Variation in Differential and Total Cross Sections Due to Different Radial Wave Functions
ERIC Educational Resources Information Center
Williamson, W., Jr.; Greene, T.
1976-01-01
Three sets of analytical wave functions are used to calculate the Na (3s---3p) transition differential and total electron excitation cross sections by Born approximations. Results show expected large variations in values. (Author/CP)
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
NASA Astrophysics Data System (ADS)
Meek, Garrett A.; Levine, Benjamin G.
2016-05-01
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Scanning tunneling microscopy current from localized basis orbital density functional theory
NASA Astrophysics Data System (ADS)
Gustafsson, Alexander; Paulsson, Magnus
2016-03-01
We present a method capable of calculating elastic scanning tunneling microscopy (STM) currents from localized atomic orbital density functional theory (DFT). To overcome the poor accuracy of the localized orbital description of the wave functions far away from the atoms, we propagate the wave functions, using the total DFT potential. From the propagated wave functions, the Bardeen's perturbative approach provides the tunneling current. To illustrate the method we investigate carbon monoxide adsorbed on a Cu(111) surface and recover the depression/protrusion observed experimentally with normal/CO-functionalized STM tips. The theory furthermore allows us to discuss the significance of s - and p -wave tips.
Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; ...
2015-10-28
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectronmore » wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. Finally, the results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.« less
NASA Technical Reports Server (NTRS)
Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.
1984-01-01
On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.
76 FR 13994 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... performance of the functions of the agency, including whether the information shall have practical utility; (b... Burden respondent hours over over 3 3-year 3 years years Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Total Cohort... = Not Applicable. The decrease in the number of respondents within each cohort from one wave to the next...
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
Four-body correlation embedded in antisymmetrized geminal power wave function.
Kawasaki, Airi; Sugino, Osamu
2016-12-28
We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1988-01-01
An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..
Does extracorporeal shock wave lithotripsy cause hearing impairment in children?
Tuncer, Murat; Sahin, Cahit; Yazici, Ozgur; Kafkasli, Alper; Turk, Akif; Erdogan, Banu A; Faydaci, Gokhan; Sarica, Kemal
2015-03-01
We evaluated the possible effects of noise created by high energy shock waves on the hearing function of children treated with extracorporeal shock wave lithotripsy. A total of 65 children with normal hearing function were included in the study. Patients were divided into 3 groups, ie those becoming stone-free after 1 session of shock wave lithotripsy (group 1, 22 children), those requiring 3 sessions to achieve stone-free status (group 2, 21) and healthy children/controls (group 3, 22). Extracorporeal shock wave lithotripsy was applied with patients in the supine position with a 90-minute frequency and a total of 2,000 shock waves in each session (Compact Sigma, Dornier MedTech, Wessling, Germany). Second energy level was used with a maximum energy value of 58 joules per session in all patients. Hearing function and possible cochlear impairment were evaluated by transient evoked otoacoustic emissions test at 1.0, 1.4, 2.0, 2.8 and 4.0 kHz frequencies before the procedure, 2 hours later, and 1 month after completion of the first shock wave lithotripsy session in groups 1 and 2. In controls the same evaluation procedures were performed at the beginning of the study and 7 weeks later. Regarding transient evoked otoacoustic emissions data, in groups 1 and 2 there was no significant alteration in values obtained after shock wave lithotripsy compared to values obtained at the beginning of the study, similar to controls. A well planned shock wave lithotripsy procedure is a safe and effective treatment in children with urinary stones and causes no detectable harmful effect on hearing function. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
NASA Astrophysics Data System (ADS)
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Complex Correlation Calculation of e-H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e-H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with projection operators. The number of terms in the Hylleraas-type wave function for the S phase shifts is 95 while for the S it is 56, except for k=0.8 where it is 84. Our results, which are rigorous lower bounds, are given. They are seen to be in general agreement with those of Schwartz, but they are of 0 greater accuracy and outside of his error limits for k=0.3 and 0.4 for S. The main aim of this approach' is the application to higher energy scattering. By virtue of the complex correlation functions, the T matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
Complex Correlation Calculation of e(-) - H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e(-) - H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with 2 projection operators. The number of terms in the Hylleraas-type wave function for the S-1 phase shifts is 95 while for the S-3 it is 56, except for k = 0.8 where it is 84. Our results, which are rigorous lower bounds, are seen to be in general agreement with those of Schwartz, but they are of greater accuracy and outside of his error limits for k = 0.3 and 0.4 for S-1. The main aim of this approach is the application to higher energy scattering. By virtue of the complex correlation functions, the T-matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
NASA Technical Reports Server (NTRS)
Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.
1990-01-01
Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.
Schmidt, Michael W.; Ivanic, Joseph; Ruedenberg, Klaus
2014-01-01
An analysis based on the variation principle shows that in the molecules H2+, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation. PMID:24880263
Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus
2014-05-28
An analysis based on the variation principle shows that in the molecules H2 (+), H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.
Toward a general theory of conical intersections in systems of identical nuclei
NASA Astrophysics Data System (ADS)
Keating, Sean P.; Mead, C. Alden
1987-02-01
It has been shown previously that the Herzberg-Longuet-Higgins sign change produced in Born-Oppenheimer electronic wave functions when the nuclei traverse a closed path around a conical intersection has implications for the symmetry of wave functions under permutations of identical nuclei. For systems of three or four identical nuclei, there are special features present which have facilitated the detailed analysis. The present paper reports progress toward a general theory for systems of n nuclei. For n=3 or 4, the two key functions which locate conical intersections and define compensating phase factors can conveniently be defined so as to transform under permutations according to a two-dimensional irreducible representation of the permutation group. Since such representations do not exist for n>4, we have chosen to develop a formalism in terms of lab-fixed electronic basis functions, and we show how to define the two key functions in principle. The functions so defined both turn out to be totally symmetric under permutations. We show how they can be used to define compensating phase factors so that all modified electronic wave functions are either totally symmetric or totally antisymmetric under permutations. A detailed analysis is made to cyclic permutations in the neighborhood of Dnh symmetry, which can be extended by continuity arguments to more general configurations, and criteria are obtained for sign changes. There is a qualitative discussion of the treatment of more general permutations.
NASA Astrophysics Data System (ADS)
Penin, A. A.; Pivovarov, A. A.
2001-02-01
We present an analytical description of top-antitop pair production near the threshold in $e^+e^-$ annihilation and $\\g\\g$ collisions. A set of basic observables considered includes the total cross sections, forward-backward asymmetry and top quark polarization. The threshold effects relevant for the basic observables are described by three universal functions related to S wave production, P wave production and S-P interference. These functions are computed analytically up to the next-to-next-to-leading order of NRQCD. The total $e^+e^-\\to t\\bar t$ cross section near the threshold is obtained in the next-to-next-to-leading order in the closed form including the contribution due to the axial coupling of top quark and mediated by the Z-boson. The effects of the running of the strong coupling constant and of the finite top quark width are taken into account analytically for the P wave production and S-P wave interference.
Wave Function and Emergent SU(2) Symmetry in the νT=1 Quantum Hall Bilayer
NASA Astrophysics Data System (ADS)
Lian, Biao; Zhang, Shou-Cheng
2018-02-01
We propose a trial wave function for the quantum Hall bilayer system of total filling factor νT=1 at a layer distance d to magnetic length ℓ ratio d /ℓ=κc 1≈1.1 , where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d /ℓ=κc 1, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d /ℓ=κc 1, which supports our theory.
Orthogonality of embedded wave functions for different states in frozen-density embedding theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zech, Alexander; Wesolowski, Tomasz A.; Aquilante, Francesco
2015-10-28
Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematicalmore » structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.« less
Bound states and propagating modes in quantum wires with sharp bends and/or constrictions
NASA Astrophysics Data System (ADS)
Razavy, M.
1997-06-01
A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.
Energy, momentum, and angular momentum of sound pulses.
Lekner, John
2017-12-01
Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.
NASA Astrophysics Data System (ADS)
García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.
2018-03-01
We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.
NASA Astrophysics Data System (ADS)
Bukchin, B. G.
1995-08-01
A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.
Computing the Dynamic Response of a Stratified Elastic Half Space Using Diffuse Field Theory
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Perton, M.; Molina Villegas, J. C.
2015-12-01
The analytical solution for the dynamic response of an elastic half-space for a normal point load at the free surface is due to Lamb (1904). For a tangential force, we have Chaós (1960) formulae. For an arbitrary load at any depth within a stratified elastic half space, the resulting elastic field can be given in the same fashion, by using an integral representation in the radial wavenumber domain. Typically, computations use discrete wave number (DWN) formalism and Fourier analysis allows for solution in space and time domain. Experimentally, these elastic Greeńs functions might be retrieved from ambient vibrations correlations when assuming a diffuse field. In fact, the field could not be totally diffuse and only parts of the Green's functions, associated to surface or body waves, are retrieved. In this communication, we explore the computation of Green functions for a layered media on top of a half-space using a set of equipartitioned elastic plane waves. Our formalism includes body and surface waves (Rayleigh and Love waves). These latter waves correspond to the classical representations in terms of normal modes in the asymptotic case of large separation distance between source and receiver. This approach allows computing Green's functions faster than DWN and separating the surface and body wave contributions in order to better represent Green's function experimentally retrieved.
Electromagnetic pulses, localized and causal
NASA Astrophysics Data System (ADS)
Lekner, John
2018-01-01
We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.
Wave Function and Emergent SU(2) Symmetry in the ν_{T}=1 Quantum Hall Bilayer.
Lian, Biao; Zhang, Shou-Cheng
2018-02-16
We propose a trial wave function for the quantum Hall bilayer system of total filling factor ν_{T}=1 at a layer distance d to magnetic length ℓ ratio d/ℓ=κ_{c1}≈1.1, where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d/ℓ=κ_{c1}, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d/ℓ=κ_{c1}, which supports our theory.
Hajek, André; Brettschneider, Christian; Mallon, Tina; van der Leeden, Carolin; Mamone, Silke; Wiese, Birgitt; Weyerer, Siegfried; Werle, Jochen; Fuchs, Angela; Pentzek, Michael; Riedel-Heller, Steffi G; Stein, Janine; Bickel, Horst; Weeg, Dagmar; Heser, Kathrin; Wagner, Michael; Maier, Wolfgang; Scherer, Martin; Luck, Tobias; König, Hans-Helmut
2017-09-01
to investigate how social support affects functional impairment (FI) in late life in a longitudinal approach. in a multicenter prospective cohort study, subjects in old age (≥75 years at baseline) were interviewed every 1.5 years. Social support was quantified in the follow-up (FU) Waves 2 and 4 (FU Wave 2: n = 2,349; FU Wave 4: n = 1,484). FI was assessed by using the Lawton and Brody Instrumental Activities of Daily Living scale. fixed effects regressions showed that a decrease in social support is associated with FI in the total sample and in both sexes. The effect on FI was most pronounced with the dimension social integration, whereas changes in practical support only affected FI in the total sample and changes in emotional support only affected FI in men. our findings emphasise the importance of social support for functional status in late life. Thus, strengthening social support in old age might be effective in maintaining functional abilities. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
Merritt, R.W.; Benbow, M.E.; Hudson, P.L.
2002-01-01
The Great Lakes support many fish and waterbirds that depend directly or indirectly on coastal wetlands during some portion of their life cycle. It is known that macroinvertebrates make up an important part of wetland food webs and ecosystem function; however, our understanding of species distribution within and among wetlands has only recently received attention. We investigated the macroinvertebrates of a freshwater marsh (Prentiss Bay) in the Les Chenaux Island Area of Northern Lake Huron, Michigan. Macroinvertebrate taxa diversity and functional feeding group composition were compared between two habitats. A shallow depositional habitat with higher vegetation diversity and little wave action was compared to a deeper erosional habitat with fewer plant species and more wave action. A total of 83 taxa were collected over the summer of 1996, representing two phyla (Arthropoda and Mollusca) and five classes (Arachnida, Bivalvia, Malacostraca, Gastropoda and Insecta). A total of 79 genera were identified, with 92% being insects (39 families composed of at least 73 genera). Of the total, 42 insect genera were common to both habitats,while relatively fewer were collected exclusively from the erosional compared the depositional habitat. When habitats were pooled, predators comprised about 50% of the functional group taxa, while gathering collectors and shredders each were about 20%. Filtering collectors and scrapers each represented < 10%. When comparing habitats, there was a relatively higher percentage of predators and shredders in the depositional habitat, while all other functional groups were lower. These data suggest that vegetation diversity, depth and wave action affect taxa composition and functional group organization of the Prentiss Bay marsh.
Absolute Definition of Phase Shift in the Elastic Scattering of a Particle from Compound Systems
NASA Technical Reports Server (NTRS)
Temkin, A.
1961-01-01
The projection of the target wave function on the total wave function of a scattered particle interacting with the target system is used to define an absolute phase shift including any multiples of pi. With this definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of pi. One can further show that at least one pi of this phase shift is not connected with the existence of a bound state of the H- ion.
Scattering of elastic waves by a spheroidal inclusion
NASA Astrophysics Data System (ADS)
Johnson, Lane R.
2018-03-01
An analytical solution is presented for scattering of elastic waves by prolate and oblate spheroidal inclusions. The problem is solved in the frequency domain where separation of variables leads to a solution involving spheroidal wave functions of the angular and radial kind. Unlike the spherical problem, the boundary equations remain coupled with respect to one of the separation indices. Expanding the angular spheroidal wave functions in terms of associated Legendre functions and using their orthogonality properties leads to a set of linear equations that can be solved to simultaneously obtain solutions for all coupled modes of both scattered and interior fields. To illustrate some of the properties of the spheroidal solution, total scattering cross-sections for P, SV and SH plane waves incident at an oblique angle on a prolate spheroid, an oblate spheroid and a sphere are compared. The waveforms of the scattered field exterior to the inclusion are calculated for these same incident waves. The waveforms scattered by a spheroid are strongly dependent upon the angle of incidence, are different for incident SV and SH waves and are asymmetrical about the centre of the spheroid with the asymmetry different for prolate and oblate spheroids.
A multiple scattering theory for EM wave propagation in a dense random medium
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Wong, K. W.
1985-01-01
For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.
Urinary extracorporeal shock wave lithotripsy: equipment, techniques, and overview.
Pfister, R C; Papanicolaou, N; Yoder, I C
1988-01-01
Second generation urinary lithotriptors are characterized by extensive technical alterations and significant equipment improvement in the functional, logistical, and medical aspects of shock wave lithotripsy (SWL). These newer devices feature a water bath-free environment, a reduced anesthesia requirement, improved imaging, functional uses in addition to lithotripsy, or combinations thereof. Shock wave generation by spark gap, electromagnetic, piezoelectric and microexplosive techniques are related to their peak energy, frequency, and total energy capabilities which impacts on both anesthesia needs and the length and number of treatment sessions required to pulverize calculi. A master table summarizes the types of SW energy, coupling, imaging systems, patient transport, functional features, cost, and treatment effectiveness of 12 worldwide lithotriptors in various stages of investigative and clinical trials as monitored by the Food and Drug Administration (FDA) of America.
Energy in elastic fiber embedded in elastic matrix containing incident SH wave
NASA Technical Reports Server (NTRS)
Williams, James H., Jr.; Nagem, Raymond J.
1989-01-01
A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.
Angeli, T R; O'Grady, G; Du, P; Paskaranandavadivel, N; Pullan, A J; Bissett, I P; Cheng, L K
2013-05-01
Slow-waves modulate the pattern of small intestine contractions. However, the large-scale spatial organization of intestinal slow-wave pacesetting remains uncertain because most previous studies have had limited resolution. This study applied high-resolution (HR) mapping to evaluate intestinal pacesetting mechanisms and propagation patterns in vivo. HR serosal mapping was performed in anesthetized pigs using flexible arrays (256 electrodes; 32 × 8; 4 mm spacing), applied along the jejunum. Slow-wave propagation patterns, frequencies, and velocities were calculated. Slow-wave initiation sources were identified and analyzed by animation and isochronal activation mapping. Analysis comprised 32 recordings from nine pigs (mean duration 5.1 ± 3.9 min). Slow-wave propagation was analyzed, and a total of 26 sources of slow-wave initiation were observed and classified as focal pacemakers (31%), sites of functional re-entry (23%) and circumferential re-entry (35%), or indeterminate sources (11%). The mean frequencies of circumferential and functional re-entry were similar (17.0 ± 0.3 vs 17.2 ± 0.4 cycle min(-1) ; P = 0.5), and greater than that of focal pacemakers (12.7 ± 0.8 cycle min(-1) ; P < 0.001). Velocity was anisotropic (12.9 ± 0.7 mm s(-1) circumferential vs 9.0 ± 0.7 mm s(-1) longitudinal; P < 0.05), contributing to the onset and maintenance of re-entry. This study has shown multiple patterns of slow-wave initiation in the jejunum of anesthetized pigs. These results constitute the first description and analysis of circumferential re-entry in the gastrointestinal tract and functional re-entry in the in vivo small intestine. Re-entry can control the direction, pattern, and frequency of slow-wave propagation, and its occurrence and functional significance merit further investigation. © 2013 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
Determination of wave-function functionals: The constrained-search variational method
NASA Astrophysics Data System (ADS)
Pan, Xiao-Yin; Sahni, Viraht; Massa, Lou
2005-09-01
In a recent paper [Phys. Rev. Lett. 93, 130401 (2004)], we proposed the idea of expanding the space of variations in variational calculations of the energy by considering the approximate wave function ψ to be a functional of functions χ , ψ=ψ[χ] , rather than a function. A constrained search is first performed over all functions χ such that the wave-function functional ψ[χ] satisfies a physical constraint or leads to the known value of an observable. A rigorous upper bound to the energy is then obtained via the variational principle. In this paper we generalize the constrained-search variational method, applicable to both ground and excited states, to the determination of arbitrary Hermitian single-particle operators as applied to two-electron atomic and ionic systems. We construct analytical three-parameter ground-state functionals for the H- ion and the He atom through the constraint of normalization. We present the results for the total energy E , the expectations of the single-particle operators W=∑irin , n=-2,-1,1,2 , W=∑iδ(ri) , and W=∑iδ(ri-r) , the structure of the nonlocal Coulomb hole charge ρc(rr') , and the expectations of the two particle operators u2,u,1/u,1/u2 , where u=∣ri-rj∣ . The results for all the expectation values are remarkably accurate when compared with the 1078-parameter wave function of Pekeris, and other wave functions that are not functionals. We conclude by describing our current work on how the constrained-search variational method in conjunction with quantal density-functional theory is being applied to the many-electron case.
NASA Technical Reports Server (NTRS)
Simsic, P. L.
1974-01-01
Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsuji, H.; Nakashima, H.; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510
2007-12-14
A local Schroedinger equation (LSE) method is proposed for solving the Schroedinger equation (SE) of general atoms and molecules without doing analytic integrations over the complement functions of the free ICI (iterative-complement-interaction) wave functions. Since the free ICI wave function is potentially exact, we can assume a flatness of its local energy. The variational principle is not applicable because the analytic integrations over the free ICI complement functions are very difficult for general atoms and molecules. The LSE method is applied to several 2 to 5 electron atoms and molecules, giving an accuracy of 10{sup -5} Hartree in total energy.more » The potential energy curves of H{sub 2} and LiH molecules are calculated precisely with the free ICI LSE method. The results show the high potentiality of the free ICI LSE method for developing accurate predictive quantum chemistry with the solutions of the SE.« less
Divergent effects of laughter and mental stress on arterial stiffness and central hemodynamics.
Vlachopoulos, Charalambos; Xaplanteris, Panagiotis; Alexopoulos, Nikolaos; Aznaouridis, Konstantinos; Vasiliadou, Carmen; Baou, Katerina; Stefanadi, Elli; Stefanadis, Christodoulos
2009-05-01
To investigate the effect of laughter and mental stress on arterial stiffness and central hemodynamics. Arterial stiffness and wave reflections are independent predictors of cardiovascular risk. Chronic psychological stress is an independent risk factor for cardiovascular events, whereas acute stress deteriorates vascular function. Eighteen healthy individuals were studied on three occasions, according to a randomized, single-blind, crossover, sham procedure-controlled design. The effects of viewing a 30-minute segment of two films inducing laughter or stress were assessed. Carotid-femoral pulse wave velocity was used as an index of arterial stiffness; augmentation index was used as a measure of wave reflections. Laughter decreased pulse wave velocity (by 0.30 m/sec, p = .01), and augmentation index (by 2.72%, p = .05). Conversely, stress increased pulse wave velocity (by 0.29 m/sec, p = .05) and augmentation index (by 5.1%, p = .005). Laughter decreased cortisol levels by 1.67 microg/dl (p = .02), soluble P-selectin by 26 ng/ml (p = .02) and marginally von Willebrand factor (by 2.4%, p = .07) and increased total oxidative status (by 61 micromol/L, p < .001). Stress decreased interleukin-6 (by 0.11 pg/ml, p = .04) and increased total oxidative status (by 44 micromol/L, p = .007). Soluble CD40 ligand and fibrinogen remained unchanged. Positive (laughter) and negative (stress) behavioral interventions have divergent acute effects on arterial stiffness and wave reflections. These findings have important clinical implications extending the spectrum of lifestyle modifications that can ameliorate arterial function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less
Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li
2016-08-01
The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.
Generalized Jastrow Variational Method for Liquid HELIUM-3-HELIUM-4 Mixtures at T = 0 K.
