NASA Technical Reports Server (NTRS)
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.
Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus
2015-12-01
In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.
Comparative stereology of the mouse and finch left ventricle.
Bossen, E H; Sommer, J R; Waugh, R A
1978-01-01
The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.
Habibi, Mohammadali; Samiei, Sanaz; Ambale Venkatesh, Bharath; Opdahl, Anders; Helle-Valle, Thomas M; Zareian, Mytra; Almeida, Andre L C; Choi, Eui-Young; Wu, Colin; Alonso, Alvaro; Heckbert, Susan R; Bluemke, David A; Lima, João A C
2016-08-01
Early detection of structural changes in left atrium (LA) before atrial fibrillation (AF) development could be helpful in identification of those at higher risk for AF. Using cardiac magnetic resonance imaging, we examined the association of LA volume and function, and incident AF in a multiethnic population free of clinical cardiovascular diseases. In a case-cohort study embedded in MESA (Multi-Ethnic Study of Atherosclerosis), baseline LA size and function assessed by cardiac magnetic resonance feature-tracking were compared between 197 participants with incident AF and 322 participants randomly selected from the whole MESA cohort. Participants were followed up for 8 years. Incident AF cases had a larger LA volume and decreased passive, active, and total LA emptying fractions and peak global LA longitudinal strain (peak LA strain) at baseline. In multivariable analysis, elevated LA maximum volume index (hazard ratio, 1.38 per SD; 95% confidence interval, 1.01-1.89) and decreased peak LA strain (hazard ratio, 0.68 per SD; 95% confidence interval, 0.48-0.96), and passive and total LA emptying fractions (hazard ratio for passive LA emptying fractions, 0.55 per SD; 95% confidence interval, 0.40-0.75 and hazard ratio for active LA emptying fractions, 0.70 per SD; 95% confidence interval, 0.52-0.95), but not active LA emptying fraction, were associated with incident AF. Elevated LA volumes and decreased passive and total LA emptying fractions were independently associated with incident AF in an asymptomatic multiethnic population. Including LA functional variables along with other risk factors of AF may help to better risk stratify individuals at risk of AF development. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Hrycushko, B; Jiang, S
2014-06-01
Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less
Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky
2016-09-01
Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.
Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde
2016-03-01
Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P < 0.05 and P < 0.01), and intracellular sodium concentration (both P < 0.001) were higher while grey matter and white matter intracellular sodium volume fraction (indirect measure of extracellular sodium concentration) were lower (respectively P = 0.62 and P < 0.001) in patients compared with healthy controls. At a brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium concentration and intracellular sodium volume fraction, but not measures of intracellular sodium concentration were correlated with T2-weighted and T1-weighted lesion volumes (0.05 < P < 0.01) and with Expanded Disability Status Scale (P < 0.05). Thus, suggesting that while intracellular sodium volume fraction decrease could reflect expansion of extracellular space due to tissue loss, intracellular sodium concentration increase could reflect neuro-axonal metabolic dysfunction. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hagiwara, A; Hori, M; Yokoyama, K; Nakazawa, M; Ueda, R; Horita, M; Andica, C; Abe, O; Aoki, S
2017-10-01
Myelin and axon volume fractions can now be estimated via MR imaging in vivo, as can the g-ratio, which equals the ratio of the inner to the outer diameter of a nerve fiber. The purpose of this study was to evaluate WM damage in patients with MS via this novel MR imaging technique. Twenty patients with relapsing-remitting MS with a combined total of 149 chronic plaques were analyzed. Myelin volume fraction was calculated based on simultaneous tissue relaxometry. Intracellular and CSF compartment volume fractions were quantified via neurite orientation dispersion and density imaging. Axon volume fraction and g-ratio were calculated by combining these measurements. Myelin and axon volume fractions and g-ratio were measured in plaques, periplaque WM, and normal-appearing WM. All metrics differed significantly across the 3 groups ( P < .001, except P = .027 for g-ratio between periplaque WM and normal-appearing WM). Those in plaques differed most from those in normal-appearing WM. The percentage changes in plaque and periplaque WM metrics relative to normal-appearing WM were significantly larger in absolute value for myelin volume fraction than for axon volume fraction and g-ratio ( P < .001, except P = .033 in periplaque WM relative to normal-appearing WM for comparison between myelin and axon volume fraction). In this in vivo MR imaging study, the myelin of WM was more damaged than axons in plaques and periplaque WM of patients with MS. Myelin and axon volume fractions and g-ratio may potentially be useful for evaluating WM damage in patients with MS. © 2017 by American Journal of Neuroradiology.
Tang, An; Chen, Joshua; Le, Thuy-Anh; Changchien, Christopher; Hamilton, Gavin; Middleton, Michael S.; Loomba, Rohit; Sirlin, Claude B.
2014-01-01
Purpose To explore the cross-sectional and longitudinal relationships between fractional liver fat content, liver volume, and total liver fat burden. Methods In 43 adults with non-alcoholic steatohepatitis participating in a clinical trial, liver volume was estimated by segmentation of magnitude-based low-flip-angle multiecho GRE images. The liver mean proton density fat fraction (PDFF) was calculated. The total liver fat index (TLFI) was estimated as the product of liver mean PDFF and liver volume. Linear regression analyses were performed. Results Cross-sectional analyses revealed statistically significant relationships between TLFI and liver mean PDFF (R2 = 0.740 baseline/0.791 follow-up, P < 0.001 baseline/P < 0.001 follow-up), and between TLFI and liver volume (R2 = 0.352/0.452, P < 0.001/< 0.001). Longitudinal analyses revealed statistically significant relationships between liver volume change and liver mean PDFF change (R2 = 0.556, P < 0.001), between TLFI change and liver mean PDFF change (R2 = 0.920, P < 0.001), and between TLFI change and liver volume change (R2 = 0.735, P < 0.001). Conclusion Liver segmentation in combination with MRI-based PDFF estimation may be used to monitor liver volume, liver mean PDFF, and TLFI in a clinical trial. PMID:25015398
NASA Astrophysics Data System (ADS)
Konishi, C.
2014-12-01
Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation. Furthermore, elastic properties are obtainable by general Hashin-Shtrikman-Walpole bounds. The predicted results by this new mixture model are qualitatively consistent with laboratory measurements and well log obtained for unconsolidated sediments. Acknowledgement: A part of this study was accomplished with a subsidy of River Environment Fund of Japan.
Niinemets, Ulo; Lukjanova, Aljona; Turnbull, Matthew H; Sparrow, Ashley D
2007-08-01
Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.
Quantification of skeletal fraction volume of a soil pit by means of photogrammetry
NASA Astrophysics Data System (ADS)
Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens
2015-04-01
The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.
Oxygenation of the Intraportally Transplanted Pancreatic Islet
2016-01-01
Intraportal islet transplantation (IT) is not widely utilized as a treatment for type 1 diabetes. Oxygenation of the intraportally transplanted islet has not been studied extensively. We present a diffusion-reaction model that predicts the presence of an anoxic core and a larger partly functional core within intraportally transplanted islets. Four variables were studied: islet diameter, islet fractional viability, external oxygen partial pressure (P) (in surrounding portal blood), and presence or absence of a thrombus on the islet surface. Results indicate that an islet with average size and fractional viability exhibits an anoxic volume fraction (AVF) of 14% and a function loss of 72% at a low external P. Thrombus formation increased AVF to 30% and function loss to 92%, suggesting that the effect of thrombosis may be substantial. External P and islet diameter accounted for the greatest overall impact on AVF and loss of function. At our institutions, large human alloislets (>200 μm diameter) account for ~20% of total islet number but ~70% of total islet volume; since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional. PMID:27872862
Oxygenation of the Intraportally Transplanted Pancreatic Islet.
Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K
2016-01-01
Intraportal islet transplantation (IT) is not widely utilized as a treatment for type 1 diabetes. Oxygenation of the intraportally transplanted islet has not been studied extensively. We present a diffusion-reaction model that predicts the presence of an anoxic core and a larger partly functional core within intraportally transplanted islets. Four variables were studied: islet diameter, islet fractional viability, external oxygen partial pressure ( P ) (in surrounding portal blood), and presence or absence of a thrombus on the islet surface. Results indicate that an islet with average size and fractional viability exhibits an anoxic volume fraction (AVF) of 14% and a function loss of 72% at a low external P . Thrombus formation increased AVF to 30% and function loss to 92%, suggesting that the effect of thrombosis may be substantial. External P and islet diameter accounted for the greatest overall impact on AVF and loss of function. At our institutions, large human alloislets (>200 μ m diameter) account for ~20% of total islet number but ~70% of total islet volume; since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional.
Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Daniel; TU Darmstadt, Darmstadt; Saito, Nami
2014-05-01
Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporalmore » correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.
2010-09-15
Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less
Ekinci, Nihat; Acer, Niyazi; Akkaya, Akcan; Sankur, Seref; Kabadayi, Taner; Sahin, Bünyamin
2008-08-01
The Cavalieri estimator using a point grid is used to estimate the volume of three-dimensional structures based on two-dimensional slices of the object. The size of the components of intracranial neural structures should have proportional relations among them. The volume fraction approach of stereological methods provides information about volumetric relations of the components of structures. The purpose of our study is to estimate the volume and volume fraction data related to the cerebrum, cerebellum and brain stem. In this study, volume of the total brain, cerebrum, cerebellum and brain stem were estimated in 24 young Turkish volunteers (12 males and 12 females) who are free of any neurological symptoms and signs. The volume and volume fraction of the total brain, cerebrum, cerebellum and brain stem were determined on magnetic resonance (MR) images using the point-counting approach of stereological methods. The mean (+/-SD) total brain, cerebrum and cerebellum volumes were 1,202.05 +/- 103.51, 1,143.65 +/- 106.25 cm3 in males and females, 1,060.0 +/- 94.6, 1,008.9 +/- 104.3 cm3 in males and females, 117.75 +/- 10.7, 111.83 +/- 8.0 cm3 in males and females, respectively. The mean brain stem volumes were 24.3 +/- 2.89, 22.9 +/- 4.49 cm3 in males and females, respectively. Our results revealed that female subjects have less cerebral, cerebellar and brain stem volumes compared to males, although there was no statistically significant difference between genders (P > 0.05). The volume ratio of the cerebrum to total brain volume (TBV), cerebellum to TBV and brain stem to TBV were 88.16 and 88.13% in males and females, 9.8 and 9.8% in males and females, 2.03 and 2.03% in males and females, respectively. The volume ratio of the cerebellum to cerebrum, brain stem to cerebrum and brain stem to cerebellum were 11.12 and 11.16% in males and females, 2.30 and 2.31% in males and females, 20.7 and 20.6% in males and females, respectively. The difference between the genders was not statistically significant (P > 0.05). Our results revealed that the volumetric composition of the cerebrum, cerebellum and brain stem does not show sexual dimorphism.
2013-01-01
Background Stereology is an established method to extrapolate three-dimensional quantities from two-dimensional images. It was applied to placentation in the mouse, but not yet for other rodents. Herein, we provide the first study on quantitative placental development in a sigmodontine rodent species with relatively similar gestational time. Placental structure was also compared to the mouse, in order to evaluate similarities and differences in developmental patterns at the end of gestation. Methods Fetal and placental tissues of Necromys lasiurus were collected and weighed at 3 different stages of gestation (early, mid and late gestation) for placental stereology. The total and relative volumes of placenta and of its main layers were investigated. Volume fractions of labyrinth components were quantified by the One Stop method in 31 placentae collected from different individuals, using the Mercator® software. Data generated at the end of gestation from N. lasiurus placentae were compared to those of Mus musculus domesticus obtained at the same stage. Results A significant increase in the total absolute volumes of the placenta and its main layers occurred from early to mid-gestation, followed by a reduction near term, with the labyrinth layer becoming the most prominent area. Moreover, at the end of gestation, the total volume of the mouse placenta was significantly increased compared to that of N. lasiurus although the proportions of the labyrinth layer and junctional zones were similar. Analysis of the volume fractions of the components in the labyrinth indicated a significant increase in fetal vessels and sinusoidal giant cells, a decrease in labyrinthine trophoblast whereas the proportion of maternal blood space remained stable in the course of gestation. On the other hand, in the mouse, volume fractions of fetal vessels and sinusoidal giant cells decreased whereas the volume fraction of labyrinthine trophoblast increased compared to N. lasiurus placenta. Conclusions Placental development differed between N. lasiurus and M. musculus domesticus. In particular, the low placental efficiency in N. lasiurus seemed to induce morphological optimization of fetomaternal exchanges. In conclusion, despite similar structural aspects of placentation in these species, the quantitative dynamics showed important differences. PMID:23433040
Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures
2014-03-05
temperature [such as poly(phenylene oxide), PPO ].7,8 Yet, this method does not lift the volume fraction limitation, and the total hard phase fraction f...PS + f PPO must still remain below approximately 0.3. Being able to significantly displace the classical phase diagram and stabilize morphologies
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Shuja, S. Z.
2017-01-01
Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.
PTV margin determination in conformal SRT of intracranial lesions
Parker, Brent C.; Shiu, Almon S.; Maor, Moshe H.; Lang, Frederick F.; Liu, H. Helen; White, R. Allen; Antolak, John A.
2002-01-01
The planning target volume (PTV) includes the clinical target volume (CTV) to be irradiated and a margin to account for uncertainties in the treatment process. Uncertainties in miniature multileaf collimator (mMLC) leaf positioning, CT scanner spatial localization, CT‐MRI image fusion spatial localization, and Gill‐Thomas‐Cosman (GTC) relocatable head frame repositioning were quantified for the purpose of determining a minimum PTV margin that still delivers a satisfactory CTV dose. The measured uncertainties were then incorporated into a simple Monte Carlo calculation for evaluation of various margin and fraction combinations. Satisfactory CTV dosimetric criteria were selected to be a minimum CTV dose of 95% of the PTV dose and at least 95% of the CTV receiving 100% of the PTV dose. The measured uncertainties were assumed to be Gaussian distributions. Systematic errors were added linearly and random errors were added in quadrature assuming no correlation to arrive at the total combined error. The Monte Carlo simulation written for this work examined the distribution of cumulative dose volume histograms for a large patient population using various margin and fraction combinations to determine the smallest margin required to meet the established criteria. The program examined 5 and 30 fraction treatments, since those are the only fractionation schemes currently used at our institution. The fractionation schemes were evaluated using no margin, a margin of just the systematic component of the total uncertainty, and a margin of the systematic component plus one standard deviation of the total uncertainty. It was concluded that (i) a margin of the systematic error plus one standard deviation of the total uncertainty is the smallest PTV margin necessary to achieve the established CTV dose criteria, and (ii) it is necessary to determine the uncertainties introduced by the specific equipment and procedures used at each institution since the uncertainties may vary among locations. PACS number(s): 87.53.Kn, 87.53.Ly PMID:12132939
Hashmi, Ahmed; Guckenberger, Matthias; Kersh, Ron; Gerszten, Peter C; Mantel, Frederick; Grills, Inga S; Flickinger, John C; Shin, John H; Fahim, Daniel K; Winey, Brian; Oh, Kevin; John Cho, B C; Létourneau, Daniel; Sheehan, Jason; Sahgal, Arjun
2016-11-01
OBJECTIVE This study is a multi-institutional pooled analysis specific to imaging-based local control of spinal metastases in patients previously treated with conventional external beam radiation therapy (cEBRT) and then treated with re-irradiation stereotactic body radiotherapy (SBRT) to the spine as salvage therapy, the largest such study to date. METHODS The authors reviewed cases involving 215 patients with 247 spinal target volumes treated at 7 institutions. Overall survival was calculated on a patient basis, while local control was calculated based on the spinal target volume treated, both using the Kaplan-Meier method. Local control was defined as imaging-based progression within the SBRT target volume. Equivalent dose in 2-Gy fractions (EQD2) was calculated for the cEBRT and SBRT course using an α/β of 10 for tumor and 2 for both spinal cord and cauda equina. RESULTS The median total dose/number of fractions of the initial cEBRT was 30 Gy/10. The median SBRT total dose and number of fractions were 18 Gy and 1, respectively. Sixty percent of spinal target volumes were treated with single-fraction SBRT (median, 16.6 Gy and EQD2/10 = 36.8 Gy), and 40% with multiple-fraction SBRT (median 24 Gy in 3 fractions, EQD2/10 = 36 Gy). The median time interval from cEBRT to re-irradiation SBRT was 13.5 months, and the median duration of patient follow-up was 8.1 months. Kaplan-Meier estimates of 6- and 12-month overall survival rates were 64% and 48%, respectively; 13% of patients suffered a local failure, and the 6- and 12-month local control rates were 93% and 83%, respectively. Multivariate analysis identified Karnofsky Performance Status (KPS) < 70 as a significant prognostic factor for worse overall survival, and single-fraction SBRT as a significant predictive factor for better local control. There were no cases of radiation myelopathy, and the vertebral compression fracture rate was 4.5%. CONCLUSIONS Re-irradiation spine SBRT is effective in yielding imaging-based local control with a clinically acceptable safety profile. A randomized trial would be required to determine the optimal fractionation.
Effects of C and Si on strain aging of strain-based API X60 pipeline steels
NASA Astrophysics Data System (ADS)
Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Lee, Byeong-Joo; Hong, Seung-Pyo; Kim, Young-Woon; Yoo, Jang Yong; Hwang, Byoungchul; Shin, Sang Yong
2017-05-01
Four types of strain-based API X60 pipeline steels were fabricated by varying the C and Si contents, and the effects of C and Si on strain aging were investigated. The 0.05 wt% C steels consisted mainly of polygonal ferrite (PF), whereas the 0.08 wt% C steels consisted of acicular ferrite (AF). The volume fraction of AF increased with increasing C content because C is an austenite stabilizer element. The volume fractions of bainitic ferrite (BF) of the 0.15 wt% Si steels were higher than those of the 0.25 wt% Si steels, whereas the volume fractions of the secondary phases were lower. From the tensile properties before and after the aging process of the strainbased API X60 pipeline steels, the yield strength increased and the uniform and total elongation decreased, which is the strain aging effect. The strain aging effect in the strain-based API X60 pipeline steels was minimized when the volume fraction of AF was increased and secondary phases were distributed uniformly. On the other hand, an excessively high C content formed fine precipitates, and the strain aging effect occurred because of the interactions among dislocations and fine precipitates.
Bolat, D; Bahar, S; Tipirdamaz, S; Selcuk, M L
2013-12-01
The aims of this study were to determine the total volume of the horse kidney and volume fractions of its functional subcomponents (cortex, medulla, renal pelvis) using stereological methods and investigate any possible difference in the functional subcomponents of the right and left kidneys that may arise from differences in shape. The study was carried out on the kidneys of 5 horses of different breed and sex. The weight of the kidneys was measured by a digital scale, and kidney volume was calculated by Archimedes' principle. Total kidney volume and volume fractions of subcomponents of the right and left kidneys were estimated by the Cavalieri's principle. The weights of the right and left kidneys were 550 ± 25 g and 585 ± 23 g, respectively. The volumes of the right and left kidneys estimated using the Cavalieri method were 542 ± 46 ml and 581 ± 29 ml. The relative organ weight of the kidneys was calculated as 1:330. The densities of the right and left kidneys were determined to be 1.01 and 1.00, respectively. The mean volume fractions of the cortex, medulla and renal pelvis were determined as 55.6, 42.7 and 1.7 in both kidneys. No statistically significant difference existed between morphometric data pertaining to the right and left kidneys (P > 0.05). To determine precisely whether differences in shape cause any difference in the functional subcomponents of the right and left kidneys requires further investigation of differences in the number of microscopically functional unit of the kidney such as renal glomeruli and nephrons. © 2013 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Ishibashi, Hidemi
2009-03-01
Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.
Predicting the apparent viscosity and yield stress of digested and secondary sludge mixtures.
Eshtiaghi, Nicky; Markis, Flora; Zain, Dwen; Mai, Kiet Hung
2016-05-15
The legal banning of conventional sludge disposal methods such as landfill has led to a global movement towards achieving a sustainable sludge management strategy. Reusing sludge for energy production (biogas production) through the anaerobic digestion of sludge can provide a sustainable solution. However, for the optimum performance of digesters with minimal use of energy input, operating conditions must be regulated in accordance with the rheological characteristics of the sludge. If it is assumed that only secondary sludge enters the anaerobic digesters, an impact of variations to the solids concentration and volume fraction of each sludge type must be investigated to understand how the apparent viscosity and yield stress of the secondary and digested sludge mixture inside the digesters changes. In this study, five different total solids concentration of secondary and digested sludge were mixed at different digested sludge volume fractions ranging from 0 to 1. It was found that if secondary sludge was mixed with digested sludge at the same total solids concentration, the apparent viscosity and the yield stress of the mixture increased exponentially by increasing the volume fraction of digested sludge. However, if secondary sludge was added to digested sludge with a different solids concentration, the apparent viscosity and yield stress of the resulting mixed sludge was controlled by the concentrated sludge regardless of its type. Semi - empirical correlations were proposed to predict the apparent viscosity and yield stress of the mixed digested and secondary sludge. A master curve was also developed to predict the flow behaviour of sludge mixtures regardless of the total solid concentration and volume fraction of each sludge type within the studied solids concentration range of 1.4 and 7%TS. This model can be used for digesters optimization and design by predicting the rheology of sludge mixture inside digester. Copyright © 2016 Elsevier Ltd. All rights reserved.
Berger, Thomas; Petersen, Jørgen Breede Baltzer; Lindegaard, Jacob Christian; Fokdal, Lars Ulrik; Tanderup, Kari
2017-11-01
Density changes occurring during fractionated radiotherapy in the pelvic region may degrade proton dose distributions. The aim of the study was to quantify the dosimetric impact of gas cavities and body outline variations. Seven patients with locally advanced cervical cancer (LACC) were analyzed through a total of 175 daily cone beam computed tomography (CBCT) scans. Four-beams intensity-modulated proton therapy (IMPT) dose plans were generated targeting the internal target volume (ITV) composed of: primary tumor, elective and pathological nodes. The planned dose was 45 Gy [Relative-Biological-Effectiveness-weighted (RBE)] in 25 fractions and simultaneously integrated boosts of pathologic lymph nodes were 55-57.5 Gy (RBE). In total, 475 modified CTs were generated to evaluate the effect of: 1/gas cavities, 2/outline variations and 3/the two combined. The anatomy of each fraction was simulated by propagating gas cavities contours and body outlines from each daily CBCT to the pCT. Hounsfield units corresponding to gas and fat were assigned to the propagated contours. D98 (least dose received by the hottest 98% of the volume) and D99.9 for targets and V43Gy(RBE) (volume receiving ≥43 Gy(RBE)) for organs at risk (OARs) were recalculated on each modified CT, and total dose was evaluated through dose volume histogram (DVH) addition across all fractions. Weight changes during radiotherapy were between -3.1% and 1.2%. Gas cavities and outline variations induced a median [range] dose degradation for ITV45 of 1.0% [0.5-3.5%] for D98 and 2.1% [0.8-6.4%] for D99.9. Outline variations had larger dosimetric impact than gas cavities. Worst nodal dose degradation was 2.0% for D98 and 2.3% for D99.9. The impact on bladder, bowel and rectum was limited with V43Gy(RBE) variations ≤3.5 cm 3 . Bowel gas cavities and outline variations had minor impact on accumulated dose in targets and OAR of four-field IMPT in a LACC population of moderate weight changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattangadi, Jona A.; Chapman, Paul H.; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
2012-06-01
Purpose: To evaluate patients with high-risk cerebral arteriovenous malformations (AVMs), based on eloquent brain location or large size, who underwent planned two-fraction proton stereotactic radiosurgery (PSRS). Methods and Materials: From 1991 to 2009, 59 patients with high-risk cerebral AVMs received two-fraction PSRS. Median nidus volume was 23 cc (range, 1.4-58.1 cc), 70% of cases had nidus volume {>=}14 cc, and 34% were in critical locations (brainstem, basal ganglia). Median AVM score based on age, AVM size, and location was 3.19 (range, 0.9-6.9). Many patients had prior surgery or embolization (40%) or prior PSRS (12%). The most common prescription was 16more » Gy radiobiologic equivalent (RBE) in two fractions, prescribed to the 90% isodose. Results: At a median follow-up of 56.1 months, 9 patients (15%) had total and 20 patients (34%) had partial obliteration. Patients with total obliteration received higher total dose than those with partial or no obliteration (mean dose, 17.6 vs. 15.5 Gy (RBE), p = 0.01). Median time to total obliteration was 62 months (range, 23-109 months), and 5-year actuarial rate of partial or total obliteration was 33%. Five-year actuarial rate of hemorrhage was 22% (95% confidence interval, 12.5%-36.8%) and 14% (n = 8) suffered fatal hemorrhage. Lesions with higher AVM scores were more likely to hemorrhage (p = 0.024) and less responsive to radiation (p = 0.026). The most common complication was Grade 1 headache acutely (14%) and long term (12%). One patient developed a Grade 2 generalized seizure disorder, and two had mild neurologic deficits. Conclusions: High-risk AVMs can be safely treated with two-fraction PSRS, although total obliteration rate is low and patients remain at risk for future hemorrhage. Future studies should include higher doses or a multistaged PSRS approach for lesions more resistant to obliteration with radiation.« less
Uranium release from different size fractions of sediments in Hanford 300 area, Washington, USA.
Du, Jiangkun; Bao, Jianguo; Hu, Qinhong; Ewing, Robert P
2012-05-01
Stirred-flow cell tests were carried out to investigate uranium (U) release from different size fractions of sediments from the U.S. Department of Energy's Hanford 300 Area in Washington, USA. Results show that the measured concentration of U release varies with different size fractions, with the fine-grained mass fractions (<75 μm, 75-500 μm, and 500-2000 μm) being the main U carriers. However, because the sediment is mainly composed of gravel (2000-8000 μm) materials, the gravel fraction is a non-negligible U pool. Our elution experiments give a value of 8.7% of the total U being in the gravel fraction, significantly reducing the current uncertainty in evaluating U inventory. A log-log plot of released U concentration vs. elution volume (i.e., elution time) shows a power-law relationship for all size fractions, with identical exponents for the three fine size fractions (-0.875). For the <2000 μm mass fraction, comparing our eluted U values with reported total U concentrations, we estimate that a lower bound value 8.6% of the total uranium is labile. This compares well with the previously published value of 11.8% labile U after extraction with a dilute extractant for three weeks. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite
NASA Astrophysics Data System (ADS)
Joseph, Aswin K.; Anand, K. B.
2018-02-01
This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.
Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.
2010-09-01
Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less
Thermal Dose Fractionation Affects Tumor Physiologic Response
Thrall, Donald E; Maccarini, Paolo; Stauffer, Paul; MacFall, James; Hauck, Marlene; Snyder, Stacey; Case, Beth; Linder, Keith; Lan, Lan; McCall, Linda; Dewhirst, Mark W.
2013-01-01
Purpose It is unknown whether a thermal dose should be administered using a few large fractions with higher temperatures or a larger number of fractions with lower temperatures. To evaluate this, we assessed the effect of administering the same total thermal dose, approximately 30 CEM43T90, in 1 versus 3–4 fractions per week, over 5 weeks. Materials and Methods Canine sarcomas were randomized to receive one of the hyperthermia fractionation schemes along with fractionated radiotherapy. Tumor response was based on changes in tumor volume, oxygenation, water diffusion quantified using MRI, and a panel of histologic and immunohistochemical endpoints. Results There was a greater reduction in tumor volume and water diffusion at the end of therapy In tumors receiving 1 hyperthermia fraction per week. There was a weak but significant association between improved tumor oxygenation 24 hours after the first hyperthermia treatment and extent of volume reduction at the end of therapy. Finally, the direction of change of HIF 1α and CA IX immunoreactivity after the first hyperthermia fraction was similar and there was an inverse relationship between temperature and the direction of change of CA IX. There were no significant changes in interstitial fluid pressure, VEGF, wVf, apoptosis or necrosis as a function of treatment group or temperature. Conclusions We did not identify an advantage to a 3–4/week hyperthermia prescription and response data pointed to a 1/week prescription being superior. PMID:22804741
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi Lei; Molina, Doris P.; Robbins, Michael E.
2008-06-01
Purpose: To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. Methods and Materials: Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of {sup 137}Cs {gamma} rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats weremore » anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. Results: No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. Conclusions: Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus.« less
Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao
To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.
2014-01-01
Background Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data. Methods Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions. Results The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001). Conclusion A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size. PMID:25063729
Correlation between gamma glutamyltransferase fractions and bone quality.
Franzini, M; Nesti, A; Panetta, D; Fierabracci, V; Marchetti, S; Parchi, P D; Caponi, L; Paolicchi, A; Musetti, V; Salvadori, P; Edmin, M; Pucci, A; Bonicoli, E; Scaglione, M; Piolanti, N
Gamma-glutamyltransferase (GGT) has been recently identified as a bone-resorbing factor. The aim of this study was to investigate the association between plasma GGT fractions levels and bone quality. Plasma GGT fractions were analysed by gel-filtration chromatography. Bone quality was established quantitatively by two micro-CT derived microarchitectural parameters: the BV/TV (mineralised bone volume/total volume), and the SMI (structure model index) that describes the rod-like (low resistant) or plate-like (high-resistant) shape of bone trabeculae. We enrolled 93 patients hospitalised for elective total hip replacement (group Arthrosis, n=46) or for proximal femoral fracture (group Fracture, n=47). Patients within the first quartile of BV/TV (Q1, osteoporotic patients, n=6) showed higher levels of b-GGT fraction [median (min-max): 3.37 (1.42–6.81)] compared to patients with normal bone density (fourth quartile Q4, n=10; 1.40 (0.83–4.36); p=0.0393]. Also, according to SMI, b-GGT value was higher in the subgroup with bone fragility [Q1, n=8: 1.36 (0.43–4.36); Q4, n=8: 5.10 (1.4 –7.60); p=0.0117]. In conclusion, patients characterised by fragile bone structure showed specifically higher levels of plasma b-GGT activity thus suggesting fractional GGT analysis as a possible biomarker in the diagnosis of osteoporosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrie, Christian; Muracciole, Xavier; Gomez, Frederic
2005-11-01
Purpose: Between December 1998 and October 2001, patients <19 years old were treated for standard-risk medulloblastoma according to the Medulloblastome-Societe Francaise d'Oncologie Pediatrique 1998 (M-SFOP 98) protocol. Patients received hyperfractionated radiotherapy (36 Gy in 36 fractions) to the craniospinal axis, a boost with conformal therapy restricted to the tumor bed (to a total dose of 68 Gy in 68 fractions), and no chemotherapy. Records of craniospinal irradiation were reviewed before treatment start. Results: A total of 48 patients were considered assessable. With a median follow-up of 45.7 months, the overall survival and progression-free survival rate at 3 years was 89%more » and 81%, respectively. Fourteen major deviations were detected and eight were corrected. No relapses occurred in the frontal region and none occurred in the posterior fossa outside the boost volume. Nine patients were available for volume calculation without reduction of the volume irradiated. We observed a reduction in the subtentorial volume irradiated to >60 Gy, but a slight increase in the volume irradiated to 40 Gy. No decrease in intelligence was observed in the 22 children tested during the first 2 years. Conclusion: This hyperfractionated radiotherapy protocol with a reduced boost volume and without chemotherapy was not associated with early relapses in children. Moreover, intellectual function seemed to be preserved. These results are promising.« less
SU-F-T-26: A Study of the Consistency of Brachytherapy Treatments for Vaginal Cuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shojaei, M; Pella, S; Dumitru, N
2016-06-15
Purpose: To evaluate to treatment consistency over the total number of fractions when treatment what HDR brachytherapy using the ML cylinders. At the same time the dosimetric impact on the critical organs is monitored over the total number of fractions. Methods: A retrospective analysis of 10 patients treated with Cylinder applicators, from 2015–2016 were considered for this study. The CT scans of these patients, taken before each treatment were separately imported in to the treatment planning system and paired with the initial CT scan after completing the contouring. Two sets of CT images were fused together with respective to themore » applicator, using landmark registration. The doses of each plan were imported as well and a cumulative dosimetric analysis was made for bladder, bowels, and rectum and PTV. Results: No contour of any of the OAR was exactly similar when CT images were fused on each other. The PTV volumes vary from fraction to fraction. There was always a difference between the doses received by the OARs between treatments. The maximum dose varied between 5% and 30% in rectum and bladder. The minimum dose varied between 5% and 8% in rectum and bladder. The average dose varied between 15% and 20% in rectum and bladder. Deviation in placement were noticed between fractions. Conclusion: The variation in volumes of OARs and isodoses near the OARs, indicate that the estimated doses to OARs on the planning system may not be the same dose delivered to the patient in all the fractions. There are no major differences between the prescribed dose and the delivered dose over the total number of fractions. In some cases the critical organs will benefit if the consecutive plans will made after the CT scans will be registered with the initial scan and then planned.« less
Cvek, J; Kubes, J; Skacelikova, E; Otahal, B; Kominek, P; Halamka, M; Feltl, D
2012-08-01
The present study was performed to evaluate the feasibility of a new, 5-week regimen of 70-75 Gy hyperfractionated accelerated radiotherapy with concomitant integrated boost (HARTCIB) for locally advanced, inoperable head and neck cancer. A total of 39 patients with very advanced, stage IV nonmetastatic head and neck squamous cell carcinoma (median gross tumor volume 72 ml) were included in this phase I dose escalation study. A total of 50 fractions intensity-modulated radiotherapy (IMRT) were administered twice daily over 5 weeks. Prescribed total dose/dose per fraction for planning target volume (PTV(tumor)) were 70 Gy in 1.4 Gy fractions, 72.5 Gy in 1.45 Gy fractions, and 75 Gy in 1.5 Gy fractions for 10, 13, and 16 patients, respectively. Uninvolved lymphatic nodes (PTV(uninvolved)) were irradiated with 55 Gy in 1.1 Gy fractions using the concomitant integrated boost. Acute toxicity was evaluated according to the RTOG/EORTC scale; the incidence of grade 3 mucositis was 51% in the oral cavity/pharynx and 0% in skin and the recovery time was ≤ 9 weeks for all patients. Late toxicity was evaluated in patients in complete remission according to the RTOG/EORTC scale. No grade 3/4 late toxicity was observed. The 1-year locoregional progression-free survival was 50% and overall survival was 55%. HARTCIB (75 Gy in 5 weeks) is feasible for patients deemed unsuitable for chemoradiation. Acute toxicity was lower than predicted from radiobiological models; duration of dysphagia and confluent mucositis were particularly short. Better conformity of radiotherapy allows the use of more intensive altered fractionation schedules compared with older studies. These results suggest that further dose escalation might be possible when highly conformal techniques (e.g., stereotactic radiotherapy) are used.
Protoplast Volume:Water Potential Relationship and Bound Water Fraction in Spinach Leaves 1
Santakumari, Mane; Berkowitz, Gerald A.
1989-01-01
Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential. PMID:16666983
An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng
2017-12-01
Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.
Belcher, Donald Andrew; Banerjee, Uddyalok; Baehr, Christopher Michael; Richardson, Kristopher Emil; Cabrales, Pedro; Berthiaume, François
2017-01-01
Pure tense (T) and relaxed (R) quaternary state polymerized human hemoglobins (PolyhHbs) were synthesized and their biophysical properties characterized, along with mixtures of T- and R-state PolyhHbs. It was observed that the oxygen affinity of PolyhHb mixtures varied linearly with T-state mole fraction. Computational analysis of PolyhHb facilitated oxygenation of a single fiber in a hepatic hollow fiber (HF) bioreactor was performed to evaluate the oxygenation potential of T- and R-state PolyhHb mixtures. PolyhHb mixtures with T-state mole fractions greater than 50% resulted in hypoxic and hyperoxic zones occupying less than 5% of the total extra capillary space (ECS). Under these conditions, the ratio of the pericentral volume to the perivenous volume in the ECS doubled as the T-state mole fraction increased from 50 to 100%. These results show the effect of varying the T/R-state PolyhHb mole fraction on oxygenation of tissue-engineered constructs and their potential to oxygenate tissues. PMID:29020036
Kim, Tae Hyun; Park, Joong-Won; Kim, Yeon-Joo; Kim, Bo Hyun; Woo, Sang Myung; Moon, Sung Ho; Kim, Sang Soo; Lee, Woo Jin; Kim, Dae Yong; Kim, Chang-Min
2014-10-01
The aim of this work was to evaluate the clinical efficacy and safety of simultaneous integrated boost-intensity modulated radiation therapy (SIB-IMRT) in patients with inoperable hepatocellular carcinoma (HCC). A total of 53 patients with inoperable HCC underwent SIB-IMRT using two dose-fractionation schemes, depending on the proximity of gastrointestinal structures. The 41 patients in the low dose-fractionation (LD) group, with internal target volume (ITV) < 1 cm from gastrointestinal structures, received total doses of 55 and 44 Gy in 22 fractions to planning target volume 1 (PTV1) and 2 (PTV2), respectively. The 12 patients in the high dose-fractionation (HD) group, with ITV ≥ 1 cm from gastrointestinal structures, received total doses of 66 and 55 Gy in 22 fractions to the PTV1 and PTV2, respectively. Overall, treatment was well tolerated, with no grade > 3 toxicity. The LD group had larger sized tumors (median: 6 vs. 3.4 cm) and greater frequencies of vascular invasion (80.6 vs. 16.7 %) than patients in the HD group (p < 0.05 each). The median overall survival (OS) was 25.1 mKonzept ist machbar und sicheronths and the actuarial 2-year local progression-free survival (LPFS), relapse-free survival (RFS), and OS rates were 67.3, 14.7, and 54.7 %, respectively. The HD group tended to show better tumor response (100 vs. 62.2 %, p = 0.039) and 2-year LPFS (85.7 vs. 59 %, p = 0.119), RFS (38.1 vs. 7.3 %, p = 0.063), and OS (83.3 vs. 44.3 %, p = 0.037) rates than the LD group. Multivariate analysis showed that tumor response was significantly associated with OS. SIB-IMRT is feasible and safe for patients with inoperable HCC.
NASA Technical Reports Server (NTRS)
Russin, W. R.
1974-01-01
Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.
SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichay, T; Mayville, A
2016-06-15
Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less
Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep
2017-01-01
To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume, number of fractions and volume of brain receiving atleast 8 Gy of radiation. DFGKRS is feasible for large AVMs with a fair nidus obliteration rate and acceptable toxicity. Cumulative prescription dose seems to be the most significant independent predictor for outcome following DFGKRS with 29-30 Gy resulting in a fair nidus obliteration with least adverse events.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2017-12-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2018-02-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study
NASA Astrophysics Data System (ADS)
Wong, Jerry T.; Molloi, Sabee
2008-07-01
Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising.
Nisari, Mehtap; Ertekin, Tolga; Ozçelik, Ozlem; Cınar, Serife; Doğanay, Selim; Acer, Niyazi
2012-11-01
Brain development in early life is thought to be critical period in neurodevelopmental disorder. Knowledge relating to this period is currently quite limited. This study aimed to evaluate the volume relation of total brain (TB), cerebrum, cerebellum and bulbus+pons by the use of Archimedes' principle and stereological (point-counting) method and after that to compare these approaches with each other in newborns. This study was carried out on five newborn cadavers mean weighing 2.220 ± 1.056 g with no signs of neuropathology. The mean (±SD) age of the subjects was 39.7 (±1.5) weeks. The volume and volume fraction of the total brain, cerebrum, cerebellum and bulbus+pons were determined on magnetic resonance (MR) images using the point-counting approach of stereological methods and by the use of fluid displacement technique. The mean (±SD) TB, cerebrum, cerebellum and bulbus+pons volumes by fluid displacement were 271.48 ± 78.3, 256.6 ± 71.8, 12.16 ± 6.1 and 2.72 ± 1.6 cm3, respectively. By the Cavalieri principle (point-counting) using sagittal MRIs, they were 262.01 ± 74.9, 248.11 ± 68.03, 11.68 ± 6.1 and 2.21 ± 1.13 cm3, respectively. The mean (± SD) volumes by point-counting technique using axial MR images were 288.06 ± 88.5, 275.2 ± 83.1, 19.75 ± 5.3 and 2.11 ± 0.7 cm3, respectively. There were no differences between the fluid displacement and point-counting (using axial and sagittal images) for all structures (p > 0.05). This study presents the basic data for studies relative to newborn's brain volume fractions according to two methods. Stereological (point-counting) estimation may be accepted a beneficial and new tool for neurological evaluation in vivo research of the brain. Based on these techniques we introduce here, the clinician may evaluate the growth of the brain in a more efficient and precise manner.
NASA Astrophysics Data System (ADS)
Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbarali; Abbaszadeh, Mahmoud
2016-04-01
The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu-water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 104, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect.
Accuracy of cancellous bone volume fraction measured by micro-CT scanning.
Ding, M; Odgaard, A; Hvid, I
1999-03-01
Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.
Yao, Lihong; Zhu, Lihong; Wang, Junjie; Liu, Lu; Zhou, Shun; Jiang, ShuKun; Cao, Qianqian; Qu, Ang; Tian, Suqing
2015-04-26
To improve the delivery of radiotherapy in gynecologic malignancies and to minimize the irradiation of unaffected tissues by using daily kilovoltage cone beam computed tomography (kV-CBCT) to reduce setup errors. Thirteen patients with gynecologic cancers were treated with postoperative volumetric-modulated arc therapy (VMAT). All patients had a planning CT scan and daily CBCT during treatment. Automatic bone anatomy matching was used to determine initial inter-fraction positioning error. Positional correction on a six-degrees-of-freedom (6DoF) couch was followed by a second scan to calculate the residual inter-fraction error, and a post-treatment scan assessed intra-fraction motion. The margins of the planning target volume (MPTV) were calculated from these setup variations and the effect of margin size on normal tissue sparing was evaluated. In total, 573 CBCT scans were acquired. Mean absolute pre-/post-correction errors were obtained in all six planes. With 6DoF couch correction, the MPTV accounting for intra-fraction errors was reduced by 3.8-5.6 mm. This permitted a reduction in the maximum dose to the small intestine, bladder and femoral head (P=0.001, 0.035 and 0.032, respectively), the average dose to the rectum, small intestine, bladder and pelvic marrow (P=0.003, 0.000, 0.001 and 0.000, respectively) and markedly reduced irradiated normal tissue volumes. A 6DoF couch in combination with daily kV-CBCT can considerably improve positioning accuracy during VMAT treatment in gynecologic malignancies, reducing the MPTV. The reduced margin size permits improved normal tissue sparing and a smaller total irradiated volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lina; Zhou, Shouhao; Balter, Peter
Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis.more » Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD95 BED{sub 10} >86 Gy and PTVmean BED{sub 10} >130 Gy should be considered for SABR plan optimization.« less
Effects of heart rate on experimentally produced mitral regurgitation in dogs.
Yoran, C; Yellin, E L; Hori, M; Tsujioka, K; Laniado, S; Sonnenblick, E H; Frater, R W
1983-12-01
The effects of increasing heart rate (HR) on the hemodynamics of acute mitral regurgitation (MR) were studied in 8 open-chest dogs. Filling volume, regurgitant volume and stroke volume were calculated from electromagnetic probe measurements of mitral and aortic flows. The left atrial-left ventricular systolic pressure gradient was measured with micromanometers. The calculated effective mitral regurgitant orifice area varied from 10 to 128 mm2, with a consequent regurgitant fraction (regurgitant volume/filling volume) of 24 to 62%. After crushing the sinus node, HR was increased stepwise from 90 to 180 beats/min by atrial pacing while maintaining aortic pressure constant. With increasing HR, filling volume, stroke volume, regurgitant volume and regurgitant time decreased; total cardiac output, forward cardiac output, regurgitant output, systolic pressure gradient, regurgitant fraction and the regurgitant orifice did not change; left ventricular end-diastolic pressure decreased; and left atrial v-wave amplitude increased. These results indicate that in acute experimental MR with a wide spectrum of incompetence, the relative distribution of forward and regurgitant flows did not change with large increases in HR. At rates greater than 150 beats/min the atrial contraction occurs early and increases the amplitude of the left atrial v wave. This may contribute to the severity of pulmonary congestion in patients with MR.
