria belonging to the genera Lactobacillus and Enterococcus; at the same time, a decrease was observed in the number of total spores at the end of the treatment. The number of enterobacteria was constant and remained below that of control hives at the end of the assay. On the other hand, the delivery of lactobacilli once a month only showed an increase in the number of bacteria belonging to the genus Lactobacillus; meanwhile, viable counts of the remaining microorganisms assayed were reduced. Even though it seems that both treatments were similar, those bee colonies that received L. johnsonii CRL1647 every 15 days became so strong that they swarmed.

  3. On the Isolation of Halophilic Microorganisms from Salt Deposits of Great Geological Age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald; Orans, Robin (Editor)

    1993-01-01

    From salt sediments of Triassic or Permian ace from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteriae. One group appears to represent novel strains; several properties or one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediments would have great implications with respect to our notions on evolution, the search for life in extraterrestrial environments and the long- term survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  4. On the isolation of halophilic microorganisms from salt deposits of great geological age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald

    1993-01-01

    From salt sediments of Triassic or Permian age from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteria. One group appears to represent novel strains; several properties of one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediment would have great implications with respect to our notions on evolution, the research for life in extraterrestrial environments, and the longterm survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  5. Influence of the Culinary Treatment on the Quality of Lactarius deliciosus

    PubMed Central

    Pogoń, Krystyna; Jaworska, Grażyna; Duda-Chodak, Aleksandra; Maciejaszek, Ireneusz

    2013-01-01

    The influence of culinary treatment on the nutritional value and quality of Lactarius deliciosus was established. Mushrooms: unblanched (I), blanched (II), and unblanched with onion and spices (III), were fried in oil for 10 min. Fried mushrooms were assessed before storage as well as after 48 h in storage at 20 °C, and after 48 and 96 h in storage at 4 °C. Frying increased the dry weight, protein, fat, ash, total carbohydrate, total polyphenol, and total flavonoid content, as well as the caloric value of the mushrooms. In addition, frying decreased the antioxidant activity, color parameters (a*, h*), and texture. The most significant changes due to culinary treatment and storage were observed in type II product. Microbiological analysis of the samples after a 48 h storage period at 20 °C revealed the total viable count over 106 and contamination with lactic acid bacteria. Fried mushrooms stored at 4 °C for 96 h were free from microorganisms. PMID:28239112

  6. Influence of the Culinary Treatment on the Quality of Lactarius deliciosus.

    PubMed

    Pogoń, Krystyna; Jaworska, Grażyna; Duda-Chodak, Aleksandra; Maciejaszek, Ireneusz

    2013-06-17

    The influence of culinary treatment on the nutritional value and quality of Lactarius deliciosus was established. Mushrooms: unblanched (I), blanched (II), and unblanched with onion and spices (III), were fried in oil for 10 min. Fried mushrooms were assessed before storage as well as after 48 h in storage at 20 °C, and after 48 and 96 h in storage at 4 °C. Frying increased the dry weight, protein, fat, ash, total carbohydrate, total polyphenol, and total flavonoid content, as well as the caloric value of the mushrooms. In addition, frying decreased the antioxidant activity, color parameters ( a *, h *), and texture. The most significant changes due to culinary treatment and storage were observed in type II product. Microbiological analysis of the samples after a 48 h storage period at 20 °C revealed the total viable count over 10⁶ and contamination with lactic acid bacteria. Fried mushrooms stored at 4 °C for 96 h were free from microorganisms.

  7. Assessment of bioburden encapsulated in bulk materials

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms are capable of surviving encapsulation within, and liberation from, epoxy solids. It must be noted, however, that all purposely spiked experimental solids, resulted in very low recovery (1 × 10-3-1 × 10-5 CFU/cm3) of viable organisms.

  8. Standardization of Spore Inactivation Method for PMA-PhyloChip Analysis

    NASA Technical Reports Server (NTRS)

    Schrader, Michael

    2011-01-01

    In compliance with the Committee on Space Research (COSPAR) planetary protection policy, National Aeronautics and Space Administration (NASA) monitors the total microbial burden of spacecraft as a means for minimizing the inadvertent transfer of viable contaminant microorganisms to extraterrestrial environments (forward contamination). NASA standard assay-based counts are used both as a proxy for relative surface cleanliness and to estimate overall microbial burden as well as to assess whether forward planetary protection risk criteria are met for a given mission, which vary by the planetary body to be explored and whether or not life detection missions are present. Despite efforts to reduce presence of microorganisms from spacecraft prior to launch, microbes have been isolated from spacecraft and associated surfaces within the extreme conditions of clean room facilities using state of the art molecular technologies. Development of a more sensitive method that will better enumerate all viable microorganisms from spacecraft and associated surfaces could support future life detection missions. Current culture-based (NASA standard spore assay) and nucleic-acid-based polymerase chain reaction (PCR) methods have significant shortcomings in this type of analysis. The overall goal of this project is to evaluate and validate a new molecular method based on the use of a deoxyribonucleic acid (DNA) intercalating agent propidium monoazide (PMA). This is used in combination with DNA microarray (PhyloChip) which has been shown to identify very low levels of organisms on spacecraft associated surfaces. PMA can only penetrate the membrane of dead cells. Once penetrated, it intercalates the DNA and, upon photolysis using visible light it produces stable DNA monoadducts. This allows DNA to be unavailable for further PCR analysis. The specific aim of this study is to standardize the spore inactivation method for PMA-PhyloChip analysis. We have used the bacterial spores Bacillus subtilis 168 (standard laboratory isolate) as a test organism.

  9. Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions

    NASA Technical Reports Server (NTRS)

    Smith, David J.; Schuerger, Andrew C.; Davidson, Mark M.; Pacala, Stephen W.; Bakermans, Corien; Onstott, Tullis

    2008-01-01

    Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25 degrees C for 24 hr within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 hr of exposure to Mars-normal conditions of 4.55 W/m(2) UVC irradiation (200-280 nm), -12.5 degrees C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H(2)O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at tau = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 hr exposure period.

  10. Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions

    NASA Astrophysics Data System (ADS)

    Smith, David J.; Schuerger, Andrew C.; Davidson, Mark M.; Pacala, Stephen W.; Bakermans, Corien; Onstott, Tullis C.

    2009-03-01

    Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25°C for 24 h within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 h of exposure to Mars-normal conditions of 4.55 W/m2 UVC irradiation (200-280 nm), -12.5°C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H2O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at τ = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 h exposure period.

  11. A stochastic bioburden model for spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Roark, A. L.

    1972-01-01

    Development of a stochastic model of the probability distribution for the random variable representing the number of microorganisms on a surface as a function of time. The first basic principle associated with bioburden estimation is that viable particles are removed from surfaces. The second notion important to the analysis is that microorganisms in environments and on surfaces occur in clumps. The last basic principle relating to bioburden modeling is that viable particles are deposited on a surface. The bioburden on a spacecraft is determined by the amount and kind of control exercised on the spacecraft assembly location, the shedding characteristics of the individuals in the vicinity of the spacecraft, its orientation, the geographical location in which the assembly takes place, and the steps in the assembly procedure. The model presented has many of the features which are desirable for its use in the spacecraft sterilization programs currently being planned by NASA.

  12. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    NASA Astrophysics Data System (ADS)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  13. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses.

    PubMed

    Dutta, Debarun; Cole, Nerida; Kumar, Naresh; Willcox, Mark D P

    2013-01-07

    To develop a stable antimicrobial contact lens, which is effective against the International Organization for Standardization (ISO) panel microorganisms, Acanthamoeba castellanii and drug resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. Melimine was covalently incorporated into etafilcon A lenses. The amount of peptide present on the lens surface was quantified using amino acid analysis. After coating, the heat stability (121°C), lens surface hydrophobicity (by captive bubble), and in vitro cytotoxicity to mouse L929 cells of the lenses were investigated. Antimicrobial activity against the micro-organisms was evaluated by viable plate count and fluorescence microscopy, measuring the proportion of cell death compared with control lenses with no melimine. The most effective concentration was determined to be 152 ± 44 μg lens(-1) melimine on the lens surface. After coating, lenses were relatively hydrophilic and were nontoxic to mammalian cells. The activity remained high after autoclaving (e.g., 3.1, 3.9, 1.2, and 1.0 log inhibition against P. aeruginosa, S. aureus, A. castellanii, and Fusarium solani, respectively). Fluorescence microscopy confirmed significantly reduced (P < 0.001) adhesion of viable bacteria to melimine contact lenses. Viable count confirmed that lenses were active against all the bacteria and fungi from the ISO panel, Acanthamoeba and gave at least 2 log inhibition against all the multidrug resistant S. aureus and P. aeruginosa strains. Melimine may offer excellent potential for development as a broad spectrum antimicrobial coating for contact lenses, showing activity against all the bacterial and fungal ISO panel microorganisms, Acanthamoeba, and antibiotic resistant strains of P. aeruginosa and S. aureus.

  14. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    PubMed

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  15. Water system microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.

    1978-01-01

    Development work on a device for the Space Shuttle that will prevent the transfer of viable microorganisms within water systems is described. The device serves as a check valve in that it prevents the transfer or cross-contamination of microorganisms from a nonpotable system into a potable water system when these systems are interconnected. In this regard, the function of the device is similar to that of the air gap found in conventional one gravity systems. The device is essentially a bed of resin material impregnated with iodine. Basic design data for a variety of flow and temperature conditions are presented, together with results of challenging the beds with suspensions of seven microorganisms including aerobes, anaerobes, and spore formers.

  16. Retooling microorganisms for the fermentative production of alcohols.

    PubMed

    Toogood, Helen S; Scrutton, Nigel S

    2018-04-01

    Bioengineering and synthetic biology approaches have revolutionised the field of biotechnology, enabling the introduction of non-native and de novo pathways for biofuels production. This 'retooling' of microorganisms is also applied to the utilisation of mixed carbon components derived from lignocellulosic biomass, a major technical barrier for the development of economically viable fermentations. This review will discuss recent advances in microorganism engineering for efficient production of alcohols from waste biomass. These advances span the introduction of new pathways to alcohols, host modifications for more cost-effective utilisation of lignocellulosic waste and modifications of existing pathways for generating new fuel additives. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Bacteriostatic conformal coating for electronic components

    NASA Technical Reports Server (NTRS)

    Bland, C.; Le Doux, F. N.

    1967-01-01

    Coating for electronic components used in space applications has bacteriostatic qualities capable of hindering bacterial reproduction, both vegetative and sporulative viable microorganisms. It exhibits high electrical resistivity, a low outgassing rate, and is capable of restraining electronic components when subjected to mechanical vibrations.

  18. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during processing of peppermint (Mentha piperita) and chamomile (Matricaria recutita) by herb farmers, and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 13 farms owned by herb cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the farm air during processing of peppermint herb were large, within a range from 895.1-6,015.8 x 10(3) cfu/m(3) (median 1,055.3 x 10(3) cfu/m(3)). During processing of chamomile herb they were much lower and varied within a range from 0.88-295.6 x 10(3) cfu/m(3) (median 27.3 x 10(3) cfu/m(3)). Gram-negative bacteria distinctly prevailed during processing of peppermint leaves, forming 46.4-88.5 % of the total airborne microflora. During processing of chamomile herb, Gram-negative bacteria were dominant at 3 out of 6 sampling sites forming 54.7-75.3 % of total microflora, whereas at the remaining 3 sites the most common were fungi forming 46.2-99.9 % of the total count. The species Pantoea agglomerans (synonyms: Erwinia herbicola, Enterobacter agglomerans ), having strong allergenic and endotoxic properties, distinctly prevailed among Gram-negative isolates. Among fungi, the most common species was Alternaria alternata. The concentrations of airborne dust and endotoxin determined on the examined herb farms were large. The concentrations of airborne dust during peppermint and chamomile processing ranged from 86.7-958.9 mg/m(3), and from 1.1-499.2 mg/m(3), respectively (medians 552.3 mg/m(3) and 12.3 mg/m(3)). The concentrations of airborne endotoxin determined during peppermint and chamomile processing were within a wide range 1.53-208.33 microg/m(3) and 0.005-2604.19 microg/m(3) respectively (medians 57.3 microg/m(3) and 0.96 microg/m(3)). In conclusion, farmers cultivating peppermint are exposed during processing of this herb to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work-related respiratory disease. The exposure to bioaerosols during processing of chamomile is lower; nevertheless, peak values create a respiratory risk for exposed farmers.

  19. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    PubMed

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity. Key findings: Each investigated lesion harbored a unique microbiota in terms of both species composition and numbers of microorganisms. This indicates that various combinations of aciduric microorganisms can colonize, survive in and probably also propagate dentine carious lesions. We also found that solid pH-selective agars can be used successfully to select acid-tolerant microorganisms in caries lesions. This would preserve their phenotypic traits for further study. In Paper III, the relation between salivary levels of matrix metalloproteinase-8 (MMP-8), salivary levels of tissue inhibitor of MMP (TIMP-1), and the presence of manifest caries lesions in a large number of subjects was investigated. Saliva samples were collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein using immunofluorometric assays, enzyme linked immunosorbent assays and Bradford assays, respectively. Key findings: Subjects with manifest caries lesions had significantly elevated levels of salivary MMP-8 compared to subjects without caries lesions. TIMP-1 was not significant in any case. In Paper IV, a new method for generating bioactive demineralized dentine matrix substrate (DDM) was developed using a dialysis system and two different demineralization approaches (acetic acid or EDTA). The generated DDM was subsequently analyzed for the presence of type 1 collagen, active MMP-8 and hydroxyproline (HYP) levels using SDS-PAGE, ELISA or immunofluorescence assay. Key findings: Both demineralization methods produced a substrate rich in collagen and with preserved MMP-8 activity. This report presents new knowledge on the composition of the acid tolerant dentine caries microbiota from three levels in dentine carious lesions and on the efficacy of operative caries removal on the numbers of viable microorganisms in the caries free cavity using two operative methods. Moreover, the basic mechanisms behind collagen degradation in the dentine caries process are studied from both a clinical and laboratory perspective. The report also provides a reference for further studies on dentine caries microbiology and dentine caries collagen degradation mechanisms, both of which are known only in part.

  20. 40 CFR 180.1076 - Viable spores of the microorganism Bacillus popilliae; exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... insecticide Bacillus popilliae, as specified in paragraph (a) of this section in or on grass, pasture, forage and grass, rangeland, forage when it is applied to growing crops in accordance with good agricultural...

  1. 40 CFR 180.1076 - Viable spores of the microorganism Bacillus popilliae; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... insecticide Bacillus popilliae, as specified in paragraph (a) of this section in or on grass, pasture, forage and grass, rangeland, forage when it is applied to growing crops in accordance with good agricultural...

  2. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  3. The decontamination of industrial casein and milk powder by irradiation

    NASA Astrophysics Data System (ADS)

    Żegota, H.; Małolepszy, B.

    2008-09-01

    The efficacy of gamma radiation decontamination of industrial casein, a milk protein utilized as a component of many food and non-food products has been studied. Low-fat milk powder was also included with a purpose to study the microflora survival in protein-rich materials. Microbial analysis of the samples prior to irradiation showed that the initial total viable count was higher than 6.0 log cfu g -1 in both casein and milk powders. The contamination of casein with moulds and yeasts was found to be equal to 3.56 log cfu g -1. The counts of coliforms have not exceeded the value of 2.48 log cfu g -1. Radiation processing of casein and milk powder has substantially reduced the microbial population of all samples. The dose of 5 kGy was sufficient to reduce the total microflora and coliforms counts to the level permitted for food products. Survivals of microorganisms were analyzed by the generalized exponential equation, SF =exp[ -D/ Do) α]. Values of an exponent, α, standing for the dispersion parameter, were equal to 0.65 and 0.70 for microorganisms contaminating casein and milk powders, respectively. The numerical value of the dispersion parameter α<1 indicates the concave dependence of a logarithm of surviving fraction versus radiation dose. No difference in microflora survival in irradiated samples tested immediately and in samples stored for 1-month after irradiation has been noticed.

  4. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    PubMed

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  5. Concentrations of viable oil-degrading microorganisms are increased in feces from Calanus finmarchicus feeding in petroleum oil dispersions.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Hansen, Bjørn Henrik; Altin, Dag; Brakstad, Odd Gunnar

    2015-09-15

    Zooplankton are suggested to be biotic contributors to the transport and weathering of oil in marine environments due to their ingestion of oil. In the present experiment, feeding activity and microbial communities in feces from Calanus finmarchicus feeding in oil dispersions were characterized. Feeding activity was significantly reduced in oil dispersions. The microbial communities in clean and oil-containing copepod feces were dominated by Rhodobacteraceae family bacteria (Lesingera, Phaeobacter, Rugeria, and Sulfitobacter), which were suggested to be indigenous to copepod feces. The results also indicated that these bacteria were metabolizing oil compounds, as a significant increase in the concentrations of viable oil degrading microorganisms was observed in oil-containing feces. This study shows that bacteria in feces from copepods feeding in dilute oil dispersions have capacity for degradation of oil. Zooplankton may therefore contribute to weathering of oil by excreting feces with microbial communities already adapted to degradation of oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of anhydrosophoradiol-3-acetate of Calotropis gigantea (Linn.) flower as antitumoric agent against Ehrlich's ascites carcinoma in mice.

    PubMed

    Habib, Muhammad R; Karim, Muhammad R

    2013-01-01

    Over 60% of currently used anti-cancer agents are derived in one-way or another from natural sources, including plants, marine organisms and microorganisms. Calotropis gigantea (Linn.) (Family: Asclepiadaceae) is a perennial shrub and it is used as a traditional folk medicine for the treatment of various health complications. But there is no report on isolation of anticancerous chemicals from the flower of Calotropis gigantea. The objective of the present study is to explore the antitumor effect of anhydrosophoradiol-3-acetate (A3A), isolated from the flower of Calotropis gigantea (Linn.) against Ehrlich's ascites carcinoma (EAC) in Swiss albino mice. Antitumoric effect of A3A was assessed by evaluating viable tumor cell count, survival time, body weight gain due to tumor burden, hematological and biochemical (glucose, cholesterol, triglyceride, blood urea, SALP, SGPT and SGOT) parameters of EAC bearing host at doses of 10 and 20 mg/kg body weight. Treatment with A3A decreased the viable tumor cells and body weight gain thereby increasing the life span of EAC bearing mice. A3A also brought back the altered hematological (Hb, total RBC and total WBC) and biochemical parameters more or less to normal level. Results of this study conclude that in vivo the A3A was effective in inhibiting the growth of EAC with improving in cancer induced complications.

  7. Free tropospheric transport of microorganisms from Asia to North America.

    PubMed

    Smith, David J; Jaffe, Daniel A; Birmele, Michele N; Griffin, Dale W; Schuerger, Andrew C; Hee, Jonathan; Roberts, Michael S

    2012-11-01

    Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7 km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94 × 10(-5) ng DNA m(-3) for bacteria and 4.77 × 10(-3) ng DNA m(-3) for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4 % of bacterial and 47.6 % of fungal samples (N = 124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22-23 April 2011 and 13-15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10 days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.

  8. Free tropospheric transport of microorganisms from Asia to North America

    USGS Publications Warehouse

    D. Smith,; Dan Jaffe,; Michele Birmele,; Griffin, Dale W.; Andrew Schuerger,; Hee, J.; Michael Roberts,

    2012-01-01

    Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7 km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94 × 10(-5) ng DNA m(-3) for bacteria and 4.77 × 10(-3) ng DNA m(-3) for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4 % of bacterial and 47.6 % of fungal samples (N = 124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22-23 April 2011 and 13-15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10 days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.

  9. Furfural Induces Reactive Oxygen Species Accumulation and Cellular Damage in Saccharomyces Cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Background: Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and technology to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need of a robust fermentative microorganism that can tolera...

  10. Accelerating sample preparation through enzyme-assisted microfiltration of Salmonella in chicken extract

    USDA-ARS?s Scientific Manuscript database

    Microfiltration of chicken extracts has the potential to significantly decrease the time required to detect Salmonella, as long as the extract can be efficiently filtered and the pathogenic microorganisms kept in a viable state during this process. We present conditions that enable microfiltration ...

  11. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices.

    PubMed

    de Oliveira Junior, Adelson Alves; de Araújo Couto, Hyrla Grazielle Silva; Barbosa, Ana Andréa Teixeira; Carnelossi, Marcelo Augusto Guitierrez; de Moura, Tatiana Rodrigues

    2015-10-15

    Heat processing is the most commonly used hurdle for inactivating microorganisms in fruit juices. However, this preservation method could interfere with the organoleptic characteristics of the product. Alternative methods have been proposed and bacteriocins such as nisin are potential candidates. However, the approval of bacteriocins as food additives is limited, especially in foods from vegetal origin. We aimed to verify the stability, the effect on physico-chemical properties, and the antimicrobial activity of nisin in different fruit juices. Nisin remained stable in fruit juices (cashew, soursop, peach, mango, passion fruit, orange, guava, and cupuassu) for at least 30 days at room or refrigerated temperature and did not cause any significant alterations in the physico-chemical characteristics of the juices. Besides, nisin favored the preservation of vitamin C content in juices. The antimicrobial activity of nisin was tested against Alicyclobacillus acidoterrestris, Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in cashew, soursop, peach, and mango juices. Nisin caused a 4-log reduction in viable cells of A. acidoterrestris in soursop, peach, and mango juices after 8h of incubation, and no viable cells were detected in cashew juices. After 24h of incubation in the presence of nisin, no viable cells were detected, independently of the juices. To S. aureus, at 24h of incubation in the presence of nisin, viable cells were only detected in mango juices, representing a 4-log decrease as compared with the control treatment. The number of viable cells of B. cereus at 24h of incubation in the presence of nisin represented at least a 4-log decrease compared to the control treatment. When the antimicrobial activity of nisin was tested against L. monocytogenes in cashew and soursop juices, no reduction in the viable cell number was observed compared to the control treatment after 24h of incubation. Viable cells were four and six times less than in the control treatment, in peach and mango juices respectively. The most sensitive microorganism to nisin was A. acidoterrestris and the least sensitive was L. monocytogenes. Still, a reduction of up to 90% of viable cells was observed in peach and mango juices inoculated with L. monocytogenes. These results indicate that the use of nisin could be an alternative in fruit juice processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The survival of micro-organisms in space. Further rocket and balloon-borne exposure experiments.

    PubMed

    Hotchin, J; Lorenz, P; Markusen, A; Hemenway, C

    1967-01-01

    This report describes the results of survival studies of terrestrial micro-organisms exposed directly to the space environment on two balloons and in two rocket flights. The work is part of a program to develop techniques for the collection of micro-organisms in the size range of micrometeorite particles in space or non-terrestrial atmospheres, and their return to earth in a viable state for further study. Previous survival studies were reported (J. Hotchin, P. Lorenz and C. Hemenway, Nature 206 (1965) 442) in which a few relatively large area samples of micro-organisms were exposed on millipore filter cemented to aluminum plates. In the present series of experiments, newly developed techniques have resulted in a 25-fold miniaturization resulting in a corresponding increase in the number of experiments performed. This has enabled a statistical evaluation of the results to be made. A total of 756 separate exposure units (each approximately 5 x 5 mm in size) were flown in four experiments, and organisms used were coliphage T1, penicillium roqueforti (THOM) mold spores, poliovirus type I (Pfizer attenuated Sabin vaccine strain), and bacillus subtilis spores. The organisms were deposited either by spraying directly upon the vinyl-coated metal units, or by droplet seeding into shallow depressions in the millipore filter membrane-coated units. Groups of units were prepared comprising fully exposed, inverted (screened by 2 mm of Al), and filter-protected organisms. All of these were included in the flight set, the back up set, and a laboratory control set. The altitude of the exposures varied from 35 km in the balloon experiments to 150 km in the rocket experiments. Times of exposures at altitude were approximately 6 hours for the balloon flights and about 3 minutes for the rocket experiments.

  13. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings

    PubMed Central

    Roque, Katharine; Lim, Gyeong-Dong; Jo, Ji-Hoon; Shin, Kyung-Min; Song, Eun-Seob; Gautam, Ravi; Kim, Chang-Yul; Lee, Kyungsuk; Shin, Seungwon; Yoo, Han-Sang; Heo, Yong

    2016-01-01

    Microorganisms found in bioaerosols from animal confinement buildings not only foster the risk of spreading diseases among livestock buildings, but also pose health hazards to farm workers and nearby residents. This study identified the various microorganisms present in the air of swine, chicken, and cattle farms with different kinds of ventilation conditions in Korea. Microbial air samples were collected onto Petri dishes with bacterial or fungal growth media using a cascade impactor. Endotoxin levels in total dust were determined by the limulus amebocyte lysate kinetic QCL method. Prevalent Gram-positive bacteria were Staphylococcus (S.) lentus, S. chromogenes, Bacillus (B.) cereus, B. licheniformis, and Enterococcus faecalis, while the dominant fungi and Gram-negative bacteria were Candida albicans and Sphingomonas paucimobilis, respectively. Considering no significant relationship between the indoor dust endotoxin levels and the isolation of Gram-negative bacteria from the indoor air, monitoring the indoor airborne endotoxin level was found to be also critical for risk assessment on health for animals or workers. The present study confirms the importance of microbiological monitoring and control on animal husbandry indoor air to ensure animal and worker welfare. PMID:27456779

  14. Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions.

    PubMed

    Juris, P; Plachý, P; Lauková, A

    1995-05-01

    The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.

  15. Evaluation of the effect of photodynamic antimicrobial therapy in dentin caries: a pilot in vivo study

    NASA Astrophysics Data System (ADS)

    Borges, F. M. C.; de-Melo, M. A. S.; Lima, J. M. P.; Zanin, I. C. J.; Rodrigues, L. K. A.; Nobre-dos-Santos, M.

    2010-02-01

    In vitro and in situ studies have demonstrated that the photodynamic antimicrobial therapy (PACT) is effective in reducing Streptococcus mutans population in artificially carious dentin. This pilot in vivo study evaluated the antimicrobial effect of PACT using toluidine blue O (TBO) and a light-emitting diode (LED) in carious dentin lesions. Five healthy adult volunteers (19-36 yr), with at least 4 active carious cavities each, participated in this study. Teeth of each volunteer were randomly divided into four groups: (1) without TBO and without light (Control); (2) with TBO alone (TBO); (3) with LED at 94/J cm2 alone (LED); and (4) with TBO plus LED at 94 J/cm2 (PACT). Each cavity was divided into two halves. The baseline carious dentin sample was collected from half of each cavity. Following, the treatments were performed using a random distribution of tooth into treatments. Then, the second collection of carious dentin samples was performed. Before and after treatments, dentin samples were analyzed with regard to the counts of total viable microorganisms, total streptococci, mutans streptococci, and lactobacilli. The data were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests (α=5%). Log reductions ranged from -0.12 to 2.68 and significant reductions were observed for PACT (group 4) when compared to the other groups (1, 2, and 3) for total streptococci and mutans streptococci. Concluding, PACT was effective in killing oral microorganisms present in in vivo carious dentin lesions and may be a promising technique for eliminating bacteria from dentin before restoration.

  16. METHOD DETECTION LIMITS AND NON-DETECTS IN THE WORLD OF MICROBIOLOGY

    EPA Science Inventory

    Examining indoor air for microorganisms is generally performed by sampling for viable microbes, growing them on sterile media, and counting the colony forming units. A negative result does not indicate that the source of the sample was free of fungi or bacteria, only that if pre...

  17. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  18. Initial oral biofilm formation on titanium implants with different surface treatments: An in vivo study.

    PubMed

    Ferreira Ribeiro, Cyntia; Cogo-Müller, Karina; Franco, Gilson Cesar; Silva-Concílio, Laís Regiane; Sampaio Campos, Márcia; de Mello Rode, Sigmar; Claro Neves, Ana Christina

    2016-09-01

    The aim of this study was to examine in vivo the initial bacterial adhesion on titanium implants with different surface treatments. Ten subjects wore oral splints containing machined pure titanium disks (Ti-M), acid-etched titanium (Ti-AE) and anodized and laser irradiated disks (Ti-AL) for 24h. After this period, disks were removed from the splints and adherent bacteria were quantified by an enzymatic assay to assess total viable bacteria and by Real Time PCR to evaluate total bacteria and Streptococcus oralis levels. Additionally, the initial adherent microorganisms were visualized by scanning electron microscopy (SEM). Titanium surface morphology was verified using SEM, and roughness was evaluated by profilometer analysis. Regarding titanium surface roughness, Ti-AL (1.423±0.397) showed significantly higher Ra values than did Ti-M (0.771±0.182) and Ti-AE (0.735±0.196) (p<0.05, ANOVA - Tahame). Ti-AE and Ti-AL presented roughened micro-structure surfaces characterized by open pores, whereas Ti-M showed long grooves alternating with planed areas. Comparing the Ti-M, Ti-AE and Ti-AL groups for viable bacteria (MTT assay), total bacteria and S. oralis quantification (qPCR), no significant differences were observed among these three groups (p>0.05, ANOVA - Tahame). SEM images showed similar bacterial adhesion on the three titanium surfaces, predominantly characterized by cocci and several bacilli, indicating an initial colonization of the oral biofilm. In conclusion, roughness and microtopography did not stimulate initial biofilm formation on titanium surfaces with different surface treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The role of viable airborne microorganisms deposition in the southeastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rahav, E.; Paytan, A.; Herut, B.

    2016-02-01

    Rahav Eyal1*, Paytan Adina2, Herut Barak1[1] Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel [2] Institute of Marine Science, University of California, Santa Cruz, CA, USA 95064. * Presenting author A high diversity of bacteria, fungi and virus are carried by atmospheric dust and deposit into the ocean. The oligotrophic southeastern Mediterranean Sea (SEMS) is known to receive relatively high amounts of atmospheric dust, thereby potentially be impacted by transport of air-borne microorganisms of diverse biogeographic origin. In this study, we characterized the genetic fingerprinting of microorganisms attached to dust in representative samples collected between 2006-2012 during storm events in the SEMS. Statistical analysis showed that dust of common origin was clustered together based on its genetic signature. Thus, microorganisms picked up in diverse geographical areas can interact differently with ambient populations. Further, microcosm dust addition experiments with surface SEMS filtered (0.2 µm) and killed (autoclaved) seawater showed that airborne microorganisms originated in dust collected in the SEMS significantly enhanced system's bacterial productivity, introduced new species and altered the abundance and activity of ambient surface microbial populations. Our results demonstrate that dust-borne microorganisms may play a significant role in the SEMS ecology.

  20. Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida.

    PubMed

    Boeris, Paola Sabrina; Agustín, María Del Rosario; Acevedo, Diego Fernando; Lucchesi, Gloria Inés

    2016-10-20

    Living and non-living biomass of Pseudomonas putida A (ATCC 12633) was used as biosorbent for the removing of Al(3+) from aqueous solutions. The process was stable with time, efficient at pH 4.3 and between 15°C and 42°C. Two isotherms models were applied to describe the interaction between the biosorbent and Al(3+). Non-living biomass of P. putida A (ATCC 12633) was found to be the most efficient at adsorbing Al(3+) with a maximum sorption capacity of 0.55mg Al(3+)/gr adsorbent and with 36×10(5) binding sites of Al(3+)/microorganisms. Infrared spectroscopy analysis shows that the biosorbent present some vibrational band of functional groups that change in presence of Al(3+): hydroxyl, carboxyl and phosphate. Considering that Al(3+) binds to the phosphate group of phosphatidylcholine, non-viable biomass of P. putida PB01 (mutant lacking phosphatidylcholine) was used. Aluminum adsorption of the parental strain was 30 times higher than values registered in P. putida PB01 (36×10(5) sites/microorganism vs 1.2×10(5) sites/microorganism, respectively). This result evidenced that the absence of phosphatidylcholine significantly affected the availability of the binding sites and consequently the efficiency of the biomass to adsorb Al(3+). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Anaerobic psychrophiles from Alaska, Antarctica, and Patagonia: implications to possible life on Mars and Europa

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph D.

    2002-02-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 degree(s)C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep-sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.

  2. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph

    2002-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep-sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.

  3. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph; Six, N. Frank (Technical Monitor)

    2001-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryo-preserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 T. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.

  4. Capability of the two microorganisms Bifidobacterium breve B632 and Bifidobacterium breve BR03 to colonize the intestinal microbiota of children.

    PubMed

    Mogna, Luca; Del Piano, Mario; Mogna, Giovanni

    2014-01-01

    The total number of bacteria present in the gut microbiota of a newborn is consistently lower than the average found in adults, with the extent of this difference being directly related to body weight and age. It could be assumed that a lower number of viable probiotic cells is necessary to achieve significant gut colonization in infants and children. This study assessed the capability of Bifidobacterium breve B632 (DSM 24706) and Bifidobacterium breve BR03 (DSM 16604), 2 strains able to significantly inhibit some gram-negative bacteria in vitro, to integrate into the intestinal microbiota of children. Ten healthy children aged an average of 5.7±2.6 were given an oily suspension containing B. breve B632 and B. breve BR03 for 21 consecutive days. The daily dose was 100 million live cells of each strain. Fecal specimens were collected and analyzed at the beginning (d0) and at the end of the study (d21). Total fecal bifidobacteria and coliforms have been quantified by microbiological plate counts. A significant increase in total fecal bifidobacteria (from 8.99 to 9.47 log10 CFU/g, P=0.042) and a parallel decrease in total coliforms (from 8.60 to 7.93 log10 CFU/g, P=0.048) was recorded after 21 days of supplementation. An oily suspension has proved an effective way of providing probiotics to children. A lower viable cells concentration was sufficient to mediate this effect in the light of the fact that the intestinal microbiota of children harbors a considerably smaller amount of total bacteria compared with adults. In addition to gut colonization in healthy children, B. breve B632 and B. breve BR03 were able to decrease total fecal coliforms, therefore supporting their potential specific use in colicky infants.

  5. [Microorganisms surviving in drinking water systems and related problems].

    PubMed

    Aulicino, F A; Pastoni, F

    2004-01-01

    Drinking water in distribution systems may show abnormal values of some parameters, such as turbidity, and may support particular phenomena, such as bacterial regrowth or presence of Viable Not Culturable (VNC) bacteria. Turbidity can provide shelter for opportunistic microorganisms and pathogens. The Milwaukee outbreak (400,000 people) is one example of waterborne disease caused by the presence of pathogens (Cryptosporidium) in drinking water characterized by high and intermittent levels of turbidity. Bacterial regrowth in drinking water distribution systems may cause high increments of microorganisms such as heterotrophic bacteria, coliforms and pathogens. Microorganisms isolated from biofilm including Pseudomonas, Aeromonas, Legionella may have a significant health hazard especially in hospital areas. The presence of VNC bacteria in drinking water may represent a problem for their discussed role in infectious diseases, but also for the possibility of a considerable underestimation of true microbial concentrations in drinking waters. To study this kind of problems is necessary to apply suitable methods for drinking water analyses.

  6. An Attempt to Sample Upper Atmospheric Bacteria.

    NASA Astrophysics Data System (ADS)

    Canales, D. R. J.; Edgar, B.; Lefer, B. L.; Dunbar, B.; Gamblin, R.; Ehteshami, A.; Nowling, M.; Ahmad, H.; Bias, C.; Pena, M.

    2015-12-01

    Attempts have been made over the last decade to find the density and diversity of living microorganisms in the stratosphere using both air planes and zero pressure balloons. Most of the published attempts to survey stratospheric microorganisms by the scientific community have involved heavy devices that could not be used on ultralight weight balloons, making this research expensive and thereby reducing the opportunities for sampling. In this project, we attempted to find how high a light weight balloon could collect microorganisms, and to bridge scientific study with hobbyist feasibility at lower cost. Our approach was to use hobbyist level items that lower the weight so that lighter weather balloons could be used. This approach will allow more sampling possibilities while also lowering cost of study. We have conducted two successful test flights. While there were no successful samples from the upper atmosphere, the fact that the system can capture surface organisms with the fact that sensors had viable data shows that anyone with interest can help find and study atmospheric microorganisms.

  7. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review.

    PubMed

    Suriyamongkol, Pornpa; Weselake, Randall; Narine, Suresh; Moloney, Maurice; Shah, Saleh

    2007-01-01

    The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.

  8. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... authentic strain of Bacillus thuringiensis Berliner conforming to the morphological and biochemical... million spores into each of five laboratory test mice weighing 17 grams to 23 grams. Such test shall show no evidence of infection or injury in the test animals when observed for 7 days following injection...

  9. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... authentic strain of Bacillus thuringiensis Berliner conforming to the morphological and biochemical... million spores into each of five laboratory test mice weighing 17 grams to 23 grams. Such test shall show no evidence of infection or injury in the test animals when observed for 7 days following injection...

  10. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authentic strain of Bacillus thuringiensis Berliner conforming to the morphological and biochemical... million spores into each of five laboratory test mice weighing 17 grams to 23 grams. Such test shall show no evidence of infection or injury in the test animals when observed for 7 days following injection...

  11. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... authentic strain of Bacillus thuringiensis Berliner conforming to the morphological and biochemical... million spores into each of five laboratory test mice weighing 17 grams to 23 grams. Such test shall show no evidence of infection or injury in the test animals when observed for 7 days following injection...

  12. Semiquantitative determination of mesophilic, aerobic microorganisms in cocoa products using the Soleris NF-TVC method.

    PubMed

    Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer

    2014-01-01

    The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods.

  13. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including the concentration and the characteristics of the infectious agent. Thus, a thorough knowledge of the microorganisms aboard spacecraft is essential in mitigating infectious disease risk to the crew. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The translation of 16S ribosomal DNA sequencing for the identification of bacteria from the SWAB experiment to nominal operations has increased bacterial speciation of environmental isolates from previous flights three fold compared to previous conventional methodology. The incorporation of molecular-based DNA fingerprinting using repetitive sequence-based polymerase chain reaction (rep-PCR) into the capabilities of the laboratory has provided a methodology to track microorganisms between crewmembers and their environment. Both 16S ribosomal DNA identification and bacterial fingerprinting have improved NASA s capability to better understand spacecraft environments and determine the source of contamination events. Preflight sampling has been completed for air, surface, and water samples. In-flight sample collection has been completed for a total of 8 air and surface sample collection sessions. In-flight hardware has performed well and the surface sampling device received positive feedback from the crew for its ease of use. While processing and analysis continue for these samples, early results have begun to provide information on the spacecraft environment. Using a method called Denaturing Gradient Gel Electrophoresis (DGGE), several air and samples were evaluated to determine the types of organisms that were present. Using only molecular techniques, DGGE does not depend on any microbial growth on culture media, allowing a more comprehensive assessment of the spacecraft interior. Preliminary results have identified several microorganisms that would not have been isolated using current technology, though none of these organisms would be considered medically significant. Interestingly, the isolation of Gram negative organisms is greater using DGGE than conventional media based isolation. The cause of this finding is unclear, though it may be the result of the technique s ability to isolate both viable and non-viable bacteria. The next phase of the SWAB sample analysis is the use of quantitative polymerase chain reaction (QPCR) to look for specific medically significant organisms. While not as broad as DGGE, QPCR is much more sensitive and may reveal findings that were not seen during the initial evaluation. Together, this information will lead toward an accurate microbial risk assessment to help set flight requirements to protect the safety, health, and performance of the crew.

  14. Rapid System to Quantitatively Characterize the Airborne Microbial Community

    NASA Technical Reports Server (NTRS)

    Macnaughton, Sarah J.

    1998-01-01

    Bioaerosols have been linked to a wide range of different allergies and respiratory illnesses. Currently, microorganism culture is the most commonly used method for exposure assessment. Such culture techniques, however, generally fail to detect between 90-99% of the actual viable biomass. Consequently, an unbiased technique for detecting airborne microorganisms is essential. In this Phase II proposal, a portable air sampling device his been developed for the collection of airborne microbial biomass from indoor (and outdoor) environments. Methods were evaluated for extracting and identifying lipids that provide information on indoor air microbial biomass, and automation of these procedures was investigated. Also, techniques to automate the extraction of DNA were explored.

  15. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: a review.

    PubMed

    Hernández-Macedo, Maria Lucila; Barancelli, Giovana Verginia; Contreras-Castillo, Carmen Josefina

    2011-01-01

    Gas production from microbial deterioration in vacuum-packs of chilled meat leads to pack distension, which is commonly referred as blown pack. This phenomenon is attributed to some psychrophilic and psychrotrophic Clostridium species, as well as Enterobacteria. The ability of these microorganisms to grow at refrigeration temperatures makes the control by the meat industry a challenge. This type of deterioration has been reported in many countries including some plants in the Midwestern and Southeastern regions of Brazil. In addition to causing economic losses, spoilage negatively impacts the commercial product brand, thereby impairing the meat industry. In the case of strict anaerobes species they are difficult to grow and isolate using culture methods in conventional microbiology laboratories. Furthermore, conventional culture methods are sometimes not capable of distinguishing species or genera. DNA-based molecular methods are alternative strategies for detecting viable and non-cultivable microorganisms and strict anaerobic microorganisms that are difficult to cultivate. Here, we review the microorganisms and mechanisms involved in the deterioration of vacuum-packaged chilled meat and address the use of molecular methods for detecting specific strict anaerobic microorganisms and microbial communities in meat samples.

  16. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    PubMed

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  17. Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract.

    PubMed

    Adouard, Nadège; Magne, Laurent; Cattenoz, Thomas; Guillemin, Hervé; Foligné, Benoît; Picque, Daniel; Bonnarme, Pascal

    2016-02-01

    A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than <1 log CFU mL(-1)) and there were no significant differences between lab cultures and cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability. Copyright © 2015. Published by Elsevier Ltd.

  18. EXAMINATION OF THE PROTEIN PROFILE OF HELICOBACTER PYLORI UNDER DIFFERENT GROWTH CONDITIONS USING MATRIX-ASSISTED LASER DESORPTION MASS SPECTROMETRY

    EPA Science Inventory

    US EPA currently has H. pylori on its Contaminant Candidate List 2 (CCL 2), methods are needed to detect the occurrence of viable H. pylori in drinking water. H. pyloi is an interesting microorganism because it can change from a cultural and metabolically active state with a heli...

  19. 40 CFR 180.1076 - Viable spores of the microorganism Bacillus popilliae; exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... popilliae conforming to the morphological and biochemical characteristics of Bacillus popilliae as described... million spores into each of five laboratory test mice weighing 17 grams to 23 grams. Such test shall show no evidence of infection of injury in the test animals when observed for 7 days following injection...

  20. 40 CFR 180.1076 - Viable spores of the microorganism Bacillus popilliae; exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... popilliae conforming to the morphological and biochemical characteristics of Bacillus popilliae as described... million spores into each of five laboratory test mice weighing 17 grams to 23 grams. Such test shall show no evidence of infection of injury in the test animals when observed for 7 days following injection...

  1. 40 CFR 180.1076 - Viable spores of the microorganism Bacillus popilliae; exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... popilliae conforming to the morphological and biochemical characteristics of Bacillus popilliae as described... million spores into each of five laboratory test mice weighing 17 grams to 23 grams. Such test shall show no evidence of infection of injury in the test animals when observed for 7 days following injection...

  2. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  3. Astrophysical and biological constraints on radiopanspermia.

    PubMed

    Secker, J; Wesson, P S; Lepock, J R

    1996-08-01

    We have carried out a series of calculations involving bacteria and viruses embedded in dust grains, which are ejected from our solar system by radiation pressure and travel through space to other star systems. Under many conditions this type of panspermia is impractical, primarily because the ultraviolet (UV) radiation of the present Sun inactivates the micro-organisms. However, if the organisms are shielded by an absorbing material like carbon and if ejection takes place in the red-giant phase of a one solar mass star like our Sun, there is a significant probability that the micro-organisms can reach another star system alive (i.e. with only sub-lethal damage from UV and ionizing radiation). In addition to panspermia with viable micro-organisms, it is possible to seed the Galaxy with inactivated ones whose DNA and RNA fragments may provide the initial information necessary to start biological evolution in favourable environments.

  4. Proving the antimicrobial spectrum of an amphoteric surfactant-sol-gel coating: a food-borne pathogen study.

    PubMed

    Copello, G J; Teves, S; Degrossi, J; D'Aquino, M; Desimone, M F; Díaz, L E

    2008-09-01

    An antimicrobial coating was evaluated in this work for its antimicrobial efficacy against common food-borne pathogens. Dodecyl-di(aminoethyl)-glycine, an organic disinfectant, was immobilized in a silicon oxide matrix to generate thin films over surfaces by means of the sol-gel process. Tetraethoxysilane was used as the polymeric precursor. No alteration of optical transparency on the covered surfaces was observed. Topographic images obtained with atomic force microscopy showed a homogeneous film with no additional roughness added by the polymer to the surface. The attenuated total reflectance-Fourier transform infrared spectral data showed the presence of dodecyl-di(aminoethyl)-glycine in the silicon oxide network after a normal cleaning procedure. The antimicrobial efficacy test was performed by exposing coated slides to suspensions of common food-borne pathogens: Escherichia coli, Staphyloccocus aureus, E. coli O157:H7, Salmonella typhi, S. cholerasuiss, Listeria innocua and L. monocytogenes. The coating activity was not only bacteriostatic but also bactericidal. The percent reduction of viable microorganism exposure over 24 h to the coated surface ranged between 99.5%, for the more resistant gram-positive bacteria, and over 99.999%, for most gram-negative bacteria. The silicon matrix itself did not account for any reduction of viable microbial, even more an increase was observed.

  5. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    PubMed

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  6. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection.

    PubMed

    Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz

    2017-10-23

    New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.

    1996-01-01

    Field and laboratory evidence shows that deeply buried (90-888 m) fine-grained sediments of the Atlantic Coastal Plain contain viable acetogenic microorganisms, and that these microorganisms actively produce organic acids. Concentrations of formate, acetate, and propionate in pore waters extracted from fine-grained sediments ranged from 50 ??M to 5 mM and were much higher than in adjacent pore waters associated with sandy sediments (<2 ??M). Laboratory studies showed that asceptically cored fine-grained sediments incubated under a H2 atmosphere produced formate and acetate, and that H14CO-3 was converted to 14C-acetate and 14C-formate over time. An enrichment culture of these acetogenic microorganisms was recovered from one long-term incubation that showed the presence of several morphologically distinct gram-positive, rod-shaped bacteria. These microorganisms were capable of growth under autotrophic (H2 + CO2), heterotrophic (syringate), and mixotrophic (H2 + CO2 + syringate) conditions. These results suggest that microbial acetogenesis, rather than abiotic processes, is the most important organic acid-producing mechanism during low-temperature (???30 ??C) diagenesis of Atlantic Coastal Plain sediments.

  8. Investigation of Electrobiological Properties of Bioaerosols

    NASA Astrophysics Data System (ADS)

    Mainelis, G.; Yao, M.; An, H. R.

    2004-05-01

    Exposure to bioaerosols, especially to pathogenic or allergenic microorganisms, may cause a wide range of respiratory and other health disorders in occupational and general populations. One of bioaerosol characteristics - electric charge - can greatly influence their deposition in sampling lines and collection devices. The magnitude of electric charge carried by inhaled particles can have a significant effect on their deposition in the lung. In addition, electric charge may affect role of bioaerosols as ice and cloud condensation nuclei; charge (or electrical mobility) can control bioaerosol movement in electrical fields, such as created by power lines. Electrical charge is also important for the development of bioaerosol samplers that utilize electrostatics for particle collection - this technique has been shown to be more "gentle" collection method than traditionally used impactors and impingers. Our previous studies have shown that airborne environmental bacteria, such as Pseudomonas fluorescens and B. subtilis var. niger, have a net negative charge, with individual cells carrying as many as 10,000 elementary charge units, which sharply contrasted with low electrical charges carried by non-biological test particles. We have also found that magnitude and polarity of electrical charge can significantly affect viability of sensitive bacteria, such as P. fluorescens. In our continuing exploration of electrobiological properties of bioaerosols, we investigated application of electrostatic collection method for concurrent determination of total and viable bioaerosols, and also analyzed the effect of electrical fields on microbial viability. In our new bioaerosol collector, the biological particles are drawn into the sampler's electrical field and are concurrently deposited on an agar plate for determining viable microorganisms, and into a ELISA plate for determining total collected microorganisms. Experiments with B. subtilis var. niger and P. fluorescens vegetative cells have shown that on average 80 percent of airborne bacteria entering the sampler were removed from the air onto the plates when the sampler operated at 8 L/min and used collection voltage of -1,500V. From 15 to 25 percent of all bacteria entering the sampler were enumerated by the culture technique. Use of electrostatic analysis techniques may require application of strong electrical fields which could be damaging to biological particles. In our experiments, the airborne P. fluorescens bacteria were exposed to electric fields of 10kV/cm for 30 seconds, which did not result in viability reduction. In contrast, more than 90 percent of the P. fluorescens cells have been killed when the microorganisms were first deposited on filters and then exposed to positive electrical field of 15 kV/cm for at least 15 minutes. Electrical fields of 5 and 10 kV/cm also achieved similar effect when bacteria were exposed for 120 min. The exposure of bacteria to negative electrical fields resulted in even higher rates of inactivation. The B. subtilis var. niger bacteria proved to be hardier and 10 percent viability reduction was achieved with the use of 15kV/min for 2 hours. The obtained results demonstrate the importance of electrical charges and fields in behavior, collection and control of bioaerosols. The field studies will have to be performed to confirm laboratory findings.