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, Kavoos
Microscopic theory of dilute liquid { ^3 He}-{^4 He} mixtures is of great interest, because it provides a physical realization of a nearly degenerate weakly interacting Fermion system. An understanding of properties of the mixtures has received considerable attention both theoretically and experimentally over the past thirty years. We present here a variational procedure based on the Jastrow function for the ground state of {^3 He}- {^4 He} mixtures by minimizing the total energy of the mixture using the hypernetted-chain (HNC) approximation and the Percus-Yevick (PY) approximation for the two body correlation functions. Our goal is to compute from first principles the internal energy of the system and the various two body correlation functions at various densities and compare the results with experiment. The Jastrow variational method for the ground state energy of liquid {^4 He} consists of the following ansatz for the wave function Psi_alpha {rm(vec r_{1 alpha},} {vec r_{2alpha},} dots, {vec r_{N _alpha})} = prod _{rm i < j} {rm f_ {alphaalpha}(r_{ij}). } For a {^3 He } system the corresponding ansatz is Psi_beta {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{N_beta})} = {[prod _{i < j} f_{betabeta }(r_{ij})]} Phi {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{Nbeta}),} where Phi is a Slater determinant of plane waves for the ground state of the Fermion system. The total energy per particle can be written in the form: E = x_sp{alpha}{2} E_{alphaalpha} + x_sp{beta}{2 }E_{betabeta } + 2x_{alpha} x_{beta}E _{alphabeta}, where E_{alphaalpha} , E_{betabeta} , E_{alphabeta} are unknown parameters to be determined from a microscopic theory. Using the Jastrow wave function Psi for the mixture, a general expression is given for the ground state energy in terms of the two body potential and two and three body correlation functions. The Kirkwood Super-position Approximation (KSA) is used for the three-body correlation functions. The antisymmetry of the wave function for Fermions is incorporated following the procedure given earlier by Lado, Inguva and Smith. This procedure for treating the antisymmetry of the wave function simplifies the equations for the two-body correlation functions considerably. The equations for the correlation functions are solved in the hypernetted-chain approximation. Once the two-particle correlation functions for the mixture ( ^3He-^4He) have been obtained, the energy is minimized with respect to the variational parameters involved in the Jastrow wave function. The binding energy and the optimal correlation functions are then obtained as a function of the concentration of ^3He atoms in the mixture. (Abstract shortened with permission of author.).
Hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.-H.; Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080; Wang, J.-X.
2004-12-01
Adopting the complete {alpha}{sub s}{sup 4} approach of the perturbative QCD and the updated parton distribution functions, we have estimated the hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*). In the estimate, special care has been paid to the dependence of the production amplitude on the derivative of the wave function at origin which is obtained by the potential model. For experimental references, main theoretical uncertainties are discussed, and the total cross section as well as the distributions of the production with reasonable cuts at the energies of Tevatron and CERN LHC are computed and presented properly.more » The results show that the P-wave production may contribute to the B{sub c}-meson production indirectly by a factor of about 0.5 of the direct production, and according to the estimated cross section, it is further worthwhile to study the possibility of observing the P-wave production itself experimentally.« less
The scattering of electromagnetic pulses by a slit in a conducting screen
NASA Technical Reports Server (NTRS)
Ackerknecht, W. E., III; Chen, C.-L.
1975-01-01
A direct method for calculating the impulse response of a slit in a conducting screen is presented which is derived specifically for the analysis of transient scattering by two-dimensional objects illuminated by a plane incident wave. The impulse response is obtained by assuming that the total response is composed of two sequences of diffracted waves. The solution is determined for the first two waves in one sequence by using Green's functions and the equivalence principle, for additional waves in the sequence by iteration, and for the other sequence by a transformation of coordinates. The cases of E-polarization and H-polarization are considered.
Observing secretory granules with a multiangle evanescent wave microscope.
Rohrbach, A
2000-01-01
In total internal reflection fluorescence microscopy (TIRFM), fluorophores near a surface can be excited with evanescent waves, which decay exponentially with distance from the interface. Penetration depths of evanescent waves from 60 nm to 300 nm were generated by varying the angle of incidence of a laser beam. With a novel telecentric multiangle evanescent wave microscope, we monitored and investigated both single secretory granules and pools of granules in bovine chromaffin cells. By measuring the fluorescence intensity as a function of penetration depth, it is possible through a Laplace transform to obtain the fluorophore distribution as a function of axial position. We discuss the extent to which it is possible to determine distances and diameters of granules with this microscopy technique by modeling the fluorescent volumes of spheres in evanescent fields. The anisotropic near-field detection of fluorophores and the influence of the detection point-spread function are considered. The diameters of isolated granules between 70 nm and 300 nm have been reconstructed, which is clearly beyond the resolution limit of a confocal microscope. Furthermore, the paper demonstrates how evanescent waves propagate along surfaces and scatter at objects with a higher refractive index. TIRFM will have a limited applicability for quantitative measurements when the parameters used to define evanescent waves are not optimally selected. PMID:10777760
Agetsuma, H.; Hirai, M.; Hirayama, H.; Suzuki, A.; Takanaka, C.; Yabe, S.; Inagaki, H.; Takatsu, F.; Hayashi, H.; Saito, H.
1996-01-01
OBJECTIVE: To investigate the value of a giant negative T wave (> or = 1.0 mV) in precordial leads of 12-lead electrocardiograms in the acute phase of Q wave myocardial infarction as a predictor of myocardial salvage. METHODS: Coronary angiographic and electrocardiographic findings, left ventricular ejection fraction in the chronic stage, and levels of cardiac enzymes were compared in patients with myocardial infarction with (group GNT, n = 31) and without (group N, n = 20) a giant negative T wave. GNT patients were divided into two subgroups according to the presence (GNT:R[+], n = 10) or absence (GNT: R[-], n = 21) of R wave recovery with an amplitude > or = 0.1 mV in at least one lead that had shown Q waves. RESULTS: The maximum level of creatine kinase and the total creatine kinase were lower in group GNT compared with group N (P < 0.05). The left ventricular ejection fraction was higher in group GNT than in group N (P < 0.05). The maximum creatine kinase and total creatine kinase were lower in GNT:R(+) than in GNT:R(-) (P < 0.01). The left ventricular ejection fraction was higher in GNT:R(+) than in GNT:R(-) (P < 0.01). The frequency of R wave recovery was significantly higher when giant negative T waves appeared within 100 h of myocardial infarction or when the maximum potential was > or = 1.4 mV. The appearance of a giant negative T wave > or = 1.4 mV had a sensitivity of 90%, a specificity of 71.4%, a diagnostic accuracy of 77.4%, a positive predictive value of 60%, and a negative predictive value of 93.8% for prediction of R wave recovery. CONCLUSIONS: The appearance of a giant negative T wave, especially within 100 h of the onset of myocardial infarction, with a maximum potential of > or = 1.4 mV, may predict a reappearance of the R wave and a better left ventricular function in patients in the chronic stage of anterior myocardial infarction. PMID:8800983
Changes in working conditions and physical health functioning among midlife and ageing employees.
Mänty, Minna; Kouvonen, Anne; Lallukka, Tea; Lahti, Jouni; Lahelma, Eero; Rahkonen, Ossi
2015-11-01
The aim this study was to examine the effect of changes in physical and psychosocial working conditions on physical health functioning among ageing municipal employees. Follow-up survey data were collected from midlife employees of the City of Helsinki, Finland, at three time points: wave 1 (2000-2002), wave 2 (2007), and wave 3 (2012). Changes in physical and psychosocial working conditions were assessed between waves 1 and 2. Physical health functioning was measured by the physical component summary (PCS) of the Short-Form 36 questionnaire at each of the three waves. In total, 2784 respondents (83% women) who remained employed over the follow-up were available for the analyses. Linear mixed-effect models were used to assess the associations and adjust for key covariates (age, gender, obesity, chronic diseases, and health behaviors). Repeated and increased exposure to adverse physical working conditions was associated with greater decline in physical health functioning over time. In contrast, decrease in exposures reduced the decline. Of the psychosocial working conditions, changes in job demands had no effects on physical health functioning. However, decreased job control was associated with greater decline and repeated high or increased job control reduced the decline in physical health functioning over time. Adverse changes in physical working conditions and job control were associated with greater decline in physical health functioning over time, whereas favorable changes in these exposures reduced the decline. Preventing deterioration and promoting improvement of working conditions are likely to help maintain better physical health functioning among ageing employees.
NASA Astrophysics Data System (ADS)
Zhang, Bao-Ji; Zhang, Zhu-Xin
2015-09-01
To obtain low resistance and high efficiency energy-saving ship, minimum total resistance hull form design method is studied based on potential flow theory of wave-making resistance and considering the effects of tail viscous separation. With the sum of wave resistance and viscous resistance as objective functions and the parameters of B-Spline function as design variables, mathematical models are built using Nonlinear Programming Method (NLP) ensuring the basic limit of displacement and considering rear viscous separation. We develop ship lines optimization procedures with intellectual property rights. Series60 is used as parent ship in optimization design to obtain improved ship (Series60-1) theoretically. Then drag tests for the improved ship (Series60-1) is made to get the actual minimum total resistance hull form.
Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jamil, M.; Rasheed, A.
2015-07-15
The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increasemore » in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.« less
The effects of core-reflected waves on finite fault inversions with teleseismic body wave data
NASA Astrophysics Data System (ADS)
Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han
2017-11-01
Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases, the inverted slip model and moment rate function better match previous results incorporating field observations, geodetic and seismic data.
Extreme wind-wave modeling and analysis in the south Atlantic ocean
NASA Astrophysics Data System (ADS)
Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.
2018-04-01
A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.
Russo, Cesare; Jin, Zhezhen; Palmieri, Vittorio; Homma, Shunichi; Rundek, Tatjana; Elkind, Mitchell S V; Sacco, Ralph L; Di Tullio, Marco R
2012-08-01
Increased arterial stiffness and wave reflection have been reported in heart failure with normal ejection fraction (HFNEF) and in asymptomatic left ventricular (LV) diastolic dysfunction, a precursor of HFNEF. It is unclear whether women, who have higher frequency of HFNEF, are more vulnerable than men to the deleterious effects of arterial stiffness on LV diastolic function. We investigated, in a large community-based cohort, whether sex differences exist in the relationship among arterial stiffness, wave reflection, and LV diastolic function. Arterial stiffness and wave reflection were assessed in 983 participants from the Cardiovascular Abnormalities and Brain Lesions study using applanation tonometry. The central pulse pressure/stroke volume index, total arterial compliance, pulse pressure amplification, and augmentation index were used as parameters of arterial stiffness and wave reflection. LV diastolic function was evaluated by 2-dimensional echocardiography and tissue-Doppler imaging. Arterial stiffness and wave reflection were greater in women compared with men, independent of body size and heart rate (all P<0.01), and showed inverse relationships with parameters of diastolic function in both sexes. Further adjustment for cardiovascular risk factors attenuated these relationships; however, a higher central pulse pressure/stroke volume index predicted LV diastolic dysfunction in women (odds ratio, 1.54; 95% confidence intervals, 1.03 to 2.30) and men (odds ratio, 2.09; 95% confidence interval, 1.30 to 3.39), independent of other risk factors. In conclusion, in our community-based cohort study, higher arterial stiffness was associated with worse LV diastolic function in men and women. Women's higher arterial stiffness, independent of body size, may contribute to their greater susceptibility to develop HFNEF.
Invisibility and Cloaking: Origins, Present, and Future Perspectives
NASA Astrophysics Data System (ADS)
Fleury, Romain; Monticone, Francesco; Alù, Andrea
2015-09-01
The development of metamaterials, i.e., artificially structured materials that interact with waves in unconventional ways, has revolutionized our ability to manipulate the propagation of electromagnetic waves and their interaction with matter. One of the most exciting applications of metamaterial science is related to the possibility of totally suppressing the scattering of an object using an invisibility cloak. Here, we review the available methods to make an object undetectable to electromagnetic waves, and we highlight the outstanding challenges that need to be addressed in order to obtain a fully functional coating capable of suppressing the total scattering of an object. Our outlook discusses how, while passive linear cloaks are fundamentally limited in terms of bandwidth of operation and overall scattering suppression, active and/or nonlinear cloaks hold the promise to overcome, at least partially, some of these limitations.
Asarnow, Lauren D; McGlinchey, Eleanor; Harvey, Allison G
2014-03-01
The overall aim of this study was to clarify and better characterize the sleep/circadian patterns of adolescents in a nationally representative sample. We used three waves of data from the National Longitudinal Study of Adolescent Health to assess sleep/circadian patterns of 2,700 adolescents in grades seven through 12. Late school year bedtime was associated with shorter total sleep time cross-sectionally, whereas late summertime bedtime was not. Moreover, late school year bedtime was not associated with late summertime bedtime cross-sectionally. Late school year bedtime in Wave I (1994-1995) was associated with worse educational outcomes and emotional distress 6-8 years later. In addition, late summertime bedtime in Wave II (1996) was associated with more emotional distress at Wave III (2001-2002). Short total sleep time was not associated longitudinally with changes in emotional and academic functioning. Across Waves I and II, more than three quarters of adolescents who went to sleep at 11:15 a.m. or later during the school year or 1:30 a.m. or later during the summer reported sleeping fewer than the recommended 9 hours. These findings underscore the significance of evaluating and monitoring bedtime in adolescents and the importance of intervention strategies that target bedtimes in an effort to reduce associated functional impairments, and improve academic and emotional outcomes. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.
2015-12-01
The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the projection area of the structure are the main factors to the total force. Detailed results and discussion are presented as well.
Hayashi, Shuji; Yamada, Hirotsugu; Bando, Mika; Saijo, Yoshihito; Nishio, Susumu; Hirata, Yukina; Klein, Allan L; Sata, Masataka
2015-08-01
Left atrial (LA) strain analysis using speckle tracking echocardiography is useful for assessing LA function. However, there is no established procedure for this method. Most investigators have determined the electrocardiographic R-wave peak as the starting point for LA strain analysis. To test our hypothesis that P-wave onset should be used as the starting point, we measured LA strain using 2 different starting points and compared the strain values with the corresponding LA volume indices obtained by three-dimensional (3D) echocardiography. We enrolled 78 subjects (61 ± 17 years, 25 males) with and without various cardiac diseases in this study and assessed global longitudinal LA strain by two-dimensional speckle tracking strain echocardiography using EchoPac software. We used either R-wave peak or P-wave onset as the starting point for determining LA strains during the reservoir (Rres, Pres), conduit (Rcon, Pcon), and booster pump (Rpump, Ppump) phases. We determined the maximum, minimum, and preatrial contraction LA volumes, and calculated the LA total, passive, and active emptying fractions using 3D echocardiography. The correlation between Pres and LA total emptying fraction was better than the correlation between Rres and LA total emptying fraction (r = 0.458 vs. 0.308, P = 0.026). Pcon and Ppump exhibited better correlation with the corresponding 3D echocardiographic parameters than Rcon (r = 0.560 vs. 0.479, P = 0.133) and Rpump (r = 0.577 vs. 0.345, P = 0.003), respectively. LA strain in any phase should be analyzed using P-wave onset as the starting point rather than R-wave peak. © 2014, Wiley Periodicals, Inc.
Xu, Enhua; Li, Shuhua
2015-03-07
An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.
Quark Model in the Quantum Mechanics Curriculum.
ERIC Educational Resources Information Center
Hussar, P. E.; And Others
1980-01-01
This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)
Hajek, André; Brettschneider, Christian; Lühmann, Dagmar; Eisele, Marion; Mamone, Silke; Wiese, Birgitt; Weyerer, Siegfried; Werle, Jochen; Pentzek, Michael; Fuchs, Angela; Riedel-Heller, Steffi G; Luck, Tobias; Bickel, Horst; Weeg, Dagmar; Koppara, Alexander; Wagner, Michael; Scherer, Martin; Maier, Wolfgang; König, Hans-Helmut
2016-11-01
To examine how visual impairment affects physical and cognitive function in old age. A longitudinal population-based prospective cohort study. General practitioner offices at six study centers in Germany. They were observed every 1.5 years over four waves. Individuals aged 77-101 at follow-up Wave 2 (N = 2,394). Physical and cognitive function were assessed using an adapted scale that had been previously developed, and visual impairment was rated on a Likert scale (none, mild, severe or profound). Adjusting for sociodemographic factors and comorbidity, linear fixed-effects regression showed that the onset of severe visual impairment was associated with a decline in physical function score in the total sample (β = -0.15, P = .01) and in women (β = -.15, P = .03). Moreover, the onset of severe visual impairment was associated with decline in cognitive function score in the total sample (β = -0.38, P < .001) and in women (β = -0.38, P < .001) and men (β = -0.37, P = .001). Visual impairment affects physical and cognitive function in old age. Interventional strategies to postpone visual impairment may contribute to maintaining physical and cognitive function. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Envelope of coda waves for a double couple source due to non-linear elasticity
NASA Astrophysics Data System (ADS)
Calisto, Ignacia; Bataille, Klaus
2014-10-01
Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.
Theory of electron-impact ionization of atoms
NASA Astrophysics Data System (ADS)
Kadyrov, A. S.; Mukhamedzhanov, A. M.; Stelbovics, A. T.; Bray, I.
2004-12-01
The existing formulations of electron-impact ionization of a hydrogenic target suffer from a number of formal problems including an ambiguous and phase-divergent definition of the ionization amplitude. An alternative formulation of the theory is given. An integral representation for the ionization amplitude which is free of ambiguity and divergence problems is derived and is shown to have four alternative, but equivalent, forms well suited for practical calculations. The extension to amplitudes of all possible scattering processes taking place in an arbitrary three-body system follows. A well-defined conventional post form of the breakup amplitude valid for arbitrary potentials including the long-range Coulomb interaction is given. Practical approaches are based on partial-wave expansions, so the formulation is also recast in terms of partial waves and partial-wave expansions of the asymptotic wave functions are presented. In particular, expansions of the asymptotic forms of the total scattering wave function, developed from both the initial and the final state, for electron-impact ionization of hydrogen are given. Finally, the utility of the present formulation is demonstrated on some well-known model problems.
Lin, Chin-Feng; Su, Jiun-Yi; Wang, Hao-Min
2015-09-01
Chronic alcoholism may damage the central nervous system, causing imbalance in the excitation-inhibition homeostasis in the cortex, which may lead to hyper-arousal of the central nervous system, and impairments in cognitive function. In this paper, we use the Hilbert-Huang transformation (HHT) method to analyze the electroencephalogram (EEG) signals from control and alcoholic observers who watched two different pictures. We examined the intrinsic mode function (IMF) based energy distribution features of FP1, FP2, and Fz EEG signals in the time and frequency domains for alcoholics. The HHT-based characteristics of the IMFs, the instantaneous frequencies, and the time-frequency-energy distributions of the IMFs of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers who watched two different pictures were analyzed. We observed that the number of peak amplitudes of the alcoholic subjects is larger than that of the control. In addition, the Pearson correlation coefficients of the IMFs, and the energy-IMF distributions of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers were analyzed. The analysis results show that the energy ratios of IMF4, IMF5, and IMF7 waves of the normal observers to the refereed total energy were larger than 10 %, respectively. In addition, the energy ratios of IMF3, IMF4, and IMF5 waves of the alcoholic observers to the refereed total energy were larger than 10 %. The FP1 and FP2 waves of the normal observers, the FP1 and FP2 waves of the alcoholic observers, and the FP1 and Fz waves of the alcoholic observers demonstrated extremely high correlations. On the other hand, the FP1 waves of the normal and alcoholic observers, the FP1 wave of the normal observer and the FP2 wave of the alcoholic observer, the FP1 wave of the normal observer and the Fz wave of the alcoholic observer, the FP2 waves of the normal and alcoholic FP2 observers, and the FP2 wave of the normal observer and the Fz wave of the alcoholic observer demonstrated extremely low correlations. The IMF4 of the FP1 and FP2 signals of the normal observer, and the IMF5 of the FP1 and FP2 signals of the alcoholic observer were correlated. The IMF4 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer as well as the IMF5 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer exhibited extremely low correlations. In this manner, our experiment leads to a better understanding of the HHT-based IMFs features of FP1, FP2, and Fz EEG signals in alcoholism. The analysis results show that the energy ratios of the wave of an alcoholic observer to its refereed total energy for IMF4, and IMF5 in the δ band for FP1, FP2, and Fz channels were larger than those of the respective waves of the normal observer. The alcoholic EEG signals constitute more than 1 % of the total energy in the δ wave, and the reaction times were 0_4, 4_8, 8_12, and 12_16 s. For normal EEG signals, more than 1 % of the total energy is distributed in the δ wave, with a reaction time 0 to 4 s. We observed that the alcoholic subject reaction times were slower than those of the normal subjects, and the alcoholic subjects could have experienced a cognitive error. This phenomenon is due to the intoxicated central nervous systems of the alcoholic subjects.
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Goertz, C. K.
1983-01-01
Gyroresonance and Landau resonance interactions between unducted low-frequency whistler waves and trapped electrons in the earth's plasmasphere have been studied. Ray paths for waves launched near the plasmapause have been traced. In agreement with recent findings by Thorne et al. (1979), waves have been found which return through the equatorial zone with field-aligned wave normal angles. However, when the growth along the ray path is calculated for such waves, assuming an electron distribution function of the form E exp -n sin exp m alpha, it is found that for all the waves considered, the local growth rate becomes negative before plasmapause reflection, limiting the total gain to small values. Most waves reach zero gain before reflection. This is the result of Landau damping at oblique propagation angles, which necessarily occurs before reflection can take place. It is concluded that the concept of cyclic ray paths does not provide an explanation for the generation of unguided plasmaspheric hiss.
Early results of patellofemoral inlay resurfacing arthroplasty using the HemiCap Wave prosthesis.
Patel, Akash; Haider, Zakir; Anand, Amarjit; Spicer, Dominic
2017-01-01
Common surgical treatment options for isolated patellofemoral osteoarthritis include arthroscopic procedures, total knee replacement and patellofemoral replacement. The HemiCap Wave patellofemoral resurfacing prosthesis is a novel inlay design introduced in 2009 with scarce published data on its functional outcomes. We aim to prospectively evaluate early functional outcomes and complications, for patients undergoing a novel inlay resurfacing arthroplasty for isolated patellofemoral arthrosis in an independent centre. From 2010 to 2013, 16 consecutive patients underwent patellofemoral resurfacing procedures using HemiCap Wave (Arthrosurface Inc., Franklin, Massachusetts, USA) for anterior knee pain with confirmed radiologically and/or arthroscopically isolated severe patellofemoral arthrosis. Standardized surgical technique, as recommended by the implant manufacturer, was followed. Outcome measures included range of movement, functional knee scores (Oxford Knee Score (OKS), Knee Injury and Osteoarthritis Outcome Score (KOOS) and Short Form-36 (SF-36)), radiographic disease progression, revision rates and complications. Eight men and eight women underwent patellofemoral HemiCap Wave resurfacing, with an average age of 63 years (range: 46-83). Average follow-up was 24.1 months (6-34). Overall, post-operative scores were excellent. There was a statistically significant improvement in the post-operative OKS, KOOS and SF-36 scores ( p < 0.01). One patient had radiological disease progression. One patient underwent revision for deep infection. Two other minor complications were observed and treated conservatively. The HemiCap Wave patellofemoral resurfacing prosthesis has excellent early results in terms of functional outcomes, radiological outcomes and low complication rates. At the very least, early results show that the HemiCap Wave is comparable to more established onlay prostheses. The HemiCap Wave thus provides a safe and effective surgical option in the treatment of isolated patellofemoral osteoarthritis in selected patients.