NASA Astrophysics Data System (ADS)
Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.
2017-01-01
When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.
NASA Astrophysics Data System (ADS)
Shaysultanov, D. G.; Stepanov, N. D.; Salishchev, G. A.; Tikhonovsky, M. A.
2017-06-01
High-entropy alloys CoCrFeNiMnVKharkov Institute of Physics and Technology, ul. Akademicheskaya 1, Kharkov 61108 (Kharkov Institute of Physics and Technology, ul. Akademicheskaya 1, Kharkov 61108 = 0.25, 0.5, 0.75, 1) were prepared by vacuum arc melting. The structure and microhardness of the alloys have been studied in the cast state and after annealing at temperatures of 700-1100°C. It has been found that the alloys consist of the fcc (γ) solid solution and intermetallic sigma (σ) phase. The volume fraction of the σ phase increases with increasing vanadium content. As a result of annealing, phase transformations occur, including the precipitation of σ particles from the γ phase and, vice versa, the precipitation of γ particles from the σ phase. It has been shown that the change in the volume fraction of the σ phase upon annealing occurs due to the changes in the total content of σ-forming elements, chromium and vanadium, in accordance with the lever rule. With increasing temperature, the volume fraction of the σ phase varies nonmonotonically; first, it increases, then it decreases. The microhardness of the alloys correlates well with the change in the volume fraction of the σ phase. The mechanisms of the phase transformations and quantitative relationships between chemical and phase compositions of the alloys and their hardness are discussed.
Effect of cold drawing ratio on γ′ precipitation in Inconel X-750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok
2014-10-15
Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less
Thermal and ultrasonic evaluation of porosity in composite laminates
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.
1992-01-01
The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.
Single-Fraction Proton Beam Stereotactic Radiosurgery for Cerebral Arteriovenous Malformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattangadi-Gluth, Jona A.; Chapman, Paul H.; Kim, Daniel
2014-06-01
Purpose/Objective(s): To evaluate the obliteration rate and potential adverse effects of single-fraction proton beam stereotactic radiosurgery (PSRS) in patients with cerebral arteriovenous malformations (AVMs). Methods and Materials: From 1991 to 2010, 248 consecutive patients with 254 cerebral AVMs received single-fraction PSRS at our institution. The median AVM nidus volume was 3.5 cc (range, 0.1-28.1 cc), 23% of AVMs were in critical/deep locations (basal ganglia, thalamus, or brainstem), and the most common prescription dose was 15 Gy(relative biological effectiveness [RBE]). Univariable and multivariable analyses were performed to assess factors associated with obliteration and hemorrhage. Results: At a median follow-up time of 35 months (range, 6-198 months),more » 64.6% of AVMs were obliterated. The median time to total obliteration was 31 months (range, 6-127 months), and the 5-year and 10-year cumulative incidence of total obliteration was 70% and 91%, respectively. On univariable analysis, smaller target volume (hazard ratio [HR] 0.78, 95% confidence interval [CI] 0.86-0.93, P<.0001), smaller treatment volume (HR 0.93, 95% CI 0.90-0.96, P<.0001), higher prescription dose (HR 1.16, 95% CI 1.07-1.26, P=.001), and higher maximum dose (HR 1.14, 95% CI 1.05-1.23, P=.002) were associated with total obliteration. Deep/critical location was also associated with decreased likelihood of obliteration (HR 0.68, 95% CI 0.47-0.98, P=.04). On multivariable analysis, critical location (adjusted HR [AHR] 0.42, 95% CI 0.27-0.65, P<.001) and smaller target volume (AHR 0.81, 95% CI 0.68-0.97, P=.02) remained associated with total obliteration. Posttreatment hemorrhage occurred in 13 cases (5-year cumulative incidence of 7%), all among patients with less than total obliteration, and 3 of these events were fatal. The most common complication was seizure, controlled with medications, both acutely (8%) and in the long term (9.1%). Conclusions: The current series is the largest modern series of PSRS for cerebral AVMs. PSRS can achieve a high obliteration rate with minimal morbidity. Post-treatment hemorrhage remains a potentially fatal risk among patients who have not yet responded to treatment.« less
Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich
2016-08-15
Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-01-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5–7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues. PMID:12937287
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-11-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5-7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues.
Fredriksson, Alexandru; Trzebiatowska-Krzynska, Aleksandra; Dyverfeldt, Petter; Engvall, Jan; Ebbers, Tino; Carlhäll, Carl-Johan
2018-04-01
To assess right ventricular (RV) turbulent kinetic energy (TKE) in patients with repaired Tetralogy of Fallot (rToF) and a spectrum of pulmonary regurgitation (PR), as well as to investigate the relationship between these 4D flow markers and RV remodeling. Seventeen patients with rToF and 10 healthy controls were included in the study. Patients were divided into two groups based on PR fraction: one lower PR fraction group (≤11%) and one higher PR fraction group (>11%). Field strength/sequences: 3D cine phase contrast (4D flow), 2D cine phase contrast (2D flow), and balanced steady-state free precession (bSSFP) at 1.5T. The RV volume was segmented in the morphologic short-axis images and TKE parameters were computed inside the segmented RV volume throughout diastole. Statistical tests: One-way analysis of variance with Bonferroni post-hoc test; unpaired t-test; Pearson correlation coefficients; simple and stepwise multiple regression models; intraclass correlation coefficient (ICC). The higher PR fraction group had more remodeled RVs (140 ± 25 vs. 107 ± 22 [lower PR fraction, P < 0.01] and 93 ± 15 ml/m 2 [healthy, P < 0.001] for RV end-diastolic volume index [RVEDVI]) and higher TKE values (5.95 ± 3.15 vs. 2.23 ± 0.81 [lower PR fraction, P < 0.01] and 1.91 ± 0.78 mJ [healthy, P < 0.001] for Peak Total RV TKE). Multiple regression analysis between RVEDVI and 4D/2D flow parameters showed that Peak Total RV TKE was the strongest predictor of RVEDVI (R 2 = 0.47, P = 0.002). The 4D flow-specific TKE markers showed a slightly stronger association with RV remodeling than conventional 2D flow PR parameters. These results suggest novel hemodynamic aspects of PR in the development of late complications after ToF repair. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1043-1053. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Moitra, Pranabendu; Gonnermann, Helge
2014-05-01
Magma often contains crystals of various shapes and sizes. We present experimental results on the effect of the shape- and size-distribution of solid particles on the rheological properties of solid-liquid suspensions, which are hydrodynamically analogous to crystal-bearing magmas. The suspensions were comprised of either a single particle shape and size (unimodal) or a mixture of two different particle shapes and sizes (bimodal). For each type of suspension we characterized the dry maximum packing fraction of the particle mixture using the tap density method. We then systematically varied the total volume fraction of particles in the suspension, as well as the relative proportion of the two different particle types in the bimodal suspensions. For each of the resultant mixtures (suspensions) we performed controlled shear stress experiments using a rotational rheometer in parallel-plate geometry spanning 4 orders of magnitude in shear stress. The resultant data curves of shear stress as a function of shear rate were fitted using a Herschel-Bulkley rheological model. We find that the dry maximum packing decreases with increasing particle aspect ratio (ar) and decreasing particle size ratio (Λ). The highest dry maximum packing was obtained at 60-75% volume of larger particles for bimodal spherical particle mixture. Normalized consistency, Kr, defined as the ratio of the consistency of the suspension and the viscosity of the suspending liquid, was fitted using a Krieger-Dougherty model as a function of the total solid volume fraction (φ). The maximum packing fractions (φm) obtained from the shear experimental data fitting of the unimodal suspensions were similar in magnitude with the dry maximum packing fractions of the unimodal particles. Subsequently, we used the dry maximum packing fractions of the bimodal particle mixtures to fit Kr as a function of φ for the bimodal suspensions. We find that Kr increases rapidly for suspensions with larger ar and smaller Λ. We also find that both the apparent yield stress and the shear thinning behavior of the suspensions increase with increasing ar and become significant at φ/φm ≥ 0.4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn
The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less
Hagmann, Cornelia; Singer, Jitka; Latal, Beatrice; Knirsch, Walter; Makki, Malek
2016-03-01
The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants. © The Author(s) 2015.
Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E
2017-11-01
The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, Sivaramakrishnan
2015-06-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.
NASA Astrophysics Data System (ADS)
Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong
2016-04-01
A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.
NASA Technical Reports Server (NTRS)
Andrews, C. W.
1976-01-01
Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.
Ramonatxo, M; Préfaut, C; Guerrero, H; Moutou, H; Bansard, X; Chardon, G
1982-01-01
The aim of this study was to establish data which would best demonstrate the variations of different tests using Carbon Monoxide as a tracer gas (total and partial functional uptake coefficient and transfer capacity) to establish mean values and lower limits of normal of these tests. Multivariate statistical analysis was used; in the first stage a connection was sought between the fractional uptake coefficient (partial and total) to other parameters, comparing subjects and data. In the second stage the comparison was refined by eliminating the least useful data, trying, despite a small loss of material, to reveal the most important connections, linear or otherwise. The fractional uptake coefficients varied according to sex, also the variation of the partial alveolar-expired fractional uptake equivalent (DuACO) was largely a function of respiratory rate and tidal volume. The alveolar-arterial partial fractional uptake equivalent (DuaCO) depended more on respiratory frequency and age. Finally the total fractional uptake coefficient (DuCO) and the transfer capacity corrected per liter of ventilation (TLCO/V) were functions of these parameters. The last stage of this work, after taking account of the statistical observations consistent with the facts of these physiological hypotheses led to a search for a better way of approaching the laws linking the collected data to the fractional uptake coefficient. The lower limits of normal were arbitrarily defined, separating those 5% of subjects deviating most strongly from the mean. As a result, the relationship between the lower limit of normal and the theoretical mean value was 90% for the partial and total fractional uptake coefficient and 70% for the transfer capacity corrected per liter of ventilation.
Estimates of Fossil Fuel Carbon Dioxide Emissions From Mexico at Monthly Time Intervals
NASA Astrophysics Data System (ADS)
Losey, L. M.; Andres, R. J.
2003-12-01
Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuels. Mexico is among the top fifteen nations in the world for producing fossil fuel carbon dioxide emissions. Based on this information and that emissions from Mexico are a focus of the North American Carbon Program, Mexico was selected for this study. Mexican monthly inland sales volumes for January 1988-May 2003 were collected on natural gas and liquid fuels from the Energy Information Agency in the United States Department of Energy. These sales figures represent a major portion of the total fossil fuel consumption in Mexico. The fraction of a particular fossil fuel consumed in a given month was determined by dividing the monthly sales volumes by the annual sum of monthly sales volumes for a given year. This fraction was then multiplied by the annual carbon dioxide values reported by the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) to estimate the monthly carbon dioxide emissions from the respective fuels. The advantages of this methodology are: 1) monthly fluxes are consistent with the annual flux as determined by the widely-accepted CDIAC values, and 2) its general application can be easily adapted to other nations for determining their sub-annual time scale emissions. The major disadvantage of this methodology is the proxy nature inherent to it. Only a fraction of the total emissions are used as an estimate in determining the seasonal cycle. The error inherent in this approach increases as the fraction of total emissions represented by the proxy decreases. These data are part of a long-term project between researchers at the University of North Dakota and ORNL which attempts to identify and understand the source(s) of seasonal variations of global, fossil-fuel derived, carbon dioxide emissions. Better knowledge of the temporal variation of the annual fossil fuel flux will lead to a better understanding of the global carbon cycle. This research will be archived at CDIAC for public access.
Rossow, Lindy; Yan, Huimin; Fahs, Christopher A; Ranadive, Sushant M; Agiovlasitis, Stamatis; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo
2010-04-01
The acute effect of high-intensity interval exercise (HI) on blood pressure (BP) is unknown although this type of exercise has similar or greater cardiovascular benefits compared to steady-state aerobic exercise (SS). This study examined postexercise hypotension (PEH) and potential mechanisms of this response in endurance-trained subjects following acute SS and HI. Sex differences were also evaluated. A total of 25 endurance-trained men (n = 15) and women (n = 10) performed a bout of HI and a bout of SS cycling in randomized order on separate days. Before exercise, 30 min postexercise, and 60 min postexercise, we measured brachial and aortic BP. Cardiac output (CO), stroke volume (SV), end diastolic volume (EDV), end systolic volume (ESV), and left ventricular wall-velocities were measured using ultrasonography with tissue Doppler capabilities. Ejection fraction and fractional shortening (FS), total peripheral resistance (TPR), and calf vascular resistance were calculated from the above variables and measures of leg blood flow. BP, ejection fraction, and FS decreased by a similar magnitude following both bouts but changes in CO, heart rate (HR), TPR, and calf vascular resistance were greater in magnitude following HI than following SS. Men and women responded similarly to HI. Although men and women exhibited a similar PEH following SS, they showed differential changes in SV, EDV, and TPR. HI acutely reduces BP similarly to SS. The mechanistic response to HI appears to differ from that of SS, and endurance-trained men and women may exhibit differential mechanisms for PEH following SS but not HI.
Bakhshalian, Neema; Freire, Marcelo; Min, Seiko; Wu, Ivy; Zadeh, Homayoun H
A total of 68 extraction sockets were grafted with anorganic bovine bone mineral and covered by dense polytetrafluoroethylene membrane. Quantitative analysis of three-dimensional microcomputed tomography imaging of core samples retrieved after a mean of 21.0 ± 14.2 weeks revealed 40.1% bone volume fraction (bone volume [BV]/total volume [TV]) and 12% residual graft. Evidence of de novo bone formation was observed in the form of discrete islands of newly formed bone in direct apposition to graft particles, separated from parent bone. Anterior sockets exhibited a significantly higher percentage of residual graft compared to premolar sockets (P = .05). The BV/TV and percentage of residual graft correlated well with histomorphometric analysis of the same sites, but not with implant outcomes.
Pantaroto, Mário; Lopes Filho, Gaspar de Jesus; Pinto, Clovis Antonio Lopes; Antico Filho, Armando
2015-10-01
To investigate the deposition of collagen in the colon wall of patients with sigmoid diverticulitis. Samples of sigmoid tissue from 15 patients (disease group), seven men and eight women aged 37-77 years who underwent surgery for the treatment of diverticulitis, were selected. For the control group, specimens from five patients, three men and two women aged 19-58 years undergoing emergency surgery for sigmoid trauma were selected. These subjects had no associated diseases. The histological study of the surgical specimens was performed by staining with hematoxylin-eosin and picrosirius and using a histochemical method for collagen quantification. Collagen deposition in the colon wall in terms of area (F), glandular epithelium (E) and total area was significantly higher in the disease group compared to control (p=0.003, p=0.026 and p=0.010, respectively). The collagen volume fraction (F fraction) and muscle tissue (M fraction) were also significantly higher compared to control (p=0.044 and p=0.026, respectively). The muscle (M area) and volume fraction of glandular epithelium (E fraction) did not differ significantly between the two groups, (p=0.074 and p=1.000, respectively). In this study, collagen deposition in the colon wall of the patients operated for sigmoid diverticulitis was higher compared to patients without the disease.
Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao
2016-01-07
With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongyu, Xu; Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208; Xin, Cheng
2014-12-28
The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction ofmore » piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, M; Abramowitz, M; Dogan, N
Purpose: Quantify the dosimetric cost for a margin around the MRI-defined high risk GTV for simultaneous integrated intra-prostatic boosts (SIIB) treated with RapidArc. Methods: For external beam radiotherapy of the prostate, a 3-7 mm PTV margin is typically used to account for setup and intra-fraction uncertainties after adjusting for inter-fraction motion. On the other hand, our current paradigm is to treat the MRI-defined high risk GTV with no margin. In this work, 11 patients treated SIIB (7 post-prostatectomy, 4 intact prostate) with RapidArc were re-planned with 1-5 mm margins around the GTV to quantify dosimetric effects. Two 358 degree, 10more » MV RapidArcs were used to deliver 68 Gy (76.5 Gy boost) to the post-prostatectomy patients and 80 Gy (86 Gy boost) to the intact prostates. Paired, two tail t-tests were used to determine if there were any significant differences (p<0.05) in the total MUs and dosimetric parameters used to evaluate rectum, bladder, and PTV dose with and without margin. Results: The average GTV volume without margin was 8.1cc (2.8% of the PTV volume) while the average GTV volume with a 5 mm margin was 20.1cc (9.0% of the PTV volume). GTV volumes ranged from 0.2% of the PTV volume up to 33.0%. Despite these changes in volume, the only statistical difference was found for the rectal V65 Gy with a 5 mm margin (18.6% vs. 19.4%; p-value = 0.026) when all patients were considered as a single group. No difference was found when analyzed as two groups. The rectum V40Gy, bladder V40Gy and V65Gy, PTV Dmax and D95% or the total MUs did not show any significant difference for any margin. Conclusion: A 4 mm margin on the high risk GTV is possible with no statistically significant change in dosimetry or total MUs. Further work will assess the appropriate margin required for intra-prostatic boosts.« less
Hay, M.B.; Stoliker, D.L.; Davis, J.A.; Zachara, J.M.
2011-01-01
Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ???1% of the solid volume and intragranular surface areas of ???20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. Copyright 2011 by the American Geophysical Union.
Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.
2011-01-01
Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.
NASA Technical Reports Server (NTRS)
Pan, Ning
1992-01-01
Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
NASA Astrophysics Data System (ADS)
Nurdin, Irwan; Satriananda
2017-03-01
Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.
Phase-field simulations of coherent precipitate morphologies and coarsening kinetics
NASA Astrophysics Data System (ADS)
Vaithyanathan, Venugopalan
2002-09-01
The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)
Takeda, Atsuya; Sanuki, Naoko; Kunieda, Etsuo; Ohashi, Toshio; Oku, Yohei; Takeda, Toshiaki; Shigematsu, Naoyuki; Kubo, Atsushi
2009-02-01
To retrospectively analyze the clinical outcomes of stereotactic body radiotherapy (SBRT) for patients with Stages 1A and 1B non-small-cell lung cancer. We reviewed the records of patients with non-small-cell lung cancer treated with curative intent between Dec 2001 and May 2007. All patients had histopathologically or cytologically confirmed disease, increased levels of tumor markers, and/or positive findings on fluorodeoxyglucose positron emission tomography. Staging studies identified their disease as Stage 1A or 1B. Performance status was 2 or less according to World Health Organization guidelines in all cases. The prescribed dose of 50 Gy total in five fractions, calculated by using a superposition algorithm, was defined for the periphery of the planning target volume. One hundred twenty-one patients underwent SBRT during the study period, and 63 were eligible for this analysis. Thirty-eight patients had Stage 1A (T1N0M0) and 25 had Stage 1B (T2N0M0). Forty-nine patients were not appropriate candidates for surgery because of chronic pulmonary disease. Median follow-up of these 49 patients was 31 months (range, 10-72 months). The 3-year local control, disease-free, and overall survival rates in patients with Stages 1A and 1B were 93% and 96% (p = 0.86), 76% and 77% (p = 0.83), and 90% and 63% (p = 0.09), respectively. No acute toxicity was observed. Grade 2 or higher radiation pneumonitis was experienced by 3 patients, and 1 of them had fatal bacterial pneumonia. The SBRT at 50 Gy total in five fractions to the periphery of the planning target volume calculated by using a superposition algorithm is feasible. High local control rates were achieved for both T2 and T1 tumors.
Crystal, Howard A.; Holman, Susan; Lui, Yvonne W.; Baird, Alison E.; Yu, Hua; Klein, Ronald; Rojas-Soto, Diana Marcella; Gustafson, Deborah R.; Stebbins, Glenn T.
2016-01-01
Objective The fractal dimension of retinal arteries and veins is a measure of the complexity of the vascular tree. We hypothesized that retinal fractal dimension would be associated with brain volume and white matter integrity in HIV-infected women. Design Nested case-control within longitudinal cohort study. Methods Women were recruited from the Brooklyn site of the Women’s Interagency HIV study (WIHS); 34 HIV-infected and 21 HIV-uninfected women with analyzable MRIs and retinal photographs were included. Fractal dimension was determined using the SIVA software program on skeletonized retinal images. The relationship between predictors (retinal vascular measures) and outcomes (quantitative MRI measures) were analyzed with linear regression models. All models included age, intracranial volume, and both arterial and venous fractal dimension. Some models were adjusted for blood pressure, race/ethnicity, and HIV-infection. Results The women were 45.6 ± 7.3 years of age. Higher arterial dimension was associated with larger cortical volumes, but higher venous dimension was associated with smaller cortical volumes. In fully adjusted models, venous dimension was significantly associated with fractional anisotropy (standardized β = -0.41, p = 0.009) and total gray matter volume (β = -0.24, p = 0.03), and arterial dimension with mean diffusivity (β = -0.33,.p = 0.04) and fractional anisotropy (β = 0.34, p = 0.03). HIV-infection was not associated with any retinal or MRI measure. Conclusions Higher venous fractal dimension was associated with smaller cortical volumes and lower fractional anisotropy, whereas higher arterial fractal dimension was associated with the opposite patterns. Longitudinal studies are needed to validate this finding. PMID:27158911
Franzoso, Francesca D; Wohlmuth, Christoph; Greutmann, Matthias; Kellenberger, Christian J; Oxenius, Angela; Voser, Eva M; Valsangiacomo Buechel, Emanuela R
2016-09-01
The atria serve as reservoir, conduit, and active pump for ventricular filling. The performance of the atrial baffles after atrial switch repair for transposition of the great arteries may be abnormal and impact the function of the systemic right ventricle. We sought to assess atrial function in patients after atrial repair in comparison to patients after arterial switch repair (ASO) and to controls. Using magnetic resonance imaging, atrial volumes and functional parameters were measured in 17 patients after atrial switch repair, 9 patients after ASO and 10 healthy subjects. After the atrial switch operation, the maximum volume of the pulmonary venous atrium was significantly enlarged, but not of the systemic venous atrium. In both patients groups, independently from the surgical technique used, the minimum atrial volumes were elevated, which resulted in a decreased total empting fraction compared with controls (P < .01). The passive empting volume was diminished for right atrium, but elevated for left atrium after atrial switch and normal for left atrium after ASO; however, the passive empting fraction was diminished for both right atrium and left atrium after both operations (P < .01). The active empting volume was the most affected parameter in both atria and both groups and active empting fractions were highly significantly reduced compared with controls. Atrial function is abnormal in all patients, after atrial switch and ASO repair. The cyclic volume changes, that is, atrial filling and empting, are reduced when compared with normal subjects. Thus, the atria have lost part of their capacity to convert continuous venous flow into a pulsatile ventricular filling. The function of the pulmonary venous atrium, acting as preload for the systemic right ventricle, after atrial switch is altered the most. © 2015 Wiley Periodicals, Inc.
Mihaila, Sorina; Muraru, Denisa; Miglioranza, Marcelo Haertel; Piasentini, Eleonora; Aruta, Patrizia; Cucchini, Umberto; Iliceto, Sabino; Vinereanu, Dragos; Badano, Luigi P
2016-08-01
To explore the relationship between the mitral annular (MA) remodelling and dysfunction, mitral regurgitation (MR) severity, left ventricular (LV) and atrial (LA) size and function in patients with organic MR (OMR). A total of 52 patients (57 ± 15 years, 31 men) with mild to severe OMR and 52 controls underwent 3D transthoracic echocardiography acquisitions of the mitral valve (MV), LA, and LV. MA geometry and dynamics, LV and LA volumes, LV ejection fraction (LVEF) and emptying fractions (LAEF) were assessed using dedicated software packages. LA and LV myocardial deformations were assessed using 2D speckle-tracking echocardiography. OMR patients presented larger and more spherical MA than controls during the entire systole (P < 0.001). Although the MA non-planarity at early-systole was similar between OMR and controls (157 ± 13° vs. 153 ± 12°, P = NS), the MA became flatter from mid- to end-systole (153 ± 12 vs. 146 ± 10° and 157 ± 12 vs. 147 ± 8°, P < 0.01) in OMR. MA area fractional change was lower in patients with OMR (22 ± 5% vs. 28 ± 5%, P < 0.001), and correlated with the MR orifice and volume (r = -0.52 and r = -0.55). MA fractional area change correlated with LA minimum and maximum volumes (r = 0.77 and r = 0.70), total and active LAEF (r = 0.72 and r = 0.76), and LA negative strain and strain rate (r = 0.52 and r = 0.57), but not with the LVEF or LV global longitudinal strain. In a multivariate regression model using LAEF and LVEF, solely active LAEF correlated with the MA fractional area change (β = 0.51, P = 0.005). In patients with OMR, MA reduced function correlates with the MR severity and the LA size and function, but not with the LV function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Post-natal growth in the rat pineal gland: a stereological study.
Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E
2012-10-01
The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies. © 2012 Blackwell Verlag GmbH.
Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.
Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan
2017-12-01
To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.
Immunoglobulin G levels during collection of large volume plasma for fractionation.
Burkhardt, Thomas; Rothe, Remo; Moog, Rainer
2017-06-01
There is a need of comprehensive work dealing with the quality of plasma for fractionation with respect to the IgG content as today most plasma derivates are used to treat patients with immunodeficiencies and autoimmune disorders. Therefore, a prospective study was carried out to analyse IgG levels before plasmapheresis and every 200ml collected plasma. Fifty-four experienced plasmapheresis donors were recruited for subsequent 850ml plasmapheresis using the Aurora Plasmapheresis System. Donorś peripheral blood counts were analysed before and after plasmapheresis using an electronic counter. Total protein, IgG and citrate were measured turbidometrically before, during and after apheresis as well as in the plasma product. Furthermore, platelets, red and white blood cells were analysed as parameters of product quality. An average of 2751±247ml blood was processed in 47±6min. The collected plasma volume was 850±1mL and citrate consumption was 177±15mL. A continuous drop of donors' IgG level was observed during plasmapheresis. The drop was 13% of the IgG baseline value at 800mL collected plasma. Total protein, IgG and cell counts of the plasma product met current guidelines of plasma for fractionation. Donors' IgG levels during apheresis showed a steady decrease without compromising the quality of plasma product. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.
Cheng, Hefa; Reinhard, Martin
2006-06-01
Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.
Distinct white matter abnormalities in different idiopathic generalized epilepsy syndromes.
Liu, Min; Concha, Luis; Beaulieu, Christian; Gross, Donald W
2011-12-01
By definition idiopathic generalized epilepsy (IGE) is not associated with structural abnormalities on conventional magnetic resonance imaging (MRI). However, recent quantitative studies suggest white and gray matter alterations in IGE. The purpose of this study was to investigate whether there are white and/or gray matter structural differences between controls and two subsets of IGE, namely juvenile myoclonic epilepsy (JME) and IGE with generalized tonic-clonic seizures only (IGE-GTC). We assessed white matter integrity and gray matter volume using diffusion tensor tractography-based analysis of fractional anisotropy and voxel-based morphometry, respectively, in 25 patients with IGE, all of whom had experienced generalized tonic-clonic convulsions. Specifically, 15 patients with JME and 10 patients with IGE-GTC were compared to two groups of similarly matched controls separately. Correlations between total lifetime generalized tonic-clonic seizures and fractional anisotropy were investigated for both groups. Tractography revealed lower fractional anisotropy in specific tracts including the crus of the fornix, body of corpus callosum, uncinate fasciculi, superior longitudinal fasciculi, anterior limb of internal capsule, and corticospinal tracts in JME with respect to controls, whereas there were no fractional anisotropy differences in IGE-GTC. No correlation was found between fractional anisotropy and total lifetime generalized tonic-clonic seizures for either JME or IGE-GTC. Although false discovery rate-corrected voxel-based morphometry (VBM) showed no gray matter volume differences between patient and control groups, spatial extent cluster-corrected VBM analysis suggested a trend of gray matter volume reduction in frontal and central regions in both patient groups, more lateral in JME and more medial in IGE-GTC. The findings support the idea that the clinical syndromes of JME and IGE-GTC have unique anatomic substrates. The fact that the primary clinical difference between JME and IGE-GTC is the occurrence of myoclonus in the former raises the possibility that disruption of white matter integrity may be the underlying mechanism responsible for myoclonus in JME. The cross-sectional study design and relatively small number of subjects limits the conclusions that can be drawn here; however, the absence of a correlation between fractional anisotropy and lifetime seizures is suggestive that the white matter abnormalities observed in JME may not be secondary to seizures. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.
Wang, Ling-Wei; Chen, Yi-Wei; Ho, Ching-Yin; Hsueh Liu, Yen-Wan; Chou, Fong-In; Liu, Yuan-Hao; Liu, Hong-Ming; Peir, Jinn-Jer; Jiang, Shiang-Huei; Chang, Chi-Wei; Liu, Ching-Sheng; Lin, Ko-Han; Wang, Shyh-Jen; Chu, Pen-Yuan; Lo, Wen-Liang; Kao, Shou-Yen; Yen, Sang-Hue
2016-05-01
To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA-positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq. Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ling-Wei, E-mail: lwwang@vghtpe.gov.tw; National Yang-Ming University, Taiwan; Chen, Yi-Wei
Purpose: To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. Methods and Materials: In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA–positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq.more » Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Results: Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Conclusions: Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future.« less
Measuring the fraction of pool volume filled with fine sediment
Sue Hilton; Thomas E. Lisle
1993-01-01
The fraction of pool volume filled with fine sediment (usually fine sand to medium gravel) can be a useful index of the sediment supply and substrate habitat of gravel-bed channels. It can be used to evaluate and monitor channel condition and to detect and evaluate sediment sources. This fraction (V*) is the ratio of fine-sediment volume to pool water volume plus fine-...
Characterization and Demonstrations of Laser-Induced Incandescence in both Normal and Low-Gravity
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.
1997-01-01
Knowledge of soot volume fraction is important to a wide range of combustion studies in microgravity. Laser-induced incandescence (LII) offers high sensitivity, high temporal and spatial resolution in addition to geometric versatility for real-time determination of soot volume fraction. Implementation of LII into the 2.2 see drop tower at The NASA-Lewis Research Center along with system characterization is described. Absolute soot volume fraction measurements are presented for laminar and turbulent gas-jet flames in microgravity to illustrate the capabilities of LII in microgravity. Comparison between LII radial intensity profiles with soot volume fraction profiles determined through a full-field light extinction technique are also reported validating the accuracy of LII for soot volume fraction measurements in a microgravity environment.
Massé, D I; Croteau, F; Masse, L
2007-11-01
The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salem, Ahmed, E-mail: ahmed.salem@doctors.org.uk; Mohamad, Issa; Dayyat, Abdulmajeed
2015-10-01
Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50 Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dosemore » and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V{sub 20} {sub Gy}), heart volume percentage receiving at least 25 Gy (V{sub 25} {sub Gy}). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p < 0.001). The volume of tissue receiving ≥ 105% of the prescription dose was higher in the electron-only (mean = 69.7 ± 56.1 cm{sup 3}) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm{sup 3}) and photon-only beams (mean = 32.2 ± 28.1 cm{sup 3}, p = 0.114). Heart V{sub 25} {sub Gy} was not statistically different among the plans (p = 0.999). Total lung V{sub 20} {sub Gy} was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p < 0.001). As expected, photon-only plans demonstrated the highest target coverage and total lung V{sub 20} {sub Gy}. The superiority of electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots associated with such plans. Combined photon-electron treatment is a feasible technique for supraclavicular nodal irradiation and results in adequate target coverage, acceptable dosimetric hotspot volume, and slightly reduced lung dose.« less
Xie, Fagen; Zheng, Chengyi; Yuh-Jer Shen, Albert; Chen, Wansu
2017-12-01
The left ventricular ejection fraction value is an important prognostic indicator of cardiovascular outcomes including morbidity and mortality and is often used clinically to indicate severity of heart disease. However, it is usually reported in free-text echocardiography reports. We developed and validated a computerized algorithm to extract ejection fraction values from echocardiography reports and applied the algorithm to a large volume of unstructured echocardiography reports between 1995 and 2011 in a large health maintenance organization. A total of 621,856 echocardiography reports with a description of ejection fraction values or systolic functions were identified, of which 70 percent contained numeric ejection fraction values and the rest (30%) were text descriptions explicitly indicating the systolic left ventricular function. The 12.1 percent (16.0% for male and 8.4% for female) of these extracted ejection fraction values are <45 percent. Validation conducted based on a random sample of 200 reports yielded 95.0 percent sensitivity and 96.9 percent positive predictive value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
Therapeutic use of fractionated total body and subtotal body irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeffler, R.K.
1981-05-01
Ninety-one patients were treated using fractionated subtotal body (STBI) or total body irradiation (TBI). These patients had generalized lymphomas, Hodgkin's disease, leukemias, myelomas, seminomas, or oat-cell carcinomas. Subtotal body irradiation is delivered to the entire body, except for the skull and extremities. It was expected that a significantly higher radiation dose could be administered with STBI than with TBI. STBI was given when there was a reasonable likelihood that malignancy did not involve the shielded volumes. A five- to ten-fold increase in tolerance for STBI was demonstrated. Many of these patients have had long-term (up to 17 year--.permanent) remissions. Theremore » is little or no treatment-induced symptomatology, and no sanctuary sites. STBI and TBI are useful therapeutic modalities for many of these malignancies.« less
Iwata, Hiromitsu; Inoue, Mitsuhiro; Shiomi, Hiroya; Murai, Taro; Tatewaki, Koshi; Ohta, Seiji; Okawa, Kohei; Yokota, Naoki; Shibamoto, Yuta
2016-02-01
We investigated the dose uncertainty caused by errors in real-time tracking intensity-modulated radiation therapy (IMRT) using the CyberKnife Synchrony Respiratory Tracking System (SRTS). Twenty lung tumors that had been treated with non-IMRT real-time tracking using CyberKnife SRTS were used for this study. After validating the tracking error in each case, we did 40 IMRT planning using 8 different collimator sizes for the 20 patients. The collimator size was determined for each planning target volume (PTV); smaller ones were one-half, and larger ones three-quarters, of the PTV diameter. The planned dose was 45 Gy in 4 fractions prescribed at 95% volume border of the PTV. Thereafter, the tracking error in each case was substituted into calculation software developed in house and randomly added in the setting of each beam. The IMRT planning incorporating tracking errors was simulated 1000 times, and various dose data on the clinical target volume (CTV) were compared with the original data. The same simulation was carried out by changing the fraction number from 1 to 6 in each IMRT plan. Finally, a total of 240 000 plans were analyzed. With 4 fractions, the change in the CTV maximum and minimum doses was within 3.0% (median) for each collimator. The change in D99 and D95 was within 2.0%. With decreases in the fraction number, the CTV coverage rate and the minimum dose decreased and varied greatly. The accuracy of real-time tracking IMRT delivered in 4 fractions using CyberKnife SRTS was considered to be clinically acceptable. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Bonaccorso, A.; Calvari, S.
2017-10-01
Explosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9 ×109 m3 (first event) to 0.86 ×109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future explosive paroxysmal sequences this new approach might help in monitoring their evolution also to understand when/if they are going to finish. Knowledge of the total gas and pyroclastic fractions erupted during each lava fountain episode would improve our understanding of their processes and eruptive behaviour.
Yang, Xueqin; Xu, Mingfang; Xiong, Yanli; Peng, Bo
2015-01-01
A 75-year-old male was diagnosed with central squamous cell carcinoma of the left lung, who has been given 3-dimensional conformal radiotherapy of total dose with 60 Gy in 30 fractions. Three years later, the tumor relapsed in situ and he received another stereotactic radiotherapy with a total dose of 40 Gy at a margin of planning target volume (PTV) in 10 (5 fractions/week) at 4 Gy/fraction. Gefitinib (250 mg/day) was initiated immediately after radiotherapy. Obstructive atelectasis in the left lung and increased pleural effusion occurred at the fourth month after radiotherapy. As this patient has been detected with deletion in exon 19 of the EGFR gene, gefitinib was continuous administered without interruption. After another 4 months, the atelectasis in the left lung reexpanded significantly. To the best of our knowledge, this is the first report in the literature that EGFR tyrosine kinase inhibitors (EGFR-TKI) reversed the radiation atelectasis of pulmonary in the nonsmall cell lung cancer (NSCLC) patient.
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
NASA Astrophysics Data System (ADS)
Saeedi, Amir Hussein; Akbari, Mohammad; Toghraie, Davood
2018-05-01
In this paper, the nanofluid dynamic viscosity composed of CeO2- Ethylene Glycol is examined within 25-50 °C with 5 °C intervals and at six volume fractions (0.05, 0.1, 0.2, 0.4, 0.8 and 1.2%) experimentally. The nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. We found that at a constant temperature, nanofluid viscosity increases with increases in the volume fraction of the nanoparticles. Also, at a given volume fraction, nanofluid viscosity decreases when temperature is increased. Maximum increase in nanofluid viscosity compared to the base fluid viscosity occurs at 25 °C and volume fraction of 1.2%. It can be inferred that the obtained mathematical relationship is a suitable predicting model for estimating dynamic viscosity of CeO2- Ethylene Glycol (EG) at different volume fractions and temperatures and its results are consistent to laboratory results in the set volume fraction and temperature ranges.
Aerosol optical properties of Western Mediterranean basin from multi-year AERONET data
NASA Astrophysics Data System (ADS)
Benkhalifa, Jamel; Léon, Jean François; Chaabane, Mabrouk
2017-11-01
Aerosol optical properties including the total and coarse mode aerosol extinction optical depth (AODt and AODc respectively), Angstrom exponent (AE), size distribution, single scattering albedo (SSA) were examined using long-term ground-based radiometric measurements at 9 sites in the Western Mediterranean: Oujda, Malaga, Barcelona, Carpentras, Rome Tor Vergata, Ersa, Ispra, Venice and Evora, during the 4-year study period (2010-2013). The South-North gradient in the fraction of AODc represents the signature of the increasing influence of coarse particles on the optical properties at southern stations. This fraction has a daily mean ranging from 48 ± 18% at the southern site Oujda and to 8 ± 8% at Ispra. The low average AE444-870 value (<0.7) at Oujda confirms the major influence of large dust particles. Conversely, the AOD at urban stations are dominated by fine mode particles. The Angstrom Exponent (AE444-870) above 1.5 in Ispra and Venice indicates an atmospheric situation corresponding to the urban pollution controlled by small particles. We have analyzed the intrinsic dust optical properties by selecting the dusty days corresponding to a total optical depth above 0.3 and a fraction of the coarse mode optical depth above 30%. For these cases, the mean AODt during dusty days was shown to be close to 0.4. During dusty days, the coarse mode fraction represents 88% of the total volume at Oudja and above 83% for all other sites. There is a weak variability in the mean coarse mode volume median radius, showing an average of 1.98 ± 0.1. A maximum in the AODc was observed in the summer of 2012, with particular high events on June 27. The forward trajectory starting at Evora on June 27 clearly indicates that all the sites were affected by such dust events in the following days.
NASA Astrophysics Data System (ADS)
Rahimi, Alireza; Sepehr, Mohammad; Lariche, Milad Janghorban; Mesbah, Mohammad; Kasaeipoor, Abbas; Malekshah, Emad Hasani
2018-03-01
The lattice Boltzmann simulation of natural convection in H-shaped cavity filled with nanofluid is performed. The entropy generation analysis and heatline visualization are employed to analyze the considered problem comprehensively. The produced nanofluid is SiO2-TiO2/Water-EG (60:40) hybrid nanofluid, and the thermal conductivity and dynamic viscosity of used nanofluid are measured experimentally. To use the experimental data of thermal conductivity and dynamic viscosity, two sets of correlations based on temperature for six different solid volume fractions of 0.5, 1, 1.5, 2, 2.5 and 3 vol% are derived. The influences of different governing parameters such different aspect ratio, solid volume fractions of nanofluid and Rayleigh numbers on the fluid flow, temperature filed, average/local Nusselt number, total/local entropy generation and heatlines are presented.
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
NASA Astrophysics Data System (ADS)
Nurdin, I.; Johan, M. R.; Ang, B. C.
2018-03-01
Thermal conductivity and kinematic viscosity of maghemite nanofluids were experimentally investigated at a small volume fraction of maghemite nanoparticles and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. Results show that the thermal conductivity of maghemite nanofluids linearly increase with increasing particle volume fraction and temperature, while kinematic viscosity increase with increasing particle volume fraction and decrease with increasing temperature. The highest enhancement of thermal conductivity and kinematic viscosity are 18.84% and 13.66% respectively, at particle volume fraction 0.6% and temperature 35.
Predicting Morphology of Polymers Using Mesotek+
2010-02-01
file is then produced for Mesotek+ to reproduce the phase behavior for an experimental system of poly (styrene-b- isoprene ) in the solvent tetradecane...theoretical code 3a and (b) experimental code 3b. .....6 Figure 3. Results from 40/60 volume styrene-b- isoprene + tetradecane using gnuplot: A...styrene volume fraction, B) isoprene volume fraction, and C) tetradecane volume fraction. The color bar to the right of each plot indicates how the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, Elizabeth L., E-mail: EBossart@med.miami.edu; Stoyanova, Radka; Sandler, Kiri
2016-06-01
Purpose: To compare dosimetric characteristics with multiparametric magnetic resonance imaging–identified imaging tumor volume (gross tumor volume, GTV), prostate clinical target volume and planning target volume, and organs at risk (OARs) for 2 treatment techniques representing 2 arms of an institutional phase 3 randomized trial of hypofractionated external beam image guided highly targeted radiation therapy. Methods and Materials: Group 1 (n=20) patients were treated before the trial inception with the standard dose prescription. Each patient had an additional treatment plan generated per the experimental arm. A total of 40 treatment plans were compared (20 plans for each technique). Group 2 (n=15)more » consists of patients currently accrued to the hypofractionated external beam image guided highly targeted radiation therapy trial. Plans were created as per the treatment arm, with additional plans for 5 of the group 2 experimental arm with a 3-mm expansion in the imaging GTV. Results: For all plans in both patient groups, planning target volume coverage ranged from 95% to 100%; GTV coverage of 89.3 Gy for the experimental treatment plans ranged from 95.2% to 99.8%. For both groups 1 and 2, the percent volumes of rectum/anus and bladder receiving 40 Gy, 65 Gy, and 80 Gy were smaller in the experimental plans than in the standard plans. The percent volume at 1 Gy per fraction and 1.625 Gy per fraction were compared between the standard and the experimental arms, and these were found to be equivalent. Conclusions: The dose per fraction to the OARs can be made equal even when giving a large simultaneous integrated boost to the GTV. The data suggest that a GTV margin may be added without significant dose effects on the OARs.« less
Extraction and Isolation of Antineoplastic Pristimerin from Mortonia greggii (Celastraceae).
Mejia-Manzano, Luis Alberto; Barba-Dávila, Bertha A; Gutierrez-Uribe, Janet A; Escalante-Vázquez, Edgardo J; Serna-Saldivar, Sergio O
2015-11-01
The aim of this research was to identify, extract and isolate pristimerin in leaves, stems and roots of the Mexican plant Mortonia greggii (Celastraceae). The principal objective was to determine the best laboratory experimental conditions for the extraction and isolation of this powerful natural anticancer agent from the root tissue. Six experimental factors in solid-liquid pristimerin extraction were analyzed: solvent systems, number of extractions, ratio of plant weight (g)/solvent volume (mL) used, time of extraction, temperature and agitation. A mathematical model was generated for pristimerin purity and yield. Ethanol, first extraction, 0.5 ratio of plant weight/solvent volume (g/mL), 0.5 h, 200 rpm and 49.7°C were optimal conditions for the extraction of this phytochemical. The degree of purification of pristimerin root extract was studied by size-exclusion chromatography (SEC) using Sephadex LH-20 reaching fractions with purification indexes (PI) greater than 2 and recoveries of 28.3%. When fractions with purification indices higher than 1 and less than 2 were accumulated, the recovery of pristimerin increased by about 73.6%. By combining the optimum extracts and SEC purification protocols, an enriched fraction containing 245.6 mg pristimerin was obtained from 100 g of root bark, representing about 14.4%, w/w, pristimerin from the total solids presented in the fraction.
Brain volume and cognitive function in patients with revascularized coronary artery disease.