  9. Bacterial Viability within Dental Calculus: An Untrodden, Inquisitive Clinico-Patho- Microbiological Research.

    PubMed

    Gupta, Swati; Jain, P K; Kumra, Madhumani; Rehani, Shweta; Mathias, Yulia; Gupta, Ramakant; Mehendiratta, Monica; Chander, Anil

    2016-07-01

    Chronic inflammatory periodontal diseases i.e. gingivitis and periodontitis are one of the most common afflictions faced by human beings. Dental plaque, which is a pool of pathogenic microorganisms, remains to be current mainstay in etiopathogenesis. Dental calculus, which is a mineralized product of this plaque remains ignored and is considered merely as an ash heap of minor significance. However, the intriguing array in disease etiopathogenesis bulldozed researchers to suspect the role of calculus in disease chrysalis but still the viability of bacteria inside calculus and thus its pathogenicity remains an intricacy; the answer to which lies in the Pandora's Box. The present study was undertaken to investigate the viability of bacteria within dental calculus along with their identification. Also, to classify dental calculus on the basis of mineralization and to observe the variation of viable microflora found in dental calculus with the extent of mineralization and disease severity. A total of 60 samples were obtained, by harvesting two samples of supragingival calculus from each patient having chronic inflammatory periodontal disease. These samples were divided into two groups (Group A and Group B). Samples of Group A were kept non-irradiated and samples of Group B were exposed to UV radiation. The samples were categorized into less, moderately and highly mineralized according to the force required for crushing them. All the crushed calculus samples were then divided into three parts. These were used for dark-field microscopy, gram staining and bacterial cultures. Bacterial identification of the cultures obtained was also carried out by performing various biochemical assays. The present study revealed the presence of motile spirochaetes within the samples under dark-field microscope. Gram staining revealed presence of numerous gram positive cocci and gram negative bacilli. Bacterial cultures showed growth of variety of aerobic and capnophilic microorganisms. The present study concludes the presence of viable aerobic and capnophilic bacteria inside dental calculus which may reside within the lacunae and channels in the calculus.

  10. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the PCR reaction volumes containing template DNA of ice nucleation active microorganisms from atmospheric samples in thousands of identical droplets. Each droplet encapsulates the reagents necessary for DNA amplification. With template DNA concentrations low enough, the droplets will statistically contain either no template molecules or one molecule. A molecule of template DNA corresponds to exactly one cell of an ice nucleation active microorganism in the original sample provided the genetic marker on the template is present in a single copy. Successful amplification in the presence of template DNA is coupled to a measurable fluorescence signal. The original template DNA concentration is automatically derived from the fraction of fluorescence positive droplets to total droplet number. This far, molecular probes against single-copy genetic markers for ice nucleation active fungi Mortierella alpina, Acremonium implicatum, Isaria farinosa and the ice nucleation active bacterium Pseudomonas syringae have been successfully designed and tested by our group.

  11. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows.

    PubMed

    Yang, S L; Bu, D P; Wang, J Q; Hu, Z Y; Li, D; Wei, H Y; Zhou, L Y; Loor, J J

    2009-11-01

    The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P < 0.05) with oil supplementation compared with C. Concentration of ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P < 0.05) due to oil compared with C. Compared with C, oil supplementation resulted in lower (P < 0.05) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 104 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (P < 0.05). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus flavefaciens in ruminal fluid was substantially lower (P < 0.05) when L was included. Compared to C, the amount of Ruminococcus albus decreased by an average of 40% regardless of oil level or type. Overall, the results indicate that some ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.

  12. Hydrogel-forming Microneedle Arrays Exhibit Antimicrobial Properties: Potential for Enhanced Patient Safety

    PubMed Central

    Donnelly, Ryan F.; Singh, Thakur Raghu Raj; Alkilani, Ahlam Zaid; McCrudden, Maelíosa T.C.; O’Mahony, Conor; Armstrong, Keith; McLoone, Nabla; Kole, Prashant; Woolfson, A. David

    2014-01-01

    We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture was greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of C. albicans and S. epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard. PMID:23644043

  13. Detection of soil microorganism in situ by combined gas chromatography mass spectrometry

    NASA Technical Reports Server (NTRS)

    Alexander, M.; Duxbury, J. M.; Francis, A. J.; Adamson, J.

    1972-01-01

    Experimental tests were made to determine whether analysis of volatile metabolic products, formed in situ, is a viable procedure for an extraterrestrial life detection system. Laboratory experiments, carried out under anaerobic conditions with addition of carbon source, extended to include a variety of soils and additional substrates. In situ experiments were conducted without amendment using a vacuum sampling system.

  14. Proteins for breaking barriers in lignocellulosic bioethanol production.

    PubMed

    Ulaganathan, Kandasamy; Goud, Burragoni S; Reddy, Mettu M; Kumar, Vanaparthi P; Balsingh, Jatoth; Radhakrishna, Surabhi

    2015-01-01

    Reduction in fossil fuel consumption by using alternate sources of energy is a major challenge facing mankind in the coming decades. Bioethanol production using lignocellulosic biomass is the most viable option for addressing this challenge. Industrial bioconversion of lignocellulosic biomass, though possible now, is not economically viable due to presence of barriers that escalate the cost of production. As cellulose and hemicellulose are the major constituents of terrestrial biomass, which is available in massive quantities, hydrolysis of cellulose and hemicellulose by the microorganisms are the most prominent biochemical processes happening in the earth. Microorganisms possess different categories of proteins associated with different stages of bioethanol production and a number of them are already found and characterized. Many more of these proteins need to be identified which suit the specificities needed for the bioethanol production process. Discovery of proteins with novel specificities and application of genetic engineering technologies to harvest the synergies existing between them with the aim to develop consolidated bioprocess is the major direction of research in the future. In this review, we discuss the different categories of proteins used for bioethanol production in the context of breaking the barriers existing for the economically feasible lignocellulosic bioethanol production.

  15. PMA-LAMP for rapid detection of Escherichia coli and shiga toxins from viable but non-culturable state.

    PubMed

    Yan, Muxia; Xu, Ling; Jiang, Hua; Zhou, Zhenwen; Zhou, Shishui; Zhang, Li

    2017-04-01

    In exposure to outer pressure, microorganisms are capable of entry into the Viable But Non-Culturable (VBNC) state, and thus survive under various elimination processing. The survival microorganisms may yield negative results on culturing, and cause false negative for this golden standard methodology. In this study, a novel PMA-LAMP assay on the detection of Enterohemorrhage E. coli and shiga toxins has been developed and evaluated, with further application on a number of food borne E. coli strains. LAMP primers were designed on the target of rfbe for Enterohemorrhage E. coli and stx1with stx2 for shiga toxins. Via specific penetration through the damaged cell membrane of dead cells and intercalating into DNA, PMA could prevent DNA amplification of dead bacteria from LAMP, which enabled the differentiation of bacteria between VBNC state and dead state. The established PMA-LAMP showed significant advantage in rapidity, sensitivity and specificity, compared with regular PCR assay. The applicability had also been verified, demonstrating the PMA-LAMP was capable of detection on Enterohemorrhage E. coli and shiga toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Importance of airborne algae and protozoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlichting, H.E. Jr.

    1969-12-01

    Membrane filters, bubblers, and exposed culture media were used to sample viable algae and protozoa from the atmosphere in Michigan, Texas, and North Carolina from 1956 to 1967. Aerial algae and protozoa were most abundant and diverse in North Central Texas, 0-8 cells/ft/sup 3/, less abundant and diverse in Michigan, 0-1.8 cells/ft/sup 3/, and least abundant in Coastal North Carolina, less than 0.41 cells/ft/sup 3/. Other significant research from 1910 to 1968 is reviewed. A total of 187 taxa of algae and protozoa has been sampled and cultured through this period. The importance of airborne algae and protozoa to manmore » is shown as related to allergies, radioactivity, clogging of air filters, an aid in determining the origin of hurricanes and other storms and adding to the understanding of the dispersal of these microorganisms throughout the world. 15 references, 2 tables.« less

  17. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    PubMed Central

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  18. Exposure to airborne microorganisms, dust and endotoxin during processing of valerian roots on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during various stages of valerian (Valeriana officinalis) roots processing by herb farmers and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 15 farms owned by valerian cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the air showed a marked variability and were within a range of 0.95-7,966.6 x 10(3) cfu/m (3). Though median was relatively low (10.75 x 10(3) cfu/m (3)), on 4 farms the concentrations exceeded the level of 10(5) cfu/m (3) and on 1 farm the level of 10(6) cfu/m (3). During the processing of valerian roots, distinct changes could be observed in the composition of airborne microflora. In the first stages of processing, the freshly dug and washed roots until shaking in the drying room, the most numerous were Gram-negative bacteria of the family Pseudomonadaceae (mostly Stenotrophomonas maltophilia, Pseudomonas chlororaphis and Pseudomonas fluorescens). After drying, the dominant organisms were thermo-resistant endospore-forming bacilli (Bacillus spp.) and fungi, among which prevailed Aspergillus fumigatus. Altogether, 29 species or genera of bacteria and 19 species or genera of fungi were identified in the farm air during valerian processing, of these, 10 and 12 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of airborne dust and endotoxin on the examined farms were very large and ranged from 10.0-776.7 mg/m (3), and from 0.15-24,448.2 microg/m (3), respectively (medians 198.3 mg/m (3) and 40.48 microg/m (3)). In conclusion, farmers cultivating valerian could be exposed during processing of valerian roots to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work-related respiratory disease.

  19. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities.

    PubMed

    Checinska, Aleksandra; Probst, Alexander J; Vaishampayan, Parag; White, James R; Kumar, Deepika; Stepanov, Victor G; Fox, George E; Nilsson, Henrik R; Pierson, Duane L; Perry, Jay; Venkateswaran, Kasthuri

    2015-10-27

    The International Space Station (ISS) is a unique built environment due to the effects of microgravity, space radiation, elevated carbon dioxide levels, and especially continuous human habitation. Understanding the composition of the ISS microbial community will facilitate further development of safety and maintenance practices. The primary goal of this study was to characterize the viable microbiome of the ISS-built environment. A second objective was to determine if the built environments of Earth-based cleanrooms associated with space exploration are an appropriate model of the ISS environment. Samples collected from the ISS and two cleanrooms at the Jet Propulsion Laboratory (JPL, Pasadena, CA) were analyzed by traditional cultivation, adenosine triphosphate (ATP), and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assays to estimate viable microbial populations. The 16S rRNA gene Illumina iTag sequencing was used to elucidate microbial diversity and explore differences between ISS and cleanroom microbiomes. Statistical analyses showed that members of the phyla Actinobacteria, Firmicutes, and Proteobacteria were dominant in the samples examined but varied in abundance. Actinobacteria were predominant in the ISS samples whereas Proteobacteria, least abundant in the ISS, dominated in the cleanroom samples. The viable bacterial populations seen by PMA treatment were greatly decreased. However, the treatment did not appear to have an effect on the bacterial composition (diversity) associated with each sampling site. The results of this study provide strong evidence that specific human skin-associated microorganisms make a substantial contribution to the ISS microbiome, which is not the case in Earth-based cleanrooms. For example, Corynebacterium and Propionibacterium (Actinobacteria) but not Staphylococcus (Firmicutes) species are dominant on the ISS in terms of viable and total bacterial community composition. The results obtained will facilitate future studies to determine how stable the ISS environment is over time. The present results also demonstrate the value of measuring viable cell diversity and population size at any sampling site. This information can be used to identify sites that can be targeted for more stringent cleaning. Finally, the results will allow comparisons with other built sites and facilitate future improvements on the ISS that will ensure astronaut health.

  20. Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    PubMed Central

    Arioli, Stefania; Ragg, Enzio; Scaglioni, Leonardo; Fessas, Dimitrios; Signorelli, Marco; Karp, Matti; Daffonchio, Daniele; De Noni, Ivano; Mulas, Laura; Oggioni, Marco; Guglielmetti, Simone; Mora, Diego

    2010-01-01

    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms. PMID:21152088

  1. Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains.

    PubMed

    Michelin, Michele; Polizeli, Maria de Lourdes T M; Ruzene, Denise S; Silva, Daniel P; Ruiz, Héctor A; Vicente, António A; Jorge, João A; Terenzi, Héctor F; Teixeira, José A

    2012-09-01

    Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and β-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 °C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of β-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of β-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of β-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of β-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.

  2. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  3. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOEpatents

    Turick, Charles E.

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  4. Growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill site in Ibeno, Nigeria.

    PubMed

    Etuk, C U; John, R C; Ekong, U E; Akpan, M M

    2012-10-01

    The growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill sites at Inua-eyet Ikot in Ibeno, Nigeria were examined using standard microbiological methods. The results of the analysis revealed that the viable plate count of microorganisms in the polluted soil ranged from 2.2 ± 0.04 × 10(3) to 3.4 ± 0.14 × 10(6) cfu/g for bacteria and 1.4 ± 0.5 × 10(2) to 2.3 ± 0.4 × 10(4) cfu/g for fungi while count of biodegraders ranged from 1.2 ± 0.4 × 10(3) to 2.1 ± 0.8 × 10(5) cfu/g. A total of 11 microbial isolates comprising of Micrococcus, Klebsiella, Flavobacterium, Bacillus, Pseudomonas, Candida, Aspergillus, Cladosporium, Penicillium, Saccharomyces and Fusarium were characterized. The ability of the selected isolates to utilize the pollutant (aviation fuel) as their sole source of carbon and energy was examined and noticed to vary in growth profiles between the isolates. The results of their degradability after 28 days of incubation shows that species of Cladosporium, Pseudomonas, Candida, Bacillus, Micrococcus and Penicillium were the most efficient Aviation fuel degraders with percentage weight loss of 86.2, 78.4, 78, 56, 53 and 50.6 respectively. Flavobacterium, Saccharomyces and Aspergillus exhibited moderate growth with percentage weight loss of 48, 45.8 and 43.4 respectively while Klebsiella and Fusarium species showed minimal growth with percentage weight loss of 20 and 18.5 respectively. The results imply that the most efficient biodegraders like Cladosporium, Pseudomonas, Candida, Bacillus and Microoccus could tolerate and remove aviation fuel from the environment.

  5. Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts.

    PubMed Central

    Payment, P; Franco, E

    1993-01-01

    To find the most suitable indicator of viral and parasitic contamination of drinking water, large-volume samples were collected and analyzed for the presence of pathogens (cultivable human enteric viruses, Giardia lamblia cysts, and Cryptosporidium oocysts) and potential indicators (somatic and male-specific coliphages, Clostridium perfringens). The samples were obtained from three water treatment plants by using conventional or better treatments (ozonation, biological filtration). All samples of river water contained the microorganisms sought, and only C. perfringens counts were correlated with human enteric viruses, cysts, or oocysts. For settled and filtered water samples, all indicators were statistically correlated with human enteric viruses but not with cysts or oocysts. By using multiple regression, the somatic coliphage counts were the only explanatory variable for the human enteric virus counts in settled water, while in filtered water samples it was C. perfringens counts. Finished water samples of 1,000 liters each were free of all microorganisms, except for a single sample that contained low levels of cysts and oocysts of undetermined viability. Three of nine finished water samples of 20,000 liters each revealed residual levels of somatic coliphages at 0.03, 0.10, and 0.26 per 100 liters. Measured virus removal was more than 4 to 5 log10, and cyst removal was more than 4 log10. Coliphage and C. perfringens counts suggested that the total removal and inactivation was more than 7 log10 viable microorganisms. C. perfringens counts appear to be the most suitable indicator for the inactivation and removal of viruses in drinking water treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8368831

  6. Quantitative comparison of the in situ microbial communities in different biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.C.; Ringelberg, D.B.; Palmer, R.J.

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedlymore » documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography/« less

  7. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.

    PubMed

    Mesa, M M; Macías, M; Cantero, D

    2002-01-01

    Microbial oxidation of ferrous iron may be a viable alternative method of producing ferric sulfate, which is a reagent used for removal of H(2)S from biogas. The paper introduces a kinetic study of the biological oxidation of ferrous iron by Thiobacillus ferrooxidans immobilized on biomass support particles (BSP) composed of polyurethane foam. On the basis of the data obtained, a mathematical model for the bioreactor was subsequently developed. In the model described here, the microorganisms adhere by reversible physical adsorption to the ferric precipitates that are formed on the BSP. The model can also be considered as an expression for the erosion of microorganisms immobilized due to the agitation of the medium by aeration.

  8. Microorganisms from Permafrost Viable and Detectable by 16SRNA Analysis: A Model for Mars

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; McDonald, G. D.; Andrews, M.; Bhartia, R.; Douglas, S.; Gilichinsky, D.

    1999-01-01

    Preliminary studies of Arctic and Antarctic permafrost have shown that this environment harbors microorganisms which can be isolated in pure culture, and that these organisms can survive for a long period of time (up to 20 Ma) in permafrost. It is believed that the permanent subzero temperatures in permafrost and ice environments are the main parameters ensuring the longevity of microbes. In this project we studied permafrost cores from different areas of the Siberian Arctic and Antarctic, with ages from several thousand years up to several millions years (Ma). In general, Antarctic permafrost has a higher sand content, while Siberian permafrost has a texture more characteristic of clay or normal soil. Additional information is contained in the original extended abstract.

  9. [The effect of dexamethoxin on the integrity of cytoplasmic membrane in gram-positive and gram-negative microorganisms].

    PubMed

    Shchetina, V N; Belanov, E F; Starobinets, Z G; Volianskiĭ, Iu L

    1990-01-01

    Decamethoxin is shown to be able to increase membrane permeability of Pseudomonas aeruginosa, Escherichia coli and Micrococcus lysodeikticus, that is confirmed by a loss of compounds with the absorption maximum at 260 nm by cells. Parallel with this the number of viable individuals has fallen and activity of dehydrogenases has been inhibited. The aspartate and alanine aminotransferase activity was not inhibited by decamethoxin and even increased. Decamethoxin lysed the protoplasts of the tested microorganisms. At high decamethoxin concentrations (over 500 micrograms/ml for P. aeruginosa and over 200 mu/ml--for E. coli) the outflow of components from the cells of gram-negative bacteria ceased, that may be associated with the coagulation changes in the cytoplasm. A loss of the low-molecular components by M. lysodeikticus cells and lysis of protoplasts proceeded less intensely than the same processes in the gram-negative microorganisms, that is explained by a less resistance of M. lysodeikticus to decamethoxin and earlier coagulation of the cytoplasm preventing lysis.

  10. Probiotic fermented sausage: viability of probiotic microorganisms and sensory characteristics.

    PubMed

    Rouhi, M; Sohrabvandi, S; Mortazavian, A M

    2013-01-01

    Probiotics are from functional foods that bring health benefits for humans. Nowadays, a major development in functional foods is related to food containing probiotic cultures, mainly lactic acid bacteria or bifidobacteria. Probiotics must be alive and ingested in sufficient amounts to exert the positive effects on the health and the well-being of the host. Therefore, viability of probiotic products (the minimum viable probiotic cells in each gram or milliliter of product till the time of consumption) is their most important characteristic. However, these organisms often show poor viability in fermented products due to their detrimental conditions. Today, the variety of fermented meat products available around the world is nearly equal to that of cheese. With meat products, raw fermented sausages could constitute an appropriate vehicle for such microorganisms into the human gastrointestinal tract. In present article, the viability of probiotic microorganisms in fermented sausage, the main factors affect their viability, and the sensorial characteristics of final product are discussed.

  11. An evaluation of microorganisms for unconventional food regeneration schemes in CELSS - Research recommendations

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Petersen, G. R.

    1982-01-01

    The benefits and deficiencies of various candidates for a controlled ecological life support system (CELSS) for manned spacecraft missions of at least 3-14 yr are discussed. Conventional plants are considered unacceptable due to their inefficient production of foodstuffs and overproduction of stems and leafy matter. The alternate concepts are algae and/or bacteria or chemical synthesis of food. Microorganisms are considered the most promising because of their direct use of CO2 and possible utilization of waste streams. Yeasts are cited as the most viable candidates, since a large data base and experience already exists in the commercial food industry. The addition of hydrogen bactria and solar-grown algae is recommended, together with genetic manipulation experiments to tailor the microorganisms to production of foodstuffs closer to the 70 percent carbohydrate, 20 percent protein, and 10 percent lipid optimal food currently accepted. The yeast strain, Hansenula polymorpha, has been successfully grown in methanol and encouraged to produce a 55 percent carbohydrate content.

  12. Extremophiles as sources of inorganic bio-nanoparticles.

    PubMed

    Beeler, Erik; Singh, Om V

    2016-09-01

    Industrial use of nanotechnology in daily life has produced an emphasis on the safe and efficient production of nanoparticles (NPs). Traditional chemical oxidation and reduction methods are seen as inefficient, environmentally unsound, and often dangerous to those exposed and involved in NP manufacturing. However, utilizing microorganisms for biosynthesis of NPs allows efficient green production of a range of inorganic NPs, while maintaining specific size, shape, stability, and dispersity. Microorganisms living under harsh environmental conditions, called "Extremophiles," are one group of microorganisms being utilized for this biosynthesis. Extremophiles' unique living conditions have endowed them with various processes that enable NP biosynthesis. This includes a range of extremophiles: thermophiles, acidophilus, halophiles, psychrophiles, anaerobes, and some others. Fungi, bacteria, yeasts, and archaea, i.e. Ureibacillus thermosphaericus, and Geobacillus stearothermophilus, among others, have been established for NP biosynthesis. This article highlights the extremophiles and methods found to be viable candidates for the production of varying types of NPs, as well as interpreting selective methods used by the organisms to synthesize NPs.

  13. Behavior of pollutant-degrading microorganisms in aquifers: Predictions for genetically engineered organisms

    USGS Publications Warehouse

    Krumme, M.L.; Smith, R.L.; Egestorff, J.; Thiem, S.M.; Tiedje, J.M.; Timmis, K.N.; Dwyer, D.F.

    1994-01-01

    Bioremediation via environmental introductions of degradative microorganisms requires that the microbes survive in substantial numbers and effect an increase in the rate and extent of pollutant removal. Combined field and microcosm studies were used to assess these abilities for laboratory-grown bacteria. Following introduction into a contaminated aquifer, viable cells of Pseudomonas sp. B13 were present in the contaminant plume for 447 days; die-off was rapid in pristine areas. In aquifer microcosms, survival of B13 and FR120, a genetically engineered derivative of B13 having enhanced catabolic capabilities for substituted aromatics, was comparable to B13 field results; both bacteria degraded target pollutants in microcosms made with aquifer samples from the aerobic zone of the pollutant plume. Results suggest that field studies with nonrecombinant microorganisms may be coupled to laboratory studies with derivative strains to estimate their bioremediative efficacy. Furthermore, laboratory strains of bacteria can survive for extended periods of time in nature and thus may have important bioremediative applications. ?? 1994 American Chemical Society.

  14. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  15. Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces

    PubMed Central

    Puleo, John R.; Favero, Martin S.; Petersen, Norman J.

    1967-01-01

    Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743

  16. Fast detection of Listeria monocytogenes through a nanohybrid quantum dot complex.

    PubMed

    Donoso, Wendy; Castro, Ricardo I; Guzmán, Luis; López-Cabaña, Zoraya; Nachtigall, Fabiane M; Santos, Leonardo S

    2017-09-01

    Listeria monocytogenes is a recognized foodborne pathogen that causes listeriosis in susceptible consumers. Currently, the detection systems for Listeria in food detect live and dead bacteria, being the viable microorganisms most relevant for their ability to cause sickness in the population at risk. For this reason, a new nanohybrid compound was developed for the optical detection of Listeria that was based on polyamidoamine dendrimers functionalized with an auxotrophic cofactor (lipoic acid), together with the coupling of fluorescent semiconductor crystals (quantum dots). The nanohybrid sensor has a detection limit for viable L. monocytogenes of 5.19 × 10 3 colony-forming units per milliliter under epifluorescence microscopy. It was specific when used among other pathogens commonly found in food.

  17. Optimization, validation, and application of a real-time PCR protocol for quantification of viable bacterial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli.

    PubMed

    van Frankenhuyzen, Jessica K; Trevors, Jack T; Flemming, Cecily A; Lee, Hung; Habash, Marc B

    2013-11-01

    Biosolids result from treatment of sewage sludge to meet jurisdictional standards, including pathogen reduction. Once government regulations are met, materials can be applied to agricultural lands. Culture-based methods are used to enumerate pathogen indicator microorganisms but may underestimate cell densities, which is partly due to bacteria existing in a viable but non-culturable physiological state. Viable indicators can also be quantified by realtime polymerase chain reaction (qPCR) used with propidium monoazide (PMA), a dye that inhibits amplification of DNA found extracellularly or in dead cells. The objectives of this study were to test an optimized PMA-qPCR method for viable pathogen detection in wastewater solids and to validate it by comparing results to data obtained by conventional plating. Reporter genes from genetically marked Pseudomonas sp. UG14Lr and Agrobacterium tumefaciens 542 cells were spiked into samples of primary sludge, and anaerobically digested and Lystek-treated biosolids as cell-free DNA, dead cells, viable cells, and mixtures of live and dead cells, followed by DNA extraction with and without PMA, and qPCR. The protocol was then used for Escherichia coli quantification in the three matrices, and results compared to plate counts. PMA-qPCR selectively detected viable cells, while inhibiting signals from cell-free DNA and DNA found in membrane-compromised cells. PMA-qPCR detected 0.5-1 log unit more viable E. coli cells in both primary solids and dewatered biosolids than plate counts. No viable E. coli was found in Lystek-treated biosolids. These data suggest PMA-qPCR may more accurately estimate pathogen cell numbers than traditional culture methods.

  18. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  19. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOEpatents

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  20. Cariogenicity induced by commercial carbonated beverages in an experimental biofilm-caries model

    PubMed Central

    Giacaman, Rodrigo A.; Pailahual, Vanesa; Díaz-Garrido, Natalia

    2018-01-01

    Objectives: Frequent consumption of sugars-containing carbonated beverages has been associated with caries, but the consequences on the dental biofilm remain unclear. The aim was to evaluate the effect of commercial carbonated beverages and their sugar-free version on enamel and dentine demineralization and on the cariogenic properties of Streptococcus mutans biofilms. Materials and Methods: Biofilms of S. mutans UA159 were grown on enamel and dentin slabs and exposed 3 times/day for 5 min, to a commercial cola or orange-flavored carbonated beverage or to their sugar-free version. Biofilms/slabs were recovered to assess biomass, viable microorganisms, protein content and polysaccharides. Demineralization was estimated by the variation of Knoop surface microhardness. Results: Exposures to the biofilm with sugars-containing carbonated beverages resulted in similar biomass, viable microorganisms, proteins, and polysaccharides than sucrose (P < 0.05). The sugar-free cola and orange-flavored drink showed lower effect on the biofilm, as compared with sucrose or their sugared version (P < 0.05). All of the products tested, included the sugar-free, showed higher demineralization than the negative control (P < 0.05). Conclusions: Sugars-containing carbonated beverages enhance cariogenic activity of S. mutans biofilms, comparable with sucrose. Sugar-free carbonated beverages also have a high demineralizing potential, without affecting biofilm properties. PMID:29657522

  1. Characterization of Vibrio fluvialis-Like Strains Implicated in Limp Lobster Disease

    PubMed Central

    Tall, B. D.; Fall, S.; Pereira, M. R.; Ramos-Valle, M.; Curtis, S. K.; Kothary, M. H.; Chu, D. M. T.; Monday, S. R.; Kornegay, L.; Donkar, T.; Prince, D.; Thunberg, R. L.; Shangraw, K. A.; Hanes, D. E.; Khambaty, F. M.; Lampel, K. A.; Bier, J. W.; Bayer, R. C.

    2003-01-01

    Studies were undertaken to characterize and determine the pathogenic mechanisms involved in a newly described systemic disease in Homarus americanus (American lobster) caused by a Vibrio fluvialis-like microorganism. Nineteen isolates were obtained from eight of nine lobsters sampled. Biochemically, the isolates resembled V. fluvialis, and the isolates grew optimally at 20°C; none could grow at temperatures above 23°C. The type strain (1AMA) displayed a thermal reduction time (D value) of 5.77 min at 37°C. All of the isolates required at least 1% NaCl for growth. Collectively, the data suggest that these isolates may embody a new biotype. Pulsed-field gel electrophoresis (PFGE) analysis of the isolates revealed five closely related subgroups. Some isolates produced a sheep hemagglutinin that was neither an outer membrane protein nor a metalloprotease. Several isolates possessed capsules. The isolates were highly susceptible to a variety of antibiotics tested. However, six isolates were resistant to erythromycin. Seventeen isolates harbored plasmids. Lobster challenge studies revealed that the 50% lethal dose of a plasmid-positive strain was 100-fold lower than that of a plasmid-negative strain, suggesting that the plasmid may enhance the pathogenicity of these microorganisms in lobsters. Microorganisms that were recovered from experimentally infected lobsters exhibited biochemical and PFGE profiles that were indistinguishable from those of the challenge strain. Tissue affinity studies demonstrated that the challenge microorganisms accumulated in heart and midgut tissues as well as in the hemolymph. Culture supernatants and polymyxin B lysates of the strains caused elongation of CHO cells in tissue culture, suggesting the presence of a hitherto unknown enterotoxin. Both plasmid-positive and plasmid-negative strains caused significant dose-related intestinal fluid accumulations in suckling mice. Absence of viable organisms in the intestinal contents of mice suggests that these microorganisms cause diarrhea in mice by intoxication rather than by an infectious process. Further, these results support the thermal reduction data at 37°C and suggest that the mechanism(s) that led to fluid accumulation in mice differs from the disease process observed in lobsters by requiring neither the persistence of viable microorganisms nor the presence of plasmids. In summary, results of lobster studies satisfy Koch's postulates at the organismal and molecular levels; the findings support the hypothesis that these V. fluvialis-like organisms were responsible for the originally described systemic disease, which is now called limp lobster disease. PMID:14660396

  2. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    PubMed Central

    Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306

  3. Spatiotemporal Dynamics of Total Viable Vibrio spp. in a NW Mediterranean Coastal Area.

    PubMed

    Girard, Léa; Peuchet, Sébastien; Servais, Pierre; Henry, Annabelle; Charni-Ben-Tabassi, Nadine; Baudart, Julia

    2017-09-27

    A cellular approach combining Direct Viable Counting and Fluorescent In Situ Hybridization using a one-step multiple-probe technique and Solid Phase Cytometry (DVC-FISH-SPC) was developed to monitor total viable vibrios and cover the detection of a large diversity of vibrios. FISH combined three probes in the same assay and targeted sequences located at different positions on the 16S rRNA of Vibrio and Aliivibrio members. We performed a 10-month in situ study to investigate the weekly dynamics of viable vibrios relative to culturable counts at two northwestern Mediterranean coastal sites, and identified the key physicochemical factors for their occurrence in water using a multivariate analysis. Total viable and culturable cell counts showed the same temporal pattern during the warmer season, whereas the ratios between both methods were inverted during the colder seasons (<15°C), indicating that some of the vibrio community had entered into a viable but non-culturable (VBNC) state. We confirmed that Seawater Surface Temperature explained 51-62% of the total variance in culturable counts, and also showed that the occurrence of viable vibrios is controlled by two variables, pheopigment (15%) and phosphate (12%) concentrations, suggesting that other unidentified factors play a role in maintaining viability.

  4. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro.

    PubMed

    Donnelly, Ryan F; Singh, Thakur Raghu Raj; Tunney, Michael M; Morrow, Desmond I J; McCarron, Paul A; O'Mahony, Conor; Woolfson, A David

    2009-11-01

    In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models. When employing Silescol membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol membranes in the corresponding experiments. Approximately 10(3) cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case. We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle-punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse.

  5. Microbiologic assay of space hardware.

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1971-01-01

    Review of the procedures used in the microbiological examination of space hardware. The general procedure for enumerating aerobic and anaerobic microorganisms and spores is outlined. Culture media and temperature-time cycles used for incubation are reviewed, along with assay systems designed for the enumeration of aerobic and anaerobic spores. The special problems which are discussed are involved in the precise and accurate enumeration of microorganisms on surfaces and in the neutralization of viable organisms buried inside solid materials that could be released to a planet's surface if the solid should be fractured. Special attention is given to sampling procedures including also the indirect techniques of surface assays of space hardware such as those using detachable or fallout strips. Some data on comparative levels of microbial contamination on lunar and planetary spacecraft are presented.

  6. Improved Method for Determination of Respiring Individual Microorganisms in Natural Waters

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1982-01-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both ≤0.2 μm in size, were found for sample preparations that included a Nuclepore filter. Visual clarity was enhanced, and significantly greater direct counts and counts of INT-reducing microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity. PMID:16346025

  7. Improved method for determination of respiring individual microorganisms in natural waters.

    PubMed

    Tabor, P S; Neihof, R A

    1982-06-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both

  8. Evaluation of the BioVigilant IMD-A, a novel optical spectroscopy technology for the continuous and real-time environmental monitoring of viable and nonviable particles. Part II. Case studies in environmental monitoring during aseptic filling, intervention assessments, and glove integrity testing in manufacturing isolators.

    PubMed

    Miller, Michael J; Walsh, Michael R; Shrake, Jerry L; Dukes, Randall E; Hill, Daniel B

    2009-01-01

    This paper describes the use of the BioVigilant IMD-A, a real-time and continuous monitoring technology based on optical spectroscopy, to simultaneously and instantaneously detect, size, and enumerate both viable and nonviable particles in a variety of filling and transfer isolator environments during an aseptic fill, transfer of sterilized components, and filling interventions. Continuous monitoring of three separate isolators for more than 16 h and representing more than 28 m3 of air per isolator (under static conditions) yielded a mean viable particle count of zero (0) per cubic meter. Although the mean count per cubic meter was zero, the detection of very low levels of single viable particles was randomly observed in each of these sampling runs. No viable particles were detected during the manual transfer of sterilized components from transfer isolators into a filling isolator, and similar results were observed during an aseptic fill, a filling needle change-out procedure, and during disassembly, movement, and reassembly of a vibrating stopper bowl. During the continuous monitoring of a sample transfer port and a simulated mousehole, no viable particles were detected; however, when the sampling probe was inserted beyond the isolator-room interface, the IMD-A instantaneously detected and enumerated both viable and nonviable particles originating from the surrounding room. Data from glove pinhole studies showed no viable particles being observed, although significant viable particles were immediately detected when the gloves were removed and a bare hand was allowed to introduce microorganisms into the isolator. The IMD-A technology offers the industry an unprecedented advantage over growth-based bioaerosol samplers for monitoring the state of microbiological control in pharmaceutical manufacturing environments, and represents significant progress toward the acceptance of microbiology process analytical technology solutions for the industry.

  9. Microbiological sampling of returned Surveyor 3 electrical cabling

    NASA Technical Reports Server (NTRS)

    Knittel, M. D.; Favero, M. S.; Green, R. H.

    1972-01-01

    A piece of electrical wiring bundle running from the television camera to another part of the spacecraft was selected for microbiological examination. Sampling methods are discussed. The results presented show that no viable microorganisms were recovered from the part of the Surveyor 3 cable which was tested. Factors that could have contributed to the sterility of the cable are thermal vacuum testing, natural dieoff, change in pressure during launch, and lunar vacuum and temperature.

  10. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    PubMed

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  11. Food-associated lactic acid bacteria with antimicrobial potential from traditional Mexican foods.

    PubMed

    Alvarado, C; García Almendárez, B E; Martin, S E; Regalado, C

    2006-01-01

    This work was conducted to identify indigenous LAB capable of antimicrobial activity, present in traditional Mexican-foods with potential as natural preservatives. A total of 27 artisan unlabeled Mexican products were evaluated, from which 94 LAB strains were isolated, and only 25 strains showed antimicrobial activity against at least one pathogen indicator microorganism. Most of the inhibitory activity showed by the isolated LAB strains was attributed to pH reduction by organic acids. Lactobacillus and Lactococcus strains were good acid producers, depending on the substrate, and may enhance the safety of food products. Cell free cultures of Leuconostoc mesenteroides CH210, and PT8 (from chorizo and pulque, respectively) reduced the number of viable cells of enteropathogenic E. coli in broth system. Lb. plantarum CC10 (from "madre" of vinegar) showed significant inhibitory effect against S. aureus 8943. E. faecium QPII (from panela cheese) produced a bacteriocin with wide anti-L. monocytogenes activity. Selected LAB from traditional Mexican foods showed good potential as bio-preservatives.

  12. Real-time measurement of UV-inactivated Escherichia coli bacterial particles by electrospray-assisted UVAPS spectrometry.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Bae, Gwi Nam

    2011-08-01

    The ultraviolet aerodynamic particle sizer (UVAPS) is a novel commercially available aerosol spectrometer for real-time continuous monitoring of viable bioaerosols, based on fluorescence from living microorganisms. In a previous study, we developed an electrospray-assisted UVAPS using biological electrospray techniques, which have the advantage of generating non-agglomerated single particles by the repulsive electrical forces. With this electrospraying of suspensions containing microorganisms, the analytical system can supply more accurate and quantitative information about living microorganisms than with conventional aerosolization. Using electrospray-assisted UVAPS, we investigated the characteristics of bacterial particles with various viabilities in real-time. Escherichia coli was used as the test microorganism, and its initial viability was controlled by the degree of exposure to UV irradiation. In the stable cone-jet domain, the particle size distributions of test bacterial particles remained almost uniform regardless of the degree of UV inactivation. However, the fluorescence spectra of the bacterial particles changed with the degree of UV inactivation. The fluorescence characteristics of UV-inactivated bacterial particles tended to show a similar decline with viability, determined by the sampling and culture method, although the percentage showing fluorescence was higher than that showing viability. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    PubMed

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  14. Screening of probiotic goat milk tablets using Plackett-Burman design.

    PubMed

    Chen, He; Zhang, Jianhua; Shu, Guowei

    2014-01-01

    Probiotics defined as additional microorganisms were added to goat milk powder, which not only improves the intestinal flora balance but also promotes human and animal health. The objectives of this study were to improve and guarantee high probiotics viable count and accordance with consumer's acceptance. The reading selected the number of colony between 30 and 300, then calculated the viable count per gram of goat milk tablet (cfu/g). The items of sensory evaluation included: appearance, flavour, colour, texture and taste. The score test was composed of 5 trained assessors, scored combination of different formulations (full marks of 100 points) and recorded the results. Analysis of the results showed that sucrose, inulin and mannitol were selected as the main effective parameters on both viable count and sensory evaluation. Furthermore optimization of the formulation of probiotic goat milk tablets was to maximise the probiotics viable count to achieve 9.5·108 cfu/g and its scores of sensory evaluation to get 94 points. Future probiotics products will be combined with a variety of probiotics, which can display their respective advantages and characteristics. Thus the products will not only be in accordance with the requirements of human health and trend of social development, but also will quickly become a favorite among consumers.

  15. Health-hazard evaluation report HETA 86-372-1796, National Marine Fisheries Service, US Department of Commerce, Pascagoula, Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiano, J.M.; Cantor, F.L.; Burr, G.A.

    In response to a request from the U.S. Department of Commerce, an evaluation was made of an ongoing mold and mildew problem at the Southeastern Regional Office of the National Marine Fisheries Service located in Pascagoula, Mississippi. Office workers indicated they were suffering from throat irritation, itchy eyes, sneezing, and coughing symptoms. The problem was traced to an improperly installed all-water heating, ventilating, and air-conditioning system. Deficiencies in the system resulted in water damage, high humidity, and the growth of mold and mildew on all surfaces. Dehumidifiers were useful in reducing the humidity level, and therefore the growth of mildewmore » and mold, but there was still some visible contamination on room surfaces. Airborne levels of total viable microorganisms averaged 1,236 colony-forming units per cubic meter of air. The most-abundant fungal species isolated was Acremonium species. When the results of a medical questionnaire were compared to levels of fungal contamination there was no statistically significant association between the occurrence of illness and exposure to microorganisms. The authors recommend that insulation on the pipes and condenser drain lines be replaced to eliminate the moisture-incursion problems, that all nonporous surfaces be disinfected, and that all nondisposable building contents be cleaned with a vacuum incorporating a high-efficiency particulate air filter. Materials which could not be adequately cleaned were to be discarded.« less

  16. US EPA Base Study Standard Operating Procedure for Sampling and Characterization of Viable and Non-Viable Bioaerosols in Indoor Air

    EPA Pesticide Factsheets

    The objective of the procedure is to collect a representative sample concentration of total airborne fungal spores (viable and non-viable) that may be present in indoor air and in the outdoor air supplied to the space tested.

  17. Chemical and microbiological experimentation for development of environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Whitman, G. A.; Wilson, M. E.; Cole, H. E.; Traweek, M.

    1992-01-01

    Microbiological techniques are under study with a view to the identification of viable microorganisms in liquid cultures, improve the identification of stressed organisms, and determine the biocidal activity of iodine and other chemicals on isolates from recycled water. A quality-assurance program has been implemented to validate data employed in making decisions concerning engineering and human health and safety. Analytical laboratory refinements will strongly aid the development of environmental control and life-support systems.

  18. Super-long Anabiosis of Ancient Microorganisms in Ice and Terrestrial Models for Development of Methods to Search for Life on Mars, Europa and other Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; hide

    2007-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  19. Genetic engineering approach to toxic waste management: case study for organophosphate waste treatment.

    PubMed

    Coppella, S J; DelaCruz, N; Payne, G F; Pogell, B M; Speedie, M K; Karns, J S; Sybert, E M; Connor, M A

    1990-01-01

    Currently, there has been limited use of genetic engineering for waste treatment. In this work, we are developing a procedure for the in situ treatment of toxic organophosphate wastes using the enzyme parathion hydrolase. Since this strategy is based on the use of an enzyme and not viable microorganisms, recombinant DNA technology could be used without the problems associated with releasing genetically altered microorganisms into the environment. The gene coding for parathion hydrolase was cloned into a Streptomyces lividans, and this transformed bacterium was observed to express and excrete this enzyme. Subsequently, fermentation conditions were developed to enhance enzyme production, and this fermentation was scaled-up to the pilot scale. The cell-free culture fluid (i.e., a nonpurified enzyme solution) was observed to be capable of effectively hydrolyzing organophosphate compounds under laboratory and simulated in situ conditions.

  20. Production of functional probiotic, prebiotic, and synbiotic ice creams.

    PubMed

    Di Criscio, T; Fratianni, A; Mignogna, R; Cinquanta, L; Coppola, R; Sorrentino, E; Panfili, G

    2010-10-01

    In this work, 3 types of ice cream were produced: a probiotic ice cream produced by adding potentially probiotic microorganisms such as Lactobacillus casei and Lactobacillus rhamnosus; a prebiotic ice cream produced by adding inulin, a prebiotic substrate; and a synbiotic ice cream produced by adding probiotic microorganisms and inulin in combination. In addition to microbial counts, pH, acidity, and physical and functional properties of the ice creams were evaluated. The experimental ice creams preserved the probiotic bacteria and had counts of viable lactic acid bacteria after frozen storage that met the minimum required to achieve probiotic effects. Moreover, most of the ice creams showed good nutritional and sensory properties, with the best results obtained with Lb. casei and 2.5% inulin. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  2. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    NASA Astrophysics Data System (ADS)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  3. Total and Viable Legionella pneumophila Cells in Hot and Natural Waters as Measured by Immunofluorescence-Based Assays and Solid-Phase Cytometry ▿†

    PubMed Central

    Parthuisot, N.; Binet, M.; Touron-Bodilis, A.; Pougnard, C.; Lebaron, P.; Baudart, J.

    2011-01-01

    A new method was developed for the rapid and sensitive detection of viable Legionella pneumophila. The method combines specific immunofluorescence (IF) staining using monoclonal antibodies with a bacterial viability marker (ChemChrome V6 cellular esterase activity marker) by means of solid-phase cytometry (SPC). IF methods were applied to the detection and enumeration of both the total and viable L. pneumophila cells in water samples. The sensitivity of the IF methods coupled to SPC was 34 cells liter−1, and the reproducibility was good, with the coefficient of variation generally falling below 30%. IF methods were applied to the enumeration of total and viable L. pneumophila cells in 46 domestic hot water samples as well as in cooling tower water and natural water samples, such as thermal spring water and freshwater samples. Comparison with standard plate counts showed that (i) the total direct counts were always higher than the plate counts and (ii) the viable counts were higher than or close to the plate counts. With domestic hot waters, when the IF assay was combined with the viability test, SPC detected up to 3.4 × 103 viable but nonculturable L. pneumophila cells per liter. These direct IF methods could be a powerful tool for high-frequency monitoring of domestic hot waters or for investigating the occurrence of viable L. pneumophila in both man-made water systems and environmental water samples. PMID:21742913

  4. ATP as a biomarker of viable microorganisms in clean-room facilities

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger

    2003-01-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  5. ATP as a biomarker of viable microorganisms in clean-room facilities.

    PubMed

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T; Kern, Roger

    2003-03-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  6. Changes in total viable count and TVB-N content in marinated chicken breast fillets during storage

    NASA Astrophysics Data System (ADS)

    Baltić, T.; Ćirić, J.; Velebit, B.; Petronijević, R.; Lakićević, B.; Đorđević, V.; Janković, V.

    2017-09-01

    Marination is a popular technique for enhancing meat properties. Depending on the marinade type and ingredients added, marination can improve sensory, chemical and microbiological quality of meat products. In this study, the total viable count and total volatile basic nitrogen (TVB-N) content in marinated chicken breast fillets were investigated. The possible correlation between bacterial growth and formation of TVB-N was also tested. Chicken breast fillets were immersed in a solution of table salt (as a control) orthree different marinades,which consisted of table salt, sodium tripolyphosphate and/or sodium citrate, and stored in air for nine days at 4±1°C. Analyses of the total viable count and TVB-N were performed on days0, 3, 6 and 9 day of storage. The total viable count gradually increased in all examined groups, and statistically significant differences (p<0.01 p<0.05) between treatments on days0, 3 and 6 day of storage were established. TVB-N values in marinated chicken were significantly higher (p<0.01 p<0.05) compared to the control. Using the multiple linear regression, a positive correlation between total viable count and formation of TVB-N in chicken marinated with sodium citrate was established (p<0.05), while the intensity of TVB-N formation was lowest in chicken marinated with sodium tripolyphosphate.

  7. Influence of Soap Characteristics and Food Service Facility Type on the Degree of Bacterial Contamination of Open, Refillable Bulk Soaps.

    PubMed

    Schaffner, Donald W; Jensen, Dane; Gerba, Charles P; Shumaker, David; Arbogast, James W

    2018-02-01

    Concern has been raised regarding the public health risks from refillable bulk-soap dispensers because they provide an environment for potentially pathogenic bacteria to grow. This study surveyed the microbial quality of open refillable bulk soap in four different food establishment types in three states. Two hundred ninety-six samples of bulk soap were collected from food service establishments in Arizona, New Jersey, and Ohio. Samples were tested for total heterotrophic viable bacteria, Pseudomonas, coliforms and Escherichia coli, and Salmonella. Bacteria were screened for antibiotic resistance. The pH, solids content, and water activity of all soap samples were measured. Samples were assayed for the presence of the common antibacterial agents triclosan and parachlorometaxylenol. More than 85% of the soap samples tested contained no detectable microorganisms, but when a sample contained any detectable microorganisms, it was most likely contaminated at a very high level (∼7 log CFU/mL). Microorganisms detected in contaminated soap included Klebsiella oxytoca, Serratia liquefaciens, Shigella sonnei, Enterobacter gergoviae, Serratia odorifera, and Enterobacter cloacae. Twenty-three samples contained antibiotic-resistant organisms, some of which were resistant to two or more antibiotics. Every sample containing less than 4% solids had some detectable level of bacteria, whereas no samples with greater than 14% solids had detectable bacteria. This finding suggests the use of dilution and/or low-cost formulations as a cause of bacterial growth. There was a statistically significant difference ( P = 0.0035) between the fraction of bacteria-positive samples with no detected antimicrobial agent (17%) and those containing an antimicrobial agent (7%). Fast food operations and grocery stores were more likely to have detectable bacteria in bulk-soap samples compared with convenience stores ( P < 0.05). Our findings underscore the risk to public health from use of refillable bulk-soap dispensers in food service establishments.

  8. [Banana peel: a possible source of infection in the treatment of nipple fissures].