Effect of dark chocolate on arterial function in healthy individuals.
Vlachopoulos, Charalambos; Aznaouridis, Konstantinos; Alexopoulos, Nikolaos; Economou, Emmanuel; Andreadou, Ioanna; Stefanadis, Christodoulos
2005-06-01
Epidemiologic studies suggest that high flavonoid intake confers a benefit on cardiovascular outcome. Endothelial function, arterial stiffness, and wave reflections are important determinants of cardiovascular performance and are predictors of cardiovascular risk. The effect of flavonoid-rich dark chocolate (100 g) on endothelial function, aortic stiffness, wave reflections, and oxidant status were studied for 3 h in 17 young healthy volunteers according to a randomized, single-blind, sham procedure-controlled, cross-over protocol. Flow-mediated dilation (FMD) of the brachial artery, aortic augmentation index (AIx), and carotid-femoral pulse wave velocity (PWV) were used as measures of endothelial function, wave reflections, and aortic stiffness, respectively. Plasma oxidant status was evaluated with measurement of plasma malondialdehyde (MDA) and total antioxidant capacity (TAC). Chocolate led to a significant increase in resting and hyperemic brachial artery diameter throughout the study (maximum increase by 0.15 mm and 0.18 mm, respectively, P < .001 for both). The FMD increased significantly at 60 min (absolute increase 1.43%, P < .05). The AIx was significantly decreased with chocolate throughout the study (maximum absolute decrease 7.8%, P < .001), indicating a decrease in wave reflections, whereas PWV did not change to a significant extent. Plasma MDA and TAC did not change after chocolate, indicating no alterations in plasma oxidant status. Our study shows for the first time that consumption of dark chocolate acutely decreases wave reflections, that it does not affect aortic stiffness, and that it may exert a beneficial effect on endothelial function in healthy adults. Chocolate consumption may exert a protective effect on the cardiovascular system; further studies are warranted to assess any long-term effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.
Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an ecient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L max = (l,m) max, while scattering matrices, which determine spectral properties, are truncated at L tr = (l,m) tr where phase shifts δl>l tr are negligible. Historically, L max is set equal to L tr, which is correct for large enough L max but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L maxmore » > L tr with δl>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically ecient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N(l tr + 1) 2] and includes higher-L contributions via linear algebra [R 2 process with rank N(l max +1) 2]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L1 0 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L max for a given L tr.« less
Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism
NASA Astrophysics Data System (ADS)
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; Nicholson, D. M.; Johnson, Duane D.
2014-11-01
The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number Lmax=(l,mmax), while scattering matrices, which determine spectral properties, are truncated at Lt r=(l,mt r) where phase shifts δl >ltr are negligible. Historically, Lmax is set equal to Lt r, which is correct for large enough Lmax but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for Lmax>Lt r with δl >ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992), 10.1103/PhysRevB.46.7433]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R3 process with rank N (ltr+1 ) 2 ] and includes higher-L contributions via linear algebra [R2 process with rank N (lmax+1) 2 ]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L 1 0 CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus Lmax for a given Lt r.
Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; ...
2014-11-04
Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an ecient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L max = (l,m) max, while scattering matrices, which determine spectral properties, are truncated at L tr = (l,m) tr where phase shifts δl>l tr are negligible. Historically, L max is set equal to L tr, which is correct for large enough L max but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L maxmore » > L tr with δl>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically ecient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N(l tr + 1) 2] and includes higher-L contributions via linear algebra [R 2 process with rank N(l max +1) 2]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L1 0 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L max for a given L tr.« less
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-03-01
The influence of electron-ion collision frequency and dust charge on the growth rate of two-stream instability of the electrostatic surface wave propagating at the interface of semi-infinite complex plasma whose constituents are electrons, negatively charged dust, and streaming ions. It is found that the surface wave can be unstable if the multiplication of wave number and ion flow velocity is greater than the total plasma frequency of electrons and dusts. The analytical solution of the growth rate is derived as a function of collision frequency, dust charge, and ion-to-electron density ratio. It is found that the growth rate is inversely proportional to the collision rate, but it is enhanced as the number of electrons residing on the dust grain surface is increased. The growth rate of surface wave is compared to that of the bulk wave.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems
2014-10-13
function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer
Catino, Anna B; Hubbard, Rebecca A; Chirinos, Julio A; Townsend, Ray; Keefe, Stephen; Haas, Naomi B; Puzanov, Igor; Fang, James C; Agarwal, Neeraj; Hyman, David; Smith, Amanda M; Gordon, Mary; Plappert, Theodore; Englefield, Virginia; Narayan, Vivek; Ewer, Steven; ElAmm, Chantal; Lenihan, Daniel; Ky, Bonnie
2018-03-01
Sunitinib, used widely in metastatic renal cell carcinoma, can result in hypertension, left ventricular dysfunction, and heart failure. However, the relationships between vascular function and cardiac dysfunction with sunitinib are poorly understood. In a multicenter prospective study of 84 metastatic renal cell carcinoma patients, echocardiography, arterial tonometry, and BNP (B-type natriuretic peptide) measures were performed at baseline and at 3.5, 15, and 33 weeks after sunitinib initiation, correlating with sunitinib cycles 1, 3, and 6. Mean change in vascular function parameters and 95% confidence intervals were calculated. Linear regression models were used to estimate associations between vascular function and left ventricular ejection fraction, longitudinal strain, diastolic function (E/e'), and BNP. After 3.5 weeks of sunitinib, mean systolic blood pressure increased by 9.5 mm Hg (95% confidence interval, 2.0-17.1; P =0.02) and diastolic blood pressure by 7.2 mm Hg (95% confidence interval, 4.3-10.0; P <0.001) across all participants. Sunitinib resulted in increases in large artery stiffness (carotid-femoral pulse wave velocity) and resistive load (total peripheral resistance and arterial elastance; all P <0.05) and changes in pulsatile load (total arterial compliance and wave reflection). There were no statistically significant associations between vascular function and systolic dysfunction (left ventricular ejection fraction and longitudinal strain). However, baseline total peripheral resistance, arterial elastance, and aortic impedance were associated with worsening diastolic function and filling pressures over time. In patients with metastatic renal cell carcinoma, sunitinib resulted in early, significant increases in blood pressure, arterial stiffness, and resistive and pulsatile load within 3.5 weeks of treatment. Baseline vascular function parameters were associated with worsening diastolic but not systolic function. © 2018 American Heart Association, Inc.
P-wave dispersion: relationship to left ventricular function in sickle cell anaemia.
Oguanobi, N I; Onwubere, B J; Ike, S O; Anisiuba, B C; Ejim, E C; Ibegbulam, O G
2011-01-01
The prognostic implications of P-wave dispersion in patients with a variety of cardiac disease conditions are increasingly being recognised. The relationship between P-wave dispersion and left ventricular function in sickle cell anaemia is unknown. This study was aimed at evaluating the relationship between P-wave dispersion and left ventricular function in adult Nigerian sickle cell anaemia patients. Between February and August 2007, a total of 62 sickle cell anaemia patients (aged 18-44 years; mean 28.27 ± 5.58) enrolled in the study. These were drawn from patients attending the adult sickle cell clinic of the University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu. An equal number of age- and gender-matched normal subjects served as controls. All the participants were evaluated with electrocardiography and echocardiography. P-wave dispersion was defined as the difference between the maximum and minimum P-wave duration measured in a 12-lead electrocardiogram. P-wave duration and P-wave dispersion were significantly higher in patients than in controls. Significant correlation was demonstrated between P-wave dispersion and age in the patients (r = 0.387; p = 0.031). A comparison of subsets of sickle cell anaemia patients and controls with comparable haematocrit values (30-35%) showed significantly higher P-wave duration and P-wave dispersion in the patients than in the controls. The P-wave duration in patients and controls, respectively, was 111.10 ± 14.53 ms and 89.14 ± 16.45 ms (t = 3.141; p = 0.006). P-wave dispersion was 64.44 ± 15.86 ms in the patients and 36.43 ± 10.35 ms in the controls (t = 2.752; p = 0.013). Significant negative correlation was found between P-wave dispersion and left ventricular transmitral E/A ratio (r = -0.289; p = 0.023). These findings suggest that P-wave dispersion could be useful in the evaluation of sickle cell patients with left ventricular diastolic dysfunction. Further prospective studies are recommended to evaluate its prognostic implication on the long-term disease outcome in sickle cell disease patients.
Correlated scattering states of N-body Coulomb systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berakdar, J.
1997-03-01
For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate analytical solution of the many-body time-independent Schr{umlt o}dinger equation is derived at a total energy above the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed correlated wave function represents, to leading order, an exact solution of the many-body Schr{umlt o}dinger equation in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown that the Kato cusp conditionsmore » are satisfied by the derived wave function at all two-body coalescence points. An expression of the normalization of this wave function is also given. To render possible the calculations of scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is suggested in which the correlations between the continuum particles are completely subsumed into effective interactions with the residual charge. Analytical expressions for these effective interactions are derived and discussed for physical situations. {copyright} {ital 1997} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region
NASA Astrophysics Data System (ADS)
Shibuya, Kengo; Saito, Haruo
2018-05-01
We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.
Analysis of Saccular Function With Vestibular Evoked Myogenic Potential Test in Meniere's Disease.
Dabiri, Sasan; Yazdani, Nasrin; Esfahani, Mahdis; Tari, Niloufar; Adil, Susan; Mahvi, Zahra; Rezazadeh, Nima
2017-02-01
Meniere's disease is the disorder of inner ear characterized by vertigo, tinnitus and sensorineural hearing loss. The vestibular evoked myogenic potential (VEMP) test could be useful in the analysis of saccular function, and diagnosis of Meniere's disease. In this study, we've analyzed the saccular function, using VEMP test in different groups of Meniere's disease. Patients were categorized as possible, probable or definite Meniere's disease groups according to the guideline of American Academy of Otolaryngology-Head and Neck Surgery. The exclusion criteria were neuromuscular system diseases, diseases of central nervous system, inner ear disorders, conductive hearing loss, a history of ototoxic drug consumption, being a drug abuser and a positive history of inner ear surgery or manipulations. The VEMP test is the recording of positive and negative waves from sternocleidomastoid muscle that is made by an auditory click to the ear. From the total of 100 patients, the waves of VEMP test was seen in 59 patients which 19 patients had abnormal amplitude, and latency and 40 patients were with normally recorded waves. There was a significant relationship between the severity of hearing loss and a VEMP test without any recorded waves. Most of the cases with 'no wave recorded' VEMP test, were patients with severe hearing loss. However, there wasn't any relation between the pattern of hearing loss and 'no wave recorded' VEMP test. VEMP test could be a valuable diagnostic clue especially in patients with definite Meniere's disease.
NASA Astrophysics Data System (ADS)
Ogam, Erick; Fellah, Z. E. A.
2011-09-01
A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT) and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air) medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.
Kitrey, Noam D; Gruenwald, Ilan; Appel, Boaz; Shechter, Arik; Massarwa, Omar; Vardi, Yoram
2016-05-01
We performed sham controlled evaluation of penile low intensity shock wave treatment effect in patients unable to achieve sexual intercourse using PDE5i (phosphodiesterase type 5 inhibitor). This prospective, randomized, double-blind, sham controlled study was done in patients with vasculogenic erectile dysfunction who stopped using PDE5i due to no efficacy. All patients had an erection hardness score of 2 or less with PDE5i. A total of 58 patients were randomized, including 37 treated with low intensity shock waves (12 sessions of 1,500 pulses of 0.09 mJ/mm(2) at 120 shock waves per minute) and 18 treated with a sham probe. In the sham group 16 patients underwent low intensity shock wave treatment 1 month after sham treatment. All patients were evaluated at baseline and 1 month after the end of treatment using validated erectile dysfunction questionnaires and the flow mediated dilatation technique for penile endothelial function. Erectile function was evaluated while patients were receiving PDE5i. In the low intensity shock wave treatment group and the sham group 54.1% and 0% of patients, respectively, achieved erection hard enough for vaginal penetration, that is an EHS (Erection Hardness Score) of 3 (p <0.0001). According to changes in the IIEF-EF (International Index of Erectile Function-Erectile Function) score treatment was effective in 40.5% of men who received low intensity shock wave treatment but in none in the sham group (p = 0.001). Of patients treated with shock waves after sham treatment 56.3% achieved erection hard enough for penetration (p <0.005). Low intensity shock wave treatment is effective even in patients with severe erectile dysfunction who are PDE5i nonresponders. After treatment about half of them were able to achieve erection hard enough for penetration with PDE5i. Longer followup is needed to establish the place of low intensity shock wave treatment in these challenging cases. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Huygens-Fresnel picture for electron-molecule elastic scattering★
NASA Astrophysics Data System (ADS)
Baltenkov, Arkadiy S.; Msezane, Alfred Z.
2017-11-01
The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
NASA Astrophysics Data System (ADS)
Lassoued, R.; Lecheheb, M.; Bonnet, G.
2012-08-01
This paper describes an analytical method for the wave field induced by a moving load on a periodically supported beam. The Green's function for an Euler beam without support is evaluated by using the direct integration. Afterwards, it introduces the supports into the model established by using the superposition principle which states that the response from all the sleeper points and from the external point force add up linearly to give a total response. The periodicity of the supports is described by Bloch's theorem. The homogeneous system thus obtained represents a linear differential equation which governs rail response. It is initially solved in the homogeneous case, and it admits a no null solution if its determinant is null, this permits the establishment the dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion curves contain all the physics of the dynamic problem and the wave field induced by a dynamic load applied to the system is finally obtained by decomposition into Bloch waves, similarly to the usual decomposition into dynamic modes on a finite structure. The method is applied to obtain the field induced by a load moving at constant velocity on a thin beam supported by periodic elastic supports.
NASA Technical Reports Server (NTRS)
Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.
Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces
Ma, Hui Feng; Wang, Gui Zhen; Kong, Gu Sheng; Cui, Tie Jun
2015-01-01
We propose a kind of anisotropic planar metasurface, which has capacity to manipulate the orthogonally-polarized electromagnetic waves independently in the reflection mode. The metasurface is composed of orthogonally I-shaped structures and a metal-grounded plane spaced by a dielectric isolator, with the thickness of about 1/15 wavelength. The normally incident linear-polarized waves will be totally reflected by the metal plane, but the reflected phases of x- and y-polarized waves can be controlled independently by the orthogonally I-shaped structures. Based on this principle, we design four functional devices using the anisotropic metasurfaces to realize polarization beam splitting, beam deflection, and linear-to-circular polarization conversion with a deflection angle, respectively. Good performances have been observed from both simulation and measurement results, which show good capacity of the anisotropic metasurfaces to manipulate the x- and y-polarized reflected waves independently. PMID:25873323
Scattering of matter waves in spatially inhomogeneous environments
Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; ...
2015-03-30
In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numericallymore » and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.« less
Borcherdt, Roger D.; Wennerberg, Leif
1985-01-01
The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.
NASA Astrophysics Data System (ADS)
Margerin, Ludovic
2013-01-01
This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.
NASA Astrophysics Data System (ADS)
Castillo, F.; Wehner, M. F.; Gilless, J. K.
2017-12-01
California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.
Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu
2014-06-01
A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.
Mie and debye scattering in dusty plasmas
Guerra; Mendonca
2000-07-01
We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accomplished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud, which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we treat the Debye-Mie field as a whole and study its properties. The main results of this study are (1) the Mie (Debye) field dominates at small (large) wavelengths and in the Rayleigh limit the Debye field is constant; (2) the total cross section has an interference term between the Debye and Mie fields, important in some regimes; (3) this term is negative for negative charge of the grain, implying a total cross section smaller than previously thought; (4) a method is proposed to determine the charge of the grain (divided by a certain suppression factor) and the Debye length of the plasma; (5) a correction to the dispersion relation of an electromagnetic wave propagating in a plasma is derived.
Relativistic differential-difference momentum operators and noncommutative differential calculus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru
2013-09-15
The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht
2014-01-14
We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
Convergent close-coupling approach to positron scattering on He+★
NASA Astrophysics Data System (ADS)
Rawlins, Charlie M.; Kadyrov, Alisher S.; Bray, Igor
2018-05-01
A close-coupling method is used to generate electron-loss and total scattering cross sections for the first three partial waves with both a single-centre and two-centre expansion of the scattering wave function for positron scattering on He +. The two expansions are consistent with each other above the ionisation threshold verifying newly-developed positronium-formation matrix elements. Below the positronium-formation threshold both the single- and two-centre results agree with the elastic-scattering cross sections generated from the phase shifts reported in previous calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvioli, M.; Frankfurt, L.; Guzey, V.
Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣE T and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC andmore » will help to map CFs, whose first indications have already been observed at the LHC.« less
Which nanowire couples better electrically to a metal contact: Armchair or zigzag nanotube?
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Biegel, Bryan (Technical Monitor)
2001-01-01
The fundamental question of how chirality affects tile electronic coupling of a nanotube to metal contacts is important for tile application of nanotubes as nanowires. We show that metallic-zigzag nanotubes are superior to armchair nanotubes as nanowires, by modeling the metal-nanotube interface. More specifically, we show that as a function of coupling strength, the total electron transmission of armchair nanotubes increases and tends to be pinned close to unity for a metal with Fermi wave vector close to that of gold. In contrast, the transmission probability of zigzag nanotubes increases to the maximum possible value of two. The origin of these effects lies in the details of the wave function, which is explained.
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Kabin, K.; Noel, J. M. A.
2017-12-01
Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices which are installed on most commercial aircraft. These radio waves can be detected by satellites in low earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this work we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick model.
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
The effects of core-reflected waves on finite fault inversion with teleseismic body wave data
NASA Astrophysics Data System (ADS)
Qian, Y.; Ni, S.; Wei, S.
2016-12-01
Reliable estimation of rupture processes for a large earthquake is valuable for post-seismic rescue, tsunami alert, seismotectonic studies, as well as earthquake physics. Finite-fault inversion has been widely accepted to reconstruct the spatial-temporal distribution of rupture processes, which can be obtained by individual or jointly inversion of seismic, geodetic and tsunami data sets. Among the above observations, teleseismic (30° 90°) body waves, usually P and SH waves, have been used extensively in such inversions because their propagation are well understood and readily available for large earthquakes with good coverages of slowness and azimuth. However, finite fault inversion methods usually assume turning P and SH waves without inclusion of core-reflected waves when calculating the synthetic waveforms, which may result in systematic error in finite-fault inversions. For the core-reflected SH wave ScS, it is expected to be strong due to total reflection from Core-Mantle-Boundary. Moreover, the time interval between direct S and ScS could be smaller than the duration of large earthquakes for large epicentral distances. In order to improve the accuracy of finite fault inversion with teleseismic body waves, we develop a procedure named multitel3 to compute Greens' functions that contain both turning waves (P, pP, sP, S, sS et al.) and core-reflected phases (PcP and ScS) and apply it to finite fault inversions. This ray-based method can rapidly calculate teleseismic body wave synthetics with flexibility for path calibration of 3D mantle structure. The new Green's function is plugged into finite fault inversion package to replace the original Green's function with only turning P and SH waves. With the 2008 Mw7.9 Wenchuan earthquake as example, a series of numerical tests conducted on synthetic data are used to assess the performance of our approach. We also explore this new procedure's stability when there are discrepancies between the parameters of input model and the priori information of inverse model, such as strike, dip of finite fault and so on. With the quantified code, we apply it to study rupture process of the 2016 Mw7.8 Sumatra earthquake.
Process based modeling of total longshore sediment transport
Haas, K.A.; Hanes, D.M.
2004-01-01
Waves, currents, and longshore sand transport are calculated locally as a function of position in the nearshore region using process based numerical models. The resultant longshore sand transport is then integrated across the nearshore to provide predictions of the total longshore transport of sand due to waves and longshore currents. Model results are in close agreement with the I1-P1 correlation described by Komar and Inman (1970) and the CERC (1984) formula. Model results also indicate that the proportionality constant in the I1-P1 formula depends weakly upon the sediment size, the shape of the beach profile, and the particular local sediment flux formula that is employed. Model results indicate that the various effects and influences of sediment size tend to cancel out, resulting in little overall dependence on sediment size.
Quality of life attenuates age-related decline in functional status of older adults.
Palgi, Yuval; Shrira, Amit; Zaslavsky, Oleg
2015-08-01
In the present study, we aimed to examine the total and moderating effects of needs-satisfaction-driven quality-of-life (QoL) measure on age-related change in functional status. Participants in the Survey of Health and Retirement in Europe (N = 18,781 at Wave 1) completed a measure of QoL (CASP-12) at baseline and reported their functional status across subsequent three waves using activities of daily living (ADL), instrumental activities of daily living (IADL), and functional limitation indices. Growth-curve model estimates revealed that aged individuals with lower QoL scores at baseline had a steeper increase in disability deficits accumulation and functional limitation progression than their counterparts with a higher sense of QoL. The effects were more pronounced in ADL and IADL disability scales in which QoL moderated both linear and quadratic age-related changes. Higher QoL attenuates processes of functional decline in late adulthood. Practitioners may seek strategies for improving and enhancing patients' QoL, as its salutary effects diffuse beyond psychological experience and include long-term effects on physical functioning.