Ottens, Thomas H; Hendrikse, Jeroen; Nathoe, Hendrik M; Biessels, Geert Jan; van Dijk, Diederik
2017-03-01
The pathogenesis of cognitive dysfunction in patients with CAD remains unclear. CAD is associated with brain atrophy and specific lesions. Detailed knowledge about the association of brain volume measured with MRI, and cognitive function in patients with CAD is lacking. We therefore investigated brain volume and cognitive function in patients with revascularized coronary artery disease (CAD), and controls without CAD. Brain MRI scans and cognitive tests from patients with CAD were compared with data from control subjects without CAD. Cognitive performance was assessed with the Rey Auditory Verbal Learning (short term memory) and Trailmaking (divided attention) tests. Multivariable regression analysis was used to study associations between CAD, brain volume and cognitive function. A total of 102 patients with CAD and 48 control subjects were included. Level of education and age were comparable between the groups. Compared with controls, patients with CAD had smaller total brain volume (expressed as fraction of intracranial volume) [%ICV, mean (SD), 0.78 (0.03) vs 0.80 (0.02), P=0.001] and larger volume of non-ventricular cerebrospinal fluid [%ICV, median (IQR) 0.19 (0.18 to 0.21) vs 0.18 (0.17 to 0.20), P=0.001]. Patients in the CAD group had poorer cognitive function [mean (SD) Z-score -0.16 (0.72) vs 0.41 (0.69), P<0.01]. Multivariable regression showed that CAD, higher age, lower level of education and greater cerebrospinal fluid volume were independent predictors of poorer cognitive function. CAD patients had a smaller total brain volume and poorer cognitive function than controls. Greater volume of cerebrospinal fluid was an independent predictor of poorer cognitive function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P
1985-06-01
Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)
Effects of wood on debris flow runout in small mountain watersheds.
Stephen T. Lancaster; Shannon K. Hayes
2003-01-01
Debris flows have typically been viewed as two-phase mixtures of sediment and water, but in forested mountain landscapes, wood can represent a sizable fraction of total flow volume. The effects of this third phase on flow behavior are poorly understood. To evaluate whether wood can have a significant effect on debris flow runout in small mountainous watersheds, we used...
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.
Hayashi, Shuji; Yamada, Hirotsugu; Bando, Mika; Saijo, Yoshihito; Nishio, Susumu; Hirata, Yukina; Klein, Allan L; Sata, Masataka
2015-08-01
Left atrial (LA) strain analysis using speckle tracking echocardiography is useful for assessing LA function. However, there is no established procedure for this method. Most investigators have determined the electrocardiographic R-wave peak as the starting point for LA strain analysis. To test our hypothesis that P-wave onset should be used as the starting point, we measured LA strain using 2 different starting points and compared the strain values with the corresponding LA volume indices obtained by three-dimensional (3D) echocardiography. We enrolled 78 subjects (61 ± 17 years, 25 males) with and without various cardiac diseases in this study and assessed global longitudinal LA strain by two-dimensional speckle tracking strain echocardiography using EchoPac software. We used either R-wave peak or P-wave onset as the starting point for determining LA strains during the reservoir (Rres, Pres), conduit (Rcon, Pcon), and booster pump (Rpump, Ppump) phases. We determined the maximum, minimum, and preatrial contraction LA volumes, and calculated the LA total, passive, and active emptying fractions using 3D echocardiography. The correlation between Pres and LA total emptying fraction was better than the correlation between Rres and LA total emptying fraction (r = 0.458 vs. 0.308, P = 0.026). Pcon and Ppump exhibited better correlation with the corresponding 3D echocardiographic parameters than Rcon (r = 0.560 vs. 0.479, P = 0.133) and Rpump (r = 0.577 vs. 0.345, P = 0.003), respectively. LA strain in any phase should be analyzed using P-wave onset as the starting point rather than R-wave peak. © 2014, Wiley Periodicals, Inc.
Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites
NASA Astrophysics Data System (ADS)
Sundar, Udhay
Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second layer at 1000 RPM for 1 minute. The piezoelectric strain coefficients d33 and d31, capacitance and the dielectric constant were measured, and were studied as a function of Aluminum volume fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.T.; Bova, F.J.; Million, R.R.
1994-11-15
To investigate the risk of radiation-induced optic neuropathy according to total radiotherapy dose and fraction size, based on both retrospective and prospectively collected data. Between October 1964 and May 1989, 215 optic nerves in 131 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 21 years). The clinical end point was visual acuity of 20/100 or worse as a result of optic nerve injury. Anterior ischemic optic neuropathy developed in five nerves (at mean and median times of 32 andmore » 30 months, respectively, and a range of 2-4 years). Retrobulbar optic neuropathy developed in 12 nerves (at mean and median times of 47 and 28 months, respectively, and a range of 1-14 years). No injuries were observed in 106 optic nerves that received a total dose of <59 Gy. Among nerves that received doses of {ge} 60 Gy, the dose per fraction was more important than the total dose in producing optic neuropathy. The 15-year actuarial risk of optic compared with 47% when given in fraction sizes {ge}1.9 Gy. The data also suggest an increased risk of optic nerve injury with increasing age. As there is no effective treatment of radiation-induced optic neuropathy, efforts should be directed at its prevention by minimizing the total dose, paying attention to the dose per fraction to the nerve, and using reduced field techniques where appropriate to limit the volume of tissues that receive high-dose irradiation. 32 refs., 5 figs., 5 tabs.« less
Ultrasound evaluation of valsartan therapy for renal cortical perfusion.
Kishimoto, Noriko; Mori, Yasukiyo; Nishiue, Takashi; Nose, Atsuko; Kijima, Yasuaki; Tokoro, Toshiko; Yamahara, Hideki; Okigaki, Mitsuhiko; Kosaki, Atsushi; Iwasaka, Toshiji
2004-05-01
An increase in renal blood flow with a concomitant decrease in filtration fraction at the onset of angiotensin II receptor blocker treatment has been shown to predict a long-term renoprotective effect. However, no studies are available regarding angiotensin receptor blocker-induced changes in renal cortical perfusion observed in the clinical setting. We have recently developed a convenient method of evaluating human renal cortical blood flow with contrast-enhanced harmonic ultrasonography. The goal of this study was to use this method to examine the effect of valsartan, an angiotensin II receptor blocker, on renal cortical perfusion. We performed intermittent second harmonic imaging with venous infusion of a microbubble contrast agent in 7 healthy volunteers. Contrast-enhanced harmonic ultrasonography performed after oral administration of valsartan (80mg) showed a significant increase in microbubble velocity, which correlated well with the increase in total renal blood flow determined by p-aminohippurate clearance (r=0.950, p < 0.001). Although fractional vascular volume was not significantly increased, alterations in renal cortical blood flow calculated by the product of microbubble velocity and fractional volume were also correlated with the change in total renal blood flow (r=0.756, p < 0.05). These results indicate that valsartan increases the renal cortical blood flow in normal kidneys, mainly by increasing blood flow velocity. Contrast-enhanced harmonic ultrasonography is a promising technique for evaluating the precise effect on renal cortical perfusion and optimal dose of valsartan in diseased kidneys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less
Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.
2009-01-01
Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard
2014-04-01
To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.
Simulation of non-Newtonian oil-water core annular flow through return bends
NASA Astrophysics Data System (ADS)
Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei
2018-01-01
The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.
Entropy generation of nanofluid flow in a microchannel heat sink
NASA Astrophysics Data System (ADS)
Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram
2018-06-01
Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning material and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of...
Larsen, Karen B
2017-01-01
Human fetal brain development is a complex process which is vulnerable to disruption at many stages. Although histogenesis is well-documented, only a few studies have quantified cell numbers across normal human fetal brain growth. Due to the present lack of normative data it is difficult to gauge abnormal development. Furthermore, many studies of brain cell numbers have employed biased counting methods, whereas innovations in stereology during the past 20-30 years enable reliable and efficient estimates of cell numbers. However, estimates of cell volumes and densities in fetal brain samples are unreliable due to unpredictable shrinking artifacts, and the fragility of the fetal brain requires particular care in handling and processing. The optical fractionator design offers a direct and robust estimate of total cell numbers in the fetal brain with a minimum of handling of the tissue. Bearing this in mind, we have used the optical fractionator to quantify the growth of total cell numbers as a function of fetal age. We discovered a two-phased development in total cell numbers in the human fetal forebrain consisting of an initial steep rise in total cell numbers between 13 and 20 weeks of gestation, followed by a slower linear phase extending from mid-gestation to 40 weeks of gestation. Furthermore, we have demonstrated a reduced total cell number in the forebrain in fetuses with Down syndome at midgestation and in intrauterine growth-restricted fetuses during the third trimester.
Fractionalized Fermi liquid in a Kondo-Heisenberg model
Tsvelik, A. M.
2016-10-10
The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. Here, I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. The resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations, in agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)]. Furthermore, the system undergoes amore » phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.« less
Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M.; Zahra, Durey N.
2014-01-01
This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920
Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C
2007-06-01
Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.
NASA Astrophysics Data System (ADS)
Ghita, Mihaela; Coffey, Caroline B.; Butterworth, Karl T.; McMahon, Stephen J.; Schettino, Giuseppe; Prise, Kevin M.
2016-01-01
To limit toxicity to normal tissues adjacent to the target tumour volume, radiotherapy is delivered using fractionated regimes whereby the total prescribed dose is given as a series of sequential smaller doses separated by specific time intervals. The impact of fractionation on out-of-field survival and DNA damage responses was determined in AGO-1522 primary human fibroblasts and MCF-7 breast tumour cells using uniform and modulated exposures delivered using a 225 kVp x-ray source. Responses to fractionated schedules (two equal fractions delivered with time intervals from 4 h to 48 h) were compared to those following acute exposures. Cell survival and DNA damage repair measurements indicate that cellular responses to fractionated non-uniform exposures differ from those seen in uniform exposures for the investigated cell lines. Specifically, there is a consistent lack of repair observed in the out-of-field populations during intervals between fractions, confirming the importance of cell signalling to out-of-field responses in a fractionated radiation schedule, and this needs to be confirmed for a wider range of cell lines and conditions.
NASA Astrophysics Data System (ADS)
Dent, Paul; Deng, Bin; Goodisman, Jerry; Peterson, Charles M.; Narsipur, Sriram; Chaiken, J.
2016-04-01
A new device incorporating a new algorithm and measurement process allows simultaneous noninvasive in vivo monitoring of intravascular plasma volume and red blood cell volume. The purely optical technique involves probing fingertip skin with near infrared laser light and collecting the wavelength shifted light, that is, the inelastic emission (IE) which includes the unresolved Raman and fluorescence, and the un-shifted emission, that is, the elastic emission (EE) which includes both the Rayleigh and Mie scattered light. Our excitation and detection geometry is designed so that from these two simultaneous measurements we can calculate two parameters within the single scattering regime using radiation transfer theory, the intravascular plasma volume fraction and the red blood cell volume fraction. Previously calibrated against a gold standard FDA approved device, 2 hour monitoring sessions on three separate occasions over a three week span for a specific, motionless, and mostly sleeping individual produced 3 records containing a total of 5706 paired measurements of hematocrit and plasma volume. The average over the three runs, relative to the initial plasma volume taken as 100%, of the plasma volume±1σ was 97.56+/-0.55 or 0.56%.For the same three runs, the average relative hematocrit (Hct), referenced to an assumed initial value of 28.35 was 29.37+/-0.12 or stable to +/-0.4%.We observe local deterministic circulation effects apparently associated with the pressure applied by the finger probe as well as longer timescale behavior due to normal ebb and flow of internal fluids due to posture changes and tilt table induced gravity gradients.
Sun, Hai-Bo; Jing, Xiao-Shan; Liu, Yu-Zeng; Qi, Ming; Wang, Xin-Kuan; Hai, Yong
2018-06-01
To probe the relationship among cement volume/fraction, imaging features of cement distribution, and pain relief and then to evaluate the optimal volume during percutaneous vertebroplasty. From January 2014 to January 2017, a total of 130 patients eligible for inclusion criteria were enrolled in this prospective cohort study. According to the different degrees of pain relief, cement leakage, and cement distribution, all patients were allocated to 2 groups. Clinical and radiologic characteristics were assessed to identify independent factors influencing pain relief, cement leakage, and cement distribution, including age, sex, fracture age, bone mineral density, operation time, fracture level, fracture type, modified semiquantitative severity grade, intravertebral cleft, cortical disruption in the vertebral wall, endplate disruption, type of nutrient foramen, fractured vertebral body volume, intravertebral cement volume, and volume fraction. A receiver operating characteristic curve was used to analyze the diagnostic value of the cement volume/fraction and then to obtain the optional cut-off value. The preoperative visual analog scale scores in the responders versus nonresponders patient groups were 7.37 ± 0.61 versus 7.87 ± 0.92 and the postoperative VAS scores in the responders versus nonresponders were 2.04 ± 0.61 versus 4.33 ± 0.49 at 1 week. There were no independent factors influencing pain relief. There were 95 (73.08%) patients who experienced cement leakage, and cortical disruption in the vertebral wall and cement fraction percentage were identified as independent risk factors by binary logistic regression analysis (adjusted odds ratio [OR] 2.935, 95% confidence interval [95% CI] 1.214-7.092, P = 0.017); (adjusted OR 1.134, 95% CI 1.026-1.254, P = 0.014). The area under the receiver-operating characteristic curve of volume fraction (VF%) was 0.658 (95% CI 0.549-0.768, P = 0.006 < 0.05). The cut-off value of VF% for cement leakage was 21.545%, with a sensitivity of 69.50% and a specificity of 60.00%. The incidence of favorable cement distribution was 74.62% (97/130), and VF% were identified as independent protective factors (adjusted OR 1.185, 95% CI 1.067-1.317, P = 0.002) The area under the receiver-operating characteristic curve of VF% was 0.686 (95% CI 0.571-0.802, P = 0.001 < 0.05). The cut-off value of VF% to reach a favorable cement distribution was 19.78%, with a sensitivity of 86.60% and a specificity of 51.50%. In osteoporotic vertebral compression fracture with mild/moderate fracture severity at the single thoracolumbar level, the intravertebral cement volume of 4-6 mL could relieve pain rapidly. The optimal VF% was 19.78%, which could achieve satisfactory cement distribution. With the increase of VF%, the incidence of cement leakage would also increase. Copyright © 2018 Elsevier Inc. All rights reserved.
Laser-Induced Incandescence Measurements in Low Gravity
NASA Technical Reports Server (NTRS)
VanderWal, R. L.
1997-01-01
A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.
Impact of Fractionation and Dose in a Multivariate Model for Radiation-Induced Chest Wall Pain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Din, Shaun U.; Williams, Eric L.; Jackson, Andrew
Purpose: To determine the role of patient/tumor characteristics, radiation dose, and fractionation using the linear-quadratic (LQ) model to predict stereotactic body radiation therapy–induced grade ≥2 chest wall pain (CWP2) in a larger series and develop clinically useful constraints for patients treated with different fraction numbers. Methods and Materials: A total of 316 lung tumors in 295 patients were treated with stereotactic body radiation therapy in 3 to 5 fractions to 39 to 60 Gy. Absolute dose–absolute volume chest wall (CW) histograms were acquired. The raw dose-volume histograms (α/β = ∞ Gy) were converted via the LQ model to equivalent doses in 2-Gy fractions (normalizedmore » total dose, NTD) with α/β from 0 to 25 Gy in 0.1-Gy steps. The Cox proportional hazards (CPH) model was used in univariate and multivariate models to identify and assess CWP2 exposed to a given physical and NTD. Results: The median follow-up was 15.4 months, and the median time to development of CWP2 was 7.4 months. On a univariate CPH model, prescription dose, prescription dose per fraction, number of fractions, D83cc, distance of tumor to CW, and body mass index were all statistically significant for the development of CWP2. Linear-quadratic correction improved the CPH model significance over the physical dose. The best-fit α/β was 2.1 Gy, and the physical dose (α/β = ∞ Gy) was outside the upper 95% confidence limit. With α/β = 2.1 Gy, V{sub NTD99Gy} was most significant, with median V{sub NTD99Gy} = 31.5 cm{sup 3} (hazard ratio 3.87, P<.001). Conclusion: There were several predictive factors for the development of CWP2. The LQ-adjusted doses using the best-fit α/β = 2.1 Gy is a better predictor of CWP2 than the physical dose. To aid dosimetrists, we have calculated the physical dose equivalent corresponding to V{sub NTD99Gy} = 31.5 cm{sup 3} for the 3- to 5-fraction groups.« less
Liu, Q; Shao, L Q; Xiang, H F; Zhen, D; Zhao, N; Yang, S G; Zhang, X L; Xu, J
2013-01-01
An ideal material for maxillofacial prostheses has not been found. We created a novel material: silicone elastomer filled with hollow microspheres and characterized its biomechanical properties. Expancel hollow microspheres were mixed with MDX4-4210 silicone elastomer using Q7-9180 silicone fluid as diluent. The volume fractions of microspheres were 0, 5, 15, and 30% v/v (volume ratio to the total volume of MDX4-4210 and microspheres). The microspheres dispersed well in the matrix. The physical properties and biocompatibility of the composites were examined. Shock absorption was the greatest by the 5% v/v composite, and decreased with increasing concentrations of microspheres. The density, thermal conductivity, Shore A hardness, tear and tensile strength decreased with increasing concentrations of microspheres, while elongation at break increased. Importantly, the tear strength of all composites was markedly lower than that of pure silicone elastomer. Cell viability assays indicated that the composite was of good biocompatibility. The composite with a volume fraction of 5% exhibited the optimal properties for use as a maxillofacial prosthesis, though its tear strength was markedly lower than that of silicone elastomer. In conclusion, we developed a novel light and soft material with good flexibility and biocompatibility, which holds a promising prospect for clinical application as maxillofacial prosthesis.
On the Heating of Ions in Noncylindrical Z-Pinches
NASA Astrophysics Data System (ADS)
Svirsky, E. B.
2018-01-01
The method proposed here for analyzing processes in a hot plasma of noncylindrical Z-pinches is based on separation of the group of high-energy ions into a special fraction. Such ions constitute an insignificant fraction ( 10%) of the total volume of the Z-pinch plasma, but these ions contribute the most to the formation of conditions in which the pinch becomes a source of nuclear fusion products and X-ray radiation. The method allows a quite correct approach to obtaining quantitative estimates of the plasma parameters, the nuclear fusion energy yield, and the features of neutron fluxes in experiments with Z-pinches.
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating... coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction... rather than a record of the volume used. (e) A record of the mass fraction of organic HAP for each...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Daniel, E-mail: daniel.pham@petermac.org; Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria; Thompson, Ann
Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimummore » isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.« less
Lateral Migration and Rotational Motion of Elliptic Particles in Planar Poiseuille Flow
NASA Technical Reports Server (NTRS)
Qi, Dewei; Luo, Li-Shi; Aravamuthan, Raja; Strieder, William; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Simulations of elliptic particulate suspensions in the planar Poiseuille flow are performed by using the lattice Boltzmann equation. Effects of the multi-particle on the lateral migration and rotational motion of both neutrally and non-neutrally buoyant elliptic particles are investigated. Low and intermediate total particle volume fraction f(sub a) = 13%, 15%, and 40% are considered in this work.
Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology.
Nilsson, Jan H; Reistad, Nina; Brange, Hannes; Öberg, Carl-Fredrik; Sturesson, Christian
2017-01-01
Liver parenchymal injuries such as steatosis, steatohepatitis, fibrosis, and sinusoidal obstruction syndrome can lead to increased morbidity and liver failure after liver resection. Diffuse reflectance spectroscopy (DRS) is an optical measuring method that is fast, convenient, and established. DRS has previously been used on the liver with an invasive technique consisting of a needle that is inserted into the parenchyma. We developed a DRS system with a hand-held probe that is applied to the liver surface. In this study, we investigated the impact of the liver capsule on DRS measurements and whether liver surface measurements are representative of the whole liver. We also wanted to confirm that we could discriminate between tumor and liver parenchyma by DRS. The instrumentation setup consisted of a light source, a fiber-optic contact probe, and two spectrometers connected to a computer. Patients scheduled for liver resection due to hepatic malignancy were included, and DRS measurements were performed on the excised liver part with and without the liver capsule and alongside a newly cut surface. To estimate the scattering parameters and tissue chromophore volume fractions, including blood, bile, and fat, the measured diffuse reflectance spectra were applied to an analytical model. In total, 960 DRS spectra from the excised liver tissue of 18 patients were analyzed. All factors analyzed regarding tumor versus liver tissue were significantly different. When measuring through the capsule, the blood volume fraction was found to be 8.4 ± 3.5%, the lipid volume fraction was 9.9 ± 4.7%, and the bile volume fraction was 8.2 ± 4.6%. No differences could be found between surface measurements and cross-sectional measurements. In measurements with/without the liver capsule, the differences in volume fraction were 1.63% (0.75-2.77), -0.54% (-2.97 to 0.32), and -0.15% (-1.06 to 1.24) for blood, lipid, and bile, respectively. This study shows that it is possible to manage DRS measurements through the liver capsule and that surface DRS measurements are representative of the whole liver. The results are consistent with data published earlier on the combination of liver chromophores. The results encourage us to proceed with in vivo measurements for further quantification of the liver's composition and assessment of parenchymal damage such as steatosis and fibrosis grade. © 2016 S. Karger AG, Basel.
Gu, Yian; Vorburger, Robert; Scarmeas, Nikolaos; Luchsinger, José A; Manly, Jennifer J; Schupf, Nicole; Mayeux, Richard; Brickman, Adam M
2017-10-01
The aim of this investigation was to determine whether circulating inflammatory biomarkers c-reactive protein (CRP), interleukin-6 (IL6), and alpha 1-antichymotrypsin (ACT) were related to structural brain measures assessed by magnetic resonance imaging (MRI). High-resolution structural MRI was collected on 680 non-demented elderly (mean age 80.1years) participants of a community-based, multiethnic cohort. Approximately three quarters of these participants also had peripheral inflammatory biomarkers (CRP, IL6, and ACT) measured using ELISA. Structural measures including brain volumes and cortical thickness (with both global and regional measures) were derived from MRI scans, and repeated MRI measures were obtained after 4.5years. Mean fractional anisotropy was used as the indicator of white matter integrity assessed with diffusion tensor imaging. We examined the association of inflammatory biomarkers with brain volume, cortical thickness, and white matter integrity using regression models adjusted for age, gender, ethnicity, education, APOE genotype, and intracranial volume. A doubling in CRP (b=-2.48, p=0.002) was associated with a smaller total gray matter volume, equivalent to approximately 1.5years of aging. A doubling in IL6 was associated with smaller total brain volume (b=-14.96, p<0.0001), equivalent to approximately 9years of aging. Higher IL6 was also associated with smaller gray matter (b=-6.52, p=0.002) and white matter volumes (b=-7.47, p=0.004). The volumes of most cortical regions including frontal, occipital, parietal, temporal, as well as subcortical regions including pallidum and thalamus were associated with IL6. In a model additionally adjusted for depression, vascular factors, BMI, and smoking status, the association between IL6 and brain volumes remained, and a doubling in ACT was marginally associated with 0.054 (p=0.001) millimeter thinner mean cortical thickness, equivalent to that of approximately 2.7years of aging. None of the biomarkers was associated with mean fractional anisotropy or longitudinal change of brain volumes and thickness. Among older adults, increased circulating inflammatory biomarkers were associated with smaller brain volume and cortical thickness but not the white matter tract integrity. Our preliminary findings suggest that peripheral inflammatory processes may be involved in the brain atrophy in the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.
Soares, A. F.; Castro e Silva Júnior, O.; Ceneviva, R.; Roselino, J. E.; Zucoloto, S.
1993-01-01
The present study was carried out to investigate the biochemical and morphological changes in the liver after ligation of the hepatic artery (HA) in the presence and in the absence of extrahepatic cholestasis (EHC). The study was conducted on 100 rats divided into four groups of 25 animals each: group 1, sham operation; group 2, hepatic artery ligation (HAL); group 3, bile duct ligation (BDL); and group 4, HAL plus BDL. All animals were sacrificed 7 days after surgery when total bilirubin and fractions, alkaline phosphatase (AP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in serum and on the inner hepatocyte mitochondrial membrane (IHMM); the incidence of necrosis and the volume fractions of vessels, bile ducts and hepatocytes in the liver were also determined. HAL reduces the relative volumes of bile ducts, with no changes in levels of bilirubin and fractions, AP, ALT, AST and IHMM, but HAL associated with EHC reduces duct proliferation and the liver becomes more vulnerable to necrosis. In conclusion, the normal liver depends on HA flow and this dependence is more evident in the presence of EHC. PMID:8398809
Liu, Han; Wu, Qiuwen
2011-01-01
For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can be further reduced by 1–2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such hybrid strategy on the target and organs at risk (OARs). A total of 420 repeated helical computed tomography (HCT) scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass (COM) shift of prostate only and prostate plus SV, were performed for IRP. The intensity modulated radiotherapy (IMRT) was used in the simulation. Criteria on both cumulative dose and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0 mm to 1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRP and 3–4 for IRP in a hypofractionation protocol. A new cumulative index of target volume (CITV) was proposed for the evaluation of adaptive radiotherapy strategies, and it was found that it had the advantages over other indices in evaluating different adaptive radiotherapy strategies. PMID:21772083
Liu, Han; Wu, Qiuwen
2011-08-07
For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed for the evaluation of adaptive radiotherapy strategies, and it was found that it had the advantages over other indices in evaluating different adaptive radiotherapy strategies.
NASA Astrophysics Data System (ADS)
Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing
2018-03-01
Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.
Long-term aging behaviors in a model soft colloidal system.
Li, Qi; Peng, Xiaoguang; McKenna, Gregory B
2017-02-15
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τ α of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
The kinematic and microphysical control of lightning rate, extent, and NOX production
NASA Astrophysics Data System (ADS)
Carey, Lawrence D.; Koshak, William; Peterson, Harold; Mecikalski, Retha M.
2016-07-01
This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX = NO + NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC + cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6 km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC + CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6 km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6 km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, ρ ≥ 0.8) but are less correlated to total flash extent (ρ ≥ 0.6) and total LNOX production (ρ ≥ 0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.
Hoy, W E; Hughson, M D; Zimanyi, M; Samuel, T; Douglas-Denton, R; Holden, L; Mott, S; Bertram, J F
2010-11-01
Glomerular hypertrophy occurs in a number of normal and pathological states. Glomerular volume in kidneys at autopsy is usually indirectly derived from estimates of total glomerular mass and nephron number, and provides only a single value per kidney, with no indication of the range of volumes of glomeruli within the kidney of any given subject. We review findings of the distribution of volumes of different glomeruli within subjects without kidney disease, and their correlations with age, nephron number, birth weight and body mass index (BMI). The study describes findings from autopsy kidneys of selected adult white males from the Southeast USA who had unexpected deaths, and who did not have renal scarring or renal disease. Total glomerular (nephron) number and total glomerular volume were estimated using the disector/fractionator combination, and mean glomerular volume (Vglom) was derived. The volumes of 30 individual glomeruli (IGV) in each subject were determined using the disector/Cavalieri method. IGV values were compared by categories of age, nephron number, birth weight and BMI. There was substantial variation in IGV within subjects. Older age, lower nephron number, lower birth weight and gross obesity were associated with higher mean IGV and with greater IGV heterogeneity. High Vglom and high IGVs were associated with more glomerulosclerosis. However, amongst the generally modest numbers of sclerosed glomeruli, the pattern was uniformly of ischemic collapse of the glomerular tuft. There was no detectable focal segmental glomerular tuft injury. In this series of people without overt renal disease, greater age, nephron deficit, lower birth weight and obesity were marked by glomerular enlargement and greater glomerular volume heterogeneity within individuals.
Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer.
Lei, Weijie; Jia, Jing; Cao, Ruifen; Song, Jing; Hu, Liqin
2017-09-01
The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R 2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R 2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Characteristics of highly cross-linked polyethylene wear debris in vivo
Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.
2014-01-01
Despite the widespread implementation of highly cross-linked polyethylene (HXLPE) liners to reduce the clinical incidence of osteolysis, it is not known if the improved wear resistance will outweigh the inflammatory potential of HXLPE wear debris generated in vivo. Thus, we asked: What are the differences in size, shape, number, and biological activity of polyethylene wear particles obtained from primary total hip arthroplasty revision surgery of conventional polyethylene (CPE) versus remelted or annealed HXLPE liners? Pseudocapsular tissue samples were collected from revision surgery of CPE and HXLPE (annealed and remelted) liners, and digested using nitric acid. The isolated polyethylene wear particles were evaluated using scanning electron microscopy. Tissues from both HXLPE cohorts contained an increased percentage of submicron particles compared to the CPE cohort. However, the total number of particles was lower for both HXLPE cohorts, as a result there was no significant difference in the volume fraction distribution and specific biological activity (SBA; the relative biological activity per unit volume) between cohorts. In contrast, based on the decreased size and number of HXLPE wear debris there was a significant decrease in total particle volume (mm3/g of tissue). Accordingly, when the SBA was normalized by total particle volume (mm3/gm tissue) or by component wear volume rate (mm3/year), functional biological activity of the HXLPE wear debris was significantly decreased compared to the CPE cohort. Indications for this study are that the osteolytic potential of wear debris generated by HXLPE liners in vivo is significantly reduced by improvements in polyethylene wear resistance. PMID:23436587
Lindholm, E E; Aune, E; Frøland, G; Kirkebøen, K A; Otterstad, J E
2014-06-01
The aim of this study was to define pre-operative echocardiographic data and explore if postoperative indices of cardiac function after open abdominal aortic surgery were affected by the anaesthetic regimen. We hypothesised that volatile anaesthesia would improve indices of cardiac function compared with total intravenous anaesthesia. Transthoracic echocardiography was performed pre-operatively in 78 patients randomly assigned to volatile anaesthesia and 76 to total intravenous anaesthesia, and compared with postoperative data. Pre-operatively, 16 patients (10%) had left ventricular ejection fraction < 46%. In 138 patients with normal left ventricular ejection fraction, 5/8 (62%) with left ventricular dilatation and 41/130 (33%) without left ventricular dilatation had evidence of left ventricular diastolic dysfunction (p < 0.001). Compared with pre-operative findings, significant increases in left ventricular end-diastolic volume, left atrial maximal volume, cardiac output, velocity of early mitral flow and early myocardial relaxation occurred postoperatively (all p < 0.001). The ratio of the velocity of early mitral flow to early myocardial relaxation remained unchanged. There were no significant differences in postoperative echocardiographic findings between patients anaesthetised with volatile anaesthesia or total intravenous anaesthesia. Patients had an iatrogenic surplus of approximately 4.1 l of fluid volume by the first postoperative day. N-terminal prohormone of brain natriuretic peptide increased on the first postoperative day (p < 0.001) and remained elevated after 30 days (p < 0.001) in both groups. Although postoperative echocardiographic alterations were most likely to be related to increased preload due to a substantial iatrogenic surplus of fluid, a component of peri-operative myocardial ischaemia cannot be excluded. Our hypothesis that volatile anaesthesia improved indices of cardiac function compared with total intravenous anaesthesia could not be verified. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Lung Size and the Risk of Radiation Pneumonitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briere, Tina Marie, E-mail: tmbriere@mdanderson.org; Krafft, Shane; Liao, Zhongxing
2016-02-01
Purpose: The purpose of this study was to identify patient populations treated for non-small cell lung cancer (NSCLC) who may be more at risk of radiation pneumonitis. Methods and Materials: A total of 579 patients receiving fractionated 3D conformal or intensity modulated radiation therapy (IMRT) for NSCLC were included in the study. Statistical analysis was performed to search for cohorts of patients with higher incidences of radiation pneumonitis. In addition to conventional risk factors, total and spared lung volumes were analyzed. The Lyman-Kutcher-Burman (LKB) and cure models were then used to fit the incidence of radiation pneumonitis as a functionmore » of lung dose and other factors. Results: Total lung volumes with a sparing of less than 1854 cc at 40 Gy were associated with a significantly higher incidence of radiation pneumonitis at 6 months (38% vs 12% for patients with larger volumes, P<.001). This patient cohort was overwhelmingly female and represented 22% of the total female population of patients and nearly 30% of the cases of radiation pneumonitis. An LKB fit to normal tissue complication probability (NTCP) including volume as a dose modifying factor resulted in a dose that results in a 50% probability of complication for the smaller spared volume cohort that was 9 Gy lower than the fit to all mean lung dose data and improved the ability to predict radiation pneumonitis (P<.001). Using an effective dose parameter of n=0.42 instead of mean lung dose further improved the LKB fit. Fits to the data using the cure model produced similar results. Conclusions: Spared lung volume should be considered when treating NSCLC patients. Separate dose constraints based on smaller spared lung volume should be considered. Smaller spared lung volume patients should be followed closely for signs of radiation pneumonitis.« less
A Detailed Dosimetric Analysis of Spinal Cord Tolerance in High-Dose Spine Radiosurgery.
Katsoulakis, Evangelia; Jackson, Andrew; Cox, Brett; Lovelock, Michael; Yamada, Yoshiya
2017-11-01
Dose-volume tolerance of the spinal cord (SC) in spinal stereotactic radiosurgery (SRS) is difficult to define because radiation myelitis rates are low, and published reports document cases of myelopathy but do not account for the total number of patients treated at given dose-volume combinations who do not have myelitis. This study reports SC toxicity from single-fraction spinal SRS and presents a comprehensive atlas of the incidence of adverse events to examine dose-volume predictors. A prospective database of all patients undergoing single-fraction spinal SRS at our institution between 2004 and 2011 was reviewed. SC toxicity was defined by clinical myelitis with accompanying magnetic resonance imaging (MRI) signal changes that were not attributable to tumor progression. Dose-volume histogram (DVH) atlases were created for these endpoints. Rates of adverse events with 95% confidence limits and probabilities that rates of adverse events were <2% and <5% for myelitis were determined as functions of dose and absolute volume. Information about DVH and myelitis was available for 228 patients treated at 259 sites. The median follow-up time was 14.6 months (range, 0.1-138.3 months). The median prescribed dose to the planning treatment volume was 24 Gy (range, 18-24 Gy). There were 2 cases of radiation myelitis (rate r=0.7%) with accompanying MRI signal changes. Myelitis occurred in 2 patients, with Dmax >13.33 Gy, and minimum doses to the hottest 0.1, 0.2, 0.5, and 1 cc were >10.66, 10.9, and 8 Gy, respectively; however, both myelitis cases occurred below the 34th percentile for Dmax and there were 194 DVHs in total with Dmax >13.33 Gy. A median SC Dmax of 13.85 Gy is safe and supports that a Dmax limit of 14 Gy carries a low <1% rate of myelopathy. No dose-volume thresholds or relationships between SC dose and myelitis were apparent. This is the largest study examining dosimetric data and radiation-induced myelitis in de novo spine SRS. Copyright © 2017 Elsevier Inc. All rights reserved.
2016-07-01
Predicted variation in (a) hot-spot number density , (b) hot-spot volume fraction, and (c) hot-spot specific surface area for each ensemble with piston speed...packing density , characterized by its effective solid volume fraction φs,0, affects hot-spot statistics for pressure dominated waves corresponding to...distribution in solid volume fraction within each ensemble was nearly Gaussian, and its standard deviation decreased with increasing density . Analysis of
Lamb Wave Assessment of Fiber Volume Fraction in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
Lee, Sang Ho; Hayano, Koichi; Zhu, Andrew X.; Sahani, Dushyant V.; Yoshida, Hiroyuki
2015-01-01
Background To find prognostic biomarkers in pretreatment dynamic contrast-enhanced MRI (DCE-MRI) water-exchange-modified (WX) kinetic parameters for advanced hepatocellular carcinoma (HCC) treated with antiangiogenic monotherapy. Methods Twenty patients with advanced HCC underwent DCE-MRI and were subsequently treated with sunitinib. Pretreatment DCE-MRI data on advanced HCC were analyzed using five different WX kinetic models: the Tofts-Kety (WX-TK), extended TK (WX-ETK), two compartment exchange, adiabatic approximation to tissue homogeneity (WX-AATH), and distributed parameter (WX-DP) models. The total hepatic blood flow, arterial flow fraction (γ), arterial blood flow (BF A), portal blood flow, blood volume, mean transit time, permeability-surface area product, fractional interstitial volume (v I), extraction fraction, mean intracellular water molecule lifetime (τ C), and fractional intracellular volume (v C) were calculated. After receiver operating characteristic analysis with leave-one-out cross-validation, individual parameters for each model were assessed in terms of 1-year-survival (1YS) discrimination using Kaplan-Meier analysis, and association with overall survival (OS) using univariate Cox regression analysis with permutation testing. Results The WX-TK-model-derived γ (P = 0.022) and v I (P = 0.010), and WX-ETK-model-derived τ C (P = 0.023) and v C (P = 0.042) were statistically significant prognostic biomarkers for 1YS. Increase in the WX-DP-model-derived BF A (P = 0.025) and decrease in the WX-TK, WX-ETK, WX-AATH, and WX-DP-model-derived v C (P = 0.034, P = 0.038, P = 0.028, P = 0.041, respectively) were significantly associated with an increase in OS. Conclusions The WX-ETK-model-derived v C was an effective prognostic biomarker for advanced HCC treated with sunitinib. PMID:26366997
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
Davies, B E; Boon, R; Horton, R; Reubi, F C; Descoeudres, C E
1988-01-01
1. Serum concentrations of amoxycillin and clavulanic acid were measured in patients with end-stage renal disease (ESRD) following intravenous administration of 1.2 g Augmentin. Augmentin was administered on a non-dialysis day and 2 h prior to a 4 h dialysis session. 2. The mean values of total serum clearance, mean residence time, volume of distribution at steady state, and terminal half-life for amoxycillin on the non-dialysis day were 14.4 ml min-1, 19.2 h, 14.9 l and 13.6 h, respectively. 3. The mean values of dialysis clearance, total serum clearance during dialysis, fractional drug removal during haemodialysis and half-life during dialysis for amoxycillin were 77.1 ml min-1, 91.5 ml min-1, 0.64 and 2.30 h, respectively. 4. The mean values of total serum clearance, mean residence time, volume of distribution at steady state, and terminal half-life for clavulanic acid on the non-dialysis day were 43.6 ml min-1, 4.4 h, 11.0 l and 3.05 h, respectively. 5. The mean values of dialysis clearance, total serum clearance during dialysis, fractional drug removal during haemodialysis and half-life during dialysis for clavulanic acid were 92.8 ml min-1, 136 ml min-1, 0.65 and 1.19 h, respectively. 6. The total serum clearance on the non-dialysis day, which represents non-renal clearance, was lower than that in normal subjects for both amoxycillin and clavulanic acid. These data would suggest some degree of hepatic impairment in patients with ESRD.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3190988
Greenfield, Thomas K.; Nayak, Madhabika B.; Bond, Jason; Patel, Vikram; Trocki, Karen; Pillai, Aravind
2010-01-01
Assessment of heavy drinking patterns is vital for HIV/AIDs studies in India and developing countries. A population survey in northern Goa included urban and rural male drinkers (n = 743) who completed a new Fractional Graduated Frequencies (F-GF) alcohol patterns measure assessing 7 beverage types and drink sizes for the largest daily amount, then drinking frequencies at fractional amounts. The new measure was compared to a simpler quantity-frequency (QF) summary and in a validity subsample of hazardous drinkers (n=56), 28-day diaries of drinking events. Approximately 56% of total volume came from peak drinking (averaging 60 g ethanol/day). For AUDIT-based Hazardous Drinkers, QF and F-GF volumes (drinks/day) were not significantly different from diary volume (correlations .65 and .57, respectively). F-GF well captured the profile of daily amounts in drinking event data. In addition, the F-GF showed evidence of better predicting any sexual risk behavior or partner violence perpetration than the QF measure. Summary drinking pattern measures, especially the new F-GF, are more cost efficient than intensive event records, and appear valid when carefully assessing quantities with local beverage types and drink ethanol content. PMID:20567894
Postmastectomy radiotherapy with integrated scar boost using helical tomotherapy.
Rong, Yi; Yadav, Poonam; Welsh, James S; Fahner, Tasha; Paliwal, Bhudatt
2012-01-01
The purpose of this study was to evaluate helical tomotherapy dosimetry in postmastectomy patients undergoing treatment for chest wall and positive nodal regions with simultaneous integrated boost (SIB) in the scar region using strip bolus. Six postmastectomy patients were scanned with a 5-mm-thick strip bolus covering the scar planning target volume (PTV) plus 2-cm margin. For all 6 cases, the chest wall received a total cumulative dose of 49.3-50.4 Gy with daily fraction size of 1.7-2.0 Gy. Total dose to the scar PTV was prescribed to 58.0-60.2 Gy at 2.0-2.5 Gy per fraction. The supraclavicular PTV and mammary nodal PTV received 1.7-1.9 dose per fraction. Two plans (with and without bolus) were generated for all 6 cases. To generate no-bolus plans, strip bolus was contoured and overrode to air density before planning. The setup reproducibility and delivered dose accuracy were evaluated for all 6 cases. Dose-volume histograms were used to evaluate dose-volume coverage of targets and critical structures. We observed reduced air cavities with the strip bolus setup compared with what we normally see with the full bolus. The thermoluminescence dosimeters (TLD) in vivo dosimetry confirmed accurate dose delivery beneath the bolus. The verification plans performed on the first day megavoltage computed tomography (MVCT) image verified that the daily setup and overall dose delivery was within 2% accuracy compared with the planned dose. The hotspot of the scar PTV in no-bolus plans was 111.4% of the prescribed dose averaged over 6 cases compared with 106.6% with strip bolus. With a strip bolus only covering the postmastectomy scar region, we observed increased dose uniformity to the scar PTV, higher setup reproducibility, and accurate dose delivered beneath the bolus. This study demonstrates the feasibility of using a strip bolus over the scar using tomotherapy for SIB dosimetry in postmastectomy treatments. Published by Elsevier Inc.