    PubMed

    Novak, Franz Reis; de Almeida, João Aprígio Guerra; de Souza e Silva, Rosana

    2003-01-01

    To study the microbiology of banana peel being sold in the city of Rio de Janeiro, in an attempt to determine the possibility that the peel may represent a source of infection for women who use it to treat nipple fissures. The following microorganisms were studied in 20 banana peel samples: mesophiles, total coliforms, fecal coliforms, Pseudomonas aeruginosa, lipolytic and proteolytic microorganisms, molds and yeasts, lactic bacteria, and coagulase-positive staphylococcus. The microbiological analyses revealed the occurrence of several typical groups of microorganisms, with the following distribution of positive results being detected in banana peel samples: mesophiles, 100%; total coliforms, 20%; coagulase-positive staphylococcus, 25%; molds and yeasts, 30%; proteolytic microorganisms, 70%; lipolytic microorganisms, 30%, and lactic bacteria, 95%. Fecal coliforms and Pseudomonas aeruginosa were not isolated. The results show the presence of potentially pathogenic microorganisms in levels which could compromise the microbiological quality of the banana peel. Its use for the treatment of nipple fissures can initiate an infectious process.

  9. Bryophyte dispersal by flying foxes: a novel discovery.

    PubMed

    Parsons, J G; Cairns, A; Johnson, C N; Robson, S K A; Shilton, L A; Westcott, D A

    2007-05-01

    This research provides the first evidence of dispersal of bryophytes and associated microorganisms through ingestion by a highly mobile vertebrate vector, the spectacled flying fox (Pteropus conspicillatus). Bryophyte fragments were found in faeces collected at four P. conspicillatus' camps in the Wet Tropics bioregion, northeastern Australia. These fragments were viable when grown in culture; live invertebrates and other organisms were also present. Our study has significantly increased understanding of the role of flying foxes as dispersal vectors in tropical forests.

  10. Preliminary stochastic model for managing Vibrio parahaemolyticus and total viable bacterial counts in a Pacific oyster (Crassostrea gigas) supply chain.

    PubMed

    Fernandez-Piquer, Judith; Bowman, John P; Ross, Tom; Estrada-Flores, Silvia; Tamplin, Mark L

    2013-07-01

    Vibrio parahaemolyticus can accumulate and grow in oysters stored without refrigeration, representing a potential food safety risk. High temperatures during oyster storage can lead to an increase in total viable bacteria counts, decreasing product shelf life. Therefore, a predictive tool that allows the estimation of both V. parahaemolyticus populations and total viable bacteria counts in parallel is needed. A stochastic model was developed to quantitatively assess the populations of V. parahaemolyticus and total viable bacteria in Pacific oysters for six different supply chain scenarios. The stochastic model encompassed operations from oyster farms through consumers and was built using risk analysis software. Probabilistic distributions and predictions for the percentage of Pacific oysters containing V. parahaemolyticus and high levels of viable bacteria at the point of consumption were generated for each simulated scenario. This tool can provide valuable information about V. parahaemolyticus exposure and potential control measures and can help oyster companies and regulatory agencies evaluate the impact of product quality and safety during cold chain management. If coupled with suitable monitoring systems, such models could enable preemptive action to be taken to counteract unfavorable supply chain conditions.

  11. Influence of protein deposition on bacterial adhesion to contact lenses.

    PubMed

    Subbaraman, Lakshman N; Borazjani, Roya; Zhu, Hua; Zhao, Zhenjun; Jones, Lyndon; Willcox, Mark D P

    2011-08-01

    The aim of the study is to determine the adhesion of Gram positive and Gram negative bacteria onto conventional hydrogel (CH) and silicone hydrogel (SH) contact lens materials with and without lysozyme, lactoferrin, and albumin coating. Four lens types (three SH-balafilcon A, lotrafilcon B, and senofilcon A; one CH-etafilcon A) were coated with lysozyme, lactoferrin, or albumin (uncoated lenses acted as controls) and then incubated in Staphylococcus aureus (Saur 31) or either of two strains of Pseudomonas aeruginosa (Paer 6294 and 6206) for 24 h at 37 °C. The total counts of the adhered bacteria were determined using the H-thymidine method and viable counts by counting the number of colony-forming units on agar media. All three strains adhered significantly lower to uncoated etafilcon A lenses compared with uncoated SH lenses (p < 0.05). Lysozyme coating on all four lens types increased binding (total and viable counts) of Saur 31 (p < 0.05). However, lysozyme coating did not influence P. aeruginosa adhesion (p > 0.05). Lactoferrin coating on lenses increased binding (total and viable counts) of Saur 31 (p < 0.05). Lactoferrin-coated lenses showed significantly higher total counts (p < 0.05) but significantly lower viable counts (p < 0.05) of adhered P. aeruginosa strains. There was a significant difference between the total and viable counts (p < 0.05) that were bound to lactoferrin-coated lenses. Albumin coating of lenses increased binding (total and viable counts) of all three strains (p < 0.05). Lysozyme deposited on contact lenses does not possess antibacterial activity against certain bacterial strains, whereas lactoferrin possess an antibacterial effect against strains of P. aeruginosa.

  12. Microbial composition affects the performance of an artificial Tephritid larval diet.

    PubMed

    Rempoulakis, P; Sela Saldinger, S; Nemny-Lavy, E; Pinto, R; Birke, A; Nestel, D

    2017-09-20

    The present study investigated the patterns of microorganisms in an artificial larval diet during Dacus ciliatus (Diptera; Tephritidae) larval development. Microbial population contents in the diet of total heterotrophic bacteria, yeast and molds, coliform and lactobacilli, and their dynamics during development, were monitored. Initially, the microbial composition in diet trays failing to produce viable pupae and in trays successfully producing pupae and adult flies was characterized. The failing diet trays contained large populations of lactobacilli that increased during larval development, and low populations of coliforms. In contrast, the successful diet showed an increasing population of coliforms and a low, or undetected, population of lactobacilli. To study the hypothesis that lactobacilli affect D. ciliatus larval development, we conducted controlled inoculation experiments in which Lactobacillus plantarum was added into fresh diet at the time of egg seeding. L. plantarum inoculated trays showed no production of D. ciliatus. Control trays without lactobacilli inoculation showed variable results. One tray successfully produced viable pupae and adults, and showed a slight and slow increase in the indigenous populations of lactobacilli. The second tray, however, failed to produce pupae and showed a fast increase of the indigenous lactobacilli to very high levels. Monitored pH trends in L. plantarum-inoculated diet showed a sharp pH decrease during the first 4 days of larval development from 5 to less than 4 units, while successful diet, producing viable D. ciliatus pupae and adults, showed a moderate pH drop during most of the larval development period. The paper discusses the possible ecological interactions between D. ciliatus larvae, the microbial content of the diet and the physical properties of the diet. The discussion also points out at the usefulness of this approach in understanding and managing mass production parameters of tephritid fruit flies industrial diets used for Sterile Insect Technique.

  13. Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics.

    PubMed

    Zhao, Feng; Bi, Xiufang; Hao, Yanling; Liao, Xiaojun

    2013-01-01

    The viable but nonculturable (VBNC) state is a survival strategy adopted by many pathogens when exposed to harsh environmental stresses. In this study, we investigated for the first time that whether high pressure CO2 (HPCD), one of the nonthermal pasteurization techniques, can induce Escherichia coli O157:H7 into the VBNC state. By measuring plate counts, viable cell counts and total cell counts, E. coli O157:H7 in 0.85% NaCl solution (pH 7.0) was able to enter the VBNC state by HPCD treatment at 5 MPa and four temperatures (25°C, 31°C, 34°C and 37°C). Meanwhile, with the improvement of treatment temperature, the time required for E. coli O157:H7 to enter VBNC state would shorten. Enzymatic activities in these VBNC cells were lower than those in the exponential-phase cells by using API ZYM kit, which were also reduced with increasing the treatment temperature, but the mechanical resistance of the VBNC cells to sonication was enhanced. These results further confirmed VBNC state was a self-protection mechanism for some bacteria, which minimized cellular energetic requirements and increased the cell resistance. When incubated in tryptic soy broth at 37°C, the VBNC cells induced by HPCD treatment at 25°C, 31°C and 34°C achieved resuscitation, but their resuscitation capabilities decreased with increasing the treatment temperature. Furthermore, electron microscopy revealed changes in the morphology and interior structure of the VBNC cells and the resuscitated cells. These results demonstrated that HPCD could induce E. coli O157:H7 into the VBNC state. Therefore, it is necessary to detect if there exist VBNC microorganisms in HPCD-treated products by molecular-based methods for food safety.

  14. 40 CFR 503.31 - Special definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 503.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS... microorganisms in the absence of air. (c) Density of microorganisms is the number of microorganisms per unit mass...) Specific oxygen uptake rate (SOUR) is the mass of oxygen consumed per unit time per unit mass of total...

  15. Microneedle Arrays Allow Lower Microbial Penetration Than Hypodermic Needles In Vitro

    PubMed Central

    Donnelly, Ryan F.; Singh, Thakur Raghu Raj; Tunney, Michael M.; Morrow, Desmond I. J.; McCarron, Paul A.; O’Mahony, Conor; Woolfson, A. David

    2010-01-01

    Methods In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models. Results When employing Silescol® membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol® membranes in the corresponding experiments. Approximately 103cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case. Conclusion We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle—punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse. PMID:19756972

  16. Synthesis of biogenic silicon/silica (Si/SiO2) nanocomposites from rice husks and wheat bran through various microorganisms

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Pal Singh, Gurwinder; Kaur, Gurneet; Kaur, Sukhvir; Gill, Prabhjot Kaur

    2016-08-01

    Biosilification is an economically viable, energy saving and green approach for the commercial scale synthesis of oxide nanomaterials. The room temperature synthesis of oxide nanocomposites from cost effective agro-based waste is a particular example of biosilification. In this study, synthesis of Si/SiO2 nanocomposites from inexpensive agro-based waste material i.e. rice husks (RH) and wheat bran (WB) has been carried out by means of various eukaryotic microorganisms, i.e. Actinomycete, Fusarium oxysporum, Aspergillus niger, Trichoderma sp. and Penicillium sp., under ambient conditions. The XRD diffrectrograms represents that the synthesized nanomaterials exhibits silicon, amorphous silica and other crystal arrays such as cristobalite, trydimite and quartz, depending upon the type microorganism and time period used for extraction. All of the aforesaid microorganism bio transformed the naturally occurring amorphous silica to crystalline structures within the period of 24 h. However, the Actinomycete and Trichoderma sp. took 48 h in case of rice husks for biotransformation of naturally occurring plant silica to crystalline nanocomposite. While in case of wheat bran, Actinomycete and Trichoderma sp. took 24 h for biotransformation. The extracted nanocomposites exhibits band edge in the range 230-250 nm and blue emission. The procedure described in study can be used for commercial level production of Si/SiO2 nanocomposites from agro based waste materials.

  17. The emerging contribution of social wasps to grape rot disease ecology

    PubMed Central

    Boyden, Sean D.; Soriano, Jonathan-Andrew N.; Corey, Tyler B.; Leff, Jonathan W.; Fierer, Noah; Starks, Philip T.

    2017-01-01

    Grape sour (bunch) rot is a polymicrobial disease of vineyards that causes millions of dollars in lost revenue per year due to decreased quality of grapes and resultant wine. The disease is associated with damaged berries infected with a community of acetic acid bacteria, yeasts, and filamentous fungi that results in rotting berries with high amounts of undesirable volatile acidity. Many insect species cause the initial grape berry damage that can lead to this disease, but most studies have focused on the role of fruit flies in facilitating symptoms and vectoring the microorganisms of this disease complex. Like fruit flies, social wasps are abundant in vineyards where they feed on ripe berries and cause significant damage, while also dispersing yeasts involved in wine fermentation. Despite this, their possible role in disease facilitation and dispersal of grape rots has not been explored. We tested the hypothesis that the paper wasp Polistes dominulus could facilitate grape sour rot in the absence of other insect vectors. Using marker gene sequencing we characterized the bacterial and fungal community of wild-caught adults. We used a sterilized foraging arena to determine if these wasps transfer viable microorganisms when foraging. We then tested if wasps harboring their native microbial community, or those inoculated with sour rot, had an effect on grape sour rot incidence and severity using a laboratory foraging arena. We found that all wasps harbor some portion of the sour rot microbial community and that they have the ability to transfer viable microorganisms when foraging. Foraging by inoculated and uninoculated wasps led to an increase in berry rot disease symptom severity and incidence. Our results indicate that paper wasps can facilitate sour rot diseases in the absence of other vectors and that the mechanism of this facilitation may include both increasing host susceptibility and transmitting these microbial communities to the grapes. Social wasps are understudied but relevant players in the sour rot ecology of vineyards. PMID:28462032

  18. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  19. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  20. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel.

    PubMed

    Prince, Roger C; Kheshgi, Haroon S

    2005-01-01

    Photosynthetic microorganisms can produce hydrogen when illuminated, and there has been considerable interest in developing this to a commercially viable process. Its appealing aspects include the fact that the hydrogen would come from water, and that the process might be more energetically efficient than growing, harvesting, and processing crops. We review current knowledge about photobiological hydrogen production, and identify and discuss some of the areas where scientific and technical breakthroughs are essential for commercialization. First we describe the underlying biochemistry of the process, and identify some opportunities for improving photobiological hydrogen production at the molecular level. Then we address the fundamental quantum efficiency of the various processes that have been suggested, technological issues surrounding large-scale growth of hydrogen-producing microorganisms, and the scale and efficiency on which this would have to be practiced to make a significant contribution to current energy use.

  1. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology willmore » provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.« less

  2. Biofilms and the survival of opportunistic pathogens in recycled water

    NASA Technical Reports Server (NTRS)

    Boyle, M.; Ford, T.; Maki, J. S.; Mitchell, R.

    1991-01-01

    Microorganisms are likely to develop an organic film on pipes, water reservoirs and filters used for waste water reclamation during extended missions in space. These biofilms can serve to protect and concentrate potentially pathogenic microorganisms. Our investigation has emphasized the survival strategy of opportunistic pathogenic bacteria in distilled water. Pseudomonas aeruginosa and Staphylococcus aureus were used as test organisms. Cultures were incubated at 10 degrees, 25 degrees, and 37 degrees C. No viable Staphylococcus cells were detected after the first week of incubation. P. aeruginosa, however, survived in distilled water up to 5 months at all three temperatures tested. The starved cells were able to form a biofilm layer on stainless steel. The cells exhibited a negative surface charge. The charge may be involved in the adhesion of this bacterium to metal substrata. We are currently investigating the importance of adhesion in the survival of this and other potential human pathogens found in water recycling systems.

  3. Microbiome of Total Versus Live Bacteria in the Gut of Rex Rabbits

    PubMed Central

    Fu, Xiangchao; Zeng, Bo; Wang, Ping; Wang, Lihuan; Wen, Bin; Li, Ying; Liu, Hanzhong; Bai, Shiqie; Jia, Gang

    2018-01-01

    Gastrointestinal bacteria are essential for host health, and only viable microorganisms contribute to gastrointestinal functions. When evaluating the gut microbiota by next generation sequencing method, dead bacteria, which compose a proportion of gut bacteria, may distort analysis of the live gut microbiota. We collected stomach, jejunum, ileum, cecum, and colon contents from Rex rabbits. A modified propidium monoazide (PMA) treatment protocol was used to exclude DNA from dead bacteria. Analysis of untreated samples yielded total bacteria, and analysis of PMA-treated samples yielded live bacteria. Quantitative polymerase chain reaction and 16S rRNA gene sequencing were performed to evaluate the live-to-total bacteria ratio and compare the difference between live and total microbiota in the entire digestive tract. A low proportion of live bacteria in the foregut (stomach 1.12%, jejunum 1.2%, ileum 2.84%) and a high proportion of live bacteria in the hindgut (cecum 24.66%, colon 19.08%) were observed. A significant difference existed between total and live microbiota. Clostridiales, Ruminococcaceae, and S24-7 dominated the hindgut of both groups, while Acinetobacter and Cupriavidus dominated only in live foregut microbiota. Clostridiales and Ruminococcaceae abundance decreased, while S24-7 increased in live hindgut microbiota. The alpha- and beta-diversities differed significantly between groups. Analysis of networks showed the mutual relationship between live bacteria differed vastly when compared with total bacteria. Our study revealed a large number of dead bacteria existed in the digestive tract of Rex rabbits and distorted the community profile of the live microbiota. Total bacteria is an improper representation of the live gut microbiota, particularly in the foregut. PMID:29692775

  4. Advantageous Direct Quantification of Viable Closely Related Probiotics in Petit-Suisse Cheeses under In Vitro Gastrointestinal Conditions by Propidium Monoazide - qPCR

    PubMed Central

    Villarreal, Martha Lissete Morales; Padilha, Marina; Vieira, Antonio Diogo Silva; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Saad, Susana Marta Isay

    2013-01-01

    Species-specific Quantitative Real Time PCR (qPCR) alone and combined with the use of propidium monoazide (PMA) were used along with the plate count method to evaluate the survival of the probiotic strains Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12, and the bacteriocinogenic and potentially probiotic strain Lactobacillus sakei subsp. sakei 2a in synbiotic (F1) and probiotic (F2) petit-suisse cheeses exposed throughout shelf-life to in vitro simulated gastrointestinal tract conditions. The three strains studied showed a reduction in their viability after the 6 h assay. Bb-12 displayed the highest survival capacity, above 72.6 and 74.6% of the initial populations, respectively, by plate count and PMA-qPCR, maintaining population levels in the range or above 6 log CFU/g. The prebiotic mix of inulin and FOS did not offer any additional protection for the strains against the simulated gastrointestinal environment. The microorganisms' populations were comparable among the three methods at the initial time of the assay, confirming the presence of mainly viable and culturable cells. However, with the intensification of the stress induced throughout the various stages of the in vitro test, the differences among the methods increased. The qPCR was not a reliable enumeration method for the quantification of intact bacterial populations, mixed with large numbers of injured and dead bacteria, as confirmed by the scanning electron microscopy results. Furthermore, bacteria plate counts were much lower (P<0.05) than with the PMA-qPCR method, suggesting the accumulation of stressed or dead microorganisms unable to form colonies. The use of PMA overcame the qPCR inability to differentiate between dead and alive cells. The combination of PMA and species-specific qPCR in this study allowed a quick and unequivocal way of enumeration of viable closely related species incorporated into probiotic and synbiotic petit-suisse cheeses and under stress conditions. PMID:24358142

  5. Optimization of a Viability PCR Method for the Detection of Listeria monocytogenes in Food Samples.

    PubMed

    Agustí, Gemma; Fittipaldi, Mariana; Codony, Francesc

    2018-06-01

    Rapid detection of Listeria and other microbial pathogens in food is an essential part of quality control and it is critical for ensuring the safety of consumers. Culture-based methods for detecting foodborne pathogens are time-consuming, laborious and cannot detect viable but non-culturable microorganism, whereas viability PCR methodology provides quick results; it is able to detect viable but non-culturable cells, and allows for easier handling of large amount of samples. Although the most critical point to use viability PCR technique is achieving the complete exclusion of dead cell amplification signals, many improvements are being introduced to overcome this. In the present work, the yield of dead cell DNA neutralization was enhanced by incorporating two new sample treatment strategies: tube change combined with a double light treatment. This procedure was successfully tested using artificially contaminated food samples, showing improved neutralization of dead cell DNA.

  6. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview.

    PubMed

    Vivek, Narisetty; Sindhu, Raveendran; Madhavan, Aravind; Anju, Alphonsa Jose; Castro, Eulogio; Faraco, Vincenza; Pandey, Ashok; Binod, Parameswaran

    2017-09-01

    One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Progress Towards the Vindication of Panspermia

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.; Wainwright, M.; Narlikar, J. V.; Rajaratnam, P.; Harris, M. J.; Lloyd, D.

    Theories of panspermia are rapidly coming into vogue, with the possibility of the transfer of viable bacterial cells from one planetary abode to another being generally accepted as inevitable. The panspermia models of Hoyle and Wickramasinghe require the transfer of viable bacterial cells from interstellar dust to comets and back into interplanetary and interstellar space. In such a cycle a viable fraction of as little as 10-18 at the inception of a newly formed comet/planet system suffices for cometary panspermia to dominate over competing processes for the origin and transfer of life. The well-attested survival attributes of microbes under extreme conditions, which have recently been discovered, gives credence to the panspermia hypothesis. The prediction of the theory that comets bring microbes onto the Earth at the present time is testable if aseptic collections of stratospheric air above the tropopause can be obtained. We describe a recent collection of this kind and report microbiological analysis that shows the existence of viable cells at 41km, falling to Earth at the rate of a few tonnes per day over the entire globe. Some of these cells have been cultured in the laboratory and found to include microorganisms that are not too different from related species on the Earth. This is in fact what the Hoyle-Wickramasinghe theory predicts. The weight of evidence goes against the more conservative explanation that organisms are being lofted to the high atmosphere from the ground.

  8. A review of plastic waste biodegradation.

    PubMed

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  9. Characterization of atmospheric bioaerosols at 9 sites in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado, Lilia; Rodríguez, Guillermo; López, Jonathan; Castillo, J. E.; Molina, Luisa; Zavala, Miguel; Quintana, Penelope J. E.

    2014-10-01

    The atmosphere is not considered a habitat for microorganisms, but can exist in the atmosphere as bioaerosols. These microorganisms in the atmosphere have great environmental importance through their influence on physical processes such as ice nucleation and cloud droplet formation. Pathogenic airborne microorganisms may also have public health consequences. In this paper we analyze the microbial concentration in the air at three sites in Tijuana, Mexico border during the Cal-Mex 2010 air quality campaign and from nine sites over the following year. Samples were collected by impaction with the air analyzer Millipore M Air T, followed by incubation and counting as colony forming units (CFU) of viable colonies. Airborne microbial contamination average levels ranged from a low of 230 ± 130 CFU/m³ in the coastal reference site to an average of 40,100 ± 21,689 CFU/m³ in the Tijuana river valley. We found the highest microbial load in the summer and the lowest values in the winter. Potentially pathogenic bacteria were isolated from the samples, with Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis being most common. This work is the first evaluation of bioaerosols in Tijuana, Mexico.

  10. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    PubMed

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Principle component analysis (PCA) for investigation of relationship between population dynamics of microbial pathogenesis, chemical and sensory characteristics in beef slices containing Tarragon essential oil.

    PubMed

    Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Mortazavi, Seyed Ali; Mohebbi, Mohebbat

    2017-04-01

    Principle component analysis (PCA) was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. Antimicrobial effect was evaluated on 10 pathogenic microorganisms through the methods of hole-plate diffusion method, disk diffusion method, pour plate method, minimum inhibitory concentration and minimum bactericidal/fungicidal concentration. Antioxidant potential and total phenolic content were examined through the method of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu method, respectively. The components were identified through gas chromatography and gas chromatography/mass spectrometry. Barhang seed mucilage (BSM) based edible coating containing 0, 0.5, 1 and 1.5% (w/w) Tarragon (T) essential oil mix were applied on beef slices to control the growth of pathogenic microorganisms. Microbiological (total viable count, psychrotrophic count, Escherichia coli, Staphylococcus aureus and fungi), chemical (thiobarbituric acid, peroxide value and pH) and sensory characteristics (odor, color and overall acceptability) analysis measurements were made during the storage periodically. PCA was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. The PCA showed that the properties of the uncoated meat samples on the 9th, 12th, 15th and 18th days of storage are continuously changing independent of the exerted treatments on the other samples. This reveals the effect of the exerted treatments on the samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antibacterial poly(D,L-lactic acid) coating of medical implants using a biodegradable drug delivery technology.

    PubMed

    Gollwitzer, Hans; Ibrahim, Karim; Meyer, Henriette; Mittelmeier, Wolfram; Busch, Raymonde; Stemberger, Axel

    2003-03-01

    Biomaterial-associated bacterial infections present common and challenging complications with medical implants. The purpose of this study was to determine the antibacterial properties of a low molecular weight biodegradable poly(D,L-lactic acid) coating with integrated antibiotics gentamicin and teicoplanin. Coating of Kirschner-wires was carried out by a solvent casting technique under aseptic conditions with and without incorporated antibiotics. Release kinetics of gentamicin and teicoplanin were studied in phosphate-buffered saline. Initial bacterial adhesion of Staphylococcus epidermidis on coated and bare implants was determined by radiolabelling and counts of detached viable organisms. The incorporated antibiotics showed a continuous release over a period of at least 96 h with an initial peak of release in the first 6 h. Attachment of non-viable microorganisms, detected by radiolabelled bacteria, was increased significantly by the polymer coatings (P < 0.05). In contrast, the number of viable bacteria was reduced by the pure polymer (P < 0.01) and further by the polymer-antibiotic combinations (P < 0.05). Poly(D,L-lactic acid) coating of implants could offer new perspectives in preventing biomaterial-associated infections. Combinations with other drugs to formulate custom-tailored implant surfaces are feasible.

  13. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications.

    PubMed

    DeLeon-Rodriguez, Natasha; Lathem, Terry L; Rodriguez-R, Luis M; Barazesh, James M; Anderson, Bruce E; Beyersdorf, Andreas J; Ziemba, Luke D; Bergin, Michael; Nenes, Athanasios; Konstantinidis, Konstantinos T

    2013-02-12

    The composition and prevalence of microorganisms in the middle-to-upper troposphere (8-15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth's surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-μm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1-C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate.

  14. A Year in the Life of a Contaminated Heater-Cooler Unit With Mycobacterium chimaera?

    PubMed

    Garvey, Mark I; Bradley, Craig W; Walker, Jimmy

    2017-06-01

    OBJECTIVE Heater-cooler units (HCUs) have been shown to be a source of Mycobacterium chimaera infections. For the past year, weekly water samples have been taken from HCUs used at University Hospitals Birmingham (UHB) NHS Foundation Trust. We report the microbial contamination of the HCUs over a year detailing the decontamination regimes applied at UHB to reduce the microbial load. DESIGN Observational study SETTING UHB is a tertiary referral teaching hospital in Birmingham, United Kingdom, that provides clinical services to nearly 1 million patients every year. The UHB Cardiac department is one of the largest in the United Kingdom and provides treatment for adult patients with a wide range of cardiac diseases. METHODS Water samples taken from HCUs used at UHB for cardiopulmonary bypass surgery were sampled over a year to determine the number of microorganisms by membrane filtration. Various decontamination processes were employed throughout the year. RESULTS Varying total viable counts containing a wide variety of microorganisms were obtained from water inside the HCUs. No M. chimaera were isolated after replacement of the HCU internal tubing. Stringent decontamination regimes resulted in degradation of the HCUs and increased TVCs after several months. CONCLUSION More work is required to ensure effective decontamination processes to reduce the microbial load within the HCUs. Our studies indicate that weekly water sampling for TVC will be required indefinitely to monitor the water quality in these units as well as regular replacement of the tubing to control the build-up of biofilm. Infect Control Hosp Epidemiol 2017;38:705-711.

  15. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.

    PubMed

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  16. Prevalence of indicator and pathogenic bacteria in a tropical river of Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Vincy, M. V.; Brilliant, R.; Pradeepkumar, A. P.

    2017-05-01

    The Meenachil, the only river that flows through the heart of the Kottayam district of Kerala state, India was selected for the study. The present study has been carried out with an objective to systematically examine the prevalence of indicator and pathogenic microorganisms and to compare the microbiological quality of the river water during the pre-monsoon and post-monsoon seasons. Water samples from 44 different sites during pre-monsoon and post-monsoon seasons were collected for the analysis. During the pre-monsoon period, the faecal coliform count ranged from 230 to 110,000 MPN/100 ml while there was a variation from 200 to 4600 MPN/100 ml during the post-monsoon period. When the faecal streptococci count was analysed, it ranged from 140 to 110,000 MPN/100 ml during the pre-monsoon and 70 to 4600 MPN/100 ml during the post-monsoon seasons, respectively. All the samples collected were found to have total viable count (TVC) higher than those prescribed by Bureau of Indian Standards (ISI 1991). Total viable counts were found in the range of 1.1 × 102 to 32 × 102 cfu/ml in the pre-monsoon and 1.0 × 102 to 26 × 102 cfu/ml in the post-monsoon. The presence of faecal indicator bacteria, Escherichia coli and potentially pathogenic bacteria, Vibrio cholerae, Vibrio parahaemolyticus and Salmonella enterica in the Meenachil River indicates that the bacteriological quality of the Meenachil River is poor. Moreover, it sheds light to the fact that raw sewage is being dumped into the Meenachil River. Urban runoffs and effluents of rubber factories appear to be the important sources of faecal contamination in the river. From this study, we conclude that these water bodies pose significant public health hazards. Adequate sanitary infrastructure will help in preventing source water contamination. Besides this, public health education aimed at improving personal, household and community hygiene is urgent.

  17. Microbiology of Drycleaning

    PubMed Central

    Banville, Robert R.; McNeil, Ethel

    1966-01-01

    An appreciable number of bacteria on contaminated fabric survived modern drycleaning procedures. Various stages in the process, especially steam pressing, reduced the total number of bacteria, but viable organisms were found on certain areas of garments even after pressing. A significant number of bacteria were redeposited on clean fabric during the washing of ordinary soiled garments in drycleaning units. These bacteria included gram-positive cocci, diphtheroid bacilli, and gram-positive sporeformers. Gram-negative bacilli were seldom found, although some gram-negative bacilli survived drycleaning. The redeposited organisms apparently came mainly from other garments in the same loads, as few bacteria were isolated from the filtered solvent used for washing. The number of bacteria in the drycleaning washwheel was highest shortly after the beginning of the wash, and decreased, with the exchange of solvent in the wheel, to a low level at the end. Although it appears that in most cases several factors combine to reduce to a low level the numbers of bacteria on articles cleaned in a well-operated drycleaning plant, it would seem that under certain conditions pathogenic microorganisms could be disseminated by drycleaning. Images Fig. 2 PMID:4958148

  18. The influence of normal and high ultimate muscle pH on the microbiology and colour stability of previously frozen black wildebeest (Connochaetes gnou) meat.

    PubMed

    Shange, Nompumelelo; Makasi, Thandeka N; Gouws, Pieter A; Hoffman, Louwrens C

    2018-01-01

    Changes in pH, colour and microbiological counts were investigated in previously frozen Biceps femoris (BF) muscles from black wildebeest. Samples were stored under vacuum at refrigerated conditions (4.2±0.8°C) for 12days. Seven BF muscles had a high pH (DFD) (pH≥6) and five had a normal pH (pH<6). Overtime the pH of DFD did not significantly change whilst that of normal pH meat decreased. Browning under anaerobic storage conditions was seen, more for normal meat than DFD meat. Initial total viable counts, lactic acid bacteria and coliform counts from samples with normal pH, were significantly higher than counts from the DFD samples. However, overtime DFD meat showed a faster increase for all microorganisms tested compared to normal pH meat. Overall, this study revealed that DFD meat can have a shorter shelf-life than normal pH meat stored at 4.2±0.8°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 40 CFR 503.32 - Pathogens.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... determine whether the sewage sludge contains viable helminth ova. (B) When the density of viable helminth ova in the sewage sludge prior to pathogen treatment is less than one per four grams of total solids (dry weight basis), the sewage sludge is Class A with respect to viable helminth ova until the next...

  20. 40 CFR 503.32 - Pathogens.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determine whether the sewage sludge contains viable helminth ova. (B) When the density of viable helminth ova in the sewage sludge prior to pathogen treatment is less than one per four grams of total solids (dry weight basis), the sewage sludge is Class A with respect to viable helminth ova until the next...

  1. Coastal California's Fog Aerobiology and Ecology: A Local-Scale Survey on Atmospheric Microbial Life

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Arismendi, D.; Alvarez, J.; Ouandji, C.; Guarro, M.; Demachkie, I. S.; Crosbie, E.; Dadashazar, H.; MacDonald, A. B.; Wang, Z.; Sorooshian, A.; Jonsson, H.; Dahlgren, R. P.

    2017-12-01

    Microorganisms play a ubiquitous role in our environment. Although Earth's aero-biosphere is a minimally researched area, it is known that viable airborne microbes are found throughout the troposphere and into the stratosphere. Previously identified airborne microbes act as cloud condensation nuclei, and can alter water, carbon and other geochemical cycles, making them crucial to understanding local and global ecosystems. Research shows that some atmospheric regions provide environments conducive to growth and reproduction. However, we do not know if there are airborne populations that metabolize or reproduce. In coastal California, where dense fog is common, a sampling campaign is underway using autonomous aerial vehicles (UAVs) fit with a multi-sensor package, and passive impactor water collection system to allow 4D point sampling within a single fog bank. This small-scale (< 100 m) data will allow identification of short-term dispersal, activity, and dynamics. To provide a baseline for the UAV campaign, 125 cloud water samples were collected via low flying (< 1 km) aircraft from 16 flights off the central California coast. These samples were plated on both nutrient-dense (PCA) and sparse (R-2A) medium, incubated at room temperature, and counted when colonies first appeared, and again after two weeks. Four flights did not yield enough water for analysis, however the remaining twelve are consistent with generally reported colony-forming unit (CFU) values for terrestrial fog water. The PCA assay showed 22 samples with no growth, and the remainder ranging from 100 to 244,000 CFU/mL. The R-2A assay showed 18 samples with no growth, with the remainder between 100 and 241,000 CFU/mL. These results validate the presence of viable microorganisms in fog at levels easily detectable by our sampling system. ATP quantification via bioluminescence assays will be conducted to assess total bioavailable energy; samples will also be analyzed for live/dead population ratios via fluorescent staining. To assess efficacy for future DNA extraction, both GenElute and EZNA assays were conducted using ground water, fog water, and low-biomass filtered water for comparison data. In flight samples collected, qPCR will be conducted for future community identification of several microbial classes of interest.

  2. Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.

  3. [The effect of selected antibiotics on microorganisms contaminating boar ejaculate].

    PubMed

    Mazurová, J; Vinter, P

    1991-04-01

    The occurrence of microorganisms, including their total counts in boar native ejaculates, was investigated in two stages; the objective of this investigation also was to determine contamination after the sperms were treated with diluents containing the antibiotics ampicillin, gentamycin, apramycin, cefoxitin, or antibiotic combinations penicillin + streptomycin, ampicillin + cefoxitin, gentamycin + cefoxitin and ampicillin + gentamycin. The representation of bacterial species and total counts of microbes in 1 ml diluted sperm stored at a temperature of about 18 degrees C were determined in 24, 48 and 72 h after dilution. The microorganisms were cultivated from all native ejaculates. Proteus sp. (63.3%) and Pseudomonas aeruginosa (51.5% of the total number of examined samples) were the most frequent species. The number of contaminated diluted ejaculates ranged from 12.5 to 95.8% in 24 h after dilution, from 12.5 to 98.5% in 48 h and from 16.8 to 95.8% of the total number of examined ejaculates in 72 h. The occurrence of microorganisms correlated mostly with the efficiency spectrum of the antibiotics or their combinations. The average counts of microorganisms in 1 ml of native ejaculate made 2,363,000 in stage I and 1,472,108 in stage II. The highest average counts in 1 ml of diluted sperm were found in ejaculates containing cefoxitin and apramycin. Gentamycin was the most effective antibiotic used as a sole component (average counts of microorganisms CPM in 1 ml were 416 in 24 h, 955 in 48 h and 2260 in 72 h after dilution); ampicillin and gentamycin were the most efficient combination (14--20--21). This combination exerted very good effects also on Proteus sp. and Pseudomonas aeruginosa.

  4. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    PubMed

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05) . The Content of fungi PLFAs in soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05). This study provides evidence that effectiveness of the soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  5. Microbiological Methodology in Astrobiology

    NASA Technical Reports Server (NTRS)

    Abyzov, S. S.; Gerasimenko, L. M.; Hoover, R. B.; Mitskevich, I. N.; Mulyukin, A. L.; Poglazova, M. N.; Rozanov, A. Y.

    2005-01-01

    Searching for life in astromaterials to be delivered from the future missions to extraterrestrial bodies is undoubtedly related to studies of the properties and signatures of living microbial cells and microfossils on Earth. As model terrestrial analogs of Martian polar subsurface layers are often regarded the Antarctic glacier and Earth permafrost habitats where alive microbial cells preserved viability for millennia years due to entering the anabiotic state. For the future findings of viable microorganisms in samples from extraterrestrial objects, it is important to use a combined methodology that includes classical microbiological methods, plating onto nutrient media, direct epifluorescence and electron microscopy examinations, detection of the elemental composition of cells, radiolabeling techniques, PCR and FISH methods. Of great importance is to ensure authenticity of microorganisms (if any in studied samples) and to standardize the protocols used to minimize a risk of external contamination. Although the convincing evidence of extraterrestrial microbial life will may come from the discovery of living cells in astromaterials, biomorphs and microfossils must also be regarded as a target in search of life evidence bearing in mind a scenario that alive microorganisms had not be preserved and underwent mineralization. Under the laboratory conditions, processes that accompanied fossilization of cyanobacteria were reconstructed, and artificially produced cyanobacterial stromatolites resembles by their morphological properties those found in natural Earth habitats. Regarding the vital importance of distinguishing between biogenic and abiogenic signatures and between living and fossil microorganisms in analyzed samples, it is worthwhile to use some previously developed approaches based on electron microscopy examinations and analysis of elemental composition of biomorphs in situ and comparison with the analogous data obtained for laboratory microbial cultures and fossilized microorganisms. This communication will be focused on the analysis of our experience in working with ancient microorganisms and fossils and discussion of some issues that are crucial for development of the program for future finding of extraterrestrial life and its evidence.

  6. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    PubMed Central

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment. PMID:25763024

  7. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli.

    PubMed

    Sharifi-Rad, J; Soufi, L; Ayatollahi, S A M; Iriti, M; Sharifi-Rad, M; Varoni, E M; Shahri, F; Esposito, S; Kuhestani, K; Sharifi-Rad, M

    2016-09-19

    Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 is one of the most important human pathogenic microorganisms, which can cause life-threatening infections. Xanthium strumarium L. is a plant with anti-bacterial activity against gram-negative and gram-positive bacteria. This study aims to demonstrate in vitro efficacy of the essential oil (EO) extracted from Xanthium strumarium L. against E. coli O157:H7. Using the agar test diffusion, the effect of Xanthium strumarium L. EO (5, 10, 15, 30, 60, and 120 mg/mL) was verified at each of the four different growth phases of E. coli O157:H7. Cell counts of viable cells and colony forming unit (CFU) were determined at regular time points using Breed's method and colony counting method, respectively. No viable cell was detectable after the 1 hour-exposure to X. strumarium EO at 30, 60, and 120 mg/mL concentrations. No bacterial colony was formed after 1 h until the end of the incubation period at 24 h. At lower concentrations, the number of bacteria cells decreased and colonies could be observed only after incubation. At the exponential phase, the EO at 15 mg/mL was only bacteriostatic, while from 30 mg/mL started to be bactericidal. X. strumarium EO antibacterial activity against Shiga toxin-producing E. coli O157:H7 is dependent on EO concentration and physiological state of the microorganisms tested. The best inhibitory activity was achieved during the late exponential and the stationary phases.

  8. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  9. Non-dairy probiotic beverages: the next step into human health.

    PubMed

    Gawkowski, D; Chikindas, M L

    2013-06-01

    Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit to the host. The two main genera of microorganisms indicated as sources of probiotic bacteria are Lactobacillus and Bifidobacterium. Historically used to produce fermented dairy products, certain strains of both genera are increasingly utilised to formulate other functional foods. As the consumers' understanding of the role of probiotics in health grows, so does the popularity of food containing them. The result of this phenomenon is an increase in the number of probiotic foods available for public consumption, including a rapidly-emerging variety of probiotic-containing non-dairy beverages, which provide a convenient way to improve and maintain health. However, the composition of non-dairy probiotic beverages can pose specific challenges to the survival of the health conferring microorganisms. To overcome these challenges, strain selection and protection techniques play an integral part in formulating a stable product. This review discusses non-dairy probiotic beverages, characteristics of an optimal beverage, and commonly used probiotic strains, including spore-forming bacteria. It also examines the most recent developments in probiotic encapsulation technology with focus on nano-fibre formation as a means of protecting viable cells. Utilising bacteria's natural armour or creating barrier mechanisms via encapsulation technology will fuel development of stable non-dairy probiotic beverages.

  10. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept).

    PubMed

    Taverniti, Valentina; Guglielmetti, Simone

    2011-08-01

    The probiotic approach represents a potentially effective and mild alternative strategy for the prevention and treatment of either inflammatory or allergic diseases. Several studies have shown that different bacterial strains can exert their probiotic abilities by influencing the host's immune system, thereby modulating immune responses. However, the emerging concern regarding safety problems arising from the extensive use of live microbial cells is enhancing the interest in non-viable microorganisms or microbial cell extracts, as they could eliminate shelf-life problems and reduce the risks of microbial translocation and infection. The purpose of this review is to provide an overview of the scientific literature concerning studies in which dead microbial cells or crude microbial cell fractions have been used as health-promoting agents. Particular attention will be given to the modulation of host immune responses. Possible mechanisms determining the effect on the immune system will also be discussed. Finally, in the light of the FAO/WHO definition of probiotics, indicating that the word 'probiotic' should be restricted to products that contain live microorganisms, and considering the scientific evidence indicating that inactivated microbes can positively affect human health, we propose the new term 'paraprobiotic' to indicate the use of inactivated microbial cells or cell fractions to confer a health benefit to the consumer.

  11. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains.

    PubMed

    Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine

    2012-02-24

    The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.

  12. Extremophiles and the search for extraterrestrial life.

    PubMed

    Cavicchioli, Ricardo

    2002-01-01

    Extremophiles thrive in ice, boiling water, acid, the water core of nuclear reactors, salt crystals, and toxic waste and in a range of other extreme habitats that were previously thought to be inhospitable for life. Extremophiles include representatives of all three domains (Bacteria, Archaea, and Eucarya); however, the majority are microorganisms, and a high proportion of these are Archaea. Knowledge of extremophile habitats is expanding the number and types of extraterrestrial locations that may be targeted for exploration. In addition, contemporary biological studies are being fueled by the increasing availability of genome sequences and associated functional studies of extremophiles. This is leading to the identification of new biomarkers, an accurate assessment of cellular evolution, insight into the ability of microorganisms to survive in meteorites and during periods of global extinction, and knowledge of how to process and examine environmental samples to detect viable life forms. This paper evaluates extremophiles and extreme environments in the context of astrobiology and the search for extraterrestrial life.

  13. A New Approach on Sampling Microorganisms from the Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Gunawan, B.; Lehnen, J. N.; Prince, J.; Bering, E., III; Rodrigues, D.

    2017-12-01

    University of Houston's Undergraduate Student Instrumentation Project (USIP) astrobiology group will attempt to provide a cross-sectional analysis of microorganisms in the lower stratosphere by collecting living microbial samples using a sterile and lightweight balloon-borne payload. Refer to poster by Dr. Edgar Bering in session ED032. The purpose of this research is two-fold: first, to design a new system that is capable of greater mass air intake, unlike the previous iterations where heavy and power-intensive pumps are used; and second, to provide proof of concept that live samples are accumulated in the upper atmosphere and are viable for extensive studies and consequent examination for their potential weather-altering characteristics. Multiple balloon deployments will be conducted to increase accuracy and to provide larger set of data. This paper will also discuss visual presentation of the payload along with analyzed information of the captured samples. Design details will be presented to NASA investigators for professional studies

  14. Viability and morphological changes of Acanthamoeba spp. cysts after treatment with Effective microorganisms (EM).

    PubMed

    Sampaotong, Tanitta; Lek-Uthai, Usa; Roongruangchai, Jantima; Roongruangchai, Kosol

    2016-06-01

    Acanthamoeba is a free-living opportunistic protozoan parasite that is found in diverse environments. It can cause keratitis, mostly related to inappropriate use of contact lenses, as well as life threatening diseases including encephalitis, disseminated sinusitis, and skin ulcers. This study investigated morphological changes and fine structures of the cyst form of Acanthamoeba spp. after treatment with effective microorganisms (EM™) using light and scanning electron microscopies. Acanthamoeba cysts treated with 1:2, 1:4, 1:6, and undiluted EM™ showed higher percentages of non-viable cysts than those treated with 1:8, 1:10, 1:100, 1:200, and 1:400 EM™ and at 5 days post-treatment developed from cystic stage to trophozoite stage. Acanthamoeba cysts treated at concentrations of 1:2, 1:4, 1:6, and undiluted EM™ exhibited cytoplasmic clumping and shrinkage of amoeba cells away from cyst walls. The effective EM™ concentration lethal to Acanthamoeba spp. cyst could provide information to monitor the environmental control system.

  15. The immediate and long-term effects of invasive and noninvasive pit and fissure sealing techniques on the microflora in occlusal fissures of human teeth.

    PubMed

    Kramer, P F; Zelante, F; Simionato, M R

    1993-01-01

    The purpose of this study was to evaluate the effect of acid conditioning and occlusal sealant on microbial colonization of pit and fissures submitted to ameloplasty or left intact. Human enamel blocks containing fissures prepared from the occlusal surfaces of unerupted third molars were implanted in occlusal fillings in molars of 12 patients for seven, 30, 60, and 120 days. After seven days of exposure to the oral environment, the pit and fissure blocks were removed and found to be colonized, mainly with gram-positive coccal flora. The acid-etching procedure itself reduced the number of cultivable microorganisms by about 95%. Subsequent application of occlusal sealant caused a gradual decrease of the remaining viable microorganism throughout the experiment. Despite the decrease of 100% after acid etching in most of the fissures submitted to ameloplasty, the occlusal sealant did not lead to a subsequent significant reduction.

  16. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.

    PubMed

    Gonçalves, Ana L; Pires, José C M; Simões, Manuel

    2016-01-01

    Cultivation of microalgae and cyanobacteria has been the focus of several research studies worldwide, due to the huge biotechnological potential of these photosynthetic microorganisms. However, production of these microorganisms is still not economically viable. One possible alternative to improve the economic feasibility of the process is the use of consortia between microalgae and/or cyanobacteria. In this study, Chlorella vulgaris, Pseudokirchneriella subcapitata and Microcystis aeruginosa were co-cultivated with Synechocystis salina to evaluate how dual-species cultures can influence biomass and lipid production and nutrients removal. Results have shown that the three studied consortia achieved higher biomass productivities than the individual cultures. Additionally, nitrogen and phosphorus consumption rates by the consortia provided final concentrations below the values established by European Union legislation for these nutrients. In the case of lipid productivities, higher values were determined when S. salina was co-cultivated with P. subcapitata and M. aeruginosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    PubMed

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Potential for intrinsic bioremediation of a DNT-contaminated aquifer

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.; Schumacher, J.G.

    1997-01-01

    Microorganisms indigenous to a shallow aquifer, which underlies an explosives-contaminated site, mineralized 28% of [U-ring-14C] 2,4–dinitrotoluene to 14CO2 within 28 days under aerobic conditions. Approximately 20% of added 2,4–dinitrotoluene remained undegraded at the end of the incubation while approximately 22% and 6% were transformed to 4–amino-2–nitrotoluene and 2–amino-4–nitrotoluene, respectively. In aquifer microcosms containing 2,6–dinitrotoluene, approximately 67% of the substrate remained undegraded and approximately 14% was transformed to 2–amino-6–nitrotoluene. The radiolabeled study indicated that about 8% of the 2,6–dinotrotoluene was mineralized to CO2. The demonstrated degradation and subsequent mineralization of dinitrotoluene compounds by aquifer microorganisms are consistent with the decline in dissolved dinitrotoluene concentrations observed along the general ground-water flowpath at the site. The results indicate that intrinsic bioremediation may be a viable alternative for remediating contaminated ground water at this site.

  19. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  20. Presence of aerobic micro-organisms and their influence on basic semen parameters in infertile men.

    PubMed

    Filipiak, E; Marchlewska, K; Oszukowska, E; Walczak-Jedrzejowska, R; Swierczynska-Cieplucha, A; Kula, K; Slowikowska-Hilczer, J

    2015-09-01

    Urogenital tract infections in males are one of the significant etiological factors in infertility. In this prospective study, 72 patients with abnormal semen parameters or any other symptoms of urogenital tract infection were examined. Semen analysis according to the WHO 2010 manual was performed together with microbial assessment: aerobic bacteria culture, Chlamydia antigen test, Candida culture, Ureaplasma and Mycoplasma-specific culture. In total, 69.4% of semen samples were positive for at least one micro-organism. Ureaplasma sp. was the most common micro-organism found in 33% of semen samples of infertile patients with suspected male genital tract infection. The 2nd most common micro-organisms were Enterococcus faecalis (12.5%) and Escherichia coli (12.5%), followed by Staphylococcus aureus (7%), Chlamydia trachomatis (7%) and Candida sp. (5.6%). Generally, bacteria were sensitive to at least one of the antibiotics tested. No statistically significant relationship was observed between the presence of aerobic micro-organisms in semen and basic semen parameters: volume, pH, concentration, total count, motility, vitality and morphology. © 2014 Blackwell Verlag GmbH.