Khodyreva, L A; Dudareva, A A; Mudraya, I S; Markosyan, T G; Revenko, S V; Kumachev, K V; Logvinov, L A
2013-06-01
In searching for novel objective methods to diagnosticate pelvic pain and assess efficiency of analgesic therapy, 37 male patients were examined prior to and after the course of extracorporeal shock wave therapy (5-10 sessions) with the waves directed to projections of prostate and/or crura and shaft of the penis. The repetition rate of mechanical pulses was 3-5 Hz. The range of energy pulse density was 0.09-0.45 mJ/mm(2). The overall number of pulses in a session was 1500-3000 in any treated zone with total energy smaller than 60 J. The applicator was relocated every other series of 300-500 pulses. Effect of the shock wave therapy was assessed according to subjective symptomatic scales: International Prostate Symptom Score, International Index of Erectile Function, Quality of Life, and nociceptive Visual Analog Scale. The objective assessment of shock wave therapy was performed with harmonic analysis of penile bioimpedance variability, which quantitatively evaluated the low-frequency rhythmic and asynchronous activities at rest as well as the total pulsatile activity of the penis. The magnitude of spectrum components of bioimpedance variations was assessed with a novel parameter, the effective impedance. The spectral parameters were measured in 16 patients prior to and after the treatment course. The corresponding control values were measured in the group of healthy patients. Prior to the shock wave therapy course, all spectrum parameters of penile bioimpedance significantly differed from the control (p<0.05). After this course, low-frequency rhythmic and the total pulsatile activity decreased to normal, while asynchronous activity remained significantly different from the normal. The novel objective physiological criteria of pelvic pain diagnostics and efficiency of its treatment reflecting the regional features of circulation and neural activity corresponded to the clinical symptom scaling prior to and after the shock wave course, and on the whole, these criteria corroborated improvement of the patient state after this therapy.
Ozone and stratospheric height waves for opposite phases of the QBO
NASA Technical Reports Server (NTRS)
Mo, Kingtse C.; Nogues-Paegle, Julia
1994-01-01
The stratospheric quasi-biennial oscillation (QBO) provides an important source of interannual variations in the Northern Hemisphere. O'sullivan and Salby (1990) related extra-tropical eddy transport with the phase of the tropical QBO. When the tropical wind is easterly, the zero wind line is shifted into the winter hemisphere. Enhanced wave activity in middle latitudes acts to weaken the polar vortex. When the tropical wind is in the westerly phase the situation reverses. Heights at 30 mb and ozone configurations are contrasted in this paper for these two QBO phases. When the winter vortex deforms due to the amplification of planetary waves 1 and 2, extends westward and equatorward, the complementary band of low vorticity air spirals in toward the pole from lower latitudes. Sometimes, these planetary waves break (Juckes and McIntyre, 1987) and an irreversible mixing of air takes place between high and mid-latitudes. Global ozone patterns, as obtained form satellite observations, appear to be affected by planetary wave breaking (Leovy et al. 1985). This mixing results on regions with uniform ozone and potential vorticity. In the Southern Hemisphere (SH), Newman and Randel (1988) using Total Ozone Mapping Spectrometer (TOMS) data and the NMC analyses have found strong spatial correlation between the October mean temperature in the lower stratosphere and total ozone for the 1979 through 1986 years. Recently Nogues-Paegle et al.(1992) analyzed SH ozone and height data from 1986 to 1989. They found that leading empirical orthogonal functions (EOFs) for both ozone and 50 mb heights exhibit zonal wave 1 and 2 and that the correlations between ozone and 50 mb principal components (PCs) are high. The results were found to be consistent with a linear planetary wave advecting a passive tracer. In this paper, the dominant patterns of variability for 30 mb NMC heights and TOMS total ozone are obtained for the winter to summer transition (January to May) in the Northern Hemisphere (NH) for the years 1987-1990.
NASA Astrophysics Data System (ADS)
Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang
2018-01-01
A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.
Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo
2014-01-01
Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929
Ryan, Thomas D; Parent, John J; Gao, Zhiqian; Khoury, Philip R; Dupont, Elizabeth; Smith, Jennifer N; Wong, Brenda; Urbina, Elaine M; Jefferies, John L
2017-08-01
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutation of dystrophin. Cardiovascular involvement includes dilated cardiomyopathy. Non-invasive assessment of vascular function has not been evaluated in DMD. We hypothesize arterial wave reflection is abnormal in patients with DMD. Pulse wave analysis was performed on DMD patients with a SphygmoCor SCOR-PVx System to determine central blood pressure and augmentation index (AIx) as an assessment of arterial wave reflection. Results were compared to a control group. A total of 43 patients with DMD were enrolled, and compared to 43 normal controls. Central systolic blood pressure was lower, while both AIx-75 (7.8 ± 9.6% vs. 2.1 ± 10.4%, p 0.01, DMD vs. normal) and AIx-not corrected (16.8 ± 10.1% vs. -3.6 ± 10.9, p < 0.001, DMD vs. normal) were higher in the DMD compared to control. Using multivariable linear regression model, the variables found to have a significant effect on AIx-not corrected included diagnosis of DMD, height, and heart rate (r 2 = 0.257). The current data suggest that, despite lower central systolic blood pressure, patients with DMD have higher wave reflection when compared to normal controls, which may represent increased arterial stiffness. Overall there appears to be no effect on ventricular systolic function, however the long-term consequence in this group is unknown. Further study is required to determine the mechanism of these differences, which may be related to the effects of systemic steroids or the role of dystrophin in vascular function.
Structural correlation of the chalcogenide Ge40Se60 glass
NASA Astrophysics Data System (ADS)
Moharram, A. H.
2017-01-01
Binary Ge40Se60 glass was prepared using the melt-quench technique. The total structure factors, S( K), are obtained using the X-ray diffraction in the wave vector interval 0.28 ≤ K ≤ 6.5 Å-1. The appearance of the first sharp diffraction peak (FSDP) in the structure factor indicates the presence of the intermediate range order. Radial distribution functions, RDF( r), have been obtained using either the conventional (Fourier) transformation or the Monte Carlo simulation of the experimental X-ray data. The short range order parameters deduced from the Monte Carlo total correlation, T( r), functions are better than those obtained from the conventional (Fourier) T( r) data. Gaussian analyses of the total correlation function show that Ge2(Se1/2)6 molecular units are the basic structural units for the investigated Ge40Se60 glass.
CCKT Calculation of e-H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, Aaron K.; Schneider, B. I.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2002-01-01
We are in the process of carrying out calculations of e-H total cross sections using the 'complex-correlation Kohn-T' (CCKT) method. In a later paper, we described the methodology more completely, but confined calculations to the elastic scattering region, with definitive, precision results for S-wave phase shifts. Here we extend the calculations to the (low) continuum (1 much less than k(exp 2) much less than 3) using a Green's function formulation. This avoids having to solve integro-differential equations; rather we evaluate indefinite integrals involving appropriate Green's functions and the (complex) optical potential to find the scattering function u(r). From the asymptotic form of u(r) we extract a T(sub L) which is a complex number. From T(sub L), elastic sigma(sub L)(elastic) = 4pi(2L+1)((absolute value of T(sub L))(exp 2)), and total sigma (sub L)(total) = 4pi/k(2L+1)Im(T(sub L)) cross sections follow.
Cortelazzi, Donatella; Marconi, Annamaria; Guazzi, Marco; Cristina, Maurizio; Zecchini, Barbara; Veronelli, Annamaria; Cattalini, Claudio; Innocenti, Alessandro; Bosco, Giovanna; Pontiroli, Antonio E
2013-12-01
An increased prevalence of female sexual dysfunction (FSD) has been reported in women with diabetes mellitus (DM). Our aim was to evaluate correlates (psychological, cardiovascular, and neurophysiologic) of FSD in DM women without chronic diabetic complications. Female Sexual Function Index (FSFI), Beck Depression Inventory (BDI), Michigan Diabetic Neuropathy Index (DNI), and the symptoms of diabetic neuropathy (SDN) questionnaires, metabolic variables, endothelial vascular function (flow-mediated dilation, FMD), echocardiography, and electromyography were studied. 109 pre-menopausal women (18-50 years) [48 with DM (14 type 1 DM, 34 type 2 DM, duration 12.6 ± 1.91 years), and 61 healthy women] received the above questionnaires; physical activity, smoking habits, parity, BMI, waist circumference, HOMA-IR index, fibrinogen, cholesterol (total, HDL, LDL), triglycerides, HbA1c, high-sensitivity C-reactive protein, total testosterone, and estradiol were measured; echocardiography, assessment of intima-media thickness (IMT), FMD, ECG (heart rate and Qtc, indexes of sympathetic activity), and electromyography were performed. FSFI total score and score for arousal, lubrication, and orgasm domains were lower in DM women than in controls (P < 0.05); DM women had higher BDI, Doppler A wave peak velocity, DNI, and SDN score (P < 0.001 to P < 0.04). Doppler E wave peak velocity, peroneal, posterior tibial and sural nerves conduction velocity and amplitude were lower in diabetic women than in controls (P < 0.05 to P < 0.001). FSFI score was positively correlated with physical activity, Doppler E wave peak velocity, and peroneal nerve amplitude and negatively with BDI, parity, IMT, SDN, and HbA1c (P < 0.05 to P < 0.001). At stepwise regression, SDN score (negatively) and Doppler E wave peak velocity (positively) predicted FSFI score (r = 507, P < 0.001). In conclusion, cardiovascular and neurological impairments are associated with FSD in diabetic women. Follow-up studies are required to evaluate sexual dysfunction as a risk factor for future cardiovascular or neurological events.
NASA Astrophysics Data System (ADS)
Martin, Alexandre; Torrent, Marc; Caracas, Razvan
2015-03-01
A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Kabin, K.; Noël, J.-M.
2017-10-01
Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices that are installed on most commercial aircraft. These radio waves can be detected by satellites in low Earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this manuscript we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick ionospheric model.
Lefebvre, Corentin; Khartabil, Hassan; Boisson, Jean-Charles; Contreras-García, Julia; Piquemal, Jean-Philip; Hénon, Eric
2018-03-19
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Teaching Qualitative Energy-Eigenfunction Shape with Physlets
ERIC Educational Resources Information Center
Belloni, Mario; Christian, Wolfgang; Cox, Anne J.
2007-01-01
More than 35 years ago, French and Taylor outlined an approach to teach students and teachers alike how to understand "qualitative plots of bound-state wave functions." They described five fundamental statements based on the quantum-mechanical concepts of probability and energy (total and potential), which could be used to deduce the shape of…
NASA Astrophysics Data System (ADS)
Fedorov, M. V.; Sysoeva, A. A.; Vintskevich, S. V.; Grigoriev, D. A.
2018-03-01
The well-known Hong-Ou-Mandel effect is revisited. Two physical reasons are discussed for the effect to be less pronounced or even to disappear: differing polarizations of photons coming to the beamsplitter and delay time of photons in one of two channels. For the latter we use the concepts of biphoton frequency and temporal wave functions depending, correspondingly, on two frequency continuous variables of photons and on two time variables t 1 and t 2 interpreted as the arrival times of photons to the beamsplitter. Explicit expressions are found for the probability densities and total probabilities for photon pairs to be split between two channels after the beamsplitter and to be unsplit, when two photons appear together in one of two channels.
Systematic structure of the neutron drip-line {sup 22}C nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
In the present work we systematically discuss the nuclear structure of the the heaviest particle-bound carbon isotope, {sup 22}C. The ground state wave function of the carbon isotope is calculated using the {sup 20}C core plus two-valence neutron based on a phenomenological mean-field MF potential. We apply the deduced wave function to provide the nuclear matter density which is necessary in the calculations of the total reaction cross section. Calculations show that there is a reasonable good description of the experimental binding energy BE and root-mean square RMS radius. The exotic structure and configuration of the ground state carbon isotopemore » is explained and a consistent explanation on the two-neutron halo (Borromean) nucleus is given.« less
Chemical Bonding: The Orthogonal Valence-Bond View
Sax, Alexander F.
2015-01-01
Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476
Scattering General Analysis; ANALISIS GENERAL DE LA DISPERSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tixaire, A.G.
1962-01-01
A definition of scattering states is given. It is shown that such states must belong to the absolutely continuous part of the spectrum of the total hamiltonian whenever scattering systems are considered. Such embedding may be proper unless the quantum system is physically admissible. The Moller wave operators are analyzed using Abel- and Cesaro-limit theoretical arguments. Von Neumann s ergodic theorem is partially generalized. A rigorous derivation of the Gell-Mann and Goldberger and Lippmann and Schwinger equations is obtained by making use of results on spectral theory, wave function, and eigendifferential concepts contained. (auth)
NASA Technical Reports Server (NTRS)
Stevenson, S. M.
1979-01-01
NASA is currently conducting a series of millimeter wave satellite system market studies to develop 30/20 GHz satellite system concepts that have commercial potential. Four contractual efforts were undertaken: two parallel and independent system studies and two parallel and independent market studies. The marketing efforts are focused on forecasting the total domestic demand for long haul telecommunications services for the 1980-2000 period. Work completed to date and reported in this paper include projections of: geographical distribution of traffic; traffic volume as a function of urban area size; and user identification and forecasted demand.
Gunina, Anastasia O.; Krylov, Anna I.
2016-11-14
We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethylether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter themore » expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. As a result, we also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.« less
Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo
2005-11-10
The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.
Paz, Sylvia H; Spritzer, Karen L; Morales, Leo S; Hays, Ron D
2013-03-29
To evaluate the equivalence of the PROMIS® wave 1 physical functioning item bank, by age (50 years or older versus 18-49). A total of 114 physical functioning items with 5 response choices were administered to English- (n=1504) and Spanish-language (n=640) adults. Item frequencies, means and standard deviations, item-scale correlations, and internal consistency reliability were estimated. Differential Item Functioning (DIF) by age was evaluated. Thirty of the 114 items were fagged for DIF based on an R-squared of 0.02 or above criterion. The expected total score was higher for those respondents who were 18-49 than those who were 50 or older. Those who were 50 years or older versus 18-49 years old with the same level of physical functioning responded differently to 30 of the 114 items in the PROMIS® physical functioning item bank. This study yields essential information about the equivalence of the physical functioning items in older versus younger individuals.
NASA Astrophysics Data System (ADS)
Yamaguchi, Yukio; Schaefer, Henry F., III
1997-12-01
Four electronically lowest-lying ( X˜ 3B 1, ã 1A 1, b˜ 1B 1, and c˜ 1A 1) states of CH 2 have been investigated systematically using ab initio electronic structure theory. Complete active space (CAS) self-consistent-field (SCF) second-order configuration interaction (SOCI) and state-averaged (SA) CASSCF-SOCI levels of theory have been employed. The CASSCF reference wave function was constructed by minimizing the total energy of a specified state, while the SACASSCF reference wave function was obtained by minimizing the equally weighted total energy of the four ( X˜ 3B 1, ã 1A 1, b˜ 1B 1, and c˜ 1A 1) states. The third excited state ( c˜ 1A 1 or 2 1A 1) is of particular theoretical interest because it is represented by the second root of CASSCF and SOCI Hamiltonian matrices. Theoretical treatments of states not the lowest of their symmetry require special attention due to their tendency of variational collapse to the lower-lying state(s). For these four lowest-lying states total energies and physical properties including dipole moments, harmonic vibrational frequencies, and associated infrared (IR) intensities were determined and compared with the results from the configuration interaction with single and double excitations (CISD) method and available experimental values. The CASSCF-SOCI method should provide the most reliable energetics and physical properties in the present study owing to its fully variational nature in the molecular orbital (MO) and CI spaces for a given state. It is demonstrated that the SACASSCF-SOCI wave functions produce results which are quite consistent with those from the CASSCF-SOCI method. Thus significantly increased application of the SACASSCF-SOCI method to the excited states of a wide variety of molecular systems is expected.
An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific
NASA Technical Reports Server (NTRS)
Eriksen, Charles C.; Richman, James G.
1988-01-01
Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.
On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps
NASA Astrophysics Data System (ADS)
Banner, Michael L.; Morison, Russel P.
2018-06-01
In ocean wave modelling, accurately computing the evolution of the wind-wave spectrum depends on the source terms and the spectral bandwidth used. The wave dissipation rate source term which spectrally quantifies wave breaking and other dissipative processes remains poorly understood, including the spectral bandwidth needed to capture the essential model physics. The observational study of Sutherland and Melville (2015a) investigated the relative dissipation rate contributions of breaking waves, from large-scale whitecaps to microbreakers. They concluded that a large fraction of wave energy was dissipated by microbreakers. However, in strong contrast with their findings, our analysis of their data and other recent data sets shows that for young seas, microbreakers and small whitecaps contribute only a small fraction of the total breaking wave dissipation rate. For older seas, we find microbreakers and small whitecaps contribute a large fraction of the breaking wave dissipation rate, but this is only a small fraction of the total dissipation rate, which is now dominated by non-breaking contributions. Hence, for all the wave age conditions observed, microbreakers make an insignificant contribution to the total wave dissipation rate in the wave boundary layer. We tested the sensitivity of the results to the SM15a whitecap analysis methodology by transforming the SM15a breaking data using our breaking crest processing methodology. This resulted in the small-scale breaking waves making an even smaller contribution to the total wave dissipation rate, and so the result is independent of the breaker processing methodology. Comparison with other near-surface total TKE dissipation rate observations also support this conclusion. These contributions to the spectral dissipation rate in ocean wave models are small and need not be explicitly resolved.
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2014-10-01
We analyze the α-cluster wave functions in cluster states of ^8Be and ^{20}Ne by comparing the exact relative wave function obtained by the generator coordinate method (GCM) with various types of trial functions. For the trial functions, we adopt the fixed range shifted Gaussian of the Brink-Bloch (BB) wave function, the spherical Gaussian with the adjustable range parameter of the spherical Tohsaki-Horiuchi-Schuck-Röpke (sTHSR), the deformed Gaussian of the deformed THSR (dTHSR), and a function with the Yukawa tail (YT). The quality of the description of the exact wave function with a trial function is judged by the squared overlap between the trial function and the GCM wave function. A better result is obtained with the sTHSR wave function than the BB wave function, and further improvement can be made with the dTHSR wave function because these wave functions can describe the outer tail better. The YT wave function gives almost an equal quality to or even better quality than the dTHSR wave function, indicating that the outer tail of α-cluster states is characterized by the Yukawa-like tail rather than the Gaussian tail. In weakly bound α-cluster states with small α separation energy and the low centrifugal and Coulomb barriers, the outer tail part is the slowly damping function described well by the quantum penetration through the effective barrier. This outer tail characterizes the almost zero-energy free α gas behavior, i.e., the delocalization of the cluster.
Microhartree precision in density functional theory calculations
NASA Astrophysics Data System (ADS)
Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia
2018-04-01
To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.
NASA Astrophysics Data System (ADS)
Ichinose, G.; Woods, M.; Dwyer, J.
2014-03-01
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200-300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.
Entropy generation across Earth's collisionless bow shock.
Parks, G K; Lee, E; McCarthy, M; Goldstein, M; Fu, S Y; Cao, J B; Canu, P; Lin, N; Wilber, M; Dandouras, I; Réme, H; Fazakerley, A
2012-02-10
Earth's bow shock is a collisionless shock wave but entropy has never been directly measured across it. The plasma experiments on Cluster and Double Star measure 3D plasma distributions upstream and downstream of the bow shock allowing calculation of Boltzmann's entropy function H and his famous H theorem, dH/dt≤0. The collisionless Boltzmann (Vlasov) equation predicts that the total entropy does not change if the distribution function across the shock becomes nonthermal, but it allows changes in the entropy density. Here, we present the first direct measurements of entropy density changes across Earth's bow shock and show that the results generally support the model of the Vlasov analysis. These observations are a starting point for a more sophisticated analysis that includes 3D computer modeling of collisionless shocks with input from observed particles, waves, and turbulences.
Alvioli, M.; Frankfurt, L.; Guzey, V.; ...
2017-02-20
Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣE T and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC andmore » will help to map CFs, whose first indications have already been observed at the LHC.« less
Photon scattering cross sections of H2 and He measured with synchrotron radiation
NASA Technical Reports Server (NTRS)
Ice, G. E.
1977-01-01
Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2018-02-01
The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.
Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang
2016-10-01
Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.
Six Impossible Things: Fractional Charge From Laughlin's Wave Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Keshav N.
2010-12-23
The Laughlin's wave function is found to be the zero-energy ground state of a {delta}-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian.more » (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in {psi}{sub m} can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.« less
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi
2017-10-01
Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.
The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
Ogam, Erick; Fellah, Z E A; Baki, Paul
2013-03-01
The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].
Orthostatic intolerance and motion sickness after parabolic flight
NASA Technical Reports Server (NTRS)
Schlegel, T. T.; Brown, T. E.; Wood, S. J.; Benavides, E. W.; Bondar, R. L.; Stein, F.; Moradshahi, P.; Harm, D. L.; Fritsch-Yelle, J. M.; Low, P. A.
2001-01-01
Because it is not clear that the induction of orthostatic intolerance in returning astronauts always requires prolonged exposure to microgravity, we investigated orthostatic tolerance and autonomic cardiovascular function in 16 healthy subjects before and after the brief micro- and hypergravity of parabolic flight. Concomitantly, we investigated the effect of parabolic flight-induced vomiting on orthostatic tolerance, R-wave-R-wave interval and arterial pressure power spectra, and carotid-cardiac baroreflex and Valsalva responses. After parabolic flight 1) 8 of 16 subjects could not tolerate 30 min of upright tilt (compared to 2 of 16 before flight); 2) 6 of 16 subjects vomited; 3) new intolerance to upright tilt was associated with exaggerated falls in total peripheral resistance, whereas vomiting was associated with increased R-wave-R-wave interval variability and carotid-cardiac baroreflex responsiveness; and 4) the proximate mode of new orthostatic failure differed in subjects who did and did not vomit, with vomiters experiencing comparatively isolated upright hypocapnia and cerebral vasoconstriction and nonvomiters experiencing signs and symptoms reminiscent of the clinical postural tachycardia syndrome. Results suggest, first, that syndromes of orthostatic intolerance resembling those developing after space flight can develop after a brief (i.e., 2-h) parabolic flight and, second, that recent vomiting can influence the results of tests of autonomic cardiovascular function commonly utilized in returning astronauts.