Postmastectomy radiotherapy with integrated scar boost using helical tomotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong Yi, E-mail: rong@humonc.wisc.edu; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI; Yadav, Poonam
2012-10-01
The purpose of this study was to evaluate helical tomotherapy dosimetry in postmastectomy patients undergoing treatment for chest wall and positive nodal regions with simultaneous integrated boost (SIB) in the scar region using strip bolus. Six postmastectomy patients were scanned with a 5-mm-thick strip bolus covering the scar planning target volume (PTV) plus 2-cm margin. For all 6 cases, the chest wall received a total cumulative dose of 49.3-50.4 Gy with daily fraction size of 1.7-2.0 Gy. Total dose to the scar PTV was prescribed to 58.0-60.2 Gy at 2.0-2.5 Gy per fraction. The supraclavicular PTV and mammary nodal PTVmore » received 1.7-1.9 dose per fraction. Two plans (with and without bolus) were generated for all 6 cases. To generate no-bolus plans, strip bolus was contoured and overrode to air density before planning. The setup reproducibility and delivered dose accuracy were evaluated for all 6 cases. Dose-volume histograms were used to evaluate dose-volume coverage of targets and critical structures. We observed reduced air cavities with the strip bolus setup compared with what we normally see with the full bolus. The thermoluminescence dosimeters (TLD) in vivo dosimetry confirmed accurate dose delivery beneath the bolus. The verification plans performed on the first day megavoltage computed tomography (MVCT) image verified that the daily setup and overall dose delivery was within 2% accuracy compared with the planned dose. The hotspot of the scar PTV in no-bolus plans was 111.4% of the prescribed dose averaged over 6 cases compared with 106.6% with strip bolus. With a strip bolus only covering the postmastectomy scar region, we observed increased dose uniformity to the scar PTV, higher setup reproducibility, and accurate dose delivered beneath the bolus. This study demonstrates the feasibility of using a strip bolus over the scar using tomotherapy for SIB dosimetry in postmastectomy treatments.« less
Analysis of Prostate Patient Setup and Tracking Data: Potential Intervention Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Zhong, E-mail: zsu@floridaproton.org; Zhang Lisha; Murphy, Martin
Purpose: To evaluate the setup, interfraction, and intrafraction organ motion error distributions and simulate intrafraction intervention strategies for prostate radiotherapy. Methods and Materials: A total of 17 patients underwent treatment setup and were monitored using the Calypso system during radiotherapy. On average, the prostate tracking measurements were performed for 8 min/fraction for 28 fractions for each patient. For both patient couch shift data and intrafraction organ motion data, the systematic and random errors were obtained from the patient population. The planning target volume margins were calculated using the van Herk formula. Two intervention strategies were simulated using the tracking data:more » the deviation threshold and period. The related planning target volume margins, time costs, and prostate position 'fluctuation' were presented. Results: The required treatment margin for the left-right, superoinferior, and anteroposterior axes was 8.4, 10.8, and 14.7 mm for skin mark-only setup and 1.3, 2.3, and 2.8 mm using the on-line setup correction, respectively. Prostate motion significantly correlated among the superoinferior and anteroposterior directions. Of the 17 patients, 14 had prostate motion within 5 mm of the initial setup position for {>=}91.6% of the total tracking time. The treatment margin decreased to 1.1, 1.8, and 2.3 mm with a 3-mm threshold correction and to 0.5, 1.0, and 1.5 mm with an every-2-min correction in the left-right, superoinferior, and anteroposterior directions, respectively. The periodic corrections significantly increase the treatment time and increased the number of instances when the setup correction was made during transient excursions. Conclusions: The residual systematic and random error due to intrafraction prostate motion is small after on-line setup correction. Threshold-based and time-based intervention strategies both reduced the planning target volume margins. The time-based strategies increased the treatment time and the in-fraction position fluctuation.« less
NASA Astrophysics Data System (ADS)
Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel
2017-06-01
In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Gomez, Daniel R.; Tucker, Susan L.; Martel, Mary K.; Mohan, Radhe; Balter, Peter A.; Guerra, Jose Luis Lopez; Liu, Hongmei; Komaki, Ritsuko; Cox, James D.; Liao, Zhongxing
2014-01-01
Introduction We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional (3D) conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade ≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results Overall, 652 patients were included: 405 treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade ≥3 RE were 8%, 28%, and 6%, with a median time to onset of 42 days (range 11–93 days). A fit of the fractional-DVH LKB model demonstrated that the volume parameter n was significantly different (p=0.046) than 1, indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (p=0.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (p=0.105). Conclusions The fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. PMID:22920974
Predicting equilibrium uranium isotope fractionation in crystals and solution
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2015-12-01
Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22+-bearing) structures will tend to have higher 238U/235U than uranate-type structures that lack strong U=O bonds. References: 1. Bigeleisen (1996) JACS 118:3676; 2. Schauble (2006) Eos 87:V21B-0570; 3. Abe et al. (2008) J Chem Phys 128:144309, 129:164309, & Abe et al. (2010) J Chem Phys 133:044309; 4. Schauble (2013) PNAS 110:17714.
Self-activation of biochar from furfural residues by recycled pyrolysis gas.
Yin, Yulei; Gao, Yuan; Li, Aimin
2018-04-17
Biochar samples with controllable specific surface area and mesopore ratio were self-activated from furfural residues by recycled pyrolysis gas. The objective of this study was to develop a new cyclic utilization method for the gas produced by pyrolysis. The influences of preparation parameters on the resulting biochar were studied by varying the pyrolysis-gas flow rate, activation time and temperature. Structural characterization of the produced biochar was performed by analysis of nitrogen adsorption isotherms at 77 K and scanning electron microscope (SEM). The pyrolysis gas compositions before and after activation were determined by a gas chromatograph. The results indicated that the surface area of the biochar was increased from 167 m 2 /g to 567 m 2 /g, the total pore volume increased from 0.121 cm 3 /g to 0.380 cm 3 /g, and the ratio of the mesopore pore volume to the total pore volume increased 17-39.7%. The CO volume fraction of the pyrolysis gas changed from 34.66 to 62.29% and the CO 2 volume fraction decreased from 48.26% to 12.17% under different conditions of pyrolysis-gas flow rate, activation time and temperature. The calorific values of pyrolysis gas changed from 8.82 J/cm 3 to 14.00 J/cm 3 , which were higher than those of conventional pyrolysis gases. The slower pyrolysis-gas flow rate and higher activation time increased the efficiency of the reaction between carbon and pyrolysis gas. These results demonstrated the feasibility of treatment of the furfural residues to produce microporous and mesoporous biochar. The pyrolysis gas that results from the activation process could be used as fuel. Overall, this new self-activation method meets the development requirements of cyclic economy and cleaner production. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Park, Jongbin; Han, Jeongho; Lee, Seung-Joon; Yi, Kyoungdon; Kwon, Chelwoong; Lee, Young-Kook
2016-08-01
The objective of the present study was to investigate the inhomogeneity of microstructure and damping capacity of a FC25 disc-brake rotor made of gray cast iron (GCI) and their interrelationship. The rotor had inhomogeneous microstructure due to different cooling rates caused by the position of inlets in a mold during casting. The volume fraction and size of graphite decreased with increasing cooling rate. A maximum deviation of the volume fraction of graphite within the rotor was approximately 2 pct, whereas that of the total perimeter of graphite per unit area was approximately 33 pct. Damping capacities measured at the first vibrational mode of both the real rotor and cantilever specimens, which were taken from four different regions within the rotor, depended on the location within the rotor. This result indicates that the damping capacity of the rotor is influenced by the inhomogeneous microstructure; particularly, the damping capacity was proportional to the total perimeter of graphite per unit area. Therefore, it was concluded that the damping of the GCI rotor used in the present study occurs primarily by the viscous or plastic flow at the interphase boundaries between the pearlite matrix and graphite particles at least at the frequencies of below 1140 Hz.
Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies
Singh, Saurabh; Junghans, Ann; Watkins, Erik; ...
2015-02-17
The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For themore » highest shear rate applied (ca. 6800 s –1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin
2018-01-01
This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (
Jwo, Ching-Song; Chang, Ho; Teng, Tun-Ping; Kao, Mu-Jnug; Guo, Yu-Ting
2007-06-01
By using copper oxide nanofluid fabricated by the self-made Submerged Arc Nanofluid Synthesis System (SANSS), this paper measures the thermal conductivity under different volume fractions and different temperatures by thermal properties analyzer, and analyzes the correlation among the thermal conductivity, volume fraction, and temperature of nanofluid. The CuO nanoparticles used in the experiment are needle-like, with a mean particle size of about 30 nm. They can be stably suspended in deionized water for a long time. The experimental results show that under the condition that the temperature is 40 degrees C, when the volume fraction of nanofluid increases from 0.2% to 0.8%, the thermal conductivity increment of the prepared nanofluid towards deionized water can be increased from 14.7% to 38.2%. Under the condition that the volume fraction is 0.8%, as the temperature of nanofluid rises from 5 degrees C to 40 degrees C, the thermal conductivity increment of the prepared nanofluid towards deionized water increases from 5.9% to 38.2%. Besides, the effects of temperature change are greater than the effects of volume fraction on the thermal conductivity of nanofluid. Therefore, when the self-made copper oxide nanofluid is applied to the heat exchange device under medium and high temperature, an optimal radiation effect can be acquired.
Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Lin, Ching-Long
2014-09-15
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. Copyright © 2014 the American Physiological Society.
Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Castro, Mario
2014-01-01
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. PMID:25103972
True Anemia-Red Blood Cell Volume Deficit-in Heart Failure: A Systematic Review.
Montero, David; Lundby, Carsten; Ruschitzka, Frank; Flammer, Andreas J
2017-05-01
Anemia in heart failure (HF) is commonly diagnosed according to hemoglobin concentration [Hb], hence may be the result of hemodilution or true red blood cell volume (RBCV) deficit. Whether true (nonhemodilutional) anemia in HF can or cannot be generally inferred by [Hb] measurements and clinical correlates remains unclear. The purpose of this study was to systematically review the literature and investigate the status and correlates of RBCV in patients with HF. MEDLINE, Scopus, and Web of Science were searched since their inceptions until April 2016 for articles directly reporting or allowing the calculation of intravascular volumes (RBCV, plasma volume) in patients with HF according to the International Council for Standardization in Hematology. Eighteen studies were included after systematic review, comprising a total of 368 patients with HF (limits for mean age=49-80 years, sex=0%-92% females, left ventricular ejection fraction=26%-61%). Mean RBCV was reduced (limits=67%-88% of normal) in all studies including HF patients with anemia (low [Hb]) (7 studies, n=127), whereas only 2 of 10 studies in nonanemic patients with HF presented lower than normal mean RBCV (90% and 96%). In metaregression analyses, RBCV was positively associated with [Hb] ( B =6.10, SE=1.44) and negatively associated with age ( B =-1.14, SE=0.23), % females ( B =-0.38, SE=0.04), left ventricular ejection fraction ( B =-0.81, SE=0.20), and body mass index ( B =-3.55, SE=0.46; P <0.001). Presence or absence of true anemia in patients with HF as determined by RBCV status mainly concurs with diagnosis based on [Hb] and presents negative relationships with age, female sex, left ventricular ejection fraction, and body mass index. © 2017 American Heart Association, Inc.
Le Bihan, David C S; Della Togna, Dorival Julio; Barretto, Rodrigo B M; Assef, Jorge Eduardo; Machado, Lúcia Romero; Ramos, Auristela Isabel de Oliveira; Abdulmassih Neto, Camilo; Moisés, Valdir Ambrosio; Sousa, Amanda G M R; Campos, Orlando
2015-07-01
Left atrial (LA) dilation is associated with worse prognosis in various clinical situations including chronic mitral regurgitation (MR). Real time three-dimensional echocardiography (3DE) has allowed a better assessment of LA volumes and function. Little is known about LA size and function in early postoperative period in symptomatic patients with chronic organic MR. We aimed to investigate these aspects. By means of 3DE, 43 patients with symptomatic chronic organic MR were prospectively studied before and 30 days after surgery (repair or bioprosthetic valve replacement). Twenty subjects were studied as controls. Maximum (Vol-max), minimum, and preatrial contraction LA volumes were measured and total, passive, and active LA emptying fractions were calculated. Before surgery patients had higher LA volumes (P < 0.001) but smaller LA emptying fractions than controls (P < 0.01). After surgery there was a reduction in all 3 LA volumes and an increase in active atrial emptying fraction (AAEF). Multivariate analysis showed that independent predictors of early postoperative Vol-max reduction were preoperative diastolic blood pressure (coefficient = -0.004; P = 0.02), lateral mitral annular early diastolic velocity (e') (coefficient = 0.023; P = 0.008), and the mean transmitral diastolic gradient increment (coefficient = -0.035; P < 0.001). Furthermore, e' was also independently associated with AAEF increase (odds ratio = 1.66, P = 0.027). Early LA reverse remodeling and functional improvement occur after successful surgery of symptomatic organic MR regardless of surgical technique. Diastolic blood pressure and transmitral mean gradient augmentation are variables negatively related to Vol-max reduction. Besides, e' is positively correlated with both Vol-max reduction and AAEF increase. © 2014, Wiley Periodicals, Inc.
Controlling sludge settleability in the oxidation ditch process.
Hartley, K J
2008-03-01
This paper describes an investigation aimed at developing an operating technique for controlling sludge settleability in the oxidation ditch form of the nitrification denitrification activated sludge process. It was hypothesized that specific sludge volume index (SSVI) is lowest at an optimum process anoxic fraction and increases at higher and lower fractions. Using effluent ammonia:nitrate ratio as a surrogate for anoxic fraction, it was found that a simple empirical model based on a three solids retention time moving average nitrogen ratio was able to replicate the long-term SSVI variations in two independent oxidation ditches at a full-scale plant. Operating data from a second oxidation ditch plant during periods when a prefermenter was on- or off-line showed that SSVI also varies with RBCOD, greater RBCOD giving lower SSVI. It was concluded that best settleability occurs at about the same anoxic fraction as lowest effluent total nitrogen concentration, with an ammonia:nitrate ratio of about 1. An operating rule of thumb is to use dissolved oxygen control to maintain effluent ammonia and nitrate nitrogen concentrations about equal. A third oxidation ditch plant deliberately operated in this manner achieved 15-month median operating values for SSVI of 60mL/g and for effluent ammonia, nitrate and total N, respectively, of 0.2, 0.3 and 2.0mgN/L.
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger
2016-04-01
In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-01-01
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701
Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.
Park, C H; Okos, M R; Wankat, P C
1989-06-05
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.
Local structure of percolating gels at very low volume fractions
NASA Astrophysics Data System (ADS)
Griffiths, Samuel; Turci, Francesco; Royall, C. Patrick
2017-01-01
The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures.
Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.
Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H
2007-05-01
The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.
NASA Technical Reports Server (NTRS)
Shiota, T.; McCarthy, P. M.; White, R. D.; Qin, J. X.; Greenberg, N. L.; Flamm, S. D.; Wong, J.; Thomas, J. D.
1999-01-01
The geometry of the left ventricle in patients with cardiomyopathy is often sub-optimal for 2-dimensional ultrasound when assessing left ventricular (LV) function and localized abnormalities such as a ventricular aneurysm. The aim of this study was to report the initial experience of real-time 3-D echocardiography for evaluating patients with cardiomyopathy. A total of 34 patients were evaluated with the real-time 3D method in the operating room (n = 15) and in the echocardiographic laboratory (n = 19). Thirteen of 28 patients with cardiomyopathy and 6 other subjects with normal LV function were evaluated by both real-time 3-D echocardiography and magnetic resonance imaging (MRI) for obtaining LV volumes and ejection fractions for comparison. There were close relations and agreements for LV volumes (r = 0.98, p <0.0001, mean difference = -15 +/- 81 ml) and ejection fractions (r = 0.97, p <0.0001, mean difference = 0.001 +/- 0.04) between the real-time 3D method and MRI when 3 cardiomyopathy cases with marked LV dilatation (LV end-diastolic volume >450 ml by MRI) were excluded. In these 3 patients, 3D echocardiography significantly underestimated the LV volumes due to difficulties with imaging the entire LV in a 60 degrees x 60 degrees pyramidal volume. The new real-time 3D echocardiography is feasible in patients with cardiomyopathy and may provide a faster and lower cost alternative to MRI for evaluating cardiac function in patients.
Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing
2013-05-01
To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Abdallah A.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96 Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recordedmore » at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was−1.30% per fraction (−1.67% and−0.91% per fraction in≥31 Gy and<31 Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31 Gy mean parotid dose group compared with the<31 Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was−7.4% (range, 0.75% to−17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT.« less
Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro
2015-04-22
Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.
Change in Seroma Volume During Whole-Breast Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rajiv; Spierer, Marnee; Mutyala, Subhakar
2009-09-01
Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) ormore » standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm{sup 3} (SD, 50.5 cm{sup 3}) and 35.6 cm{sup 3} (SD, 24.8 cm{sup 3}), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.« less
Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.
Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang
2016-01-01
The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.
Comparison of PDR brachytherapy and external beam radiation therapy in the case of breast cancer
NASA Astrophysics Data System (ADS)
Teymournia, L.; Berger, D.; Kauer-Dorner, D.; Poljanc, K.; Seitz, W.; Aiginger, H.; Kirisits, C.
2009-04-01
Pulsed dose rate brachytherapy (PDR) was compared to external beam radiation therapy (EBRT) in the case of breast cancer. The benefits were figured out by evaluation of dosimetric parameters and calculating the normal tissue complication probability (NTCP). PDR plans were set up for five randomly chosen left-sided breast cancer patients delivering a total dose of 50.4 Gy to the target (dose rate 0.8 Gy h-1). For EBRT five left-sided breast cancer patients were planned using 3D-conformal tangential photon beams with a prescribed total dose of 50 Gy (2 Gy/fraction) to the total breast volume. For plan ranking and NTCP calculation the physical dose was first converted into the biologically effective dose (BED) and then into the normalized total dose (NTD) using the linear quadratic model with an α/β ratio of 3 Gy. In PDR the relative effectiveness (RE) was calculated for each dose bin of the differential dose volume histogram to get the BED. NTCPs were calculated for the ipsilateral lung and the heart as contoured on CT slices based on the Lyman model and the Kutcher reduction scheme. Dosimetric parameters as Vth (percentage of the total volume exceeding a threshold dose) and Jackson's fdam (fraction of the organ damaged) were also used to figure out the benefits. The comparison of calculated NTCPs in PDR and EBRT showed no difference between these two modalities. All values were below 0.01%. fdam derived from EBRT was always higher (mean value 8.95% versus 1.21% for the lung). The mean V10 and V20 of the lung related to BED were 6.32% and 1.72% for PDR versus 11.72% and 9.59% for EBRT. When using dosimetric parameters as Vth and fdam, PDR was mostly superior to EBRT in respect of sparing normal tissues. NTCP calculation as a single method of modality ranking showed a lack of information, especially when normal tissue was exposed to low radiation doses.
Intra-fraction motion of larynx radiotherapy
NASA Astrophysics Data System (ADS)
Durmus, Ismail Faruk; Tas, Bora
2018-02-01
In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.
Fakhrian, K; Oechsner, M; Kampfer, S; Schuster, T; Molls, M; Geinitz, H
2013-04-01
The goal of this work was to investigate the potential of advanced radiation techniques in dose escalation in the radiotherapy (RT) for the treatment of esophageal carcinoma. A total of 15 locally advanced esophageal cancer (LAEC) patients were selected for the present study. For all 15 patients, we created a 3D conformal RT plan (3D-45) with 45 Gy in fractions of 1.8 Gy to the planning target volume (PTV1), which we usually use to employ in the neoadjuvant treatment of LAEC. Additionally, a 3D boost (as in the primary RT of LAEC) was calculated with 9 Gy in fractions of 1.8 Gy to the boost volume (PTV2) (Dmean) to a total dose of 54 Gy (3D-54 Gy), which we routinely use for the definitive treatment of LAEC. Three plans with a simultaneous integrated boost (SIB) were then calculated for each patient: sliding window intensity-modulated radiotherapy (IMRT-SIB), volumetric modulated arc therapy (VMAT-SIB), and helical tomotherapy (HT-SIB). For the SIB plans, the requirement was that 95 % of the PTV1 receive ≥ 100 % of the prescription dose (45 Gy in fractions of 1.8 Gy, D95) and the PTV2 was dose escalated to 52.5 Gy in fractions of 2.1 Gy (D95). The median PTV2 dose for 3D-45, 3D-54, HT-SIB, VMAT-SIB, and IMRT-SIB was 45, 55, 54, 56, and 55 Gy, respectively. Therefore, the dose to PTV2 in the SIB plans was comparable to the 3D-54 plan. The lung dose in the SIB plans was in the range of the standard 3D-45, which is applied for neoadjuvant radiotherapy. The mean lung dose for the same plans was 13, 15, 12, 12, and 13 Gy, respectively. The V5 lung volumes were 71, 74, 79, 75, and 73 %, respectively. The V20 lung volumes were 20, 25, 16, 18, and 19 %, respectively. New treatment planning techniques enable higher doses to be delivered for neoadjuvant radiotherapy of LAEC without a significant increase in the delivered dose to the organs at risk. Clinical investigations are warranted to study the clinical safety and feasibility of applying higher doses through advanced techniques in the neoadjuvant treatment of LAEC.
NASA Astrophysics Data System (ADS)
Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.
2014-12-01
The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long
2012-01-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749
Modelling duodenum radiotherapy toxicity using cohort dose-volume-histogram data.
Holyoake, Daniel L P; Aznar, Marianne; Mukherjee, Somnath; Partridge, Mike; Hawkins, Maria A
2017-06-01
Gastro-intestinal toxicity is dose-limiting in abdominal radiotherapy and correlated with duodenum dose-volume parameters. We aimed to derive updated NTCP model parameters using published data and prospective radiotherapy quality-assured cohort data. A systematic search identified publications providing duodenum dose-volume histogram (DVH) statistics for clinical studies of conventionally-fractionated radiotherapy. Values for the Lyman-Kutcher-Burman (LKB) NTCP model were derived through sum-squared-error minimisation and using leave-one-out cross-validation. Data were corrected for fraction size and weighted according to patient numbers, and the model refined using individual patient DVH data for two further cohorts from prospective clinical trials. Six studies with published DVH data were utilised, and with individual patient data included outcomes for 531 patients in total (median follow-up 16months). Observed gastro-intestinal toxicity rates ranged from 0% to 14% (median 8%). LKB parameter values for unconstrained fit to published data were: n=0.070, m=0.46, TD 50(1) [Gy]=183.8, while the values for the model incorporating the individual patient data were n=0.193, m=0.51, TD 50(1) [Gy]=299.1. LKB parameters derived using published data are shown to be consistent to those previously obtained using individual patient data, supporting a small volume-effect and dependence on exposure to high threshold dose. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Nar, Gokay; Ergul, Bilal; Aksan, Gokhan; Inci, Sinan
2016-07-01
Ulcerative colitis (UC) is a common inflammatory bowel disease causing systemic inflammation, which may also affect the cardiovascular system, as well as other organ systems. The aim of the current study was to evaluate left atrial (LA) mechanical functions and duration of atrial electromechanical delay (AEMD) with echocardiography in patients with UC. A total of 91 patients, 45 with UC (Group 1) and 46 healthy individuals as control (Group 2) were included in the study. The demographic and laboratory data were recorded, and echocardiographic measurements were taken for all patients. In the evaluation of basal clinical and laboratory findings, no difference was detected between the two groups, except for white blood cell count (WBC) (8.26 ± 2.71 vs. 7.06 ± 1.70, P = 0.013) and high-sensitivity C-reactive protein (Hs-CRP; 3.4 ± 1.7 vs. 1.0 ± 0.8, P < 0.001). The echocardiographic assessment revealed that the diastolic parameters such as E-, E/A-, and E- waves decreased in the UC group when compared to the control group. LA mechanical functions were different between groups, except for left atrial (LA) maximal volume: LA minimum volume (22.2 ± 12.9 vs. 15.3 ± 4.7, P = 0.001), LA volume before atrial systole (29.9 ± 14.2 vs. 24.2 ± 4.9, P = 0.021), LA ejection fraction (27.4 ± 16.5 vs. 38.6 ± 10.1, P < 0.001), LA total emptying volume (17.9 ± 6.9 vs. 21.9 ± 5.9, P = 0.004), LA active emptying fraction (27.4 ± 16.5 vs. 38.6 ± 10.1, P < 0.001), LA active emptying volume (7.7 ± 3.6 vs. 9.4 ± 2.9, P = 0.013), LA passive emptying fraction (26.8 ± 10.2 vs. 33.2 ± 9.2, P = 0.002), and LA passive emptying volume (10.3 ± 4.9 vs. 12.5 ± 4.5, P = 0.029). There was a significant difference between the groups in terms of AEMD durations, except time interval from the onset of the P-wave on the surface ECG to the peak of the late diastolic wave (PA) of the tricuspid valve. The correlation analysis revealed that age and duration of disease were correlated with AEMD. The current study reported that LA volume and mechanical functions degenerated and AEMD increased in patients with UC when compared to the control group. These findings demonstrate that UC may have effects on LA electromechanical functions related to duration of disease. © 2016, Wiley Periodicals, Inc.
Pharmacokinetic evidence for improved ophthalmic drug delivery by reduction of instilled volume.
Patton, T F
1977-07-01
The bioavailability of topically applied pilocarpine nitrate was studied as a function of instilled volume. As the instilled volume decreased, the fraction of dose absorbed increased. The relationship between fraction absorbed and instilled volume was not direct, but appropriate adjustment of instilled volume and concentration should permit substantial dosage reductions without sacrifice of drug concentration in the eye. The implications of these findings from both a therapeutic and toxicity standpoint are discussed.
Matsumura, Noboru; Oguro, Sota; Okuda, Shigeo; Jinzaki, Masahiro; Matsumoto, Morio; Nakamura, Masaya; Nagura, Takeo
2017-10-01
In patients with rotator cuff tears, muscle degeneration is known to be a predictor of irreparable tears and poor outcomes after surgical repair. Fatty infiltration and volume of the whole muscles constituting the rotator cuff were quantitatively assessed using 3-dimensional 2-point Dixon magnetic resonance imaging. Ten shoulders with a partial-thickness tear, 10 shoulders with an isolated supraspinatus tear, and 10 shoulders with a massive tear involving supraspinatus and infraspinatus were compared with 10 control shoulders after matching age and sex. With segmentation of muscle boundaries, the fat fraction value and the volume of the whole rotator cuff muscles were computed. After reliabilities were determined, differences in fat fraction, muscle volume, and fat-free muscle volume were evaluated. Intra-rater and inter-rater reliabilities were regarded as excellent for fat fraction and muscle volume. Tendon rupture adversely increased the fat fraction value of the respective rotator cuff muscle (P < .002). In the massive tear group, muscle volume was significantly decreased in the infraspinatus (P = .035) and increased in the teres minor (P = .039). With subtraction of fat volume, a significant decrease of fat-free volume of the supraspinatus muscle became apparent with a massive tear (P = .003). Three-dimensional measurement could evaluate fatty infiltration and muscular volume with excellent reliabilities. The present study showed that chronic rupture of the tendon adversely increases the fat fraction of the respective muscle and indicates that the residual capacity of the rotator cuff muscles might be overestimated in patients with severe fatty infiltration. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Effect of ethanol on crystallization of the polymorphs of L-histidine
NASA Astrophysics Data System (ADS)
Wantha, Lek; Punmalee, Neeranuch; Sawaddiphol, Vanida; Flood, Adrian E.
2018-05-01
It is known that the antisolvents used for crystallization can affect the crystallization outcome and may promote the crystallization of a specific polymorph. In this study L-histidine (L-his) is used as a model substance, and ethanol was selected to be an antisolvent. The formation of the polymorphs of L-his in antisolvent crystallization as a function of supersaturation, ethanol volume fraction, and temperature was studied. The induction time for the antisolvent crystallization was also measured. The results showed that the induction time decreases with higher supersaturation and ethanol volume fraction, indicating that the nucleation rate of L-his from antisolvent crystallization (where water was used as the solvent and ethanol as the antisolvent) increases with higher supersaturation, as expected, and ethanol fraction. At all temperatures studied, the pure metastable polymorph B of L-his was obtained initially at higher ethanol volume fraction and supersaturation, while a mixture of the polymorphs A and B was obtained at lower ethanol volume fraction and supersaturation.
Effect on the operation properties of DMBR with the addition of GAC
NASA Astrophysics Data System (ADS)
Lin, Jizhi; Zhang, Qian; Hong, Junming
2017-01-01
The membrane bioreactor and dynamic membrane bioreactor were used to examine the effect of granular activated carbon (GAC) on the treatment of synthetic wastewater. After the addition of different volume fractions GAC in the DMBR, the operation parameters, effluent COD, NH4 +-N, NO3 --N, TN concentrations and sludge viscosity of the bioreactor was investigated. The results showed that the addition of GAC could relieve the membrane fouling and improve the removal efficiencies of pollutants in the DMBR. The effluent concentrations of pollutants were linear correlation with the addition of volume fractions of GAC in the bioreactor. The value of R2 of each modulation was almost more than 0.9. The sludge viscosity was almost not affected by the volume fractions of GAC in the bioreactor. The best volume fractions of GAC were 20% in the DMBR.
Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor
2017-02-01
Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Design and Testing of an Active Core for Sandwich Panels
2008-03-01
some degrees of unimorph from the design. In the experiment, the current prototype, which is made of polycarbonate material and Nitinol spring...such as Nitinol , is chosen due to its greater shape memory strain (8.5%), practical fabrication technique, and is relatively in- expansive. 2.2... Nitinol and its volume fractions are 5%, 7.5%, and 10% of the total design domain. The artificial stiffness implemented at the top and bottom right hand
Coroller, Thibaud P; Mak, Raymond H; Lewis, John H; Baldini, Elizabeth H; Chen, Aileen B; Colson, Yolonda L; Hacker, Fred L; Hermann, Gretchen; Kozono, David; Mannarino, Edward; Molodowitch, Christina; Wee, Jon O; Sher, David J; Killoran, Joseph H
2014-01-01
To examine the frequency and potential of dose-volume predictors for chest wall (CW) toxicity (pain and/or rib fracture) for patients receiving lung stereotactic body radiotherapy (SBRT) using treatment planning methods to minimize CW dose and a risk-adapted fractionation scheme. We reviewed data from 72 treatment plans, from 69 lung SBRT patients with at least one year of follow-up or CW toxicity, who were treated at our center between 2010 and 2013. Treatment plans were optimized to reduce CW dose and patients received a risk-adapted fractionation of 18 Gy×3 fractions (54 Gy total) if the CW V30 was less than 30 mL or 10-12 Gy×5 fractions (50-60 Gy total) otherwise. The association between CW toxicity and patient characteristics, treatment parameters and dose metrics, including biologically equivalent dose, were analyzed using logistic regression. With a median follow-up of 20 months, 6 (8.3%) patients developed CW pain including three (4.2%) grade 1, two (2.8%) grade 2 and one (1.4%) grade 3. Five (6.9%) patients developed rib fractures, one of which was symptomatic. No significant associations between CW toxicity and patient and dosimetric variables were identified on univariate nor multivariate analysis. Optimization of treatment plans to reduce CW dose and a risk-adapted fractionation strategy of three or five fractions based on the CW V30 resulted in a low incidence of CW toxicity. Under these conditions, none of the patient characteristics or dose metrics we examined appeared to be predictive of CW pain.
Turbulent forced convection of nanofluids downstream an abrupt expansion
NASA Astrophysics Data System (ADS)
Kimouche, Abdelali; Mataoui, Amina
2018-03-01
Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, ρ_s/ρ_f) ). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, k_s/k_f) ).
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
Sakuta, Juri; Ito, Yoshikazu; Kimura, Yukihiko; Park, Jinho; Tokuuye, Koichi; Ohyashiki, Kazuma
2010-12-01
Cardiac dysfunction due to transfusional iron overload is one of the most critical complications for patients with transfusion-dependent hematological disorders. Clinical parameters such as total red blood cell (RBC) transfusion units and serum ferritin level are usually considered as indicators for initiation of iron chelation therapy. We used MRI-T2*, MRI-R2* values, and left ventricular ejection fraction in 19 adult patients with blood transfusion-dependent hematological disorders without consecutive oral iron chelation therapy, and propose possible formulae of cardiac function using known parameters, such as total RBC transfusion units and serum ferritin levels. We found a positive correlation in all patients between both R2* values (reciprocal values of T2*) and serum ferritin levels (r = 0.81) and also total RBC transfusion volume (r = 0.90), but not when we analyzed subgroups of patients whose T2* values were over 30 ms (0.52). From the formulae of the R2*, we concluded that approximately 50 Japanese units or 2,900 pmol/L ferritin might be the cutoff value indicating possible future cardiac dysfunction.
Planar measurements of soot volume fraction and OH in a JP-8 pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G.
2009-07-15
The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near themore » base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, Vedang, E-mail: vmurthy@actrec.gov.in; Shukla, Pragya; Adurkar, Pranjal
2012-09-01
Purpose: To evaluate whether information from the initial fractions can determine which patients are likely to consistently exceed their planning dose-volume constraints during the course of radiotherapy for prostate cancer. Methods and Materials: Ten patients with high-risk prostate cancer were treated with helical tomotherapy to a dose of 60 Gy in 20 fractions. The prostate, rectum, and bladder were recontoured on their daily megavoltage computed tomography scans and the dose was recalculated. The bladder and rectal volumes (in mL) receiving {>=}100% and {>=}70% of the prescribed dose in each fraction and in the original plans were recorded. A fraction formore » which the difference between planned and delivered was more than 2 mL was considered a volume failure. Similarly if the difference in the planned and delivered maximum dose (D{sub max}) was {>=}1% for the rectum and bladder, the fraction was considered a dose failure. Each patient's first 3 to 5 fractions were analyzed to determine if they correctly identified those patients who would consistently fail (i.e., {>=}20% of fractions) during the course of their radiotherapy. Results: Six parameters were studied; the rectal volume (RV) and bladder volumes (BV) (in mL) received {>=}100% and {>=}70% of the prescribed dose and maximum dose to 2 mL of the rectum and bladder. This was given by RV{sub 100}, RV{sub 70}, BV{sub 100}, BV{sub 70}, RD{sub max}, and BD{sub max}, respectively. When more than 1 of the first 3 fractions exceed the planning constraint as defined, it accurately predicts consistent failures through the course of the treatment. This method is able to correctly identify the consistent failures about 80% (RV{sub 70}, BV{sub 100}, and RV{sub 100}), 90% (BV{sub 70}), and 100% (RD{sub max} and BD{sub max}) of the times. Conclusions: This study demonstrates the feasibility of a method accurately identifying patients who are likely to consistently exceed the planning constraints during the course of their treatment, using information from the first 3 to 5 fractions.« less
Jones, Jeffery I.; Gardner, Michael S.; Schieltz, David M.; Parks, Bryan A.; Toth, Christopher A.; Rees, Jon C.; Andrews, Michael L.; Carter, Kayla; Lehtikoski, Antony K.; McWilliams, Lisa G.; Williamson, Yulanda M.; Bierbaum, Kevin P.; Pirkle, James L.; Barr, John R.
2018-01-01
Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples. PMID:29634782
Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands
NASA Astrophysics Data System (ADS)
Syammach, Sami M.
Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger martensite volume fraction increased the strength of the steel. Strain hardening results showed that increasing the martensite volume fraction increased the strain hardening exponent while bainite decreased the strain hardening behavior. Austenite was found to slightly increase the strain hardening behavior. Hole-expansion tests showed hole expansion ratios ranging from 20 pct to 45 pct. Increasing the bainite volume fraction was found to increase the hole-expansion ratio. Increasing the martensite volume fraction was found to decrease the hole-expansion ratio. Overall, each of the heat treatments resulted in a steel with attractive properties, and the results showed how the microstructure of bainite, martensite, and austenite influences the mechanical properties of this type of steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin
Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of themore » tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.« less
de Almeida, Ana Beatriz Albino; Luiz-Ferreira, Anderson; Cola, Maíra; Di Pietro Magri, Luciana; Batista, Leonia Maria; de Paiva, Joseilson Alves; Trigo, José Roberto; Souza-Brito, Alba R M
2012-04-01
Arctium lappa L. has been used in folk medicine as a diuretic, depurative, and digestive stimulant and in dermatological conditions. The mechanisms involved in the anti-ulcerogenic activity of the sesquiterpene onopordopicrin (ONP)-enriched fraction (termed the ONP fraction), obtained from A. lappa leaves, were studied. The gastroprotective mechanism of the ONP fraction was evaluated in experimental in vivo models in rodents, mimicking this disease in humans. ONP fraction (50 mg/kg, p.o.) significantly inhibited the mucosal injury induced by ethanol/HCl solution (75%), indomethacin/bethanecol (68.9%), and stress (58.3%). When the ONP fraction was investigated in pylorus ligature, it did not induce alteration in the gastric volume but did modify the pH and total acid concentration of gastric juice. ONP fraction significantly increased serum somatostatin levels (82.1±4.1 vs. control group 12.7±4 pmol/L) and decreased serum gastrin levels (62.6±6.04 vs. control group 361.5±8.2 μU/mL). Mucus production was not significantly altered by the ONP fraction. Gastroprotection by the ONP fraction was completely inhibited by N-ethylmaleimide treatment and did not modify the effect in the animals pretreated with l-N(G)-nitroarginine methyl ester. These results suggest an antisecretory mechanism involved with the antiulcerogenic effect of the ONP fraction. However, only endogenous sulfhydryls play an important role in gastroprotection of the ONP fraction.
Preoperative single fraction partial breast radiotherapy for early-stage breast cancer.
Palta, Manisha; Yoo, Sua; Adamson, Justus D; Prosnitz, Leonard R; Horton, Janet K
2012-01-01
Several recent series evaluating external beam accelerated partial breast irradiation (PBI) have reported adverse cosmetic outcomes, possibly related to large volumes of normal tissue receiving near-prescription doses. We hypothesized that delivery of external beam PBI in a single fraction to the preoperative tumor volume would be feasible and result in a decreased dose to the uninvolved breast compared with institutional postoperative PBI historical controls. A total of 17 patients with unifocal Stage T1 breast cancer were identified. Contrast-enhanced subtraction magnetic resonance images were loaded into an Eclipse treatment planning system and used to define the target volumes. A "virtual plan" was created using four photon beams in a noncoplanar beam arrangement and optimized to deliver 15 Gy to the planning target volume. The median breast volume was 1,713 cm(3) (range: 1,014-2,140), and the median clinical target volume was 44 cm(3) (range: 26-73). In all cases, 100% of the prescription dose covered 95% of the clinical target volume. The median conformity index was 0.86 (range: 0.70-1.12). The median percentage of the ipsilateral breast volume receiving 100% and 50% of the prescribed dose was 3.8% (range: 2.2-6.9) and 13.3% (range: 7.5-20.8) compared with 18% (range: 3-42) and 53% (range: 24-65) in the institutional historical controls treated with postoperative external beam PBI (p = .002). The median maximum skin dose was 9 Gy. The median dose to 1 and 10 cm(3) of skin was 6.7 and 4.9 Gy. The doses to the heart and ipsilateral lung were negligible. Preoperative PBI resulted in a substantial reduction in ipsilateral breast tissue dose compared with postoperative PBI. The skin dose appeared reasonable, given the small volumes. A prospective Phase I trial evaluating this technique is ongoing. Copyright © 2012 Elsevier Inc. All rights reserved.
Soriano, Brian D; Hoch, Martin; Ithuralde, Alejandro; Geva, Tal; Powell, Andrew J; Kussman, Barry D; Graham, Dionne A; Tworetzky, Wayne; Marx, Gerald R
2008-04-08
Quantitative assessment of ventricular volumes and mass in pediatric patients with single-ventricle physiology would aid clinical management, but it is difficult to obtain with 2-dimensional echocardiography. The purpose of the present study was to compare matrix-array 3-dimensional echocardiography (3DE) measurements of single-ventricle volumes, mass, and ejection fraction with those measured by cardiac magnetic resonance (CMR) in young patients. Twenty-nine patients (median age, 7 months) with a functional single ventricle undergoing CMR under general anesthesia were prospectively enrolled. The 3DE images were acquired at the conclusion of the CMR. Twenty-seven of 29 3DE data sets (93%) were optimal for 3DE assessment. Two blinded and independent observers performed 3DE measurements of volume, mass, and ejection fraction. The 3DE end-diastolic volume correlated well (r=0.96) but was smaller than CMR by 9% (P<0.01), and 3DE ejection fraction was smaller than CMR by 11% (P<0.01). There was no significant difference in measurements of end-systolic volume and mass. The 3DE interobserver differences for mass and volumes were not significant except for ejection fraction (8% difference; P<0.05). Intraobserver differences were not significant. In young pediatric patients with a functional single ventricle, matrix-array 3DE measurements of mass and volumes compare well with those obtained by CMR. 3DE will provide an important modality for the serial analysis of ventricular size and performance in young patients with functional single ventricles.
Liberto, Erica; Cagliero, Cecilia; Cordero, Chiara; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara
2017-03-17
Recent technological advances in dynamic headspace sampling (D-HS) and the possibility to automate this sampling method have lead to a marked improvement in its the performance, a strong renewal of interest in it, and have extended its fields of application. The introduction of in-parallel and in-series automatic multi-sampling and of new trapping materials, plus the possibility to design an effective sampling process by correctly applying the breakthrough volume theory, have make profiling more representative, and have enhanced selectivity, and flexibility, also offering the possibility of fractionated enrichment in particular for high-volatility compounds. This study deals with fractionated D-HS ability to produce a sample representative of the volatile fraction of solid or liquid matrices. Experiments were carried out on a model equimolar (0.5mM) EtOH/water solution, comprising 16 compounds with different polarities and volatilities, structures ranging from C5 to C15 and vapor pressures from 4.15kPa (2,3-pentandione) to 0.004kPa (t-β-caryophyllene), and on an Arabica roasted coffee powder. Three trapping materials were considered: Tenax TA™ (TX), Polydimethylsiloxane foam (PDMS), and a three-carbon cartridge Carbopack B/Carbopack C/Carbosieve S-III™ (CBS). The influence of several parameters on the design of successful fractionated D-HS sampling. Including the physical and chemical characteristics of analytes and matrix, trapping material, analyte breakthrough, purge gas volumes, and sampling temperature, were investigated. The results show that, by appropriately choosing sampling conditions, fractionated D-HS sampling, based on component volatility, can produce a fast and representative profile of the matrix volatile fraction, with total recoveries comparable to those obtained by full evaporation D-HS for liquid samples, and very high concentration factors for solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Tucker, Susan L.; Martel, Mary K.
2012-11-15
Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results:more » Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.« less
Gomez, Daniel R; Tucker, Susan L; Martel, Mary K; Mohan, Radhe; Balter, Peter A; Lopez Guerra, Jose Luis; Liu, Hongmei; Komaki, Ritsuko; Cox, James D; Liao, Zhongxing
2012-11-15
We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade≥3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. Copyright © 2012 Elsevier Inc. All rights reserved.
2004-04-15
This is an image of a colloidal crystal from the CDOT-2 investigation flown on STS-95. There are so many colloidal particles in this sample that it behaves like a glass. In the laboratory on Earth, the sample remained in an amorphous state, showing no sign of crystal growth. In microgravity the sample crystallized in 3 days, as did the other glassy colloidal samples examined in the CDOT-2 experiment. During the investigation, crystallization occurred in samples that had a volume fraction (number of particles per total volume) larger than the formerly reported glass transition of 0.58. This has great implications for theories of the structural glass transition. These crystals were strong enough to survive space shuttle re-entry and landing.
Zakeri, Rosita; Moulay, Gilles; Chai, Qiang; Ogut, Ozgur; Hussain, Saad; Takahama, Hiroyuki; Lu, Tong; Wang, Xiao-Li; Linke, Wolfgang A.; Lee, Hon-Chi; Redfield, Margaret M.
2016-01-01
Background Left atrial (LA) compliance and contractility influence left ventricular (LV) stroke volume. We hypothesized that diminished LA compliance and contractile function occur early during development of heart failure with preserved ejection fraction (HFpEF) and impair overall cardiac performance. Method and Results Cardiac magnetic resonance imaging, echocardiography, LV and LA pressure-volume studies, and tissue analyses were performed in a model of early HFpEF (elderly dogs, renal wrap-induced hypertension, exogenous aldosterone; n=9) and young control dogs (sham surgery; n=13). Early HFpEF was associated with LA enlargement, cardiomyocyte hypertrophy and enhanced LA contractile function (median active emptying fraction 16% [95% CI 13–24] vs 12[10–14]%, p=0.008; end-systolic pressure-volume relationship slope 2.4[1.9–3.2]mmHg/mL HFpEF vs 1.5[1.2–2.2]mmHg/mL controls, p=0.01). However, atrioventricular coupling was impaired and the curvilinear LA end-reservoir pressure-volume relationship was shifted upward/leftward in HFpEF (LA stiffness constant, βLA, 0.16[0.11–0.18]mmHg/mL vs 0.06[0.04–0.10]mmHg/mL controls, p=0.002) indicating reduced LA compliance. Impaired atrioventricular coupling and lower LA compliance correlated with lower LV stroke volume. Total fibrosis and titin isoform composition were similar between groups, however titin was hyperphosphorylated in HFpEF and correlated with βLA. LA microvascular reactivity was diminished in HFpEF versus controls. LA microvascular density tended to be lower in HFpEF and inversely correlated with βLA. Conclusions In early-stage hypertensive HFpEF, LA cardiomyocyte hypertrophy, titin hyperphosphorylation and microvascular dysfunction occur in association with increased systolic and diastolic LA chamber stiffness, impaired atrioventricular coupling and decreased LV stroke volume. These data indicate that maladaptive LA remodeling occurs early during HFpEF development, supporting a concept of global myocardial remodeling. PMID:27758811
Simultaneous integrated protection : A new concept for high-precision radiation therapy.