  1. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  2. Potential of Aqueous Ozone to Control Aflatoxigenic Fungi in Brazil Nuts

    PubMed Central

    Morales-Valle, Héctor; Venâncio, Armando

    2013-01-01

    This study aimed to verify the use of aqueous ozone as alternative technology for fungal control. Brazil nuts sterilized were inoculated with either 1 × 106 or 1 × 107 conidia mL−1 of Aspergillus flavus (MUM 9201) to determine optimal treatment parameters and different aqueous ozone contact times. These assays showed that the effect of ozone is almost immediate against A. flavus, and the optimum ozone concentration depended on the number of initial viable spores on the shell. The remaining viable spores in the ozone solution were recorded, and the rate of inactivation for each treatment was determined by assessing the ratio between the cfu of each treatment and the control. The ozonized nuts were also cultured to recover the fungal population. Aqueous ozone was effective in reducing the conidia of A. flavus and the natural fungal population associated with Brazil nuts. Aqueous ozone presented a great potential to reduce microorganisms counts in Brazil nuts with a great potential use in packing houses for decontamination step. PMID:25937982

  3. Virulence of thermolable haemolysi tlh, gastroenteritis related pathogenicity tdh and trh of the pathogens Vibrio Parahemolyticus in Viable but Non-Culturable (VBNC) state.

    PubMed

    Zhong, Huamin; Zhong, Yukui; Deng, Qiulian; Zhou, Zhenwen; Guan, Xiaoshan; Yan, Muxia; Hu, Tingting; Luo, Mingyong

    2017-10-01

    In the Viable but Non-Culturable (VBNC) state, microorganisms may survive under severe external environment. In this study, the specificity and sensitivity of PMA-LAMP assay on the detection of Vibrio Parahemolyticus (V. parahemolyticus) has been developed and evaluated, with further application on a number of food-borne V. parahemolyticus strains. Six primers were designed for recognizing 8 distinct targeting on tlh, tdh and trh gene. Through specific penetration through the damaged cell membrane of dead cells and intercalating into DNA, PMA could prevent DNA amplification of dead bacteria from LAMP, which enabled the differentiation of bacteria between VBNC state and dead state. The established PMA-LAMP showed significant advantage in rapidity, sensitivity and specificity, compared with regular PCR assay. The applicability had also been verified, demonstrating the PMA-LAMP was capable of detection on V. parahaemolyticus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fungal biosynthesis of gold nanoparticles: mechanism and scale up

    PubMed Central

    Kitching, Michael; Ramani, Meghana; Marsili, Enrico

    2015-01-01

    Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. PMID:25154648

  5. Assessing the viability of microorganisms in the ballast water of vessels transiting the North Atlantic Ocean.

    PubMed

    Steichen, Jamie L; Quigg, Antonietta

    2015-12-15

    Testing phytoplankton viability within ballast tanks and receiving waters of ballast water discharge remain understudied. Potentially harmful dinoflagellates and diatoms are transported via ballast water to Galveston Bay, Texas (USA), home to three major ports: Houston, Texas City and Galveston. Ballast water from vessels transiting the North Atlantic Ocean was inoculated into treatments representing low and high salinity conditions similar to the Ports of Houston and Galveston respectively. Phytoplankton in ballast water growout experiments were deemed viable and showed growth in low and mid salinities with nutrient enrichment. Molecular methods identified several genera: Dinophysis, Gymnodinium, Gyrodinium, Heterocapsa, Peridinium, Scrippsiella, Chaetoceros and Nitzschia. These phytoplankton genera were previously identified in Galveston Bay except Scrippsiella. Phytoplankton, including those capable of forming harmful algal blooms leading to fish and shellfish kills, are transported to Galveston Bay via ballast water, and are viable when introduced to similar salinity conditions found in Galveston Bay ports. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation

    PubMed Central

    Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-01-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797

  7. Evaluation of the Efficacy of Disinfectant Footmats for the Reduction of Bacterial Contamination on Footwear in a Large Animal Veterinary Hospital.

    PubMed

    Hornig, K J; Burgess, B A; Saklou, N T; Johnson, V; Malmlov, A; Van Metre, D C; Morley, P S; Byers, S R

    2016-11-01

    Infection control is critical to providing high-quality patient care. Many veterinary teaching hospitals (VTHs) utilize footbaths or footmats at entrances and key control points throughout the facility to decrease trafficking of pathogenic microorganism on contaminated footwear. To compare efficacy of 4 disinfectants used in footmats for decreasing bacterial contamination of footwear in a large animal hospital. A single adult dairy cow was housed in a stall for 4 days to facilitate stall contamination with fecal material. Overboots were experimentally contaminated with organic material in a standardized manner. Each boot was randomly assigned to 1 of 5 treatments (no treatment, or exposure to 1 of 4 disinfectants: an accelerated peroxygen [AHP], a peroxygen [VIRKON], a quaternary ammonium [QUAT], and a phenolic disinfectant [PHENOLIC]) by stepping on a soaked footmat and collecting samples from boot soles. Generalized linear modeling was used to analyze differences in bacterial counts. Reductions in colony-forming units (CFUs) on treated boots ranged from no detectable reduction to 0.45 log 10 and varied by disinfectant. Percentage reductions in total bacterial counts generally were larger (albeit still modest) for AHP and QUAT disinfectants (range 37-45%) and smallest for the PHENOLIC (no detectable reduction). In general, use of disinfectant footmats was associated with significant reductions in viable bacteria on overboots-albeit with variable efficacy. Footmats may be useful adjuncts to cleaning and disinfection programs for decreasing trafficking of microorganisms throughout VTHs but should not be considered as a sole prevention method. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  8. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis.

    PubMed

    Parlapani, Foteini F; Kormas, Konstantinos Ar; Boziaris, Ioannis S

    2015-09-01

    Sea bream fillets are one of the most important value-added products of the seafood market. Fresh seafood spoils mainly owing to bacterial action. In this study an exploration of initial and spoilage microbiota of sea bream fillets stored under air and commercial modified atmosphere packaging (MAP) at 0 and 5 °C was conducted by 16S rRNA gene sequence analysis of isolates grown on plates. Sensory evaluation and enumeration of total viable counts and spoilage microorganisms were also conducted to determine shelf life and bacterial growth respectively. Different temperatures and atmospheres affected growth and synthesis of spoilage microbiota as well as shelf life. Shelf life under air at 0 and 5 °C was 14 and 5 days respectively, while under MAP it was 20 and 8 days respectively. Initial microbiota were dominated by Pseudomonas fluorescens, Psychrobacter and Macrococcus caseolyticus. Different temperatures and atmospheres affected the synthesis of spoilage microbiota. At the end of shelf life, different phylotypes of Pseudomonas closely related to Pseudomonas fragi were found to dominate in most cases, while Pseudomonas veronii dominated in fillets under MAP at 0 °C. Furthermore, in fillets under MAP at 5 °C, new dominant species such as Carnobacterium maltaromaticum, Carnobacterium divergens and Vagococcus fluvialis were revealed. Different temperature and atmospheric conditions affected bacterial growth, shelf life and the synthesis of spoilage microbiota. Molecular identification revealed species and strains of microorganisms that have not been reported before for sea bream fillets stored under various conditions, thus providing valuable information regarding microbiological spoilage. © 2014 Society of Chemical Industry.

  9. Verification of the efficiency of chemical disinfection and sanitation measures in in-building distribution systems.

    PubMed

    Lenz, J; Linke, S; Gemein, S; Exner, M; Gebel, J

    2010-06-01

    Previous investigations of biofilms, generated in a silicone tube model have shown that the number of colony forming units (CFU) can reach 10(7)/cm(2), the total cell count (TCC) of microorganisms can be up to 10(8)cells/cm(2). The present study focuses on the situation in in-building distribution systems. Different chemical disinfectants were tested for their efficacy on drinking water biofilms in silicone tubes: free chlorine (electrochemically activated), chlorine dioxide, hydrogen peroxide (H(2)O(2)), silver, and fruit acids. With regard to the widely differing manufacturers' instructions for the usage of their disinfectants three different variations of the silicone tube model were developed to simulate practical use conditions. First the continuous treatment, second the intermittent treatment, third the efficacy of external disinfection treatment and the monitoring for possible biofilm formation with the Hygiene-Monitor. The working experience showed that it is important to know how to handle the individual disinfectants. Every active ingredient has its own optimal application concerning its concentration, exposure time, physical parameters like pH, temperature or redox potential. When used correctly all products tested were able to reduce the CFU to a value below the detection limit. Most of the active ingredients could not significantly reduce the TCC/cm(2), which means that viable microorganisms may still be present in the system. Thus the question arises what happened with these cells? In some cases SEM pictures of the biofilm matrix after a successful disinfection still showed biofilm residues. According to these results, no general correlation between CFU/cm(2), TCC/cm(2) and the visualised biofilm matrix on the silicone tube surface (SEM) could be demonstrated after a treatment with disinfectants. Copyright 2010 Elsevier GmbH. All rights reserved.

  10. Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh.

    PubMed

    Chatli, Anshu S; Beri, Viraj; Sidhu, B S

    2008-06-01

    Phosphate solubilising microorganisms (PSM) (bacteria and fungi) associated with Salix alba Linn. from Lahaul and Spiti valleys of Himachal Pradesh were isolated on Pikovskaya (PVK), modified Pikovskaya (MPVK) and National Botanical Research Institute agar (NBRIP) media by spread plating. The viable colony count of P-solubilising bacteria (PSB) and fungi (PSF) was higher in rhizosphere than that of non-rhizosphere. The frequency of PSM was highest on MPVK followed by NBRIP and PVK agar. The maximum proportion of PSM out of total bacterial and fungal count was found in upper Keylong while the least in Rong Tong. The PSB frequently were Gram-positive, endosporeforming, motile rods and belonged to Bacillus sp. The PSF mainly belonged to Penicillium sp., Aspergillus fumigatus, A. niger, A. spp. and non-sporulating sterile. Amongst the isolates with high efficiency for tricalcium phosphate (TCP) solubilisation, seven bacterial and seven fungal isolates dissolved higher amount of P from North Carolina rock phosphate (NCRP) than Mussoorie rock phosphate (MRP) and Udaipur rock phosphate (URP). However, the organisms solubilised higher-P in NBRIP broth than PVK broth. SBC5 (Bacillus sp.) and SBC7 (Bacillus sp.) bacterial isolates exhibited maximun P solubilisation (40 and 33 μg ml(-1) respectively) whereas FC28 (Penicillium sp.) isolate (52.3 μg ml(-1)) amongst fungi while solubilising URP. The amount of P solubilised was positively correlated with the decrease in pH of medium. SBC5 (Bacillus sp.), SBC7 (Bacillus sp.) and SBC4 (Micrococcus) decreased the pH of medium from 6.8 to 6.08 while FC28 (Penicillium sp.) and FC39 (Penicillium sp.) isolates of fungi recorded maximum decrease in pH of medium from 6.8 to 5.96 in NBRIP broth.

  11. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation.

    PubMed

    Newcombe, David A; Schuerger, Andrew C; Benardini, James N; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-12-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.

  12. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications

    PubMed Central

    DeLeon-Rodriguez, Natasha; Lathem, Terry L.; Rodriguez-R, Luis M.; Barazesh, James M.; Anderson, Bruce E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Bergin, Michael; Nenes, Athanasios; Konstantinidis, Konstantinos T.

    2013-01-01

    The composition and prevalence of microorganisms in the middle-to-upper troposphere (8–15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth’s surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-μm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1–C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate. PMID:23359712

  13. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  14. Microbiological contamination of cubicle curtains in an out-patient podiatry clinic

    PubMed Central

    2010-01-01

    Background Exposure to potential pathogens on contaminated healthcare garments and curtains can occur through direct or indirect contact. This study aimed to identify the microorganisms present on podiatry clinic curtains and measure the contamination pre and post a standard hospital laundry process. Method Baseline swabs were taken to determine colony counts present on cubical curtains before laundering. Curtains were swabbed again immediately after, one and three weeks post laundering. Total colony counts were calculated and compared to baseline, with identification of micro-organisms. Results Total colony counts increased very slightly by 3% immediately after laundry, which was not statistically significant, and declined significantly (p = 0.0002) by 56% one-week post laundry. Three weeks post laundry colony counts had increased by 16%; although clinically relevant, this was not statistically significant. The two most frequent microorganisms present throughout were Coagulase Negative Staphylococcus and Micrococcus species. Laundering was not completely effective, as both species demonstrated no significant change following laundry. Conclusion This work suggests current laundry procedures may not be 100% effective in killing all microorganisms found on curtains, although a delayed decrease in total colony counts was evident. Cubicle curtains may act as a reservoir for microorganisms creating potential for cross contamination. This highlights the need for additional cleaning methods to decrease the risk of cross infection and the importance of maintaining good hand hygiene. PMID:21087486

  15. Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulcaricus.

    PubMed

    Santos, Mauricio I; Araujo-Andrade, Cuauhtémoc; Esparza-Ibarra, Edgar; Tymczyszyn, Elizabeth; Gómez-Zavaglia, Andrea

    2014-01-01

    Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was dehydrated on desiccators containing silica gel in the presence of 20% w/w of two types of galacto-oligosaccharides (GOS Biotempo and GOS Cup Oligo H-70®) and lactulose, until no changes in water desorption were detected. After rehydration, bacterial growth was monitored at 37°C by determining: (a) the absorbance at 600 nm and (b) the near infrared spectra (NIR). Principal component analysis (PCA) was then performed on the NIR spectra of samples dehydrated in all conditions. A multiparametric flow cytometry assay was carried out using carboxyfluorescein diacetate and propidium iodide probes to determine the relative composition of damaged, viable, and dead bacteria throughout the growth kinetics. The absorbance at 600 nm and the position of the second derivative band at ∼1370 nm were plotted against the time of incubation. The efficiency of the protectants was GOS Biotempo > GOS Cup Oligo H-70®  > lactulose. The better protectant capacity of GOS Biotempo was explained on the basis of the lower contribution of damaged cells immediately after rehydration (t = 0). PCA showed three groups along PC1, corresponding to the lag, exponential and stationary phases of growth, which explained 99% of the total variance. Along PC2, two groups were observed, corresponding to damaged or viable cells. The results obtained support the use of NIR to monitor the recovery of desiccated microorganisms in real time and without the need of chemical reagents. The use of GOS and lactulose as protectants in dehydration/rehydration processes was also supported. © 2014 American Institute of Chemical Engineers.

  16. Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions.

    PubMed

    Leclercq-Perlat, Marie-Noëlle; Buono, Frédéric; Lambert, Denis; Latrille, Eric; Spinnler, Henry-Eric; Corrieu, Georges

    2004-08-01

    A holistic approach of a mould cheese ripening is presented. The objective was to establish relationships between the different microbiological and biochemical changes during cheese ripening. Model cheeses were prepared from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two cheese-making trials with efficient control of environmental parameters were carried out and showed similar ripening characteristics. K. lactis grew rapidly between days 1 and 6 (generation time around 48 h). G. candidum grew exponentially between days 4 and 10 (generation time around 4.6 d). Brevi. linens also grew exponentially but after day 6 when Pen. camemberti mycelium began developing and the pH of the rind was close to 7. Its exponential growth presented 3 phases in relation to carbon and nitrogen substrate availability. Concentrations of Pen. camemberti mycelium were not followed by viable cell count but they were evaluated visually. The viable microorganism concentrations were well correlated with the carbon substrate concentrations in the core and in the rind. The lactose concentrations were negligible after 10 d ripening, and changes in lactate quantities were correlated with fungi flora. The pH of the inner part depended on NH3. Surface pH was significantly related to NH3 concentration and to fungi growth. The acid-soluble nitrogen (ASN) and non-protein nitrogen (NPN) indexes and NH3 concentrations of the rind were low until day 6, and then increased rapidly to follow the fungi concentrations until day 45. The ASN and NPN indexes and NH3 concentrations in the core were lower than in the rind and they showed the same evolution. G. candidum and Pen. camemberti populations have a major effect on proteolysis; nevertheless, K. lactis and Brevi. linens cell lysis also had an impact on proteolysis. Viable cell counts of K. lactis, G. candidum, Pen. camemberti and Brevi. linens were correlated with the environmental conditions, with proteolytic products and with carbon substrate assimilation. NH3 diffusion from surface to the cheese core during ripening was highly suspected. Interaction phenomena between microorganisms are discussed.

  17. Three-species biofilm model onto plasma-treated titanium implant surface.

    PubMed

    Matos, Adaias O; Ricomini-Filho, Antônio P; Beline, Thamara; Ogawa, Erika S; Costa-Oliveira, Bárbara E; de Almeida, Amanda B; Nociti Junior, Francisco H; Rangel, Elidiane C; da Cruz, Nilson C; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim A R

    2017-04-01

    In this study, titanium (Ti) was modified with biofunctional and novel surface by micro-arc oxidation (MAO) and glow discharge plasma (GDP) and we tested the development of a three-species periodontopatogenic biofilm onto the treated commercially-pure titanium (cpTi) surfaces. Machined and sandblasted surfaces were used as control group. Several techniques for surface characterizations and monoculture on bone tissue cells were performed. A multispecies biofilm composed of Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum was developed onto cpTi discs for 16.5h (early biofilm) and 64.5h (mature biofilm). The number of viable microorganisms and the composition of the extracellular matrix (proteins and carbohydrates) were determined. The biofilm organization was analyzed by scanning electron microscopy (SEM) and Confocal laser scanning microscopy (CLSM). In addition, MC3T3-E1 cells were cultured on the Ti surfaces and cell proliferation (MTT) and morphology (SEM) were assessed. MAO treatment produced oxide films rich in calcium and phosphorus with a volcano appearance while GDP treatment produced silicon-based smooth thin-film. Plasma treatments were able to increase the wettability of cpTi (p<0.05). An increase of surface roughness (p<0.05) and formation of anatase and rutile structures was noted after MAO treatment. GDP had the greatest surface free energy (p<0.05) while maintaining the surface roughness compared to the machined control (p>0.05). Plasma treatment did not affect the viable microorganisms counts, but the counts of F. nucleatum was lower for MAO treatment at early biofilm phase. Biofilm extracellular matrix was similar among the groups, excepted for GDP that presented the lowest protein content. Moreover, cell proliferation was not significantly affected by the experimental, except for MAO at 6days that resulted in an increased cell proliferative. Together, these findings indicate that plasma treatments are a viable and promising technology to treat bone-integrated dental implants as the new surfaces displayed improved mechanical and biological properties with no increase in biofilm proliferation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of impact stress on microbial recovery on an agar surface.

    PubMed Central

    Stewart, S L; Grinshpun, S A; Willeke, K; Terzieva, S; Ulevicius, V; Donnelly, J

    1995-01-01

    Microbial stress due to the impaction of microorganisms onto an agar collection surface was studied experimentally. The relative recovery rates of aerosolized Pseudomonas fluorescens and Micrococcus luteus were determined as a function of the impaction velocity by using a moving agar slide impactor operating over a flow rate range from 3.8 to 40 liters/min yielding impaction velocities from 24 to 250 m/s. As a reference, the sixth stage of the Andersen Six-Stage Viable Particle Sizing Sampler was used at its operating flow rate of 28.3 liters/min (24 m/s). At a collection efficiency of close to 100% for the agar slide impactor, an increase in sampling flow rate and, therefore, in impaction velocity produced a significant decline in the percentage of microorganisms recovered. Conversely, when the collection efficiency was less than 100%, greater recovery and lower injury rates occurred. The highest relative rate of recovery (approximately 51% for P. fluorescens and approximately 62% for M. luteus) was obtained on the complete (Trypticase soy agar) medium at 40 and 24 m/s (6.4 and 3.8 liters/min), respectively. M. luteus demonstrated less damage than P. fluorescens, suggesting the hardy nature of the gram-positive strain versus that of the gram-negative microorganism. Comparison of results from the agar slide and Andersen impactors at the same sampling velocity showed that recovery and injury due to collection depends not only on the magnitude of the impaction velocity but also on the degree to which the microorganisms may be embedded in the collection medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7747946

  19. Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials.

    PubMed

    Holzmeister, Ib; Schamel, Martha; Groll, Jürgen; Gbureck, Uwe; Vorndran, Elke

    2018-04-24

    Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Effects of estrogen administration on the colonization capability of lactobacilli and Escherichia coli in the urinary tracts of mice.

    PubMed

    Silva, Clara; Rey, Rosario; Elena Nader-Macías, María

    2004-01-01

    The use of probiotic microorganisms has been widely promoted in the last 20 yr. They have been used in the gastrointestinal tract as capsules or as fermented milks. The characteristics of the strains proposed as probiotics have been published or patented under an elaboration process. The first step in designing a probiotic product is to isolate and characterize strains with some beneficial properties. The second step is to determine the optimal conditions to obtain the highest amount of viable microorganisms, together with the study of the best conditions to produce antagonistic substances. Urinary tract infections (UTIs) constitute a common cause of illness in pre- and postmenopausal women. It was estimated that 40-50% of adult women suffer a cystitis during their life. Ninety percent of acquired ambulatory UTIs and 30% of nosocomial infections are produced by Escherichia coli. The healthy human urinary tract is free of microorganisms, except for the anterior urethra, which is colonized by indigenous microbiota. The vaginal environment is a dynamic and complex ecological system with a highly heterogeneous microflora; thus favorable conditions exist for the colonization process, which is also affected by factors external to the tissues. The distal urethra and periurethral areas are separated ecological niches, both covered by the vaginal secretions that contain approx 109 microorganisms/mL. In these secretions, members of the genus Lactobacillus are predominant. Bacterial colonization does not increase because of the urinary flux, which clears the bacterial cells from the outer surfaces, as well as other factors such as pH, osmolarity, and urea concentration.

  1. Engineering microbial factories for synthesis of value-added products

    PubMed Central

    Du, Jing; Shao, Zengyi; Zhao, Huimin

    2011-01-01

    Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed. PMID:21526386

  2. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomble, Yannick J; St. John, Peter C; Crowley, Michael F

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  3. Effects of Gelling Agent and Extracellular Signaling Molecules on the Culturability of Marine Bacteria

    PubMed Central

    Rygaard, Anita Mac; Thøgersen, Mariane Schmidt; Nielsen, Kristian Fog; Gram, Lone

    2017-01-01

    ABSTRACT Only 1% of marine bacteria are currently culturable using standard laboratory procedures, and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of this study was to investigate if improved cultivation conditions, including the use of an alternative gelling agent and supplementation with signaling molecules, improve the culturability of bacteria from seawater. Replacing agar with gellan gum improved viable counts 3- to 40-fold, depending on medium composition and incubation conditions, with a maximum of 6.6% culturability relative to direct cell counts. Through V4 amplicon sequencing we found that culturable diversity was also affected by a change in gelling agent, facilitating the growth of orders not culturable on agar-based substrates. Community analyses showed that communities grown on gellan gum substrates were significantly different from communities grown on agar and that they covered a larger fraction of the seawater community. Other factors, such as incubation temperature and time, had less obvious effects on viable counts and culturable diversity. Supplementation with acylated homoserine lactones (AHLs) did not have a positive effect on total viable counts or a strong effect on culturable diversity. However, low concentrations of AHLs increased the relative abundance of sphingobacteria. Hence, with alternative growth substrates, it is possible to significantly increase the number and diversity of cultured marine bacteria. IMPORTANCE Serious challenges to human health, such as the occurrence and spread of antibiotic resistance and an aging human population in need of bioactive pharmaceuticals, have revitalized the search for natural microbial products. The marine environment, representing the largest ecosystem in the biosphere, harbors an immense and virtually untapped microbial diversity producing unique bioactive compounds. However, we are currently able to cultivate only a minute fraction of this diversity. The lack of cultivated microbes is hampering not only bioprospecting efforts but also our general understanding of marine microbes. In this study, we present a means to increase the number and diversity of cultured bacteria from seawater, showing that relatively simple changes to medium components may facilitate the isolation and growth of hitherto unknown bacterial orders. PMID:28213548

  4. American Lobsters (Homarus Americanus) not Surviving During Air Transport: Evaluation of Microbial Spoilage

    PubMed Central

    Tirloni, Erica; Stella, Simone; Gennari, Mario; Colombo, Fabio

    2016-01-01

    Eighteen American lobsters (Homarus americanus), dead during air transport, were analysed in order to evaluate the microbial population of meat, gills and gut: no specific studies have ever been conducted so far on the microbiological quality of American lobsters’ meats in terms of spoilage microbiota. The meat samples showed very limited total viable counts, in almost all the cases below the level of 6 Log CFU/g, while higher loads were found, as expected, in gut and gills, the most probable source of contamination. These data could justify the possibility to commercialise these not-surviving subjects, without quality concerns for the consumers. Most of the isolates resulted to be clustered with type strains of Pseudoalteromonas spp. (43.1%) and Photobacterium spp. (24.1%), and in particular to species related to the natural marine environment. The distribution of the genera showed a marked inhomogeneity among the samples. The majority of the isolates identified resulted to possess proteolytic (69.3%) and lipolytic ability (75.5%), suggesting their potential spoilage ability. The maintanance of good hygienical practices, especially during the production of ready-to-eat lobsters-based products, and a proper storage could limit the possible replication of these microorganisms. PMID:27800442

  5. Comparative study of microbiological, chemical and sensory properties of kefirs produced in Estonia, Latvia and Lithuania.

    PubMed

    Anton, Dea; Raudsepp, Piret; Roasto, Mati; Meremäe, Kadrin; Kuusik, Sirje; Toomik, Peeter; Elias, Priit; Laikoja, Katrin; Kaart, Tanel; Lepiku, Martin; Püssa, Tõnu

    2016-02-01

    In the current study the microbiological, sensory and chemical properties of 24 kefirs (12 producers) from Estonian, Latvian and Lithuanian retail market were determined using gas chromatography (GC), high performance liquid chromatography (HPLC-MS/MS-Q-TOF and LC-ion trap MS/MS), spectrophotometry and other methods. Antihypertensive, angiotensin-converting enzyme (ACE) inhibiting, antioxidant and antibacterial peptides were found in the kefir samples. According to the results of principal component analysis of 200 most abundant compounds obtained with HPLC-MS/MS-Q-TOF analysis, Estonian kefirs differed from the rest. Kefirs of Latvian and Lithuanian origin showed similarities in several characteristics, probably related to the starter cultures and technological processes. The fatty acids composition of all Baltic kefirs was uniform. The antioxidant capacity of the kefirs varied slightly, whereas intermediate positive correlation (r = 0.32, P < 0.05) was found between antioxidativity and total bacterial count. The lipid oxidation level, estimated as the content of linoleic and oleic acid primary oxidation products, oxylipins, was very low in all studied kefirs. Only one third of analysed kefirs met the requirements of the minimum sum of viable microorganisms, indicated in the Codex Standard for Fermented Milks.

  6. American Lobsters (Homarus Americanus) not Surviving During Air Transport: Evaluation of Microbial Spoilage.

    PubMed

    Tirloni, Erica; Stella, Simone; Gennari, Mario; Colombo, Fabio; Bernardi, Cristian

    2016-04-19

    Eighteen American lobsters ( Homarus americanus ), dead during air transport, were analysed in order to evaluate the microbial population of meat, gills and gut: no specific studies have ever been conducted so far on the microbiological quality of American lobsters' meats in terms of spoilage microbiota. The meat samples showed very limited total viable counts, in almost all the cases below the level of 6 Log CFU/g, while higher loads were found, as expected, in gut and gills, the most probable source of contamination. These data could justify the possibility to commercialise these not-surviving subjects, without quality concerns for the consumers. Most of the isolates resulted to be clustered with type strains of Pseudoalteromonas spp. (43.1%) and Photobacterium spp. (24.1%), and in particular to species related to the natural marine environment. The distribution of the genera showed a marked inhomogeneity among the samples. The majority of the isolates identified resulted to possess proteolytic (69.3%) and lipolytic ability (75.5%), suggesting their potential spoilage ability. The maintanance of good hygienical practices, especially during the production of ready-to-eat lobsters-based products, and a proper storage could limit the possible replication of these microorganisms.

  7. Comparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy, P.S.; Haldeman, D.L.; Hall, D.H.

    1992-10-01

    One water and three rock samples were taken from a mined tunnel system, U12n, in Rainier Mesa at the Nevada Test Site. Endolithic microorganisms were cultured from ashfall tuff, which was crushed and made into slurries with a formulation of artificial pore water, on R2A agar plates. Microbial counts ranged from 10{sup 2} viable cells per ml. Many of the isolates were very small (<1{mu}m) when viewed in the rock matrix and remained small even when cultured. Most were gram-negative rods. Individual isolates were profiled by API-NFT strip number, antibiotic and metal resistance patterns, and colony and cellular morphologies. Threemore » identification systems, API-NFT strips, BIOLOG, and MIDI, were compared. Each system identified only a small percentage of the total isolates, and in only seven cases were the isolates identified the same way by more than one system. The same genus was identified in three of these cases, but different species were indicated. The genus Pseudomonas was the most commonly identified. The isolate profiles and the three identification systems demonstrated that water isolates were considerably different from endolithic isolates.« less

  8. Abundance and diversity of microbial inhabitants in European spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Pukall, Rüdiger; Wirth, Reinhard; Moissl-Eichinger, Christine

    2012-06-01

    The determination of the microbial load of a spacecraft en route to interesting extraterrestrial environments is mandatory and currently based on the culturable, heat-shock-surviving portion of microbial contaminants. Our study compared these classical bioburden measurements as required by NASA's and ESA's guidelines for the microbial examination of flight hardware, with molecular analysis methods (16S rRNA gene cloning and quantitative PCR) to further develop our understanding of the diversity and abundance of the microbial communities of spacecraft-associated clean rooms. Three samplings of the Herschel Space Observatory and its surrounding clean rooms were performed in two different European facilities. Molecular analyses detected a broad diversity of microbes typically found in the human microbiome with three bacterial genera (Staphylococcus, Propionibacterium, and Brevundimonas) common to all three locations. Bioburden measurements revealed a low, but heterogeneous, abundance of spore-forming and other heat-resistant microorganisms. Total cell numbers estimated by quantitative real-time PCR were typically 3 orders of magnitude greater than those determined by viable counts, which indicates a tendency for traditional methods to underestimate the extent of clean room bioburden. Furthermore, the molecular methods allowed the detection of a much broader diversity than traditional culture-based methods.

  9. Fungal monitoring of the indoor air of the Museo de La Plata Herbarium, Argentina.

    PubMed

    Mallo, Andrea C; Elíades, Lorena A; Nitiu, Daniela S; Saparrat, Mario C N

    Biological agents, such as fungal spores in the air in places where scientific collections are stored, can attack and deteriorate them. The aim of this study was to gather information on the indoor air quality of the Herbarium of Vascular Plants of the Museo de Ciencias Naturales de La Plata, Argentina, in relation to fungal propagules and inert particles. This study was made using a volumetric system and two complementary sampling methods: (1) a non-viable method for direct evaluation, and (2) a viable method by culture for viable fungal propagules. The non-viable method led to ten spore morphotypes being found from related fungal sources. A total of 4401.88spores/m 3 and 32135.18 inert suspended particles/m 3 were recorded. The viable method led to the finding of nine fungal taxa as viable spores that mostly belonged to anamorphic forms of Ascomycota, although the pigmented yeast Rhodotorula F.C. Harrison (Basidiomycota) was also found. A total count of 40,500fungal CFU/m 3 air was estimated for all the sites sampled. Both the non-viable and viable sampling methods were necessary to monitor the bio-aerosol load in the La Plata Herbarium. The indoor air of this institution seems to be reasonably adequate for the conservation of vascular plants due to the low indoor/outdoor index, low concentrations of air spores, and/or lack of indicators of moisture problems. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Short communication: Inactivation of microbial contaminants in raw milk La Serena cheese by high-pressure treatments.

    PubMed

    Arqués, J L; Garde, S; Gaya, P; Medina, M; Nuñez, M

    2006-03-01

    La Serena cheese, a Spanish variety made from Merino ewes' raw milk, has a high pH value, low salt content, and high moisture, conditions that are all favorable for growth and survival of contaminating microorganisms, including pathogens. To improve its microbiological quality and safety, high-pressure treatments at 300 or 400 MPa for 10 min at 10 degrees C were applied to 2 batches of La Serena cheese on d 2 or 50 of ripening. Cheese treated on d 2 at 300 MPa showed viable aerobic counts that were 0.99 log units lower than those for control cheese on d 3 and showed counts of enterococci, coagulase-positive staphylococci, gram-negative bacteria, and coliforms that were 2.05, 0.49, 3.14, and 4.13 log units lower, respectively, than control cheese. For cheese treated on d 2 at 400 MPa, the respective reductions in counts were 2.02, 2.68, 1.45, 3.96, and 5.50 log units. On d 60, viable aerobic counts in cheese treated on d 50 at 300 MPa were 0.50 log units lower than those in control cheese, and counts of enterococci, gram-negative bacteria, and coliforms were 1.37, 2.30, and 4.85 log units lower, respectively. For cheese treated on d 50 at 400 MPa, the respective reductions in counts were 1.29, 1.98, 4.47, and > 5 log units. High-pressure treatments at 300 or 400 MPa on d 2 or 50 reduced significantly the counts of undesirable microorganisms, improving the microbiological quality and safety of La Serena cheese immediately after treatment and at the end of the ripening period.

  11. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid.

    PubMed

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg; Yuan, Zhiguo

    2015-03-01

    Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.

    PubMed

    Lindgren, T; Norbäck, D; Wieslander, G

    2007-06-01

    The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.

  13. Power limits for microbial life.

    PubMed

    LaRowe, Douglas E; Amend, Jan P

    2015-01-01

    To better understand the origin, evolution, and extent of life, we seek to determine the minimum flux of energy needed for organisms to remain viable. Despite the difficulties associated with direct measurement of the power limits for life, it is possible to use existing data and models to constrain the minimum flux of energy required to sustain microorganisms. Here, a we apply a bioenergetic model to a well characterized marine sedimentary environment in order to quantify the amount of power organisms use in an ultralow-energy setting. In particular, we show a direct link between power consumption in this environment and the amount of biomass (cells cm(-3)) found in it. The power supply resulting from the aerobic degradation of particular organic carbon (POC) at IODP Site U1370 in the South Pacific Gyre is between ∼10(-12) and 10(-16) W cm(-3). The rates of POC degradation are calculated using a continuum model while Gibbs energies have been computed using geochemical data describing the sediment as a function of depth. Although laboratory-determined values of maintenance power do a poor job of representing the amount of biomass in U1370 sediments, the number of cells per cm(-3) can be well-captured using a maintenance power, 190 zW cell(-1), two orders of magnitude lower than the lowest value reported in the literature. In addition, we have combined cell counts and calculated power supplies to determine that, on average, the microorganisms at Site U1370 require 50-3500 zW cell(-1), with most values under ∼300 zW cell(-1). Furthermore, we carried out an analysis of the absolute minimum power requirement for a single cell to remain viable to be on the order of 1 zW cell(-1).

  14. PCR Based Microbial Monitor for Analysis of Recycled Water Aboard the ISSA: Issues and Prospects

    NASA Technical Reports Server (NTRS)

    Cassell, Gail H.; Lefkowitz, Elliot J.; Glass, John I.

    1995-01-01

    The monitoring of spacecraft life support systems for the presence of health threatening microorganisms is paramount for crew well being and successful completion of missions. Development of technology to monitor spacecraft recycled water based on detection and identification of the genetic material of contaminating microorganisms and viruses would be a substantial improvement over current NASA plans to monitor recycled water samples that call for the use of conventional microbiology techniques which are slow, insensitive, and labor intensive. The union of the molecular biology techniques of DNA probe hybridization and polymerase chain reaction (PCR) offers a powerful method for the detection, identification, and quantification of microorganisms and viruses. This technology is theoretically capable of assaying samples in as little as two hours with specificity and sensitivity unmatched by any other method. A major advance in probe-hybridization/PCR has come about in a technology called TaqMan(TM), which was invented by Perkin Elmer. Instrumentation using TaqMan concepts is evolving towards devices that could meet NASA's needs of size, low power use, and simplicity of operation. The chemistry and molecular biology needed to utilize these probe-hybridization/PCR instruments must evolve in parallel with the hardware. The following issues of chemistry and biology must be addressed in developing a monitor: Early in the development of a PCR-based microbial monitor it will be necessary to decide how many and which organisms does the system need the capacity to detect. We propose a set of 17 different tests that would detect groups of bacteria and fungus, as well as specific eukaryotic parasites and viruses; In order to use the great sensitivity of PCR it will be necessary to concentrate water samples using filtration. If a lower limit of detection of 1 microorganism per 100 ml is required then the microbes in a 100 ml sample must be concentrated into a volume that can be added to a PCR assay; There are not likely to be contaminants in ISSA recycled water that would inhibit PCR resulting in false-negative results; The TaqMan PCR product detection system is the most promising method for developing a rapid, highly automated gene-based microbial monitoring system. The method is inherently quantitative. NASA and other government agencies have invested in other technologies that, although potentially could lead to revolutionary advances, are not likely to mature in the next 5 years into working systems; PCR-based methods cannot distinguish between DNA or RNA of a viable microorganism and that of a non-viable organism. This may or may not be an important issue with reclaimed water on the ISSA. The recycling system probably damages the capacity of the genetic material of any bacteria or viruses killed during processing to serve as a template in a PCR desinged to amplify a large segment of DNA (less than 650 base pairs). If necessary, vital dye staining could be used in addition to PCR, to enumerate the viable cells in a water sample; The quality control methods have been developed to insure that PCR's are working properly, and that reactions are not contaminated with PCR carryover products which could lead to the generation of false-positive results; and The sequences of the small rRNA subunit gene for a large number of microorganisms are known, and they consititue the best database for rational development of the oligonucleotide reagents that give PCR its great specificity. From those gene sequences, sets of oligonucleotide primers for PCR and Taqman detection that could be used in a NASA microbial monitor were constructed using computer based methods. In addition to space utilization, a microbial monitior will have tremendous terrestrial applications. Analysis of patient samples for microbial pathogens, testing industrial effluent for biofouling bacteria, and detection biological warfare agents on the battlefield are but a few of the diverse potential uses for this technology. Once fully developed, gene-based microbial monitors will become the fundamental tool in every lab that tests for microbial contaminants, and serve as a powerful weapon in mankind's war with the germ world.

  15. From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms

    PubMed Central

    Parnell, J. Jacob; Berka, Randy; Young, Hugh A.; Sturino, Joseph M.; Kang, Yaowei; Barnhart, D. M.; DiLeo, Matthew V.

    2016-01-01

    Any successful strategy aimed at enhancing crop productivity with microbial products ultimately relies on the ability to scale at regional to global levels. Microorganisms that show promise in the lab may lack key characteristics for widespread adoption in sustainable and productive agricultural systems. This paper provides an overview of critical considerations involved with taking a strain from discovery to the farmer’s field. In addition, we review some of the most effective microbial products on the market today, explore the reasons for their success and outline some of the major challenges involved in industrial production and commercialization of beneficial strains for widespread agricultural application. General processes associated with commercializing viable microbial products are discussed in two broad categories, biofertility inoculants and biocontrol products. Specifically, we address what farmers desire in potential microbial products, how mode of action informs decisions on product applications, the influence of variation in laboratory and field study data, challenges with scaling for mass production, and the importance of consistent efficacy, product stability and quality. In order to make a significant impact on global sustainable agriculture, the implementation of plant beneficial microorganisms will require a more seamless transition between laboratory and farm application. Early attention to the challenges presented here will improve the likelihood of developing effective microbial products to improve crop yields, decrease disease severity, and help to feed an increasingly hungry planet. PMID:27540383

  16. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model.

    PubMed

    Filio-Rodríguez, Georgina; Estrada-García, Iris; Arce-Paredes, Patricia; Moreno-Altamirano, María M; Islas-Trujillo, Sergio; Ponce-Regalado, M Dolores; Rojas-Espinosa, Oscar

    2017-10-01

    In 2004, a novel mechanism of cellular death, called 'NETosis', was described in neutrophils. This mechanism, different from necrosis and apoptosis, is characterized by the release of chromatin webs admixed with microbicidal granular proteins and peptides (NETs). NETs trap and kill a variety of microorganisms. Diverse microorganisms, including Mycobacterium tuberculosis, are NET inducers in vitro. The aim of this study was to examine whether M. tuberculosis can also induce NETs in vivo and if the NETs are bactericidal to the microorganism. Guinea pigs were intradermally inoculated with M. tuberculosis H37Rv, and the production of NETs was investigated at several time points thereafter. NETs were detected as early as 30 min post-inoculation and were clearly evident by 4 h post-inoculation. NETs produced in vivo contained DNA, myeloperoxidase, elastase, histones, ROS and acid-fast bacilli. Viable and heat-killed M. tuberculosis, as well as Mycobacterium bovis BCG were efficient NET inducers, as were unilamellar liposomes prepared with lipids from M. tuberculosis. In vitro, guinea pig neutrophils also produced NETs in response to M. tuberculosis. However, neither the in vivo nor the in vitro-produced NETs were able to kill M. tuberculosis. Nevertheless, in vivo, neutrophils might propitiate recruitment and activation of more efficient microbicidal cells.

  17. Microwave discharge electrodeless lamps (MDELs). Part IX. A novel MDEL photoreactor for the photolytic and chemical oxidation treatment of contaminated wastewaters.

    PubMed

    Horikoshi, Satoshi; Tsuchida, Akihiro; Shinomiya, Tomohiro; Serpone, Nick

    2015-12-01

    This article reports on the fabrication and enhanced performance of a novel microwave discharge electrodeless lamp (MDEL) consisting of a three layered cylindrical structure that was effective in the remediation of wastewater containing the 2,4-D herbicide and the near total sterilization of bacteria-contaminated pond water (E. coli and other microorganisms) through photolysis with the emitted vacuum-UV (185 nm) and UVC (254 nm) light from the MDEL and through chemical oxidation with reactive oxygen species (ROS) produced by the photolysis of dioxygen and air oxygen through one of the photoreactors. The flow rates of the 1.0 L contaminated waters were 0.6 and 1.2 L min(-1). The integrated UV/ROSO2 and UV/ROSair methods used to carry out the degradation of 2,4-D and sterilization processes were more effective than either the UV method alone or the ROSO2 and ROSair methods for short time periods (5 or 8 min). At a lower flow rate, 79% of 2,4-D was degraded by the UV/ROSO2 method and 55% by UV/ROSair after 8 min. At a faster flow rate of 1.2 L min(-1), degradation of 2,4-D in 1.0 L volume of water was 84% and 77% complete by the UV/ROSO2 and the UV/ROSair method, respectively, after 8 min of irradiation. The number of kills of E. coli bacteria was nearly quantitative (98 and 99%) by the UV/ROSO2 and UV/ROSair methods after treating the contaminated water for 5 min. The decrease of total viable microorganisms in pond water was 90% and 80% after 5 min of microwave irradiation at a flow rate of 1.2 L min(-1) by the integrated methods UV/ROSO2 and UV/ROSair, respectively. The rate of flow of oxygen gas through the photoreactor impacted the extent of degradation and the related dynamics of the 2,4-D herbicide.

  18. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  19. Fluorine 18 fluorodeoxyglucose PET/CT volume-based indices in locally advanced non-small cell lung cancer: prediction of residual viable tumor after induction chemotherapy.

    PubMed

    Soussan, Michael; Cyrta, Joanna; Pouliquen, Christelle; Chouahnia, Kader; Orlhac, Fanny; Martinod, Emmanuel; Eder, Véronique; Morère, Jean-François; Buvat, Irène

    2014-09-01

    To study whether volume-based indices of fluorine 18 fluorodeoxyglucose positron emission tomographic (PET)/computed tomographic (CT) imaging is an accurate tool to predict the amount of residual viable tumor after induction chemotherapy in patients with locally advanced non-small cell lung cancer (NSCLC). This study was approved by institutional review board with waivers of informed consent. Twenty-two patients with locally advanced NSCLC underwent surgery after induction chemotherapy. All had pre- and posttreatment FDG PET/CT scans. CT largest diameter, CT volume, maximum standardized uptake value (SUVmax), mean SUV (SUVmean), metabolic tumor volume (TV), and total lesion glycolysis of primary tumor were calculated. Changes in tumor measurements were determined by dividing follow-up by baseline measurement (ratio index). Amounts of residual viable tumor, necrosis, fibrous tissue, inflammatory infiltrate, and Ki-67 proliferative index were estimated on resected tumor. Correlations between imaging indices and histologic parameters were estimated by using Spearman correlation coefficients or Mann-Whitney tests. No baseline or posttreatment indices correlated with percentage of residual viable tumor. TV ratio was the only index that correlated with percentage of residual viable tumor (r = 0.61 [95% confidence interval: 0.24, 0.81]; P = .003). Conversely, SUVmax and SUVmean ratios were only indices correlated with Ki-67 (r = 0.62 [95% confidence interval: 0.24, 0.82]; P = .003; and r = 0.60 [95% confidence interval: 0.21, 0.81]; P = .004, respectively). Total lesion glycolysis ratio was moderately correlated with residual viable tumor (r = 0.53 [95% confidence interval: 0.13, 0.78]; P = .01) and with Ki-67 (r = 0.57 [95% confidence interval: 0.18, 0.80]; P = .006). No ratios were correlated with presence of inflammatory infiltrate or foamy macrophages. TV and total lesion glycolysis ratios were the only indices correlated with residual viable tumor after induction chemotherapy in locally advanced NSCLC.

  20. A comparison of legionella and other bacteria concentrations in cooling tower water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappabianca, R.M.; Jurinski, N.B.; Jurinski, J.B.

    1994-05-01

    A field study was conducted in which water samples collected from air conditioning cooling water reservoirs of high-rise buildings throughout an urban area were assayed for Legionella and for total bacteria. Buildings included within the study had ongoing biocidal treatment programs for the cooling towers. Separate sample analyses were performed to measure the viable colony concentrations of total bacteria and of Legionella in the process waters. The occurrence and viable counts of Legionella in 304 environmental water samples were determined by inoculating them onto plates of buffered charcoal yeast extract (BCYE) agar medium (a presumptive screening method). The samples weremore » collected during summer months between July and September. BCYE plate cultures of 50 (16.4%) of the samples yielded Legionella with viable counts ranging from 2 to 608 colony forming units per milliliter. In the water samples, 281 (92.4%) yielded viable counts of bacteria that ranged from 9 to 1.2 x 10{sup 6} per milliliter. This study demonstrates that Legionella are commonly present in the water of air conditioning cooling towers and that there is no significant correlation between concurrently sampled culture plate counts of Legionella and total bacteria plate counts. Correspondingly, there is no demonstrated validity for use of total bacterial counts as an inferential surrogate for the concentration of Legionella in the water. 19 refs., 3 figs., 1 tab.« less

  1. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds

    PubMed Central

    Garcia-Lopez, Eva; Cid, Cristina

    2017-01-01

    Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active. PMID:28804477

  2. Bioaerosol exposure assessment in the workplace: the past, present and recent advances.

    PubMed

    Eduard, Wijnand; Heederik, Dick; Duchaine, Caroline; Green, Brett James

    2012-02-01

    Louis Pasteur described the first measurements of airborne microorganisms in 1861. A century later, the inhalation of spores from thermophilic microorganisms was shown to induce attacks of farmers' lung in patients with this disease, while endotoxins originating from Gram-negative bacteria were identified as causal agents for byssinosis in cotton workers. Further epidemiological and toxicological studies have demonstrated inflammatory, respiratory, and pathogenic effects following exposure to bioaerosols. Exposure assessment is often confounded by the diversity of bioaerosol agents in the environment. Microorganisms represent a highly diverse group that may vary in toxicity. Fungi and bacteria are mainly quantified as broad groups using a variety of viable and nonviable assessment methods. Endotoxins and β(1 → 3)-glucans are mainly measured by their activity in the Limulus amebocyte lysate assay, enzymes by immuno-chemical methods and mycotoxins by liquid chromatography-mass spectrometry. Few health-based occupational exposure limits (OELs) are available for risk assessment. For endotoxins, a health-based OEL of 90 endotoxin units m(-3) has been proposed in the Netherlands. A criteria document for fungal spores recently proposed a lowest observed effect level of 100,000 spores m(-3) for non-pathogenic and non-mycotoxin producing species based on inflammatory respiratory effects. Recent developments in bioaerosol assessment were presented at the Organic Dust Tromsø Symposium including molecular biological methods for infectious agents and organisms that are difficult to cultivate; studies of submicronic and hyphal fragments from fungi; the effect of biodiversity of microorganisms in asthma studies; and new/improved measurement methods for fungal antigens, enzymes and allergens. Although exposure assessment of bioaerosol agents is complex and limited by the availability of methods and criteria, the field is rapidly evolving.

  3. Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site.