Huang, Ming-Xiong; Swan, Ashley Robb; Quinto, Annemarie Angeles; Matthews, Scott; Harrington, Deborah L; Nichols, Sharon; Bruder, Barry J; Snook, Corey C; Huang, Charles W; Baker, Dewleen G; Lee, Roland R
2017-01-01
Mild traumatic brain injury (mTBI) is a leading cause of sustained impairments in military service members, Veterans, and civilians. However, few treatments are available for mTBI, partially because the mechanism of persistent mTBI deficits is not fully understood. We used magnetoencephalography (MEG) to investigate neuronal changes in individuals with mTBI following a passive neurofeedback-based treatment programme called IASIS. This programme involved applying low-intensity pulses using transcranial electrical stimulation (LIP-tES) with electroencephalography monitoring. Study participants included six individuals with mTBI and persistent post-concussive symptoms (PCS). MEG exams were performed at baseline and follow-up to evaluate the effect of IASIS on brain functioning. At the baseline MEG exam, all participants had abnormal slow-waves. In the follow-up MEG exam, the participants showed significantly reduced abnormal slow-waves with an average reduction of 53.6 ± 24.6% in slow-wave total score. The participants also showed significant reduction of PCS scores after IASIS treatment, with an average reduction of 52.76 ± 26.4% in PCS total score. The present study demonstrates, for the first time, the neuroimaging-based documentation of the effect of LIP-tES treatment on brain functioning in mTBI. The mechanisms of LIP-tES treatment are discussed, with an emphasis on LIP-tES's potentiation of the mTBI healing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.
The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.
Barker, Anna L; Talevski, Jason; Morello, Renata T; Nolan, Genevieve A; De Silva, Renee D; Briggs, Andrew M
2016-06-01
This multi-center quasi-experimental pilot study aimed to evaluate changes in pain, joint stiffness, physical function, and quality of life over 12 weeks in adults with musculoskeletal conditions attending 'Waves' aquatic exercise classes. A total of 109 adults (mean age, 65.2 years; range, 24-93 years) with musculoskeletal conditions were recruited across 18 Australian community aquatic centers. The intervention is a peer-led, 45 min, weekly aquatic exercise class including aerobic, strength, flexibility, and balance exercises (n = 67). The study also included a control group of people not participating in Waves or other formal exercise (n = 42). Outcomes were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and EuroQoL five dimensions survey (EQ-5D) at baseline and 12 weeks. Satisfaction with Waves classes was also measured at 12 weeks. Eighty two participants (43 Waves and 39 control) completed the study protocol and were included in the analysis. High levels of satisfaction with classes were reported by Waves participants. Over 90 % of participants reported Waves classes were enjoyable and would recommend classes to others. Waves participants demonstrated improvements in WOMAC and EQ-5D scores however between-group differences did not reach statistical significance. Peer-led aquatic exercise classes appear to improve pain, joint stiffness, physical function and quality of life for people with musculoskeletal conditions. The diverse study sample is likely to have limited the power to detect significant changes in outcomes. Larger studies with an adequate follow-up period are needed to confirm effects.
Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D
2008-05-01
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.
Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos
2012-07-11
The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.
Wave propagation model of heat conduction and group speed
NASA Astrophysics Data System (ADS)
Zhang, Long; Zhang, Xiaomin; Peng, Song
2018-03-01
In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.
NASA Technical Reports Server (NTRS)
Stanford, J. L.; Ziemke, J. R.; Mcpeters, R. D.; Krueger, A. J.; Bhartia, P. K.
1995-01-01
This reference publication presents selected results from space-time spectral analyses of 13 years of version 6 daily global ozone fields from the Total Ozone Mapping Spectrometer (TOMS). One purpose is to illustrate more quantitatively the well-known richness of structure and variation in total ozone. A second purpose is to provide, for use by modelers and for comparison with other analysts' work, quantitative measures of zonal waves 1, 2, 3, and medium-scale waves 4-7 in total ozone. Their variations throughout the year and at a variety of latitudes are presented, from equatorial to polar regions. The 13-year averages are given, along with selected individual years which illustrate year-to-year variability. The largest long wave amplitudes occur in the polar winters and early springs of each hemisphere, and are related to strong wave amplification during major warning events. In low attitudes total ozone wave amplitudes are an order of magnitude smaller than at high latitudes. However, TOMS fields contain a number of equatorial dynamical features, including Rossby-gravity and Kelvin waves.
Search for gravitational waves from binary black hole inspiral, merger, and ringdown
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2011-06-01
We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.
Variational model for one-dimensional quantum magnets
NASA Astrophysics Data System (ADS)
Kudasov, Yu. B.; Kozabaranov, R. V.
2018-04-01
A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.
NASA Astrophysics Data System (ADS)
Domínguez-Gutiérrez, F. Javier; Cabrera-Trujillo, R.
2014-05-01
Total, n = 2 , and 3 charge transfer and n = 2 target excitation probabilities for collision of Li+ with ground state atomic hydrogen are calculated numerically, in the impact energy collision range 0.25-5 keV. The total wave function at the end of the dynamics of the collision is obtained by solving the time-dependent Schrödinger equation by means the finite-difference method. We use a pseudo-potential method to model the electronic structure of the Li+ ion. The n = 2 , and 3 charge transfer and n = 2 target excitation probabilities are obtained by projecting the stationary states of Lithium and Hydrogen neutral atoms to the total wave function of the collision, respectively; the stationary states of Li and H are obtained numerically. To assess the validity of our method, our numerical results have been compared with those obtained experimentally and by other theoretical methods found in the literature. We study the laser-assited collision by using a short (3 fs at FWHM) and intense (3.15 ×12 W/cm2) Gaussian laser pulse. We consider a wavelength range between 400 - 1000 nm in steps of 100 nm. Finally, we analyze the laser assisted collision by a qualitatively way with a two level approach. We acknowledge support from grant PAPIIT IN 110-714 and CONACyT (Ph.D. scholarship).
Quasi-biennial oscillation and tropical waves in total ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Stanford, J. L.
1994-01-01
Westward and eastward propagating tropical waves in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) zonal winds and the fast (periods less than 15 days) propagating waves in tropical TOMS data is detailed. Largest total ozone wave amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations with Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin waves of zonal wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin waves. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward waves. However, in contrast to the case of eastward (Kelvin) waves the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby waves 2-6. The events exhibit phase and group speeds characteristic of wave dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.
Quasi-biennial oscillation and tropical waves in total ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemke, J.R.; Stanford, J.L.
1994-11-01
Westward and eastward propagating tropical waves in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) zonal winds and the fast (periods less than 15 days) propagating waves in tropical TOMS data is detailed. Largest total ozone wave amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations withmore » Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin waves of zonal wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin waves. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward waves. However, in contrast to the case of eastward (Kelvin) waves the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby waves 2-6. The events exhibit phase and group speeds characteristic of wave dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiglsperger, Johannes; Piraux, Bernard; Madronero, Javier
2010-04-15
We investigate high-lying doubly excited nonautoionizing states of helium with total angular momentum L=1,2,...,9 with the help of a configuration interaction approach. We provide highly precise nonrelativistic energies of these states and discuss the properties of the wave functions with respect to the particle exchange operator.
[Effects of pressure induced retinal ischemia on ERG in rabbit].
Song, G; Yang, X; Zhang, Z; Zhang, D
2001-12-01
To observe the effects of pressure induced retinal ischemia on electroretinogram(ERG) in rabbit. Retinal ischemia was induced in rabbits by increasing intraocular pressure at 30 mmHg, 60 mmHg, 90 mmHg, 120 mmHg for 45 minutes, and retinal function was monitored by eletroretinography. There was no difference on ERG before or after the experiment both in 30 mmHg group and control one. In 60 mmHg pressure induced ischemia eyes, the amplitudes of the b-wave and OPs wave reduced significantly. Four hours after reperfusion, they were totally recovered. After an ischemic insult of 90 mmHg or 120 mmHg for 45 minutes, there was no response of ERG. Four hours later, the amplitudes of the b-wave and OPs wave were 66.912 +/- 20.157 and 16.423 +/- 3.965 the former, 38.852 +/- 23.438 and 8.610 +/- 12.090 the latter, respectively. These results suggest that higher intraocular pressure causes more severe retina ischemic damage, and less recovery ability.
System Design of One-chip Wave Particle Interaction Analyzer for SCOPE mission.
NASA Astrophysics Data System (ADS)
Fukuhara, Hajime; Ueda, Yoshikatsu; Kojima, Hiro; Yamakawa, Hiroshi
In past science spacecrafts such like GEOTAIL, we usually capture electric and magnetic field waveforms and observe energetic eletron and ion particles as velocity distributions by each sensor. We analyze plasma wave-particle interactions by these respective data and the discussions are sometimes restricted by the difference of time resolution and by the data loss in desired regions. One-chip Wave Particle Interaction Analyzer (OWPIA) conducts direct quantitative observations of wave-particle interaction by direct 'E dot v' calculation on-board. This new instruments have a capability to use all plasma waveform data and electron particle informations. In the OWPIA system, we have to calibrate the digital observation data and transform the same coordinate system. All necessary calculations are processed in Field Programmable Gate Array(FPGA). In our study, we introduce a basic concept of the OWPIA system and a optimization method for each calculation functions installed in FPGA. And we also discuss the process speed, the FPGA utilization efficiency, the total power consumption.
Properties of resonance wave functions.
NASA Technical Reports Server (NTRS)
More, R. M.; Gerjuoy, E.
1973-01-01
Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.
THEORY AND MEASUREMENT OF VISUAL MECHANISMS
Crozier, W. J.; Wolf, Ernst
1941-01-01
For spectral regions associated with violet, blue, green, and red the relation between mean critical flash intensity Im for visual flicker and the flash frequency F is modified as already found with white light when the light time fraction tL in the flash cycle is changed. For a square image 6.13° on a side, foveally fixated, the "rod" and "cone" contributions to the duplex contour are analyzed in the way already used for white. It is pointed out that several customary qualitative criteria for cone functioning do not necessarily give concordant results. The analysis shows that the three parameters of the probability summations giving the "rod" and "cone" curves are changed independently as a function of wave-length composition of the light, and of the light time fraction. The correlation of these changes, and of those found in the associated variability functions, can be understood in terms of differences in (1) the numbers of neural units potentially excitable and (2) in the numbers of elements of neural effect obtained from them. In a multivariate situation of this kind it is necessary to compare intensities of luminous flux required to activate half the total population of potentially available elements when this total size is held constant for the different conditions. The results of this comparison, for the filtered lights used, are discussed in relation to certain aspects of excitation vs. wave-length. The problem is a general one, arising where the effects produced as a function of a particular variable are concerned. In the distinction between (1) units excited and (2) the actions they produce may be found the clue for the curious fact that with certain wave-lengths the critical intensities are lower than for white. The extension of the observations to other parts of the retina may be expected to further this analysis. PMID:19873261
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Some simple solutions of Schrödinger's equation for a free particle or for an oscillator
NASA Astrophysics Data System (ADS)
Andrews, Mark
2018-05-01
For a non-relativistic free particle, we show that the evolution of some simple initial wave functions made up of linear segments can be expressed in terms of Fresnel integrals. Examples include the square wave function and the triangular wave function. The method is then extended to wave functions made from quadratic elements. The evolution of all these initial wave functions can also be found for the harmonic oscillator by a transformation of the free evolutions.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-04-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus
2017-02-09
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.
Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench.
Dóra, Balázs; Lundgren, Rex; Selover, Mark; Pollmann, Frank
2016-07-01
Luttinger liquids (LLs) arise by coupling left- and right-moving particles through interactions in one dimension. This most natural partitioning of LLs is investigated by the momentum-space entanglement after a quantum quench using analytical and numerical methods. We show that the momentum-space entanglement spectrum of a LL possesses many universal features both in equilibrium and after a quantum quench. The largest entanglement eigenvalue is identical to the Loschmidt echo, i.e., the overlap of the disentangled and final wave functions of the system. The second largest eigenvalue is the overlap of the first excited state of the disentangled system with zero total momentum and the final wave function. The entanglement gap is universal both in equilibrium and after a quantum quench. The momentum-space entanglement entropy is always extensive and saturates fast to a time independent value after the quench, in sharp contrast to a spatial bipartitioning.
NASA Technical Reports Server (NTRS)
Bhatia, Anand
2012-01-01
We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Raman amplification in the coherent wave-breaking regime.
Farmer, J P; Pukhov, A
2015-12-01
In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112; Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
Generic short-time propagation of sharp-boundaries wave packets
NASA Astrophysics Data System (ADS)
Granot, E.; Marchewka, A.
2005-11-01
A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.
Arterial waves in humans during peripheral vascular surgery.
Khir, A W; Henein, M Y; Koh, T; Das, S K; Parker, K H; Gibson, D G
2001-12-01
The purpose of this study was to investigate the effect of aortic clamping on arterial waves during peripheral vascular surgery. We measured pressure and velocity simultaneously in the ascending aorta, in ten patients (70+/-5 years) with aortic-iliac disease intra-operatively. Pressure was measured using a catheter tip manometer, and velocity was measured using Doppler ultrasound. Data were collected before aortic clamping, during aortic clamping and after unclamping. Hydraulic work in the aortic root was calculated from the measured data, the reflected waves were determined by wave-intensity analysis and wave speed was determined by the PU-loop (pressure-velocity-loop) method; a new technique based on the 'water-hammer' equation. The wave speed is approx. 32% (P<0.05) higher during clamping than before clamping. Although the peak intensity of the reflected wave does not alter with clamping, it arrives 30 ms (P<0.05) earlier and its duration is 25% (P<0.05) longer than before clamping. During clamping, left ventricule (LV) hydraulic systolic work and the energy carried by the reflected wave increased by 27% (P<0.05) and 20% (P<0.05) respectively, compared with before clamping. The higher wave speed during clamping explains the earlier arrival of the reflected waves suggesting an increase in the afterload, since the LV has to overcome earlier reflected compression waves. The longer duration of the reflected wave during clamping is associated with an increase in the total energy carried by the wave, which causes an increase in hydraulic work. Increased hydraulic work during clamping may increase LV oxygen consumption, provoke myocardial ischaemia and hence contribute to the intra-operative impairment of LV function known in patients with peripheral vascular disease.
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao
2012-08-01
The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their sizes is 0.75.
Generation of intermittent gravitocapillary waves via parametric forcing
NASA Astrophysics Data System (ADS)
Castillo, Gustavo; Falcón, Claudio
2018-04-01
We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.
NASA Astrophysics Data System (ADS)
Monsalve-Jaramillo, Hugo; Valencia-Mina, William; Cano-Saldaña, Leonardo; Vargas, Carlos A.
2018-05-01
Source parameters of four earthquakes located within the Wadati-Benioff zone of the Nazca plate subducting beneath the South American plate in Colombia were determined. The seismic moments for these events were recalculated and their approximate equivalent rupture area, slip distribution and stress drop were estimated. The source parameters for these earthquakes were obtained by deconvolving multiple events through teleseismic analysis of body waves recorded in long period stations and with simultaneous inversion of P and SH waves. The calculated source time functions for these events showed different stages that suggest that these earthquakes can reasonably be thought of being composed of two subevents. Even though two of the overall focal mechanisms obtained yielded similar results to those reported by the CMT catalogue, the two other mechanisms showed a clear difference compared to those officially reported. Despite this, it appropriate to mention that the mechanisms inverted in this work agree well with the expected orientation of faulting at that depth as well as with the wave forms they are expected to produce. In some of the solutions achieved, one of the two subevents exhibited a focal mechanism considerably different from the total earthquake mechanism; this could be interpreted as the result of a slight deviation from the overall motion due the complex stress field as well as the possibility of a combination of different sources of energy release analogous to the ones that may occur in deeper earthquakes. In those cases, the subevents with very different focal mechanism compared to the total earthquake mechanism had little contribution to the final solution and thus little contribution to the total amount of energy released.
Ghanbari, Masoud; Mortazavi, Seyed Bagher; Khavanin, Ali; Khazaei, Mozafar
2013-04-01
There is tremendous concern regarding the possible adverse effects of cell phone microwaves. Contradictory results, however, have been reported for the effects of these waves on the body. In the present study, the effect of cell phone microwaves on sperm parameters and total antioxidant capacity was investigated with regard to the duration of exposure and the frequency of these waves. This experimental study was performed on 28 adult male Wistar rats (200-250 g). The animals were randomly assigned to four groups (n=7): i. control; ii. two-week exposure to cell phone-simulated waves; iii. three-week exposure to cell phonesimulated waves; and iv. two-week exposure to cell phone antenna waves. In all groups, sperm analysis was performed based on standard methods and we determined the mean sperm total antioxidant capacity according to the ferric reducing ability of plasma (FRAP) method. Data were analyzed by one-way ANOVA followed by Tukey's test using SPSS version 16 software. The results indicated that sperm viability, motility, and total antioxidant capacity in all exposure groups decreased significantly compared to the control group (p<0.05). Increasing the duration of exposure from 2 to 3 weeks caused a statistically significant decrease in sperm viability and motility (p<0.05). Exposure to cell phone waves can decrease sperm viability and motility in rats. These waves can also decrease sperm total antioxidant capacity in rats and result in oxidative stress.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matcha, R.L.; Pettitt, B.M.; Ramirez, B.I.
1979-07-15
Calculations of Compton profiles and parallel--perpendicular anisotropies in alkali fluorides are presented and analyzed in terms of molecular charge distributions and wave function character. It is found that the parallel profile associated with the valence pi orbital is the principal factor determining the relative shapes of the total profile anisotropies in the low momentum region.
A Conditional Criterion for Identity, Leading to a Fourth Law of Logic
1979-06-01
Identify by block number) Aristotle, Aristotlean logic, axiom, axioms of logic, change, Charles Muses, chronotopology, collapse of the wave function...of perception, merely accounting for the spatial aspects. In other words, Aristotlean logic is a synthesis of primitive observation, which has been...parameter, not an observable. Hence measurement/detection (observ- ables)deal with primitive observation and Aristotlean logic (topology), while total
NASA Astrophysics Data System (ADS)
de Lara-Castells, M. P.; Villarreal, P.; Delgado-Barrio, G.; Mitrushchenkov, A. O.
2009-11-01
An efficient full-configuration-interaction nuclear orbital treatment has been recently developed as a benchmark quantum-chemistry-like method to calculate ground and excited "solvent" energies and wave functions in small doped ΔEest clusters (N ≤4) [M. P. de Lara-Castells, G. Delgado-Barrio, P. Villarreal, and A. O. Mitrushchenkov, J. Chem. Phys. 125, 221101 (2006)]. Additional methodological and computational details of the implementation, which uses an iterative Jacobi-Davidson diagonalization algorithm to properly address the inherent "hard-core" He-He interaction problem, are described here. The convergence of total energies, average pair He-He interaction energies, and relevant one- and two-body properties upon increasing the angular part of the one-particle basis set (expanded in spherical harmonics) has been analyzed, considering Cl2 as the dopant and a semiempirical model (T-shaped) He-Cl2(B) potential. Converged results are used to analyze global energetic and structural aspects as well as the configuration makeup of the wave functions, associated with the ground and low-lying "solvent" excited states. Our study reveals that besides the fermionic nature of H3e atoms, key roles in determining total binding energies and wave-function structures are played by the strong repulsive core of the He-He potential as well as its very weak attractive region, the most stable arrangement somehow departing from the one of N He atoms equally spaced on equatorial "ring" around the dopant. The present results for N =4 fermions indicates the structural "pairing" of two H3e atoms at opposite sides on a broad "belt" around the dopant, executing a sort of asymmetric umbrella motion. This pairing is a compromise between maximizing the H3e-H3e and the He-dopant attractions, and suppressing at the same time the "hard-core" repulsion. Although the He-He attractive interaction is rather weak, its contribution to the total energy is found to scale as a power of three and it thus increasingly affects the pair density distributions as the cluster grows in size.
Exploring properties of high-density matter through remnants of neutron-star mergers
NASA Astrophysics Data System (ADS)
Bauswein, Andreas; Stergioulas, Nikolaos; Janka, Hans-Thomas
2016-03-01
Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars.
Probability function of breaking-limited surface elevation. [wind generated waves of ocean
NASA Technical Reports Server (NTRS)
Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.
1989-01-01
The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.
Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan
2009-02-01
Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.
Free iterative-complement-interaction calculations of the hydrogen molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurokawa, Yusaku; Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2005-12-15
The free iterative-complement-interaction (ICI) method based on the scaled Schroedinger equation proposed previously has been applied to the calculations of very accurate wave functions of the hydrogen molecule in an analytical expansion form. All the variables were determined with the variational principle by calculating the necessary integrals analytically. The initial wave function and the scaling function were changes to see the effects on the convergence speed of the ICI calculations. The free ICI wave functions that were generated automatically were different from the existing wave functions, and this difference was shown to be physically important. The best wave function reportedmore » in this paper seems to be the best worldwide in the literature from the variational point of view. The quality of the wave function was examined by calculating the nuclear and electron cusps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; ...
2017-01-30
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-01-01
We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20)M⊙ coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M⊙ of 3.3×10-7 mergers Mpc-3yr-1.
First measurements of the index of refraction of gases for lithium atomic waves.
Jacquey, M; Büchner, M; Trénec, G; Vigué, J
2007-06-15
We report the first measurements of the index of refraction of gases for lithium waves. Using an atom interferometer, we have measured the real and imaginary parts of the index of refraction n for argon, krypton, and xenon as a function of the gas density for several velocities of the lithium beam. The linear dependence of (n-1) with the gas density is well verified. The total collision cross section deduced from the imaginary part of (n-1) is in very good agreement with traditional measurements of this quantity. Finally, the real and imaginary parts of (n-1) and their ratio rho exhibit glory oscillations, in good agreement with calculations.
Coherent molecular transistor: control through variation of the gate wave function.
Ernzerhof, Matthias
2014-03-21
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.