Brunner, Thomas B; Nestle, Ursula; Adebahr, Sonja; Gkika, Eleni; Wiehle, Rolf; Baltas, Dimos; Grosu, Anca-Ligia
2016-12-01
Stereotactic radiotherapy near serial organs at risk (OAR) requires special caution. A novel intensity-modulated radiotherapy (IMRT) prescription concept termed simultaneous integrated protection (SIP) for quantifiable and comparable dose prescription to targets very close to OAR is described. An intersection volume of a planning risk volume (PRV) with the total planning target volume (PTV) defined the protection volume (PTV SIP ). The remainder of the PTV represented the dominant PTV (PTV dom ). Planning was performed using IMRT. Dose was prescribed to PTV dom according to ICRU in 3, 5, 8, or 12 fractions. Constraints to OARs were expressed as absolute and as equieffective doses at 2 Gy (EQD2). Dose to the gross risk volume of an OAR was to respect constraints. Violation of constraints to OAR triggered a planning iteration at increased fractionation. Dose to PTV SIP was required to be as high as possible within the constraints to avoid local relapse. SIP was applied in 6 patients with OAR being large airways (n = 2) or bowel (n = 4) in 3, 5, 8, and 12 fractions in 1, 3, 1, and 1 patients, respectively. PTVs were 14.5-84.9 ml and PTV SIP 1.8-3.9 ml (2.9-13.4 % of PTV). Safety of the plans was analyzed from the absolute dose-volume histogram (dose to ml). The steepness of dose fall-off could be determined by comparing the dose constraints to the PRVs with those to the OARs (Wilcoxon test p = 0.001). Constraints were respected for the corresponding OARs. All patients had local control at a median 9 month follow-up and toxicity was low. SIP results in a median dose of ≥100 % to PTV, to achieve high local control and low toxicity. Longer follow-up is required to verify results and a prospective clinical trial is currently testing this new approach in chest and abdomen stereotactic body radiotherapy.
Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J
2013-06-05
Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.
2013-01-01
Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. Conclusions: The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23780545
Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume
2012-12-17
A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-28
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-01
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm). PMID:28772477
Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System
NASA Technical Reports Server (NTRS)
Moskito, John
1996-01-01
This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Laser-induced incandescence calibration via gravimetric sampling
NASA Technical Reports Server (NTRS)
Choi, M. Y.; Vander Wal, R. L.; Zhou, Z.
1996-01-01
Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.
Galus, Sabina; Kadzińska, Justyna
2016-03-01
The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.
Patel, Amit R; Fatemi, Omid; Norton, Patrick T; West, J Jason; Helms, Adam S; Kramer, Christopher M; Ferguson, John D
2008-06-01
Left atrial (LA) volume determines prognosis and response to therapy for atrial fibrillation. Integration of electroanatomic maps with three-dimensional images rendered from computed tomography and magnetic resonance imaging (MRI) is used to facilitate atrial fibrillation ablation. The purpose of this study was to measure LA volume changes and regional motion during the cardiac cycle that might affect the accuracy of image integration and to determine their relationship to standard LA volume measurements. MRI was performed in 30 patients with paroxysmal atrial fibrillation. LA time-volume curves were generated and used to divide LA ejection fraction into pumping ejection fraction and conduit ejection fraction and to determine maximum LA volume (LA(max)) and preatrial contraction volume. LA volume was measured using an MRI angiogram and traditional geometric models from echocardiography (area-length model and ellipsoid model). In-plane displacement of the pulmonary veins, anterior left atrium, mitral annulus, and LA appendage was measured. LA(max) was 107 +/- 36 mL and occurred at 42% +/- 5% of the R-R interval. Preatrial contraction volume was 86 +/- 34 mL and occurred at 81% +/- 4% of the R-R interval. LA ejection fraction was 45% +/- 10%, and pumping ejection fraction was 31% +/- 10%. LA volume measurements made from MRI angiogram, area-length model, and ellipsoid model underestimated LA(max) by 21 +/- 25 mL, 16 +/- 26 mL, and 35 +/- 22 mL, respectively. Anterior LA, mitral annulus, and LA appendage were significantly displaced during the cardiac cycle (8.8 +/- 2.0 mm, 13.2 +/- 3.8 mm, and 10.2 +/- 3.4 mm, respectively); the pulmonary veins were not displaced. LA volume changes significantly during the cardiac cycle, and substantial regional variation in LA motion exists. Standard measurements of LA volume significantly underestimate LA(max) compared to the gold standard measure of three-dimensional volumetrics.
Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A
2016-09-06
Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.
Safaei, M. R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S. N.; Gharehkhani, S.
2014-01-01
This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5–20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities. PMID:25379542
Imai, Haruki; Tanaka, Yoji; Nomura, Naoyuki; Doi, Hisashi; Tsutsumi, Yusuke; Ono, Takashi; Hanawa, Takao
2017-02-01
Zr-Ag composites were fabricated to decrease the magnetic susceptibility by compensating for the magnetic susceptibility of their components. The Zr-Ag composites with a different Zr-Ag ratio were swaged, and their magnetic susceptibility, artifact volume, and mechanical properties were evaluated by magnetic balance, three-dimensional (3-D) artifact rendering, and a tensile test, respectively. These properties were correlated with the volume fraction of Ag using the linear rule of mixture. We successfully obtained the swaged Zr-Ag composites up to the reduction ratio of 96% for Zr-4, 16, 36, 64Ag and 86% for Zr-81Ag. However, the volume fraction of Ag after swaging tended to be lower than that before swaging, especially for Ag-rich Zr-Ag composites. The magnetic susceptibility of the composites linearly decreased with the increasing volume fraction of Ag. No artifact could be estimated with the Ag volume fraction in the range from 93.7% to 95.4% in three conditions. Young's modulus, ultimate tensile strength (UTS), and 0.2% yield strength of Zr-Ag composites showed slightly lower values compared to the estimated values using a linear rule of mixture. The decrease in magnetic susceptibility of Zr and Ag by alloying or combining would contribute to the decrease of the Ag fraction, leading to the improvement of mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X
2015-12-22
The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.
Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K
1995-04-01
The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Ku, Jerry C.
1997-01-01
The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvill, Emma; Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW; Booth, Jeremy T.
2015-08-01
Purpose: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. Methods and Materials: Multileaf collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction (multiple isocenter shift method) to calculate the treated dose (with MLC tracking) and the dose thatmore » would have been delivered had MLC tracking not been applied (without MLC tracking). The percentage difference from planned for target and normal tissue dose-volume points were calculated. The hypothesis was tested for each dose-volume value via analysis of variance using the F test. Results: Of the 513 fractions delivered, 475 (93%) were suitable for analysis. The mean difference and standard deviation between the planned and treated MLC tracking doses and the planned and without-MLC tracking doses for all 475 fractions were, respectively, PTV D{sub 99%} −0.8% ± 1.1% versus −2.1% ± 2.7%; CTV D{sub 99%} −0.6% ± 0.8% versus −0.6% ± 1.1%; rectum V{sub 65%} 1.6% ± 7.9% versus −1.2% ± 18%; and bladder V{sub 65%} 0.5% ± 4.4% versus −0.0% ± 9.2% (P<.001 for all dose-volume results). Conclusion: This study shows that MLC tracking improves the consistency between the planned and delivered doses compared with the modeled doses without MLC tracking. The implications of this finding are potentially improved patient outcomes, as well as more reliable dose-volume data for radiobiological parameter determination.« less
Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang
2016-01-01
To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan
To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR andmore » LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.« less
Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian
2016-03-15
Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being < 1.5 µm, 1.5-8 µm, 8-35 µm, 35-186 µm, 186-516 µm, > 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material, and then affected the volume fraction of particle size's components and the quality of apparent water. Hydrodynamic conditions mainly had a certain influence on the median particle size, and had no effect on the apparent polluted condition of water.
Department of Clinical Investigation Annual Research Progress Report, Fiscal Year 1985. Volume 2,
1985-10-01
Objective(s): To study the feasibility of cytosine arabinoside (ara-C), used in high dosage in conjunction with fractionated total body irradiation... Using High Dose Ara-C 335 in Adult Acute Leukemia and Chronic Granulocytic Leukemia in Blastic Crisis, Phase III. (0) SWOG 8328 Evaluation of...Fludarabine Phosphate in Cervical Cancer, 336 Phase II. (0) SWOG 8360 Use of the Surgically Implanted "Infusaid" Pump for Ambula- 337 tory Ottpatient Hepatic
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-06-01
The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction( v/v%) 0.05.
NASA Astrophysics Data System (ADS)
Martínez-Ratón, Yuri; Velasco, Enrique
2012-10-01
We use a fundamental-measure density functional for hard board-like polydisperse particles, in the restricted-orientation approximation, to explain the phase behaviour of platelet colloidal suspensions studied in recent experiments. In particular, we focus our attention on the behavior of the total packing fraction of the mixture, η, in the region of two-phase isotropic-nematic coexistence as a function of mean aspect ratio, polydispersity, and fraction of total volume γ occupied by the nematic phase. In our model, platelets are polydisperse in the square section, of side length σ, but have constant thickness L (and aspect ratio κ ≡ L/⟨σ⟩ < 1, with ⟨σ⟩ the mean side length). Good agreement between our theory and recent experiments is obtained by mapping the real system onto an effective one, with excluded volume interactions but with thicker particles (due to the presence of long-ranged repulsive interactions between platelets). The effect of polydispersity in both shape and particle size has been taken into account by using a size distribution function with an effective mean-square deviation that depends on both polydispersities. We also show that the bimodality of the size distribution function is required to correctly describe the huge two-phase coexistence gap and the nonlinearity of the function γ(η), two important features that these colloidal suspensions exhibit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-09-01
This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO/sub 2/ sorbent. The test data include: preliminary equipment calibration data, boiler operating data for both tests, fuel analysis results, and complete flue gas emission measurement and laboratory analysis results. Flue gas emission measurements included: continuous monitoring for criteria gas pollutants; gas chromatography (GC) of gas grab samples for volatile organics (C1-C6); EPA Method 5 for particulate;more » controlled condensation system for SO2 emissions; and source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR) and low resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), liquid chromatography (LC) separation of organic extracts into seven polarity fractions with total organic and IR analyses of eluted fractions, flue gas concentrations of trace elements by spark source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS), and biological assays of organic extracts.« less
Standard filtration practices may significantly distort planktonic microbial diversity estimates.
Padilla, Cory C; Ganesh, Sangita; Gantt, Shelby; Huhman, Alex; Parris, Darren J; Sarode, Neha; Stewart, Frank J
2015-01-01
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05-0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Rimner, A; Hayes, S
Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series formore » motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer kinetic modeling is feasible in determining micro-vascular characteristics of MPM. This project was supported from Cycle for Survival and MSK Imaging and radiation science (IMRAS) grants.« less
NASA Astrophysics Data System (ADS)
Mihucz, Victor G.; Tatár, Eniko; Varga, Anita; Záray, Gyula; Cseh, Edit
2001-11-01
Total-reflection X-ray fluorescence (TXRF) spectrometry, reversed-phase (RP) and size-exclusion (SE) high-performance liquid chromatography (HPLC) methods were applied for the characterization of low-volume xylem sap of control and nickel contaminated cucumber plants growing in hydroponics containing urea as the sole nitrogen source. In these saps collected for 1 h, Ca, K, Fe, Mn, Ni, Zn, as well as malic, citric and fumaric acids were determined. The SEC measurements showed that macromolecules were not detectable in the samples. Nickel contamination had minimum impact on the organic acid transport, however, the transport of Zn, K and Fe was reduced by 50, 22 and 11%, respectively. This observation supports the results of our earlier experiments when nitrate ions were used as the sole nitrogen form. At the same time, the fresh root weight and the volume of the collected xylem sap increased by 36 and 85%, respectively. Therefore, nickel addition seemed to decrease the urea toxicity of the plants. By pooling the eluting fractions of the SEC column, which were 10-fold concentrated by freeze-drying, the series of the resulted samples were analyzed by the TXRF spectrometry and RP-HPLC. The three organic acids could be identified in only one of the fractions, which contained Fe and, in the case of the contaminated plants, Ni in detectable concentration. However, considerable parts of these two elements and Mn, as well as practically the total amounts of Cu may be transported by unidentified organic compounds in the xylem.
Bidisperse and polydisperse suspension rheology at large solid fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.
At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study ofmore » bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.« less
Mowlavi, Ali Asghar; Fornasier, Maria Rossa; Mirzaei, Mohammd; Bregant, Paola; de Denaro, Mario
2014-10-01
The beta and gamma absorbed fractions in organs and tissues are the important key factors of radionuclide internal dosimetry based on Medical Internal Radiation Dose (MIRD) approach. The aim of this study is to find suitable analytical functions for beta and gamma absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution of iodine-131 radionuclide. MCNPX code has been used to calculate the energy absorption from beta and gamma rays of iodine-131 uniformly distributed inside different ellipsoids and spheres, and then the absorbed fractions have been evaluated. We have found the fit parameters of a suitable analytical function for the beta absorbed fraction, depending on a generalized radius for ellipsoid based on the radius of sphere, and a linear fit function for the gamma absorbed fraction. The analytical functions that we obtained from fitting process in Monte Carlo data can be used for obtaining the absorbed fractions of iodine-131 beta and gamma rays for any volume of the thyroid lobe. Moreover, our results for the spheres are in good agreement with the results of MIRD and other scientific literatures.
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Ganji, D. D.
2017-12-01
In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.
Visualization of the hot chocolate sound effect by spectrograms
NASA Astrophysics Data System (ADS)
Trávníček, Z.; Fedorchenko, A. I.; Pavelka, M.; Hrubý, J.
2012-12-01
We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time-frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
NASA Astrophysics Data System (ADS)
Gholipour Peyvandi, R.; Islami Rad, S. Z.
2017-12-01
The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.
Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.
Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary
2014-09-02
It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.
Crystallization of sheared hard spheres at 64.5% volume fraction
NASA Astrophysics Data System (ADS)
Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.
2017-11-01
A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.
Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F
2012-06-01
Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P < 0.001). Left atrial function assessed with MSCT and CMR as LA fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.
Pancreas volume and fat fraction in children with Type 1 diabetes.
Regnell, S E; Peterson, P; Trinh, L; Broberg, P; Leander, P; Lernmark, Å; Månsson, S; Elding Larsson, H
2016-10-01
People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P < 0.001). Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset. © 2016 Diabetes UK.
Role of LA Shape in Predicting Embolic Cerebrovascular Events in Mitral Stenosis
Nunes, Maria Carmo P.; Handschumacher, Mark D.; Levine, Robert A.; Barbosa, Marcia M.; Carvalho, Vinicius T.; Esteves, William A.; Zeng, Xin; Guerrero, J. Luis; Zheng, Hui; Tan, Timothy C.; Hung, Judy
2015-01-01
OBJECTIVES This study was designed to assess the role of left atrial (LA) shape in predicting embolic cerebrovascular events (ECE) in patients with mitral stenosis (MS). BACKGROUND Patients with rheumatic MS are at increased risk for ECE. LA remodeling in response to MS involves not only chamber dilation but also changes in the shape. We hypothesized that a more spherical LA shape may be associated with increased embolic events due to predisposition to thrombus formation or to atrial arrhythmias compared with an elliptical-shaped LA of comparable volume. METHODS A total of 212 patients with MS and 20 control subjects were enrolled. LA volume, LA emptying fraction, and cross-sectional area were measured by 3-dimensional (3D) transthoracic echocardiography. LA shape was expressed as the ratio of measured LA end-systolic volume to hypothetical sphere volume ([4/3π r3] where r was obtained from 3D cross-sectional area). The lower the LA shape index, the more spherical the shape. RESULTS A total of 41 patients presented with ECE at the time of enrollment or during follow-up. On multivariate analysis, LA 3D emptying fraction (adjusted odds ratio [OR]: 0.96; 95% confidence interval [CI]: 0.92 to 0.99; p = 0.028) and LA shape index (OR: 0.73; 95% CI: 0.61 to 0.87; p < 0.001) emerged as important factors associated with ECE, after adjustment for age and anticoagulation therapy. In patients in sinus rhythm, LA shape index remained associated with ECE (OR: 0.79; 95% CI: 0.67 to 0.94; p = 0.007), independent of age and LA function. An in vitro phantom atrial model demonstrated more stagnant flow profiles in spherical compared with ellipsoidal chamber. CONCLUSIONS In rheumatic MS patients, differential LA remodeling affects ECE risk. A more spherical LA shape was independently associated with an increased risk for ECE, adding incremental value in predicting events beyond that provided by age and LA function. PMID:24831206
First flush of storm runoff pollution from an urban catchment in China.
Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li
2007-01-01
Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.
Xia, Wei; Yan, Zhuangzhi; Gao, Xin
2017-10-01
To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.
Brown Adipose Tissue Quantification in Human Neonates Using Water-Fat Separated MRI
Rasmussen, Jerod M.; Entringer, Sonja; Nguyen, Annie; van Erp, Theo G. M.; Guijarro, Ana; Oveisi, Fariba; Swanson, James M.; Piomelli, Daniele; Wadhwa, Pathik D.
2013-01-01
There is a major resurgence of interest in brown adipose tissue (BAT) biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction) were calculated. Neonatal scans (n = 22) were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38%, p<10−4). Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99). BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93) and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93). This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat fraction measurements. PMID:24205024
Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J
2012-05-01
Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.
Initial parametric study of the flammability of plume releases in Hanford waste tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.; Recknagle, K.P.
This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azimi, H.R.
This study examines several mechanisms by which the fatigue crack propagation (FCP) resistance of shear-yielding thermoset polymers can be improved. Specifically, this research has four objectives as follows: first, to develop a mechanistic understanding of the FCP behavior of rubber-modified thermoset polymers; second, to understand the effect of strength and shape of the inorganic fillers on the FCP resistance and micromechanisms in filled epoxy polymers; third, to elucidate the nature of the interactions among the crack-tip shielding mechanisms in thermoset polymers subjected to cyclic loading and synergistically toughened with both rubber and inorganic particles (i.e., hybrid composites); fourth, to studymore » the role of interfaces on the synergistic interactions in FCP behavior of hybrid composites. The model - matrix material consists of a diglycidyl ether of bisphenol A (DGEBA) based type epoxy cured with piperidine. Parallel to the first objective, the epoxy matrix was modified with rubber while changing volume fraction, type, and size of the rubber particles. To accomplish the second goal, the epoxy polymers were modified by a total 10 volume percent of either one of the following three types of inorganic modifiers: hollow glass spheres (HGS); solid glass spheres (SGS); and short glass fibers (SGF). The third goal was met by processing three different systems of hybrid epoxy composites modified by (1) CTBN rubber and HGS, (2) CTBN rubber and SGS, and (3) CTBN rubber and SGF. The total volume fraction of the two modifiers in each hybrid system was kept constant at 10 percent while systematically changing their ratio. To meet the fourth objective, the surface properties of the SGS particles in the hybrid system were altered using adhesion promoter. A mechanistic understanding of the FCP behavior of rubber-modified epoxies was achieved by relating fractographs to observed FCP behavior.« less
Blandino, Massimo; Sovrani, Valentina; Marinaccio, Federico; Reyneri, Amedeo; Rolle, Luca; Giacosa, Simone; Locatelli, Monica; Bordiga, Matteo; Travaglia, Fabiano; Coïsson, Jean Daniel; Arlorio, Marco
2013-12-01
A strategy to maximise the health benefits of wheat-based products enriched with refined flour and selected fractions of kernel, obtained by sequential pearling, has been tested. Five mixtures of refined commercial flour with an increasing replacement of a pearled wheat fraction were used to prepare bread and were compared with a control for the dough rheological properties (Mixolab® parameters), the bioactive compound content, deoxynivalenol (DON) contamination and the physical properties (volume, crust colour, instrumental crunchiness and crumb texture profile analysis parameters). The antioxidant and dietary fibre contents increased linearly as the flour was enriched with the pearled fraction. The dietary fibre, β-glucan, total phenolic, alkylresorcinol content and the antioxidant activity increased significantly at a replacement level of 10%, while the technological properties were not significantly different from those of the control. It has been shown that refined flour could be enriched through the addition of a selected wheat pearled fraction and the bioactive compound content of composite bread could be improved, while few rheological and technological differences could be obtained and the risk for DON contamination could be limited. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties
NASA Technical Reports Server (NTRS)
Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.
2007-01-01
The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.
NASA Astrophysics Data System (ADS)
Hemmat Esfe, Mohammad; Firouzi, Masoumeh; Afrand, Masoud
2018-01-01
In this paper, functionalized single walled carbon nanotubes (FSWCNTs) were suspended in Ethylene Glycol (EG) at different volume fractions. A KD2 pro thermal conductivity meter was used to measure the thermal conductivity in the temperature range from 30 to 50 °C. Nanofluids were prepared in solid volume fraction of 0.02, 0.05, 0.075, 0.1, 0.25, 0.5 and, 0.75%. Experimental results revealed that the thermal conductivity of the nanofluid is a non-linear function of temperature and SWCNTs volume fraction in the range of this investigation. Thermal conductivity increases with temperature and nanoparticles volume fraction as usual for this type of nanofluid. Maximum increment in thermal conductivity of the nanofluids was found to be about 45% at 0.75 vol fractions loading at 50 °C. Finally, a new correlation based on artificial neural network (ANN) approach has been proposed for SWCNT-EG thermal conductivity in terms of nanoparticles volume fraction and temperature using the experimental data. Used ANN approach has estimated the experimental values of thermal conductivity with the absolute average relative deviation lower than 0.9%, mean square error of 3.67 × 10-5 and regression coefficient of 0.9989. Comparison between the suggested techniques with various used correlation in the literatures established that the ANN approach is better to other presented methods and therefore can be proposed as a useful means for predicting of the nanofluids thermal conductivity.
Zhuang, Ping; Zhang, Chaosheng; Li, Yingwen; Zou, Bi; Mo, Hui; Wu, Kejun; Wu, Jingtao; Li, Zhian
2016-12-15
The health risks associated with rice consumption may decrease if consumers use cooking practices which can reduce the bioaccessibility of metal(loid)s. The effects of cooking on the Cd and As bioaccessibility, at three contamination levels of rice, were studied. Results indicated that cooking reduced bioaccessibility of Cd and As in rice. Cooking resulted in a significant increase (p<0.01) of Cd and As concentrations in the residual fraction. Low volume water-cooking of rice to dryness reduced total Cd by about 10% for rices A and B, while medium or high volume water-cooking had no effect on Cd bioaccessibility in all rice types. In contrast, low volume cooking did not remove As, but a significant decrease (p<0.05) was observed when cooking with higher volumes of water. This study provides information for a better understanding of more realistic estimation of metal(loid)s exposure from rice and the possible health risks. Copyright © 2016. Published by Elsevier Ltd.
A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann
2003-01-01
A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.
Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension
Gao, He; Bai, Wenjia; Evangelou, Evangelos; Glocker, Ben; O’Regan, Declan P.; Elliott, Paul; Matthews, Paul M.
2017-01-01
Objectives To characterize effects of chronically elevated blood pressure on the brain, we tested for brain white matter microstructural differences associated with normotension, pre-hypertension and hypertension in recently available brain magnetic resonance imaging data from 4659 participants without known neurological or psychiatric disease (62.3±7.4 yrs, 47.0% male) in UK Biobank. Methods For assessment of white matter microstructure, we used measures derived from neurite orientation dispersion and density imaging (NODDI) including the intracellular volume fraction (an estimate of neurite density) and isotropic volume fraction (an index of the relative extra-cellular water diffusion). To estimate differences associated specifically with blood pressure, we applied propensity score matching based on age, sex, educational level, body mass index, and history of smoking, diabetes mellitus and cardiovascular disease to perform separate contrasts of non-hypertensive (normotensive or pre-hypertensive, N = 2332) and hypertensive (N = 2337) individuals and of normotensive (N = 741) and pre-hypertensive (N = 1581) individuals (p<0.05 after Bonferroni correction). Results The brain white matter intracellular volume fraction was significantly lower, and isotropic volume fraction was higher in hypertensive relative to non-hypertensive individuals (N = 1559, each). The white matter isotropic volume fraction also was higher in pre-hypertensive than in normotensive individuals (N = 694, each) in the right superior longitudinal fasciculus and the right superior thalamic radiation, where the lower intracellular volume fraction was observed in the hypertensives relative to the non-hypertensive group. Significance Pathological processes associated with chronically elevated blood pressure are associated with imaging differences suggesting chronic alterations of white matter axonal structure that may affect cognitive functions even with pre-hypertension. PMID:29145428
Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.
Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew
2017-03-01
Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.
NASA Astrophysics Data System (ADS)
Kupke, A.; Hodgson, P. D.; Weiss, M.
2017-07-01
The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.
Masdjedi, Kaneshka; Van Mieghem, Nicolas M; Diletti, Roberto; van Geuns, Robert-Jan; de Jaegere, Peter; Regar, Evelyn; Zijlstra, Felix; van Domburg, Ron T; Daemen, Joost
2017-04-15
To assess whether the RXi Navvus system compared to the use of standard Fractional Flow Reserve (FFR) wires reduces total contrast volume, radiation and overall study cost in a real world patient population referred for coronary angiography or percutaneous coronary intervention. FFR is the mainstay of functional hemodynamic assessment of coronary artery lesions. The RXi Navvus system (ACIST Medical Systems, Eden Prairie, MN) is a monorail microcatheter with FFR-measurement capability through optical pressure sensor technology. This is an investigator-initiated, prospective, single-center, observational cohort study. A total of 238 patients were enrolled, 97 patients with Navvus and 141 with conventional pressure-wire based FFR (PW-FFR). Final analyses were performed on the cohort in which only 1 device was used (82 Navvus procedures vs. 136 PW-FFR procedures). No significant differences were found in the total amount of contrast used (150±77 vs 147±79ml; p=0.81), radiation use (6200±4601 vs. 5076±4655 centiG∗cm 2 ; p=0.09) or costs (€1994,- vs. €1930,-; p=0.32) in the Navvus vs. PW-FFR groups respectively. No significant differences were found in the amount of contrast used, total procedural costs or radiation when the Navvus system was used as compared to conventional FFR wires. CONTRACT is an investigator-initiated, prospective, single-center, observational cohort study that evaluated whether the RXi Navvus system compared to the use of standard Fractional Flow Reserve (FFR) wires reduces total contrast volume, radiation and overall study cost in a real world patient population referred for coronary angiography or percutaneous coronary intervention. Use of the RXi Navvus system was associated with comparable procedural costs, amount of radiation and contrast used as compared to PW-FFR systems. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, C; Ju, S; Ahn, Y
2015-06-15
Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directionalmore » block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.« less
NASA Astrophysics Data System (ADS)
Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Choi, Yoon Suk; Kang, Namhyun
2015-02-01
Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ‧ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ‧ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ‧ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ‧ volume fraction and gained a smaller fraction of γ‧ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ‧ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M23C6 secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ‧ thereby decreasing the volume fraction of γ‧ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ‧ volume fraction was measured with loading rather than without. This is probably associated with the dislocation accumulation generated under loading that facilitate the nucleation and growth of heterogeneous γ‧ phase due to enhanced diffusion.
NASA Astrophysics Data System (ADS)
Soltani, Omid; Akbari, Mohammad
2016-10-01
In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.
Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis
2015-11-01
Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Louis, P.; Gokhale, A. M.
1996-01-01
Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.
Code of Federal Regulations, 2014 CFR
2014-07-01
....116(b) Only annual production by product from each EAF (No CEMS). K 98.116(e)(4) All. K 98.116(e)(5... factor if using Eq. Y-3. Y 98.256(e)(10) Only fraction of carbon in the flare gas contributed by methane... methane in coking gas. Y 98.256(l)(5) Only molar volume conversion factor. Y 98.256(m)(3) Only total...
Strong-interaction-mediated critical coupling at two distinct frequencies.
Gupta, S Dutta
2007-06-01
I study a multilayered medium consisting of a metal-dielectric composite film, a spacer layer, and a dielectric Bragg reflector. I demonstrate a greater flexibility over the critical coupling phenomenon [Tischler et al., Opt. Lett. 31, 2045 (2006)], whereby nearly all the incident light energy is absorbed by the composite film through suppression of both transmission and reflection from the structure. For a larger volume fraction of the metal inclusions, strong light-matter coupling is shown to lead to almost total absorption at two distinct frequencies.
VARTM Model Development and Verification
NASA Technical Reports Server (NTRS)
Cano, Roberto J. (Technical Monitor); Dowling, Norman E.
2004-01-01
In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform.
CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions during CARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Fan; Setyan, Ari; Zhang, Qi
2013-12-17
During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (K CCN) with diameter from 100 to 170 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low K CCN value was due to the high organic volume fraction, averaged over 80% at the T1more » site. The derived K CCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (K org) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of K org from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from K CCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f 44) and O:C were compared to results from previous studies. Overall, the relationships between K org and f 44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between K org and f 44, the relationship between K org and O:C exhibits more significant differences among different studies, suggesting korg may be better parameterized using f 44. A least squares fit yielded K org = 2.10 (±0.07) × f 44 -0.11 (±0.01) with the Pearson R 2 value of 0.71. One possible explanation for the stronger correlation between K org and f 44 is that the m/z 44 signal (mostly contributed by the CO 2 + ion) is more closely related to organic acids, which may dominate the overall korg due to their relatively high water solubility and hygroscopicity.« less
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
Launikonis, Bradley S; Stephenson, D George
2002-01-01
The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sysVol) was 1.38 ± 0.09 % (n = 17), 1.41 ± 0.09 % (n = 12) and 0.83 ± 0.07 % (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sysVol decreased by 30 % when the tubular system was fully depolarized and decreased by 15 % when membrane cholesterol was depleted from the tubular system with methyl-β-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 μm. There was also an increase by 30 % and a decrease by 25 % in t-sysVol when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50 % hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sysVol expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9 % of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle. PMID:11790823
Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi
2018-06-01
To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.
NASA Astrophysics Data System (ADS)
Liu, Fengshan; Rogak, Steven; Snelling, David R.; Saffaripour, Meghdad; Thomson, Kevin A.; Smallwood, Gregory J.
2016-11-01
Multimode pulsed Nd:YAG lasers are commonly used in auto-compensating laser-induced incandescence (AC-LII) measurements of soot in flames and engine exhaust as well as black carbon in the atmosphere. Such lasers possess a certain degree of fluence non-uniformity across the laser beam even with the use of beam shaping optics. Recent research showed that the measured volume fraction of ambient-temperature soot using AC-LII increases significantly, by about a factor of 5-8, with increasing the laser fluence in the low-fluence regime from a very low fluence to a relatively high fluence of near sublimation. The causes of this so-called soot volume fraction anomaly are currently not understood. The effects of laser fluence non-uniformity on the measured soot volume fraction using AC-LII were investigated. Three sets of LII experiments were conducted in the exhaust of a MiniCAST soot generator under conditions of high elemental carbon using Nd:YAG lasers operated at 1064 nm. The laser beams were shaped and relay imaged to achieve a relatively uniform fluence distribution in the measurement volume. To further homogenize the laser fluence, one set of LII experiments was conducted by using a diffractive optical element. The measured soot volume fractions in all three sets of LII experiments increase strongly with increasing the laser fluence before a peak value is reached and then start to decrease at higher fluences. Numerical calculations were conducted using the experimental laser fluence histograms. Laser fluence non-uniformity is found partially responsible for the soot volume fraction anomaly, but is insufficient to explain the degree of soot volume fraction anomaly observed experimentally. Representing the laser fluence variations by a histogram derived from high-resolution images of the laser beam energy profile gives a more accurate definition of inhomogeneity than a simple averaged linear profile across the laser beam.
NASA Astrophysics Data System (ADS)
Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.
2015-01-01
The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.
Emerging Indications for Fractionated Gamma Knife Radiosurgery.
McTyre, Emory; Helis, Corbin A; Farris, Michael; Wilkins, Lisa; Sloan, Darrell; Hinson, William H; Bourland, J Daniel; Dezarn, William A; Munley, Michael T; Watabe, Kounosuke; Xing, Fei; Laxton, Adrian W; Tatter, Stephen B; Chan, Michael D
2017-02-01
Gamma Knife radiosurgery (GKRS) allows for the treatment of intracranial tumors with a high degree of dose conformality and precision. There are, however, certain situations wherein the dose conformality of GKRS is desired, but single session treatment is contraindicated. In these situations, a traditional pin-based GKRS head frame cannot be used, as it precludes fractionated treatment. To report our experience in treating patients with fractionated GKRS using a relocatable, noninvasive immobilization system. Patients were considered candidates for fractionated GKRS if they had one or more of the following indications: a benign tumor >10 cc in volume or abutting the optic pathway, a vestibular schwannoma with the intent of hearing preservation, or a tumor previously irradiated with single fraction GKRS. The immobilization device used for all patients was the Extend system (Leksell Gamma Knife Perfexion, Elekta, Kungstensgatan, Stockholm). We identified 34 patients treated with fractionated GKRS between August 2013 and February 2015. There were a total of 37 tumors treated including 15 meningiomas, 11 pituitary adenomas, 6 brain metastases, 4 vestibular schwannomas, and 1 hemangioma. At last follow-up, all 21 patients treated for perioptic tumors had stable or improved vision and all 4 patients treated for vestibular schwannoma maintained serviceable hearing. No severe adverse events were reported. Fractionated GKRS was well-tolerated in the treatment of large meningiomas, perioptic tumors, vestibular schwannomas with intent of hearing preservation, and in reirradiation of previously treated tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, D.G.; West, J.T.
FRAC-IN-THE-BOX is a computer code developed to calculate the fractions of rectangular parallelepiped mesh cell volumes that are intersected by combinatorial geometry type zones. The geometry description used in the code is a subset of the combinatorial geometry used in SABRINA. The input file may be read into SABRINA and three dimensional plots made of the input geometry. The volume fractions for those portions of the geometry that are too complicated to describe with the geometry routines provided in FRAC-IN-THE-BOX may be calculated in SABRINA and merged with the volume fractions computed for the remainder of the geometry. 21 figs.,more » 1 tab.« less
NASA Astrophysics Data System (ADS)
Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.
2017-09-01
This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.
Piccione, G; Alberghina, D; Marafioti, S; Giannetto, C; Casella, S; Assenza, A; Fazio, F
2012-08-01
The aim of this study was to evaluate the influence of different physiological phases on serum total proteins and their fractions of ten Comisana ewes housed in Mediterranean area. From each animal, blood samples were collected at different physiological phases: late pregnancy, post-partum, early, mid-, end lactation and dry period. On all samples serum total proteins were determined by the biuret method, and albumin, α-globulins, β(1) -globulins, β(2) -globulins and γ-globulins concentrations were assessed using an automated system. One-way repeated measures analysis of variance was applied to determine the significant effect of different physiological phases on the parameters studied. During the late pregnancy and post-partum, total proteins, β1- and β2-globulins and γ-globulins showed the highest values. Starting from post-partum, α-globulins increased to reach their peaks in mid-lactation. Early lactation was characterized by low γ-globulins values. The increase in serum albumin concentration and the drop in some globulin fractions determined the significant increase in albumin/globulin ratio. The obtained results contributed to improve the knowledge on electrophoretic profile during the different physiological phases in ewes, confirming that pregnancy and lactation periods affect the protein metabolism. Particularly, serum protein fractions pattern could give information about dehydration, plasma volume expansion and hepatic function, which occur during the different physiological phases. Dynamics of the protein profile - from pregnancy to dry period - which are provided by our results, could be considered as guidelines for the management strategies to guarantee the nutritional needs of these animals during the different physiological phases and to avoid a decline of productive performance and consequently an economic loss. © 2011 Blackwell Verlag GmbH.
Leonard, Charles E; Johnson, Tim; Tallhamer, Michael; Howell, Kathryn; Kercher, Jane; Kaske, Terese; Barke, Lora; Sedlacek, Scot; Hobart, Tracy; Carter, Dennis L
2011-06-01
To examine the outcome of breast cancer patients who have prior breast augmentation treated with lumpectomy followed by accelerated partial breast external intensity-modulated radiotherapy (APBIMRT) with image-guided radiotherapy (IGRT). Four patients with previous elective subpectoral breast augmentation were enrolled on this APBIMRT trial. These four patients were treated with 10 equal twice daily 3.85 Gy fractions over 5 consecutive days (total dose of 38.5 Gy) using APBIMRT and IGRT. Patients were assessed for pain and cosmetic outcome (physician and a patient self-assessment). At last follow-up, two patients reported an excellent cosmetic results (at 2 years and at 8 months, respectively), one reported good cosmetic results (at 2 years), and one reported poor cosmetic results (at 20 months). Physicians rated the cosmetic outcomes as excellent in two (CEL; at 2 years and 8 months, respectively), good in one (CEL; at 20 months) and excellent in one (KTH; at 2 years). Three patients reported no breast/chest wall pain (two at 2 years and one at 1 year) and the fourth reported mild pain (at 20 months). The mean percent volume of ipsilateral breast receiving 100%, 75%, 50%, and 25% of the prescribed dose was 7.28%, 17.55%, 24.33%, and 33.1%, respectively. The mean breast, planning target volume (PTV), and implant volumes were 399.88 cc, 43.55 cc, and 313.36 cc, respectively. The mean breast prosthesis/total volume (breast tissue plus prosthesis) ratio was 44.55%. The mean PTV/ipsilateral breast and PTV/total volume ratios were 11.1% and 6.1%, respectively. The results show that a regimen of APBIMRT with IGRT is possible in patients who have prior breast augmentation. Copyright © 2011 Elsevier Inc. All rights reserved.
van der Bom, Teun; Winter, Michiel M; Bouma, Berto J; Groenink, Maarten; Vliegen, Hubert W; Pieper, Petronella G; van Dijk, Arie P J; Sieswerda, Gertjan T; Roos-Hesselink, Jolien W; Zwinderman, Aeilko H; Mulder, Barbara J M
2013-01-22
The role of angiotensin II receptor blockers in patients with a systemic right ventricle has not been elucidated. We conducted a multicenter, double-blind, parallel, randomized controlled trial of angiotensin II receptor blocker valsartan 160 mg twice daily compared with placebo in patients with a systemic right ventricle caused by congenitally or surgically corrected transposition of the great arteries. The primary end point was change in right ventricular ejection fraction during 3-year follow-up, determined by cardiovascular magnetic resonance imaging or, in patients with contraindication for magnetic resonance imaging, multirow detector computed tomography. Secondary end points were change in right ventricular volumes and mass, Vo(2)peak, and quality of life. Primary analyses were performed on an intention-to-treat basis. A total of 88 patients (valsartan, n=44; placebo, n=44) were enrolled in the trial. No serious adverse effects occurred in either group. There was no significant effect of 3-year valsartan therapy on systemic right ventricular ejection fraction (treatment effect, 1.3%; 95% confidence interval, -1.3% to 3.9%; P=0.34), maximum exercise capacity, or quality of life. There was a larger increase in right ventricular end-diastolic volume (15 mL; 95% confidence interval, 3-28 mL; P<0.01) and mass (8 g; 95% confidence interval, 2-14 g; P=0.01) in the placebo group than in the valsartan group. There was no significant treatment effect of valsartan on right ventricular ejection fraction, exercise capacity, or quality of life. Valsartan was associated with a similar frequency of significant clinical events as placebo. Small but significant differences between valsartan and placebo were present for change in right ventricular volumes and mass. URL: http://www.controlled-trials.com. Unique identifier: ISRCTN52352170.
Jimenez-Juan, Laura; Karur, Gauri R; Connelly, Kim A; Deva, Djeven; Yan, Raymond T; Wald, Rachel M; Singh, Sheldon; Leung, General; Oikonomou, Anastasia; Dorian, Paul; Angaran, Paul; Yan, Andrew T
2017-04-01
Indications for the primary prevention of sudden death using an implantable cardioverter defibrillator (ICD) are based predominantly on left ventricular ejection fraction (LVEF). However, right ventricular ejection fraction (RVEF) is also a known prognostic factor in a variety of structural heart diseases that predispose to sudden cardiac death. We sought to investigate the relationship between right and left ventricular parameters (function and volume) measured by cardiovascular magnetic resonance (CMR) among a broad spectrum of patients considered for an ICD. In this retrospective, single tertiary-care center study, consecutive patients considered for ICD implantation who were referred for LVEF assessment by CMR were included. Right and left ventricular function and volumes were measured. In total, 102 patients (age 62±14 years; 23% women) had a mean LVEF of 28±11% and RVEF of 44±12%. The left ventricular and right ventricular end diastolic volume index was 140±42 mL/m 2 and 81±27 mL/m 2 , respectively. Eighty-six (84%) patients had a LVEF <35%, and 63 (62%) patients had right ventricular systolic dysfunction. Although there was a significant and moderate correlation between LVEF and RVEF ( r =0.40, p <0.001), 32 of 86 patients (37%) with LVEF <35% had preserved RVEF, while 9 of 16 patients (56%) with LVEF ≥35% had right ventricular systolic dysfunction (Kappa=0.041). Among patients being considered for an ICD, there is a positive but moderate correlation between LVEF and RVEF. A considerable proportion of patients who qualify for an ICD based on low LVEF have preserved RVEF, and vice versa.
NASA Astrophysics Data System (ADS)
Najafi Khaboshan, Hasan; Nazif, Hamid Reza
2018-04-01
Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.
Eifler, Robert L; Lind, Judith; Falkenhagen, Dieter; Weber, Viktoria; Fischer, Michael B; Zeillinger, Robert
2011-03-01
The aim of this study was to determine the applicability of a sequential process using leukapheresis, elutriation, and fluorescence-activated cell sorting (FACS) to enrich and isolate circulating tumor cells from a large blood volume to allow further molecular analysis. Mononuclear cells were collected from 10 L of blood by leukapheresis, to which carboxyfluorescein succinimidyl ester prelabeled CaOV-3 tumor cells were spiked at a ratio of 26 to 10⁶ leukocytes. Elutriation separated the spiked leukapheresates primarily by cell size into distinct fractions, and leukocytes and tumor cells, characterized as carboxyfluorescein succinimidyl ester positive, EpCAM positive and CD45 negative events, were quantified by flow cytometry. Tumor cells were isolated from the last fraction using FACS or anti-EpCAM coupled immunomagnetic beads, and their recovery and purity determined by fluorescent microscopy and real-time PCR. Leukapheresis collected 13.5 x 10⁹ mononuclear cells with 87% efficiency. In total, 53 to 78% of spiked tumor cells were pre-enriched in the last elutriation fraction among 1.6 x 10⁹ monocytes. Flow cytometry predicted a circulating tumor cell purity of ~90% giving an enrichment of 100,000-fold following leukapheresis, elutriation, and FACS, where CaOV-3 cells were identified as EpCAM positive and CD45 negative events. FACS confirmed this purity. Alternatively, immunomagnetic bead adsorption recovered 10% of tumor cells with a median purity of 3.5%. This proof of concept study demonstrated that elutriation and FACS following leukapheresis are able to enrich and isolate tumor cells from a large blood volume for molecular characterization. Copyright © 2010 International Clinical Cytometry Society.
Kadzińska, Justyna
2016-01-01
Summary The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99). The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased. PMID:27904396
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streitparth, Florian; Pech, Maciej; Boehmig, Michael
2006-08-01
Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical datamore » derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D{sub 1ml}) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D{sub 1ml} of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D{sub 1ml} of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data.« less
Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J
2013-04-30
In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).
The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.
Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C
1998-03-01
The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.
Universal scaling of permeability through the granular-to-continuum transition
NASA Astrophysics Data System (ADS)
Wadsworth, F. B.; Scheu, B.; Heap, M. J.; Kendrick, J. E.; Vasseur, J.; Lavallée, Y.; Dingwell, D. B.
2015-12-01
Magmas fragment forming a transiently granular material, which can weld back to a fluid-continuum. This process results in dramatic changes in the gas-volume fraction of the material, which impacts the gas permeability. We collate published data for the gas-volume fraction and permeability of volcanic and synthetic materials which have undergone this process to different amounts and note that in all cases there exists a discontinuity in the relationship between these two properties. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high gas-volume fraction regime and the fluid-continuum low gas-volume fraction regime such that a universal description can be achieved. We use this to argue for the microstructural meaning of the well-described discontinuity between gas-permeability and gas-volume fraction and to infer the controls on the position of this transition between dominantly granular and dominantly fluid-continuum material descriptions. As a specific application, we consider the transiently granular magma transported through and deposited in fractures in more-coherent magmas, thought to be a primary degassing pathway in high viscosity systems. We propose that our scaling coupled with constitutive laws for densification can provide insights into the longevity of such degassing channels, informing sub-surface pressure modelling at such volcanoes.