    PubMed

    Pitonzo, B J; Amy, P S; Rudin, M

    1999-07-01

    A time-course experiment was conducted to evaluate the effects of gamma radiation on the indigenous microbiota present in rock obtained from Yucca Mountain, Nevada Test Site. Microcosms were constructed by placing pulverized Yucca Mountain rock in polystyrene cylinders. Continuous exposure (96 h) at a dose rate of 1.63 Gy/min was used to mimic the near-field environment surrounding waste canisters. The expected maximum surface dose rate from one unbreached canister designed to contain spent nuclear fuels is 0.06 Gy/min. Considering the current repository packing design, multiple canisters within one vault, the cumulative dose rate may well approach that used in this experiment. The microbial communities were characterized after receiving cumulative doses of 0, 0.098, 0. 58, 2.33, 4.67, 7.01 and 9.34 kGy. Radiation-resistant microorganisms in the pulverized rock became viable but nonculturable (VBNC) after a cumulative dose of 2.33 kGy. VBNC microorganisms lose the ability to grow on media on which they have routinely been cultured in response to the environmental stress imposed (i.e. radiation) but can be detected throughout the time course using direct fluorescence microscopy techniques. Two representative exopolysaccharide-producing isolates from Yucca Mountain were exposed to the same radiation regimen in sand microcosms. One isolate was much more radiation-resistant than the other, but both had greater resistance than the general microbial community based on culturable counts. However, when respiring cell counts (VBNC) were compared after irradiation, the results would indicate much more radiation resistance of the individual isolates and the microbial community in general. These results have significant implications for underground storage of nuclear waste as they indicate that indigenous microorganisms are capable of surviving gamma irradiation in a VBNC state.

  4. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds.

    PubMed

    Garcia-Lopez, Eva; Cid, Cristina

    2017-01-01

    Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.

  5. Isolation, characterization, and metabolism of microorganisms indigenous to subterranean oil-bearing formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadpour, A.

    This research develops information on the microflora indigenous to subterranean oil reservoirs, with special emphasis on its potential role in microbial enhanced oil recovery (MEOR). The following studies were performed: (a) to quantify and characterize the microbial species indigenous to several different oil-bearing formations, (b) to determine the ability of microbial isolates to utilize various carbons and nitrogen sources and identify by-products that may be useful in MEOR processes, (c) to determine whether sulfate-reducing bacteria are indigenous to petroleum reservoirs, (d) to determine whether ultramicrobacteria are indigenous to petroleum reservoirs, and (e) to determine the ability of indigenous microorganisms inmore » intact cores to grow with the addition of supplemental nutrients. Reservoir depth from which the 7 sample cores were obtained ranged from 805 ft to 14,596 ft., all seven cores containing viable microorganisms with ultramicrobacteria in two of the seven cores. No sulfate-reducing isolates were obtained. Results showed that the indigenous microflora of the oil reservoirs either as a pure or as a mixed microbial cultures can and will grow under anaerobic conditions and will produce substances useful in recovering oil. The cultures also colonized stratal materials to produce by-products of importance in MEOR. The addition of supplemental nitrate ions and orthophosphate ions to the injection water resulted in an increase in microbial numbers, the production of gases, and the production of acids in the effluent from the cores. These events were synchronized with release of the fine particles and the release of oil from the core. The results support the concept that microorganisms indigenous to oil-bearing formations valuable in enhancing oil recovery if properly supplied with supplemental nutrients. No adverse environmental effects will results from either using the supplemental nutrients or producing the microbial by-products.« less

  6. Emission of bacterial bioaerosols from a composting facility in Maharashtra, India.

    PubMed

    Pahari, Arnab Kumar; Dasgupta, Debdeep; Patil, Rashmi S; Mukherji, Suparna

    2016-07-01

    This study was undertaken to quantify and characterize size-segregated bacterial bioaerosols both on-site and off-site of a waste treatment facility (WTF) in Maharashtra employing windrow composting. Viable bacterial bioaerosols on nutrient agar (NA) and actinomycetes isolation agar (AIA) were quantified after sampling using Anderson-six stage impactor. Viable bacterial bioaerosols were identified based on 16S rDNA sequencing. Approximately, 16-34% of the total viable bacteria collected at the WTF were in the size range 0.65-2.1μm that can penetrate deep into the respiratory tract and also represents bacteria present in free form. Thus, 66-84% of bacterial bioaerosols were associated with coarse airborne particles greater than 2.1μm. A total of 24 bacterial species were isolated and characterized through gram staining. Among these 25% were gram negative and 75% were gram positive. The predominant bacterial genera were Bacillus, Streptococcus, Staphylococcus, Acinetobacter and Kocuria. The mean on-site concentration of total viable bacteria on NA and AIA and airborne particles (PM2.5 and PM10) were higher than the corresponding off-site values. The mean on-site concentration of viable bacteria on NA and AIA were in the range of 3.8×10(3) to 5.4×10(4)CFU/m(3) and 9.8×10(3) to 1.2×10(5)CFU/m(3), respectively, during activity period. Good correlation (R(2)=0.999) was observed between total bioaerosols and aerosols (PM10) collected using Anderson impactor and High volume sampler, respectively. Sampling size segregated aerosols using the Siotus personal cascade impactor indicated higher association of bacteria with the coarse fraction (greater than 2.5μm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains

    PubMed Central

    2012-01-01

    Background The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials Materials and methods In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). Results All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. Conclusion The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections. PMID:22364123

  8. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria.

    PubMed

    Amund, O D

    2016-09-01

    Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.

  9. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: extended incubation periods needed for culture-based assays

    USGS Publications Warehouse

    Griffin, Dale W.

    2008-01-01

    On 13 August 2004, an atmospheric sample was collected at an altitude of 20,000 m along a west to east transect over the continental United States by NASA’s Stratospheric and Cosmic Dust Program. This sample was then shipped to the US Geological Survey’s Global Desert Dust program for microbiological analyses. This sample, which was plated on a low nutrient agar to determine if cultivable microorganisms were present, produced 590 small yellow to off-white colonies after approximately 7 weeks of incubation at room-temperature. Of 50 colonies selected for identification using 16S rRNA sequencing, 41 belonged to the family Micrococcaceae, seven to the family Microbacteriaceae, one to the genus Staphylococcus, and one to the genus Brevibacterium. All of the isolates identified were non-spore-forming pigmented bacteria, and their presence in this sample illustrate that it is not unusual to recover viable microbes at extreme altitudes. Additionally, the extended period required to initiate growth demonstrates the need for lengthy incubation periods when analyzing high-altitude samples for cultivable microorganisms.

  10. Biochemical mutagens affect the preservation of fungi and biodiversity estimations.

    PubMed

    Paterson, R Russell M; Lima, Nelson

    2013-01-01

    Many fungi have significant industrial applications or biosafety concerns and maintaining the original characteristics is essential. The preserved fungi have to represent the situation in nature for posterity, biodiversity estimations, and taxonomic research. However, spontaneous fungal mutations and secondary metabolites affecting producing fungi are well known. There is increasing interest in the preservation of microbes in Biological Resource Centers (BRC) to ensure that the organisms remain viable and stable genetically. It would be anathema if they contacted mutagens routinely. However, for the purpose of this discussion, there are three potential sources of biochemical mutagens when obtaining individual fungi from the environment: (a) mixtures of microorganisms are plated routinely onto growth media containing mutagenic antibiotics to control overgrowth by contaminants, (b) the microbial mixtures may contain microorganisms capable of producing mutagenic secondary metabolites, and (c) target fungi for isolation may produce "self" mutagens in pure culture. The probability that these compounds could interact with fungi undermines confidence in the preservation process and the potential effects of these biochemical mutagens are considered for the first time on strains held in BRC in this review.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less

  12. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  13. The survival of Coxiella burnetii in soils

    NASA Astrophysics Data System (ADS)

    Evstigneeva, A. S.; Ul'Yanova, T. Yu.; Tarasevich, I. V.

    2007-05-01

    Coxiella burnetii is a pathogen of Q-fever—a widespread zoonosis. The effective adaptation of C. burnetii to intracellular existence is in contrast with its ability to survive in the environment outside the host cells and its resistance to chemical and physical agents. Its mechanism of survival remains unknown. However, its survival appears to be related to the developmental cycle of the microorganism itself, i.e., to the formation of its dormant forms. The survival of Coxiella burnetii was studied for the first time. The pathogenic microorganism was inoculated into different types of soil and cultivated under different temperatures. The survival of the pathogen was verified using a model with laboratory animals (mice). Viable C. burnetii were found in the soil even 20 days after their inoculation. The relationship between the organic carbon content in the soils and the survival of C. burnetii was revealed. Thus, the results obtained were the first to demonstrate that the soil may serve as a reservoir for the preservation and further spreading of the Q-fever pathogen in the environment, on the one hand, and reduce the risk of epidemics, on the other.

  14. Direct viable count as test for toxicity assessment: the effects of four metals on a Salmonella enteritidis strain.

    PubMed

    Scoglio, M E; Di Pietro, A; Anzalone, C; Calimeri, S; Lo Giudice, D; Trimarchi, G R

    2000-01-01

    The toxicity of synthetic sewage containing increasing concentrations of arsenic (.125, .25, .5, 1.0 mg L-1), cadmium (.02, .05, .1, .2 mg L-1), lead (.2, .5, 1.0, 2.0 mg L-1) and nickel (.5, 1.0, 2.0, 4.0 mg L-1) has been investigated by determining the total direct count (TDC) and the direct viable count (DVC) of Salmonella enteritidis by means of an immunofluorescence technique (IFA). This has been done in order to evaluate the possibility of using the IFA technique to estimate the toxicity of complex effluents. Arsenic, cadmium and nickel produced a concentration-dependent reduction in the number of viable bacterial cells. This was more clear when the viable bacterial cells were considered than when only the culturable part was used. Lead did not show a concentration-dependent and reproducible effect. At the highest concentrations allowed by the Italian wastewater regulations, lead, cadmium, arsenic and nickel reduced the viable/total bacterial cells ratio to 74.5%, 68.5%, 28.4% and 6.9%, respectively. The toxic effects of the metals were also tested using the standard Microtox assay.

  15. African and Asian dust: from desert soils to coral reefs

    USGS Publications Warehouse

    Garrison, Virginia H.; Shinn, Eugene A.; Foreman, William T.; Griffin, Dale W.; Holmes, Charles W.; Kellogg, Christina A.; Majewski, Michael S.; Richardson, Laurie L.; Ritchie, Kim B.; Smith, Garriet W.

    2003-01-01

    Many hypotheses have been proposed to explain the decline of coral reefs throughout the world, but none adequately accounts for the lack of recovery of reefs or the wide geographical distribution of coral diseases. The processes driving the decline remain elusive. Hundreds of millions of tons of dust transported annually from Africa and Asia to the Americas may be adversely affecting coral reefs and other downwind ecosystems. Viable microorganisms, macro- and micronutrients, trace metals, and an array of organic contaminants carried in the dust air masses and deposited in the oceans and on land may play important roles in the complex changes occurring on coral reefs worldwide.

  16. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.

    1975-01-01

    A series of experiments was conducted to determine the dry heat resistance of microorganisms in soil obtained from Denver Colorado, Pasadena California, Kennedy Space Center Florida, and Cincinnati Ohio. The results of the KSC terminal sterilization cycle experiment are given in graphs. The average number of viable organisms per m1 was calculated for 18 replicate soil samples for each sample area and points plotted equivalent to 30 hr exposure at 112 C. The result showed a reduction of 3 logs from the initial population for both KSC and Cincinnati soil samples. Results from other areas are given in graphs.

  17. Aeromicrobiology/air quality

    USGS Publications Warehouse

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  18. Fungal biosynthesis of gold nanoparticles: mechanism and scale up.

    PubMed

    Kitching, Michael; Ramani, Meghana; Marsili, Enrico

    2015-11-01

    Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Zn(II)-cyclam based chromogenic sensors for recognition of ATP in aqueous solution under physiological conditions and their application as viable staining agents for microorganism.

    PubMed

    Mahato, Prasenjit; Ghosh, Amrita; Mishra, Sanjiv K; Shrivastav, Anupama; Mishra, Sandhya; Das, Amitava

    2011-05-02

    Two chromogenic complexes, L.Zn (where L is (E)-4-((4-(1,4,8,11-tetraazacyclotetradecan-1-ylsulfonyl)phenyl)diazenyl)-N,N-dimethylaniline) and its [2]pseudorotaxane form (α-CD.L.Zn), were found to bind preferentially to adenosine triphosphate (ATP), among all other common anions and biologically important phosphate (AMP, ADP, pyrophosphate, and phosphate) ions in aqueous HEPES buffer medium of pH 7.2. Studies with live cell cultures of prokaryotic microbes revealed that binding of these two reagents to intercellular ATP, produced in situ, could be used in delineating the gram-positive and the gram-negative bacteria. More importantly, these dyes were found to be nontoxic to living microbes (eukaryotes and prokaryotes) and could be used for studying the cell growth dynamics. Binding to these two viable staining agents to intercellular ATP was also confirmed by spectroscopic studies on cell growth in the presence of different respiratory inhibitors that influence the intercellular ATP generation. © 2011 American Chemical Society

  20. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage.

    PubMed

    Behbahani, Behrooz Alizadeh; Shahidi, Fakhri; Yazdi, Farideh Tabatabaei; Mortazavi, Seyed Ali; Mohebbi, Mohebbat

    2017-01-01

    In this study, Plantago major seed mucilage (PMSM) was extracted from whole seeds using hot-water extraction (HWE). The dill (D) essential oil components were identified through gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) and its antioxidant properties were examined through the methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and ß-carotene-linoleic acid assay (B-CL). Total phenolic content (TPC) was characterized through the Folin-Ciocalteu method and the antimicrobial effect was evaluated on 10 pathogenic microorganisms. PMSM edible coating incorporated were prepared in four different concentrations of essential oils, including 0, 0.5, 1 and 1.5% (w/w). The control and the coated beef samples were analyzed periodically for microbiological (total viable count, psychrotrophic count, Escherichia coli, Staphylococcus aureus and fungi), chemical (thiobarbituric acid, peroxide value and pH), and sensory characteristics. The IC 50 , FRAP, B-CL and TPC of the dill essential oil were equal to 11.44μg/ml, 9.45mmol/g, 82.86 and 162.65μg/ml GAE, respectively. PMSM extended the microbial shelf life of beef by 3days, whereas the PMSM+0.5%D, PMSM+1%D and PMSM+1.5%D resulted in a significant shelf life extension of the beef by 6, 9 and 9days, respectively, as compared to the control samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Molecular characterization of total and metabolically active bacterial communities of "white colonizations" in the Altamira Cave, Spain.

    PubMed

    Portillo, M Carmen; Saiz-Jimenez, Cesareo; Gonzalez, Juan M

    2009-01-01

    Caves with paleolithic paintings are influenced by bacterial development. Altamira Cave (Spain) contains some of the most famous paintings from the Paleolithic era. An assessment of the composition of bacterial communities that have colonized this cave represents a first step in understanding and potentially controlling their proliferation. In this study, areas showing colonization with uncolored microorganisms, referred to as "white colonizations", were analyzed. Microorganisms present in these colonizations were studied using DNA analysis, and those showing significant metabolic activity were detected in RNA-based RNA analysis. Bacterial community fingerprints were obtained both from DNA and RNA analyses, indicating differences between the microorganisms present and metabolically active in these white colonizations. Metabolically active microorganisms represented only a fraction of the total bacterial community present in the colonizations. 16S rRNA gene libraries were used to identify the major representative members of the studied communities. Proteobacteria constituted the most frequently found division both among metabolically active microorganisms (from RNA-based analysis) and those present in the community (from DNA analysis). Results suggest the existence of a huge variety of taxa in white colonizations of the Altamira Cave which represent a potential risk for the conservation of the cave and its paintings.

  2. Application of thermotolerant microorganisms for biofertilizer preparation.

    PubMed

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  3. Catheterization and urinary tract infections: microbiology.

    PubMed

    Godfrey, H; Evans, A

    Patients with urinary catheters are a substantial proportion of the total patient population and catheter care is an important area of nursing practice. Urinary tract infection associated with catheterization is known to be the most common nosocomial (hospital-acquired) infection. Urinary tract infections can be caused by exogenous microorganisms or endogenous faecal or urethral microorganisms. The different microorganisms which are responsible for causing urinary tract infections have particular characteristics. Many microorganisms form a biofilm, a living layer of cells which stick to the surfaces of the catheter and the catheter bag. Biofilms not only lead to urinary tract infections, but also they are associated with encrustation and catheter blockage. The article considers the microorganisms implicated in catheter-associated urinary tract infections and aims to develop an increased awareness of the characteristics of different pathogens which could lead to enhanced nursing practice and improved patient care.

  4. The Impact of Microbial Biotransformation of Catechin in Enhancing the Allelopathic Effects of Rhododendron formosanum

    PubMed Central

    Wang, Chao-Min; Li, Tsai-Chi; Jhan, Yun-Lian; Weng, Jen-Hsien; Chou, Chang-Hung

    2013-01-01

    Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy. PMID:24391991

  5. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum.

    PubMed

    Wang, Chao-Min; Li, Tsai-Chi; Jhan, Yun-Lian; Weng, Jen-Hsien; Chou, Chang-Hung

    2013-01-01

    Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy.

  6. UV inactivation of pathogenic and indicator microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4more » times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.« less

  7. Enumeration of total aerobic microorganisms in foods by SimPlate Total Plate Count-Color Indicator methods and conventional culture methods: collaborative study.

    PubMed

    Feldsine, Philip T; Leung, Stephanie C; Lienau, Andrew H; Mui, Linda A; Townsend, David E

    2003-01-01

    The relative efficacy of the SimPlate Total Plate Count-Color Indicator (TPC-CI) method (SimPlate 35 degrees C) was compared with the AOAC Official Method 966.23 (AOAC 35 degrees C) for enumeration of total aerobic microorganisms in foods. The SimPlate TPC-CI method, incubated at 30 degrees C (SimPlate 30 degrees C), was also compared with the International Organization for Standardization (ISO) 4833 method (ISO 30 degrees C). Six food types were analyzed: ground black pepper, flour, nut meats, frozen hamburger patties, frozen fruits, and fresh vegetables. All foods tested were naturally contaminated. Nineteen laboratories throughout North America and Europe participated in the study. Three method comparisons were conducted. In general, there was <0.3 mean log count difference in recovery among the SimPlate methods and their corresponding reference methods. Mean log counts between the 2 reference methods were also very similar. Repeatability (Sr) and reproducibility (SR) standard deviations were similar among the 3 method comparisons. The SimPlate method (35 degrees C) and the AOAC method were comparable for enumerating total aerobic microorganisms in foods. Similarly, the SimPlate method (30 degrees C) was comparable to the ISO method when samples were prepared and incubated according to the ISO method.

  8. Analysis of total microbiota in dentin after mechanical or papain-based chemomechanical caries removal.

    PubMed

    de Almeida, Sandro Marco Steanini; Franca, Fabiana Mantovani Gomes; Florio, Flavia Martao; Ambrosano, Glaucia Maria Bovi; Basting, Roberta Tarkany

    2013-07-01

    Chemomechanical caries removal, when compared with removal using conventional rotary instruments, seems to preserve healthy tooth structure with less trauma to the patient. This study performed in vivo analysis of the total number of microorganisms in dentin after the use of conventional or chemomechanical (papain gel) caries removal methods. Analyses were performed before caries removal (baseline), immediately after caries removal, and 45 days after caries removal and temporary cavity sealing. Sixty patients were selected for this study, each with two mandibular molars (one on each side) with occlusal caries of moderate depth, for a total of 120 teeth. For each patient, the carious lesion of one tooth was removed by conventional methods using low speed drills (Group 1). For the other tooth, a chemomechanical method was used (Group 2). Dentin samples were collected at the three intervals and subjected to microbiological culture in blood agar. For the total number of microorganisms in both groups, ANOVA and Tukey tests (which considered the baseline values as a covariable) showed a higher microbial count immediately after the preparation of the cavity compared to the count at 45 days (P < 0.05). For both groups, the total count of microorganisms in dentin decreased 45 days after placing the temporary cavity sealing.

  9. Direct Determination of Activities for Microorganisms of Chesapeake Bay Populations

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1984-01-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay. PMID:16346659

  10. Direct determination of activities for microorganisms of chesapeake bay populations.

    PubMed

    Tabor, P S; Neihof, R A

    1984-11-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay.

  11. Zooplankton sensitivity and phytoplankton regrowth for ballast water treatment with advanced oxidation processes.

    PubMed

    García-Garay, Juan; Franco-Herrera, Andrés; Machuca-Martinez, Fiderman

    2018-05-26

    The ballasting and de-ballasting of ships are two necessary operations with ballast water that provide stability for safe navigation. Empty ships must ballast tanks with water, which contains living organisms and subsequently carries them away from their original distribution. De-ballasting represents an input of still viable zooplankton, phytoplankton, and microorganisms in the destination port, leading to the introduction of alien species, and consequently, the introduction of organisms will alter the local biodiversity. Ballast water treatment is necessary to comply with the International Maritime Organization (IMO) for the maximum viable organisms permitted. It is known that UVC eliminates microorganisms, but there are few studies on the other taxonomical groups, such as phytoplankton and zooplankton. The advance oxidation processes (AOPs) with UV-C can be a good alternative to manage the problem of ballast water, primarily for microorganisms. However, for larger organisms, there is more resistance, and, a stage with filtration (by physical filtration or hydrocyclone) is usually required. The filter can fail, or certain zooplankton organisms can escape across the filter and go to the AOPs or UVC reactor. According to the taxonomic group, there can be a different sensitivity to the treatment, and one could survive and generate a risk. The AOPs tested were natural solar radiation (RAD), UV/H 2 O 2 , UV/TiO 2 , UV/TiO 2 /H 2 O 2 , and UV/TiO 2 /H 2 O 2 /RAD. Natural sea water was pumped and treated with the AOPs. The vital zooplankton organisms counted were polychaetes, cladocerans, ostracods, nauplii and calanoid, cyclopoid, and harpacticoid copepods. For the phytoplankton, the abundance was estimated, and the photosystem II efficiency was determined. To evaluate the phytoplankton regrowth after the treatments, the treated water was stored and populations counted for 20 days. The most effective treatment for the zooplankton groups was UVC/H 2 O 2 . Regarding the sensitivity, the cyclopoid copepods were the most resistant. The nauplii and polychaetes were more likely to be killed by the AOPs, greatly decreasing the risk from nauplii due to their abundance and ease of passing through the filters with their smaller size. Phytoplankton regrowth was observed in all treatments, and it even reached abundance values higher than in the intake water. For instance, additional dark conditions and retreatment on days 3 or 5 are suggested for any treatment.

  12. Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures.

    PubMed

    Campos, María Claudia; Beltrán, Milena; Fuentes, Nancy; Moreno, Gerardo

    2018-03-15

    A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.

  13. Use of RNA amplification and electrophoresis for studying virus aerosol collection efficiency and their comparison with plaque assays.

    PubMed

    Jiang, Xiao; Pan, Maohua; Hering, Susanne V; Lednicky, John A; Wu, Chang-Yu; Fan, Z Hugh

    2016-10-01

    The spread of virus-induced infectious diseases through airborne routes of transmission is a global concern for economic and medical reasons. To study virus transmission, it is essential to have an effective aerosol collector such as the growth tube collector (GTC) system that utilizes water-based condensation for collecting virus-containing aerosols. In this work, we characterized the GTC system using bacteriophage MS2 as a surrogate for a small RNA virus. We investigated using RNA extraction and reverse transcription- polymerase chain reaction (RT-PCR) to study the total virus collection efficiency of the GTC system. Plaque assays were also used to enumerate viable viruses collected by the GTC system compared to that by a commercially available apparatus, the SKC® Biosampler. The plaque assay counts were used to enumerate viable viruses whereas RT-PCR provides a total virus count, including those viruses inactivated during collection. The effects of relative humidity (RH) and other conditions on collection efficiency were also investigated. Our results suggest that the GTC has a collection efficiency for viable viruses between 0.24 and 1.8% and a total virus collection efficiency between 18.3 and 79.0%, which is 1-2 orders of magnitude higher than that of the SKC® Biosampler. Moreover, higher RH significantly increases both the viable and total collection efficiency of the GTC, while its effect on the collection efficiency of the SKC® Biosampler is not significant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative Detection of Viable Bifidobacterium bifidum BF-1 Cells in Human Feces by Using Propidium Monoazide and Strain-Specific Primers

    PubMed Central

    Fujimoto, Junji

    2013-01-01

    We developed a PCR-based method to detect and quantify viable Bifidobacterium bifidum BF-1 cells in human feces. This method (PMA-qPCR) uses propidium monoazide (PMA) to distinguish viable from dead cells and quantitative PCR using a BF-1-specific primer set designed from the results of randomly amplified polymorphic DNA analysis. During long-term culture (10 days), the number of viable BF-1 cells detected by counting the number of CFU on modified MRS agar, by measuring the ATP contents converted to CFU, and by using PMA-qPCR decreased from about 1010 to 106 cells/ml; in contrast, the total number of (viable and dead) BF-1 cells detected by counting 4′,6-diamidino-2-phenylindolee (DAPI)-stained cells and by using qPCR without PMA and reverse transcription-qPCR remained constant. The number of viable BF-1 cells in fecal samples detected by using PMA-qPCR was highly and significantly correlated with the number of viable BF-1 cells added to the fecal samples, within the range of 105.3 to 1010.3 cells/g feces (wet weight) (r > 0.99, P < 0.001). After 12 healthy subjects ingested 1010.3 to 1011.0 CFU of BF-1 in a fermented milk product daily for 28 days, 104.5 ± 1.5 (mean ± standard deviation [SD]) BF-1 CFU/g was detected in fecal samples by using strain-specific selective agar; in contrast, 106.2 ± 0.4 viable BF-1 cells/g were detected by using PMA-qPCR, and a total of 107.6 ± 0.7 BF-1 cells/g were detected by using qPCR without PMA. Thus, the number of viable BF-1 cells detected by PMA-qPCR was about 50 times higher (P < 0.01) than that detected by the culture-dependent method. We conclude that strain-specific PMA-qPCR can be used to quickly and accurately evaluate viable BF-1 in feces. PMID:23354719

  15. Evaluation of the influence of sprinkling powdered slaked lime on microorganisms for the prevention of domestic animal infectious diseases.

    PubMed

    Mori, Miho; Sakagami, Yoshikazu; Hamazaki, Yousuke; Jojima, Toru

    2018-04-23

    When infectious diseases arise in domestic animals, a large amount of slaked lime is sprinkled on cattle sheds and their surroundings for disinfection and prevention. However, optimal sprinkling methods, standard and upper limit of slaked lime, and influence of slaked lime on non-target microorganisms remain unclear. In this study, we clarified detailed microbicidal effects of slaked lime via in vitro experiments and the influence of sprinkling powdered slaked lime (PSL) in field soil on microorganisms. In vitro disinfection tests assessing the appropriate amount of water and ventilation conditions were also performed in sterilized glass bottles with soil and Salmonella enterica subsp. enterica serovar Typhimurium. Under conditions with a small amount of water relative to the amount of PSL, the bactericidal effect and sustainability of powdered slaked lime (PSL) tended to be lower than those without spraying water. Moreover, the sterilization effect markedly decreased after 7 days under conditions with abundant water. These results indicate that the amount of sprayed water is very important for the bactericidal effect and persistence of PSL. A field experiment showed that the pH and exchange calcium (Ca) content of the soil sprinkled with over 1000 g m -2 PSL remained high even after a long period (≥1 year), with values of approximately 0.5-1.0 and approximately 3-11 times the level without PSL, respectively. However, sprinkling PSL did not influence viable microbial counts at any concentration.

  16. Usability application of multiplex polymerase chain reaction in the diagnosis of microorganisms isolated from urine of patients treated in cancer hospital

    PubMed Central

    Cybulski, Zefiryn; Schmidt, Katarzyna; Grabiec, Alicja; Talaga, Zofia; Bociąg, Piotr; Wojciechowicz, Jacek; Roszak, Andrzej; Kycler, Witold

    2013-01-01

    Background The objective of this study was: i) to compare the results of urine culture with polymerase chain reaction (PCR) -based detection of microorganisms using two commercially available kits, ii) to assess antimicrobial susceptibility of urine isolates from cancer patients to chosen antimicrobial drugs and, if necessary, to update the recommendation of empirical therapy. Materials and methods. A one-year hospital-based prospective study has been conducted in Greater Poland Cancer Centre and Genetic Medicine Laboratory CBDNA Research Centre in 2011. Urine cultures and urine PCR assay from 72 patients were examined Results Urine cultures and urine PCR assay from 72 patients were examined. Urine samples were positive for 128 strains from which 95 (74%) were identical in both tests. The most frequently isolated bacteria in both culture and PCR assay were coliform organisms and Enterococcus spp. The Gram negative bacilli were most resistant to cotrimoxazol. 77.2% of these bacilli and 100% of E. faecalis and S. agalactiae were sensitive to amoxicillin-clavulanic acid. 4.7% of Gram positive cocci were resistant to nitrofurantoin. Conclusions The PCR method quickly finds the causative agent of urinary tract infection (UTI) and, therefore, it can help with making the choice of the proper antimicrobial therapy at an early stage. It appears to be a viable alternative to the recommendations made in general treatment guidelines, in cases where diversified sensitivity patterns of microorganisms have been found. PMID:24133395

  17. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.

    PubMed

    Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M

    2015-04-01

    Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Saharan dust - A carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    USGS Publications Warehouse

    Garrison, V.H.; Foreman, W.T.; Genualdi, S.; Griffin, Dale W.; Kellogg, C.A.; Majewski, M.S.; Mohammed, A.; Ramsubhag, A.; Shinn, E.A.; Simonich, S.L.; Smith, G.W.

    2006-01-01

    An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI), Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa) is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs), trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde) and the Caribbean (USVI and Trinidad & Tobago). Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions.

  19. Biofilms in drinking water and their role as reservoir for pathogens.

    PubMed

    Wingender, Jost; Flemming, Hans-Curt

    2011-11-01

    Most microorganisms on Earth live in various aggregates which are generally termed "biofilms". They are ubiquitous and represent the most successful form of life. They are the active agent in biofiltration and the carriers of the self-cleaning potential in soils, sediments and water. They are also common on surfaces in technical systems where they sometimes cause biofouling. In recent years it has become evident that biofilms in drinking water distribution networks can become transient or long-term habitats for hygienically relevant microorganisms. Important categories of these organisms include faecal indicator bacteria (e.g., Escherichia coli), obligate bacterial pathogens of faecal origin (e.g., Campylobacter spp.) opportunistic bacteria of environmental origin (e.g., Legionella spp., Pseudomonas aeruginosa), enteric viruses (e.g., adenoviruses, rotaviruses, noroviruses) and parasitic protozoa (e.g., Cryptosporidium parvum). These organisms can attach to preexisting biofilms, where they become integrated and survive for days to weeks or even longer, depending on the biology and ecology of the organism and the environmental conditions. There are indications that at least a part of the biofilm populations of pathogenic bacteria persists in a viable but non-culturable (VBNC) state and remains unnoticed by the methods appointed to their detection. Thus, biofilms in drinking water systems can serve as an environmental reservoir for pathogenic microorganisms and represent a potential source of water contamination, resulting in a potential health risk for humans if left unnoticed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  1. Thermophilic microorganisms in biomining.

    PubMed

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  2. Screening of pectinase-producing microorganisms with polygalacturonase activity.

    PubMed

    Zeni, Jamile; Cence, Karine; Grando, Camila Elis; Tiggermann, Lídia; Colet, Rosicler; Lerin, Lindomar A; Cansian, Rogério L; Toniazzo, Geciane; de Oliveira, Débora; Valduga, Eunice

    2011-02-01

    The aim of this work was to perform the screening of microorganisms, previously isolated from samples of agro-industrial waste and belonging to the culture collection of our laboratory, able to produce polygalacturonases (PG). A total of 107 microorganisms, 92 newly isolated and 15 pre-identified, were selected as potential producers of enzymes with PG activity. From these microorganisms, 20 strains were able to synthesize PG with activities above 3 U mL(-1). After the kinetic study, the enzyme activity was increased up to 13 times and the microorganism identified as Aspergillus niger ATCC 9642 and the newly isolated W23, W43, and D2 (Penicillium sp.) after 24 h of fermentation led to PG activities of 30, 41, 43, and 45 U mL(-1), respectively. The RAPD analysis demonstrated that the selected strains differs genetically, indicating that no duplication of strains among them in the experiments for polygalacturonases production was verified.

  3. The use of flow cytometry to accurately ascertain total and viable counts of Lactobacillus rhamnosus in chocolate.

    PubMed

    Raymond, Yves; Champagne, Claude P

    2015-04-01

    The goals of this study were to evaluate the precision and accuracy of flow cytometry (FC) methodologies in the evaluation of populations of probiotic bacteria (Lactobacillus rhamnosus R0011) in two commercial dried forms, and ascertain the challenges in enumerating them in a chocolate matrix. FC analyses of total (FC(T)) and viable (FC(V)) counts in liquid or dried cultures were almost two times more precise (reproducible) than traditional direct microscopic counts (DCM) or colony forming units (CFU). With FC, it was possible to ascertain low levels of dead cells (FC(D)) in fresh cultures, which is not possible with traditional CFU and DMC methodologies. There was no interference of chocolate solids on FC counts of probiotics when inoculation was above 10(7) bacteria per g. Addition of probiotics in chocolate at 40 °C resulted in a 37% loss in viable cells. Blending of the probiotic powder into chocolate was not uniform which raised a concern that the precision of viable counts could suffer. FCT data can serve to identify the correct inoculation level of a sample, and viable counts (FCV or CFU) can subsequently be better interpreted. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway.

    PubMed

    Hansen, Aviaja A; Herbert, Rodney A; Mikkelsen, Karina; Jensen, Lars Liengård; Kristoffersen, Tommy; Tiedje, James M; Lomstein, Bente Aa; Finster, Kai W

    2007-11-01

    The viable and non-viable fractions of the bacterial community in a 2347-year-old permafrost soil from Spitsbergen were subjected to a comprehensive investigation using culture-independent and culture-dependent methods. LIVE/DEAD BacLight staining revealed that 26% of the total number of bacterial cells were viable. Quantitatively, aerobic microcolonies, aerobic colony-forming units and culturable anaerobic bacteria comprised a minor fraction of the total number of viable bacteria, which underlines the necessity for alternative cultivation approaches in bacterial cryobiology. Sulfate reduction was detected at temperatures between -2 degrees C and 29 degrees C while methanogenesis was not detected. Bacterial diversity was high with 162 operational taxonomic units observed from 800 16S rDNA clone sequences. The 158 pure cultures isolated from the permafrost soil affiliated with 29 different bacterial genera, the majority of which have not previously been isolated from permafrost habitats. Most of the strains isolated were affiliated to the genera Cellulomonas and Arthrobacter and several of the pure cultures were closely related to bacteria reported from other cryohabitats. Characterization of viable bacterial communities in permafrost soils is important as it will enable identification of functionally important groups together with the as yet undescribed adaptations that bacteria have evolved for surviving subzero temperatures for millennia.

  5. STWIR, a microorganism transport with infiltration and runoff add-on module for the KINEROS2 runoff and erosion model: documentation and user manual

    USDA-ARS?s Scientific Manuscript database

    Runoff from manured fields is often considered to be the source of microorganisms in the surface water used for irrigation, recreation, and household needs. Concerns about microbial safety of this water resulted in development of predictive models for estimating the concentrations and total numbers ...

  6. The influence of air pollution on the phyllosphere microflora composition of Tillandsia leaves (Bromeliaceae).

    PubMed

    Brighigna, L; Gori, A; Gonnelli, S; Favilli, F

    2000-01-01

    The effect of air pollution on total phyllospheric microflora from two species of the epiphytic neotropical genus Tillandsia (Bromeliaceae) was studied by comparing unpolluted plants living in a forest (Escazú, San José) with polluted ones from an urban site of Costa Rica (San José city). Dilutions of homogenized leaf samples were plated on media suitable for each microbial group. For each microorganism group, total counts were performed and purified strains of randomly chosen colonies were identified. There was a global reduction in the number of living microorganisms due to pollution effects, especially yeasts and bacteria, while nitrogen-fixing microorganisms and fungi were less affected. Our results showed that the phyllosphere microflora of Tillandsia plants living in a tropical urban environment changes in terms of number and species composition of yeasts and bacteria with respect to plants living in unpolluted environment.

  7. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni

    2017-11-27

    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.

  8. Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Stam, Christina N.; Smiley, Ronald

    2013-01-01

    This method uses a photoaffinity label that recognizes DNA and can be used to distinguish populations of bacterial cells from bacterial spores without the use of heat shocking during conventional culture, and live from dead bacterial spores using molecular-based methods. Biological validation of commercial sterility using traditional and alternative technologies remains challenging. Recovery of viable spores is cumbersome, as the process requires substantial incubation time, and the extended time to results limits the ability to quickly evaluate the efficacy of existing technologies. Nucleic acid amplification approaches such as PCR (polymerase chain reaction) have shown promise for improving time to detection for a wide range of applications. Recent real-time PCR methods are particularly promising, as these methods can be made at least semi-quantitative by correspondence to a standard curve. Nonetheless, PCR-based methods are rarely used for process validation, largely because the DNA from dead bacterial cells is highly stable and hence, DNA-based amplification methods fail to discriminate between live and inactivated microorganisms. Currently, no published method has been shown to effectively distinguish between live and dead bacterial spores. This technology uses a DNA binding photoaffinity label that can be used to distinguish between live and dead bacterial spores with detection limits ranging from 109 to 102 spores/mL. An environmental sample suspected of containing a mixture of live and dead vegetative cells and bacterial endospores is treated with a photoaffinity label. This step will eliminate any vegetative cells (live or dead) and dead endospores present in the sample. To further determine the bacterial spore viability, DNA is extracted from the spores and total population is quantified by real-time PCR. The current NASA standard assay takes 72 hours for results. Part of this procedure requires a heat shock step at 80 degC for 15 minutes before the sample can be plated. Using a photoaffinity label would remove this step from the current assay as the label readily penetrates both live and dead bacterial cells. Secondly, the photoaffinity label can only penetrate dead bacterial spores, leaving behind the viable spore population. This would allow for rapid bacterial spore detection in a matter of hours compared to the several days that it takes for the NASA standard assay.

  9. Characterization of the dominant bacterial communities during storage of Norway lobster and Norway lobster tails (Nephrops norvegicus) based on 16S rDNA analysis by PCR-DGGE.

    PubMed

    Bekaert, Karen; Devriese, Lisa; Maes, Sara; Robbens, Johan

    2015-04-01

    The aim of this study was to investigate the microbial quality of whole Norway lobster (Nephrops norvegicus) and Norway lobster tails to optimize handling conditions. This was done by assessing the total viable count (TVC) and characterizing the dominant microbiota. The cultivable microorganisms were quantified via classical microbiological plating methods. To characterize as many bacterial species present as possible, we performed advanced molecular identification techniques (PCR-DGGE). The initial TVC of fresh Norway lobster meat was high (3.0 log cfu/g) as compared to fish. No significant difference between whole Norway lobster and Norway lobster tails could be found during the storage period. From day 6 of storage, a significant difference between Plate Count Agar (PCA) and Marine Agar (MA) was observed. The microbiota of Norway lobster was dominated by members of the Gram-negative genera such as Psychrobacter spp., Pseudoalteromonas spp., Pseudomonas spp., Luteimonas spp., and Aliivibrio spp. From these bacteria, mainly Psychrobacter spp. and Pseudomonas spp. remained present until the end of the storage period. These are known spoilage organisms in fishery products. Other known spoilage organisms of crustaceans such as Photobacterium spp. could not be identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hyperspectral scattering profiles for prediction of the microbial spoilage of beef

    NASA Astrophysics Data System (ADS)

    Peng, Yankun; Zhang, Jing; Wu, Jianhu; Hang, Hui

    2009-05-01

    Spoilage in beef is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. There is still no technology for the rapid, accurate and non-destructive detection of bacterially spoiled or contaminated beef. In this study, hyperspectral imaging technique was exploited to measure biochemical changes within the fresh beef. Fresh beef rump steaks were purchased from a commercial plant, and left to spoil in refrigerator at 8°C. Every 12 hours, hyperspectral scattering profiles over the spectral region between 400 nm and 1100 nm were collected directly from the sample surface in reflection pattern in order to develop an optimal model for prediction of the beef spoilage, in parallel the total viable count (TVC) per gram of beef were obtained by classical microbiological plating methods. The spectral scattering profiles at individual wavelengths were fitted accurately by a two-parameter Lorentzian distribution function. TVC prediction models were developed, using multi-linear regression, on relating individual Lorentzian parameters and their combinations at different wavelengths to log10(TVC) value. The best predictions were obtained with r2= 0.96 and SEP = 0.23 for log10(TVC). The research demonstrated that hyperspectral imaging technique is a valid tool for real-time and non-destructive detection of bacterial spoilage in beef.

  11. Survival of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the Terminal Ileum of Fistulated Göttingen Minipigs

    PubMed Central

    Lick, Sonja; Drescher, Karsten; Heller, Knut J.

    2001-01-01

    The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth. PMID:11526016

  12. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.

    PubMed

    Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang

    2017-06-01

    Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H 2 S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microbiological profile and potential hazards associated with imported and local brands of tomato paste in Nigeria.

    PubMed

    Efiuvwevwere, B J; Atirike, O I

    1998-03-01

    Cans of three tomato paste brands (two of which are imported and one produced locally) showing defective or normal appearance were purchased from various retail outlets and analysed for microbial composition and pH values. Substantially higher total viable counts were observed in samples from defective cans but the lowest population was found in the local brand. Ratio of mesophilic to thermophilic micro-organisms increased in samples obtained from cans showing visible defects. Anaerobic spore counts were higher than the aerobic population in both normal and defective cans, but the counts varied with the brands. Four dominant bacterial genera (Bacillus, Clostridium, Lactobacillus and Leuconostoc) were isolated from the samples with the greater proportion being spore-formers. Percentage occurrence of Clostridium thermosaccharolyticum was appreciably higher in samples from defective cans while a preponderance of Lactobacillus occurred in samples from normal cans. Of the moulds isolated, Absidia and Aspergillus fumigatus showed a higher percentage in defective cans. pH values higher than the critical safe level of 4.6 were found in cans with visible defects and greater microbial diversity with higher microbial load was more often associated with these samples. Imported brands showed more undesirable microbial quality and pH values, making them potentially hazardous.

  14. Continuous Culture of Ruminal Microorganisms in Chemically Defined Medium1

    PubMed Central

    Quinn, Loyd Y.; Burroughs, Wise; Christiansen, William C.

    1962-01-01

    Ruminal ciliates have been grown in continuous culture in chemically defined media and in the absence of viable bacteria. Oligotrichic ruminal ciliates seem to require insoluble carbohydrates for growth; the holotrichic ciliates require soluble carbohydrates, but at low concentrations. Both groups of ciliates utilize amino acids as their principal nitrogen source when these are supplied in micromolar concentrations; at millimolar concentrations, amino acids are toxic, possibly from excessive ammonia formation arising from ciliate deaminase activity. Holotrichic ruminal ciliates are destroyed by overdeposition of amylopectin when glucose is present above 0.1% concentration in the medium. Ecological requirements of ruminal ciliates are also described. Images FIG. 1 FIG. 2 PMID:13972780

  15. Properties of probiotics and encapsulated probiotics in food.

    PubMed

    Ozyurt, V Hazal; Ötles, Semih

    2014-01-01

    Probiotics are microorganisms which confer health benefits upon application in sufficiently-high viable cell amounts. Probiotics are typically members of Lactobacillus and Bifidobacterium species commonly associated with human gastrointestinal tracts. In the recent past, there has been a rising interest in producing functional foods containing encapsulated probiotic bacteria. Recent studies have been reported using dairy products like cheese, yogurt and ice cream as food carrier, and non-dairy products like meat, fruits, cereals, chocolate, etc. However, the industrial sector contains only few encapsulated probiotic products. Probiotics have been developed by several companies in a capsule or a tablet form. The review compiles probiotics, encapsulation technology and cell life in the food matrices.

  16. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour cells rather than by the differences in blood supply per viable tumour cell. Biochemical properties of particular importance included rate of respiration, glycolytic capacity and tolerance to hypoxic stress. On the other hand, tumour bioenergetic status and tumour pH were correlated to blood supply per viable tumour cell within individual tumour lines. These observations suggest that 31P-NMR spectroscopy may be developed to be a clinically useful method for monitoring tumour blood supply and parameters related to tumour blood supply during and after physiological intervention and tumour treatment. However, clinically useful parameters for prediction of tumour treatment resistance caused by insufficient blood supply can probably not be derived from a single 31P-NMR spectrum since correlations across tumour lines were not detected; additional information is needed. PMID:8260356

  17. Evaluation of micro-organism-detaching efficacy from meat samples by spindle or stomacher treatment and quality analysis of suspensions.

    PubMed

    Kim, S-J; Kim, D-K; Kang, D-H

    2016-04-01

    We investigated and compared the efficacy of a new apparatus for detaching micro-organisms from meat samples. The efficacy of Spindle and stomacher in detaching micro-organisms from meat samples was evaluated. Also, evaluation of appropriateness of suspensions generated by both methods for carrying out molecular biological analysis was implemented. A nearly identical correlation and high R(2) were obtained between Spindle and stomacher in Aerobic Plate Count (APC), and no significant differences were observed in detachment of three major foodborne pathogens. The suspension generated by the Spindle showed lower turbidity and total protein concentration. Also, significantly different threshold cycles were observed in Real-time PCR analysis using suspensions generated by both methods. The Spindle shows nearly identical efficacy with stomacher treatment in detaching micro-organisms from meat samples. Furthermore, the high quality of suspensions generated by the Spindle, in terms of turbidity and total protein assay, allows for a lower threshold cycle than stomached suspension in Real-time PCR. The Spindle could be an alternative method for detaching micro-organisms, yielding a higher quality of suspensions which may be better suited for further molecular microbiological analysis. © 2016 The Society for Applied Microbiology.

  18. Recolonization of mutans Streptococci after application of chlorhexidine gel.

    PubMed

    Vale, Glauber Campos; Cury, Altair Antoninha Del Bel; Arthur, Rodrigo Alex; Cury, Jaime Aparecido; Tabchoury, Cínthia Pereira Machado

    2014-01-01

    Streptococcus mutans is specifically suppressed by intensive treatment with chlorhexidine gel, but the time for recolonization and the effect on other oral bacteria are not totally clear. In this study, recolonization of mutans streptococci was evaluated in nine healthy adult volunteers, who were highly colonized with this microorganism. Stimulated saliva was collected before (baseline) and at 1, 7, 14, 21 and 28 days after application of 1% chlorhexidine gel on volunteers' teeth for two consecutive days. On each day, the gel was applied using disposable trays for 3 x 5 min with intervals of 5 min between each application. Saliva was plated on blood agar to determine total microorganisms (TM); on mitis salivarius agar to determine total streptococci (TS) and on mitis salivarius agar plus bacitracin to determine mutans streptococci (MS). Chlorhexidine was capable of reducing the counts of MS and the proportion of MS with regard to total microorganisms (%MS/TM) (p<0.05), but these values did not differ statistically from baseline (p>0.05) after 14 days for MS and 21 days for %MS/TM. The counts of TM and TS and the proportion of MS to total streptococci did not differ statistically from baseline (p>0.05) after chlorhexidine treatment. The results suggest that the effect of chlorhexidine gel treatment on suppression of mutans streptococci is limited to less than a month in highly colonized individuals.

  19. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation.

    PubMed

    Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra

    2012-01-01

    A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.

  20. Mixing regime as a key factor to determine DON formation in drinking water biological treatment.

    PubMed

    Lu, Changqing; Li, Shuai; Gong, Song; Yuan, Shoujun; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) can act as precursor of nitrogenous disinfection by-products formed during chlorination disinfection. The performances of biological fluidized bed (continuous stirred tank reactor, CSTR) and bio-ceramic filters (plug flow reactor, PFR) were compared in this study to investigate the influence of mixing regime on DON formation in drinking water treatment. In the shared influent, DON ranged from 0.71mgL(-1) to 1.20mgL(-1). The two biological fluidized bed reactors, named BFB1 (mechanical stirring) and BFB2 (air agitation), contained 0.12 and 0.19mgL(-1) DON in their effluents, respectively. Meanwhile, the bio-ceramic reactors, labeled as BCF1 (no aeration) and BCF2 (with aeration), had 1.02 and 0.81mgL(-1) DON in their effluents, respectively. Comparative results showed that the CSTR mixing regime significantly reduced DON formation. This particular reduction was further investigated in this study. The viable/total microbial biomass was determined with propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) and qPCR, respectively. The results of the investigation demonstrated that the microbes in BFB2 had higher viability than those in BCF2. The viable bacteria decreased more sharply than the total bacteria along the media depth in BCF2, and DON in BCF2 accumulated in the deeper media. These phenomena suggested that mixing regime determined DON formation by influencing the distribution of viable, total biomass, and ratio of viable biomass to total biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Changes of physicochemical and microbiologicalparameters of infiltration water at Debina intake in Poznan, unique conditions - a flood

    NASA Astrophysics Data System (ADS)

    Kołaska, Sylwia; Jeż-Walkowiak, Joanna; Dymaczewski, Zbysław

    2018-02-01

    The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.

  2. Fermentation based carbon nanotube multifunctional bionic composites

    NASA Astrophysics Data System (ADS)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  3. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme.

    PubMed

    Sherkhanov, Saken; Korman, Tyler P; Clarke, Steven G; Bowie, James U

    2016-04-07

    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.

  4. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    DOE PAGES

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G.; ...