Parity-violating electric-dipole transitions in helium
NASA Technical Reports Server (NTRS)
Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.
1980-01-01
The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411
Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).
The maximal-density mass function for primordial black hole dark matter
NASA Astrophysics Data System (ADS)
Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson
2018-04-01
The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.
Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.
Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia
2016-03-08
A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.
Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves.
Plass, G N; Kattawar, G W; Guinn, J A
1975-08-01
The radiance in the earth's atmosphere and ocean is calculated for a realistic model including an ocean surface with waves. Individual photons are followed in a Monte Carlo calculation. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols as well as molecular and aerosol absorption are taken into account. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate single-scattering functions are used which are calculated separately for the aerosols and the hydrosols from the Mie theory with appropriate and different size distributions in each case. The scattering angles are determined from the appropriate scattering function including the strong forwardscattering peak when there is aerosol or hydrosol scattering. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the oceanc surface. The wave slope is chosen from the Cox-Munk distribution. Graphs show the influence of the waves on the upward radiance at the top of the atmosphere and just above the ocean surface and on the downward radiance just below the ocean surface as well as deeper within the ocean. The radiance changes are sufficient at the top of the atmosphere to determine the sea state from satellite measurements. Within the ocean the waves smooth out the abrupt transition that occurs at the edge of the allowed cone for radiation entering a calm ocean. The influence of the waves on the contrast between the sky and sea at the horizon is discussed. It is shown that the downward flux just below the surface increases with wind speed at all solar angles.
Low Intensity Shock Wave Treatment for Erectile Dysfunction-How Long Does the Effect Last?
Kitrey, Noam D; Vardi, Yoram; Appel, Boaz; Shechter, Arik; Massarwi, Omar; Abu-Ghanem, Yasmin; Gruenwald, Ilan
2018-03-01
We studied the long-term efficacy of penile low intensity shock wave treatment 2 years after an initially successful outcome. Men with a successful outcome of low intensity shock wave treatment according to the minimal clinically important difference on the IIEF-EF (International Index of Erectile Function-Erectile Function) questionnaire were followed at 6, 12, 18 and 24 months. Efficacy was assessed by the IIEF-EF. Failure during followup was defined as a decrease in the IIEF-EF below the minimal clinically important difference. We screened a total of 156 patients who underwent the same treatment protocol but participated in different clinical studies. At 1 month treatment was successful in 99 patients (63.5%). During followup a gradual decrease in efficacy was observed. The beneficial effect was maintained after 2 years in only 53 of the 99 patients (53.5%) in whom success was initially achieved. Patients with severe erectile dysfunction were prone to earlier failure than those with nonsevere erectile dysfunction. During the 2-year followup the effect of low intensity shock wave treatment was lost in all patients with diabetes who had severe erectile dysfunction at baseline. On the other hand, patients with milder forms of erectile dysfunction without diabetes had a 76% chance that the beneficial effect of low intensity shock wave treatment would be preserved after 2 years. Low intensity shock wave treatment is effective in the short term but treatment efficacy was maintained after 2 years in only half of the patients. In patients with milder forms of erectile dysfunction the beneficial effect is more likely to be preserved. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Bedore, Jake; Martyn, Amanda C; Li, Anson K C; Dolinar, Eric A; McDonald, Ian S; Coupland, Stuart G; Prado, Vania F; Prado, Marco A; Hill, Kathleen A
2015-01-01
Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.
Metocean design parameter estimation for fixed platform based on copula functions
NASA Astrophysics Data System (ADS)
Zhai, Jinjin; Yin, Qilin; Dong, Sheng
2017-08-01
Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.
NASA Technical Reports Server (NTRS)
Bassiri, Sassan; Hajj, George A.
1993-01-01
Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.
Irregular wave functions of a hydrogen atom in a uniform magnetic field
NASA Technical Reports Server (NTRS)
Wintgen, D.; Hoenig, A.
1989-01-01
The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space
NASA Astrophysics Data System (ADS)
Yuan, Zonghao; Boström, Anders; Cai, Yuanqiang
2017-01-01
A closed-form semi-analytical solution for the vibrations due to a moving point load in a tunnel embedded in a half-space is given in this paper. The tunnel is modelled as an elastic hollow cylinder and the ground surrounding the tunnel as a linear viscoelastic material. The total wave field in the half-space with a cylindrical hole is represented by outgoing cylindrical waves and down-going plane waves. To apply the boundary conditions on the ground surface and at the tunnel-soil interface, the transformation properties between the plane and cylindrical wave functions are employed. The proposed solution can predict the ground vibration from an underground railway tunnel of circular cross-section with a reasonable computational effort and can serve as a benchmark solution for other computational methods. Numerical results for the ground vibrations on the free surface due to a moving constant load and a moving harmonic load applied at the tunnel invert are presented for different load velocities and excitation frequencies. It is found that Rayleigh waves play an important role in the ground vibrations from a shallow tunnel.
Evans function computation for the stability of travelling waves
NASA Astrophysics Data System (ADS)
Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.
2018-04-01
In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,
NASA Technical Reports Server (NTRS)
Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.
1981-01-01
Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F
2012-09-14
We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space
NASA Astrophysics Data System (ADS)
Ruggeri, Michele; Moroni, Saverio; Holzmann, Markus
2018-05-01
We show that the recently introduced iterative backflow wave function can be interpreted as a general neural network in continuum space with nonlinear functions in the hidden units. Using this wave function in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the iteration procedure define a set of increasingly good wave functions, each with its own variational energy and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in three dimensions, improving previous variational and fixed-node energies.
About Essence of the Wave Function on Atomic Level and in Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulov, A. V.
The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less
Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isenberg, Philip A.; Vasquez, Bernard J.
We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating tomore » inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.« less
Toosi, B.M.; Seekallu, S.V.; Pierson, R.A.; Rawlings, N.C.
2010-01-01
Computer-assisted quantitative echotextural analysis was applied to ultrasound images of antral follicles in the follicular waves of an interovulatory interval in sheep. The ewe has three or four waves per cycle. Seven healthy, cyclic Western White Face ewes (Ovis aris) underwent daily, transrectal, ovarian ultrasonography for an interovulatory interval. Follicles in the third wave of the ovulatory interval had a longer static phase than that of those in Waves 1 and 2 (P < 0.05). The numeric pixel value for the wall of anovulatory follicles emerging in the third wave of the cycle was significantly higher than that for Waves 1 and 2 at the time of emergence (156.7 ± 8.09, 101.6 ± 3.72, and 116.5 ± 13.93, respectively), and it decreased as follicles in Wave 3 reached maximum follicular diameter (P < 0.05). The numeric pixel value of the antrum in the ovulatory follicles decreased as follicular diameter increased to ≥5 mm in diameter (P < 0.05). The pixel heterogeneity of the follicular antrum in Wave 1 increased from the end of the growth phase to the end of the regression phase for follicles in that wave (P < 0.05). The total area for the wall and antrum of the follicles studied were correlated with follicular diameter in all follicular waves (r = 0.938, P < 0.01 and r = 0.941, P < 0.01 for the wall and antrum, respectively). Changes in image attributes of the follicular wall and antrum indicate potential morphologic and functional differences among antral follicles emerging at different stages of the interovulatory interval in cyclic ewes. PMID:19665782
NASA Astrophysics Data System (ADS)
Terekhov, Pavel D.; Baryshnikova, Kseniia V.; Artemyev, Yuriy A.; Karabchevsky, Alina; Shalin, Alexander S.; Evlyukhin, Andrey B.
2017-07-01
Spectral multipole resonances of parallelepiped-, pyramid-, and cone-like shaped silicon nanoparticles excited by linearly polarized light waves are theoretically investigated. The numerical finite element method is applied for the calculations of the scattering cross sections as a function of the nanoparticles geometrical parameters. The roles of multipole moments (up to the third order) in the scattering process are analyzed using the semianalytical multipole decomposition approach. The possibility of scattering pattern configuration due to the tuning of the multipole contributions to the total scattered waves is discussed and demonstrated. It is shown that cubic nanoparticles can provide a strong isotropic side scattering with minimization of the scattering in forward and backward directions. In the case of the pyramidal and conical nanoparticles the total suppression of the side scattering can be obtained. It was found that due to the shape factor of the pyramidal and conical nanoparticles their electric toroidal dipole resonance can be excited in the spectral region of the first electric and magnetic dipole resonances. The influence of the incident light directions on the optical response of the pyramidal and conical nanoparticles is discussed. The obtained results provide important information that can be used for the development of nanoantennas with improved functionality due to the directional scattering effects.
Cerebrovascular Damage Mediates Relations Between Aortic Stiffness and Memory.
Cooper, Leroy L; Woodard, Todd; Sigurdsson, Sigurdur; van Buchem, Mark A; Torjesen, Alyssa A; Inker, Lesley A; Aspelund, Thor; Eiriksdottir, Gudny; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J; Mitchell, Gary F
2016-01-01
Aortic stiffness is associated with cognitive decline. Here, we examined the association between carotid-femoral pulse wave velocity and cognitive function and investigated whether cerebrovascular remodeling and parenchymal small vessel disease damage mediate the relation. Analyses were based on 1820 (60% women) participants in the Age, Gene/Environment Susceptibility-Reykjavik Study. Multivariable linear regression models adjusted for vascular and demographic confounders showed that higher carotid-femoral pulse wave velocity was related to lower memory score (standardized β: -0.071±0.023; P=0.002). Cerebrovascular resistance and white matter hyperintensities were each associated with carotid-femoral pulse wave velocity and memory (P<0.05). Together, cerebrovascular resistance and white matter hyperintensities (total indirect effect: -0.029; 95% CI, -0.043 to -0.017) attenuated the direct relation between carotid-femoral pulse wave velocity and memory (direct effect: -0.042; 95% CI, -0.087 to 0.003; P=0.07) and explained ≈41% of the observed effect. Our results suggest that in older adults, associations between aortic stiffness and memory are mediated by pathways that include cerebral microvascular remodeling and microvascular parenchymal damage. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Chong, Jiajun; Chu, Risheng; Ni, Sidao; Meng, Qingjun; Guo, Aizhi
2018-02-01
It is known that a receiver function has relatively weak constraint on absolute seismic wave velocity, and that joint inversion of the receiver function with surface wave dispersion has been widely applied to reduce the trade-off of velocity with interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear-wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the receiver function to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear-wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion.
NASA Astrophysics Data System (ADS)
Patil, S. H.; Tang, K. T.; Toennies, J. P.
1999-10-01
Simple analytical wave functions satisfying appropriate boundary conditions are constructed for the ground states of one-and two-electron homonuclear molecules. Both the asymptotic condition when one electron is far away and the cusp condition when the electron coalesces with a nucleus are satisfied by the proposed wave function. For H2+, the resulting wave function is almost identical to the Guillemin-Zener wave function which is known to give very good energies. For the two electron systems H2 and He2++, the additional electron-electron cusp condition is rigorously accounted for by a simple analytic correlation function which has the correct behavior not only for r12→0 and r12→∞ but also for R→0 and R→∞, where r12 is the interelectronic distance and R, the internuclear distance. Energies obtained from these simple wave functions agree within 2×10-3 a.u. with the results of the most sophisticated variational calculations for all R and for all systems studied. This demonstrates that rather simple physical considerations can be used to derive very accurate wave functions for simple molecules thereby avoiding laborious numerical variational calculations.
Brody, Gene H; Kim, Sooyeon; Murry, Velma McBride; Brown, Anita C
2003-05-01
A 4-wave longitudinal model tested direct and indirect links between older sibling (OS; M = 11.7 years) and younger sibling (YS; M = 9.2 years) competence in 152 rural African American families. Data were collected at 1-year intervals. At each wave, different teachers assessed OS competence, YS competence, and YS self-regulation. Mothers reported their own psychological functioning; mothers and YSs reported parenting practices toward the YS. OS competence was stable across time and was linked with positive changes in mothers' psychological functioning from Wave 1 to Wave 2. Mothers' Wave 2 psychological functioning was associated with involved-supportive parenting of the YS at Wave 3. OS Wave 2 competence and Wave 3 parenting were indirectly linked with Wave 4 YS competence, through Wave 3 YS self-regulation. Structural equation modeling controlled for Wave 1 YS competence; thus, the model accounted for change in YS competence across 3 years.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.
2011-02-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R.
2009-12-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.
Dabbagh Kakhki, Vahid Reza; Ayati, Narjess; Zakavi, Seyed Rasoul; Sadeghi, Ramin; Tayyebi, Mohammad; Shariati, Farzaneh
2015-01-01
Accurate diagnosis of myocardial infarction (MI) is of paramount importance in patient management, which necessitates the development of efficient and accurate diagnostic methods. Q wave is not present in all patients with MI, and its prevalence is declining. Recently, fragmented QRS (fQRS) complex has been introduced as a marker of prior MI. To investigate diagnostic value of fQRS compared to Q wave. We included 500 consecutive patients with known or suspected coronary artery disease who underwent two days of gated myocardial perfusion imaging using dipyridamole pharmacologic stress. Electrocardiogram (ECG) was evaluated to detect fQRS as well as Q-wave. Finally, subjects were compared in terms of ventricular perfusion and function indices. A total of 207 men and 269 women with mean age of 57.06 ± 12 years were studied. ECG analysis showed that 14.3% of the patients had both fQRS and Q waves, 30.7% had fQRS, and 3.8% had Q waves. Fixed myocardial perfusion defect was noted in 22.3% of patients according to MPIs. Sensitivity, specificity, and positive and negative predictive values for myocardial scar detection were 78%, 65%, 39%, and 91%, respectively, for fQRS and 61%, 94%, 76%, and 89%, respectively, for Q wave. Although fQRS had lower specificity compared to Q wave in the detection of myocardial scar, due to higher sensitivity and negative predictive value can be an invaluable diagnostic index. There is also an incremental value for fQRS in association with Q-wave in myocardial scar assessment.
NASA Astrophysics Data System (ADS)
Wenzlau, F.; Altmann, J. B.; Müller, T. M.
2010-07-01
Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.
Limits of Wave Runup and Corresponding Beach-Profile Change from Large-Scale Laboratory Data
2010-01-01
A nearly vertical scarp developed after 40 min of wave action, with the upper limit of beach change identified at the toe of the dune scarp. and...change UL was found to approximately equal the vertical excursion of total wave runup, Rtw. An exception was runs where beach or dune scarps were...approximately equal the vertical excursion of total wave runup, Rtw. An exception was runs where beach or dune scarps were produced, which substantially limit the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkasskii, M. A., E-mail: macherkasskii@hotmail.com; Nikitin, A. A.; Kalinikos, B. A.
A theory is developed to describe the wave processes that occur in waveguide media having several types of nonlinearity, specifically, multinonlinear media. It is shown that the nonlinear Schrödinger equation can be used to describe the general wave process that occurs in such media. The competition between the electric wave nonlinearity and the magnetic wave nonlinearity in a layered multinonlinear ferrite–ferroelectric structure is found to change a total repulsive nonlinearity into a total attractive nonlinearity.
[Application of evoked potentials monitoring in total thoracoabdominal aorta aneurysm repair].
Duan, Y Y; Zheng, J; Pan, X D; Zhu, J M; Liu, Y M; Ge, Y P; Cheng, L J; Sun, L Z
2016-04-05
To evaluate the application value of evoked potentials (EP) monitoring in patients undergoing aorta-iliac bypass for total thoracoabdominal aorta aneurysm repair (tTAAAR). A prospective study, with a total of 31 patients undergoing tTAAAR and intraoperative EP monitoring from June 2014 to April 2015 was carried out. The results of intraoperative evoked potentials, clinical outcomes and follow-up data of patients were collected for further evaluation. The EP wave disappeared [motor evoked potentials for (55.6±18.1) min, somatosensory evoked potentials for (50.3±18.7) min] after proximal descending aorta being clamped, and gradually recovered after the segment arteries of spine cord were reconstructed. The EP wave was restored to normal level at the end of operation in all the cases. The somatosensory evoked potentials remained unchanged in 2 cases (false negative). One case died after operation. No spinal cord injury occurred. The median follow-up after operation was 10 months (5-14 months). There was no delayed neurological deficit. EP provided an on-line monitoring of the condition of spinal cord function, which become an intraoperative protocol to avoid the irreversible injury of spinal cord.
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-19
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less
Accuracy of Hartree-Fock wave functions for electron-H/sub 2/ scattering calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldt, A.N.
1988-05-01
Recent papers on electron-N/sub 2/ scattering by Rumble, Stevens, and Truhlar (J. Phys. B 17, 3151 (1984)) and Weatherford, Brown, and Temkin (Phys. Rev. A 35, 4561 (1987)) have suggested that Hartree-Fock (HF) wave functions may not be accurate for calculating potentials for use in studying electron-molecule collisions. A comparison of results for electron-H/sub 2/ scattering using both correlated and HF wave functions is presented. It is found that for both elastic and inelastic collisions and for all energies considered (up to 10 eV) the HF wave functions yield results in excellent agreement with those obtained from the more accuratemore » wave functions.« less
Pulse wave velocity and cognitive function in older adults.
Zhong, Wenjun; Cruickshanks, Karen J; Schubert, Carla R; Carlsson, Cynthia M; Chappell, Richard J; Klein, Barbara E K; Klein, Ronald; Acher, Charles W
2014-01-01
Arterial stiffness may be associated with cognitive function. In this study, pulse wave velocity (PWV) was measured from the carotid to femoral (CF-PWV) and from the carotid to radial (CR-PWV) with the Complior SP System. Cognitive function was measured by 6 tests of executive function, psychomotor speed, memory, and language fluency. A total of 1433 participants were included (mean age 75 y, 43% men). Adjusting for age, sex, education, pulse rate, hemoglobin A1C, high-density lipoprotein cholesterol, hypertension, cardiovascular disease history, smoking, drinking, and depression symptoms, a CF-PWV>12 m/s was associated with a lower Mini-Mental State Examination score (coefficient: -0.31, SE: 0.11, P=0.005), fewer words recalled on Auditory Verbal Learning Test (coefficient: -1.10, SE: 0.43, P=0.01), and lower score on the composite cognition score (coefficient: -0.10, SE: 0.05, P=0.04) and marginally significantly associated with longer time to complete Trail Making Test-part B (coefficient: 6.30, SE: 3.41, P=0.06), CF-PWV was not associated with Trail Making Test-part A, Digit Symbol Substation Test, or Verbal Fluency Test. No associations were found between CR-PWV and cognitive performance measures. Higher large artery stiffness was associated with worse cognitive function, and longitudinal studies are needed to confirm these associations.
Interference Fringes of Solar Acoustic Waves around Sunspots
NASA Astrophysics Data System (ADS)
Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao
2012-10-01
Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, R.T
1977-02-15
The effect of identification of the partial wave parameter of the J/sub z/ CCS and IOS approximations as an orbital angular momentum rather than the total angular momentum is studied. Comparison with accurate close coupling calculations for Ar--N/sub 2/ and He--CO/sub 2/ collisions is made, and it is found that this identification results in a marked improvement, both quantitative and qualitative, in calculated IOS opacity functions and integral cross sections for both elastic and inelastic collisions. Use of the correct energy in the cross section formula also makes a marked improvement even though T matrices are computed with an averagemore » energy. (AIP)« less
Search for gravitational waves from intermediate mass binary black holes
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-05-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level.
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
NASA Technical Reports Server (NTRS)
Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.
2012-01-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.
The Capricorn Orogen Passive source Array (COPA) in Western Australia
NASA Astrophysics Data System (ADS)
Gessner, K.; Yuan, H.; Murdie, R.; Dentith, M. C.; Johnson, S.; Brett, J.
2015-12-01
COPA is the passive source component of a multi-method geophysical program aimed at assessing the mineral deposits potential of the Proterozoic Capricorn Orogen. Previous results from the active source surveys, receiver functions and magnetotelluric studies show reworked orogenic crust in the orogen that contrasts with more simple crust in the neighbouring Archean cratons, suggesting progressive and punctuated collisional processes during the final amalgamation of the Western Australian craton. Previous seismic studies are all based on line deployment or single station analyses; therefore it is essential to develop 3D seismic images to test whether these observations are representative for the whole orogen. With a careful design that takes advantage of previous passive source surveys, the current long-term and short-term deployments span an area of approximately 500 x 500 km. The 36-month total deployment can guarantee enough data recording for 3D structure imaging using body wave tomography, ambient noise surface wave tomography and P- and S-wave receiver function Common Conversion Point (CCP) stacking techniques. A successive instrument loan from the ANSIR national instrument pool, provided 34 broadband seismometers that have been deployed in the western half of the orogen since March 2014. We expect approximately 40-km lateral resolution near the surface for the techniques we propose, which due to low frequency nature of earthquake waves will degrade to about 100 km near the base of the cratonic lithosphere, which is expected at depths between 200 to 250 km. Preliminary results from the first half of the COPA deployment will be presented in the light of the hypotheses that 1) distinct crustal blocks can be detected continuously throughout the orogen (using ambient noise/body wave tomography); 2) distinct lithologies are present in the crust and upper mantle across the orogen (using receiver function CCP images); and 3) crustal and lithosphere deformation along craton margins in general follows the "wedge" tectonic model (e.g. subduction of Juvenile blocks under the craton mantle as represented by craton-ward dipping sutures.
Mossahebi, Sina; Kovács, Sándor J
2014-01-01
Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (x o ), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DT s to stiffness and DTr to relaxation such that DT=DT s +DT r is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, E peak , E dur , E-VTI, E/E') and E-wave derived PDF parameters (c, k, DT s , DT r ) were compared. Total DT and DT s , DT r in AF were shorter than in NSR (p<0.005), chamber stiffness, (k) in AF was higher than in NSR (p<0.001). For NSR, 75% of DT was due to stiffness and 25% was due to relaxation whereas for AF 81% of DT was due to stiffness and 19% was due to relaxation (p<0.005). We conclude that compared to NSR, increased chamber stiffness is one measurable consequence of chamber remodeling in chronic, rate controlled AF. A larger fraction of E-wave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, Paul T; Hagerman, George; Scott, George
This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array,more » even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.« less
General Forms of Wave Functions for Dipositronium, Ps2
NASA Technical Reports Server (NTRS)
Schrader, D.M.