Applications for carbon fibre recovered from composites
NASA Astrophysics Data System (ADS)
Pickering; Liu, Z.; Turner, TA; Wong, KH
2016-07-01
Commercial operations to recover carbon fibre from waste composites are now developing and as more recovered fibre becomes available new applications for recovered fibre are required. Opportunities to use recovered carbon fibre as a structural reinforcement are considered involving the use of wet lay processes to produce nonwoven mats. Mats with random in-plane fibre orientation can readily be produced using existing commercial processes. However, the fibre volume fraction, and hence the mechanical properties that can be achieved, result in composites with limited mechanical properties. Fibre volume fractions of 40% can be achieved with high moulding pressures of over 100 bar, however, moulding at these pressures results in substantial fibre breakage which reduces the mean fibre length and the properties of the composite manufactured. Nonwoven mats made from aligned, short carbon fibres can achieve higher fibre volume fractions with lower fibre breakage even at high moulding pressure. A process for aligning short fibres is described and a composite of over 60% fibre volume fraction has been manufactured at a pressures up to 100 bar with low fibre breakage. Further developments of the alignment process have been undertaken and a composite of 46% fibre volume fraction has been produced moulded at a pressure of 7 bar in an autoclave, exhibiting good mechanical properties that compete with higher grade materials. This demonstrates the potential for high value applications for recovered carbon fibre by fibre alignment.
A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model.
Vaish, Mayank; Kleinstreuer, Clement
2015-09-01
Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D-1D model with airways up to 23rd generation in single-path only).
Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.
Egg, R P; Sweeten, J M; Coble, C G
1985-12-01
Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.
Use of volumetric-modulated arc therapy for treatment of Hodgkin lymphoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; Bedford, James L.; Taj, Mary
To evaluate volumetric-modulated arc therapy (VMAT) for treatment of Hodgkin lymphoma (HL) in patients where conventional radiotherapy was not deliverable. A planning computed tomography (CT) scan was acquired for a twelve-year-old boy with Stage IIIB nodular sclerosing HL postchemotherapy with positive positron emission tomography scan. VMAT was used for Phase 1 (19.8 Gy in 11 fractions) and Phase 2 (10.8 Gy in 6 fractions) treatment plans. Single anticlockwise arc plans were constructed using SmartArc (Philips Radiation Oncology Systems, Fitchburg, WI) with control points spaced at 4°. The inverse-planning objectives were to uniformly irradiate the planning target volume (PTV) with themore » prescription dose while keeping the volume of lung receiving greater than 20 Gy (V{sub 20} {sub Gy}) to less than 30% and minimize the dose to the other adjacent organs at risk (OAR). Pretreatment verification was conducted and the treatment delivery was on an MLCi Synergy linear accelerator (Elekta Ltd, Crawley, UK). The planning results were retrospectively confirmed in a further 4 patients using a single PTV with a prescribed dose of 19.8 Gy in 11 fractions. Acceptable dose coverage and homogeneity were achieved for both Phase 1 and 2 plans while keeping the lung V{sub 20} {sub Gy} at 22.5% for the composite plan. The beam-on times for Phase 1 and Phase 2 plans were 109 and 200 seconds, respectively, and the total monitor units were 337.2 MU and 292.5 MU, respectively. The percentage of measured dose points within 3% and 3 mm for Phase 1 and Phase 2 were 92% and 98%, respectively. Both plans were delivered successfully. The retrospective planning study showed that VMAT improved PTV dose uniformity and reduced the irradiated volume of heart and lung, although the volume of lung irradiated to low doses increased. Two-phased VMAT offers an attractive option for large volume sites, such as HL, giving a high level of target coverage and significant OAR sparing together with efficient delivery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang
2008-11-01
Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladdermore » were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.« less
Numerical simulation of convective heat transfer of nonhomogeneous nanofluid using Buongiorno model
NASA Astrophysics Data System (ADS)
Sayyar, Ramin Onsor; Saghafian, Mohsen
2017-08-01
The aim is to study the assessment of the flow and convective heat transfer of laminar developing flow of Al2O3-water nanofluid inside a vertical tube. A finite volume method procedure on a structured grid was used to solve the governing partial differential equations. The adopted model (Buongiorno model) assumes that the nanofluid is a mixture of a base fluid and nanoparticles, with the relative motion caused by Brownian motion and thermophoretic diffusion. The results showed the distribution of nanoparticles remained almost uniform except in a region near the hot wall where nanoparticles volume fraction were reduced as a result of thermophoresis. The simulation results also indicated there is an optimal volume fraction about 1-2% of the nanoparticles at each Reynolds number for which the maximum performance evaluation criteria can be obtained. The difference between Nusselt number and nondimensional pressure drop calculated based on two phase model and the one calculated based on single phase model was less than 5% at all nanoparticles volume fractions and can be neglected. In natural convection, for 4% of nanoparticles volume fraction, in Gr = 10 more than 15% enhancement of Nusselt number was achieved but in Gr = 300 it was less than 1%.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Unique strain history during ejection in canine left ventricle.
Douglas, A S; Rodriguez, E K; O'Dell, W; Hunter, W C
1991-05-01
Understanding the relationship between structure and function in the heart requires a knowledge of the connection between the local behavior of the myocardium (e.g., shortening) and the pumping action of the left ventricle. We asked the question, how do changes in preload and afterload affect the relationship between local myocardial deformation and ventricular volume? To study this, a set of small radiopaque beads was implanted in approximately 1 cm3 of the isolated canine heart left ventricular free wall. Using biplane cineradiography, we tracked the motion of these markers through various cardiac cycles (controlling pre- and afterload) using the relative motion of six markers to quantify the local three dimensional Lagrangian strain. Two different reference states (used to define the strains) were considered. First, we used the configuration of the heart at end diastole for that particular cardiac cycle to define the individual strains (which gave the local "shortening fraction") and the ejection fraction. Second, we used a single reference state for all cardiac cycles i.e., the end-diastolic state at maximum volume, to define absolute strains (which gave local fractional length) and the volume fraction. The individual strain versus ejection fraction trajectories were dependent on preload and afterload. For any one heart, however, each component of absolute strain was more tightly correlated to volume fraction. Around each linear regression, the individual measurements of absolute strain scattered with standard errors that averaged less than 7% of their range. Thus the canine hearts examined had a preferred kinematic (shape) history during ejection, different from the kinematics of filling and independent or pre-or afterload and of stroke volume.
Magnay, Julia L; Nevatte, Tracy M; O'Brien, Shaughn; Gerlinger, Christoph; Seitz, Christian
2014-02-01
To validate the menstrual pictogram (superabsorbent polymer-c version) for Always Ultra-slim feminine towels containing superabsorbent polymers. Prospective, multicenter, evaluator-blinded study. Three gynecology research clinics in the United Kingdom. Women with self-perceived light, normal, or heavy menstrual periods who had not previously used a graphical method to assess their menstrual loss. One hundred twenty-two women were asked to complete the menstrual pictogram throughout two menstrual periods and collect their feminine towels for measurements of menstrual blood loss (MBL) by the alkaline hematin method and total menstrual fluid loss (MFL) by fluid weight. Agreement of menstrual pictogram MBL and MFL scores with alkaline hematin and towel weight, respectively. The percentage blood fraction was determined at various volumes of menstrual discharge. Alkaline hematin and fluid weight were highly correlated (r = .97). However, the percentage blood fraction progressively increased with total MFL and MBL score. After correction for this incremental rise in blood fraction, the menstrual pictogram gave a sensitivity of 82% and a specificity of 92% for a diagnosis of heavy menstrual bleeding. The menstrual pictogram (superabsorbent polymer-c version) provides a simple means of measuring MBL in the clinical setting. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT.
Alt, Volker; Kögelmaier, Daniela Vera; Lips, Katrin S; Witt, Vera; Pacholke, Sabine; Heiss, Christian; Kampschulte, Marian; Heinemann, Sascha; Hanke, Thomas; Thormann, Ulrich; Schnettler, Reinhard; Langheinrich, Alexander C
2011-10-01
Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 μm)(3) and nano-CT (3 μm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Enhanced explosive sensing based on bis(methyltetraphenyl)silole nanoaggregate
NASA Astrophysics Data System (ADS)
Shin, Bomina; Sohn, Honglae
2018-01-01
New photoluminescent bis(methyltetraphenyl)silole nanoaggregates for the detection of trinitrotoluene (TNT) were developed by using aggregation-induced emission property. Bis(methyltetraphenyl)silole nanoaggregates exhibited that photoluminescence (PL) intensity was increased when the water fraction was increased to 90% by volume. Relative PL efficiency of bis(methyltetraphenyl)silole nanoaggregates was exponentially increased to the percent of water fraction and particle diameter was dependent on solvent composition. Particle size of bis(methyltetraphenyl)silole nanoaggregates was tuned by controlling the water fraction by volume. Absolute quantum yield of bis(methyltetraphenyl)silole nanoaggregates in 90% water volume fraction were 32.4%, which increases by about 40 times. Detection of TNT was achieved from the quenching PL measurement of bis(methyltetraphenyl)silole nanoaggregates by adding the TNT. A linear Stern-Volmer relationship was observed for the detection of TNT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriss-Phillips, Wendy M., E-mail: wharrphil@gmail.com; School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia; Bezak, Eva
Purpose: To simulate stereotactic ablative radiation therapy on hypoxic and well-oxygenated in silico tumors, incorporating probabilistic parameter distributions and linear-quadratic versus linear-quadratic-cubic methodology and the evaluation of optimal fractionation schemes using biological effective dose (BED{sub α/β=10} {sub or} {sub 3}) comparisons. Methods and Materials: A temporal tumor growth and radiation therapy algorithm simulated high-dose external beam radiation therapy using stochastic methods. Realistic biological proliferative cellular hierarchy and pO{sub 2} histograms were incorporated into the 10{sup 8}-cell tumor model, with randomized radiation therapy applied during continual cell proliferation and volume-based gradual tumor reoxygenation. Dose fractions ranged from 6-35 Gy, with predictive outcomes presentedmore » in terms of the total doses (converted to BED) required to eliminate all cells that could potentially regenerate the tumor. Results: Well-oxygenated tumor control BED{sub 10} outcomes were not significantly different for high-dose versus conventional radiation therapy (BED{sub 10}: 79-84 Gy; Equivalent Dose in 2 Gy fractions with α/β of 10: 66-70 Gy); however, total treatment times decreased from 7 down to 1-3 weeks. For hypoxic tumors, an additional 28 Gy (51 Gy BED{sub 10}) was required, with BED{sub 10} increasing with dose per fraction due to wasted dose in the final fraction. Fractions of 9 Gy compromised well for total treatment time and BED, with BED{sub 10}:BED{sub 3} of 84:176 Gy for oxic and 132:278 Gy for non-reoxygenating hypoxic tumors. Initial doses of 12 Gy followed by 6 Gy further increased the therapeutic ratio. When delivering ≥9 Gy per fraction, applying reoxygenation and/or linear-quadratic-cubic cell survival both affected tumor control doses by a significant 1-2 fractions. Conclusions: The complex temporal dynamics of tumor oxygenation combined with probabilistic cell kinetics in the modeling of radiation therapy requires sophisticated stochastic modeling to predict tumor cell kill. For stereotactic ablative radiation therapy, high doses in the first week followed by doses that are more moderate may be beneficial because a high percentage of hypoxic cells could be eradicated early while keeping the required BED{sub 10} relatively low and BED{sub 3} toxicity to tolerable levels.« less
Patel, Vipulkumar; Celec, Peter; Grunt, Magdalena; Schwarzenbach, Heidi; Jenneckens, Ingo; Hillebrand, Timo
2016-01-01
Circulating cell-free DNA (ccfDNA) is a promising diagnostic tool and its size fractionation is of interest. However, kits for isolation of ccfDNA available on the market are designed for small volumes hence processing large sample volumes is laborious. We have tested a new method that enables enrichment of ccfDNA from large volumes of plasma and subsequently allows size-fractionation of isolated ccfDNA into two fractions with individually established cut-off levels of ccfDNA length. This method allows isolation of low-abundant DNA as well as separation of long and short DNA molecules. This procedure may be important e.g., in prenatal diagnostics and cancer research that have been already confirmed by our primary experiments. Here, we report the results of selective separation of 200- and 500-bp long synthetic DNA fragments spiked in plasma samples. Furthermore, we size-fractionated ccfDNA from the plasma of pregnant women and verified the prevalence of fetal ccfDNA in all fractions.
Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D
2010-09-01
Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.
Structural proteins in the egg-shell of the oriental garden cricket, Gryllus mitratus
Kawasaki, Hiroya; Sato, Hitoshi; Suzuki, Motoko
1971-01-01
1. The egg-shell of the oriental garden cricket, Gryllus mitratus, contained at least two different types of structural protein in an approximate ratio of 5:1. The major fraction was extracted in a solvent containing dithiothreitol, EDTA and 8m-urea, and was purified to apparent homogeneity as judged by free-boundary electrophoresis and ultracentrifugation. This was designated SH-fraction and its S-carboxymethyl derivative (CM-fraction) was also prepared. The minor fraction, insoluble in the solvent, was designated insoluble residue. 2. The major fraction was a phosphoprotein, rich in serine (29.8mol% of the total amino acids) and phosphate (nearly equimolar to serine), and O-phosphoserine was identified in its partial acid hydrolysate. The content of cystine was rather low (0.9mol%) in spite of the importance of this amino acid residue in the native form of the protein. The insoluble residue contained only a small amount of phosphorus, and its amino acid composition was clearly different from the major fraction. 3. CM-fraction, a fibrous protein with an average molecular weight of 57500, behaved as a typical polyanion owing to the high content of phosphate. SH-fraction and CM-fraction were precipitable from their aqueous solutions by the addition of bivalent metal cations, and the precipitation of CM-fraction by Ca2+ and Mg2+ was studied in detail. 4. When SH-fraction was exposed to air, intermolecular disulphide linkages were formed, yielding a net-like gel that changed its volume with changes in Ca2+, Mg2+ and Na+. 5. The possible role of this protein fraction in maintaining the integrity of the egg-shell, and a comparison of its composition and properties with other egg-shell proteins and other phosphoproteins, are discussed. ImagesFig. 2.PLATE 1 PMID:5004198
Wang, Hong-wu; Liu, Yan-qing; Wang, Yuan-hong
2011-07-01
To investigate the ultrasonic-assisted extract on of total flavonoids from leaves of the Artocarpus heterophyllus. Investigated the effects of ethanol concentration, extraction time, and liquid-solid ratio on flavonoids yield. A 17-run response surface design involving three factors at three levels was generated by the Design-Expert software and experimental data obtained were subjected to quadratic regression analysis to create a mathematical model describing flavonoids extraction. The optimum ultrasonic assisted extraction conditions were: ethanol volume fraction 69.4% and liquid-solid ratio of 22.6:1 for 32 min. Under these optimized conditions, the yield of flavonoids was 7.55 mg/g. The Box-Behnken design and response surface analysis can well optimize the ultrasonic-assisted extraction of total flavonoids from Artocarpus heterophyllus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunavoelgyi, Roman; Dieckmann, Karin, E-mail: karin.dieckmann@meduniwien.ac.at; Gleiss, Andreas
2011-09-01
Purpose: To evaluate long-term local tumor control, visual acuity, and survival after hypofractionated linear accelerator-based stereotactic photon radiotherapy in patients with choroidal melanoma. Methods and Materials: Between 1997 and 2007, 212 patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at a linear accelerator with 6-MV photon beams at the Medical University of Vienna in five fractions over 7 days. Twenty-four patients received a total dose of 70 Gy (five fractions of 14 Gy), 158 a total dose of 60 Gy (five fractions of 12 Gy) and 30 patients a total dose of 50 Gymore » (five fractions of 10 Gy) applied on the 80% isodose. Ophthalmologic examinations were performed at baseline and every 3 months in the first 2 years, every 6 months until 5 years, and once a year thereafter until 10 years after radiotherapy. Assessment of visual acuity, routine ophthalmologic examinations, and measurement of tumor base dimension and height using standardized A-scan and B-scan echography were done at each visit. Funduscopy and fluorescein angiography were done when necessary to document tumor response. Results: Median tumor height and volume decreased from 4.8 mm and 270.7 mm{sup 3} at baseline to 2.6 mm and 86.6 mm{sup 3} at the last individual follow-up, respectively (p < 0.001, p < 0.001). Median visual acuity decreased from 0.55 at baseline to hand motion at the last individual follow-up (p < 0.001). Local tumor control was 95.9% after 5 years and 92.6% after 10 years. Thirty-two patients developed metastatic disease, and 22 of these patients died during the follow-up period. Conclusion: Hypofractionated stereotactic photon radiotherapy with 70 to 50 Gy delivered in five fractions in 7 days is sufficient to achieve excellent local tumor control in patients with malignant melanoma of the choroid. Disease outcome and vision are comparable to those achieved with proton beam radiotherapy. Decreasing the total dose below 60 Gy seems to be possible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, Steven A.; Bojanowski, Cezary
Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratory’s Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standardmore » vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.« less
NASA Astrophysics Data System (ADS)
Varble, Nicole; Meng, Hui
2015-11-01
Intracranial aneurysms affect 3% of the population. Risk stratification of aneurysms is important, as rupture often leads to death or permanent disability. Image-based CFD analyses of patient-specific aneurysms have identified low and oscillatory wall shear stress to predict rupture. These stresses are sensed biologically at the luminal wall, but the flow dynamics related to aneurysm rupture requires further understanding. We have conducted two studies: one examines vortex dynamics, and the other, high frequency flow fluctuations in patient-specific aneurysms. In the first study, based on Q-criterion vortex identification, we developed two measures to quantify regions within the aneurysm where rotational flow is dominate: the ratio of volume or surface area where Q >0 vs. the total aneurysmal volume or surface area, respectively termed volume vortex fraction (VVF) and surface vortex fraction (SVF). Statistical analysis of 204 aneurysms shows that SVF, but not VVF, distinguishes ruptured from unruptured aneurysms, suggesting that once again, the local flow patterns on the wall is directly relevant to rupture. In the second study, high-resolution CFD (high spatial and temporal resolutions and second-order discretization schemes) on 56 middle cerebral artery aneurysms shows the presence of temporal fluctuations in 8 aneurysms, but such flow instability bears no correlation with rupture. Support for this work was partially provided by NIH grant (R01 NS091075-01) and a grant from Toshiba Medical Systems Corp.
NASA Astrophysics Data System (ADS)
Orlova, T. S.; Kardashev, B. K.; Smirnov, B. I.; Gutierrez-Pardo, A.; Ramirez-Rico, J.
2016-12-01
The microstructure and amplitude dependences of the Young's modulus E and internal friction (logarithmic decrement δ), and microplastic properties of biocarbon matrices BE-C(Fe) obtained by beech tree carbonization at temperatures T carb = 850-1600°C in the presence of an iron-containing catalyst are studied. By X-ray diffraction analysis and transmission electron microscopy, it is shown that the use of Fe-catalyst during carbonization with T carb ≥ 1000°C leads to the appearance of a bulk graphite phase in the form of nanoscale bulk graphite inclusions in a quasi-amorphous matrix, whose volume fraction and size increase with T carb. The correlation of the obtained dependences E( T carb) and δ( T carb) with microstructure evolution with increasing T carb is revealed. It is found that E is mainly defined by a crystalline phase fraction in the amorphous matrix, i.e., a nanocrystalline phase at T carb < 1150°C and a bulk graphite phase at T carb > 1300°C. Maximum values E = 10-12 GPa are achieved for samples with T carb ≈ 1150 and 1600°C. It is shown that the microplasticity manifest itself only in biocarbons with T carb ≥ 1300°C (upon reaching a significant volume of the graphite phase); in this case, the conditional microyield stress decreases with increasing total volume of introduced mesoporosity (free surface area).
Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.
Ponganis, P J; St Leger, J; Scadeng, M
2015-03-01
The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O2 store would change considerably. In emperor penguins, total body O2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O2 store. More refined evaluations of the respiratory O2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives. © 2015. Published by The Company of Biologists Ltd.
Harrison, R M
2008-12-01
The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.
A rapid solid-phase extraction fluorometric method for thiamine and riboflavin in salmonid eggs
Zajicek, James L.; Tillitt, Donald E.; Brown, Scott B.; Brown, Lisa R.; Honeyfield, Dale C.; Fitzsimons, John D.
2005-01-01
A new method has been developed and successfully applied to the selective measurement of thiamine (nonphosphorylated), total thiamine (sum of thiamine, thiamine monophosphate [TMP], thiamine diphosphate [TDP], and thiamine triphosphate [TTP]), and potentially interfering riboflavin in acidic (2% trichloroacetic acid) extracts of selected salmonid and walleye egg samples. Acidic extracts of eggs were applied directly to end-capped C18, reversed-phase solid-phase extraction (SPE) columns and separated into three fractions by elution with mixtures of PO4 buffer (pH 2), methanol (10%), and acetonitrile (20%). All thiamine compounds recovered in the first two fractions were oxidized to their corresponding thiochromes with alkaline potassium hexacyanoferrate, and we measured the thiochrome fluorescence (excitation at 360 nm, emission at 460 nm) in a 96-well microplate reader. Riboflavin, recovered in third fraction (eluted with pH 2, 20% acetonitrile), was analyzed directly by measuring the fluorescence of this fraction (excitation at 450 nm, emission at 530 nm). Significant portions of the phosphate esters of thiamine (TMP, TDP, and presumably TTP), when present at low concentrations (< 10 nmol of total -thiamine per gram of egg), were not retained by the 100-mg SPE column, and were collected directly during sample loading and in a subsequent phosphoric acid rinse as fraction 1. Free thiamine (nonphosphorylated) and remaining portions of the TDP and TMP were then eluted in the second fraction with 10% methanol/PO4 buffer, whereas the un-ionized, relatively nonpolar riboflavin was eluted in the third fraction with 20% acetonitrile. This new method uses a traditional sample homogenization of egg tissue to extract thiamine compounds into 2% trichlororacetic acid solution; an inexpensive, commercially available SPE column; small amounts of sample (0.5-1 g); microliter volumes of solvents per sample; a traditional, relatively nonhazardous, oxidation of thiamine compounds to fluorescent thiochromes; and an ultraviolet-visible-wavelength-filter fluorometer for the measurements. ?? Copyright by the American Fisheries Society 2005.
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
Baigorri, F; de Monte, A; Blanch, L; Fernández, R; Vallés, J; Mestre, J; Saura, P; Artigas, A
1994-11-01
To study the effect of positive end-expiratory pressure (PEEP) on right ventricular hemodynamics and ejection fraction in patients with chronic obstructive pulmonary disease and positive alveolar pressure throughout expiration by dynamic hyperinflation (auto-PEEP). Open, prospective, controlled trial. General intensive care unit of a community hospital. Ten patients sedated and paralyzed with an acute exacerbation of chronic obstructive pulmonary disease undergoing mechanical ventilation. Insertion of a pulmonary artery catheter modified with a rapid response thermistor and a radial arterial catheter. PEEP was then increased from 0 (PEEP 0) to auto-PEEP level (PEEP = auto-PEEP) and 5 cm H2O above that (PEEP = auto-PEEP +5). At each level of PEEP, airway pressures, flow and volume, hemodynamic variables (including right ventricular ejection fraction by thermodilution technique), and blood gas analyses were recorded. The mean auto-PEEP was 6.6 +/- 2.8 cm H2O and the total PEEP reached was 12.2 +/- 2.4 cm H2O. The degree of lung inflation induced by PEEP averaged 145 +/- 87 mL with PEEP = auto-PEEP and 495 +/- 133 mL with PEEP = auto-PEEP + 5. The PEEP = auto-PEEP caused a right ventricular end-diastolic pressure increase, but there was no other significant hemodynamic change. With PEEP = auto-PEEP + 5, there was a significant increase in intravascular pressures; this amount of PEEP reduced cardiac output (from 4.40 +/- 1.38 L/min at PEEP 0 to 4.13 +/- 1.48 L/min; p < .05). The cardiac output reduction induced by PEEP = auto-PEEP + 5 was > 10% in only five cases and this group of patients had significantly lower right ventricular volumes than the group with less cardiac output variation (right ventricular end-diastolic volume: 64 +/- 9 vs. 96 +/- 26 mL/m2; right ventricular end-systolic volume: 38 +/- 6 vs. 65 +/- 21 mL/m2; p < .05) without significant difference in the other variables that were measured. Neither right ventricular ejection fraction nor right ventricle volumes changed as PEEP increased, but there were marked interpatient differences and also pronounced changes in volume between stages in individual patients. In the study conditions, PEEP application up to values approaching auto-PEEP did not result in the impairment of right ventricular hemodynamics, while higher levels reduced cardiac output in selected patients.
Computed 88% TCP dose for SBRT of NSCLC from tumour hypoxia modelling
NASA Astrophysics Data System (ADS)
Ruggieri, Ruggero; Stavreva, Nadejda; Naccarato, Stefania; Stavrev, Pavel
2013-07-01
In small NSCLC, 88% local control at three years from SBRT was reported both for schedule (20-22 Gy ×3) (Fakiris et al 2009 Int. J. Radiat. Oncol. Biol. Phys. 75 677-82), actually close to (18-20 Gy ×3) if density correction is properly applied, and for schedules (18 Gy ×3) and (11 Gy ×5) (Palma et al 2012 Int. J. Radiat. Oncol. Biol. Phys. 82 1149-56). Here, we compare our computed iso-TCP = 88% dose per fraction (d88) for three and five fractions (n) with such clinically adopted ones. Our TCP model accounts for tumour repopulation, at rate λ (d-1), reoxygenation of chronic hypoxia (ch-), at rate a (d-1) and fluctuating oxygenation of acute hypoxia (ah-), with hypoxic fraction (C) of the acutely hypoxic fractional volume (AHF). Out of the eight free parameters whose values we had fitted to in vivo animal data (Ruggieri et al 2012 Int. J. Radiat. Oncol. Biol. Phys. 83 1603-8), we here maintained (a(d-1), C, OERch, OERah/OERch, AHF, CHF) = (0.026, 0.17, 1.9, 2.2, 0.033, 0.145) while rescaling the initial total number of clonogens (No) according to the ratio of NSCLC on animal median tumour volumes. From the clinical literature, the usually assumed (αo/βo(Gy), λ(d-1)) = (10, 0.217) for the well-oxygenated (o-)cells were taken. By normal (lognormal) random sampling of all parameter values over their 95% C.I., the uncertainty on present d88(n) computations was estimated. Finally, SBRT intra-tumour dose heterogeneity was simulated by a 1.3 dose boost ratio on 50% of tumour volume. Computed d88(±1σ) were 19.0 (16.3; 21.7) Gy, for n = 3; 10.4 (8.7; 12.1) Gy, for n = 5; 5.8 (5.2; 6.4) Gy, for n = 8; 4.0 (3.6; 4.3) Gy, for n = 12. Furthermore, the iso-TCP = 88% total dose, D88(n) = d88(n)*n, exhibited a relative minimum around n = 8. Computed d88(n = 3, 5) are strictly consistent with the clinically adopted ones, which confirms the validity of LQ-model-based TCP predictions at the doses used in SBRT if a highly radioresistant cell subpopulation is properly modelled. The computed minimum D88(n) around n = 8 suggests the adoption of 6 ≤ n ≤ 10 instead of n = 3 in SBRT of small NSCLC tumours.
Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss.
Lautenbach, A; Wernecke, M; Riedel, N; Veigel, J; Yamamura, J; Keller, S; Jung, R; Busch, P; Mann, O; Knop, F K; Holst, J J; Meier, J J; Aberle, J
2018-05-16
Obesity has been shown to trigger adaptive increases in pancreas parenchymal and fat volume. Consecutively, pancreatic steatosis may lead to beta-cell dysfunction. However, it is not known, whether the pancreatic tissue components decrease with weight loss and pancreatic steatosis is reversible following RYGB. Therefore, the objective of the study was to investigate the effects of RYGB-induced weight loss on pancreatic volume and glucose homeostasis. 11 patients were recruited in the Obesity Centre of the University Medical Centre Hamburg-Eppendorf. Before and 6 months after RYGB, total GLP-1 levels were measured during OGTT. To assess changes in visceral adipose tissue and pancreatic volume, MRI was performed. Measures of glucose homeostasis and insulin indices were assessed. Fractional beta-cell area was estimated by correlation with the C-peptide-to-glucose ratio, beta-cell mass was calculated by the product of beta-cell area and pancreas parenchymal weight. Pancreas volume decreased from 83.8 (75.7-92.0) to 70.5 (58.8-82.3) cm 3 [mean (95% CI), p=0.001]. The decrease in total volume was associated with a significant decrease in fat volume. Fasting insulin and C-peptide were lower post RYGB. HOMA-IR levels decreased, whereas insulin sensitivity increased (p=0.03). This was consistent with a reduction in the estimated beta-cell area and mass. Following RYGB, pancreatic volume and steatosis adaptively decreased to "normal" levels with accompanying improvement in glucose homeostasis. Moreover, obesity-driven beta-cell expansion seems to be reversible, however future studies must define a method to more accurately estimate functional beta-cell mass to increase our understanding of glucose homeostasis after RYGB. This article is protected by copyright. All rights reserved.
Mazur, Peter; Pinn, Irina L.; Kleinhans, F.W.
2009-01-01
We have previously reported [11] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12% respectively even though the IIF temperatures varied from −14° to −41°C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratio of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20°C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred as noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5 to 8% for both glycerol and EG even though the IIF temperatures vary from −14°C to −50°C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: Substantially greater than isotonic in some solution; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature. PMID:17379206
Mazur, Peter; Pinn, Irina L; Kleinhans, F W
2007-04-01
We have previously reported [Cryobiology 51 (2005) 29-53] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12%, respectively, even though the IIF temperatures varied from -14 to -41 degrees C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratios of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20 degrees C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred was noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5-8% for both glycerol and EG even though the IIF temperatures vary from -14 to -50 degrees C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: substantially greater than isotonic in some solutions; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp; Department of Radiology, Osaka University Hospital, Suita, Osaka; Yoshioka, Yasuo
2013-11-01
Purpose: The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Methods and Materials: Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CTmore » value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. Results: The DSC of all treatment fractions of 8 patients was improved from 0.75±0.04 (mean ±SD) to 0.90 ±0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R{sup 2}=0.18±0.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R{sup 2}=0.61±0.16). Conclusion: We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume.« less
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Kar, Manoranjan
2018-05-01
Novel ceramic-polymer nanocomposites have great potential for electrical energy storage applications due to its high energy storage density. In the present work, BNT and PVDF based flexible polymer nanocomposites (BNT-PVDF) with different volume fraction (ϕ = 0, 5, 10, 15) were fabricated by solution casting method. Enhancement in beta phase of PVDF polymer matrix with the volume fraction (ϕ = 5, 10, 15) of BNT has been confirmed by X-ray diffraction (XRD) technique as well as Fourier transform infrared (FTIR) spectroscopy analysis. The enhancement of β phase increases as compared to (α) phases with volume fraction (ϕ) of nanofiller (BNT) in the matrix (PVDF) due to internal stress at the interface as well as structural modification of PVDF matrix. BNT-PVDF nanocomposites (with ϕ=10) showed a high dielectric constant (ɛr ≈ 78) relative to pure PVDF (ɛr ≈ 10) at 100 Hz. In addition to this, it exhibits relaxor type ferroelectric behavior with energy storage efficiency up to 77% for the volume fraction (ϕ) of 10.
Twinning and martensite in a 304 austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yongfeng; Li, Xi; Sun, Xin
2012-08-30
The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyondmore » that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Lavender, Curt
2015-05-08
Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...
2017-11-08
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Effect of metal complex formation on the potential of organic aerosols as cloud condensation nuclei
NASA Astrophysics Data System (ADS)
Furukawa, T.; Takahashi, Y.
2010-12-01
Secondary organic aerosols (SOA) play a key role on the solar radiation balance in troposphere, since SOA can act as cloud condensation nuclei (CCN) due to its high hygroscopic nature. Oxalic acid is one of the most dominant components of SOA, which has cooling effects of the earth by acting as CCN. However, it is uncertain whether the oxalic acid can exist as free oxalic acid or metal-oxalate complexes in aerosols, even if there is a largedifference in their solubilities into water. Consequently, XAFS measurement was conducted to demonstrate the presence of metal-oxalate complexes. Size fractionated aerosol samples were collected in Tsukuba (located at northeast about 60 km from Tokyo) using a low-volume Andersen-type air sampler. The sampler had eight stages and a back-up filter. The sampling was conducted during winter and summer in 2002. Calcium oxalate was observed in finer particles in each period from Ca K-edge XANES, and its fractions among total Ca were approximately 20%. Similarly,, Zn oxalate was also detected in finer particles from Zn K-edge XANES and EXAFS. The [Zn-oxalate] / [Zn]total ratio in each period clearly increased with the decrease in the particle diameter. This result revealed that Zn-oxalate was formed in the aqueous phase at particle surfaces or in cloud processing. In other words, Zn-oxalate was abundant at the particle surface, resulting from the increase in the [surface]/[bulk] ratio with decreasing particle size. Based on (i) total concentrations of oxalate, Ca, and Zn determined by ion-chromatography and ICP-AES analyses and (ii) Ca- and Zn- oxalate fractions obtained by XAFS, we determined the fraction of metal-oxalate complexes among total oxalate in aerosols. In winter, Ca- and Zn- oxalate fractions reached about 60% of total oxalate in the ranges of 1.1-2.1 μm and 0.65-1.1 μm, while the value was about 60-80% in the same particle size range in summer. On the other hand, Ca- and Zn- oxalates are highly insoluble, showing that the complexes cannot act as CCN. Therefore, the ability of oxalic acid as CCN is needed to be reconsidered, because most of oxalic acid in aerosols exists as metal-oxalate complexes as shown by XAFS spectroscopy in this study.
Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M
2018-05-17
Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kälin, Pascal S; Crawford, Rebecca J; Marcon, Magda; Manoliu, Andrei; Bouaicha, Samy; Fischer, Michael A; Ulbrich, Erika J
2018-04-23
We aimed to provide mean values for fat-fraction and volume for full-length bilateral rotator cuff and deltoid muscles in asymptomatic adults selected on the basis of their good musculoskeletal and systemic health, and to understand the influence of gender, age, and arm dominance. Seventy-six volunteers aged 20 to 60 years who were screened for normal BMI and high general health were included in the study. MRI was performed at 3 Tesla using three-point DIXON sequences. Volume and fat-signal fraction of the rotator cuff muscles and the deltoid muscle were determined with semi-automated segmentation of entire muscle lengths. Differences according to age, gender, and handedness per muscle were evaluated. Fat-signal fractions were comparable between genders (mean ± 2 SD, 95% CI, women 7.0 ± 3.0; 6.8-7.2%, men 6.8 ± 2.7; 6.7-7.0%) but did not show convincing changes with age. Higher shoulder muscle volume and lower fat-signal fraction in the dominant arm were shown for teres minor and deltoid (p < 0.01) with similar trends shown for the other rotator cuff muscles. Bilateral fat-signal fractions and volumes based on entire length shoulder muscles in asymptomatic 20-60 year old adults may provide reference for clinicians. Differences shown according to arm dominance should be considered and may rationalize the need for bilateral imaging in determining appropriate management.
Analyzing near infrared scattering from human skin to monitor changes in hematocrit
NASA Astrophysics Data System (ADS)
Chaiken, Joseph; Deng, Bin; Goodisman, Jerry; Shaheen, George; Bussjager, R. J.
2012-01-01
The leading preventable cause of death, world-wide, civilian or military, for all people between the ages of 18-45 is undetected internal hemorrhage. Autonomic compensation mechanisms mask changes such as e.g. hematocrit fluctuations that could give early warning if only they could be monitored continuously with reasonable degrees of precision and relative accuracy. Probing tissue with near infrared radiation (NIR) simultaneously produces remitted fluorescence and Raman scattering (IE) plus Rayleigh/Mie light scattering (EE) that noninvasively give chemical and physical information about the materials and objects within. We model tissue as a three-phase system: plasma and red blood cell (RBC) phases that are mobile and a static tissue phase. In vivo, any volume of tissue naturally experiences spatial and temporal fluctuations of blood plasma and RBC content. Plasma and RBC fractions may be discriminated from each other on the basis of their physical, chemical and optical properties. Thus IE and EE from NIR probing yield information about these fractions. Assuming there is no void volume in viable tissue, or that void volume is constant, changes in plasma and RBC volume fractions may be calculated from simultaneous measurements of the two observables, EE and IE. In a previously published analysis we showed the underlying phenomenology but did not provide an algorithm for calculating volume fractions from experimental data. Here we present a simple analysis that allows continuous monitoring of fluid fraction and hematocrit (Hct) changes by measuring IE and EE, and apply it to some experimental in vivo measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai
Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less
Fractures in geriatric mice show decreased callus expansion and bone volume.
Lopas, Luke A; Belkin, Nicole S; Mutyaba, Patricia L; Gray, Chancellor F; Hankenson, Kurt D; Ahn, Jaimo
2014-11-01
Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n=104; young adult) and 25-month-old (n=107; which we defined as geriatric, and are approximately equivalent to 70-85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08±11.53 mm3 versus 43.19±18.39 mm3; p=0.009), density (mean bone mineral density at 20 days postfracture, 171.14±64.20 mg hydroxyapatite [HA]/cm3 versus 210.79±37.60 mg HA/cm3; p=0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279±46,755 square pixels versus 302,167±137,806 square pixels; p=0.013) and bone content (mean bone volume at 20 days postfracture, 11.68±3.18 mm3 versus 22.34±10.59 mm3; p<0.001) compared with the young adult mice. However, the amount of cartilage and bone relative to the total callus size was similar between the adult and geriatric mice (mean bone volume fraction at 25 days postfracture, 0.48±0.10 versus 0.50±0.13; p=0.793), and the relative expression of chondrogenic (mean fold change in SOX9 at 10 days postfracture, 135+25 versus 90±52; p=0.221) and osteogenic genes (mean fold change in osterix at 20 days postfracture, 22.2±5.3 versus 18.7±5.2; p=0.324) was similar. Analysis of mesenchymal cell proliferation in the geriatric mice relative to adult mice showed a decrease in proliferation (mean percent of undifferentiated mesenchymal cells staining proliferating cell nuclear antigen [PCNA] positive at 10 days postfracture, 25%±6.8% versus 42%±14.5%; p=0.047). Our findings suggest that the molecular program of fracture healing is intact in geriatric mice, as it is in geriatric humans, but callus expansion is reduced in magnitude. Our study showed altered healing capacity in a relevant animal model of geriatric fracture healing. The understanding that callus expansion and bone volume are decreased with aging can help guide the development of targeted therapeutics for these difficult to heal fractures.
Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves
NASA Astrophysics Data System (ADS)
Salamah, N.; Ningsih, D. S.
2017-11-01
Tabernaemontana sphaerocarpa Bl. (Jembirit) is one of the Apocynaceae family plants containing alkaloid compound. Traditionally, it is used as an anti-inflammatory medicine. It is found to have a new bisindole alkaloid compound that shows a potent cytotoxic activity in human cancer. This study aimed to know the total alkaloid content in some fractions of ethanolic extract of T. sphaerocarpa Bl. leaf powder was extracted by maceration method in 70% ethanol solvent. Then, the extract was fractionated in a separatory funnel using water, ethyl acetate, and hexane. The total alkaloid content in each fraction was analyzed with visible spectrophotometric methods based on the reaction with Bromocresol Green (BCG). The total alkaloids in water fraction and ethyl acetate fraction were (0.0312±0.0009)% and (0.0281±0.0014)%, respectively. Meanwhile, the total alkaloid content in hexane was not detected. The statistical analysis, performed in SPSS, resulted in a significant difference between the total alkaloids in water fraction and ethyl acetate fraction. The total alkaloid in water fraction of T. sphaerocarpa Bl. was higher than the one in ethyl acetate fraction.
NASA Astrophysics Data System (ADS)
Prabhu, T. Ram
2016-08-01
A wear model is developed based on the discrete lattice spring-mass approach to study the effects of particle volume fraction, size, and stiffness on the wear resistance of particle reinforced composites. To study these effects, we have considered three volume fractions (10%, 20% and 30%), two sizes (10 × 10 and 4 × 4 sites), and two different stiffness of particles embedded in the matrix in a regular pattern. In this model, we have discretized the composite system (400 × 100 sites) into the lumped masses connected with interaction spring elements in two dimensions. The interaction elements are assumed as linear elastic and ideal plastic under applied forces. Each mass is connected to its first and second nearest neighbors by springs. The matrix and particles sites are differentiated by choosing the different stiffness values. The counter surface is simulated as a rigid body that moves on the composite material at a constant sliding speed along the horizontal direction. The governing equations are formed by equating the spring force between the pair of sites given by Hooke’s law plus external contact forces and the force due to the motion of the site given by the equation of motion. The equations are solved for the plastic strain accumulated in the springs using an explicit time stepping procedure based on a finite difference form of the above equations. If the total strain accumulated in the spring elements connected to a lump mass site exceeds the failure strain, the springs are considered to be broken, and the mass site is removed or worn away from the lattice and accounts as a wear loss. The model predicts that (i) increasing volume fraction, reducing particle size and increasing particle stiffness enhance the wear resistance of the particle reinforced composites, (ii) the particle stiffness is the most significant factor affecting the wear resistance of the composites, and (iii) the wear resistance reduced above the critical volume fraction (Vc), and Vc increases with increasing particle size. Finally, we have qualitatively compared the model results with our previously published experimental results to prove the effectiveness of the model to analysis the complex wear systems.
NASA Astrophysics Data System (ADS)
Ritter, Ann M.; Henry, Michael F.; Savage, Warren F.
1984-07-01
Nitronic 50 and Nitronic 50W, two nitrogen-strengthened stainless steels, were heat treated over a wide range of temperatures, and the compositions of the ferrite and austenite at each temperature were measured with analytical electron microscopy techniques. The compositional data were used to generate the (γ + δ phase field on a 58 pct Fe vertical section. Volume fractions of ferrite and austenite were calculated from phase chemistries and compared with volume fractions determined from optical micrographs. Weld solidification modes were predicted by reference to the Cr and Ni contents of each alloy, and the results were compared with predictions based on the ratios of calculated Cr and Ni equivalents for the alloys. Nitronic 50, which contained ferrite and austenite at the solidus temperature of 1370 °C, solidified through the eutectic triangle, and the weld microstructure was similar to that of austenitic-ferritic solidification. Nitronic 50W was totally ferritic at 1340 °C and solidified as primary delta ferrite. During heat treatments, Nitronic 50 and Nitronic 50W precipitated secondary phases, notably Z-phase (NbCrN), sigma phase, and stringered phases rich in Mn and Cr.
Backe, Will J.; Ort, Christoph; Brewer, Alex J.; Field, Jennifer A.
2014-01-01
A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrices using direct large-volume injection (LVI) high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 88 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1-hr composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated five to seven percent of the total androstenedione mass. PMID:21391574
Backe, Will J; Ort, Christoph; Brewer, Alex J; Field, Jennifer A
2011-04-01
A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrixes using direct large-volume injection (LVI) high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 87.6 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1 h composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg/h. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated 5 to 7% of the total androstenedione mass.
Influence of a magnetic field during directional solidification of MAR-M 246 + Hf superalloy
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Alter, Wendy; Schmidt, Dianne
1991-01-01
An area that has been almost totally overlooked in the optimization of properties in directionally solidified superalloys is the control of microstructural features through the application of a magnetic field during solidification. The influence of a magnetic field on the microstructural features of a nickel-base superalloys is investigated. Studies were performed on the dendritic MAR-M 246+Hf alloy, which was solidified under both a 5 K gauss magnetic field and under no-applied-field conditions. The possible influences of the magnetic field on the solidification process were observed by studying variations in microstructural features including volume fraction, surface area, number, and shape of the carbide particles. Stereological factors analyzed also included primary and secondary dendrite arm spacing and the volume fraction of the interdendritic eutectic constituent. Microprobe analysis was performed to determine the chemistry of the carbides, dendrites, and interdendritic constituents, and how it varied between field and no-field solidification samples. Experiments involving periodic application and removal of the magnetic field were also performed in order to permit a comparison with structural variations observed in a MAR-M 246+Hf alloy solidified during KC-135 high-g, low-g maneuvers.