    2016-04-07

    Here, most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase,more » Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase ( DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.« less

  5. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G.

    Here, most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase,more » Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase ( DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.« less

  6. Ohmic Heating of an Electrically Conductive Food Package.

    PubMed

    Kanogchaipramot, Kanyawee; Tongkhao, Kullanart; Sajjaanantakul, Tanaboon; Kamonpatana, Pitiya

    2016-12-01

    Ohmic heating through an electrically conductive food package is a new approach to heat the food and its package as a whole after packing to avoid post-process contamination and to serve consumer needs for convenience. This process has been successfully completed using polymer film integrated with an electrically conductive film to form a conductive package. Orange juice packed in the conductive package surrounded with a conductive medium was pasteurized in an ohmic heater. A mathematical model was developed to simulate the temperature distribution within the package and its surroundings. A 3-D thermal-electric model showed heating uniformity inside the food package while the hot zone appeared in the orange juice adjacent to the conductive film. The accuracy of the model was determined by comparing the experimental results with the simulated temperature and current drawn; the model showed good agreement between the actual and simulated results. An inoculated pack study using Escherichia coli O157:H7 indicated negative growth of viable microorganisms at the target and over target lethal process temperatures, whereas the microorganism was present in the under target temperature treatment. Consequently, our developed ohmic heating system with conductive packaging offers potential for producing safe food. © 2016 Institute of Food Technologists®.

  7. Use of Probiotics to Control Aflatoxin Production in Peanut Grains.

    PubMed

    da Silva, Juliana Fonseca Moreira; Peluzio, Joenes Mucci; Prado, Guilherme; Madeira, Jovita Eugênia Gazzinelli Cruz; Silva, Marize Oliveira; de Morais, Paula Benevides; Rosa, Carlos Augusto; Pimenta, Raphael Sanzio; Nicoli, Jacques Robert

    2015-01-01

    Probiotic microorganisms (Saccharomyces cerevisiae var. boulardii, S. cerevisiae UFMG 905, and Lactobacillus delbrueckii UFV H2b20) were evaluated as biological control agents to reduce aflatoxin and spore production by Aspergillus parasiticus IMI 242695 in peanut. Suspensions containing the probiotics alone or in combinations were tested by sprinkling on the grains followed by incubation for seven days at 25°C. All probiotic microorganisms, in live and inactivated forms, significantly reduced A. parasiticus sporulation, but the best results were obtained with live cells. The presence of probiotics also altered the color of A. parasiticus colonies but not the spore morphology. Reduction in aflatoxin production of 72.8 and 65.8% was observed for S. boulardii and S. cerevisiae, respectively, when inoculated alone. When inoculated in pairs, all probiotic combinations reduced significantly aflatoxin production, and the best reduction was obtained with S. boulardii plus L. delbrueckii (96.1%) followed by S. boulardii plus S. cerevisiae and L. delbrueckii plus S. cerevisiae (71.1 and 66.7%, resp.). All probiotics remained viable in high numbers on the grains even after 300 days. The results of the present study suggest a different use of probiotics as an alternative treatment to prevent aflatoxin production in peanut grains.

  8. Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, R.; Hazen, T.C.; Joyner, D.C.

    2011-04-15

    Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from themore » beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.« less

  9. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    PubMed Central

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G; Bowie, James U.

    2016-01-01

    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes. PMID:27053100

  10. Fermentation based carbon nanotube multifunctional bionic composites

    PubMed Central

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  11. A review on microbiological decontamination of fresh produce with nonthermal plasma.

    PubMed

    Pignata, C; D'Angelo, D; Fea, E; Gilli, G

    2017-06-01

    Food safety is a critical public health issue for consumers and the food industry because microbiological contamination of food causes considerable social and economic burdens on health care. Most foodborne illness comes from animal production, but as of the mid-1990s in the United States and more recently in the European Union, the contribution of fresh produce to foodborne outbreaks has rapidly increased. Recent studies have suggested that sterilization with nonthermal plasma could be a viable alternative to the traditional methods for the decontamination of heat-sensitive materials or food because this technique proves capable of eliminating micro-organisms on surfaces without altering the substrate. In the last 10 years, researchers have used nonthermal plasma in a variety of food inoculated with many bacterial species. All of these experiments were conducted exclusively in a laboratory and, to our knowledge, this technique has not been used in an industrial setting. Thus, the purpose of this review is to understand whether this technology could be used at the industrial level. The latest researches using nonthermal plasma on fresh produce were analysed. These evaluations have focused on the log reduction of micro-organisms and the treatment time. © 2017 The Society for Applied Microbiology.

  12. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process.

    PubMed

    Laureys, David; Van Jean, Amandine; Dumont, Jean; De Vuyst, Luc

    2017-04-01

    A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

  13. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    PubMed

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  14. Effect of Agitation on Acidogenesis Stage of Two-Stage Anaerobic Digestion of Palm Oil Mill Effluent (POME) into Biogas

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Irvan; Adipasah, H.; Taslim; Turmuzi, M.

    2017-03-01

    The acidogenesis stage in two-stage anaerobic digestion of palm oil mill effluent (POME) was studied in a continuous stirred tank reactor (CSTR). This research investigated the effect of agitation rate on the growth of microorganisms, the degradation of organic substances, and volatile fatty acids (VFA) production and composition. Initially, the suitable loading up was determined by varying the HRT 6.7, 5.0, and 4.0 days in a 2 L CSTR with agitation rate 50 rpm, pH 6.0 ± 0.2, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 25, 50, 100, and 200 rpm. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), and volatile fatty acids (VFA) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce VFA. The highest growth of microorganisms was achieved at HRT 4.0 day with microorganism concentration was 20.62 mg VSS/L and COD reduction was 15.7%. The highest production of total VFA achieved was 5,766.61 mg/L mg/L at agitation rate 200 rpm, with concentration of acetic acid, propionic acid and butyric acid were 1,889.23; 1,161.43; and 2,725.95 mg/L, respectively. While degradation VS and COD were 16.61 and 38.79%.

  15. The impact of cellular debris on Pseudomonas aeruginosa adherence to silicone hydrogel contact lenses and contact lens storage cases.

    PubMed

    Burnham, Geoffrey W; Cavanagh, H Dwight; Robertson, Danielle M

    2012-01-01

    To evaluate neutrophil-enhanced Pseudomonas aeruginosa (PA) biofilm formation on silicone hydrogel contact lenses and to determine the effect of epithelial biodebris on PA adherence in contact lens storage cases. A fully invasive PA corneal isolate stably conjugated to green fluorescent protein was used. Unworn lotrafilcon A contact lenses were incubated at various ratios of PA to polymorphonuclear neutrophil (PMN) for 24 hours at 37°C. Lens-associated PA was evaluated using laser scanning confocal microscopy and nonviable PA were visualized using propidium iodide. Viable bacteria were enumerated by colony-forming unit (CFU) analysis. For acute epithelial cell studies, PA viability was determined after coincubation with freeze-thaw epithelial cell lysates in 96-well polystyrene plates. Levels of residual cellular debris and bacterial viability were further assessed in used contact lens storage cases. Laser scanning confocal microscopy demonstrated that cotreatment with PMA-stimulated neutrophils increased PA adherence over 24 hours to lens surfaces with a striking alteration of PA architecture. Propidium iodide staining showed that the adherent bacteria consisted of a mixture of viable and nonviable PA; a PMN-associated increase in viable PA was confirmed by CFU (PA:PMN 0.1:1, P = 0.025; PA:PMN 1:1, P = 0.005). Acute epithelial cell debris studies revealed a significant increase in viable PA in 96-well plates in the presence of epithelial freeze-thaw lysates (PA:debris 1:1, P = 0.002; PA:debris 100:1, P = 0.002). Crystal violet staining of used lens storage cases revealed residual cellular debris at all time points, which was independent of microbial contamination; all lens cases used for periods of 9 months or more were uniformly associated with high levels of viable microorganisms. These results demonstrate that prolonged corneal inflammation with the presence of PMNs when confronted with simultaneous PA challenge in extended contact lens wear has the potential to stimulate biofilm formation on silicone hydrogel contact lenses. These findings further suggest that a persistent buildup of extracellular debris in lens storage cases may contribute to the heavy biofilms reported on these surfaces.

  16. [Analysis of Pathogenic Bacteria in Reclaimed Water and Impact of UV Disinfection on the Removal of Pathogenic Bacteria].

    PubMed

    Jing, Ming; Wang, Lei

    2016-02-15

    In the study, 454-pyrosequencing technology was employed to investigate the species of pathogenic bacteria and the proportion of each pathogen in secondary effluent. Culture-based, qPCR and Q-RT-PCR methods were employed to analyze the removal of indicator (E. coli) and pathogen (Salmonella and Mycobacterium) by ultraviolet (UV) disinfection at a dose of 60 mJ x Cm(-2). The results showed that 11 kinds of pathogenic bacteria were found and the most abundant potentially pathogenic bacteria in the secondary effluent were affiliated with the genera of Clostridium (2.96%), Arcobacter (0.82%) and Mycobacterium (0.36%). 99.9% of culturable E. coli and Salmonella were removed by UV disinfection (60 mJ x cm(-2), however, less than 90% of culturable Mycobacterium were removed. The removal efficiencies of viable E. coli, Salmonella and Mycobacterium were low. Q-RT-PCR seemed to be a promising method for evaluating viable microorganisms in samples. Besides, pathogenic bacteria entered into VBNC state at a UV dose of 60 mJ x cm(-2). Other advanced treatment processes were needed to ensure safe utilization of reclaimed water.

  17. Aptamer-based viability impedimetric sensor for bacteria.

    PubMed

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-11-06

    The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.

  18. Investigation of Solar Radiation Properties at the Battleship Promontory Area, Antarctica

    NASA Technical Reports Server (NTRS)

    VanNortwick, Sara S.

    2005-01-01

    JPL scientists in January 2005 visited the unique Battleship Promontory Area of the Antarctic Dry Valleys at 76 deg. 54 min. S one of the few places on the Antarctic continent home to viable life. Cryptoendolithic microorganisms manage to survive on and inside rocks in Antarctica's harsh conditions of extreme dryness and cold that are not So different from the past and present conditions on Mars. We are investigating the physical properties of these biological creatures through analysis of optical spectra collected from a variety of rock samples over the deep UV, visible, and near-infrared regions with the intent of gaining key insights into the environmental factors that make such a habitat viable for life. The LabView programming environment is equipped with the tools necessary to create an interface to visualize, manipulate, and normalize extensive raw reflectance and corresponding incident spectral data. We are determining the meaning of the colors observed and their relationship to the ability to acquire energy and investigating differences between the photosynthetic processes in full sunlight and diffuse/shadow lighting. Comparisons between spectral data collected in the field and from returned samples in the lab validate the accuracy of our field collection methodology.

  19. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Snyder, A. Peter; St. Amant, Diane; Emge, Darren K.; Minter, Jennifer; Campbell, Mark; Tripathi, Ashish

    2008-04-01

    Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FTIR spectra. We investigated the classification ability of the Fourier transform infrared (FTIR) spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation. Various 2-D PC plots provided differential degrees of separation with respect to the four viable, bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. FT spectra were separated from that of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia species were distinctly separated from the remaining dataset and could also be classified by growth media. This work provided evidence that FTIR spectroscopy can separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents.

  20. A technique for lyopreservation of Clostridium ljungdahlii in a biocomposite matrix for CO absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Mark J.; Solocinski, Jason; Wang, Mian

    A system capable of biocatalytic conversion of distributed sources of single carbon gases such as carbon monoxide into hydrocarbons can be highly beneficial for developing commercially viable biotechnology applications in alternative energy. Several anaerobic bacterial strains can be used for such conversion. The anaerobic carbon monoxide-fixing bacteria Clostridium ljungdahlii OTA1 is a model CO assimilating microorganism that currently requires cryogenic temperature for storage of the viable strains. If these organisms can be stabilized and concentrated in thin films in advanced porous materials, it will enable development of high gas fraction, biocomposite absorbers with elevated carbon monoxide (CO) mass transfer rate,more » that require minimal power input and liquid, and demonstrate elevated substrate consumption rate compared to conventional suspended cell bioreactors. We report development of a technique for dry-stabilization of C. ljungdahlii OTA1 on a paper biocomposite. Bacterial samples coated onto paper were desiccated in the presence of trehalose using convective drying and stored at 4°C. Optimal dryness was ~1g H 2O per gram of dry weight (g DW). CO uptake directly following biocomposite rehydration steadily increases over time indicating immediate cellular metabolic recovery. A high-resolution Raman microspectroscopic hyperspectral imaging technique was employed to spatially quantify the residual moisture content. We have demonstrated for the first time that convectively dried and stored C. ljungdahlii strains were stabilized in a desiccated state for over 38 days without a loss in CO absorbing reactivity. The Raman hyperspectral imaging technique described here is a non-invasive characterization tool to support development of dry-stabilization techniques for microorganisms on inexpensive porous support materials. In conclusion, the present study successfully extends and implements the principles of dry-stabilization for preservation of strictly anaerobic bacteria as an alternative to lyophilization or spray drying that could enable centralized biocomposite biocatalyst fabrication and decentralized bioprocessing of CO to liquid fuels or chemicals.« less

  1. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  2. A technique for lyopreservation of Clostridium ljungdahlii in a biocomposite matrix for CO absorption

    DOE PAGES

    Schulte, Mark J.; Solocinski, Jason; Wang, Mian; ...

    2017-07-05

    A system capable of biocatalytic conversion of distributed sources of single carbon gases such as carbon monoxide into hydrocarbons can be highly beneficial for developing commercially viable biotechnology applications in alternative energy. Several anaerobic bacterial strains can be used for such conversion. The anaerobic carbon monoxide-fixing bacteria Clostridium ljungdahlii OTA1 is a model CO assimilating microorganism that currently requires cryogenic temperature for storage of the viable strains. If these organisms can be stabilized and concentrated in thin films in advanced porous materials, it will enable development of high gas fraction, biocomposite absorbers with elevated carbon monoxide (CO) mass transfer rate,more » that require minimal power input and liquid, and demonstrate elevated substrate consumption rate compared to conventional suspended cell bioreactors. We report development of a technique for dry-stabilization of C. ljungdahlii OTA1 on a paper biocomposite. Bacterial samples coated onto paper were desiccated in the presence of trehalose using convective drying and stored at 4°C. Optimal dryness was ~1g H 2O per gram of dry weight (g DW). CO uptake directly following biocomposite rehydration steadily increases over time indicating immediate cellular metabolic recovery. A high-resolution Raman microspectroscopic hyperspectral imaging technique was employed to spatially quantify the residual moisture content. We have demonstrated for the first time that convectively dried and stored C. ljungdahlii strains were stabilized in a desiccated state for over 38 days without a loss in CO absorbing reactivity. The Raman hyperspectral imaging technique described here is a non-invasive characterization tool to support development of dry-stabilization techniques for microorganisms on inexpensive porous support materials. In conclusion, the present study successfully extends and implements the principles of dry-stabilization for preservation of strictly anaerobic bacteria as an alternative to lyophilization or spray drying that could enable centralized biocomposite biocatalyst fabrication and decentralized bioprocessing of CO to liquid fuels or chemicals.« less

  3. Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning.

    PubMed

    Ellis, David I; Broadhurst, David; Kell, Douglas B; Rowland, Jem J; Goodacre, Royston

    2002-06-01

    Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable "fingerprints." Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 10(7) bacteria.g(-1) the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.

  4. Production of volatile metabolites by grape-associated microorganisms.

    PubMed

    Verginer, Markus; Leitner, Erich; Berg, Gabriele

    2010-07-28

    Plant-associated microorganisms fulfill important functions for their hosts. Whereas promotion of plant growth and health is well-studied, little is known about the impact of microorganisms on plant or fruit flavor. To analyze the production of volatiles of grape-associated microorganisms, samples of grapes of the red cultivar 'Blaufraenkisch' were taken during harvest time from four different vineyards in Burgenland (Austria). The production of volatiles was analyzed for the total culturable microbial communities (bacteria, yeasts, fungi) found on and in the grapes as well as for single isolates. The microbial communities produced clearly distinct aroma profiles for each vineyard and phylogenetic group. Furthermore, half of the grape-associated microorganisms produced a broad spectrum of volatile organic compounds. Exemplary, the spectrum was analyzed more in detail for three single isolates of Paenibacillus sp., Sporobolomyces roseus , and Aureobasidium pullulans . Well-known and typical flavor components of red wine were detected as being produced by microbes, for example, 2-methylbutanoic acid, 3-methyl-1-butanol, and ethyl octanoate.

  5. Antimicrobial Photodynamic Therapy as an Adjunct for Clinical Partial Removal of Deciduous Carious Tissue: A Minimally Invasive Approach.

    PubMed

    Ornellas, Pâmela O; Antunes, Leonardo S; Motta, Paula C; Mendonça, Caroline; Póvoa, Helvécio; Fontes, Karla; Iorio, Natalia; Antunes, Lívia A A

    2018-06-20

    This study aimed to evaluate the use of antimicrobial photodynamic therapy (aPDT) as an adjunct for minimally invasive treatment (partial removal of carious tissue - PRCT) of deciduous carious tissue evaluating its efficacy in reducing microorganisms. For that, a clinical study was design including children with deciduous molars with active deep caries lesions (DCL). PRCT was performed and remaining dentin was treated with 100 μg/mL methylene blue solution (5 min) and than irradiated with a low power laser emitting red light (InGaAIP - indium gallium aluminum phosphide; λ = 660nm; 100mW; 300 J/cm²; 90s; 9J). The colony forming units (CFU) count after PRCT and after PRCT + aPDT/mg of dentin were compared for total microorganisms, including Candida spp., the mutans streptococci group, Streptococcus spp. and Lactobacillus spp. The dentin was classified (color, consistency and humidity). The microbial reduction varied from 69.88% to 86.29% and was significantly observed for total microorganisms, mutans streptococci, Streptococcus spp. and Lactobacillus spp (p<0.001). The dentin type did not influence reduction of microorganisms (p>0.05). The aPDT presents a promising future for clinical use as an adjunct for the reduction of microorganisms in PRCT of DCL in all kinds of dentin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Characteristics of airborne micro-organisms in a neurological intensive care unit: Results from China.

    PubMed

    Yu, Yao; Yin, Sufeng; Kuan, Yi; Xu, Yingjun; Gao, Xuguang

    2015-06-01

    To describe the characteristics of airborne micro-organisms in the environment in a Chinese neurological intensive care unit (NICU). This prospective study monitored the air environment in two wards (large and small) of an NICU in a tertiary hospital in China for 12 months, using an LWC-1 centrifugal air sampler. Airborne micro-organisms were identified using standard microbiology techniques. The mean ± SD number of airborne bacteria was significantly higher in the large ward than in the small ward (200 ± 51 colony-forming units [CFU]/m(3) versus 110 ± 40 CFU/m(3), respectively). In the large ward only, the mean number of airborne bacteria in the autumn was significantly higher than in any of the other three seasons. A total of 279 airborne micro-organisms were identified (large ward: 195; small ward: 84). There was no significant difference in the type and distribution of airborne micro-organisms between the large and small wards. The majority of airborne micro-organisms were Gram-positive cocci in both wards. These findings suggest that the number of airborne micro-organisms was related to the number of patients on the NICU ward. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. High activity CAZyme cassette for improving biomass degradation in thermophiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunecky, Roman; Chung, Daehwan; Sarai, Nicholas S.

    Currently, Thermophilic microorganisms and their enzymes offer several advantages for industrial application over their mesophilic counterparts. For example, a hyperthermophilic anaerobe, Caldicellulosiruptor bescii, was recently isolated from hot springs in Kamchatka, Siberia, and shown to have very high cellulolytic activity. Additionally, it is one of a few microorganisms being considered as viable candidates for consolidated bioprocessing applications. Moreover, C. bescii is capable of deconstructing plant biomass without enzymatic or chemical pretreatment. This ability is accomplished by the production and secretion of free, multi-modular and multi-functional enzymes, one of which, CbCel9A/Cel48A also secretion of free, multi-modular and multi-functional enzymes, one ofmore » which, CbCel9A/Cel48A also known as CelA, is able to outperform enzymes found in commercial enzyme preparations. Furthermore, the complete C. bescii exoproteome is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Understanding the functional diversity of enzymes in the C. bescii exoproteome and how inter-molecular synergy between them confers C. bescii with its high cellulolytic activity is an important endeavor to enable the production more efficient biomass degrading enzyme formulations and in turn, better cellulolytic industrial microorganisms. We found that the combination of three or four of the most highly expressed enzymes in the C. bescii exoproteome exhibits such synergistic activity. For example, some discrete combinations of these enzymes mimic and even improve upon the activity of the exoproteome, even though some of the enzymes lack significant activity on their own. We have demonstrated that it is possible to replicate the cellulolytic activity of the native C. bescii exoproteome utilizing a minimal gene set, and that these minimal gene sets are more active than the whole exoproteome. In the future, this may lead to more simplified and efficient cellulolytic enzyme preparations or yield improvements when these enzymes are expressed in microorganisms engineered for consolidated bioprocessing.« less

  8. High activity CAZyme cassette for improving biomass degradation in thermophiles

    DOE PAGES

    Brunecky, Roman; Chung, Daehwan; Sarai, Nicholas S.; ...

    2018-02-01

    Currently, Thermophilic microorganisms and their enzymes offer several advantages for industrial application over their mesophilic counterparts. For example, a hyperthermophilic anaerobe, Caldicellulosiruptor bescii, was recently isolated from hot springs in Kamchatka, Siberia, and shown to have very high cellulolytic activity. Additionally, it is one of a few microorganisms being considered as viable candidates for consolidated bioprocessing applications. Moreover, C. bescii is capable of deconstructing plant biomass without enzymatic or chemical pretreatment. This ability is accomplished by the production and secretion of free, multi-modular and multi-functional enzymes, one of which, CbCel9A/Cel48A also secretion of free, multi-modular and multi-functional enzymes, one ofmore » which, CbCel9A/Cel48A also known as CelA, is able to outperform enzymes found in commercial enzyme preparations. Furthermore, the complete C. bescii exoproteome is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Understanding the functional diversity of enzymes in the C. bescii exoproteome and how inter-molecular synergy between them confers C. bescii with its high cellulolytic activity is an important endeavor to enable the production more efficient biomass degrading enzyme formulations and in turn, better cellulolytic industrial microorganisms. We found that the combination of three or four of the most highly expressed enzymes in the C. bescii exoproteome exhibits such synergistic activity. For example, some discrete combinations of these enzymes mimic and even improve upon the activity of the exoproteome, even though some of the enzymes lack significant activity on their own. We have demonstrated that it is possible to replicate the cellulolytic activity of the native C. bescii exoproteome utilizing a minimal gene set, and that these minimal gene sets are more active than the whole exoproteome. In the future, this may lead to more simplified and efficient cellulolytic enzyme preparations or yield improvements when these enzymes are expressed in microorganisms engineered for consolidated bioprocessing.« less

  9. Aseptic laboratory techniques: plating methods.

    PubMed

    Sanders, Erin R

    2012-05-11

    Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: Perform plating procedures without contaminating media. Isolate single bacterial colonies by the streak-plating method. Use pour-plating and spread-plating methods to determine the concentration of bacteria. Perform soft agar overlays when working with phage. Transfer bacterial cells from one plate to another using the replica-plating procedure. Given an experimental task, select the appropriate plating method.

  10. Biomass, community structure and nutritional status attributes of the deep subsurface microbiota---at Idaho and Hanford sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.C.; Ringelberg, D.B.

    1991-10-28

    The signature lipid biomarker technique based on phospholipid ester-linked fatty acid pattern analysis (PLFA) provides data on the total viable or potentially viable communities without the necessity of: (1) Quantitative recovery from the sediments or (2) The ability to culture the organisms. Analysis of PLFA provides evidence for the nutritional status (starvation and/or unbalanced growth) in situ. PLFA analysis of SSP samples from the INEL and PNL sites vadose zones showed higher biomass at the surface with prominent Actinomyces biomarkers with lower biomasses of stressed microbiota at progressively greater depth. The biomass and community diversity increased at the water tablemore » at both sites. Both these Western sites showed lower viable microbial biomasses than the WSRS samples. Cluster analysis of the total patterns from various sedimentary horizons showed three major consortia of microbes, with surface microbiota related at both sites, low viable biomass sites closely related at both sites, with anaerobic desaturase pathway being predominant at INEL and consortia utilizing predominantly branched saturated and the aerobic desaturase pathway at both sites. Preliminary examination of the consortia recovered from NTS show a clear relationship to water level.« less

  11. Efficacy of a Sonicating Swab for Removal and Capture of Listeria monocytogenes in Biofilms on Stainless Steel

    PubMed Central

    Branck, Tobyn A.; Hurley, Matthew J.; Prata, Gianna N.; Crivello, Christina A.

    2017-01-01

    ABSTRACT Listeria monocytogenes is of great concern in food processing facilities because it persists in biofilms, facilitating biotransfer. Stainless steel is commonly used for food contact surfaces and transport containers. L. monocytogenes biofilms on stainless steel served as a model system for surface sampling, to test the performance of a sonicating swab in comparison with a standard cotton swab. Swab performance and consistency were determined using total viable counts. Stainless steel coupons sampled with both types of swabs were examined using scanning electron microscopy, to visualize biofilms and surface structures (i.e., polishing grooves and scratches). Laser scanning confocal microscopy was used to image and to quantitate the biofilms remaining after sampling with each swab type. The total viable counts were significantly higher (P ≤ 0.05) with the sonicating swab than with the standard swab in each trial. The sonicating swab was more consistent in cell recovery than was the standard swab, with coefficients of variation ranging from 8.9% to 12.3% and from 7.1% to 37.6%, respectively. Scanning electron microscopic imaging showed that biofilms remained in the polished grooves of the coupons sampled with the standard swab but were noticeably absent with the sonicating swab. Percent area measurements of biofilms remaining on the stainless steel coupons showed significantly (P ≤ 0.05) less biofilm remaining when the sonicating swab was used (median, 1.1%), compared with the standard swab (median, 70.4%). The sonicating swab provided greater recovery of cells, with more consistency, than did the standard swab, and it is employs sonication, suction, and scrubbing. IMPORTANCE Inadequate surface sampling can result in foodborne illness outbreaks from biotransfer, since verification of sanitization protocols relies on surface sampling and recovery of microorganisms for detection and enumeration. Swabbing is a standard method for microbiological sampling of surfaces. Although swabbing offers portability and ease of use, there are limitations, such as high user variability and low recovery rates, which can be attributed to many different causes. This study demonstrates some benefits that a sonicating swab has over a standard swab for removal and collection of microbiological samples from a surface, to provide better verification of surface cleanliness and to help decrease the potential for biotransfer of pathogens into foods. PMID:28314729

  12. Efficacy of a Sonicating Swab for Removal and Capture of Listeria monocytogenes in Biofilms on Stainless Steel.

    PubMed

    Branck, Tobyn A; Hurley, Matthew J; Prata, Gianna N; Crivello, Christina A; Marek, Patrick J

    2017-06-01

    Listeria monocytogenes is of great concern in food processing facilities because it persists in biofilms, facilitating biotransfer. Stainless steel is commonly used for food contact surfaces and transport containers. L. monocytogenes biofilms on stainless steel served as a model system for surface sampling, to test the performance of a sonicating swab in comparison with a standard cotton swab. Swab performance and consistency were determined using total viable counts. Stainless steel coupons sampled with both types of swabs were examined using scanning electron microscopy, to visualize biofilms and surface structures (i.e., polishing grooves and scratches). Laser scanning confocal microscopy was used to image and to quantitate the biofilms remaining after sampling with each swab type. The total viable counts were significantly higher ( P ≤ 0.05) with the sonicating swab than with the standard swab in each trial. The sonicating swab was more consistent in cell recovery than was the standard swab, with coefficients of variation ranging from 8.9% to 12.3% and from 7.1% to 37.6%, respectively. Scanning electron microscopic imaging showed that biofilms remained in the polished grooves of the coupons sampled with the standard swab but were noticeably absent with the sonicating swab. Percent area measurements of biofilms remaining on the stainless steel coupons showed significantly ( P ≤ 0.05) less biofilm remaining when the sonicating swab was used (median, 1.1%), compared with the standard swab (median, 70.4%). The sonicating swab provided greater recovery of cells, with more consistency, than did the standard swab, and it is employs sonication, suction, and scrubbing. IMPORTANCE Inadequate surface sampling can result in foodborne illness outbreaks from biotransfer, since verification of sanitization protocols relies on surface sampling and recovery of microorganisms for detection and enumeration. Swabbing is a standard method for microbiological sampling of surfaces. Although swabbing offers portability and ease of use, there are limitations, such as high user variability and low recovery rates, which can be attributed to many different causes. This study demonstrates some benefits that a sonicating swab has over a standard swab for removal and collection of microbiological samples from a surface, to provide better verification of surface cleanliness and to help decrease the potential for biotransfer of pathogens into foods. Copyright © 2017 American Society for Microbiology.

  13. Periodontal Microorganisms and Cardiovascular Risk Markers in Youth With Type 1 Diabetes and Without Diabetes.

    PubMed

    Merchant, Anwar T; Nahhas, Georges J; Wadwa, R Paul; Zhang, Jiajia; Tang, Yifan; Johnson, Lonnie R; Maahs, David M; Bishop, Franziska; Teles, Ricardo; Morrato, Elaine H

    2016-04-01

    A subset of periodontal microorganisms has been associated with cardiovascular disease (CVD), which is the leading complication of type 1 diabetes (t1DM). The authors therefore evaluated the association between periodontal microorganism groups and early markers of CVD in youth with t1DM. A cross-sectional analysis was conducted among youth aged 12 to 19 years at enrollment; 105 had t1DM for ≥5 years and were seeking care at the Barbara Davis Center, University of Colorado, from 2009 to 2011, and 71 did not have diabetes. Subgingival plaque samples were assessed for counts of 41 periodontal microorganisms using DNA-DNA hybridization. Microorganisms were classified using cluster analysis into four groups named red-orange, orange-green, blue/other, and yellow/other, modified from Socransky's color scheme for periodontal microorganisms. Subsamples (54 with t1DM and 48 without diabetes) also received a periodontal examination at the University of Colorado School of Dental Medicine. Participants were ≈15 years old on average, and 74% were white. Mean periodontal probing depth was 2 mm (SE 0.02), and 17% had bleeding on probing. In multivariable analyses, glycated hemoglobin (HbA1c) was inversely associated with the yellow/other cluster (microorganisms that are not associated with periodontal disease) among youth with t1DM. Blood pressure, triglycerides, low-density lipoprotein, high-density lipoprotein, and total cholesterol were not associated with microorganism clusters in this group. HbA1c was not associated with periodontal microorganism clusters among youth without diabetes. Among youth with t1DM who had good oral health, periodontal microorganisms were not associated with CVD risk factors.

  14. Interenvironmental Transfer of Microorganisms on the Exterior Surfaces of Jet Aircraft

    PubMed Central

    Pfaender, Frederic K.; Swatek, Frank E.

    1970-01-01

    The likelihood of microorganisms being transferred to new environments by jet aircraft was investigated. Initial random sampling of the aircraft surface revealed the presence of microorganisms in varying numbers on different aerodynamic surfaces. Bacteria of the genus Bacillus were the most common isolates, comprising approximately one-third of the total organisms found. The most frequently isolated fungi were Cladosporium, Alternaria, Penicillium, and several yeasts. Sampling of surfaces before and immediately after a flight demonstrated that microorganisms were collected during flight in areas protected from the airstream and lost in those areas directly exposed to it. These experiments also showed that the majority of the organisms contaminating the aircraft were acquired from the air at ground level. The placement of microorganisms on the aircraft surface before a flight and determination of their survival after flight indicated that the test organisms were most likely to be transported in the areas protected from the airstream. The organisms showing the best chance of being transferred seem to be the sporeforming bacteria, arthrospore-forming fungi, and some yeasts. All phases of this work showed that microorganisms could be carried by jet aircraft to environments they could not reach by natural means of dispersal. PMID:5480099

  15. RESEARCH FOR MANAGING URBAN WATERSHED MICROBIAL CONTAMINATION (PROJECT 1: MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION: 2. EFFECT OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATION ON URBAN STORMWATER RUNOFF; 3. MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS.

    EPA Science Inventory

    The Water Supply and Water Resources Division (WSWRD) developed a document entitled Managing Urban Watershed Pathogen Contamination (EPA 600/R-03/111). This document provides information to support specific steps of the total maximum daily load (TMDL) process for meeting water q...

  16. Microorganisms in small patterned ground features and adjacent vegetated soils along topographic and climatic gradients in the High Arctic, Canada

    Treesearch

    G. Gonzalez; F.J. Rivera-Figueroa; W. Gould; S.A. Cantrell; J.R. Pérez-Jiménez

    2014-01-01

    In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by...

  17. Hydrogen production by Cyanobacteria.

    PubMed

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-12-21

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  18. Highly valuable microalgae: biochemical and topological aspects.

    PubMed

    Pignolet, Olivier; Jubeau, Sébastien; Vaca-Garcia, Carlos; Michaud, Philippe

    2013-08-01

    The past decade has seen a surge in the interest in microalgae culture for biodiesel production and other applications as renewable biofuels as an alternative to petroleum transport fuels. The development of new technologies for the culture of these photosynthetic microorganisms and improved knowledge of their biochemical composition has spurred innovation in the field of high-value biomolecules. These developments are only economically viable if all the microalgae fractions are valorized in a biorefinery strategy. Achieving this objective requires an understanding of microalgae content and the cellular localization of the main biomolecular families in order to develop efficient harvest and sequential recovery technologies. This review summarizes the state of the art in microalgae compositions and topologies using some examples of the main industrially farmed microalgae.

  19. Electrogenic Single-Species Biocomposites as Anodes for Microbial Fuel Cells.

    PubMed

    Kaiser, Patrick; Reich, Steffen; Leykam, Daniel; Willert-Porada, Monika; Greiner, Andreas; Freitag, Ruth

    2017-07-01

    Integration of electrogenic microorganisms remains a challenge in biofuel cell technology. Here, synthetic biocomposites ("artificial biofilms") are proposed. Bacteria (Shewanella oneidensis) are embedded in a hydrogel matrix (poly(vinyl alcohol)) via wet- and electrospinning, creating fibers and nonwoven gauzes. The bacteria remain viable and metabolically active. The performance is compared to S. oneidensis suspension cultures and "natural" biofilms. While lower than with the suspension cultures, the power output from the fuel cells with the artificial biofilms is higher than with the natural one. Handling, reproducibility, and stability are also better. Artificial biofilms can therefore contribute to resolving fundamental issues of design, scale up, and monosepsis in biofuel cell technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applications of systems biology towards microbial fuel production.

    PubMed

    Gowen, Christopher M; Fong, Stephen S

    2011-10-01

    Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Radappertization of ready-to-eat shelf-stable, traditional Indian bread - Methi Paratha

    NASA Astrophysics Data System (ADS)

    Bhoir, Shraddha A.; Muppalla, Shobita R.; Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    Shelf-stable ready-to-eat (RTE) Methi Paratha (flavored Indian unleavened flat bread) was developed using combination of hurdles including radiation processing. The Methi Paratha was prepared using dough containing wheat flour, dried fenugreek leaves and spices. The samples were vacuum packed in multi-layered pouches and irradiated at 25 kGy in frozen conditions. Samples were evaluated for microbiological counts, lipid peroxidation and sensory attributes during storage under ambient conditions. Samples were found to be devoid of any viable microorganism throughout the storage period of 180 days. The thiobarbituric acid reactive substances (TBARS) value which indicates lipid peroxidation of samples did not show any significant increase with time. The Methi Paratha was found to be acceptable by the evaluating panelists.

  2. Detection of living cells in stratospheric samples

    NASA Astrophysics Data System (ADS)

    Harris, Melanie J.; Wickramasinghe, N. C.; Lloyd, David; Narlikar, J. V.; Rajaratnam, P.; Turner, Michael P.; Al-Mufti, Shirwan; Wallis, Max K.; Ramadurai, S.; Hoyle, Fred

    2002-02-01

    Air samples collected aseptically over tropical India at various stratospheric altitudes ranging from 20 to 41 km using cryosampler assemblies carried on balloons flown from Hyderabad have shown evidence of living microbial cells. Unambiguous evidence of living cells came from examining micropore filters on which the samples were recovered with the use of voltage sensitive lipophilic dyes that could detect the presents of active cells. Clumps of viable cells were found at all altitudes using this technique, and this conclusion was found to be consistent with images obtained from electron microscopy. Since the 41 km sample was collected well above the local tropopause, a prima facie case for a space incidence of these microorganisms is established. Further work on culturing, PCR analysis and isotopic analysis is in progress.

  3. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around chernobyl.

    PubMed

    Czirják, Gábor Arpád; Møller, Anders Pape; Mousseau, Timothy A; Heeb, Philipp

    2010-08-01

    The Chernobyl catastrophe provides a rare opportunity to study the ecological and evolutionary consequences of low-level, environmental radiation on living organisms. Despite some recent studies about negative effects of environmental radiation on macroorganisms, there is little knowledge about the effect of radioactive contamination on diversity and abundance of microorganisms. We examined abundance patterns of total cultivable bacteria and fungi and the abundance of feather-degrading bacterial subset present on feathers of barn swallows (Hirundo rustica), a colonial migratory passerine, around Chernobyl in relation to levels of ground level environmental radiation. After controlling for confounding variables, total cultivable bacterial loads were negatively correlated with environmental radioactivity, whereas abundance of fungi and feather-degrading bacteria was not significantly related to contamination levels. Abundance of both total and feather-degrading bacteria increased with barn swallow colony size, showing a potential cost of sociality. Males had lower abundance of feather-degrading bacteria than females. Our results show the detrimental effects of low-level environmental radiation on total cultivable bacterial assemblage on feathers, while the abundance of other microorganism groups living on barn swallow feathers, such as feather-degrading bacteria, are shaped by other factors like host sociality or host sex. These data lead us to conclude that the ecological effects of Chernobyl may be more general than previously assumed and may have long-term implications for host-microbe interactions and overall ecosystem functioning.

  4. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, April Z.; Wan, Kai-tak

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface,more » to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less

  5. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  6. Mortality rates of pathogen indicator microorganisms discharged from point and non-point sources in an urban area.

    PubMed

    Kim, Geonha; Hur, Jin

    2010-01-01

    This research measured the mortality rates of pathogen indicator microorganisms discharged from various point and non-point sources in an urban area. Water samples were collected from a domestic sewer, a combined sewer overflow, the effluent of a wastewater treatment plant, and an urban river. Mortality rates of indicator microorganisms in sediment of an urban river were also measured. Mortality rates of indicator microorganisms in domestic sewage, estimated by assuming first order kinetics at 20 degrees C were 0.197 day(-1), 0.234 day(-1), 0.258 day(-1) and 0.276 day(-1) for total coliform, fecal coliform, Escherichia coli, and fecal streptococci, respectively. Effects of temperature, sunlight irradiation and settlement on the mortality rate were measured. Results of this research can be used as input data for water quality modeling or can be used as design factors for treatment facilities.

  7. Activation of inoculum microorganism from dairy cattle feces

    NASA Astrophysics Data System (ADS)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  8. Biocidal Efficacy of Dissolved Ozone, Formaldehyde and Sodium Hypochlorite Against Total Planktonic Microorganisms in Produced Water

    NASA Astrophysics Data System (ADS)

    Puyate, Y. T.; Rim-Rukeh, A.

    The performance of three biocides (dissolved ozone, formaldehyde and sodium hypochlorite) in eliminating the bacteria and fungi in produced water is investigated experimentally. The analysis involves monitoring the microbial population in nine conical flasks each containing the same volume of a mixture of produced water, culture medium that sustains the growth of microorganisms and a known concentration of biocide. The concentrations of each biocide used in the study are 0.1, 0.2 and 0.5 ppm. It is shown that dissolved ozone exhibits the best biocidal characteristics and a concentration of 0.5 ppm eliminated all the microorganisms in the produced water after 150 min contact time.

  9. Urinary Infections in Patients with Catheters in the Upper Urinary Tract: Microbiological Study.

    PubMed

    Lara-Isla, Alba; Medina-Polo, José; Alonso-Isa, Manuel; Benítez-Sala, Raúl; Sopeña-Sutil, Raquel; Justo-Quintas, Juan; Gil-Moradillo, Javier; González-Padilla, Daniel A; García-Rojo, Esther; Passas-Martínez, Juan Bautista; Tejido-Sánchez, Ángel

    2017-01-01

    Infections related to catheters in the upper urinary tract (CUUT) are associated with specific characteristics. A prospective observational study was carried out from 2012 to 2015 to evaluate infections in patients with CUUT. A total of 209 infections were included (99 with double-J, 81 with nephrostomy, and 29 with internal/external nephroureteral stents). Among nephrostomy tube carriers, the most frequently isolated microorganisms were Pseudomonas and Enterococcus. In those with an internal/external nephroureteral stent, Klebsiella was the most common, and 57.1% were extended-spectrum beta-lactamase-producing Klebsiella. In double-J carriers, Escherichia coli and Enterococcus were the most common microorganisms. Multiple-drug resistance (MDR) microorganisms were isolated in 28.6, 47.1, and 58.3% of patients with double-J, nephrostomy, and internal-external nephroureteral stents. A percutaneous CUUT (p = 0.005) and immunosuppression (p = 0.034) were risk factors for MDR microorganisms. Non-E. coli bacteria are commonly isolated in patients with CUUT. MDR microorganisms are frequent, mainly in percutaneous approach or immunosuppression. © 2017 S. Karger AG, Basel.

  10. Lignocellulose deconstruction in the biosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomble, Yannick J.; Lin, Chien-Yuan; Amore, Antonella

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction ofmore » the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy.« less

  11. Lignocellulose deconstruction in the biosphere.

    PubMed

    Bomble, Yannick J; Lin, Chien-Yuan; Amore, Antonella; Wei, Hui; Holwerda, Evert K; Ciesielski, Peter N; Donohoe, Bryon S; Decker, Stephen R; Lynd, Lee R; Himmel, Michael E

    2017-12-01

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy. Copyright © 2017. Published by Elsevier Ltd.

  12. Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage.

    PubMed

    Li, Meng; Lin, Hong; Khan, Muhammad Naseem; Wang, Jingxue; Kong, Linghong

    2014-06-01

    The microbiological spoilage of fishery foods is mainly due to specific spoilage organisms (SSOs), with Shewanella putrefaciens being the SSO of most chilled marine fish. Bacteriophages have shown excellent capability to control micro-organisms. The aim of this study was to determine a specific bacteriophage to prevent spoilage by reducing SSO (S. putrefaciens) levels in the marine fish Paralichthys olivaceus (olive flounder) under chilled storage. Chilled flounder fillets were inoculated with S. putrefaciens and treated with different concentrations of bacteriophage Spp001 ranging from 10(4) to 10(8) plaque-forming units (pfu) mL(-1) . Bacterial growth (including total viable count and SSO) of the bacteriophage-treated groups was significantly inhibited compared with that of the negative control group (P < 0.05). Sensory evaluation and biochemical parameters revealed that the bacteriophage could extend the shelf life of chilled flounder fillets (from <4 to 14 days) with good esthetic quality, even at low temperature (4 °C). Furthermore, bacteriophage concentrations of 10(6) and 10(8) pfu mL(-1) were more effective than the chemical preservative potassium sorbate (5 g L(-1) ). The bacteriophage Spp001 offered effective biocontrol of S. putrefaciens under chilled conditions, retaining the quality characteristics of spiked fish fillets, and thus could be a potential candidate for use in chilled fish fillet biopreservation. © 2013 Society of Chemical Industry.

  13. Terpene Down-Regulation Triggers Defense Responses in Transgenic Orange Leading to Resistance against Fungal Pathogens1[W

    PubMed Central

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores. PMID:24192451

  14. Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry

    PubMed Central

    Pereira, Carlos; Gomes, David; Gomez-Zavaglia, Andrea; de Antoni, Graciela

    2015-01-01

    Summary This work focuses on the production of liquid whey protein concentrates by ultrafiltration followed by thermal denaturation and homogenization of the ultrafiltrated concentrate, as well as on the production of ultrafiltrated permeates concentrated by reverse osmosis. Kefir grains (fresh and thawed) and/or commercial probiotic bacteria were inoculated in both liquid whey protein concentrates and concentrated ultrafiltrated permeates and grown at 25 °C for 24 h for the manufacture of fermented drinks. The physicochemical characterization (pH, titratable acidity, viscosity, and content of total solids, ash, fat and proteins) of the obtained drinks was then assessed and compared. Enumeration of viable microorganisms was carried out immediately after inoculation (at 0 h), during the fermentation period (at 12 and 24 h) and during refrigerated storage (at 48, 168 and 336 h). The fermented drinks showed acceptable physicochemical and sensorial properties, and contained above 7 log CFU/mL of lactococci and lactobacilli and 6 log CFU/mL of yeasts after 14 days of refrigerated storage, which is in agreement with the standards required by international organizations like European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) for products containing probiotics. In summary, the strategy developed in this work contributes to the expansion of the applications of products derived from whey fractionation for the design of novel functional foods. PMID:27904362

  15. Alkaliphiles: Some Applications of Their Products for Biotechnology

    PubMed Central

    Horikoshi, Koki

    1999-01-01

    The term “alkaliphile” is used for microorganisms that grow optimally or very well at pH values above 9 but cannot grow or grow only slowly at the near-neutral pH value of 6.5. Alkaliphiles include prokaryotes, eukaryotes, and archaea. Many different taxa are represented among the alkaliphiles, and some of these have been proposed as new taxa. Alkaliphiles can be isolated from normal environments such as garden soil, although viable counts of alkaliphiles are higher in samples from alkaline environments. The cell surface may play a key role in keeping the intracellular pH value in the range between 7 and 8.5, allowing alkaliphiles to thrive in alkaline environments, although adaptation mechanisms have not yet been clarified. Alkaliphiles have made a great impact in industrial applications. Biological detergents contain alkaline enzymes, such as alkaline cellulases and/or alkaline proteases, that have been produced from alkaliphiles. The current proportion of total world enzyme production destined for the laundry detergent market exceeds 60%. Another important application is the industrial production of cyclodextrin by alkaline cyclomaltodextrin glucanotransferase. This enzyme has reduced the production cost and paved the way for cyclodextrin use in large quantities in foodstuffs, chemicals, and pharmaceuticals. It has also been reported that alkali-treated wood pulp could be biologically bleached by xylanases produced by alkaliphiles. Other applications of various aspects of alkaliphiles are also discussed. PMID:10585964

  16. Bacterial communities of fresh goat meat packaged in modified atmosphere.

    PubMed

    Carrizosa, Elia; Benito, María José; Ruiz-Moyano, Santiago; Hernández, Alejandro; Villalobos, Maria Del Carmen; Martín, Alberto; Córdoba, María de Guía

    2017-08-01

    The objective of this work was to study the growth and development of fortuitous flora and food pathogens in fresh goat meat packaged under modified atmospheres containing two different concentrations of CO 2 . Meat samples were stored at 10 °C under two different modified-atmosphere packing (MAP) conditions: treatment A had 45% CO 2  + 20% O 2  + 35% N 2 and treatment B had 20% CO 2  + 55% O 2  + 25% N 2 . During 14 days of storage, counts of each bacterial group and dominant species identification by 16S rRNA gene sequencing were performed to determine the microbial diversity present. The MAP condition used for treatment A was a more effective gas mixture for increasing the shelf life of fresh goat meat, significantly reducing the total number of viable bacteria and enterobacteria counts. Members of the Enterobacteriaceae family were the most common contaminants, although Hafnia alvei was dominant in treatment A and Serratia proteamaculans in treatment B. Identification studies at the species level showed that different microorganisms develop under different storage conditions, reflecting the importance of gas composition in the modified atmosphere on the bacterial community. This work provides new insights into the microbial changes of goat meat storage under different MAP conditions, which will be beneficial for the meat industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry.

    PubMed

    Pereira, Carlos; Henriques, Marta; Gomes, David; Gomez-Zavaglia, Andrea; de Antoni, Graciela

    2015-09-01

    This work focuses on the production of liquid whey protein concentrates by ultrafiltration followed by thermal denaturation and homogenization of the ultrafiltrated concentrate, as well as on the production of ultrafiltrated permeates concentrated by reverse osmosis. Kefir grains (fresh and thawed) and/or commercial probiotic bacteria were inoculated in both liquid whey protein concentrates and concentrated ultrafiltrated permeates and grown at 25 °C for 24 h for the manufacture of fermented drinks. The physicochemical characterization (pH, titratable acidity, viscosity, and content of total solids, ash, fat and proteins) of the obtained drinks was then assessed and compared. Enumeration of viable microorganisms was carried out immediately after inoculation (at 0 h), during the fermentation period (at 12 and 24 h) and during refrigerated storage (at 48, 168 and 336 h). The fermented drinks showed acceptable physicochemical and sensorial properties, and contained above 7 log CFU/mL of lactococci and lactobacilli and 6 log CFU/mL of yeasts after 14 days of refrigerated storage, which is in agreement with the standards required by international organizations like European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) for products containing probiotics. In summary, the strategy developed in this work contributes to the expansion of the applications of products derived from whey fractionation for the design of novel functional foods.