2007-01-01
The consequences of particle interchange symmetry for the structure of wave functions of the states of dipositronium was recently discussed by the author [I]. In the present work, the methodology is simply explained, and the wave functions are explicitly given.
Generalized Jastrow variational method for liquid3He-4He mixtures at T=0 K
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, K.
1989-07-01
The ground state energy of a dilute solution of mass-3 fermions in liquid4He is analyzed by a variational procedure based on the Jastrow many body theory. The antisymmetry of the wave function for fermions is incorporated following the procedure given by Lado, Inguva, and Smith. A set of coupled integrodifferential equations is solved in the hypernetted chain approximation yielding expressions for the binding energy of3He-4He mixtures; the radial distribution function is given together with the total energy for various values of density and the interparticle separation r s.
Green’s functions for a volume source in an elastic half-space
Zabolotskaya, Evgenia A.; Ilinskii, Yurii A.; Hay, Todd A.; Hamilton, Mark F.
2012-01-01
Green’s functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green’s function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green’s function obtained following the first approach. The Green’s function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects. PMID:22423682
Visser, Leenke; de Winter, Andrea F; Vollebergh, Wilma A M; Verhulst, Frank C; Reijneveld, Sijmen A
2015-02-01
Given the negative consequences of early alcohol use for health and social functioning, it is essential to detect children at risk of early drinking. The aim of this study is to determine predictors of early alcohol use that can easily be detected in Preventive Child Healthcare (PCH). We obtained data from the first two waves on 1261 Dutch adolescents who participated in TRAILS (TRacking Adolescents' Individual Lives Survey) at ages 10-14 years and from the PCH records regarding ages 4-10 years. Early adolescence alcohol use (age 10-14 years) was defined as alcohol use at least once at ages 10-12 years (wave 1) and at least once in the previous 4 weeks at ages 12-14 years (wave 2). Predictors of early alcohol use concerned parent and teacher reports at wave 1 and PCH registrations, regarding the child's psychosocial functioning, and parental and socio-demographic characteristics. A total of 17.2% of the adolescents reported early alcohol use. Predictors of early alcohol use were teacher-reported aggressive behaviour [odds ratios (OR); 95% confidence interval (CI): 1.86; 1.11-3.11], being a boy (OR 1.80, 95%-CI 1.31-2.56), being a non-immigrant (OR 2.31, 95%CI 1.05-5.09), and low and middle educational level of the father (OR 1.71, 95%CI 1.12-2.62 and OR 1.77, 95%CI 1.16-2.70, respectively), mutually adjusted. A limited set of factors was predictive for early alcohol use. Use of this set may improve the detection of early adolescence alcohol use in PCH. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Measurements of renal shear wave velocities in chronic kidney disease patients.
Sasaki, Yutaka; Hirooka, Yoshiki; Kawashima, Hiroki; Ishikawa, Takuya; Takeshita, Kyosuke; Goto, Hidemi
2018-07-01
Background Chronic kidney disease (CKD) patients have advanced glomerulosclerosis and renal interstitial fibrosis. Shear wave elastography (SWE) is useful to diagnose liver fibrosis. However, there are few data available regarding evaluation of kidney function on the use of SWE. Purpose To assess the utility of SWE by evaluating the correlation between renal function and renal elasticity using SWE. Material and Methods A total of 187 participants who had available serum creatinine levels and also underwent SWE of the kidney using a transabdominal ultrasonography were recruited at Nagoya University Hospital. We measured the depth of the shear wave (SW) in the right and left kidneys and calculated the measurement success rates. The glomerular filtration rate (GFR) classification and shear wave value (SWV) were compared. Results The success rates of the right and left kidneys were 93.6% and 71.6%, respectively. Based on these results, the correlation between GFR classification and SWV were analyzed in only the right kidneys because the success rates and the number of enrolled patients were low for the left kidney. There were significant differences found between G1 and G3a, G2 and G3a, G3a and G3b, G3a and G4, and G3a and G5. SWV significantly negatively and positively correlated with the G2-G3a and G3a-G3b classifications. Conclusion There is no correlation between renal function and SW. However, we can diagnose the progression to the CKD stages G3a and G3b by observing the changes over time using the SWV.
System and Method for Measuring the Transfer Function of a Guided Wave Device
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Liu, X.; Bhartia, P. K.
2007-01-01
Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.
Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction.
Zamani, Payman; Rawat, Deepa; Shiva-Kumar, Prithvi; Geraci, Salvatore; Bhuva, Rushik; Konda, Prasad; Doulias, Paschalis-Thomas; Ischiropoulos, Harry; Townsend, Raymond R; Margulies, Kenneth B; Cappola, Thomas P; Poole, David C; Chirinos, Julio A
2015-01-27
Inorganic nitrate (NO3(-)), abundant in certain vegetables, is converted to nitrite by bacteria in the oral cavity. Nitrite can be converted to nitric oxide in the setting of hypoxia. We tested the hypothesis that NO3(-) supplementation improves exercise capacity in heart failure with preserved ejection fraction via specific adaptations to exercise. Seventeen subjects participated in this randomized, double-blind, crossover study comparing a single dose of NO3-rich beetroot juice (NO3(-), 12.9 mmol) with an identical nitrate-depleted placebo. Subjects performed supine-cycle maximal-effort cardiopulmonary exercise tests, with measurements of cardiac output and skeletal muscle oxygenation. We also assessed skeletal muscle oxidative function. Study end points included exercise efficiency (total work/total oxygen consumed), peak VO2, total work performed, vasodilatory reserve, forearm mitochondrial oxidative function, and augmentation index (a marker of arterial wave reflections, measured via radial arterial tonometry). Supplementation increased plasma nitric oxide metabolites (median, 326 versus 10 μmol/L; P=0.0003), peak VO2 (12.6±3.7 versus 11.6±3.1 mL O2·min(-1)·kg(-1); P=0.005), and total work performed (55.6±35.3 versus 49.2±28.9 kJ; P=0.04). However, efficiency was unchanged. NO3(-) led to greater reductions in systemic vascular resistance (-42.4±16.6% versus -31.8±20.3%; P=0.03) and increases in cardiac output (121.2±59.9% versus 88.7±53.3%; P=0.006) with exercise. NO3(-) reduced aortic augmentation index (132.2±16.7% versus 141.4±21.9%; P=0.03) and tended to improve mitochondrial oxidative function. NO3(-) increased exercise capacity in heart failure with preserved ejection fraction by targeting peripheral abnormalities. Efficiency did not change as a result of parallel increases in total work and VO2. NO3(-) increased exercise vasodilatory and cardiac output reserves. NO3(-) also reduced arterial wave reflections, which are linked to left ventricular diastolic dysfunction and remodeling. www.clinicaltrials.gov. Unique identifier: NCT01919177. © 2014 American Heart Association, Inc.
New trial wave function for the nuclear cluster structure of nuclei
NASA Astrophysics Data System (ADS)
Zhou, Bo
2018-04-01
A new trial wave function is proposed for nuclear cluster physics, in which an exact solution to the long-standing center-of-mass problem is given. In the new approach, the widths of the single-nucleon Gaussian wave packets and the widths of the relative Gaussian wave functions describing correlations of nucleons or clusters are treated as variables in the explicit intrinsic wave function of the nuclear system. As an example, this new wave function was applied to study the typical {^{20}Ne} (α+{{^{16}}O}) cluster system. By removing exactly the spurious center-of-mass effect in a very simple way, the energy curve of {^{20}Ne} was obtained by variational calculations with the width of the α cluster, the width of the {{^{16}}O} cluster, and the size parameter of the nucleus. These are considered the three crucial variational variables in describing the {^{20}Ne} (α+{{^{16}}O}) cluster system. This shows that the new wave function can be a very interesting new tool for studying many-body and cluster effects in nuclear physics.
Three-dimensional instability of standing waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2003-12-01
We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.
Hsu, Po-Chao; Lin, Tsung-Hsien; Lee, Chee-Siong; Chu, Chun-Yuan; Su, Ho-Ming; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung
2011-04-01
Arterial stiffness is correlated with left ventricular (LV) diastolic function as well as susceptibility to LV systolic function. Therefore, if LV systolic function is not known, the relationship between arterial stiffness and LV diastolic function is difficult to determine. A total of 260 patients were included in the study. The brachial-ankle pulse wave velocity (baPWV) and the ratio of right brachial pre-ejection period to ejection time (rbPEP/rbET) were measured using an ABI-form device. Patients were classified into four groups. Groups 1, 2, 3 and 4 were patients with rbPEP/rbET and baPWV below the median, rbPEP/rbET above but baPWV below the median, rbPET/rbET below but baPWV above the median, and rbPET/rbET and baPWV above the median, respectively. The LV ejection fractions in groups 1 and 3 were higher than those in groups 2 and 4 (P<0.001 for all). Patients in group 1 had a lower left atrial volume index (LAVI) and higher early diastolic mitral annular velocity (Ea) than patients in the other groups (P≤0.002). Patients in group 2 had a LAVI and ratio of transmitral E wave velocity to Ea that were comparable to those in groups 3 and 4. In conclusion, rbPEP/rbET had an impact on the relationship between baPWV and LV diastolic function. In patients with high rbPEP/rbET but low baPWV, low baPWV may not indicate good LV diastolic function but implies that cardiac dysfunction may precede vascular dysfunction in such patients. When interpreting the relationship between baPWV and LV diastolic function, the rbPEP/rbET value obtained from the same examination should be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Melnikova, V. S.; Popov, V. V., E-mail: popov-slava@yahoo.co.uk
2016-11-15
The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.
Brant, Luisa C. C.; Hamburg, Naomi M.; Barreto, Sandhi M.; Benjamin, Emelia J.; Ribeiro, Antonio L. P.
2014-01-01
Background Vascular dysfunction is an early expression of atherosclerosis and predicts cardiovascular (CV) events. Peripheral arterial tonometry (PAT) evaluates basal pulse amplitude (BPA), endothelial function (PAT ratio), and wave reflection (PAT‐AIx) in the digital microvessels. In Brazilian adults, we investigated the correlations of PAT responses to CV risk factors and to carotid‐femoral pulse wave velocity (PWV), a measure of arterial stiffness. Methods and Results In a cross‐sectional study, 1535 participants of the ELSA‐Brasil cohort underwent PAT testing (52±9 years; 44% women). In multivariable analyses, more‐impaired BPA and PAT ratios were associated with male sex, higher body mass index (BMI), and total cholesterol/high‐density lipoprotein. Higher age and triglycerides were related to higher BPA, whereas lower systolic blood pressure, hypertension (HTN) treatment, and prevalent CV disease (CVD) were associated with lower PAT ratio. PAT‐AIx correlated positively with female sex, advancing age, systolic and diastolic blood pressures, and smoking and inversely to heart rate, height, BMI, and prevalent CVD. Black race was associated with lower BPA, higher PAT ratio, and PAT‐AIx. Microvessel vasodilator function was not associated with PWV. Higher PAT‐AIx was modestly correlated to higher PWV and PAT ratio and inversely correlated to BPA. Conclusion Metabolic risk factors are related to impaired microvessel vasodilator function in Brazil. However, in contrast to studies from the United States, black race was not associated with an impaired microvessel vasodilator response, implying that vascular function may vary by race across populations. PAT‐AIx relates to HTN, may be a valid measure of wave reflection, and provides distinct information from arterial stiffness. PMID:25510401
Hund's Multiplicity Rule Revisited
ERIC Educational Resources Information Center
Rioux, Frank
2007-01-01
The plausible and frequently used explanation of the singlet and triplet wave functions for a two-electron system is presented. Its findings reveal that the antisymmetric triplet spatial wave function keeps electrons apart, while the symmetric singlet spatial wave function permits electrons to be close together.
Effects of infrasound on vestibular function
NASA Astrophysics Data System (ADS)
Takigawa, H.; Sakamoto, H.; Murata, M.
1991-12-01
The present study was undertaken to elucidate subjective symptoms reported by some individuals exposed to various sounds, including infrasound. Narrow band infrasound of 5 Hz at center frequency and wide octave band audible noise were separately applied at an intensity of 95 dB. Parameters such as involuntary eye movement with the eyes visually fixed, body sway and pulse-wave were investigated. The total amount and power percentage in the low-frequency band of involuntary eye movement was significantly increased upon exposure to infrasound. Furthermore, confusion in postural control at the time of transition from opening to closing of the subject's eyes was inhibited by this exposure. Conversely, pulse-wave height decrement was observed upon exposure to both sounds, although this was smaller in the case of infrasound as compared with that of noise. These findings are taken to indicate that the effects taking place via the two different pathways were mixed in the subjective symptoms, and that functional changes caused by infrasound exposure were unrelated to an emotion stimulated by acoustical sensation.
Consumption of pornographic materials in early adolescents in Hong Kong.
Ma, Cecilia M S; Shek, Daniel T L
2013-06-01
The purpose of this study was to examine longitudinal changes in pornography consumption and related psychosocial correlates (ie, positive youth development qualities and family function) among Hong Kong early adolescents. In this study, adolescent consumption of pornographic materials was examined in 3 waves of longitudinal data. A total of 3,325 Secondary 1 students (Grade 7) from 28 schools participated in the study at Wave 1. The mean age of the participants was 12.6 years old (SD = .74). Results showed that the internet was the most common medium for consuming pornography materials. Boys consumed more pornographic materials than did girls. Findings showed that family functioning and positive youth development were negatively associated with consumption of pornographic materials over time. This study highlights the importance of developing adolescents' competencies and establishing an atmosphere that reduces the use of pornographic materials among adolescents. It sheds light on designing early prevention programs on pornography consumption for young people in Hong Kong. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Radiation from long pulse train electron beams in space plasmas
NASA Technical Reports Server (NTRS)
Harker, K. J.; Banks, P. M.
1985-01-01
A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.
Sommerer, Claudia; Brocke, Janina; Bruckner, Thomas; Schaier, Matthias; Morath, Christian; Meuer, Stefan; Zeier, Martin; Giese, Thomas
2018-03-01
A new immune monitoring tool which assesses the expression of nuclear factor of activated T cells (NFAT)-regulated genes measures the functional effects of cyclosporine A. This is the first prospective randomized controlled study to compare standard pharmacokinetic monitoring by cyclosporine trough levels to NFAT-regulated gene expression (NFAT-RE). Expression of the NFAT-regulated genes was determined by qRT-PCR at cyclosporine trough and peak level. Cardiovascular risk was assessed by change of pulse wave velocity from baseline to month 6. Clinical follow-up was 12 months. In total, 55 stable kidney allograft recipients were enrolled. Mean baseline residual NFAT-RE was 13.1 ± 9.1%. Patients in the NFAT-RE group showed a significant decline in pulse wave velocity from baseline to month 6 versus the standard group (-1.7 ± 2.0 m/s vs 0.4 ± 1.4 m/s, P < 0.001). Infections occurred more often in the standard group compared with the immune monitoring group. No opportunistic infections occurred with NFAT-RE monitoring. At 12 months of follow-up, renal function was significantly better with NFAT-RE versus standard monitoring (Nankivell glomerular filtration rate: 68.5 ± 17.4 mL/min vs 57.2 ± 19.0 mL/min; P = 0.009). NFAT-RE as translational immune monitoring tool proved efficacious and safe in individualizing cyclosporine therapy, with the opportunity to reduce the cardiovascular risk and improve long-term renal allograft function.
Guu, Shiao-Jin; Geng, Jiun-Hung; Chao, I-Ting; Lin, Hui-Tzu; Lee, Yung-Chin; Juan, Yung-Shun; Liu, Chia-Chu; Wang, Chii-Jye; Tsai, Chia-Chun
2018-03-01
Managing patients with chronic pelvic pain syndrome (CPPS) refractory to the traditional 3-As therapy (antibiotics, alpha-blockers, and anti-inflammatories) is a challenging task. Low-intensity extracorporeal shock wave therapy (LI-ESWT) was recently reported to be able to improve pain, urinary symptoms, and even sexual function by inducing neovascularization and anti-inflammation, reducing muscle tone, and influencing nerve impulses. This study evaluates whether combined treatment with LI-ESWT can restore clinical ability and quality of life (QoL) in patients refractory to 3-As therapy. This was an open-label, single-arm prospective study. Patients with CPPS without more than a 6-point decrease in the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) total score under the maximal dosage of 3-As therapy were enrolled. LI-ESWT treatment consisted of 3,000 shock waves administered once weekly for 4 weeks. The NIH-CPSI, visual analog scale (VAS) score, International Prostate Symptom Score (IPSS), and the five-item version of the International Index of Erectile Function (IIEF-5) were used to evaluate efficacy at 1, 4, and 12 weeks after LI-ESWT. Thirty-three patients were enrolled in this study. After LI-ESWT treatment, 27 of the 33 patients (81.82%) had a successful response to LI-ESWT, with a decrease of 3.29 and 5.97 in the VAS score and total IPSS at the 3-month follow-up. Waist circumference was the only significant predictor of a successful response to LI-ESWT. LI-ESWT can serve as a salvage therapy for patients with CPPS refractory to traditional 3-As therapy. Further studies are needed to determine an adequate therapeutic protocol and important predictors in patients with different CPPS etiologies.
Active Control of Jet Engine Inlet Flows
2007-03-31
These S-shaped ducts do not provide a direct line of sight to the compressor blades , thus hiding the engine from incoming radar waves. Also, serpentine...circumferential distortion pattern acts as an unsteady forcing function, inducing blade vibration that can result in structural fatigue and failure 3. This...shortcoming occurs when the rotor blades pass through regions of reduced axial velocity (i.e., where the total pressure is low). In these areas, since the
Li, Nuo; Wang, Pang; Deng, Bin; Wei, Xi-le; Che, Yan-qiu; Jia, Chen-hui; Guo, Yi; Chao, Wang
2011-08-01
To observe the effect of acupuncture of Zusanli (ST 36) on electroencephalogram (EEG) so as to probe into its law in regulating the interconnectivity of brain functional network. A total of 9 healthy young volunteer students (6 male, 3 female) participated in the present study. They were asked to take a dorsal position on a test-bed. EEG signals were acquired from 22 surface scalp electrodes (Fp1, Fp2, F7, F3, F2, F4, F8, A1, T3, C3, C2, C4, T4, A2, T5, P3, P2, P4, T6, O2, O1 and O2) fixed on the subject's head. Acupuncture stimulation was applied to the right Zusanli (ST 36) by manipulating the filiform needle with uniform reducing-reinforcing method and at a frequency of about 50 cycles/min for 2 min. Then the stimulation was stopped for 10 min, and repeated once again (needle-twirling frequency: 150 and 200 cycles/min), 3 times altogether. The acquired EEG data were analyzed by using coherence estimation method, average path length, average clustering coefficient, and the average degree of the articulation points (nodes) for analyzing the synchronization of EEG signals before, during and after acupuncture. In comparison with pre-acupuncture, the coherence amplitude values of EEG-delta (1-4 Hz) and y (31-47 Hz) waves were increased significantly after acupuncture of ST 36. No significant changes were found in the amplitude values of EEG-theta (5-8 Hz), -alpha (9-13 Hz) and-beta (14-30 Hz) waves after acupuncture stimulation. During and after acupuncture, the synchronism values of EEG-delta waves of different leads and numbers of interconnectivity between every two brain functional regions in majority of the 9 volunteers were increased clearly. In all volunteers, the degree values of all nodes except A1 and A2, the average clustering coefficients along with the increase of the threshold (r), and the average path lengths of the brain functional network of EEG-delta waves during and after acupuncture were also increased evidently (the latter two items, P < 0.05), suggesting an increase of the information exchange and functional connectivity of different brain regions. Acupuncture of Zusanli (ST 36) can increase the amplitude and synchronization of EEG-delta waves of different leads, and potentiate the functional interconnectivity of brain functional network.
A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light
NASA Astrophysics Data System (ADS)
Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.
2014-06-01
A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,
2014-09-30
The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less
Upper Crustal Structure of Taiwan Constrained by the Ellipticity of the Noise-derived Rayleigh Waves
NASA Astrophysics Data System (ADS)
Chien, C. C.; Chen, Y. N.; Gung, Y.; Liang, W. T.
2016-12-01
In the last decade, the noise interferometry has been a popular technique, and widely applied to constraint the crust and uppermost mantle structure, bringing in revolutionary resolution in area with dense seismic network, including Taiwan. However, limited by the available frequency band of the noise-derived surface waves, the near surface (<5km) structure is much less resolved as compared to the rest of the crust in Taiwan. Such limitation may be lifted by using the ZH ratio of Rayleigh waves, because, for the same period, the ZH ratio of Rayleigh waves is much more sensitive to the shallower structure than those provided by the corresponding phase or group velocities. In this study, aiming to better constraint the seismic structure of the shallow crust of Taiwan, we measure the ZH ratios of the Rayleigh waves derived by noise interferometry. Continuous records from two major seismic networks in Taiwan are used. In total, data from 63 short period stations and 48 broadband stations are used to derived the four combinations (ZZ, ZR, RZ, RR) of cross-correlation functions (CCF). We then measure the ZH ratios of the derived Rayleigh waves. We present the measured results, invert for the local 1-D structure for sites with stable measurements. We then compare the results with the published tomographic models and discuss their geological implications.
NASA Astrophysics Data System (ADS)
Engebretson, M. J.; Kahlstorf, C. R. G.; Murr, D. L.; Posch, J. L.; Keiling, A.; Lavraud, B.; Rème, H.; Lessard, M. R.; Kim, E.-H.; Johnson, J. R.; Dombeck, J.; Grison, B.; Robert, P.; Glassmeier, K.-H.; Décréau, P. M. E.