Lacrimal Gland Radiosensitivity in Uveal Melanoma Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Karin; Nowak, Peter J.C.M.; Naus, Nicole
2009-06-01
Purpose: To find a dose-volume effect for inhomogeneous irradiated lacrimal glands. Methods and Materials: Between 1999 and 2006, 72 patients (42 men and 30 women) were treated with fractionated stereotactic radiotherapy in a prospective, nonrandomized clinical trial (median follow-up, 32 months). A total dose of 50 Gy was given on 5 consecutive days. The mean of all Schirmer test results obtained {>=}6 months after treatment was correlated with the radiation dose delivered to the lacrimal gland. Also, the appearance of dry eye syndrome (DES) was related to the lacrimal gland dose distribution. Results: Of the 72 patients, 17 developed amore » late Schirmer value <10 mm; 9 patients developed DES. A statistically significant relationship was found between the received median dose in the lacrimal gland vs. reduced tear production (p = 0.000) and vs. the appearance of DES (p = 0.003), respectively. A median dose of 7 Gy/fraction to the lacrimal gland caused a 50% risk of low Schirmer results. A median dose of 10 Gy resulted in a 50% probability of DES. Conclusion: We found a clear dose-volume relationship for irradiated lacrimal glands with regard to reduced tear production and the appearance of DES.« less
BaTiO3/PVDF Nanocomposite Film with High Energy Storage Density
NASA Astrophysics Data System (ADS)
Wang, Xiaohui
2016-03-01
A gradated multilayer BaTiO3/poly(vinylidenefluoride) thin film structure is presented to achieve both a higher breakdown strength and a superior energy-storage capability. Key to the process is the sequential deposition of uniform dispersions of the single component source, which generate a blended PVDF-BTO-PVDF structure prior to full evaporation of solvent, and thermal treatment of the dielectric. The result is like sandwich structure with partial 0-3 character. The central layer designed to provide the high electric displacement, is composed of high volume fraction 6-10 nm BTO nanocrystals produced by a TEG-sol method. The outer layers of the structure are predominantly PVDF, with a significantly lower volume fraction of BTO, taking advantage of the higher dielectric strength for pure PVDF at the electrode-nanocomposite interface. The film is mechanically flexible, and can be removed from the substrate, with total thicknesses in the range 1.2 - 1.5 μm. Parallel plate capacitance devices improved dielectric performances, compared to reported values for BTO-PVDF 0-3 nanocomposites, with a maximal discharged energy density of 19.4J/cm3 and dielectric breakdown strengths of up to 495 kV/mm.
NASA Astrophysics Data System (ADS)
Han, Tongcheng
2018-07-01
Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.
Akhtar, Ali; Sarmah, Ajit K
2018-03-01
In this study, biochar, a carbonaceous solid material produced from three different waste sources (poultry litter, rice husk and pulp and paper mill sludge) was utilized to replace cement content up to 1% of total volume and the effect of individual biochar mixed with cement on the mechanical properties of concrete was investigated through different characterization techniques. A total of 168 samples were prepared for mechanical testing of biochar added concrete composites. The results showed that pulp and paper mill sludge biochar at 0.1% replacement of total volume resulted in compressive strength close to the control specimen than the rest of the biochar added composites. However, rice husk biochar at 0.1% slightly improved the splitting tensile strength with pulp and papermill sludge biochar produced comparable values. Biochar significantly improved the flexural strength of concrete in which poultry litter and rice husk biochar at 0.1% produced optimum results with 20% increment than control specimens. Based on the findings, we conclude that biochar has the potential to improve the concrete properties while replacing the cement in minor fractions in conventional concrete applications. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence
2008-11-01
Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife.more » Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemer, B; Hubbard, L; Groves, E
2015-06-15
Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volumemore » CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizumoto, Masashi; Tsuboi, Koji, E-mail: tsuboi@pmrc.tsukuba.ac.j; Department of Neurosurgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki
2010-05-01
Purpose: To evaluate the safety and efficacy of postoperative hyperfractionated concomitant boost proton radiotherapy with nimustine hydrochloride for supratentorial glioblastoma multiforme (GBM). Methods and Materials: Twenty patients with histologically confirmed supratentorial GBM met the following criteria: (1) a Karnofsky performance status of >=60; (2) the diameter of the enhanced area before radiotherapy was <=40 cm; and (3) the enhanced area did not extend to the brain stem, hypothalamus, or thalamus. Magnetic resonance imaging (MRI) T{sub 2}-weighted high area (clinical tumor volume 3 [CTV3]) was treated by x-ray radiotherapy in the morning (50.4 Gy in 28 fractions). More than 6 hoursmore » later, 250 MeV proton beams were delivered to the enhanced area plus a 10-mm margin (CTV2) in the first half of the protocol (23.1 GyE in 14 fractions) and to the enhanced volume (CTV1) in the latter half (23.1 GyE in 14 fraction). The total dose to the CTV1 was 96.6 GyE. Nimustine hydrochloride (80 mg/m2) was administered during the first and fourth weeks. Results: Acute toxicity was mainly hematologic and was controllable. Late radiation necrosis and leukoencephalopathy were each seen in one patient. The overall survival rates after 1 and 2 years were 71.1% and 45.3%, respectively. The median survival period was 21.6 months. The 1- and 2-year progression-free survival rates were 45.0% and 15.5%, respectively. The median MRI change-free survival was 11.2 months. Conclusions: Hyperfractionated concomitant boost proton radiotherapy (96.6 GyE in 56 fractions) for GBM was tolerable and beneficial if the target size was well considered. Further studies are warranted to pursue the possibility of controlling border region recurrences.« less
Emerging Indications for Fractionated Gamma Knife Radiosurgery
McTyre, Emory; Helis, Corbin A.; Farris, Michael; Wilkins, Lisa; Sloan, Darrell; Hinson, William H.; Bourland, J. Daniel; Dezarn, William. A.; Munley, Michael T.; Watabe, Kounosuke; Xing, Fei; Laxton, Adrian W.; Tatter, Stephen B.; Chan, Michael D.
2016-01-01
BACKGROUND Gamma Knife radiosurgery (GKRS) allows for the treatment of intracranial tumors with a high degree of dose conformality and precision. There are, however, certain situations wherein the dose conformality of GKRS is desired, but single session treatment is contraindicated. In these situations, a traditional pin-based GKRS head frame cannot be used, as it precludes fractionated treatment. OBJECTIVE To report our experience in treating patients with fractionated GKRS using a relocatable, noninvasive immobilization system. METHODS Patients were considered candidates for fractionated GKRS if they had one or more of the following indications: a benign tumor >10 cc in volume or abutting the optic pathway, a vestibular schwannoma with the intent of hearing preservation, or a tumor previously irradiated with single fraction GKRS. The immobilization device used for all patients was the Extend system (Leksell Gamma Knife Perfexion, Elekta, Kungstensgatan, Stockholm). RESULTS We identified 34 patients treated with fractionated GKRS between August 2013 and February 2015. There were a total of 37 tumors treated including 15 meningiomas, 11 pituitary adenomas, 6 brain metastases, 4 vestibular schwannomas, and 1 hemangioma. At last follow-up, all 21 patients treated for perioptic tumors had stable or improved vision and all 4 patients treated for vestibular schwannoma maintained serviceable hearing. No severe adverse events were reported. CONCLUSION Fractionated GKRS was well-tolerated in the treatment of large meningiomas, perioptic tumors, vestibular schwannomas with intent of hearing preservation, and in reirradiation of previously treated tumors. PMID:28536486
Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana
2011-06-01
It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.
Hao, Tian
2015-09-14
The underlying relationships among viscosity equations of glass liquids and colloidal suspensions are explored with the aid of free volume concept. Viscosity equations of glass liquids available in literature are focused and found to have a same physical basis but different mathematical expressions for the free volume. The glass transitions induced by temperatures in glass liquids and the percolation transition induced by particle volume fractions in colloidal suspensions essentially are a second order phase transition: both those two transitions could induce the free volume changes, which in turn determines how the viscosities are going to change with temperatures and/or particle volume fractions. Unified correlations of the free volume to both temperatures and particle volume fractions are thus proposed. The resulted viscosity equations are reducible to many popular viscosity equations currently widely used in literature; those equations should be able to cover many different types of materials over a wide temperature range. For demonstration purpose, one of the simplified versions of those newly developed equations is compared with popular viscosity equations and the experimental data: it can well fit the experimental data over a wide temperature range. The current work reveals common physical grounds among various viscosity equations, deepening our understanding on viscosity and unifying the free volume theory across many different systems.
NASA Astrophysics Data System (ADS)
Mora, A.; Skurtys, O.; Osorio, F.
2015-04-01
The rheological properties of high molecular weight POE and CMC suspensions by adding micro-metric solid particles such as fibers or spheres were studied. The volume fraction, Φ, was varied between 0 and 0.4. Their rheological properties were obtained after fitting a Cross model. For POE suspending fluid with spherical particle, the behavior of the normalized steady shear viscosity, μ/μ0, as function of the fraction volume followed a Thomas model. However, for CMC suspensions, μ/μ0 seems to be lineal with Φ. For a pure fluid or a suspension with Φ = 0; 2, the suspension presented an elastic behavior whereas it was observed a viscous behavior when the volume fraction was increased.
Harbaugh, Calista M; Shlykov, Maksim A; Tsuchida, Ryan E; Holcombe, Sven A; Hirschl, Jake; Wang, Stewart C; Ehrlich, Peter F
2015-06-01
Motor vehicle crashes are the leading cause of injury-related mortality in children, with a higher rate of multiorgan injuries than in adults. This may be related to increased solid organ volume relative to abdominal cavity and decreased protection of an underdeveloped cartilaginous rib cage in young children. To date, these anatomic relationships have not been fully described. Our study used analytic morphomics to obtain precise measures of the pediatric liver, spleen, kidneys, and ribs. This pilot study included 215 trauma patients (aged 0-18 years) with anonymized computed tomography (CT) scans. Liver, spleen, and kidney volumes were modeled using semiautomatic algorithms (MATLAB 2013a, MathWorks Inc., Natick, MA). Thirty-one scans were adequate to model the rib cage. Pearson's r was used to correlate absolute organ volume, fractional organ volume, and organ exposure with age and weight. Spleen, right and left kidney, and liver volumes increased with age and weight (p < 0.01). Right/left kidney and liver fractional volumes decreased with age (p < 0.01), whereas spleen fractional volume remained relatively constant. Exposed surface area of the liver only significantly decreased with age in the anterior (p < 0.01), right (p < 0.01), and posterior views (p = 0.02). With this study, we have demonstrated the ability to model solid organ and rib cage anatomy of children using cross-sectional imaging. In younger children, there may be a decrease in fractional organ volume and increase in liver surface exposure, although analysis of a larger sample size is warranted. In the future, this information may be used to improve the design of safety restraints in motor vehicles.
Mallick, Supriya; Kunhiparambath, Haresh; Gupta, Subhash; Benson, Rony; Sharma, Seema; Laviraj, M A; Upadhyay, Ashish Datt; Julka, Pramod Kumar; Sharma, Dayanand; Rath, Goura Kishor
2018-06-23
Maximal safe surgical resection followed by adjuvant chemoradiation has been standard for newly diagnosed glioblastoma multiforme (GBM). Hypofractionated accelerated radiotherapy (HART) has the potential to improve outcome as it reduces the overall treatment time and increases the biological effective dose. Between October 2011 and July 2017, a total of 89 newly diagnosed GBM patients were randomized to conventional fractionated radiotherapy (CRT) or HART. Radiotherapy was delivered in all patients with a three-dimensional conformal radiotherapy technique in CRT arm (60 Gy in 30 fractions over 6 weeks @ 2 Gy/per fraction) or simultaneous integrated boost intensity modulated radiotherapy in HART arm (60 Gy in 20 fractions over 4 weeks @ 3 Gy/per fraction to high-risk planning target volume (PTV) and 50 Gy in 20 fractions over 4 weeks @ 2.5 Gy/per fraction to low-risk PTV). The primary endpoint of the trial was overall survival (OS). After a median follow-up of 11.4 months (Range: 2.9-42.5 months), 26 patients died and 39 patients had progression of the disease. Median OS for the entire cohort was 23.4 months. Median OS in the CRT and HART arms were 18.07 months (95% CI 14.52-NR) and 25.18 months (95% CI 12.89-NR) respectively, p = 0.3. Median progression free survival (PFS) for the entire cohort was 13.5 months (Range: 11.7-15.7 months). In multivariate analysis patients younger than 40 years of age, patients with a gross total resection of tumor and a mutated IDH-1 had significantly better OS. PFS was significantly better for patients with a gross total resection of tumor and a mutated IDH-1. All patients included in the trial completed the planned course of radiation. Only two patients required hospital admission for features of raised intracranial tension. One patient in the HART arm required treatment interruption. HART is comparable to CRT in terms of survival outcome. HART arm had no excess treatment interruption and minimal toxicity. Dose escalation, reduction in overall treatment time, is the advantages with use of HART.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Alexander; Gao Mingcheng; Sinacore, James
2009-09-01
Purpose: To compare the dose distribution between customized planning (CP) and adopting a single plan (SP) in multifractionated high-dose-rate brachytherapy and to establish predictors for the necessity of CP in a given patient. Methods and Materials: A total of 50 computed tomography-based plans for 10 patients were evaluated. Each patient had received 6 Gy for five fractions. The clinical target volume and organs at risk (i.e., rectum, bladder, sigmoid, and small bowel) were delineated on each computed tomography scan. For the SP approach, the same dwell position and time was used for all fractions. For the CP approach, the dwellmore » position and time were reoptimized for each fraction. Applicator position variation was determined by measuring the distance between the posterior bladder wall and the tandem at the level of the vaginal fornices. Results: The organs at risk D{sub 2cc} (dose to 2 cc volume) was increased with the SP approach. The dose variation was statistically similar between the tandem and ring and tandem and ovoid groups. The bladder D{sub 2cc} dose was 81.95-105.42 Gy{sub 2} for CP and 82.11-122.49 Gy{sub 2} for SP. In 5 of the 10 patients, the bladder would have been significantly overdosed with the SP approach. The variation of the posterior bladder wall distance from that in the first fraction was correlated with the increase in the bladder D{sub 2cc} (SP/CP), with a correlation coefficient of -0.59. Conclusion: Our results support the use of CP instead of the SP approach to help avoid a significant overdose to the bladder. This is especially true for a decrease in the posterior wall distance of {>=}0.5 cm compared with that in the first fraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Daniel J., E-mail: dkrauss@beaumont.edu; Ye, Hong; Martinez, Alvaro A.
Purpose: To report the toxicity and preliminary clinical outcomes of a prospective trial evaluating 19-Gy, single-fraction high-dose-rate (HDR) brachytherapy for men with low- and intermediate-risk prostate cancer. Methods and Materials: A total of 63 patients were treated according to an institutional review board-approved prospective study of single-fraction HDR brachytherapy. Eligible patients had tumor stage ≤T2a, prostate-specific antigen level ≤15 ng/mL, and Gleason score ≤7. Patients with a prostate gland volume >50 cm{sup 3} and baseline American Urologic Association symptom score >12 were ineligible. Patients underwent transrectal ultrasound-guided transperineal implantation of the prostate, followed by single-fraction HDR brachytherapy. Treatment was delivered using {sup 192}Irmore » to a dose of 19 Gy prescribed to the prostate, with no additional margin applied. Results: Of the 63 patients, 58 had data available for analysis. Five patients had withdrawn consent during the follow-up period. The median follow-up period was 2.9 years (range 0.3-5.2). The median age was 61.4 years. The median gland volume at treatment was 34.8 cm{sup 3}. Of the 58 patients, 91% had T1 disease, 71% had Gleason score ≤6 (29% with Gleason score 7), and the median pretreatment prostate-specific antigen level was 5.1 ng/mL. The acute and chronic grade 2 genitourinary toxicity incidence was 12.1% and 10.3%, respectively. No grade 3 urinary toxicity occurred. No patients experienced acute rectal toxicity grade ≥2, and 2 experienced grade ≥2 chronic gastrointestinal toxicity. Three patients experienced biochemical failure, yielding a 3-year cumulative incidence estimate of 6.8%. Conclusions: Single-fraction HDR brachytherapy is well-tolerated, with favorable preliminary biochemical and clinical disease control rates.« less
Coburn-Litvak, P S; Tata, D A; Gorby, H E; McCloskey, D P; Richardson, G; Anderson, B J
2004-01-01
Corticosterone (CORT), the predominant glucocorticoid in rodents, is known to damage hippocampal area CA3. Here we investigate how that damage is represented at the cellular and ultrastructural level of analyses. Rats were injected with CORT (26.8 mg/kg, s.c.) or vehicle for 56 days. Cell counts were estimated with the physical disector method. Glial and mitochondrial volume fractions were obtained from electron micrographs. The effectiveness of the CORT dose used was demonstrated in two ways. First, CORT significantly inhibited body weight gain relative to vehicles. Second, CORT significantly reduced adrenal gland, heart and gastrocnemius muscle weight. Both the adrenal and gastrocnemius muscle weight to body weight ratios were also significantly reduced. Although absolute brain weight was reduced, the brain to body weight ratio was higher in the CORT group relative to vehicles, suggesting that the brain is more resistant to the effects of CORT than many peripheral organs and muscles. Consistent with that interpretation, CORT did not alter CA3 cell density, cell layer volume, or apical dendritic neuropil volume. Likewise, CORT did not significantly alter glial volume fraction, but did reduce mitochondrial volume fraction. These findings highlight the need for ultrastructural analyses in addition to cellular level analyses before conclusions can be drawn about the damaging effects of prolonged CORT elevations. The relative reduction in mitochondria may indicate a reduction in bioenergetic capacity that, in turn, could render CA3 vulnerable to metabolic challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
2015-06-15
Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) withmore » 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.« less
VandenBussche, Christopher J; Rosenthal, Dorothy L; Olson, Matthew T
2016-03-01
Adequacy assessment is one of the most controversial and overlooked components in the daily practice of cytopathology, because it is generally determined from limited samples. Because voided urine varies widely in terms of its volume and cellularity, there is little consensus about the proper role for these variables in assessing specimen adequacy. In this study, the authors explored the role of volume in voided urine specimens to determine whether it plays a role in determining adequacy for the detection of high-grade urothelial carcinoma. Voided urine specimens received at the authors' laboratory over the 9.5 years since the introduction of the Johns Hopkins Template for Reporting Urinary Cytopathology were analyzed for correlations between volume, specimen adequacy, and the diagnosis of high-grade malignancy. The same data set also was queried to determine whether a patient who provided a voided low-volume specimen could yield a higher volume specimen and thereby increase adequacy. In total, 15,731 voided urine specimens with a cumulative volume of 891 liters originating from 8594 individual patients were analyzed. Specimen adequacy increased linearly for each increment of volume submitted to the laboratory up to 30 mL, after which the correlation was nonlinear. Low-volume specimens below this cutoff also had lower fractions of specimens that were diagnosed as malignant or suspicious. Volume is an important component in the evaluation of adequacy for voided urine cytology specimens. © 2015 American Cancer Society.
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
NASA Technical Reports Server (NTRS)
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
A model of thermal conductivity for planetary soils: 2. Theory for cemented soils
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2009-09-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s-0.5 m-2 K-1) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.
Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y
2015-02-24
Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.
MO-C-17A-10: Comparison of Dose Deformable Accumulation by Using Parallel and Serial Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Z; Li, M; Wong, J
Purpose: The uncertainty of dose accumulation over multiple CT datasets with deformable fusion may have significant impact on clinical decisions. In this study, we investigate the difference of two dose summation approaches involving deformable fusion. Methods: Five patients, four external beam and one brachytherapy(BT), were chosen for the study. The BT patient was treated with CT-based HDR. The CT image sets acquired in the imageguidance process (8-11 CTs/patient) were used to determine the dose delivered to the four external beam patients. (prostate, pelvis, lung and head and neck). For the HDR patient (cervix), five CT image sets and the correspondingmore » BT plans were used. In total 44 CT datasets and RT dose/plans were imported into the image fusion software MiM (6.0.4) for analysis.For each of the five clinical cases, the dose from each fraction was accumulated into the primary CT dataset by using both Parallel and Serial approaches. The dose-volume histogram (DVH) for CTV and selected organs-at-risks (OAR) were generated. The D95(CTV), OAR(mean) and OAR(max) for the four external beam cases the D90(CTV), and the max dose to bladder and rectum for the BT case were compared. Results: For the four external beam patients, the difference in D95(CTV) were <1.2% PD between the parallel and the serial approaches. The differences of the OAR(mean) and the OAR(max ) range from 0 to 3.7% and <1% PD respectively. For the HDR patient, the dose difference for D90 is 11% PD while that of the max dose to bladder and rectum were 11.5% and 23.3% respectively. Conclusion: For external beam treatments, the parallel and serial approaches have <5% difference probably because tumor volume and OAR have less changes from fraction to fraction. For the brachytherapy case, >10% dose difference between the two approaches was observed as significant volume changes of tumor and OAR were observed among treatment fractions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhainaut, J.F.; Devaux, J.Y.; Monsallier, J.F.
1986-07-01
Continuous positive pressure ventilation is associated with a reduction in left ventricular preload and cardiac output, but the mechanisms responsible are controversial. The decrease in left ventricular preload may result exclusively from a decreased systemic venous return due to increased pleural pressure, or from an additional effect such as decreased left ventricular compliance. To determine the mechanisms responsible, we studied the changes in cardiac output induced by continuous positive pressure ventilation in eight patients with the adult respiratory distress syndrome. We measured cardiac output by thermodilution, and biventricular ejection fraction by equilibrium gated blood pool scintigraphy. Biventricular end-diastolic volumes weremore » then calculated by dividing stroke volume by ejection fraction. As positive end-expiratory pressure increased from 0 to 20 cm H/sub 2/O, stroke volume and biventricular end-diastolic volumes fell about 25 percent, and biventricular ejection fraction remained unchanged. At 20 cm H/sub 2/O positive end-expiratory pressure, volume expansion for normalizing cardiac output restored biventricular end-diastolic volumes without markedly changing biventricular end-diastolic transmural pressures. The primary cause of the reduction in left ventricular preload with continuous positive pressure ventilation appears to be a fall in venous return and hence in right ventricular stroke volume, without evidence of change in left ventricular diastolic compliance.« less
NASA Astrophysics Data System (ADS)
Johansen, Anne M.; Hoffmann, Michael R.
2003-07-01
Ambient aerosol samples were collected over the Arabian Sea during the month of March of 1997, aboard the German R/V Sonne, as part of the German Joint Global Ocean Flux Study (JGOFS) project. This is the third study in a series of analogous measurements taken over the Arabian Sea during different seasons of the monsoon. Dichotomous high-volume collector samples were analyzed for ferrous iron immediately after collection, while trace metals, anions, and cations were determined upon return to the laboratory. The main crustal component was geochemically well represented by the average crustal composition and amounted to 5.94 ± 3.08 μg m-3. An additional crustal constituent of clay-like character, rich in water-soluble Ca and Mg, was seen in the fine fraction in air masses of Arabian origin. Total ferrous iron concentrations varied from 3.9 to 17.2 ng m-3 and averaged 9.8 ± 3.4 ng m-3, with 87.2% of Fe(II) present in the fine aerosol fraction. Fe(II) concentrations accounted for on average 1.3 ± 0.5% of the total Fe. While ferrous iron in the coarse fraction appeared to be correlated with the main crustal component, the fine Fe(II) fraction exhibited a more complex behavior. The anthropogenic contribution to the aerosol, as traced by Pb, Zn, and some anions and cations, was found to be considerably larger, especially during the first 10 days of this cruise, than in previously collected samples from the inter-monsoon and southwest monsoon of 1995.
Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola
2017-07-01
Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.
Thermosetting resins with high fractions of free volume and inherently low dielectric constants.
Lin, Liang-Kai; Hu, Chien-Chieh; Su, Wen-Chiung; Liu, Ying-Ling
2015-08-18
This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.
A smoothed two- and three-dimensional interface reconstruction method
Mosso, Stewart; Garasi, Christopher; Drake, Richard
2008-04-22
The Patterned Interface Reconstruction algorithm reduces the discontinuity between material interfaces in neighboring computational elements. This smoothing improves the accuracy of the reconstruction for smooth bodies. The method can be used in two- and three-dimensional Cartesian and unstructured meshes. Planar interfaces will be returned for planar volume fraction distributions. Finally, the algorithm is second-order accurate for smooth volume fraction distributions.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.
2003-01-01
An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roar Skartlien; Espen Sollum; Andreas Akselsen
2012-07-01
A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it atmore » later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.« less
Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Bin; Liu, Zhuang; Wang, Yanan; Rolfe, Bernard; Wang, Liang; Zhang, Yisheng
2018-04-01
Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.
Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong
2007-04-28
Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.
Tensile strength and fracture of cemented granular aggregates.
Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V
2012-11-01
Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.
NASA Astrophysics Data System (ADS)
Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan
2017-03-01
Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2016-06-01
Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.
High solid loading aqueous base metal/ceramic feedstock for injection molding
NASA Astrophysics Data System (ADS)
Behi, Mohammad
2001-07-01
Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.
Effect of martensitic transformation on springback behavior of 304L austenitic stainless steel
NASA Astrophysics Data System (ADS)
Fathi, H.; Mohammadian Semnani, H. R.; Emadoddin, E.; Sadeghi, B. Mohammad
2017-09-01
The present paper studies the effect of martensitic transformation on the springback behavior of 304L austenitic stainless steel. Martensite volume fraction was determined at the bent portion under various strain rates after bending test. Martensitic transformation has a significant effect on the springback behavior of this material. The findings of this study indicated that the amount of springback was reduced under a situation of low strain rate, while a higher amount of springback was obtained with a higher strain rate. The reason for this phenomenon is that higher work hardening occurs during the forming process with the low strain rate due to the higher martensite volume fraction, therefore the formability of the sheet is enhanced and it leads to a decreased amount of springback after the bending test. Dependency of the springback on the martensite volume fraction and strain rate was expressed as formulas from the results of the experimental tests and simulation method. Bending tests were simulated using LS-DYNA software and utilizing MAT_TRIP to determine the martensite volume fraction and strain under various strain rates. Experimental result reveals good agreement with the simulation method.
[Appropriate dust control measures for jade carving operations].
Liu, Jiang; Wang, Qiushui; Liu, Guangquan
2002-12-01
To provide the appropriate dust control measures for jade carving operations. Dust concentrations in the workplace were measured according to GB/T 5748-85. Ventilation system of dust control were measured according to GB/T 16157-1996. Dust particle size distributions for different sources and particle size fraction collecting efficiencies of the dust collectors were measured with WY-1 in-stack 7 stage cascade impactors. On the basis of adopting wet process in the carving operations, local exhaust ventilation system for dust control was installed, which included: the special designed slot exhaust hoods with hood face velocity of 2.5 m/s and exhaust volume of 600 m3/h. The pipe sizes were determined according to the air volume passing through the pipe and the reasonable air velocities. Impinging scrubber or bag filter dust collector were selected to treat the dust laden air from the local exhaust ventilation system, which gave a total collecting efficiency of 97% for impinging scrubber and 98% for bag filter; The type of fan and its size were selected according to the total air volume of the ventilation system and maximum total pressure needed for the longest pipe line plus the pressure drop of the dust collector. Practical application showed that, after installation and use of the appropriate dust control measures, the dust concentrations in the workplaces could meet or nearly meet the national hygienic standard and the dust laden air at the local exhaust ventilation system could meet the national emission standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welsh, James, E-mail: jwelsh@mdanderson.org; Thomas, Jimmy; Shah, Deep
Purpose: Stereotactic body radiation therapy (SBRT) is increasingly being used to treat thoracic tumors. We attempted here to identify dose-volume parameters that predict chest wall toxicity (pain and skin reactions) in patients receiving thoracic SBRT. Patients and Methods: We screened a database of patients treated with SBRT between August 2004 and August 2008 to find patients with pulmonary tumors within 2.5 cm of the chest wall. All patients received a total dose of 50 Gy in four daily 12.5-Gy fractions. Toxicity was scored according to the NCI-CTCAE V3.0. Results: Of 360 patients in the database, 265 (268 tumors) had tumorsmore » within <2.5 cm of the chest wall; 104 (39%) developed skin toxicity (any grade); 14 (5%) developed acute pain (any grade), and 45 (17%) developed chronic pain (Grade 1 in 22 cases [49%] and Grade 2 or 3 in 23 cases [51%]). Both skin toxicity and chest wall pain were associated with the V{sub 30}, or volume of the chest wall receiving 30 Gy. Body mass index (BMI) was also strongly associated with the development of chest pain: patients with BMI {>=}29 had almost twice the risk of chronic pain (p = 0.03). Among patients with BMI >29, diabetes mellitus was a significant contributing factor to the development of chest pain. Conclusion: Safe use of SBRT with 50 Gy in four fractions for lesions close to the chest wall requires consideration of the chest wall volume receiving 30 Gy and the patient's BMI and diabetic state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
NASA Astrophysics Data System (ADS)
Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.
2018-04-01
We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.
3D Modeling Effect of Spherical Inclusions on the Magnetostriction of Bulk Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Pan, Baocai
2018-02-01
In this paper, the dependence of the effective magnetostriction of bulk superconductors on the elastic parameters including the volume fraction and elastic modulus ratio is studied by a three-dimensional model consisting of a spherical inclusion-superconducting matrix system. The effect of the elastic modulus and volume fraction on the magnetostriction is also obtained through the magnetostriction loop. The results indicate that the elastic modulus and volume fraction have obvious effects on the effective magnetostriction of the superconducting composite, which gives an explanation about the differences between the experimental and the theoretical results. Furthermore, it is worth pointing out that the linear field dependence of magnetostriction is unique to the Bean model by comparing the curve shapes of the magnetostriction loop with and without inclusion.
Damping behavior of polymer composites with high volume fraction of NiMnGa powders
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying
2011-03-01
Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.
Schwaiger, Johannes P; Knight, Daniel S; Kaier, Thomas; Gallimore, Adele; Denton, Christopher P; Schreiber, Benjamin E; Handler, Clive; Coghlan, John G
2017-06-01
Data are scarce about short-term right ventricular changes in pulmonary hypertension. Two-dimensional knowledge-based reconstruction of the right ventricle with 2D echocardiography (2DKBR) has been shown to be a valid alternative to Cardiac MRI. In this longitudinal study 25 pulmonary hypertension patients underwent 2DKBR of the right ventricle, assessment of NT-proBNP levels and functional class at baseline and after a mean follow-up of 6.1 months. Patients were followed up clinically for a further mean of 8.2 months. The majority of patients had connective tissue disease (CTD) associated pulmonary arterial hypertension (n=15) or chronic thromboembolic pulmonary hypertension (CTEPH; n=6). A total of 15 patients underwent an intervention, either new targeted therapy, escalation of targeted therapy or pulmonary endarterectomy. A total of 10 clinically stable patients were routinely followed up without any change in therapy. There were significant improvements in the right ventricular end-diastolic volume index (111±29 mL/m² vs 100±36 mL/m²; P=.038), end-systolic volume index (72±23 mL/m² vs 61±25 mL/m²; P=.001), and ejection fraction (35±10% vs 40±9%; P=.030). Changes in NT-proBNP levels correlated strongest with changes in end-systolic volume index (r=-.77; P=<.0001). Four patients experienced clinical worsening during extended follow-up, dilatation of the right ventricle was associated with clinical worsening. In a CTD and CTEPH dominated patient population significant reverse remodeling and improvement of ejection fraction occurred despite a short follow-up and was paralleled by significant changes in NT-proBNP levels. Further right ventricular dilatation was associated with worse clinical outcome. 2DKBR is a feasible substitute for Cardiac MRI to follow-up right ventricular indices in pulmonary hypertension. © 2017, Wiley Periodicals, Inc.
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
Brain architecture and social complexity in modern and ancient birds.
Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H
2004-01-01
Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel
Mucosal Malignant Melanoma of the Head and Neck Treated by Carbon Ion Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagi, Takeshi; Mizoe, Jun-etsu; Hasegawa, Azusa
2009-05-01
Purpose: To evaluate the efficacy of carbon ion radiotherapy for mucosal malignant melanoma of the head and neck. Methods and Materials: Between 1994 and 2004, 72 patients with mucosal malignant melanoma of the head and neck were treated with carbon ion beams in three prospective studies. Total dose ranged from 52.8 GyE to 64 GyE given in 16 fixed fractions over 4 weeks. Clinical parameters including gender, age, Karnofsky index, tumor site, tumor volume, tumor status, total dose, fraction size, and treatment time were evaluated in relation to local control and overall survival. Results: The median follow-up period was 49.2more » months (range, 16.8-108.5 months). Treatment toxicity was within acceptable limits, and no patients showed Grade 3 or higher toxicity in the late phase. The 5-year local control rate was 84.1%. In relation to local control, there were no significant differences in any parameters evaluated. The 5-year overall and cause-specific survival rates were 27.0% and 39.6%, respectively. For overall survival, however, tumor volume ({>=}100 mL) was found to be the most significant prognostic parameter. Of the patients who developed distant metastasis, 85% were free from local recurrence. Conclusion: Carbon ion radiotherapy is a safe and effective treatment for mucosal malignant melanoma of the head and neck in terms of high local control and acceptable toxicities. Overall survival rate was better than in those treated with conventional radiotherapy and was comparable to that with surgery.« less
An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
Auxilio, Anthony R; Choo, Wei-Lit; Kohli, Isha; Chakravartula Srivatsa, Srikanth; Bhattacharya, Sankar
2017-09-01
A bench scale, two-stage, thermo-catalytic reactor equipped with a continuous feeding system was used to pyrolyse pure and waste plastics. Experiments using five zeolitic and clay-based catalysts of different forms (pellet and powders) and different plastic feedstocks - virgin HDPE, HDPE w1aste and mixed plastic waste (MPW) were compared to the control experiments - pyrolysis without catalyst. Results indicated that the two pelletized catalysts were the most promising for the conditions employed. Of these two, one with higher acidity and surface area was highly selective for the gasoline fraction (C 5 -C 11 ) giving 80% from the total medium distillate conversion using virgin HDPE as feedstock. It also produced the least amount of olefins (17% for virgin HDPE, 4% for HDPE waste and 2% for MPW) and coke (<1% for virgin HDPE, 3% for HDPE waste and 5% for MPW), and the highest aromatics content (22% for virgin HDPE from un-distilled medium distillate, 5% for HDPE and 13% for MPW both from distilled medium distillate). The second pelletized catalyst exhibited high selectivity for the diesel fraction (C 12 -C 25 ) giving 63% from the total medium distillate conversion using virgin HDPE as feedstock. The amount of coke deposited on the catalyst surface depended mainly on the mesopore volume, with less coke deposited as the mesopore volume increased. The variation in catalyst selectivity with acidity strength due to Lewis sites on the catalyst surface controls selectivity towards carbon chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedicini, Piernicola, E-mail: ppiern@libero.it; Strigari, Lidia; Benassi, Marcello
2014-04-01
To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volumemore » histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.« less
Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.
Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying
2016-07-30
This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography
ERIC Educational Resources Information Center
Nash, Barbara T.
2008-01-01
A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…
Persistence of airline accidents.
Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko
2010-10-01
This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.
NASA Technical Reports Server (NTRS)
Whitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)
1997-01-01
The present invention provides an apparatus for separating a relatively large volume of blood into cellular and acellular fractions without the need for centrifugation. The apparatus comprises a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.
NASA Astrophysics Data System (ADS)
Krotov, Aleksei; Pankin, Victor
2017-09-01
The assessment of central circulation (including heart function) parameters is vital in the preventive diagnostics of inherent and acquired heart failures and during polychemotherapy. The protocols currently applied in Russia do not fully utilize the first-pass assessment (FPRNA) and that results in poor data formalization, while the FPRNA is the one of the fastest, affordable and compact methods among other radioisotope diagnostics protocols. A non-imaging algorithm basing on existing protocols has been designed to use the readings of an additional detector above vena subclavia to determine the total blood volume (TBV), not requiring blood sampling in contrast to current protocols. An automated processing of precordial detector readings is presented, in order to determine the heart strike volume (SV). Two techniques to estimate the ejection fraction (EF) of the heart are discussed.
García-Amado, María; Prensa, Lucía
2012-01-01
Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.
Global constraints on Z2 fluxes in two different anisotropic limits of a hypernonagon Kitaev model
NASA Astrophysics Data System (ADS)
Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi
2018-05-01
The Kitaev model is an exactly-soluble quantum spin model, whose ground state provides a canonical example of a quantum spin liquid. Spin excitations from the ground state are fractionalized into emergent matter fermions and Z2 fluxes. The Z2 flux excitation is pointlike in two dimensions, while it comprises a closed loop in three dimensions because of the local constraint for each closed volume. In addition, the fluxes obey global constraints involving (semi)macroscopic number of fluxes. We here investigate such global constraints in the Kitaev model on a three-dimensional lattice composed of nine-site elementary loops, dubbed the hypernonagon lattice, whose ground state is a chiral spin liquid. We consider two different anisotropic limits of the hypernonagon Kitaev model where the low-energy effective models are described solely by the Z2 fluxes. We show that there are two kinds of global constraints in the model defined on a three-dimensional torus, namely, surface and volume constraints: the surface constraint is imposed on the even-odd parity of the total number of fluxes threading a two-dimensional slice of the system, while the volume constraint is for the even-odd parity of the number of the fluxes through specific plaquettes whose total number is proportional to the system volume. In the two anisotropic limits, therefore, the elementary excitation of Z2 fluxes occurs in a pair of closed loops so as to satisfy both two global constraints as well as the local constraints.
Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex
García-Amado, María; Prensa, Lucía
2012-01-01
Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923
Respiration in heterotrophic unicellular eukaryotic organisms.
Fenchel, Tom
2014-08-01
Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.
Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating
2004-01-01
fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of
Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters
NASA Technical Reports Server (NTRS)
Frazier, Donald O.
1999-01-01
This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a 0 range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to v(sub v)(exp 1/2), whereas others suggcest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team. Our studies of ripening behavior using large-scale numerical simulations suggest that although there are different circumstances which can lead to either scaling law, the most important length scale at low volume fractions is the diffusional analog of the Debye screening length. The numerical simulations we employed exploit the use of a recently developed "snapshot" technique, and identifies the nature of the coarsening dynamics at various volume fractions. Preliminary results of numerical and experimental investigations, focused on the growth of finite particle clusters, provide important insight into the nature of the transition between the two scaling regimes. The companion microgravity experiment centers on the growth within finite particle clusters, and follows the temporal dynamics driving microstructural evolution, using holography.
Effect of hot-dry environment on fiber-reinforced self-compacting concrete
NASA Astrophysics Data System (ADS)
Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo
2016-07-01
Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.
Membrane filtration of olive mill wastewater and exploitation of its fractions.
Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C
2007-04-01
Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides.
Sokolova, I M; Ringwood, A H; Johnson, C
2005-09-10
Cadmium distribution was studied in different subcellular fractions of gill and hepatopancreas tissues of eastern oysters Crassostrea virginica. Oysters were exposed for up to 21 days to low sublethal Cd concentrations (25 microg L(-1)). Gill and hepatopancreas tissues were sampled and divided into organelle fractions and cytosol by differential centrifugation. Organelle content of different fractions was verified by activities of marker enzymes, citrate synthase and acid phosphatase for mitochondria and lysosomes, respectively. In both tissue types, there was a significant accumulation of cadmium in cytosol reaching 230-350 ng mg(-1) protein. Among organelles, mitochondria were the main target for Cd bioaccumulation in gills (250-300 ng mg(-1) protein), whereas in hepatopancreas tissues, the highest cadmium accumulation occurred in lysosomes (90-94 ng mg(-1) protein). Although 75-83% of total cadmium burden was associated with the cytosol reflecting high volume fraction of this compartment, Cd concentrations in organelle fractions reached levels that could cause dysfunction of mitochondria and lysosomes. Organ- and organelle-specific patterns of cadmium bioaccumulation support our previous in vivo studies, which showed adverse effects of cadmium exposures on mitochondrial oxidation in gills and on the lysosomal system of hepatopancreas. This may have important implications for the development of biomarkers of effect for heavy metals and for understanding the mechanisms of toxic effects of metals.
NASA Technical Reports Server (NTRS)
Ginger, Kathryn M.
1993-01-01
Since clouds are the largest variable in Earth's radiation budget, it is critical to determine both the spatial and temporal characteristics of their radiative properties. The relationships between cloud properties and cloud fraction are studied in order to supplement grid scale parameterizations. The satellite data used is from three hourly ISCCP (International Satellite Cloud Climatology Project) and monthly ERBE (Earth Radiation Budget Experiment) data on a 2.5 deg x 2.5 deg latitude-longitude grid. Mean cloud spherical albedo, the mean optical depth distribution, and cloud fraction are examined and compared off the coast of California and the mid-tropical Atlantic for July 1987 and 1988. Individual grid boxes and spatial averages over several grid boxes are correlated to Coakley's theory of reflection for uniform and broken layered cloud and to Kedem, et al.'s findings that rainfall volume and fractional area of rain in convective systems is linear. Kedem's hypothesis can be expressed in terms of cloud properties. That is, the total volume of liquid in a box is a linear function of cloud fraction. Results for the marine stratocumulus regime indicate that albedo is often invariant for cloud fractions of 20% to 80%. Coakley's satellite model of small and large clouds with cores (1 km) and edges (100 m) is consistent with this observation. The cores maintain high liquid water concentrations and large droplets while the edges contain low liquid water concentrations and small droplets. Large clouds are just a collection of cores. The mean optical depth (TAU) distributions support the above observation with TAU values of 3.55 to 9.38 favored across all cloud fractions. From these results, a method based upon Kedem, et al's theory is proposed to separate the cloud fraction and liquid water path (LWP) calculations in a general circulation model (GCM). In terms of spatial averaging, a linear relationship between albedo and cloud fraction is observed. For tropical locations outside the Intertropical Convergence Zone (ITCZ), results of cloud fraction and albedo spatial averaging followed that of the stratus boxes containing few overcast scenes. Both the ideas of Coakley and Kedem, et al. apply. Within the ITCZ, the grid boxes tended to have the same statistical properties as stratus boxes containing many overcast scenes. Because different dynamical forcing mechanisms are present, it is difficult to devise a method for determining subgrid scale variations. Neither of the theories proposed by Kedem, et al. or Coakley works well for the boxes with numerous overcast scenes.
NASA Technical Reports Server (NTRS)
Ginger, Kathryn M.
1993-01-01
Since clouds are the largest variable in Earth's radiation budget, it is critical to determine both the spatial and temporal characteristics of their radiative properties. This study examines the relationships between cloud properties and cloud fraction in order to supplement grid scale parameterizations. The satellite data used in this study is from three hourly ISCCP (International Satellite Cloud Climatology Project) and monthly ERBE (Earth Radiation Budget Experiment) data on a 2.50 x 2.50 latitude-longitude grid. Mean cloud spherical albedo, the mean optical depth distribution and cloud fraction are examined and compared off the coast of California and the mid-tropical Atlantic for July 1987 and 1988. Individual grid boxes and spatial averages over several grid boxes are correlated to Coakleys (1991) theory of reflection for uniform and broken layered cloud and to Kedem, et al.(1990) findings that rainfall volume and fractional area of rain in convective systems is linear. Kedem's hypothesis can be expressed in terms of cloud properties. That is, the total volume of liquid in a box is a linear function of cloud fraction. Results for the marine stratocumulus regime indicate that albedo is often invariant for cloud fractions of 20% to 80%. Coakley's satellite model of small and large clouds with cores (1 km) and edges (100 in) is consistent with this observation. The cores maintain high liquid water concentrations and large droplets while the edges contain low liquid water concentrations and small droplets. Large clouds are just a collection of cores. The mean optical depth (TAU) distributions support the above observation with TAU values of 3.55 to 9.38 favored across all cloud fractions. From these results, a method based upon Kedem, et al. theory is proposed to separate the cloud fraction and liquid water path (LWP) calculations in a general circulation model (GCM). In terms of spatial averaging, a linear relationship between albedo and cloud fraction is observed. For tropical locations outside the Intertropical Convergence Zone (ITCZ), results of cloud fraction and albedo spatial averaging followed that of the stratus boxes containing few overcast scenes. Both the ideas of Coakley and Kedem, et al. apply. Within the ITCZ, the grid boxes tended to have the same statistical properties as stratus boxes containing many overcast scenes. Because different dynamical forcing mechanisms are present, it is difficult to devise a method for determining subgrid scale variations. Neither of the theories proposed by Kedem, et al. or Coakley works well for the boxes with numerous overcast scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huaping, E-mail: wuhuaping@gmail.com; Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540; Chai, Guozhong
The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship amongmore » ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.« less
Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.