  18. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  19. Distribution of bacterioplankton with active metabolism in waters of the St. Anna Trough, Kara Sea, in autumn 2011

    NASA Astrophysics Data System (ADS)

    Mosharova, I. V.; Mosharov, S. A.; Ilinskiy, V. V.

    2017-01-01

    The distribution of bacterioplankton with active electron transport chains, as well as bacteria with intact cell membranes, was investigated for the first time in the region of St. Anna Trough in the Kara Sea. The average number of bacteria with active electron transport chains in the waters of the St. Anna Trough was 15.55 × 103 cells mL-1 (the limits of variation were 1.06-92.17 × 103 cells mL-1). The average number of bacteria with intact membranes was 33.46 × 103 cells mL-1 (the limits of variation were 6.78 to 103.18 × 103 cells mL-1). Almost all bacterioplankton microorganisms in the studied area were potentially viable, and the average share of bacteria with intact membranes was 92.1% of the total number of bacterioplankton (TNB) (the limits of variation were 76.2 to 98.4%). The share of bacteria with active metabolisms was 38.2% of the TNB (the limits of variation were 5.6-93.4%). The shares of the bacteria with active metabolisms were maximum in areas with the most stable environmental conditions (on the shelf and in deep water), whereas on the slope, where the gradients of water temperature and salinity were maximum, these values were lower.

  20. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  1. Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere

    NASA Astrophysics Data System (ADS)

    Horsfield, B.; Schenk, H. J.; Zink, K.; Ondrak, R.; Dieckmann, V.; Kallmeyer, J.; Mangelsdorf, K.; di Primio, R.; Wilkes, H.; Parkes, R. J.; Fry, J.; Cragg, B.

    2006-06-01

    Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m 2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.

  2. Inactivation of Staphylococcus aureus and native microflora in human milk by high pressure processing

    NASA Astrophysics Data System (ADS)

    Windyga, Bożena; Rutkowska, Małgorzata; Sokołowska, Barbara; Skąpska, Sylwia; Wesołowska, Aleksandra; Wilińska, Maria; Fonberg-Broczek, Monika; Rzoska, Sylwester J.

    2015-04-01

    The storage of unpreserved food, including breast milk, is associated with the growth of microorganisms, including pathogenic bacteria. It is therefore necessary to use suitable processes to eliminate pathogenic microorganisms and reduce the total microbial count in order to ensure product safety for consumers. In the present study, samples of milk obtained from volunteers donating to the human milk bank were artificially contaminated with Staphylococcus aureus ATCC 6538. This bacteria was the model microorganism of choice, being relatively resistant to high pressure as well as posing the most serious risk to infant health. The results obtained show that high pressure processing can reduce the count of S. aureus by about 5 log units at 4°C and about 8 log units at 50°C, and totally eliminate Enterobacteriaceae after 5 min of treatment, and result in a total microbial count reduction after 10 min treatment at 500 MPa at 20°C and 50°C. This suggests the possibility of this technology being applied to ensure the adequate safety and quality of human breast milk in human milk banks. This paper was presented at the LIIth European High Pressure Research Group (EHPRG 52) Meeting in Lyon (France), 7-12 September 2014.

  3. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray.

    PubMed

    Kober, Catharina; Niessner, Reinhard; Seidel, Michael

    2018-02-15

    Increasing numbers of legionellosis outbreaks within the last years have shown that Legionella are a growing challenge for public health. Molecular biological detection methods capable of rapidly identifying viable Legionella are important for the control of engineered water systems. The current gold standard based on culture methods takes up to 10 days to show positive results. For this reason, a flow-based chemiluminescence (CL) DNA microarray was developed that is able to quantify viable and non-viable Legionella spp. as well as Legionella pneumophila in one hour. An isothermal heterogeneous asymmetric recombinase polymerase amplification (haRPA) was carried out on flow-based CL DNA microarrays. Detection limits of 87 genomic units (GU) µL -1 and 26GUµL -1 for Legionella spp. and Legionella pneumophila, respectively, were achieved. In this work, it was shown for the first time that the combination of a propidium monoazide (PMA) treatment with haRPA, the so-called viability haRPA, is able to identify viable Legionella on DNA microarrays. Different proportions of viable and non-viable Legionella, shown with the example of L. pneumophila, ranging in a total concentration between 10 1 to 10 5 GUµL -1 were analyzed on the microarray analysis platform MCR 3. Recovery values for viable Legionella spp. were found between 81% and 133%. With the combination of these two methods, there is a chance to replace culture-based methods in the future for the monitoring of engineered water systems like condensation recooling plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preoperative evaluation of micro-organisms in non-operated cleft in soft palate: impact on use of antibiotics.

    PubMed

    Roode, G J; Bütow, K-W; Naidoo, S

    2017-02-01

    To identify the pathogenic micro-organisms that had colonised preoperatively in clefts in the soft palate and oro-nasopharynx, we retrospectively studied the preoperative microbiological profiles of 200 infants who had had primary repair of all types of cleft in the soft palate. Data from a private practice that specialises in the repair of facial clefts were extracted randomly from patients' files. We analysed the results of the culture of preoperative swabs taken from clefts in the soft palate and oro-nasopharynx, and the resistance profile of organisms towards various antibiotics. A total of 23 different pathogenic micro-organisms were isolated from 115 (57%) of the sample. Klebsiella pneumoniae most commonly colonised clefts in the lip, alveolus, and palate. This was considerably higher than in other groups. The second most common micro-organism was Staphylococcus aureus, which was found most often in patients with isolated clefts in the hard palate. Those with complete cleft lip and palate presented with more pathogenic micro-organisms in preoperative cultures than those with other types of cleft. We need to find a way to control pathogenic micro-organisms in the oral and oro-nasopharyngeal region preoperatively to limit postoperative complications. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations.

    PubMed

    Ullmann, R Thomas; Andrade, Susana L A; Ullmann, G Matthias

    2012-08-16

    Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.

  6. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species.

    PubMed

    Al-Bakri, Amal G; Othman, Ghadeer; Afifi, Fatma U

    2010-10-01

    Several Salvia species are indigenous to Jordan and are widely used as beverages and spices and for their medicinal properties. The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species. Methods used for planktonic culture included agar diffusion, broth microdilution, and minimal biocidal concentration determination while viable count was used for the determination of the antibiofilm and antiadhesion activities. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and clinical strains of methicillin-resistant S. aureus (MRSA) were used as test microorganisms. An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA. Its volatile oil exhibited an antimicrobial activity covering all tested microorganisms with the exception of P. aeruginosa. S. triloba extract and volatile oil were successful in preventing and controlling the biofilm, demonstrating antiadhesion and antibiofilm activities, respectively. These reported activities for S. triloba extract and volatile oil allows their listing as potential antibiofilm and anti-MRSA natural agents. This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections. The antimicrobial activity of the other tested Salvia species was negligible.

  7. Estimation method for serial dilution experiments.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2014-12-01

    Titration of microorganisms in infectious or environmental samples is a corner stone of quantitative microbiology. A simple method is presented to estimate the microbial counts obtained with the serial dilution technique for microorganisms that can grow on bacteriological media and develop into a colony. The number (concentration) of viable microbial organisms is estimated from a single dilution plate (assay) without a need for replicate plates. Our method selects the best agar plate with which to estimate the microbial counts, and takes into account the colony size and plate area that both contribute to the likelihood of miscounting the number of colonies on a plate. The estimate of the optimal count given by our method can be used to narrow the search for the best (optimal) dilution plate and saves time. The required inputs are the plate size, the microbial colony size, and the serial dilution factors. The proposed approach shows relative accuracy well within ±0.1log10 from data produced by computer simulations. The method maintains this accuracy even in the presence of dilution errors of up to 10% (for both the aliquot and diluent volumes), microbial counts between 10(4) and 10(12) colony-forming units, dilution ratios from 2 to 100, and plate size to colony size ratios between 6.25 to 200. Published by Elsevier B.V.

  8. Use of Probiotics to Control Aflatoxin Production in Peanut Grains

    PubMed Central

    da Silva, Juliana Fonseca Moreira; Peluzio, Joenes Mucci; Madeira, Jovita Eugênia Gazzinelli Cruz; Silva, Marize Oliveira; de Morais, Paula Benevides; Rosa, Carlos Augusto; Pimenta, Raphael Sanzio; Nicoli, Jacques Robert

    2015-01-01

    Probiotic microorganisms (Saccharomyces cerevisiae var. boulardii, S. cerevisiae UFMG 905, and Lactobacillus delbrueckii UFV H2b20) were evaluated as biological control agents to reduce aflatoxin and spore production by Aspergillus parasiticus IMI 242695 in peanut. Suspensions containing the probiotics alone or in combinations were tested by sprinkling on the grains followed by incubation for seven days at 25°C. All probiotic microorganisms, in live and inactivated forms, significantly reduced A. parasiticus sporulation, but the best results were obtained with live cells. The presence of probiotics also altered the color of A. parasiticus colonies but not the spore morphology. Reduction in aflatoxin production of 72.8 and 65.8% was observed for S. boulardii and S. cerevisiae, respectively, when inoculated alone. When inoculated in pairs, all probiotic combinations reduced significantly aflatoxin production, and the best reduction was obtained with S. boulardii plus L. delbrueckii (96.1%) followed by S. boulardii plus S. cerevisiae and L. delbrueckii plus S. cerevisiae (71.1 and 66.7%, resp.). All probiotics remained viable in high numbers on the grains even after 300 days. The results of the present study suggest a different use of probiotics as an alternative treatment to prevent aflatoxin production in peanut grains. PMID:26221629

  9. Survival of microbial life under shock compression: implications for Panspermia

    NASA Astrophysics Data System (ADS)

    Burchell, M.

    2007-09-01

    An analysis is carried out of the survival fraction of micro-organisms exposed to extreme shock pressures. A variety of data sources are used in this analysis. The key findings are that survival depends on the behaviour of the cell wall. Below a critical shock pressure there is a relatively slow fall in survival fraction as shock pressures increase. Above the critical threshold survival starts to fall rapidly as shock pressure increases further. The critical shock pressures found here are in the range 2.4 to 20 GPa, and vary not only from organism to organism, but also depend on the growth stage of given organisms, with starved (i.e., no growth) states favoured for survival. At the shock pressures typical of those involved in interplanetary transfer of rocky materials, the survival fractions are found to be small but finite. This lends credence to the idea of Panspermia, i.e. life may naturally migrate through space. Thus for example, Martian meteorites should not a prior be considered as sterile due to the shock processes they have undergone, but their lack of viable micro-organisms either reflects no such life being present at the source at the time of departure or the influence of other hazardous processes such as radiation in space or heating of surfaces during entry into a planetary atmosphere.

  10. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  11. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor.

    PubMed

    Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell'Aquila; de Paiva, Tereza Cristina Brazil

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%).

  12. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor

    PubMed Central

    Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell’Aquila; de Paiva, Tereza Cristina Brazil

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%). PMID:24294260

  13. Dual-Bioaugmentation Strategy To Enhance Remediation of Cocontaminated Soil

    PubMed Central

    Roane, T. M.; Josephson, K. L.; Pepper, I. L.

    2001-01-01

    Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 μg ml−1, these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-μg ml−1 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 μg of cadmium ml−1 in pure culture and up to 60 μg of cadmium g−1 in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 μg of cadmium g−1. Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils. PMID:11425743

  14. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  15. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli using a new bacteriochlorin as photosensitizer

    NASA Astrophysics Data System (ADS)

    Barboza, Diego D.; Martins, Laura C. A.; Corrêa, Thaila Quatrini; Geralde, Mariana Carreira; Pratavieira, Sebastião.; de Oliveira, Kleber Thiago; Uliana, Marciana P.; de Souza, Clovis W.

    2018-02-01

    In this study, we used bacteriochlorin as a photosensitizer, characterized by their low toxicity in the absence of light, presenting absorption around 780 nm, with the objective of evaluating their photodynamic inactivation potential on Staphylococcus aureus and Escherichia coli. Bacteriochlorins were synthesized from the extraction of bacteriochlorophylls from non-sulfurous purple bacteria and were then converted to bacteriochlorins. S. aureus and E. coli microorganisms were used in the planktonic and biofilm forms. For the formation of biofilms on glass coverslips, suspensions of the microorganisms at the concentration of 106 CFU/mL were inoculated into each well of a microplate. There was an exchange of culture medium (Tryptic Soy Broth - TSB) every 24 hours for 7 days, pre-washing the coverslips with a phosphate-buffered saline (PBS), to ensure that only adhered microorganisms were grown and then incubated at (36 +/- 1)°C between the middle exchanges. After 7 days of induction, the biofilm was mature, like those normally found in nature, and then it was applied different treatments (light doses associated with FS concentrations). At the end of the treatment, the coverslips underwent an ultrasonic disintegration, and the quantitative evaluation of viable cells was performed by plate counting using the plate method in Tryptic Soy Agar (TSA), incubating at (36 +/- 1)°C for 24 hours. The results showed that the PDI for E. coli was not successful even when it was more susceptible to the planktonic form, whereas for S. aureus the results showed a reduction in cell viability 6 logs for the planktonic forms, but lower to 1 log in biofilms. Therefore, novel studies using bacteriochlorins and surfactants will be performed to verify the potential of this alternative treatment method.

  16. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery.

    PubMed

    Rigali, Sébastien; Anderssen, Sinaeda; Naômé, Aymeric; van Wezel, Gilles P

    2018-01-05

    The World Health Organization (WHO) describes antibiotic resistance as "one of the biggest threats to global health, food security, and development today", as the number of multi- and pan-resistant bacteria is rising dangerously. Acquired resistance phenomena also impair antifungals, antivirals, anti-cancer drug therapy, while herbicide resistance in weeds threatens the crop industry. On the positive side, it is likely that the chemical space of natural products goes far beyond what has currently been discovered. This idea is fueled by genome sequencing of microorganisms which unveiled numerous so-called cryptic biosynthetic gene clusters (BGCs), many of which are transcriptionally silent under laboratory culture conditions, and by the fact that most bacteria cannot yet be cultivated in the laboratory. However, brute force antibiotic discovery does not yield the same results as it did in the past, and researchers have had to develop creative strategies in order to unravel the hidden potential of microorganisms such as Streptomyces and other antibiotic-producing microorganisms. Identifying the cis elements and their corresponding transcription factors(s) involved in the control of BGCs through bioinformatic approaches is a promising strategy. Theoretically, we are a few 'clicks' away from unveiling the culturing conditions or genetic changes needed to activate the production of cryptic metabolites or increase the production yield of known compounds to make them economically viable. In this opinion article, we describe and illustrate the idea beyond 'cracking' the regulatory code for natural product discovery, by presenting a series of proofs of concept, and discuss what still should be achieved to increase the rate of success of this strategy. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The effect of uranium on bacterial viability and cell surface morphology using atomic force microscopy in the presence of bicarbonate ions.

    PubMed

    Sepulveda-Medina, Paola; Katsenovich, Yelena; Musaramthota, Vishal; Lee, Michelle; Lee, Brady; Dua, Rupak; Lagos, Leonel

    2015-06-01

    Past disposal practices at nuclear production facilities have led to the release of liquid waste into the environment creating multiple radionuclide plumes. Microorganisms are known for the ability to interact with radionuclides and impact their mobility in soils and sediments. Gram-positive Arthrobacter sp. are one of the most common bacterial groups in soils and are found in large numbers in subsurface environments contaminated with radionuclides. This study experimentally analyzed changes on the bacteria surface at the nanoscale level after uranium exposure and evaluated the effect of aqueous bicarbonate ions on U(VI) toxicity of a low uranium-tolerant Arthrobacter oxydans strain G968 by investigating changes in adhesion forces and cell dimensions via atomic force microscopy (AFM). Experiments were extended to assess cell viability by the Live/Dead BacLight Bacterial Viability Kit (Molecular Probes) and quantitatively illustrate the effect of uranium exposure in the presence of varying concentrations of bicarbonate ions. AFM and viability studies showed that samples containing bicarbonate were able to withstand uranium toxicity and remained viable. Samples containing no bicarbonate exhibited deformed surfaces and a low height profile, which, in conjunction with viability studies, indicated that the cells were not viable. Copyright © 2015 Institut Pasteur. All rights reserved.

  18. [A comparison between 2 different methods for calculating the percentage of anaerobic microorganisms in the subgingival microbial flora].

    PubMed

    Petti, S; Renzini, G

    1994-03-01

    The percentage of anaerobic micro-organisms in the subgingival microflora represents a simple microbiological index which not only refers to the state but also the risks of periodontal health. The present study aimed to compare two different methods of calculating this index. The study was performed in 45 subjects with moderate gingivitis provoked by the previous application of dental fixtures anchored to both arches. A sample of subgingival microflora was collected from each patient at the level of the vestibular gingival sulcus of the first upper right molar. This was then vortexed, diluted and inoculated in three series of plates. It was chosen to use Walker's culture medium. The total bacterial count was evaluated by incubating the first series of plates in anaerobiosis; the anaerobic bacterial was calculated by subtracting from the total the of facultative aerobic-anaerobic micro-organisms, which in turn was obtained using two methods: the first (method AE) consisted of incubating another series of plates in aerobiosis; the second (method M) involved incubating the last series of plates in anaerobiosis, and adding metronidazole to the culture medium in a solution of 2.5 mg/l. The plates were then kept at 37 degrees C for seven days. The mean percentage of anaerobic microorganisms, given by the percentage ratio between anaerobic and total, relating to the 45 cases studied, was as follows: using method AE: 57.8 +/- 26.3%, and using method M: 40.2 +/- 27.2%. Both figures come close to that proposed and calculated using a much more sophisticated method by Slots, namely 41.5 +/- 19.2% in the event of gingivitis.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Do European Standard Disinfectant tests truly simulate in-use microbial and organic soiling conditions on food preparation surfaces?

    PubMed

    Meyer, B; Morin, V N; Rödger, H-J; Holah, J; Bird, C

    2010-04-01

    The results from European standard disinfectant tests are used as one basis to approve the use of disinfectants in Europe. The design of these laboratory-based tests should thus simulate as closely as possible the practical conditions and challenges that the disinfectants would encounter in use. No evidence is available that the organic and microbial loading in these tests simulates actual levels in the food service sector. Total organic carbon (TOC) and total viable count (TVC) were determined on 17 visibly clean and 45 visibly dirty surfaces in two restaurants and the food preparation surfaces of a large retail store. These values were compared to reference values recovered from surfaces soiled with the organic and microbial loading, following the standard conditions of the European Surface Test for bactericidal efficacy, EN 13697. The TOC reference values for clean and dirty conditions were higher than the data from practice, but cannot be regarded as statistical outliers. This was considered as a conservative assessment; however, as additional nine TOC samples from visibly dirty surfaces were discarded from the analysis, as their loading made them impossible to process. Similarly, the recovery of test organisms from surfaces contaminated according to EN 13697 was higher than the TVC from visibly dirty surfaces in practice; though they could not be regarded as statistical outliers of the whole data field. No correlation was found between TVC and TOC in the sampled data, which re-emphasizes the potential presence of micro-organisms on visibly clean surfaces and thus the need for the same degree of disinfection as visibly dirty surfaces. The organic soil and the microbial burden used in EN disinfectant standards represent a realistic worst-case scenario for disinfectants used in the food service and food-processing areas.

  20. Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection†

    PubMed Central

    Harwood, Valerie J.; Levine, Audrey D.; Scott, Troy M.; Chivukula, Vasanta; Lukasik, Jerzy; Farrah, Samuel R.; Rose, Joan B.

    2005-01-01

    The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, ∼40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study. PMID:15933017

  1. Microorganisms in stormwater; a summary of recent investigations

    USGS Publications Warehouse

    Mallard, Gail E.

    1980-01-01

    All storm runoff contains a variety of bacteria, including total coliform, fecal coliform, and fecal streptococci, which are derived from the land over which the water flows. Most total coliform are native soil organisms, whereas the fecal coliform and fecal streptococci originate from the feces of wild and domestic animals. Urban runoff has been reported to contain pathogenic organisms, but this probably presents little direct threat to human health because the runoff is not ingested. Runoff water can, however, have other negative effects such as contamination of surface water, which may result in beach closures, or contamination of shellfish. This type of contamination is generally of short duration because indicator bacteria and pathogens die out rapidly in the aquatic environment. Similarly, bacteria and viruses deposited on soil by stormwater are inactivated by drying, competition from soil microflora, and a variety of other processes. Every storm producing runoff is unique in the number and type of microorganisms because these vary from site to site, from storm to storm, and during the course of the storm. Stormwater to be examined for microorganisms must be collected in sterile containers and processed immediately. (USGS)

  2. Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions.

    PubMed

    Hu, Nan; Ding, De-xin; Li, Shi-mi; Tan, Xiang; Li, Guang-yue; Wang, Yong-dong; Xu, Fei

    2016-04-01

    In order to study the bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions, microcosm were amended with ethanol, lactate and glucose, and incubated under suboxic conditions. During the incubation, total dissolved U in amended microcosms decreased from 0.95 mg/L to 0.03 mg/L. Pyrosequencing results showed that, the proportion of anaerobic microorganisms capable of reducing U(VI) under suboxic conditions was small compared with that under anoxic conditions; the proportion of aerobic and facultative anaerobic microorganisms capable of consuming the dissolved oxygen was large; and some of the facultative anaerobic microorganisms could reduce U(VI). These results indicated that different microbial communities were responsible for the bioreduction of U(VI) under suboxic and anoxic conditions. After the electron donors were exhausted, total dissolved U in the amended microcosms remained unchanged, while the U(VI)/U(IV) ratio in the solid phase of sediments increased obviously. This implied that the performance of bioreduction of the U(VI) can be maintained under suboxic condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Study of utilization liquid smoke and carrageenan as a natural antibacterial in manufacturing beef meatballs

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Arifiani S., N.; Yaqin, N.; Baarri, A. N. Al

    2018-01-01

    This research have observed liquid smoke and carragenan ability to obstruct microbe activity. Phenol and sulfate ester in liquid smoke and carrageenan, give preservation effect by obstruct microorganisms growth on beef meatballs. Liquid smoke and carrageenan was added on a particular variation into meatballs dough. Liquid smoke variation was 0.5%-1%, and carrageenan variation was 0.5%-1.5%. Meatballs then stored up to 36 hours at room temperature and performed TPC test in every 12 hours. The results indicates that in 0-12 hours carragenan has significant effect to obstruct microorganism growth with the percentage reduction in total bacteria was 13.54% and 93.73%. In 24-36 hours liquid smoke effected to the significant effect obstruction of microorganism growth with the percentage reduction in total bacteria was 98.99% and 99.93%. The addition of liquid smoke and carrageenan did not give a significant effect on the lightness of beef meatballs produced, but provided significant effect on the storage time and the lightness of beef meatballs.

  4. Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors.

    PubMed

    Yan, Bing Hua; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Effect of rumen microorganisms on hydrolysis of food waste in leach bed reactor (LBR) was investigated. LBRs were inoculated (20%, w/w) with cow manure and anaerobically digested sludge at different ratios, 0:1 (LBR-A), 1:3 (LBR-B), 1:1 (LBR-C), 3:1 (LBR-D) and 1:0 (LBR-E). High volatile solids (VS) conversion efficiency of 68% was achieved in LBR-E. Compared with LBR-A, chemical oxygen demand, total soluble products and total Kjeldahl nitrogen leaching of LBR-E were increased by 16%, 14.3% and 27%, respectively. Recovery of the highest amounts of ethanol and butyrate in LBR-E indicated that the metabolic pathway mediated by rumen microorganisms was favorable for subsequent methanogenesis. Phylogenetic analysis confirmed that the enhanced hydrolysis in LBR-E was mainly due to strong degraders, e.g. Enterobacter, Bifidobacterium thermacidophilum and Caloramator sourced from cow manure. Results demonstrate that rumen microorganisms rapidly degrade the VS and produce useful VFAs with high methane yields in subsequent methanogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of bacteria proportion on the fermentation of goat yoghurt with probiotic culture.

    PubMed

    Shu, Guowei; Wang, Shuai; Chen, Zikun; Chen, He; Wang, Changfeng; Ma, Yaning

    2015-01-01

    Goat milk production in Shaanxi province is dominant in China, but the product is mainly infant formula and adult milk powder; product homogeneity is serious and has no goat yoghurt with probiotic culture. The effect of bacteria proportion (1:3:1, 1:2:1, 1:1:1, 2:1:1, 3:1:1) on pH, acidity, and viable counts and sensory evaluation of goat milk fermented by probiotics including L. acidophilus, B. bifidum  or L. casei besides, S. thermophilus and L. bulgaricus for developing AB-goat yoghurt and BC-goat yoghurt was investigated. The optimum bacteria proportion of L. acidophilus : B. bifidum : S. thermophilus and L. bulgaricus for AB-goat yoghurt and B. bifidum : L. casei : S. thermophilus and L. bulgaricus for BC-goat yoghurt were both 2:1:1. The pH, acidity, the viable counts of L. acidophilus and B. bifidum, the total viable counts were respectively 4.60, 7.73 (g/L), 3.50×107 cfu/mL, 3.40×107 cfu/mL and 2.30×109 cfu/mL in AB-goat yoghurt. The pH, acidity, the viable counts of B. bifidum and L. casei, the total viable counts were respectively  4.61, 8.16 (g/L), 7.60×107 cfu/mL, 5.60×107 cfu/mL and 2.04×109 cfu/mL in BC-goat yoghurt. The bacteria proportion had a significant effect on fermentation of AB- and BC-goat yoghurt, the results are beneficial for developing AB-goat yoghurt and BC-goat yoghurt.

  6. Bioaerosol generation by raindrops on soil

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Ge, Zhifei; Buie, Cullen R.

    2017-03-01

    Aerosolized microorganisms may play an important role in climate change, disease transmission, water and soil contaminants, and geographic migration of microbes. While it is known that bioaerosols are generated when bubbles break on the surface of water containing microbes, it is largely unclear how viable soil-based microbes are transferred to the atmosphere. Here we report a previously unknown mechanism by which rain disperses soil bacteria into the air. Bubbles, tens of micrometres in size, formed inside the raindrops disperse micro-droplets containing soil bacteria during raindrop impingement. A single raindrop can transfer 0.01% of bacteria on the soil surface and the bacteria can survive more than one hour after the aerosol generation process. This work further reveals that bacteria transfer by rain is highly dependent on the regional soil profile and climate conditions.

  7. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    PubMed Central

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  8. Biodiesel production and Environmental CO2 cleanup using Oleaginous Microorganisms from Al-Hassa area in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sinawi, Abdulaziz; Shathele, Mohammad

    2014-12-01

    Biodiesel production is rapidly moving towards the mainstream as an alternative source of energy. Algae oil is one of the viable feed stocks among others to produce Biodiesel. However the difficulties in efficient biodiesel production from algae lie not in the extraction of the oil, but in finding an algal strain with a high lipid content and fast growth rate. This paper presents an experimental work performed to study the production of biodiesel from local algae strains in Al-Hassa territory of the eastern province in Saudi Arabia which was found to contain high lipid contents and show rapid growth. The collected results predict that those types of desert algae are promising and are considered to be a potential feedstock for biofuels.

  9. Hydrogen production by Cyanobacteria

    PubMed Central

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-01-01

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161

  10. A diagnosis of the microbiological quality of dehydrated bee-pollen produced in Brazil.

    PubMed

    De-Melo, A A M; Estevinho, M L M F; Almeida-Muradian, L B

    2015-11-01

    Bee-pollen is an apicultural product with potential for medical and nutritional applications; therefore, its microbiology quality should be monitored. In this context, the objective of this study was to diagnose the microbiological quality of 45 dehydrated bee-pollen samples collected from November 2011 to December 2013 in nine Brazilian States. All the samples were negative for sulphite-reducing Clostridium spores, Salmonella, coagulase-positive Staphylococcus and Escherichia coli, which are micro-organisms of public health concern. Total aerobic mesophilic micro-organism counts ranged from <10 to 1·10 × 10(4) CFU g(-1) , with psychrotroph counts ranging from <10 to 1·12 × 10(3) CFU g(-1) and total coliforms from <10 to 2·80 × 10(3) CFU g(-1) , while the values for yeasts and moulds were between <10 to 7·67 × 10(3) CFU g(-1) . According to the literature, the microbiota observed in this study were typical; however, it is important to consider that these micro-organisms may cause spoilage and diminish shelf life, reason by which quality control programs should be implemented. Contamination of bee-pollen can occur during production, collection and processing, but there are few studies of the microbiological quality of this product. Brazil is an important producer of dehydrated bee-pollen, therefore, a diagnosis of the microbiological status is important to ensure the safety of many consumers. Salmonella sp., genus Clostridium, coagulase-positive Staphylococcus, Escherichia coli and even some yeast species are micro-organisms of public health concern and their presence must be monitored. Furthermore, the determination of spoilage micro-organisms indicates whether the production and the processing practices carried out by beekeepers and warehouses were adequate. © 2015 The Society for Applied Microbiology.

  11. Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments.

    PubMed

    Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M

    2017-12-01

    This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni.

    PubMed

    Tareb, Raouf; Bernardeau, Marion; Gueguen, Marielle; Vernoux, Jean-Paul

    2013-04-01

    Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are highly aggregative in vitro with pathogens, especially Campylobacter spp., the most commonly reported zoonotic agent in the European Union. This study supports the need for further in vivo investigations to demonstrate the potential food safety benefits of Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, live or heat-killed, in the global feed/food chain.

  13. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  14. Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses.

    PubMed

    Bueno, Edita; García, Pilar; Martínez, Beatriz; Rodríguez, Ana

    2012-08-01

    Bacteriophages are regarded as natural antibacterial agents in food since they are able to specifically infect and lyse food-borne pathogenic bacteria without disturbing the indigenous microbiota. Two Staphylococcus aureus obligately lytic bacteriophages (vB_SauS-phi-IPLA35 and vB_SauS-phi-SauS-IPLA88), previously isolated from the dairy environment, were evaluated for their potential as biocontrol agents against this pathogenic microorganism in both fresh and hard-type cheeses. Pasteurized milk was contaminated with S. aureus Sa9 (about 10(6) CFU/mL) and a cocktail of the two lytic phages (about 10(6) PFU/mL) was also added. For control purposes, cheeses were manufactured without addition of phages. In both types of cheeses, the presence of phages resulted in a notorious decrease of S. aureus viable counts during curdling. In test fresh cheeses, a reduction of 3.83 log CFU/g of S. aureus occurred in 3h compared with control cheese, and viable counts were under the detection limits after 6h. The staphylococcal strain was undetected in both test and control cheeses at the end of the curdling process (24 h) and, of note, no re-growth occurred during cold storage. In hard cheeses, the presence of phages resulted in a continuous reduction of staphylococcal counts. In curd, viable counts of S. aureus were reduced by 4.64 log CFU/g compared with the control cheeses. At the end of ripening, 1.24 log CFU/g of the staphylococcal strain was still detected in test cheeses whereas 6.73log CFU/g was present in control cheeses. Starter strains were not affected by the presence of phages in the cheese making processes and cheeses maintained their expected physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Field study on evaluation of the efficacy and usability of two disinfectants for drinking water treatment at small cattle breeders and dairy cattle farms.

    PubMed

    Mohammed, Asmaa N

    2016-03-01

    The hygienic quality of drinking water for cattle originated from different sources together with the efficacy and usability of two types of disinfectants against waterborne pathogens were assessed for small cattle breeders and dairy cattle farms. A total of 120 drinking water samples were collected from water troughs representing three different water sources commonly used for cattle drinking (tap, underground and surface water; n = 65, 25, and 30, respectively). Collected samples were cultured for isolation and identification of pathogenic bacteria using serological techniques and PCR. The bactericidal efficacy of the disinfectants, sodium dichloroisocyanurate (NaDCC) and hydrogen peroxide (H2O2) 50%, at different concentrations were evaluated by the determination of total viable and coliform counts of water prior and postwater treatment. In small cattle breeders, Escherichia coli was the most prevalent bacterial isolates from surface water (56.7%) followed by Staphylococcus aureus (36.7%), Salmonella spp. (26.7%), Streptococcus faecalis (23.3%), Shigella flexneri (16.7%), Proteus spp. (16.7%), and Klebsiella pneumonae (10.0 %) at X(2) = 9, P ≤ 0.01. Prior to the use of disinfectants, the averages of total bacterial and coliform counts were the highest in surface water (3.56 × 10(7), 240.0, and 38.0 CFU/100 ml, respectively). It has been found that hydrogen peroxide 50% at a concentration of 35 mg/l had a lethal effect (100 %) on indicator microorganisms compared with NaDCC at concentration of 2 mg/l. In conclusion, the higher bacterial contaminants in drinking water were found in surface water followed by tap water, particularly for small cattle breeders. Therefore, the usage of more hygienic water troughs with their regular treatment by hydrogen peroxide 50% at concentration of 35 mg/l is highly recommended to control waterborne bacteria and consequently improve and maintain the animal health.

  16. Optimization of PMA-qPCR for Staphylococcus aureus and determination of viable bacteria in indoor air.

    PubMed

    Chang, C-W; Lin, M-H

    2018-01-01

    Staphylococcus aureus may cause infections in humans from mild skin disorders to lethal pneumonia. Rapid and accurate monitoring of viable S. aureus is essential to characterize human exposure. This study evaluated quantitative PCR (qPCR) with propidium monoazide (PMA) to quantify S. aureus. The results showed comparable S. aureus counts between exclusively live cells and mixtures of live/dead cells by qPCR with 1.5 or 2.3 μg/mL PMA (P>.05), illustrating the ability of PMA-qPCR to detect DNA exclusively from viable cells. Moreover, qPCR with 1.5 or 2.3 μg/mL PMA performed optimally with linearity over 10 3 -10 8  CFU/mL (R 2 ≥0.9), whereas qPCR with 10, 23 or 46 μg/mL PMA significantly underestimated viable counts. Staphylococcus aureus and total viable bacteria were further determined with PMA-qPCR (1.5 μg/mL) from 48 samples from a public library and two university dormitories and four from outside. Viable bacteria averaged 1.9×10 4 cells/m 3 , and S. aureus were detected in 22 (42%) samples with a mean of 4.4×10 3 cells/m 3 . The number of S. aureus and viable bacteria were positively correlated (r=.61, P<.005), and percentages of S. aureus relative to viable bacteria averaged 12-44%. The results of field samples suggest that PMA-qPCR can be used to quantify viable S. aureus cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Development and Evaluation of Integrity Assessment Tests for Polymeric Hermetic Seals

    DTIC Science & Technology

    2006-02-19

    Knoxville, the wires were pulled from the seals and then the packages were dipped in the microorganism Enterobacter aerogene . The polytrays were exposed for...inoculated) 5 samples Total Polytrays 80 Microorganism Washes 1. Prepare Cultures of Enterobacter aerogenes a. 5 tubes (10 mL each) in...initial number – 6 log CFU/mL a. Add two tubes (20 mL) of Enterobacter aerogenes culture to 5 gallons of water with sodium thiosulfate b. Ca. 9 log CFU

  18. Metabolic engineering of microorganisms for the synthesis of plant natural products.

    PubMed

    Marienhagen, Jan; Bott, Michael

    2013-01-20

    Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Impact of temperature on the biological properties of soil

    NASA Astrophysics Data System (ADS)

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  20. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  1. Differences among breeds and manifestation of heterosis in AI boar sperm output.

    PubMed

    Smital, J; De Sousa, L L; Mohsen, A

    2004-01-01

    A total of 271,547 records of semen collections were utilized to appraise sperm characteristics of 3319 boars belonging to eight breeds: Czech Large White (CLW), Czech Landrace (CLA), Prestice Black-Pied (PBP), Czech Meat Pig (CM), Hampshire (HA), Duroc (DC), Pietrain (PN), Large White (LW), and various crosses of these breeds. The data was collected over 8 years (1990-1997) from insemination stations for boars in the Czech Republic. The assessment of sperm output was based on semen volume, number of total spermatozoa and number of viable spermatozoa. A linear model was used for statistical analysis included fixed effects of breed or crossbred combinations, boar within breed or crossbred combinations, year-season, and linear and quadratic regression on age of boars at collection and on interval between collections. The average semen volume of boars ranged from 161 to 349 ml, number of total spermatozoa from 81x10(9) to 119x10(9) and number of viable spermatozoa from 60x10(9) to 86x10(9). The lowest values were detected in DC while the highest were observed in LW. In general, sperm output significantly differed across breeds and their crossbreeds. The highest heterosis effect for semen volume was 30.6% (HA x PN), for number of total spermatozoa 18.2% (HA x PN) and 10.4% for number of viable spermatozoa (CLA x DC). Sperm output varied with season, including high values in autumn and winter and low ones in spring and summer.

  2. Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients.

    PubMed

    Bozoglan, Alihan; Ertugrul, Abdullah Seckin; Taspınar, Mehmet; Yuzbasioglu, Betul

    2017-05-01

    The aim of this study is to determine the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients following periodontal treatment. A total of 40 patients were included in the study. 20 of these patients diagnosed with atherosclerosis and chronic periodontitis formed the test group. The remaining 20 patients were systemically healthy patients diagnosed with chronic periodontitis and formed the control group. All patients had nonsurgical periodontal treatment. The periodontopathogenic microorganism levels were determined at baseline and at 6 months in microbial dental plaque samples and WBC, LDL, HDL, PLT, fibrinogen, creatinine and hs-CRP levels were determined by blood samples. Statistically significant reduction has been achieved in clinical periodontal parameters following non-surgical periodontal treatment in test and control groups. Following periodontal treatment, WBC, LDL, PLT, fibrinogen, creatinine and hs-CRP levels significantly decreased and HDL levels significantly increased in both test and control groups. Similarly, the periodontopathogenic microorganism levels significantly decreased following periodontal treatment in the test and control groups. A statistically significant positive correlation has been determined between the periodontopathogenic microorganism levels and WBC, LDL, PLT, fibrinogen, creatinine, and hs-CRP levels in the test group. The association between hs-CRP, WBC, LDL, PLT, fibrinogen, creatinine, and the amount of periodontopathogenic microorganisms indicates the possibility that periodontal treatment could decrease the risk atherosclerosis. More studies must be conducted in order for these results to be supported.

  3. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our Solar system are frozen worlds, microbial extremophiles from the Polar Regions of Earth are of great importance to Astrobiology in understanding where and how to search for evidence of life elsewhere in the Cosmos.

  4. Aseptic Laboratory Techniques: Plating Methods

    PubMed Central

    Sanders, Erin R.

    2012-01-01

    Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method. PMID:22617405

  5. Biogas production from pineapple core - A preliminary study

    NASA Astrophysics Data System (ADS)

    Jehan, O. S.; Sanusi, S. N. A.; Sukor, M. Z.; Noraini, M.; Buddin, M. M. H. S.; Hamid, K. H. K.

    2017-09-01

    Anaerobic digestion of pineapple waste was investigated by using pineapple core as the sole substrate. Pineapple core was chosen due to its high total sugar content thus, indicating high amount of fermentable sugar. As digestion process requires the involvement of microorganisms, wastewater from the same industry was added in the current study at ratio of 1:1 by weight. Two different sources of wastewater (Point 1 and Point 2) were used in this study to distinguish the performance of microorganism consortia in both samples. The experiment was conducted by using a lab scale batch anaerobic digester made up from 5L container with separate gas collecting system. The biogas produced was collected by using water displacement method. The experiment was conducted for 30 days and the biogas produced was collected and its volume was recorded at 3 days interval. Based on the data available, wastewater from the first point recorded higher volume of biogas with the total accumulated biogas volume is 216.1 mL. Meanwhile, wastewater sample from Point 2 produced a total of 140.5 mL of biogas, by volume. The data shows that the origin and type of microorganism undeniably play significant role in biogas production. In fact, other factors; pH of wastewater and temperature were also known to affect biogas production. The anaerobic digestion is seen as the promising and sustainable alternatives to current disposal method.

  6. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds.

    PubMed

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-04-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. © 2014 AAFC. New Phytologist © 2014 New Phytologist Trust.

  7. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    PubMed Central

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  8. Effect of mineral fertilizers on microbiological and biochemical characteristics of agrochernozem.

    NASA Astrophysics Data System (ADS)

    Tkhakakhova, Azida; Vasilenko, Elena; Kutovaya, Olga

    2013-04-01

    The problem of reproduction of soil fertility of chernozems are solved with integrated action, the ecological condition of the soil can be assessed by the activity of physiological groups of microorganisms. Microorganisms are the most important in the transformation of compounds of biogenic elements and therefore it is very interesting to study the nature of the relationship of some biochemical parameters with the development of microflora and micromycetes eco-trophic groups. Agrochemical researches have been conducted at agroecological station "Stone Steppe" in central Russia. Experiment variants: 1 - Control (without fertilizer); 2 - N10,5 P10,5 K10,5; 3 - N56,5 P56,5 K56,5; 4 - deposit soil. Mobile forms of humic substances (mobile carbon and carbon water extract) have changed during the cultivation of the chernozem soil. Amount of mobile humus has doubled in the variants with the use of mineral fertilizers. It's just mobile humus which determines the soil response to any impact, especially ecological. Water extract carbon - organic matter contained in the soil solution and the subject of assimilation of plants and microorganisms. It increased in agricultural soils. The total nitrogen and nitrate nitrogen amount in the variants of agricultural use is higher than in the deposit soil. This is probably because of the soil aeration, the release of nitrogen from the labile humus due to biological activity and nitrification. Amount of ammonia nitrogen has increased in the variant with the use of high doses of fertilizers. Deposit soil (40 years without agricultural use) has a lower, but more stable microbial activity. Process of anoxic decomposition of plant remains develops more active than others, due to the natural structure of the soil anaerobiosis in the spring time. Processes of nitrogen cycle (nitrogen accumulation - fixation of atmospheric nitrogen, nitrogen losses - denitrification) are progressing very intensively in agricultural soil with fertilizer. Content of humic substances in the soil affects all groups of microorganisms, except actinomycetes and cellulolytices. These microorganisms have an active system of hydrolytic enzymes that taking action on hard organic materials. Movable carbon largely affects the anaerobic microorganisms nitrogen cycle and inverse relationship takes place during with the developing of actinomycetes. Correlation between the aqueous extract carbon with cellulolitic bacteria, aerobic nitrogen-fixing bacteria and amylolytic microorganisms using mineral nitrogen is the highest. Organic material of the soil solution in the growing season associated with NO3-. The content of total nitrogen and nitrate associated with anaerobic denitrifying bacteria, nitrogen-fixing bacteria and amylolytic microorganisms. The content of ammonia nitrogen N-NH4+ renders very strong influence on soil microorganisms. A positive correlation is observed with ammonifiers, nitrogen-fixing bacteria, denitrifying bacteria. There is inverse relationship with actinomycetes (R = - 0,96) and anaerobic cellulolitic bacteria (R = - 0,80). Representatives of these microorganisms are active participants in the carbon cycle; their development in the presence of the ammonium form of nitrogen is possibly suspended. There is a complicated relationship of biochemical indicators of the development of soil microorganisms in the black earth. The problem preserving stable humus and physiologically active mobile forms that affect plant growth can only be achieved while maintaining the living organisms in it.

  9. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  10. [Can microorganisms survive upon high-temperature heating during the interplanetary transfer by meteorites?].

    PubMed

    Pavlov, A K; Shelegedin, V N; Kogan, V T; Pavlov, A A; Vdovina, M A; Tret'iakov, A V

    2007-01-01

    One of the most important aspects of the problem of life transfer in the cosmic space is the resistance of microorganisms to high-temperature heating during the launch and entry into the atmosphere. The high-temperature limits of the survival of microorganisms were studied under conditions modeling the laungh from the Mars and the landing on the Earth. Two strain of E. coli K12 exposed to short heating pulse were studied in order to tind out if they could resist high temperature while being in the desiccated state. The procedure was performed in vacuum. It was found that a fraction of bacteria survive heating pulses up to 250 degrees C in vacuum, while similar heating at normal atmospheric pressure leads to the total sterilization of samples.

  11. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip.

    PubMed

    Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito

    2017-12-22

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.

  12. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip

    PubMed Central

    KAWAI, Kazuhiro; INADA, Mika; ITO, Keiko; HASHIMOTO, Koji; NIKAIDO, Masaru; HATA, Eiji; KATSUDA, Ken; KIKU, Yoshio; TAGAWA, Yuichi; HAYASHI, Tomohito

    2017-01-01

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program. PMID:29093278

  13. Bacteremic complications of intravascular catheter tip colonization with Gram-negative micro-organisms in patients without preceding bacteremia.

    PubMed

    van Eck van der Sluijs, A; Oosterheert, J J; Ekkelenkamp, M B; Hoepelman, I M; Peters, Edgar J G

    2012-06-01

    Although Gram-negative micro-organisms are frequently associated with catheter-related bloodstream infections, the prognostic value and clinical implication of a positive catheter tip culture with Gram-negative micro-organisms without preceding bacteremia remains unclear. We determined the outcomes of patients with intravascular catheters colonized with these micro-organisms, without preceding positive blood cultures, and identified risk factors for the development of subsequent Gram-negative bacteremia. All patients with positive intravascular catheter tip cultures with Gram-negative micro-organisms at the University Medical Center, Utrecht, The Netherlands, between 2005 and 2009, were retrospectively studied. Patients with Gram-negative bacteremia within 48 h before catheter removal were excluded. The main outcome measure was bacteremia with Gram-negative micro-organisms. Other endpoints were length of the hospital stay, in-hospital mortality, secondary complications of Gram-negative bacteremia, and duration of intensive care admission. A total of 280 catheters from 248 patients were colonized with Gram-negative micro-organisms. Sixty-seven cases were excluded because of preceding positive blood cultures, leaving 213 catheter tips from 181 patients for analysis. In 40 (19%) cases, subsequent Gram-negative bacteremia developed. In multivariate analysis, arterial catheters were independently associated with subsequent Gram-negative bacteremia (odds ratio [OR] = 5.00, 95% confidence interval [CI]: 1.20-20.92), as was selective decontamination of the digestive tract (SDD) (OR = 2.47, 95% CI: 1.07-5.69). Gram-negative bacteremia in patients who received SDD was predominantly caused by cefotaxime (part of the SDD)-resistant organisms. Mortality was significantly higher in the group with subsequent Gram-negative bacteremia (35% versus 20%, OR = 2.12, 95% CI: 1.00-4.49). Patients with a catheter tip colonized with Gram-negative micro-organisms had a high chance of subsequent Gram-negative bacteremia from any cause. This may be clinically relevant, as starting antibiotic treatment pre-emptively in high-risk patients with Gram-negative micro-organisms cultured from arterial intravenous catheters may be beneficial.

  14. Organotin compounds and aquatic bacteria: A review

    NASA Astrophysics Data System (ADS)

    Cooney, J. J.

    1995-03-01

    Organotins are toxic to microorganisms. Trisubstituted organotins (R3SnX) are considered more toxic than disubstituted (R2SnX2) or monosubstituted (RSnX3) compounds, and tetrasubstituted compounds (R4Sn) are not considered toxic. In the R3Sn series propyl-, butyl-, pentyl-, phenyl- and cyclohexyltins are the most toxic to microorganisms. Toxicity towards aerobes in the R3Sn series is related to total molecular surface area and to the octanol: water partition coefficient, Kow, which is a measure of hydrophobicity. Care must be taken when testing the toxicity of tin compounds in the laboratory, for a number of biological, chemical and physical factors can influence the apparent toxicity. Although TBT is generally the most toxic of the butyltins, there are instances where monobutyltin (MBT) is as toxic, or more toxic, than TBT to microorganisms. Thus, debutylation in the sequence TBT→DBT→MBT→Sn does not detoxity TBT for all microorganisms. Some microorganisms can methylate inorganic or organic tins under aerobic or anaerobic conditions. Methylation can also occur by chemical means and the relative contributions of biotic and abiotic mechanisms are not clear. It is difficult to isolate a pure culture which can methylate tin compounds aerobically, and it is difficult to isolate a pure culture which degrades TBT, suggesting that microbial consortiums may be involved in transformations of organotins in the aquatic environment. Methylation and debutylation alter the adsorbtivity and solubility of tin compounds; thus microorganisms can influence the environmental mobility of tin. TBT-resistant microorganisms can be isolated, and in some of them resistance to TBT can be plasmid-mediated.

  15. A THUMBNAIL HISTORY OF HETEROTROPHIC PLATE COUNT (HPC) METHODOLOGY IN THE UNITED STATES

    EPA Science Inventory

    Over the past 100 years, the method of determining the number of bacteria in water, foods or other materials has been termed variously as: bacterial plate count, total plate count, total viable plate count, aerobic plate count, standard plate cound and more recently, heterotrophi...

  16. Chemicals and microbes in bioaerosols from reaction tanks of six wastewater treatment plants: survival factors, generation sources, and mechanisms.