Saltzman, Erica J; Schweizer, Kenneth S
2008-05-01
Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.
NASA Astrophysics Data System (ADS)
Grzegorz Kossakowski, Paweł; Wciślik, Wiktor
2017-10-01
The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.
Nanocomposites with increased energy density through high aspect ratio PZT nanowires.
Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A
2011-01-07
High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.
Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude
2015-08-20
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaojian; Qiao, Qiao; Department of Radiotherapy, First Hospital of China Medical University, Shenyang
Purpose: To evaluate the efficiency of standard image-guided radiation therapy (IGRT) to account for lumpectomy cavity (LC) variation during whole-breast irradiation (WBI) and propose an adaptive strategy to improve dosimetry if IGRT fails to address the interfraction LC variations. Methods and Materials: Daily diagnostic-quality CT data acquired during IGRT in the boost stage using an in-room CT for 19 breast cancer patients treated with sequential boost after WBI in the prone position were retrospectively analyzed. Contours of the LC, treated breast, ipsilateral lung, and heart were generated by populating contours from planning CTs to boost fraction CTs using an auto-segmentationmore » tool with manual editing. Three plans were generated on each fraction CT: (1) a repositioning plan by applying the original boost plan with the shift determined by IGRT; (2) an adaptive plan by modifying the original plan according to a fraction CT; and (3) a reoptimization plan by a full-scale optimization. Results: Significant variations were observed in LC. The change in LC volume at the first boost fraction ranged from a 70% decrease to a 50% increase of that on the planning CT. The adaptive and reoptimization plans were comparable. Compared with the repositioning plans, the adaptive plans led to an improvement in target coverage for an increased LC case (1 of 19, 7.5% increase in planning target volume evaluation volume V{sub 95%}), and breast tissue sparing for an LC decrease larger than 35% (3 of 19, 7.5% decrease in breast evaluation volume V{sub 50%}; P=.008). Conclusion: Significant changes in LC shape and volume at the time of boost that deviate from the original plan for WBI with sequential boost can be addressed by adaptive replanning at the first boost fraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Y.; Neal, C.; Salari, K.
Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less
Kup, Philipp Günther; Nieder, Carsten; Geinitz, Hans; Henkenberens, Christoph; Besserer, Angela; Oechsner, Markus; Schill, Sabine; Mücke, Ralph; Scherer, Vera; Combs, Stephanie E; Adamietz, Irenäus A; Fakhrian, Khashayar
2015-01-01
To assess the association between dosimetric factors of the lung and incidence of intra- and postoperative mortality among esophageal cancer (EC) patients treated with neoadjuvant radiochemotherapy (N-RCT) followed by surgery (S). Inclusion criteria were: age < 85 years, no distant metastases at the time of diagnosis, no induction chemotherapy, conformal radiotherapy, total dose ≤ 50.4 Gy, and available dose volume histogram (DVH) data. One-hundred thirty-five patients met our inclusion criteria. Median age was 62 years. N-RCT consisted of 36 - 50.4 Gy (median 45 Gy), 1.8 - 2 Gy per fraction. Concomitant chemotherapy consisted of 5-Fluoruracil (5-FU) and cisplatin in 113 patients and cisplatin and taxan-derivates in 15 patients. Seven patients received a single cytotoxic agent. In 130 patients an abdominothoracal and in 5 patients a transhiatal resection was performed. The following dosimetric parameters were generated from the total lung DVH: mean dose, V5, V10, V15, V20, V30, V40, V45 and V50. The primary endpoint was the rate of intra- and postoperative mortality (from the start of N-RCT to 60 days after surgical resection). A total of ten postoperative deaths (7%) were observed: 3 within 30 days (2%) and 7 between 30 and 60 days after surgical intervention (5%); no patient died during the operation. In the univariate analysis, weight loss (≥10% in 6 months prior to diagnosis, risk ratio: 1.60, 95%CI: 0.856-2.992, p=0.043), Eastern Cooperative Oncology Group-performance status (ECOG 2 vs. 1, risk ratio: 1.931, 95%CI: 0.898-4.150, p=0.018) and postoperative pulmonary plus non-pulmonary complications (risk ratio: 2.533, 95%CI: 0.978-6.563, p=0.004) were significantly associated with postoperative mortality. There was no significant association between postoperative mortality and irradiated lung volumes. Lung V45 was the only variable which was significantly associated with higher incidence of postoperative pulmonary plus non-pulmonary complications (Exp(B): 1.285, 95%CI 1.029-1.606, p=0.027), but not with the postoperative pulmonary complications (Exp(B): 1.249, 95%CI 0.999-1.561, p=0.051). Irradiated lung volumes did not show relevant associations with intra- and postoperative mortality of patients treated with moderate dose (36 - 50.4 Gy) conventionally fractionated conformal radiotherapy combined with widely used radiosensitizers. Postoperative mortality was significantly associated with greater weight loss, poor performance status and development of postoperative complications, but not with treatment-related factors. Limiting the volume of lung receiving higher radiation doses appears prudent because of the observed association with risk of postoperative complications.
Fractional labelmaps for computing accurate dose volume histograms
NASA Astrophysics Data System (ADS)
Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor
2017-03-01
PURPOSE: In radiation therapy treatment planning systems, structures are represented as parallel 2D contours. For treatment planning algorithms, structures must be converted into labelmap (i.e. 3D image denoting structure inside/outside) representations. This is often done by triangulated a surface from contours, which is converted into a binary labelmap. This surface to binary labelmap conversion can cause large errors in small structures. Binary labelmaps are often represented using one byte per voxel, meaning a large amount of memory is unused. Our goal is to develop a fractional labelmap representation containing non-binary values, allowing more information to be stored in the same amount of memory. METHODS: We implemented an algorithm in 3D Slicer, which converts surfaces to fractional labelmaps by creating 216 binary labelmaps, changing the labelmap origin on each iteration. The binary labelmap values are summed to create the fractional labelmap. In addition, an algorithm is implemented in the SlicerRT toolkit that calculates dose volume histograms (DVH) using fractional labelmaps. RESULTS: We found that with manually segmented RANDO head and neck structures, fractional labelmaps represented structure volume up to 19.07% (average 6.81%) more accurately than binary labelmaps, while occupying the same amount of memory. When compared to baseline DVH from treatment planning software, DVH from fractional labelmaps had agreement acceptance percent (1% ΔD, 1% ΔV) up to 57.46% higher (average 4.33%) than DVH from binary labelmaps. CONCLUSION: Fractional labelmaps promise to be an effective method for structure representation, allowing considerably more information to be stored in the same amount of memory.
A simpler method for total scalp irradiation: the multijaw-size concave arc technique.
Inoue, Minoru; Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo
2014-07-08
The lateral electron-photon technique (LEPT) and intensity-modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time-consuming. We herein present the multijaw-size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper-jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%-95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high-dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT.
A simpler method for total scalp irradiation: the multijaw‐size concave arc technique
Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo
2014-01-01
The lateral electron‐photon technique (LEPT) and intensity‐modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time‐consuming. We herein present the multijaw‐size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper‐jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%–95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high‐dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT. PACS number: 87.55.D‐ PMID:25207405
Verification of a two-dimensional infiltration model for the resin transfer molding process
NASA Technical Reports Server (NTRS)
Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.
Cohen, Ouri; Huang, Shuning; McMahon, Michael T; Rosen, Matthew S; Farrar, Christian T
2018-05-13
To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N α -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 μT; in vivo: 0-4 μT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T 1 and T 2 relaxation times. The chemical exchange rates of the N α -amine protons of L-Arg were significantly (P < 0.0001) correlated with the rates measured with the quantitation of exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P < 0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R 2 = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CEST-MRF provides a method for fast, quantitative CEST imaging. © 2018 International Society for Magnetic Resonance in Medicine.
Lindsay, Alistair C; Harron, Katie; Jabbour, Richard J; Kanyal, Ritesh; Snow, Thomas M; Sawhney, Paramvir; Alpendurada, Francisco; Roughton, Michael; Pennell, Dudley J; Duncan, Alison; Di Mario, Carlo; Davies, Simon W; Mohiaddin, Raad H; Moat, Neil E
2016-07-01
Cardiovascular magnetic resonance (CMR) can provide important structural information in patients undergoing transcatheter aortic valve implantation. Although CMR is considered the standard of reference for measuring ventricular volumes and mass, the relationship between CMR findings of right ventricular (RV) function and outcomes after transcatheter aortic valve implantation has not previously been reported. A total of 190 patients underwent 1.5 Tesla CMR before transcatheter aortic valve implantation. Steady-state free precession sequences were used for aortic valve planimetry and to assess ventricular volumes and mass. Semiautomated image analysis was performed by 2 specialist reviewers blinded to patient treatment. Patient follow-up was obtained from the Office of National Statistics mortality database. The median age was 81.0 (interquartile range, 74.9-85.5) years; 50.0% were women. Impaired RV function (RV ejection fraction ≤50%) was present in 45 (23.7%) patients. Patients with RV dysfunction had poorer left ventricular ejection fractions (42% versus 69%), higher indexed left ventricular end-systolic volumes (96 versus 40 mL), and greater indexed left ventricular mass (101 versus 85 g/m(2); P<0.01 for all) than those with normal RV function. Median follow-up was 850 days; 21 of 45 (46.7%) patients with RV dysfunction died, compared with 43 of 145 (29.7%) patients with normal RV function (P=0.035). After adjustment for significant baseline variables, both RV ejection fraction ≤50% (hazard ratio, 2.12; P=0.017) and indexed aortic valve area (hazard ratio, 4.16; P=0.025) were independently associated with survival. RV function, measured on preprocedural CMR, is an independent predictor of mortality after transcatheter aortic valve implantation. CMR assessment of RV function may be important in the risk stratification of patients undergoing transcatheter aortic valve implantation. © 2016 American Heart Association, Inc.
Corry, June; Hornby, Colin; Fisher, Richard; D'Costa, Ieta; Porceddu, Sandro; Rischin, Danny; Peters, Lester J
2004-06-01
The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patients with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. This is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailed delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc fields for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced nasopharyngeal cancer when IMRT is not available.
Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G
1983-10-01
The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and acquired diseases.
Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki
2010-07-01
To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD(2)). The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D(2cc) of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results. (c) 2010 Elsevier Inc. All rights reserved.
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
NASA Astrophysics Data System (ADS)
Aman, Sidra; Zuki Salleh, Mohd; Ismail, Zulkhibri; Khan, Ilyas
2017-09-01
This article focuses on the flow of Maxwell nanofluids with graphene nanoparticles over a vertical plate (static) with constant wall temperature. Possessing high thermal conductivity, engine oil is useful to be chosen as base fluid with free convection. The problem is modelled in terms of PDE’s with boundary conditions. Some suitable non-dimensional variables are interposed to transform the governing equations into dimensionless form. The generated equations are solved via Laplace transform technique. Exact solutions are evaluated for velocity and temperature. These solutions are significantly controlled by some parameters involved. Temperature rises with elevation in volume fraction while Velocity decreases with increment in volume fraction. A comparison with previous published results are established and discussed. Moreover, a detailed discussion is made for influence of volume fraction on the flow and heat profile.
Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites
NASA Technical Reports Server (NTRS)
Bhatt, R. T.
1985-01-01
The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.
NASA Astrophysics Data System (ADS)
Hunter, Gary L.; Chaikin, Paul; Blanco, Elena; Poon, Wilson
2014-03-01
``Conching'' is an intermediate step in the processing of chocolate where hydrophilic solid particles, such as sugar and milk proteins, are aggressively mixed into a fatty, fluid phase containing emulsifier, e.g. molten cocoa butter with lecithin. During conching, the system evolves from a fine powder to a coarser granulated material and ultimately into a thick cohesive paste. Our goal is to better understand the evolution of chocolate during conching and the transition from an effectively dry to a wet or immersed granular material. In particular, we focus on how mixing times change in response to variations in solid particle volume fractions and emulsifier concentration. As a function of volume fraction, mixing times are well-described by a conventional form that diverges at a finite volume fraction. Furthermore, mixing times can be collapsed onto a universal curve as a function of mixing speed and emulsifier concentration.
Gambarota, Giulio; Hitti, Eric; Leporq, Benjamin; Saint-Jalmes, Hervé; Beuf, Olivier
2017-01-01
Tissue perfusion measurements using intravoxel incoherent motion (IVIM) diffusion-MRI are of interest for investigations of liver pathologies. A confounding factor in the perfusion quantification is the partial volume between liver tissue and large blood vessels. The aim of this study was to assess and correct for this partial volume effect in the estimation of the perfusion fraction. MRI experiments were performed at 3 Tesla with a diffusion-MRI sequence at 12 b-values. Diffusion signal decays in liver were analyzed using the non-negative least square (NNLS) method and the biexponential fitting approach. In some voxels, the NNLS analysis yielded a very fast-decaying component that was assigned to partial volume with the blood flowing in large vessels. Partial volume correction was performed by biexponential curve fitting, where the first data point (b = 0 s/mm 2 ) was eliminated in voxels with a very fast-decaying component. Biexponential fitting with partial volume correction yielded parametric maps with perfusion fraction values smaller than biexponential fitting without partial volume correction. The results of the current study indicate that the NNLS analysis in combination with biexponential curve fitting allows to correct for partial volume effects originating from blood flow in IVIM perfusion fraction measurements. Magn Reson Med 77:310-317, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Almeida-Morais, Luís; Pereira-da-Silva, Tiago; Branco, Luísa; Timóteo, Ana T; Agapito, Ana; de Sousa, Lídia; Oliveira, José A; Thomas, Boban; Jalles-Tavares, Nuno; Soares, Rui; Galrinho, Ana; Cruz-Ferreira, Rui
2017-04-01
The role of right ventricular longitudinal strain for assessing patients with repaired tetralogy of Fallot is not fully understood. In this study, we aimed to evaluate its relation with other structural and functional parameters in these patients. Patients followed-up in a grown-up CHD unit, assessed by transthoracic echocardiography, cardiac MRI, and treadmill exercise testing, were retrospectively evaluated. Right ventricular size and function and pulmonary regurgitation severity were assessed by echocardiography and MRI. Right ventricular longitudinal strain was evaluated in the four-chamber view using the standard semiautomatic method. In total, 42 patients were included (61% male, 32±8 years). The mean right ventricular longitudinal strain was -16.2±3.7%, and the right ventricular ejection fraction, measured by MRI, was 42.9±7.2%. Longitudinal strain showed linear correlation with tricuspid annular systolic excursion (r=-0.40) and right ventricular ejection fraction (r=-0.45) (all p<0.05), which in turn showed linear correlation with right ventricular fractional area change (r=0.50), pulmonary regurgitation colour length (r=0.35), right ventricular end-systolic volume (r=-0.60), and left ventricular ejection fraction (r=0.36) (all p<0.05). Longitudinal strain (β=-0.72, 95% confidence interval -1.41, -0.15) and left ventricular ejection fraction (β=0.39, 95% confidence interval 0.11, 0.67) were independently associated with right ventricular ejection fraction. The best threshold of longitudinal strain for predicting a right ventricular ejection fraction of <40% was -17.0%. Right ventricular longitudinal strain is a powerful method for evaluating patients with tetralogy of Fallot. It correlated with echocardiographic right ventricular function parameters and was independently associated with right ventricular ejection fraction derived by MRI.
NASA Astrophysics Data System (ADS)
Vazquez, A.; Hernández, S.; Rasmussen, C.; Chorover, J.
2010-12-01
Al and Fe oxy-hydroxide minerals have been implicated in dissolved organic matter (DOM) stabilization. DOM solutions from a Pinus ponderosa forest floor (PPDOM) were used to irrigate polypropylene columns, 3.2 cm long by 0.9 cm diameter (total volume 2.0 cm3), that were packed with quartz sand (QS), gibbsite-quartz sand (Al-QS), and goethite-quartz sand (Fe-QS) mixtures. To investigate the mobilization and fractionation of DOM during reactive transport, effluent solutions were characterized by UV-Vis absorbance and excitation-emission matrix (EEM) fluorescence spectroscopies. Magnitude of PPDOM sorption followed the trend Al-QS > Fe-QS > QS during the initial transport. Effluent pH values suggest that ligand exchange is a primary mechanism for PPDOM sorption onto oxy-hydroxide minerals. Low molar absorptivity values were observed in effluent solutions of early pore volumes, indicating preferential mobilization of compounds with low aromatic character. Compounds traditionally characterized by EEM spectroscopy as being more highly humified were favorably absorbed onto the gibbsite and goethite surfaces. Humification index values (HIX) were also correlated with DOM aromaticity. HIX results suggest that the presence of low mass fractions of oxy-hydroxide minerals affect the preferential uptake of high molar mass constituents of PPDOM during reactive transport.
Rodríguez, S; Arenas, M; Gutierrez, C; Richart, J; Perez-Calatayud, J; Celada, F; Santos, M; Rovirosa, A
2018-04-01
Clinical indications of brachytherapy in non-melanoma skin cancers, description of applicators and dosimetry recommendations are described based on the literature review, clinical practice and experience of Spanish Group of Brachytherapy and Spanish Society of Medical Physics reported in the XIV Annual Consensus Meeting on Non Melanoma Skin Cancer Brachytherapy held in Benidorm, Alicante (Spain) on October 21st, 2016. All the recommendations for which consensus was achieved are highlighted in blue. Regular and small surfaces may be treated with Leipzig, Valencia, flap applicators or electronic brachytherapy (EBT). For irregular surfaces, customized molds or interstitial implants should be employed. The dose is prescribed at a maximum depth of 3-4 mm of the clinical target volume/planning target volume (CTV/PTV) in all cases except in flaps or molds in which 5 mm is appropriate. Interstitial brachytherapy should be used for CTV/PTV >5 mm. Different total doses and fraction sizes are used with very similar clinical and toxicity results. Hypofractionation is very useful twice or 3 times a week, being comfortable for patients and practical for Radiotherapy Departments. In interstitial brachytherapy 2 fractions twice a day are applied.
Detectability of gravitational waves from binary black holes: Impact of precession and higher modes
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Laguna, Pablo; Shoemaker, Deirdre
2017-05-01
Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher-order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses M >200 M⊙ , we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio q ≥4 and M >100 M⊙, measured in the detector frame. For the highest precessing cases, this is true even when the source is face-on to the detector. Quantitatively, we show that the aforementioned omission can lead to fractional losses of sensitive volume of ˜15 %, reaching >25 % for the worst cases studied. Loss estimates are obtained by evaluating the effectualness of the SEOBNRv2-ROM double spin model, currently used in binary black hole searches, towards gravitational wave signals from precessing binaries computed by means of numerical relativity. We conclude that, for sources with q ≥4 , a reliable search for binary black holes heavier than M >100 M⊙ needs to consider the effects of higher-order modes and precession. The latter seems especially necessary when Advanced LIGO reaches its design sensitivity.
NASA Technical Reports Server (NTRS)
Whiitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)
1999-01-01
The present invention provides a method and apparatus for separating a blood sample having a volume of up to about 20 milliliters into cellular and acellular fractions. The apparatus includes a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture including between about 1-40 wt/vol % mannitol and between about 0.1-15 wt/vol % of plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith Alice; Long, Kevin Nicholas
2017-05-01
This work was done to support customer questions about whether a Sylgard/Glass Microballoon (GMB) potting material in current use could be replaced with pure Sylgard and if this would significantly change stresses imparted to internal components under thermal cycling conditions. To address these questions, we provide micromechanics analysis of Sylgard/GMB materials using both analytic composite theory and finite element simulations to better understand the role of the GMB volume fraction in determining thermal expansion coefficient, elastic constants, and behavior in both confined and unconfined compression boundary value problems. A key finding is that damage accumulation in the material from breakagemore » of GMBs significantly limits the global stress magnitude and results in a plateau stress behavior over large ranges of compressive strain. The magnitude of this plateau stress is reduced with higher volume fractions of GMBs. This effect is particularly pronounced in confined compression, which we estimate bears the most similarity to the application of interest. This stress-limiting damage mechanism is not present in pure Sylgard, however, and the result is much higher stresses under confined compression. Thus, we recommend that some volume fraction greater than 10% GMBs be used for confined deformation applications.« less
The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1
NASA Technical Reports Server (NTRS)
Aikin, R. M., Jr.
1990-01-01
The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.
Startup of electrophoresis in a suspension of colloidal spheres.
Chiang, Chia C; Keh, Huan J
2015-12-01
The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind
2017-12-01
Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.
NASA Astrophysics Data System (ADS)
Laufer, N.; Hansmann, H.; Koch, M.
2017-01-01
In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.
Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase
NASA Astrophysics Data System (ADS)
Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.
2015-09-01
We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; ...
2015-11-23
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Ross, Michael B.; Ku, Jessie C.; Blaber, Martin G.; ...
2015-08-03
Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. In this paper, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (~5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter)more » each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. Finally, these data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.« less
Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas
2015-06-14
A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961
Mansour, Joseph M; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D; Liu, Yiying; Welter, Jean F
2014-10-01
Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. The statistical model generally predicted the Young's moduli in compression to within <10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor.
Mansour, Joseph M.; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D.; Liu, Yiying; Welter, Jean F.
2016-01-01
Introduction Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Methods Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. Results The statistical model generally predicted the Young's moduli in compression to within < 10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Conclusions Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor. PMID:25092421
NASA Astrophysics Data System (ADS)
Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor
2013-12-01
Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.
NASA Astrophysics Data System (ADS)
Tripathy, Mukta; Schweizer, Kenneth S.
2011-04-01
In paper II of this series we apply the center-of-mass version of Nonlinear Langevin Equation theory to study how short-range attractive interactions influence the elastic shear modulus, transient localization length, activated dynamics, and kinetic arrest of a variety of nonspherical particle dense fluids (and the spherical analog) as a function of volume fraction and attraction strength. The activation barrier (roughly the natural logarithm of the dimensionless relaxation time) is predicted to be a rich function of particle shape, volume fraction, and attraction strength, and the dynamic fragility varies significantly with particle shape. At fixed volume fraction, the barrier grows in a parabolic manner with inverse temperature nondimensionalized by an onset value, analogous to what has been established for thermal glass-forming liquids. Kinetic arrest boundaries lie at significantly higher volume fractions and attraction strengths relative to their dynamic crossover analogs, but their particle shape dependence remains the same. A limited universality of barrier heights is found based on the concept of an effective mean-square confining force. The mean hopping time and self-diffusion constant in the attractive glass region of the nonequilibrium phase diagram is predicted to vary nonmonotonically with attraction strength or inverse temperature, qualitatively consistent with recent computer simulations and colloid experiments.
Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain
NASA Astrophysics Data System (ADS)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward P.; Pruett, Brian O.
2015-12-01
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas-solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer-Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.
Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A
2016-01-01
Background: Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. Objective: We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. Design: We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45–84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). Results: The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. Conclusions: A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less–Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. PMID:27488238
Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A
2016-09-01
Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45-84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less-Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. © 2016 American Society for Nutrition.
Basu-Roy, Somapriya; Kar, Sanjay Kumar; Das, Sounik; Lahiri, Annesha
2017-01-01
Purpose This study is intended to compare dose-volume parameters evaluated using different forward planning- optimization techniques, involving two applicator systems in intracavitary brachytherapy for cervical cancer. It looks for the best applicator-optimization combination to fulfill recommended dose-volume objectives in different high-dose-rate (HDR) fractionation schedules. Material and methods We used tandem-ring and Fletcher-style tandem-ovoid applicator in same patients in two fractions of brachytherapy. Six plans were generated for each patient utilizing 3 forward optimization techniques for each applicator used: equal dwell weight/times (‘no optimization’), ‘manual dwell weight/times’, and ‘graphical’. Plans were normalized to left point A and dose of 8 Gy was prescribed. Dose volume and dose point parameters were compared. Results Without graphical optimization, maximum width and thickness of volume enclosed by 100% isodose line, dose to 90%, and 100% of clinical target volume (CTV); minimum, maximum, median, and average dose to both rectum and bladder are significantly higher with Fletcher applicator. Even if it is done, dose to both points B, minimum dose to CTV, and treatment time; dose to 2 cc (D2cc) rectum and rectal point etc.; D2cc, minimum, maximum, median, and average dose to sigmoid colon; D2cc of bladder remain significantly higher with this applicator. Dose to bladder point is similar (p > 0.05) between two applicators, after all optimization techniques. Conclusions Fletcher applicator generates higher dose to both CTV and organs at risk (2 cc volumes) after all optimization techniques. Dose restriction to rectum is possible using graphical optimization only during selected HDR fractionation schedules. Bladder always receives dose higher than recommended, and 2 cc sigmoid colon always gets permissible dose. Contrarily, graphical optimization with ring applicators fulfills all dose volume objectives in all HDR fractionations practiced. PMID:29204164
Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Krouzek, Jiri; Hovorka, Jan
2013-06-14
Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1
Kamiya, Kouhei; Hori, Masaaki; Miyajima, Masakazu; Nakajima, Madoka; Suzuki, Yuriko; Kamagata, Koji; Suzuki, Michimasa; Arai, Hajime; Ohtomo, Kuni; Aoki, Shigeki
2014-01-01
Previous studies suggest that compression and stretching of the corticospinal tract (CST) potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH). Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI) analysis. Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( = axon diameter) and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001), whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.
Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling
2013-01-01
Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604
Mechanisms of cardiac hypertrophy in canine volume overload
NASA Technical Reports Server (NTRS)
Matsuo, T.; Carabello, B. A.; Nagatomo, Y.; Koide, M.; Hamawaki, M.; Zile, M. R.; McDermott, P. J.
1998-01-01
This study tested whether the modest hypertrophy that develops in dogs in response to mitral regurgitation is due to a relatively small change in the rate of protein synthesis or, alternatively, is due to a decreased rate of protein degradation. After 3 mo of severe experimental mitral regurgitation, the left ventricular (LV) mass-to-body weight ratio increased by 23% compared with baseline values. This increase in LV mass occurred with a small, but not statistically significant, increase in the fractional rate of myosin heavy chain (MHC) synthesis (Ks), as measured using continuous infusion with [3H]leucine in dogs at 2 wk, 4 wk, and 3 mo after creation of severe mitral regurgitation. Translational efficiency was unaffected by mitral regurgitation as measured by the distribution of MHC mRNA in polysome gradients. Furthermore, there was no detectable increase in translational capacity as measured by either total RNA content or the rate of ribosome formation. These data indicate that translational mechanisms that accelerate the rate of cardiac protein synthesis are not responsive to the stimulus of mitral regurgitation. Most of the growth after mitral regurgitation was accounted for by a decrease in the fractional rate of protein degradation, calculated by subtracting fractional rates of protein accumulation at each time point from the corresponding Ks values. We conclude that 1) volume overload produced by severe mitral regurgitation does not trigger substantial increases in the rate of protein synthesis and 2) the modest increase in LV mass results primarily from a decrease in the rate of protein degradation.
Are artificial opals non-close-packed fcc structures?
NASA Astrophysics Data System (ADS)
García-Santamaría, F.; Braun, P. V.
2007-06-01
The authors report a simple experimental method to accurately measure the volume fraction of artificial opals. The results are modeled using several methods, and they find that some of the most common yield very inaccurate results. Both finite size and substrate effects play an important role in calculations of the volume fraction. The experimental results show that the interstitial pore volume is 4%-15% larger than expected for close-packed structures. Consequently, calculations performed in previous work relating the amount of material synthesized in the opal interstices with the optical properties may need revision, especially in the case of high refractive index materials.
Tank atmosphere perturbation: a procedure for assessing flashing losses from oil storage tanks.
Littlejohn, David; Lucas, Donald
2003-03-01
A new procedure to measure the total volume of emissions from heavy crude oil storage tanks is described. Tank flashing losses, which are difficult to measure, can be determined by correcting this value for working and breathing losses. The procedure uses a fan or blower to vent the headspace of the storage tank, with subsequent monitoring of the change in concentrations of oxygen or other gases. Combined with a separate determination of the reactive organic carbon (ROC) fraction in the gas, this method allows the evaluation of the total amount of ROC emitted. The operation of the system is described, and results from measurement of several storage tanks in California oil fields are presented. Our measurements are compared with those obtained using the California Air Resources Board (CARB) 150 method.
Ting, Hsien-Hung; Hou, Shuhn-Shyurng
2016-01-01
This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698
Suzuki, Kazumichi; Palmer, Matthew B; Sahoo, Narayan; Zhang, Xiaodong; Poenisch, Falk; Mackin, Dennis S; Liu, Amy Y; Wu, Richard; Zhu, X Ronald; Frank, Steven J; Gillin, Michael T; Lee, Andrew K
2016-07-01
To determine the patient throughput and the overall efficiency of the spot scanning system by analyzing treatment time, equipment availability, and maximum daily capacity for the current spot scanning port at Proton Therapy Center Houston and to assess the daily throughput capacity for a hypothetical spot scanning proton therapy center. At their proton therapy center, the authors have been recording in an electronic medical record system all treatment data, including disease site, number of fields, number of fractions, delivered dose, energy, range, number of spots, and number of layers for every treatment field. The authors analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the patient census, patient distribution as a function of the number of fields and total target volume, and equipment clinical availability. The duration of each treatment session from patient walk-in to patient walk-out of the spot scanning treatment room was measured for 64 patients with head and neck, central nervous system, thoracic, and genitourinary cancers. The authors retrieved data for total target volume and the numbers of layers and spots for all fields from treatment plans for a total of 271 patients (including the above 64 patients). A sensitivity analysis of daily throughput capacity was performed by varying seven parameters in a throughput capacity model. The mean monthly equipment clinical availability for the spot scanning port in April 2012-March 2015 was 98.5%. Approximately 1500 patients had received spot scanning proton therapy as of March 2015. The major disease sites treated in September 2012-August 2014 were the genitourinary system (34%), head and neck (30%), central nervous system (21%), and thorax (14%), with other sites accounting for the remaining 1%. Spot scanning beam delivery time increased with total target volume and accounted for approximately 30%-40% of total treatment time for the total target volumes exceeding 200 cm(3), which was the case for more than 80% of the patients in this study. When total treatment time was modeled as a function of the number of fields and total target volume, the model overestimated total treatment time by 12% on average, with a standard deviation of 32%. A sensitivity analysis of throughput capacity for a hypothetical four-room spot scanning proton therapy center identified several priority items for improvements in throughput capacity, including operation time, beam delivery time, and patient immobilization and setup time. The spot scanning port at our proton therapy center has operated at a high performance level and has been used to treat a large number of complex cases. Further improvements in efficiency may be feasible in the areas of facility operation, beam delivery, patient immobilization and setup, and optimization of treatment scheduling.
Kumar, Aryavarta M S; Miller, Jonathan; Hoffer, Seth A; Mansur, David B; Coffey, Michael; Lo, Simon S; Sloan, Andrew E; Machtay, Mitchell
2018-05-10
HSRT directed to large surgical beds in patients with resected brain metastases improves local control while sparing patients the toxicity associated with whole brain radiation. We review our institutional series to determine factors predictive of local failure. In a total of 39 consecutive patients with brain metastases treated from August 2011 to August 2016, 43 surgical beds were treated with HSRT in three or five fractions. All treatments were completed on a robotic radiosurgery platform using the 6D Skull tracking system. Volumetric MRIs from before and after surgery were used for radiation planning. A 2-mm PTV margin was used around the contoured surgical bed and resection margins; these were reviewed by the radiation oncologist and neurosurgeon. Lower total doses were prescribed based on proximity to critical structures or if prior radiation treatments were given. Local control in this study is defined as no volumetric MRI evidence of recurrence of tumor within the high dose radiation volume. Statistics were calculated using JMP Pro v13. Of the 43 surgical beds analyzed, 23 were from NSCLC, 5 were from breast, 4 from melanoma, 5 from esophagus, and 1 each from SCLC, sarcoma, colon, renal, rectal, and unknown primary. Ten were treated with three fractions with median dose 24 Gy and 33 were treated with five fractions with median dose 27.5 Gy using an every other day fractionation. There were no reported grade 3 or higher toxicities. Median follow up was 212 days after completion of radiation. 10 (23%) surgical beds developed local failure with a median time to failure of 148 days. All but three patients developed new brain metastases outside of the treated field and were treated with stereotactic radiosurgery, whole brain radiation and/or chemotherapy. Five patients (13%) developed leptomeningeal disease. With a median follow up of 226 days, 30 Gy/5 fx was associated with the best local control (93%) with only 1 local failure. A lower total dose in five fractions (ie 27.5 or 25 Gy) had a local control rate of 70%. For three fraction SBRT, local control was 100% using a dose of 27 Gy in three fractions (follow up was > 600 days) and 71% if 24 Gy in three fractions was used. A higher total biologically equivalent dose (BED 10 ) was statistically significant for improved local control (p = 0.04) with a threshold BED 10 ≥ 48 associated with better local control. HSRT after surgical resection for brain metastasis is well tolerated and has improved local control with BED 10 ≥ 48 (30 Gy/5 fx and 27 Gy/3 fx). Additional study is warranted.
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz
2016-03-01
Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (μ), was shown to increase with the increased void fraction.
Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update
NASA Astrophysics Data System (ADS)
Johnson, Perry B.; Bahadori, Amir A.; Eckerman, Keith F.; Lee, Choonsik; Bolch, Wesley E.
2011-04-01
A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues—active and total shallow marrow—within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Fangyao; Vishwanath, Karthik; Salama, Joseph K.
Purpose: To test whether oxygenation kinetics correlate with the likelihood for local tumor control after fractionated radiation therapy. Methods and Materials: We used diffuse reflectance spectroscopy to noninvasively measure tumor vascular oxygenation and total hemoglobin concentration associated with radiation therapy of 5 daily fractions (7.5, 9, or 13.5 Gy/d) in FaDu xenografts. Spectroscopy measurements were obtained immediately before each daily radiation fraction and during the week after radiation therapy. Oxygen saturation and total hemoglobin concentration were computed using an inverse Monte Carlo model. Results: First, oxygenation kinetics during and after radiation therapy, but before tumor volumes changed, were associated with localmore » tumor control. Locally controlled tumors exhibited significantly faster increases in oxygenation after radiation therapy (days 12-15) compared with tumors that recurred locally. Second, within the group of tumors that recurred, faster increases in oxygenation during radiation therapy (day 3-5 interval) were correlated with earlier recurrence times. An area of 0.74 under the receiver operating characteristic curve was achieved when classifying the local control tumors from all irradiated tumors using the oxygen kinetics with a logistic regression model. Third, the rate of increase in oxygenation was radiation dose dependent. Radiation doses ≤9.5 Gy/d did not initiate an increase in oxygenation, whereas 13.5 Gy/d triggered significant increases in oxygenation during and after radiation therapy. Conclusions: Additional confirmation is required in other tumor models, but these results suggest that monitoring tumor oxygenation kinetics could aid in the prediction of local tumor control after radiation therapy.« less
Johnson, Perry B; Bahadori, Amir A; Eckerman, Keith F; Lee, Choonsik; Bolch, Wesley E
2011-04-21
A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.
Johnson, Perry; Bahadori, Amir; Eckerman, Keith; Lee, Choonsik; Bolch, Wesley E.
2014-01-01
A comprehensive set of photon fluence-to-dose response functions (DRFs) are presented for two radiosensitive skeletal tissues – active and total shallow marrow – within 15 and 32 bones sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon microCT images of trabecular spongiosa taken from a 40-year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, as well as a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In the present study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma factors for active marrow, inactive marrow, trabecular bone, and spongiosa at higher energies are calculated using the DRF algorithm setting the electron absorbed fraction for self-irradiation to unity. By comparing kerma factors and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites PMID:21427484
Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients
Pietribiasi, Mauro; Waniewski, Jacek; Załuska, Alicja; Załuska, Wojciech; Lindholm, Bengt
2016-01-01
Background The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD) sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters. Methods The model follows a two-compartment structure (vascular and interstitial space) and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP) and the total hydraulic conductivity (LpS) of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio. Results The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation) and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value). Conclusions The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and fluid balance. PMID:27483369
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
2014-07-01
To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy.more » Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.« less
Defect-induced solid state amorphization of molecular crystals
NASA Astrophysics Data System (ADS)
Lei, Lei; Carvajal, Teresa; Koslowski, Marisol
2012-04-01
We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.
Echocardiographic Parameters and Survival in Chagas Heart Disease with Severe Systolic Dysfunction
Rassi, Daniela do Carmo; Vieira, Marcelo Luiz Campos; Arruda, Ana Lúcia Martins; Hotta, Viviane Tiemi; Furtado, Rogério Gomes; Rassi, Danilo Teixeira; Rassi, Salvador
2014-01-01
Background Echocardiography provides important information on the cardiac evaluation of patients with heart failure. The identification of echocardiographic parameters in severe Chagas heart disease would help implement treatment and assess prognosis. Objective To correlate echocardiographic parameters with the endpoint cardiovascular mortality in patients with ejection fraction < 35%. Methods Study with retrospective analysis of pre-specified echocardiographic parameters prospectively collected from 60 patients included in the Multicenter Randomized Trial of Cell Therapy in Patients with Heart Diseases (Estudo Multicêntrico Randomizado de Terapia Celular em Cardiopatias) - Chagas heart disease arm. The following parameters were collected: left ventricular systolic and diastolic diameters and volumes; ejection fraction; left atrial diameter; left atrial volume; indexed left atrial volume; systolic pulmonary artery pressure; integral of the aortic flow velocity; myocardial performance index; rate of increase of left ventricular pressure; isovolumic relaxation time; E, A, Em, Am and Sm wave velocities; E wave deceleration time; E/A and E/Em ratios; and mitral regurgitation. Results In the mean 24.18-month follow-up, 27 patients died. The mean ejection fraction was 26.6 ± 5.34%. In the multivariate analysis, the parameters ejection fraction (HR = 1.114; p = 0.3704), indexed left atrial volume (HR = 1.033; p < 0.0001) and E/Em ratio (HR = 0.95; p = 0.1261) were excluded. The indexed left atrial volume was an independent predictor in relation to the endpoint, and values > 70.71 mL/m2 were associated with a significant increase in mortality (log rank p < 0.0001). Conclusion The indexed left atrial volume was the only independent predictor of mortality in this population of Chagasic patients with severe systolic dysfunction. PMID:24553982
Echocardiographic parameters and survival in Chagas heart disease with severe systolic dysfunction.
Rassi, Daniela do Carmo; Vieira, Marcelo Luiz Campos; Arruda, Ana Lúcia Martins; Hotta, Viviane Tiemi; Furtado, Rogério Gomes; Rassi, Danilo Teixeira; Rassi, Salvador
2014-03-01
Echocardiography provides important information on the cardiac evaluation of patients with heart failure. The identification of echocardiographic parameters in severe Chagas heart disease would help implement treatment and assess prognosis. To correlate echocardiographic parameters with the endpoint cardiovascular mortality in patients with ejection fraction < 35%. Study with retrospective analysis of pre-specified echocardiographic parameters prospectively collected from 60 patients included in the Multicenter Randomized Trial of Cell Therapy in Patients with Heart Diseases (Estudo Multicêntrico Randomizado de Terapia Celular em Cardiopatias) - Chagas heart disease arm. The following parameters were collected: left ventricular systolic and diastolic diameters and volumes; ejection fraction; left atrial diameter; left atrial volume; indexed left atrial volume; systolic pulmonary artery pressure; integral of the aortic flow velocity; myocardial performance index; rate of increase of left ventricular pressure; isovolumic relaxation time; E, A, Em, Am and Sm wave velocities; E wave deceleration time; E/A and E/Em ratios; and mitral regurgitation. In the mean 24.18-month follow-up, 27 patients died. The mean ejection fraction was 26.6 ± 5.34%. In the multivariate analysis, the parameters ejection fraction (HR = 1.114; p = 0.3704), indexed left atrial volume (HR = 1.033; p < 0.0001) and E/Em ratio (HR = 0.95; p = 0.1261) were excluded. The indexed left atrial volume was an independent predictor in relation to the endpoint, and values > 70.71 mL/m2 were associated with a significant increase in mortality (log rank p < 0.0001). The indexed left atrial volume was the only independent predictor of mortality in this population of Chagasic patients with severe systolic dysfunction.
Left Atrial Volume Determinants in Patients with Non-Ischemic Dilated Cardiomyopathy
Mancuso, Frederico José Neves; Moisés, Valdir Ambrósio; Almeida, Dirceu Rodrigues; Poyares, Dalva; Storti, Luciana Julio; Oliveira, Wércules Antonio; Brito, Flavio Souza; de Paola, Angelo Amato Vincenzo; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2015-01-01
Background Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure. Objective We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM). Methods Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e´ wave, E/e´ ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson´s coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables. Results Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e´ ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e´ ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase. Conclusion The LAV is independently determined by LV filling pressures (E/e´ ratio) and mitral regurgitation in DCM. PMID:25993483
Left Atrial Volume Determinants in Patients with Non-Ischemic Dilated Cardiomyopathy.
Mancuso, Frederico José Neves; Moisés, Valdir Ambrósio; Almeida, Dirceu Rodrigues; Poyares, Dalva; Storti, Luciana Julio; Oliveira, Wércules Antonio; Brito, Flavio Souza; Paola, Angelo Amato Vincenzo de; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2015-07-01
Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure. We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM). Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e' wave, E/e' ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson's coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables. Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e' ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e' ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase. The LAV is independently determined by LV filling pressures (E/e' ratio) and mitral regurgitation in DCM.
Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu
2016-01-01
Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractionsLEF and CEF were identified as noncompetitive and competitive á-glucosidase inhibitors, respectivelyAntiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. Abbreviations used: LHF: Leaf hexane fraction, LCF: Leaf chloroform fraction, LEF: Leaf ethyl acetate fraction, LBF: Leaf butanol fraction, LWF: Leaf water fraction, CHF: Callus hexane fraction, CCF: Callus chloroform fraction, CEF: Callus ethyl acetate fraction, CBF: Callus butanol fraction, CWF: Callus water fraction, TP: Total phenolic, TF: Total flavonoid, TC: Total coumarin.
Mechanical Properties versus Morphology of Ordered Polymers. Volume III. Part I
1982-08-01
measured by wide angle x-ray scattering and differential scanning calorimetry, is unrelated to the diffuse scattered intensity [62]. Cellulose acetate which...increasing void fraction, in air swollen cellulose . Comparison of the volume fraction of voids calculated from the SAXS integrated intensity with...1964). 63. P.H. Hermans, D. Heikens, and A. Weidinger, "A Quantitative Investigation on the X-Ray Small Angle Scattering of Cellulose Fibers. Part II
Lightweight armor system and process for producing the same
Chu, Henry S.; Bruck, H. Alan; Strempek, Gary C.; Varacalle, Jr., Dominic J.
2004-01-20
A lightweight armor system may comprise a substrate having a graded metal matrix composite layer formed thereon by thermal spray deposition. The graded metal matrix composite layer comprises an increasing volume fraction of ceramic particles imbedded in a decreasing volume fraction of a metal matrix as a function of a thickness of the graded metal matrix composite layer. A ceramic impact layer is affixed to the graded metal matrix composite layer.