    PubMed

    Wang, Yanjie; Lan, Huachun; Li, Lin; Yang, Kaixiong; Qu, Jiuhui; Liu, Junxin

    2018-06-19

    Sampling was conducted from biochemical reaction tanks of six municipal wastewater treatment plants in the Yangtze River and Zhujiang deltas and the Jing-Jin-Ji region to assess their morphology, level, and composition. Morphological observations suggested that particles were scattered amorphously with C, O, and Si as the major elements. Bioaerosols are composed of spatially varying levels of microorganisms and chemicals. As the sampling height increased, the level of the components in the bioaerosols decreased. Wastewater in the biochemical reaction tanks was identified as an important source of bioaerosols using SourceTracker analysis. The aerosolization of film drops produced by bursting of bubbles was the main reason for the generation of bioaerosols. Increasing the aeration rate of water may promote bioaerosol generation. Relative humidity, temperature, wind speed, and solar illumination influenced the survival of bioaerosols. Large particle sedimentation and wind diffusion significantly decreased the atmospheric aerosol concentration. When the sampling point height increased from 0.1 m to 3.0 m, the concentrations of the microorganisms and total suspended particles decreased by 23.71% and 38.74%, respectively. Considerable attention should be paid to the control of total suspended particles and microorganisms in bioaerosols.

  17. The importance of the viable but non-culturable state in human bacterial pathogens

    PubMed Central

    Li, Laam; Mendis, Nilmini; Trigui, Hana; Oliver, James D.; Faucher, Sebastien P.

    2014-01-01

    Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed. PMID:24917854

  18. Influence of selected physicochemical parameters on microbiological activity of mucks.

    NASA Astrophysics Data System (ADS)

    Całka, A.; Sokołowska, Z.; Warchulska, P.; Dąbek-Szreniawska, M.

    2009-04-01

    One of the basic factor decided about soil fertility are microorganisms that together with flora, determine trend and character of biochemical processes as well totality of fundamental transformations connected with biogeochemistry and physicochemical properties of soil. Determination of general bacteria number, quantity of selected groups of microorganisms and investigation of respiration intensity let estimate microbiological activity of soil. Intensity of microbiological processes is directly connected with physicochemical soil parameters. In that case, such structural parameters as bulk density, porosity, surface or carbon content play significant role. Microbiological activity also changes within the bounds of mucks with different stage of humification and secondary transformation. Knowledge of relations between structural properties, microorganism activity and degree of transformation and humification can lead to better understanding microbiological processes as well enable to estimate microbiological activity at given physicochemical conditions and at progressing process of soil transformation. The study was carried out on two peaty-moorsh (muck) soils at different state of secondary transformation and humification degree. Soil samples were collected from Polesie Lubelskie (layer depth: 5 - 25 cm). Investigated mucks originated from soils formed from low peatbogs. Soil sample marked as I belonged to muck group weakly secondary transformed. Second sample (II) represented soil group with middle stage of secondary transformation. The main purpose of the research was to examine the relations between some physicochemical and surface properties and their biological activity. Total number and respiration activity of microorganisms were determined. The effectiveness of utilizing the carbon substances from the soil by the bacteria increased simultaneously with the transformation state of the peat-muck soils. Quantity of organic carbon decreased distinctly in the soil at the higher stage of secondary transformation and it influenced quantity and activity of soil microorganisms. Bulk density and surface increased with increasing secondary transformation degree. On the other hand, porosity decreased with increasing secondary transformation index. Process of secondary transformation influenced the soil environment for the microbes by changing the physicochemical properties. This way it influenced the number of microorganisms and caused changes of biological activity in the soils.

  19. Microorganisms of the Upper Atmosphere

    PubMed Central

    Fulton, John D.; Mitchell, Roland B.

    1966-01-01

    The viable micropopulation found, at altitude over a city, in a land air mass was significantly higher than that found in a marine-influenced air mass. The percentage distribution of bacteria and fungi was approximately equal in both types of air masses. This indicates that, under the conditions of the experiment, the marine air mass was influenced by the land area over which it traveled during passage from its source to the sampling area. Activities taking place within the city significantly increased the micropopulation at altitude. This increase was quantitatively so small that it was not identifiable when the micropopulation moving into the city was high—as in a land air mass—but was recognizable when the micropopulation was low—as in a marine-influenced air mass. The modification of the micropopulation at altitude by temperature inversions was shown. PMID:5959858

  20. A bioactive film based on cashew gum polysaccharide for wound dressing applications.

    PubMed

    Moreira, Bruna R; Batista, Karla A; Castro, Elisandra G; Lima, Eliana M; Fernandes, Kátia F

    2015-05-20

    This work presents the development of a new bioactive material for wound therapeutics which may play a dual role of modulate metallo proteinases activity while prevents infection blocking out pathogenic microorganisms and foreign materials. A CGP/PVA film was activated by covalent immobilization of trypsin. Results from biocompatibility test revealed that PDL fibroblasts grown on the surface of CGP/PVA and the high amount of viable cells proved absence of cytotoxicity. Trypsin immobilized onto CGP/PVA film remained 100% active after 28 days stored dried at room temperature. In addition, CGP/PVA-trypsin film could be used for 9 cycles of storage/use without loss of activity. After immobilization, trypsin retained its collagenolytic activity, indicating this material as a promising material for wound dressing applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biological indicators, tools to verify the effect of sterilisation processes - position paper prepared on behalf of group 1 (biological methods and statistical analysis).

    PubMed

    Haberer, K; van Doorne, H

    2011-11-01

    Biological indicators (BIs) are test systems containing viable microorganisms (usually spores of bacteria) providing a defined challenge to a specified sterilisation process. General chapter 5.1.2 of the European Pharmacopoeia [1] (Ph. Eur.) sets specifications for BIs and gives some guidance for their use. As shown in this text, the approach followed by Ph. Eur. as well as by ISO standards is outdated and could create nowadays some confusion among the users of the pharmacopoeia. It is the objective of this paper to provide the theoretical background of BIs as tools for the design and qualification of reliable moist heat sterilisation processes. The principles laid down in this article will form the basis of a future draft on a revised chapter on BIs in Pharmeuropa.

  2. Enhanced degradation of aluminum metal in the presence of selected microorganisms. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tennyson, J. M.

    1972-01-01

    Experiments were conducted to determine the effects of microorganisms, substrates, pressures, humidities, and oxygen concentrations upon aluminum corrosion. In addition, the effects of microbes upon coated and treated aluminum were examined and an attempt to correlate aluminum in solution with degradation of the samples was undertaken. The organisms, humidities, oxygen levels, and substrates all played a major role in the corrosion of aluminum. Quantitation of aluminum losses indicated that the total metal losses from inoculated samples were significantly greater than those of the uninoculated samples.

  3. Biodiversity in Oscypek, a Traditional Polish Cheese, Determined by Culture-Dependent and -Independent Approaches

    PubMed Central

    Alegría, Ángel; Szczesny, Pawel; Mayo, Baltasar; Bardowski, Jacek

    2012-01-01

    Oscypek is a traditional Polish scalded-smoked cheese, with a protected-designation-of-origin (PDO) status, manufactured from raw sheep's milk without starter cultures in the Tatra Mountains region of Poland. This study was undertaken in order to gain insight into the microbiota that develops and evolves during the manufacture and ripening stages of Oscypek. To this end, we made use of both culturing and the culture-independent methods of PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing of 16S rRNA gene amplicons. The culture-dependent technique and PCR-DGGE fingerprinting detected the predominant microorganisms in traditional Oscypek, whereas the next-generation sequencing technique (454 pyrosequencing) revealed greater bacterial diversity. Besides members of the most abundant bacterial genera in dairy products, e.g., Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, and Enterococcus, identified by all three methods, other, subdominant bacteria belonging to the families Bifidobacteriaceae and Moraxellaceae (mostly Enhydrobacter), as well as various minor bacteria, were identified by pyrosequencing. The presence of bifidobacterial sequences in a cheese system is reported for the first time. In addition to bacteria, a great diversity of yeast species was demonstrated in Oscypek by the PCR-DGGE method. Culturing methods enabled the determination of a number of viable microorganisms from different microbial groups and their isolation for potential future applications in specific cheese starter cultures. PMID:22247135

  4. Development of an Ultrasonic Resonator for Ballast Water Disinfection

    NASA Astrophysics Data System (ADS)

    Osman, Hafiiz; Lim, Fannon; Lucas, Margaret; Balasubramaniam, Prakash

    Ultrasonic disinfection involves the application of low-frequency acoustic energy in a water body to induce cavitation. The implosion of cavitation bubbles generates high speed microjets >1 km/s, intense shock wave >1 GPa, localized hot spots >1000 K, and free-radicals, resulting in cell rupture and death of micro-organisms and pathogens. Treatment of marine ballast water using power ultrasonics is an energy-intensive process. Compared with other physical treatment methods such as ultraviolet disinfection, ultrasonic disinfection require 2 to 3 orders of magnitude more energy to achieve similar rate of micro-organism mortality. Current technology limits the amount of acoustic energy that can be transferred per unit volume of fluid and presents challenges when it comes to high-flow applications. Significant advancements in ultrasonic processing technology are needed before ultrasound can be recognized as a viable alternative disinfection method. The ultrasonic resonator has been identified as one of the areas of improvement that can potentially contribute to the overall performance of an ultrasonic disinfection system. The present study focuses on the design of multiple-orifice resonators (MOR) for generating a well-distributed cavitation field. Results show that the MOR resonator offers significantly larger vibrational surface area to mass ratio. In addition, acoustic pressure measurements indicate that the MOR resonators are able to distribute the acoustic energy across a larger surface area, while generating 2-4 times higher pressures than existing ultrasonic probes.

  5. Viability preserved capture of microorganism by plasma functionalized carbon-encapsulated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki

    2015-09-01

    Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).

  6. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module

    PubMed Central

    Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Victor; Iliyin, Vyacheslav

    2015-01-01

    One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth’s atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite). After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth’s atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport. PMID:26151136

  7. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species

    PubMed Central

    Al-Bakri, Amal G.; Othman, Ghadeer; Afifi, Fatma U.

    2010-01-01

    Background: Several Salvia species are indigenous to Jordan and are widely used as beverages and spices and for their medicinal properties. The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species. Materials and Methods: Methods used for planktonic culture included agar diffusion, broth microdilution, and minimal biocidal concentration determination while viable count was used for the determination of the antibiofilm and antiadhesion activities. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and clinical strains of methicillin-resistant S. aureus (MRSA) were used as test microorganisms. Results: An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA. Its volatile oil exhibited an antimicrobial activity covering all tested microorganisms with the exception of P. aeruginosa. S. triloba extract and volatile oil were successful in preventing and controlling the biofilm, demonstrating antiadhesion and antibiofilm activities, respectively. Conclusion: These reported activities for S. triloba extract and volatile oil allows their listing as potential antibiofilm and anti-MRSA natural agents. This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections. The antimicrobial activity of the other tested Salvia species was negligible. PMID:21120026

  8. Cell Viability and Functionality of Probiotic Bacteria in Dairy Products

    PubMed Central

    Vinderola, Gabriel; Binetti, Ana; Burns, Patricia; Reinheimer, Jorge

    2011-01-01

    Probiotic bacteria, according to the definition adopted by the World Health Organization in 2002, are live microorganisms, which when administered in adequate amounts confer a health benefit to the host. Recent studies show that the same probiotic strain produced and/or preserved under different storage conditions, may present different responses regarding their susceptibility to the adverse conditions of the gastrointestinal tract, its capacity to adhere to the intestinal epithelium, or its immunomodulating capacity, the functionality being affected without changes in cell viability. This could imply that the control of cell viability is not always enough to guarantee the functionality (probiotic capacity) of a strain. Therefore, a new challenge arises for food technologists and microbiologists when it comes to designing and monitoring probiotic food: to be able to monitor the functionality of a probiotic microorganism throughout all the stages the strain goes through from the moment it is produced and included in the food vehicle, until the moment of consumption. Conventional methodological tools or others still to be developed must be used. The application of cell membrane functionality markers, the use of tests of resistance to intestinal barriers, the study of surface properties and the application of in vivo models come together as complementary tools to assess the actual capacity of a probiotic organism in a specific food, to exert functional effects regardless of the number of viable cells present at the moment of consumption. PMID:21833320

  9. Microbiota during fermentation of chum salmon (Oncorhynchus keta) sauce mash inoculated with halotolerant microbial starters: analyses using the plate count method and PCR-denaturing gradient gel electrophoresis (DGGE).

    PubMed

    Yoshikawa, Shuji; Yasokawa, Daisuke; Nagashima, Koji; Yamazaki, Koji; Kurihara, Hideyuki; Ohta, Tomoki; Kawai, Yuji

    2010-06-01

    Nine different combinations of mugi koji (barley steamed and molded with Aspergillus oryzae) and halotolerant microorganisms (HTMs), Zygosaccharomyces rouxii, Candida versatilis, and Tetragenococcus halophilus, were inoculated into chum salmon sauce mash under a non-aseptic condition used in industrial fish sauce production and fermented at 35 +/- 2.5 degrees C for 84 days to elucidate the microbial dynamics (i.e., microbial count and microbiota) during fermentation. The viable count of halotolerant yeast (HTY) in fermented chum salmon sauce (FCSS) mash showed various time courses dependent on the combination of the starter microorganisms. Halotolerant lactic acid bacteria (HTL) were detected morphologically and physiologically only from FCSS mash inoculated with T. halophilus alone or with T. halophilus and C. versatilis during the first 28 days of fermentation. Only four fungal species, Z. rouxii, C. versatilis, Pichia guilliermondii, and A. oryzae, were detected throughout the fermentation by PCR-denaturing gradient gel electrophoresis (PCR-DGGE). In FCSS mash, dominant HTMs, especially eumycetes, were nonexistent. However, under the non-aseptic conditions, undesirable wild yeast such as P. guilliermondii grew fortuitously. Therefore, HTY inoculation into FCSS mash at the beginning of fermentation is effective in preventing the growth of wild yeast and the resultant unfavorable flavor. 2009 Elsevier Ltd. All rights reserved.

  10. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    PubMed

    Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Victor; Iliyin, Vyacheslav

    2015-01-01

    One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite). After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  11. Defensins: antifungal lessons from eukaryotes

    PubMed Central

    Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.

    2014-01-01

    Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483

  12. Control of natural microorganisms in chamomile (Chamomilla recutita L.) by gamma ray and electron beam irradiation.

    PubMed

    Al-Bachir, Mahfouz

    2017-01-01

    Microbial contamination levels and corresponding sensitivities to gamma rays (GR) and elec- tron beam (EB) irradiation were tested in chamomile (Chamomile recutta L.). Chamomile powders were treated with 10 and 20 kGy by GR and EB, respectively. Microbiological and chemical analyses were performed on controls and treated samples immediately after irradiation, and after 12 months of storage. The control samples of chamomile exhibited rather high microbiological contamination, exceeding the levels of 4 log10 CFU g-1   (CFU - colony forming units) reported by national and international authorities as the maximum permissible total count level. Irradiation with GR and EB was found to cause a reduction in microbial contamination proportionate to the dose delivered. The sterilizing effect of EB on microorganisms was higher than the GR one. A dose of 10 kGy of GR and EB significantly (p < 0.05) reduced the total bacte- rial, total coliform and total fungal contamination. A dose of 20 kGy of GR significantly (p < 0.05) reduced the total bacterial and total fungal contamination, while a 20 kGy dose of EB reduced the initial bacterial, total coliform and total fungal contamination to below detection level when the analysis was carried out im- mediately after irradiation treatment or after 12 months of storage. The comparative study demonstrated that electron beam was more effective for decontamination of chamomile powder than gamma irradiation.

  13. Can Probiotics Reduce Diarrhea and Infant Mortality in Africa?: The Project of a Pilot Study.

    PubMed

    Del Piano, Mario; Coggiola, Francesco; Pane, Marco; Amoruso, Angela; Nicola, Stefania; Mogna, Luca

    Diarrhea accounts for 9% of the mortality among children under 5 years of age worldwide, and it is significantly associated with malnutrition. Each year, diarrhea kills around 760,000 children under 5 years of age and most of these are in sub-Saharan Africa.In Uganda, the infant mortality rate of 58 per 1000 is unacceptably high, and the major contributors include malnutrition, diarrhea, pneumonia, malaria, prematurity, sepsis, and newborn illnesses.There is an urgent need for intervention to prevent and control diarrheal diseases. Our open-label, randomized controlled study has the primary endpoint of reducing diarrhea and infectious diseases (number of episodes/severity) and the secondary endpoint of decreasing infant mortality. The trial is currently conducted in Luzira, a suburb of Kampala, the capital of Uganda, and in Gulu and Lira, in the north of Uganda.The study is projected to enroll 4000 babies (control=2000 and treatment=2000) who will be followed till 1 year of life. As controls, 2000 babies of the same community are planned to be considered.The probiotic product selected for the trial is composed of 3 designated microorganisms, namely Bifidobacterium breve BR03 (DSM 16604), B. breve B632 (DSM 24706), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106). The concentration of the 3 bacteria is 10 viable cells/strain/daily dose (5 drops). For a total sample of 4000 babies, the study has an 80% power at a 5% significance level.

  14. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    PubMed

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Removal of Nitrate in Simulated Water at Low Temperature by a Novel Psychrotrophic and Aerobic Bacterium, Pseudomonas taiwanensis Strain J.

    PubMed

    He, Tengxia; Ye, Qing; Sun, Quan; Cai, Xi; Ni, Jiupai; Li, Zhenlun; Xie, Deti

    2018-01-01

    Low temperatures and high pH generally inhibit the biodenitrification. Thus, it is important to explore the psychrotrophic and alkali-resisting microorganism for degradation of nitrogen. This research was mainly focused on the identification of a psychrotrophic strain and preliminary explored its denitrification characteristics. The new strain J was isolated using the bromothymol blue solid medium and identified as Pseudomonas taiwanensis on the basis of morphology and phospholipid fatty acid as well as 16S rRNA gene sequence analyses, which is further testified to work efficiently for removing nitrate from wastewater at low temperature circumstances. This is the first report that Pseudomonas taiwanensis possessed excellent tolerance to low temperature, with 15°C as its optimum and 5°C as viable. The Pseudomonas taiwanensis showed unusual ability of aerobic denitrification with the nitrate removal efficiencies of 100% at 15°C and 51.61% at 5°C. Single factor experiments showed that the optimal conditions for denitrification were glucose as carbon source, 15°C, shaking speed 150 r/min, C/N 15, pH ≥ 7, and incubation quantity 2.0 × 10 6  CFU/mL. The nitrate and total nitrogen removal efficiencies were up to 100% and 93.79% at 15°C when glucose is served as carbon source. These results suggested that strain J had aerobic denitrification ability, as well as the notable ability to tolerate the low temperature and high pH.

  16. Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case

    NASA Astrophysics Data System (ADS)

    Roebben, Gert; Kestens, Vikram; Varga, Zoltan; Charoud-Got, Jean; Ramaye, Yannic; Gollwitzer, Christian; Bartczak, Dorota; Geißler, Daniel; Noble, James; Mazoua, Stéphane; Meeus, Nele; Corbisier, Philippe; Palmai, Marcell; Mihály, Judith; Krumrey, Michael; Davies, Julie; Resch-Genger, Ute; Kumarswami, Neelam; Minelli, Caterina; Sikora, Aneta; Goenaga-Infante, Heidi

    2015-10-01

    This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterisation of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots. This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a 'reference material' (ISO Guide 30:2015) or rather those of the recently defined category of 'representative test material' (ISO TS 16195:2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to representative test material or reference material, and how this status depends on its intended use.

  17. Impact of different-sized laminar air flow versus no laminar air flow on bacterial counts in the operating room during orthopedic surgery.

    PubMed

    Diab-Elschahawi, Magda; Berger, Jutta; Blacky, Alexander; Kimberger, Oliver; Oguz, Ruken; Kuelpmann, Ruediger; Kramer, Axel; Assadian, Ojan

    2011-09-01

    This study investigated the influence of the size of unidirectional ceiling distribution systems on counts of viable microorganisms recovered at defined sites in operating room (ORs) and on instrument tables during orthopedic surgery. We compared bacterial sedimentation during 80 orthopedic surgeries. A total of 19 surgeries were performed in ORs with a large (518 cm × 380 cm) unidirectional ceiling distribution (colloquially known as laminar air flow [LAF]) ventilation system, 21 procedures in ORs with a small (380 cm × 120 cm) LAF system, and 40 procedures in ORs with no LAF system. Bacterial sedimentation was evaluated using both settle plates and nitrocellulose membranes. Multivariate linear regression analysis revealed that the colony-forming unit count on nitrocellulose membranes positioned on the instrument table was significantly associated only with the size of the unidirectional LAF distribution system (P < .001), not with the duration of the surgical intervention (P = .753) or with the number of persons present during the surgical intervention (P = .291). Our findings indicate that simply having an LAF ventilation system in place will not provide bacteria-free conditions at the surgical site and on the instrument table. In view of the limited number of procedures studied, our findings require confirmation and further investigations on the ideal, but affordable, size of LAF ventilation systems. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  18. Animal Rennets as Sources of Dairy Lactic Acid Bacteria

    PubMed Central

    Cruciata, Margherita; Sannino, Ciro; Ercolini, Danilo; Scatassa, Maria L.; De Filippis, Francesca; Mancuso, Isabella; La Storia, Antonietta; Moschetti, Giancarlo

    2014-01-01

    The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions. PMID:24441167

  19. Amplicon-Based Pyrosequencing Reveals High Diversity of Protistan Parasites in Ships' Ballast Water: Implications for Biogeography and Infectious Diseases.

    PubMed

    Pagenkopp Lohan, K M; Fleischer, R C; Carney, K J; Holzer, K K; Ruiz, G M

    2016-04-01

    Ships' ballast water (BW) commonly moves macroorganisms and microorganisms across the world's oceans and along coasts; however, the majority of these microbial transfers have gone undetected. We applied high-throughput sequencing methods to identify microbial eukaryotes, specifically emphasizing the protistan parasites, in ships' BW collected from vessels calling to the Chesapeake Bay (Virginia and Maryland, USA) from European and Eastern Canadian ports. We utilized tagged-amplicon 454 pyrosequencing with two general primer sets, amplifying either the V4 or V9 domain of the small subunit (SSU) of the ribosomal RNA (rRNA) gene complex, from total DNA extracted from water samples collected from the ballast tanks of bulk cargo vessels. We detected a diverse group of protistan taxa, with some known to contain important parasites in marine systems, including Apicomplexa (unidentified apicomplexans, unidentified gregarines, Cryptosporidium spp.), Dinophyta (Blastodinium spp., Euduboscquella sp., unidentified syndinids, Karlodinium spp., Syndinium spp.), Perkinsea (Parvilucifera sp.), Opisthokonta (Ichthyosporea sp., Pseudoperkinsidae, unidentified ichthyosporeans), and Stramenopiles (Labyrinthulomycetes). Further characterization of groups with parasitic taxa, consisting of phylogenetic analyses for four taxa (Cryptosporidium spp., Parvilucifera spp., Labyrinthulomycetes, and Ichthyosporea), revealed that sequences were obtained from both known and novel lineages. This study demonstrates that high-throughput sequencing is a viable and sensitive method for detecting parasitic protists when present and transported in the ballast water of ships. These data also underscore the potential importance of human-aided dispersal in the biogeography of these microbes and emerging diseases in the world's oceans.

  20. Isolation of microbial pathogens of subclinical mastitis from raw sheep's milk of Epirus (Greece) and their role in its hygiene.

    PubMed

    Fotou, K; Tzora, A; Voidarou, Ch; Alexopoulos, A; Plessas, S; Avgeris, I; Bezirtzoglou, E; Akrida-Demertzi, K; Demertzis, P G

    2011-12-01

    The natural raw milk microflora is a factor that expresses its sensorial characteristics. The microbial charge into the mammary gland of healthy animal is low and the application of right and healthy conditions during milking and cheese making procedure, prevents from contaminating as well as maintains the natural microflora in order to lend the particular characteristics of milk. The purpose of the present project was the study of the Total Viable Count (T.V.C.) and the count of total psychrotropic bacteria of raw sheep milk from Boutsiko and Karamaniko breeds, collected from healthy animals, as well as the isolation, identification and enumeration of pathogenic bacteria related with the hygiene and the quality of raw sheep milk (with a particular interest in bacteria that may cause human infection). During the experiment we examined two hundred forty (240) samples of raw sheep milk. In these samples a) Staphylococcus aureus, Salmonella sp., Escherichia coli, Clostridium perfringens (vegetative cells and spores) and Bacillus sp. were isolated and identified b) the Total Viable Count and the total number of psychrotropic bacteria were also specified. The sampling, the preparation of samples and decimal dilutions were based on international methods. The Total viable count was determined using the standard methods of the American Public Health Association, 2002. The total number of psychrotropic bacteria was determined using APHA 1976, 1978 rules. The identification of the bacteria was carried out according to the Bergey's manual. Microscopic examination of Gram stained cells, catalase, oxidase and biochemical tests were performed when necessary to further identify. From the 240 milk samples tested, only 5% were E. coli positive, with mean counts ranged from 2 × 10(3) to 2.4 × 10(4) cfu/ml. S. aureus was isolated from 24% of the samples and the mean count per ml was ranged from <10 to 3.4 × 10(2). Meanwhile, Bacillus spp. was also detected in 29% samples. Vegetative forms and spores of C. perfringens were detected in 13% and 63% of the samples respectively. However, microbiological analyses revealed the presence of a small number of selected pathogens in milk samples such as Salmonella, which was only detected in 5% of the samples. Listeria sp., Pseudomonas sp. and Vibrio cholerae were never found. From the experimental results, the Total Viable Count from raw sheep milk samples, fulfils the microbiological criteria of EU Legislation in a percentage of approximately 97%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon.

    PubMed

    Li, Lin; Gao, Min; Liu, Junxin; Guo, Xuesong

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65-4.7 microm. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.

  2. Prebiotic Potential of Xylooligosaccharides Derived from Corn Cobs and Their In Vitro Antioxidant Activity When Combined with Lactobacillus.

    PubMed

    Yu, Xiuhua; Yin, Jianyuan; Li, Lin; Luan, Chang; Zhang, Jian; Zhao, Chunfang; Li, Shengyu

    2015-07-01

    In the present work, the in vitro prebiotic activity of xylooligosaccharides (XOS) derived from corn cobs combined with Lactobacillus plantarum, a probiotic microorganism, was determined. These probiotics exhibited different growth characteristics depending on strain specificity. L. plantarum S2 cells were denser and their growth rates were higher when cultured on XOS. Acetate was found to be the major short-chain fatty acid produced as the end-product of fermentation, and its amount varied from 1.50 to 1.78 mg/ml. The antimicrobial activity of XOS combined with L. plantarum S2 was determined against gastrointestinal pathogens. The results showed that XOS proved to be an effective substrate, enhancing antimicrobial activity for L. plantarum S2. In vivo evaluation of the influence of XOS and L. plantarum S2, used both alone and together, on the intestinal microbiota in a mouse model showed that XOS combined with L. plantarum S2 could increase the viable lactobacilli and bifidobacteria in mice feces and decrease the viable Enterococcus, Enterobacter, and Clostridia spp. Furthermore, in the in vitro antioxidant assay, XOS combined with L. plantarum S2 possessed significant 2,2-diphenyl-1- picrylhydrazyl, 2,2'-azino-bis, and superoxide anion radical-scavenging activities, and the combinations showed better antioxidant activity than either XOS or L. plantarum S2 alone.

  3. Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling.

    PubMed

    Ferrocino, Ilario; Di Cagno, Raffaella; De Angelis, Maria; Turroni, Silvia; Vannini, Lucia; Bancalari, Elena; Rantsiou, Kalliopi; Cardinali, Gianluigi; Neviani, Erasmo; Cocolin, Luca

    2015-01-01

    In this study, the fecal microbiota of 153 healthy volunteers, recruited from four different locations in Italy, has been studied by coupling viable counts, on different microbiological media, with ribosomal RNA Denaturing Gradient Gel Electrophoresis (rRNA-DGGE). The volunteers followed three different diets, namely omnivore, ovo-lacto-vegetarian and vegan. The results obtained from culture-dependent and -independent methods have underlined a high level of similarity of the viable fecal microbiota for the three investigated diets. The rRNA DGGE profiles were very complex and comprised a total number of bands that varied from 67 to 64 for the V3 and V9 regions of the 16S rRNA gene, respectively. Only a few bands were specific in/of all three diets, and the presence of common taxa associated with the dietary habits was found. As far as the viable counts are concerned, the high similarity of the fecal microbiota was once again confirmed, with only a few of the investigated groups showing significant differences. Interestingly, the samples grouped differently, according to the recruitment site, thus highlighting a higher impact of the food consumed by the volunteers in the specific geographical locations than that of the type of diet. Lastly, it should be mentioned that the fecal microbiota DGGE profiles obtained from the DNA were clearly separated from those produced using RNA, thus underlining a difference between the total and viable populations in the fecal samples.

  4. Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling

    PubMed Central

    Ferrocino, Ilario; Di Cagno, Raffaella; De Angelis, Maria; Turroni, Silvia; Vannini, Lucia; Bancalari, Elena; Rantsiou, Kalliopi; Cardinali, Gianluigi; Neviani, Erasmo; Cocolin, Luca

    2015-01-01

    In this study, the fecal microbiota of 153 healthy volunteers, recruited from four different locations in Italy, has been studied by coupling viable counts, on different microbiological media, with ribosomal RNA Denaturing Gradient Gel Electrophoresis (rRNA-DGGE). The volunteers followed three different diets, namely omnivore, ovo-lacto-vegetarian and vegan. The results obtained from culture-dependent and -independent methods have underlined a high level of similarity of the viable fecal microbiota for the three investigated diets. The rRNA DGGE profiles were very complex and comprised a total number of bands that varied from 67 to 64 for the V3 and V9 regions of the 16S rRNA gene, respectively. Only a few bands were specific in/of all three diets, and the presence of common taxa associated with the dietary habits was found. As far as the viable counts are concerned, the high similarity of the fecal microbiota was once again confirmed, with only a few of the investigated groups showing significant differences. Interestingly, the samples grouped differently, according to the recruitment site, thus highlighting a higher impact of the food consumed by the volunteers in the specific geographical locations than that of the type of diet. Lastly, it should be mentioned that the fecal microbiota DGGE profiles obtained from the DNA were clearly separated from those produced using RNA, thus underlining a difference between the total and viable populations in the fecal samples. PMID:26035837

  5. Cost-benefit comparison of the Oxford Knee score and the American Knee Society score in measuring outcome of total knee arthroplasty.

    PubMed

    Medalla, Greg Anthony; Moonot, Pradeep; Peel, Tamlyn; Kalairajah, Yegappan; Field, Richard E

    2009-06-01

    The American Knee Society score (AKSS) and the Oxford Knee score (OKS) are validated outcome measures for evaluation of total knee arthroplasties (TKAs). We investigated whether patient self-assessment using the OKS offers a viable alternative to clinical review using the AKSS. Preoperative, 2-year, 5-year, and 10-year postoperative OKS and AKSS were reviewed from TKA patients. The scores were analyzed using the Pearson correlation. There was good correlation of OKS and AKSS at 2 years. This implies that patient self-assessment is a viable screening tool to identify which patients require clinical review, at 2 years, after TKA. However, the moderate correlation at 5 and 10 years indicates that clinical evaluation remains necessary at these time points.

  6. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

    PubMed Central

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten

    2018-01-01

    Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319

  7. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars.

    PubMed

    Faria, Raquel Lourdes; Cardoso, Lincoln Marcelo Lourenço; Akisue, Gokithi; Pereira, Cristiane Aparecida; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso; Santos Júnior, Paulo Villela

    2011-10-01

    The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group). After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group). For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL). The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. Calendula officinalis L. and Camellia sinensis (L.) Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate.

  8. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars

    PubMed Central

    FARIA, Raquel Lourdes; CARDOSO, Lincoln Marcelo Lourenço; AKISUE, Gokithi; PEREIRA, Cristiane Aparecida; JUNQUEIRA, Juliana Campos; JORGE, Antonio Olavo Cardoso; SANTOS JÚNIOR, Paulo Villela

    2011-01-01

    Objective The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Material and Methods Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group). After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group). For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL). Results The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. Conclusions Calendula officinalis L. and Camellia sinensis (L.) Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate. PMID:21986652

  9. Genome-Wide Analysis of Host Responses to Four Different Types of Microorganisms in Bombyx Mori (Lepidoptera: Bombycidae).

    PubMed

    Cheng, Tingcai; Lin, Ping; Huang, Lulin; Wu, Yuqian; Jin, Shengkai; Liu, Chun; Xia, Qingyou

    2016-01-01

    Several pathogenic microorganisms have been used to investigate the genome-wide transcriptional responses of Bombyx mori to infection. However, studies have so far each focused on one microorganism, and systematic genome-wide comparison of transcriptional responses to different pathogenic microorganisms has not been undertaken. Here, we surveyed transcriptional responses of B. mori to its natural bacterial, viral, and fungal pathogens, Bacillus bombyseptieus, B. mori nucleopolyhedrovirus (BmNPV), and Beauveria bassiana, respectively, and to nonpathogenic Escherichia coli, by microarray analysis. In total, the expression of 2,436, 1,804, 1,743, and 912 B. mori genes was modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Notably, the expression of 620, 400, 177, or 165 of these genes was only modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, or E. coli, respectively. In contrast to the expression of genes related to juvenile hormone synthesis and metabolism, that of genes encoding juvenile hormone binding proteins was microorganism-specific. Three basal metabolic pathways were modulated by infection with any of the four microorganisms, and 3, 14, 5, and 2 metabolic pathways were specifically modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Interestingly, BmNPV infection modulated the JAK/STAT signaling pathway, whereas both the Imd and Toll signaling pathways were modulated by infection with B. bombyseptieus, B. bassiana, or E. coli These results elucidate potential molecular mechanisms of the host response to different microorganisms, and provide a foundation for further work on host-pathogen interaction. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  10. [Bioaerosol concentrations and the identification of aerosolized bacteria by 16S rDNA analysis in work environments].

    PubMed

    Ishimatsu, Sumiyo; Abe, Hiroki; Fukuda, Kazumasa; Ishidao, Toru; Taniguchi, Hatsumi; Hori, Hajime

    2007-03-01

    Bioaerosols cause sick building syndrome (SBS) and allergy. Many kinds of bioaerosol impactors are used for measurement of airborne microorganism concentrations in Japan. However, because the impactors are set on agar plates, some microorganisms cannot make colonies on the plates because of their lower viability or demands of nutrition. On the other hand, by double staining using ethidium bromide (EtBr) and carboxyfluorescein diacetate (CFDA), both total cells and cells with esterase activities can be detected without incubation. In this study, we calculated total cell concentrations and percentages of cells with esterase activities by the combination of filter sampling and double staining (EtBr and CFDA) from air of a laboratory, a conference room and outdoors. Temperature and humidity in the laboratory were constantly kept by an air conditioner, but in the conference room, an air conditioner was only operated sometimes because of its low frequency of use. There were no significant differences between total cell concentrations and humidity in both rooms, but increase of the percentages of cells with esterase activities depended on rainfall before the samplings (n=15, p<0.05 by Mann-Whitney test). The increase of active microorganisms by rainfall should be considered when we evaluate the risk of bioaerosols in the workplace. There were few differences in classifications of aerosolized bacteria by 16S rDNA sequence-based homology between the laboratory and the conference room. In both rooms, few pathogenic bacteria were observed.

  11. A novel quantitative reverse-transcription PCR (qRT-PCR) for the enumeration of total bacteria, using meat micro-flora as a model.

    PubMed

    Dolan, Anthony; Burgess, Catherine M; Barry, Thomas B; Fanning, Seamus; Duffy, Geraldine

    2009-04-01

    A sensitive quantitative reverse-transcription PCR (qRT-PCR) method was developed for enumeration of total bacteria. Using two sets of primers separately to target the ribonuclease-P (RNase P) RNA transcripts of gram positive and gram negative bacteria. Standard curves were generated using SYBR Green I kits for the LightCycler 2.0 instrument (Roche Diagnostics) to allow quantification of mixed microflora in liquid media. RNA standards were used and extracted from known cell equivalents and subsequently converted to cDNA for the construction of standard curves. The number of mixed bacteria in culture was determined by qRT-PCR, and the results correlated (r(2)=0.88, rsd=0.466) with the total viable count over the range from approx. Log(10) 3 to approx. Log(10) 7 CFU ml(-1). The rapid nature of this assay (8 h) and its potential as an alternative method to the standard plate count method to predict total viable counts and shelf life are discussed.

  12. Effect of gamma irradiation on microbial quality of minimally processed carrot and lettuce: A case study in Greater Accra region of Ghana

    NASA Astrophysics Data System (ADS)

    Frimpong, G. K.; Kottoh, I. D.; Ofosu, D. O.; Larbi, D.

    2015-05-01

    The effect of ionizing radiation on the microbiological quality on minimally processed carrot and lettuce was studied. The aim was to investigate the effect of irradiation as a sanitizing agent on the bacteriological quality of some raw eaten salad vegetables obtained from retailers in Accra, Ghana. Minimally processed carrot and lettuce were analysed for total viable count, total coliform count and pathogenic organisms. The samples collected were treated and analysed for a 15 day period. The total viable count for carrot ranged from 1.49 to 14.01 log10 cfu/10 g while that of lettuce was 0.70 to 8.5 7 log10 cfu/10 g. It was also observed that total coliform count for carrot was 1.46-7.53 log10 cfu/10 g and 0.14-7.35 log10 cfu/10 g for lettuce. The predominant pathogenic organisms identified were Bacillus cereus, Cronobacter sakazakii, Staphylococcus aureus, and Klebsiella spp. It was concluded that 2 kGy was most effective for medium dose treatment of minimally processed carrot and lettuce.

  13. Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis.

    PubMed

    Tavichakorntrakool, Ratree; Prasongwattana, Vitoon; Sungkeeree, Seksit; Saisud, Phitsamai; Sribenjalux, Pipat; Pimratana, Chaowat; Bovornpadungkitti, Sombat; Sriboonlue, Pote; Thongboonkerd, Visith

    2012-11-01

    Urinary tract infections are generally known to be associated with nephrolithiasis, particularly struvite stone, in which the most common microbe found is urea-splitting bacterium, i.e. Proteus mirabilis. However, our observation indicated that it might not be the case of stone formers in Thailand. We therefore extensively characterized microorganisms associated with all types of kidney stones. A total of 100 kidney stone formers (59 males and 41 females) admitted for elective percutaneous nephrolithotomy were recruited and microorganisms isolated from catheterized urine and cortex and nidus of their stones were analyzed. From 100 stone formers recruited, 36 cases had a total of 45 bacterial isolates cultivated from their catheterized urine and/or stone matrices. Among these 36 cases, chemical analysis by Fourier-transformed infrared spectroscopy revealed that 8 had the previously classified 'infection-induced stones', whereas the other 28 cases had the previously classified 'metabolic stones'. Calcium oxalate (in either pure or mixed form) was the most common and found in 64 and 75% of the stone formers with and without bacterial isolates, respectively. Escherichia coli was the most common bacterium (approximately one-third of all bacterial isolates) found in urine and stone matrices (both nidus and periphery). Linear regression analysis showed significant correlation (r = 0.860, P < 0.001) between bacterial types in urine and stone matrices. Multidrug resistance was frequently found in these isolated bacteria. Moreover, urea test revealed that only 31% were urea-splitting bacteria, whereas the majority (69%) had negative urea test. Our data indicate that microorganisms are associated with almost all chemical types of kidney stones and urea-splitting bacteria are not the major causative microorganisms found in urine and stone matrices of the stone formers in Thailand. These data may lead to rethinking and a new roadmap for future research regarding the role of microorganisms in kidney stone formation.

  14. Determination and comparison of microbial loads in atmospheres of two hospitals in Izmir, Turkey.

    PubMed

    Aydin Çakir, Nergüze; Uçar, Füsun Bahriye; Haliki Uztan, Alev; Corbaci, Cengiz; Akpinar, Onur

    2013-01-01

    Nosocomial infections, also known as hospital-acquired infections, has become one of the most important health problems in health care units worldwide. The presented study aims to determine the average amount of microorganism loads and to show that the atmospheres of the two hospitals can be a potential source regarding nosocomial infections. The effect of surface and floor disinfection processes in the two hospitals and the antibiotic susceptibility of the bacterial isolates were also evaluated. Microorganisms were isolated from air samples collected from different areas (patient wards, corridors, operating theatres and postoperative units) of the two hospitals in Izmir. Sampling was conducted between December 2006 - March 2007. During the 3-month sampling period, the average number of live microorganisms in the air samples collected from second-class environments in the hospital 1 and the hospital 2 was found to be 224.44 and 536.66 cfu/m(3) , respectively. The average number of microorganisms in hospital 2 collected before the disinfection process was higher than those after the disinfection process. However, because of the closure of the air-conditioning system and the hepa filters after the disinfection process, this was reversed in hospital 1. In total, 54 and 42 isolates were obtained from hospital 1 and hospital 2, respectively. 49 isolates from hospital 1 and 35 isolates from hospital 2 were identified as Staphylacoccus sp. The remaining isolates were identified as Aerococcus sp. and Enterococcus sp. Pseudomonas sp. was not determined in the air samples of the two hospitals. It was detected that the microbial loads in the atmospheres of the two hospitals studied varied greatly depending on the number of people in the environment. As the results indicate, the total number of microorganisms in the atmospheres of operating theatres in both hospitals does not pose a threat according to the Air Microbe Index.

  15. A Column Experiment To Determine Black Shale Degradation And Colonization By Means of δ13C and 14C Analysis Of Phospholipid Fatty Acids And DNA Extraction

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Gleixner, G.

    2008-12-01

    We investigated the degradation of black shale organic matter by microbial communities. We inoculated two columns respectively, with the fungi Schizophyllum commune, the gram-positive bacterium Pseudomonas putida and the gram-negative bacteria Streptomyces griseus and Streptomyces chartreusis. These microorganisms are known to degrade a wide variety of organic macromolecules. Additionally, we had two sets of control columns. To one set the same nutrient solution was added as to the inoculated columns and to the other set only sterile deionised water was supplied. All columns contained 1.5 kg of freshly crushed not autoclaved black shale material with a particle size of 0.63-2 mm. The columns were incubated at 28° C and 60% humidity in the dark. The aim was to investigate, which microorganisms live on black shales and if these microorganisms are able to degrade ancient organic matter. We used compound specific stable isotope measurement techniques and compound specific 14C-dating methods. After 183 days PLFAs were extracted from the columns to investigate the microbial community, furthermore we extracted on one hand total-DNA of column material and on the other hand DNA from pure cultures isolates which grew on Kinks-agar B, Starch-casein-nitrate-agar (SCN) and on complete-yeast-medium-agar (CYM). According to the PLFA analysis bacteria dominated in the columns, whereas in pure cultures more fungi were isolated. A principal component analysis revealed differences between the columns in accordance with the inoculation, but it seems that the inoculated microorganisms were replaced by the natural population. For AMS measurements palmitic acid (C 16:0) was re-isolated from total-PLFA-extract with a preparative fraction collector (PFC). Preliminary results of the study revealed that microorganisms are able to degrade black shale material and that PLFA analysis are useful methods to be combined with analysis of stable isotope and 14C measurements to study microbial degradation processes.

  16. Microbial activity in the profiles of gray forest soil and chernozems

    NASA Astrophysics Data System (ADS)

    Susyan, E. A.; Rybyanets, D. S.; Ananyeva, N. D.

    2006-08-01

    Soil samples were taken from the profiles of a gray forest soil (under a forest) and southern chernozems of different textures under meadow vegetation. The microbial biomass (MB) was determined by the method of substrate-induced respiration; the basal respiration (BR) and the population density of microorganisms on nutrient media of different composition were also determined in the samples. The microbial metabolic quotient ( qCO2 = BR/MB) and the portion of microbial carbon (C mic) in C org were calculated. The MB and BR values were shown to decrease down the soil profiles. About 57% of the total MB in the entire soil profile was concentrated in the layer of 0-24 cm of the gray forest soil. The MB in the C horizon of chernozems was approximately two times lower than the MB in the A horizon of these soils. The correlation was found between the MB and the C org ( r = 0.99) and between the MB and the clay content ( r = 0.89) in the profile of the gray forest soil. The C mic/C org ratio in the gray forest soil and in the chernozems comprised 2.3-6.6 and 1.2-9.6%, respectively. The qCO2 value increased with the depth. The microbial community in the lower layers of the gray forest soil was dominated (88-96%) by oligotrophic microorganisms (grown on soil agar); in the upper 5 cm, these microorganisms comprised only 50% of the total amount of microorganisms grown on three media.

  17. Investigation of bioaerosols released from swine farms using conventional and alternative waste treatment and management technologies

    USGS Publications Warehouse

    Ko, G.; Simmons, O. D.; Likirdopulos, C.A.; Worley-Davis, L.; Williams, M.; Sobsey, M.D.

    2008-01-01

    Microbial air pollution from concentrated animal feeding operations (CAFOs) has raised concerns about potential public health and environmental impacts. We investigated the levels of bioaerosols released from two swine farms using conventional lagoon-sprayfield technology and ten farms using alternative waste treatment and management technologies in the United States. In total, 424 microbial air samples taken at the 12 CAFOs were analyzed for several indicator and pathogenic microorganisms, including culturable bacteria and fungi, fecal coliform, Escherichia coli, Clostridium perfringens, bacteriophage, and Salmonella. At all of the investigated farms, bacterial concentrations at the downwind boundary were higher than those at the upwind boundary, suggesting that the farms are sources of microbial air contamination. In addition, fecal indicator microorganisms were found more frequently near barns and treatment technology sites than upwind or downwind of the farms. Approximately 4.5% (19/424), 1.2% (5/424), 22.2% (94/424), and 12.3% (53/424) of samples were positive for fecal coliform, E. coli, Clostridium, and total coliphage, respectively. Based on statistical comparison of airborne fecal indicator concentrations at alternative treatment technology farms compared to control farms with conventional technology, three alternative waste treatment technologies appear to perform better at reducing the airborne release of fecal indicator microorganisms during on-farm treatment and management processes. These results demonstrate that airborne microbial contaminants are released from swine farms and pose possible exposure risks to farm workers and nearby neighbors. However, the release of airborne microorganisms appears to decrease significantly through the use of certain alternative waste management and treatment technologies. ?? 2008 American Chemical Society.

  18. Microbiological hazards resulting from application of dairy sewage sludge: effects on occurrence of pathogenic microorganisms in soil.

    PubMed

    Jezierska-Tys, Stefania; Frac, Magdalena; Tys, Jerzy

    2010-01-01

    The aims of this study were to (1) examine the extent of bacterial contamination of soils subjected to exposure to dairy sewage sludge applied to soils as measured by determination of number of bacteria from the Escherichia coli family and (2) determine the effects of dairy sewage sludge and straw on populations of other microbial species present in gray-brown podzolic soil. The gray-brown podzolic soil was formed from heavy loamy sand, which is characterized by the following granulometric composition: a sand fraction, 65%; a silt fraction, 19%; and a silt and clay fraction; 16%. The brown soil was formed from silt-loam and characterized by the following granulometric composition of silty-clay deposit: sand fraction, 8%; silt fraction, 48%; and clay and silt fraction, 46%. In dairy sewage sludge the total bacteria number as defined by Alef and Nannipieri (1995) was 51 x 10(4) colony-forming units (cfu)/ kg dry matter (dm), fungi total number 10 x 10(3) cfu/ kg dm, and E. coli bacteria 9.5 x 10(3) most probable number (MPN)/kg dm. In dairy sewage sludge mixed with straw, total number of bacteria and total number of fungi decreased to 10(3) and 10(2), respectively. Competition for nitrogen, glucose, and lactose and organic acids such as acetic and succinic with soil microorganisms, as well as soil conditions such as lack of oxygen, lower soil pH, and temperature, may account for the reduction in the number of E. coli bacteria in soils to which dairy sewage sludge was applied. Dairy sewage sludge may provide a beneficial impact on soil environment and adversely affect microorganisms such that dairy sewage sludge may be used as a safe organic fertilizer.

  19. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico

    PubMed Central

    Delgado-Gardea, Ma. Carmen E.; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Zavala-Díaz de la Serna, Francisco Javier; Eroza-de la Vega, Gilberto; Nevárez-Moorillón, Guadalupe Virginia; Pérez-Recoder, María Concepción; Sánchez-Ramírez, Blanca; González-Horta, María del Carmen; Infante-Ramírez, Rocío

    2016-01-01

    Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks. PMID:27322297

  20. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico.

    PubMed

    Delgado-Gardea, Ma Carmen E; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Zavala-Díaz de la Serna, Francisco Javier; Eroza-de la Vega, Gilberto; Nevárez-Moorillón, Guadalupe Virginia; Pérez-Recoder, María Concepción; Sánchez-Ramírez, Blanca; González-Horta, María Del Carmen; Infante-Ramírez, Rocío

    2016-06-16

    Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks.

Top