2012-10-01
Bursts of band-limited Pc 1 waves (0.2 to ˜1.0 Hz) with normalized frequency f/fH+ ˜ 0.5 have been observed by the Cluster spacecraft during many passes through the high-latitude plasma mantle. These transverse, left-hand polarized waves are associated with regions of H+ and O+ ions streaming away from Earth along magnetic field lines at the same velocity (˜140 km/s). Waves were observed only when H+ fluxes increased by factors of 10-1000 and energies of both ion species increased by factors of up to 10. We present two satellite-ground conjunctions to demonstrate the high latitude localization of these waves and their ability to reach the polar ionosphere and two extended examples of waves and associated ion distribution functions near the southern dusk flank magnetopause. We also present the results of a search for all such events during Cluster's 2002 and 2003 passages through the magnetotail, with orbital precession covering dawn to dusk on Earth's night side (June through December). A total of 46 events (band-limited Pc 1-2 waves accompanied by a sustained population of streaming H+ and O+ ions, separated by at least 12 min) were observed on 29 days. The waves were generally associated with intervals of southward IMF Bz and/or large IMF By (times of active cusp reconnection), and often but not always occurred during the main phase or early recovery phase of magnetic storms. Analysis of selected events shows that the waves are associated with large H+ temperature anisotropy, and that the waves propagate opposite to the direction of the streaming ions. A wave instability analysis using the WHAMP code confirms that the generation of these waves, via the ion cyclotron instability, is basically consistent with known physics. Their extended region of wave growth is likely, however, to reach tailward significantly beyond the Cluster orbit.
Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Inan, U. S.; Bell, T. F.
2005-12-01
Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Exploring the Alfven-Wave Acceleration of Auroral Electrons in the Laboratory
NASA Astrophysics Data System (ADS)
Schroeder, James William Ryan
Inertial Alfven waves occur in plasmas where the Alfven speed is greater than the electron thermal speed and the scale of wave field structure across the background magnetic field is comparable to the electron skin depth. Such waves have an electric field aligned with the background magnetic field that can accelerate electrons. It is likely that electrons are accelerated by inertial Alfven waves in the auroral magnetosphere and contribute to the generation of auroras. While rocket and satellite measurements show a high level of coincidence between inertial Alfven waves and auroral activity, definitive measurements of electrons being accelerated by inertial Alfven waves are lacking. Continued uncertainty stems from the difficulty of making a conclusive interpretation of measurements from spacecraft flying through a complex and transient process. A laboratory experiment can avoid some of the ambiguity contained in spacecraft measurements. Experiments have been performed in the Large Plasma Device (LAPD) at UCLA. Inertial Alfven waves were produced while simultaneously measuring the suprathermal tails of the electron distribution function. Measurements of the distribution function use resonant absorption of whistler mode waves. During a burst of inertial Alfven waves, the measured portion of the distribution function oscillates at the Alfven wave frequency. The phase space response of the electrons is well-described by a linear solution to the Boltzmann equation. Experiments have been repeated using electrostatic and inductive Alfven wave antennas. The oscillation of the distribution function is described by a purely Alfvenic model when the Alfven wave is produced by the inductive antenna. However, when the electrostatic antenna is used, measured oscillations of the distribution function are described by a model combining Alfvenic and non-Alfvenic effects. Indications of a nonlinear interaction between electrons and inertial Alfven waves are present in recent data.
Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo
1992-10-01
The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.
Nowak, Izabela; Sabariego, Carla; Świtaj, Piotr; Anczewska, Marta
2016-07-11
Schizophrenia is a disabling disease that impacts all major life areas. There is a growing need for meeting the challenge of disability from a perspective that extends symptomatic reduction. Therefore, this study aimed to systematically review the extent to which traditional and "third wave" cognitive - behavioral (CBT) interventions address the whole scope of disabilities experienced by people with lived experience of schizophrenia using the WHO's International Classification of Functioning, Disability and Health (ICF) as a frame of reference. It also explores if current CBT interventions focus on recovery and what is their impact on disability domains. Medline and PsycINFO databases were searched for studies published in English between January 2009 and December 2015. Abstracts and full papers were screened against pre-defined selection criteria by two reviewers. Methodological quality of included studies was assessed by two independent raters using the Effective Public Health Practice Project Quality assessment tool for quantitative studies (EPHPP) guidelines. A total of 50 studies were included, 35 studies evaluating traditional CBT interventions and 15 evaluating "third wave" approaches. Overall, traditional CBT interventions addressed more disability domains than "third wave" approaches and mostly focused on mental functions reflecting schizophrenia psychopathology. Seven studies met the inclusion criteria of recovery-oriented interventions. The majority of studies evaluating these interventions had however a high risk of bias, therefore evidence on their effectiveness is inconclusive. Traditional CBT interventions address more disability domains than "third wave" therapies, however both approaches focus mostly on mental functions that reflect schizophrenia psychopathology. There are also few interventions that focus on recovery. These results indicate that CBT interventions going beyond symptom reduction are still needed. Recovery-focused CBT interventions seem to be a promising treatment approach as they target disability from a broader perspective including activity and participation domains. Although their effectiveness is inconclusive, they reflect users' views of recovery and trends towards improvement of mood, negative symptoms and functioning are shown.
Liu, Zhi-dan; He, Jiang-bo; Guo, Si-si; Yang, Zhi-xin; Shen, Jun; Li, Xiao-yan; Liang, Wei; Shen, Wei-dong
2015-08-25
Although many patients with facial paralysis have obtained benefits or completely recovered after acupuncture or electroacupuncture therapy, it is still difficult to list intuitive evidence besides evaluation using neurological function scales and a few electrophysiologic data. Hence, the aim of this study is to use more intuitive and reliable detection techniques such as facial nerve magnetic resonance imaging (MRI), nerve electromyography, and F waves to observe changes in the anatomic morphology of facial nerves and nerve conduction before and after applying acupuncture or electroacupuncture, and to verify their effectiveness by combining neurological function scales. A total of 132 patients with Bell's palsy (grades III and IV in the House-Brackmann [HB] Facial Nerve Grading System) will be randomly divided into electroacupuncture, manual acupuncture, non-acupuncture, and medicine control groups. All the patients will be given electroacupuncture treatment after the acute period, except for patients in the medicine control group. The acupuncture or electroacupuncture treatments will be performed every 2 days until the patients recover or withdraw from the study. The primary outcome is analysis based on facial nerve functional scales (HB scale and Sunnybrook facial grading system), and the secondary outcome is analysis based on MRI, nerve electromyography and F-wave detection. All the patients will undergo MRI within 3 days after Bell's palsy onset for observation of the signal intensity and facial nerve swelling of the unaffected and affected sides. They will also undergo facial nerve electromyography and F-wave detection within 1 week after onset of Bell's palsy. Nerve function will be evaluated using the HB scale and Sunnybrook facial grading system at each hospital visit for treatment until the end of the study. The MRI, nerve electromyography, and F-wave detection will be performed again at 1 month after the onset of Bell's palsy. Chinese Clinical Trials Register identifier: ChiCTR-IPR-14005730. Registered on 23 December 2014.
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi
2013-07-01
We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than two particles in quantum field theories. To deal with n particles in the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine their 3(n-1) coordinates into the one spherical coordinate in D=3(n-1) dimensions. We parametrize the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix. We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of parameters of the T matrix and show that the NBS wave function carries information of the T matrix such as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of n particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define “potential” from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCD’s definition of potentials for three or more nucleons (or baryons) in terms of the NBS wave functions.
Quantum phase transition in strongly correlated systems
NASA Astrophysics Data System (ADS)
Jiang, Longhua
In this thesis, we investigated the strongly correlated phenomena in bilayer quantum Hall effect, inhomogeneous superconductivity and Boson Hubbard model. Bilayer quantum Hall system is studied in chapter 2. By using the Composite Boson (CB) theory developed by J. Ye, we derive the ground state, quasihole and a quasihole-pair wave functions from the CB theory and its dual action. We find that the ground state wave function is the product of two parts, one in the charge sector which is the well known Halperin's (111) wave function and the other in the spin sector which is non-trivial at any finite d due to the gapless mode. So the total groundstate wave function differs from the well known (111) wave function at any finite d. In addition to commonly known multiplicative factors, the quasihole and quasihole-pair wave functions also contain non-trivial normalization factors multiplying the correct ground state wave function. Then we continue to study the quantum phase transition from the excitonic superfluid (ESF) to a possible pseudo-spin density wave (PSDW) at some intermediate distances driven by the magneto-roton minimum collapsing at a finite wavevector. We analyze the properties of the PSDW and explicitly show that a square lattice is the favored lattice. We suggest that correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature-dependent drag, consistent with the experimental data. Comparisons with previous microscopic numerical calculations are made. Further experimental implications are given. In chapter 3, we investigate inhomogeneous superconductivity. Starting from the Ginzburg-Landau free energy describing the normal state to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state transition, we evaluate the free energy of seven most common lattice structures: stripe, square, triangular, Simple Cubic (SC), Face centered Cubic (FCC), Body centered Cubic (BCC) and Quasicrystal (QC). We find that the stripe phase, which is the original LO state, is the most stable phase. This result may be relevant to the detection of the FFLO state in some heavy fermion compounds and the pairing lattice structure of fermions with unequal populations on the BCS side of the Feshbach resonance in ultra-cold atoms. In chapter 4, the Boson Hubbard model is studied by duality transformation. Interacting bosons at filling factor f = p/q hopping on a lattice can be mapped to interacting vortices hopping on the dual lattice subject to a fluctuating dual " magnetic field" whose average strength through a dual plaquette is equal to the boson density f = p/q. So the kinetic term of the vortices is the same as the Hofstadter problem of electrons moving in a lattice in the presence of f = p/q flux per plaquette. Motivated by this mapping, we study the Hofstadter bands of vortices hopping in the presence of magnetic flux f = p/q per plaquette on the 5 most common bipartite and frustrated lattices namely square, honeycomb, triangular, dice and kagome lattices. We count the total number of bands and determine the number of minima in the lowest band and their locations. We also numerically calculate the bandwidths of the lowest Hofstadter bands in these lattices, which directly measure the mobility of the dual vortices. The less mobile the dual vortices are, the more likely the bosons are in a superfluid state. We find that, except for the kagome lattice at odd q, they all satisfy the exponential decay law W = Ae-cq even at the smallest q. At given q, the bandwidth W decreases in the order: triangle, square and honeycomb lattice. This indicates that the domain of the superfluid state of the original bosons increases in the order of the corresponding direct lattices: honeycome, square and triangular. When q = 2, we find that the lowest Hofstadter band is completely flat for both kagome and dice lattices. There is a gap on the kagome lattice, but no gap on dice lattice. This indicates that the boson ground state at half filling with nearest neighbor hopping on kagome lattice is always a superfluid state. The superfluid state remains stable slightly away from half filling. Our results show that the behaviors of bosons at or near half filling on kagome lattice are quite distinct from those on square, honeycomb and triangular lattices studied previously.
NASA Astrophysics Data System (ADS)
Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto
2018-03-01
Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.
Güven, Hayat; Bayır, Omer; Aytaç, Emrah; Ozdek, Ali; Comoğlu, Selim Selçuk; Korkmaz, Hakan
2014-02-01
Vestibular-evoked myogenic potentials (VEMP), short-latency electromyographic responses elicited by acoustic stimuli, evaluate the function of vestibulocollic reflex and may give information about brainstem function. The aim of the present study is to evaluate the potential contribution of VEMP to the diagnosis of multiple sclerosis (MS). Fifty patients with MS and 30 healthy control subjects were included in this study. The frequency of VEMP p1-n1 and n2-p2 waves; mean p1, n1, n2, and p2 latency; and mean p1-n1 and n2-p2 amplitude were determined. The relation between clinical and imaging findings and VEMP parameters was evaluated. The p1-n1 and n2-p2 waves were more frequently absent in MS than in control subjects [p1-n1 wave absent: MS, 25 (25 %) ears; control, 6 (10 %) ears; P ≤ 0.02] [n2-p2 wave absent: MS, 44 (44 %) ears; control, 7 (12 %) ears; P ≤ 0.001]. The mean p1-n1 amplitude was lower in MS than in control subjects (MS, 19.1 ± 7.2 μV; control, 23.3 ± 7.4 μV; P ≤ 0.002). A total of 24/50 (48 %) MS patients had VEMP abnormalities (absent responses and/or prolonged latencies). VEMP abnormalities were more frequent in patients with than without vestibular symptoms (P ≤ 0.02) and with brainstem functional system score (FSS) ≥ 1 than FSS = 0 (P ≤ 0.02). In patients with MS, absence of p1-n1 wave was more frequent in patients with than without vestibular symptoms [absence of p1-n1 wave: vestibular symptoms, 9 (45 %) ears; no vestibular symptoms, 16 (20 %) ears; P ≤ 0.03] and patients with Expanded Disability Status Scale (EDSS) score ≥ 5.5 [absence of p1-n1 wave: EDSS ≥ 5.5, 7 (70 %) ears; EDSS <5.5, 18 (20 %) ears; P ≤ 0.001]. Abnormal VEMP may be noted in MS patients, especially those with vestibular symptoms and greater disability. The VEMP test may complement other studies for diagnosis and follow-up of patients with MS.
STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis.
Gustafsson, Alexander; Paulsson, Magnus
2017-12-20
We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.
STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis
NASA Astrophysics Data System (ADS)
Gustafsson, Alexander; Paulsson, Magnus
2017-12-01
We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.
Extended screened exchange functional derived from transcorrelated density functional theory.
Umezawa, Naoto
2017-09-14
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
NASA Astrophysics Data System (ADS)
Zoratti, Paul K.; Gilbert, R. Kent; Majewski, Ronald; Ference, Jack
1995-12-01
Development of automotive collision warning systems has progressed rapidly over the past several years. A key enabling technology for these systems is millimeter-wave radar. This paper addresses a very critical millimeter-wave radar sensing issue for automotive radar, namely the scattering characteristics of common roadway objects such as vehicles, roadsigns, and bridge overpass structures. The data presented in this paper were collected on ERIM's Fine Resolution Radar Imaging Rotary Platform Facility and processed with ERIM's image processing tools. The value of this approach is that it provides system developers with a 2D radar image from which information about individual point scatterers `within a single target' can be extracted. This information on scattering characteristics will be utilized to refine threat assessment processing algorithms and automotive radar hardware configurations. (1) By evaluating the scattering characteristics identified in the radar image, radar signatures as a function of aspect angle for common roadway objects can be established. These signatures will aid in the refinement of threat assessment processing algorithms. (2) Utilizing ERIM's image manipulation tools, total RCS and RCS as a function of range and azimuth can be extracted from the radar image data. This RCS information will be essential in defining the operational envelope (e.g. dynamic range) within which any radar sensor hardware must be designed.
Particle acceleration by quasi-parallel shocks in the solar wind
NASA Astrophysics Data System (ADS)
Galinsky, V. L.; Shevchenko, V. I.
2008-11-01
The theoretical study of proton acceleration at a quasi-parallel shock due to interaction with Alfven waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model [1]. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered as well as the change of the wave energy due to instability or damping. It includes in consideration the total distribution function (the bulk plasma and high energy tail), so no any assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. The dynamics of ion acceleration by the November 11-12, 1978 interplanetary traveling shock was investigated and compared with the observations [2] as well as with solution obtained using the so-called convection-diffusion equation for distribution function of accelerated particles [3]. [1] Galinsky, V.L., and V.I. Shevchenko, Astrophys. J., 669, L109, 2007. [2] Kennel, C.F., F.W. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, K.P. Wenzel, and M. Scholer, J. Geophys. Res. 91, 11,917, 1986. [3] Gordon B.E., M.A. Lee, E. Mobius, and K.J. Trattner, J. Geophys. Res., 104, 28,263, 1990.
Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askan, A.; /Carnegie Mellon U.; Akcelik, V.
2009-04-30
We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less
NASA Technical Reports Server (NTRS)
Haut, R. C.; Adcock, J. B.
1976-01-01
The steady normal shock wave solutions of parahydrogen at various total pressures and total temperatures were numerically determined by iterating the upstream Mach number and by using a modified interval halving technique. The results obtained are compared with the ideal diatomic gas values and are presented in tabulated form.
Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok
2016-01-01
Abstract Objective: Brachial–ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. Method: The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Results: Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Conclusion: Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke. PMID:27741123
N-representability of the Jastrow wave function pair density of the lowest-order.
Higuchi, Katsuhiko; Higuchi, Masahiko
2017-08-08
Conditions for the N-representability of the pair density (PD) are needed for the development of the PD functional theory. We derive sufficient conditions for the N-representability of the PD that is calculated from the Jastrow wave function within the lowest order. These conditions are used as the constraints on the correlation function of the Jastrow wave function. A concrete procedure to search the suitable correlation function is also presented.
Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.
He, Lan; Sewell, Thomas D; Thompson, Donald L
2011-03-28
The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (~15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (~6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated as a function of time since shock wave passage in planes perpendicular to the direction of shock propagation, show that the molecular translational mobility in the picoseconds following shock wave passage is greatest for [001] and least for the [010] case. In all cases the root-mean-square center-of-mass displacement is small compared to the molecular diameter of nitromethane on the time scale of the simulations. The calculated time scales for the approach to thermal equilibrium are generally consistent with the predictions of a recent theoretical analysis due to Hooper [J. Chem. Phys. 132, 014507 (2010)].
Covariant harmonic oscillators: 1973 revisited
NASA Technical Reports Server (NTRS)
Noz, M. E.
1993-01-01
Using the relativistic harmonic oscillator, a physical basis is given to the phenomenological wave function of Yukawa which is covariant and normalizable. It is shown that this wave function can be interpreted in terms of the unitary irreducible representations of the Poincare group. The transformation properties of these covariant wave functions are also demonstrated.
Schrödinger propagation of initial discontinuities leads to divergence of moments
NASA Astrophysics Data System (ADS)
Marchewka, A.; Schuss, Z.
2009-09-01
We show that the large phase expansion of the Schrödinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.
Cigar-shaped quarkonia under strong magnetic field
NASA Astrophysics Data System (ADS)
Suzuki, Kei; Yoshida, Tetsuya
2016-03-01
Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.
A simplified method of evaluating the stress wave environment of internal equipment
NASA Technical Reports Server (NTRS)
Colton, J. D.; Desmond, T. P.
1979-01-01
A simplified method called the transfer function technique (TFT) was devised for evaluating the stress wave environment in a structure containing internal equipment. The TFT consists of following the initial in-plane stress wave that propagates through a structure subjected to a dynamic load and characterizing how the wave is altered as it is transmitted through intersections of structural members. As a basis for evaluating the TFT, impact experiments and detailed stress wave analyses were performed for structures with two or three, or more members. Transfer functions that relate the wave transmitted through an intersection to the incident wave were deduced from the predicted wave response. By sequentially applying these transfer functions to a structure with several intersections, it was found that the environment produced by the initial stress wave propagating through the structure can be approximated well. The TFT can be used as a design tool or as an analytical tool to determine whether a more detailed wave analysis is warranted.
NASA Astrophysics Data System (ADS)
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.
2004-08-01
Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.
Rogue periodic waves of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Rogue periodic waves of the focusing nonlinear Schrödinger equation.
Chen, Jinbing; Pelinovsky, Dmitry E
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Certain, P. R.
1974-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.
Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I
2018-02-13
Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.
NASA Astrophysics Data System (ADS)
Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel
2018-04-01
Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.
Calculation of the nucleon structure function from the nucleon wave function
NASA Technical Reports Server (NTRS)
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
Blast-wave density measurements
NASA Astrophysics Data System (ADS)
Ritzel, D. V.
Applications of a densitometer to obtain time-resolved data on the total density in blast-wave flows are described. A beta-source (promethium-147) is separated by a gap from a scintillator and a photomultiplier tube (PMT). Attenuation of the radiation beam by the passing blast wave is due to the total density in the gap volume during the wave passage. Signal conditioning and filtering methods permit the system to output linearized data. Results are provided from use of the system to monitor blast waves emitted by detonation of a 10.7 m diameter fiberglass sphere containing 609 tons of ammonium nitrate/fuel oil at a 50.6 m height. Blast wave density data are provided for peak overpressure levels of 245, 172 and 70 kPa and distances of 183, 201 and 314 m from ground zero. Data resolution was of high enough quality to encourage efforts to discriminate dust and gasdynamic phenomena within passing blast waves.
NASA Astrophysics Data System (ADS)
Hatayama, Ken; Fujiwara, Hiroyuki
1998-05-01
This paper aims to present a new method to calculate surface waves in 3-D sedimentary basin models, based on the direct boundary element method (BEM) with vertical boundaries and normal modes, and to evaluate the excitation of secondary surface waves observed remarkably in basins. Many authors have so far developed numerical techniques to calculate the total 3-D wavefield. However, the calculation of the total wavefield does not match our purpose, because the secondary surface waves excited on the basin boundaries will be contaminated by other undesirable waves. In this paper, we prove that, in principle, it is possible to extract surface waves excited on part of the basin boundaries from the total 3-D wavefield with a formulation that uses the reflection and transmission operators defined in the space domain. In realizing this extraction in the BEM algorithm, we encounter the problem arising from the lateral and vertical truncations of boundary surfaces extending infinitely in the half-space. To compensate the truncations, we first introduce an approximate algorithm using 2.5-D and 1-D wavefields for reference media, where a 2.5-D wavefield means a 3-D wavefield with a 2-D subsurface structure, and we then demonstrate the extraction. Finally, we calculate the secondary surface waves excited on the arc shape (horizontal section) of a vertical basin boundary subject to incident SH and SV plane waves propagating perpendicularly to the chord of the arc. As a result, we find that in the SH-incident case the Love waves are predominantly excited, rather than the Rayleigh waves and that in the SV-wave incident case the Love waves as well as the Rayleigh waves are excited. This suggests that the Love waves are more detectable than the Rayleigh waves in the horizontal components of observed recordings.
NASA Astrophysics Data System (ADS)
Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo
2018-06-01
Spin contamination error in the total energy of the Au2/MgO system was estimated using the density functional theory/plane-wave scheme and approximate spin projection methods. This is the first investigation in which the errors in chemical phenomena on a periodic surface are estimated. The spin contamination error of the system was 0.06 eV. This value is smaller than that of the dissociation of Au2 in the gas phase (0.10 eV). This is because of the destabilization of the singlet spin state due to the weakening of the Au-Au interaction caused by the Au-MgO interaction.
Dual-function beam splitter of a subwavelength fused-silica grating.
Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng
2009-05-10
We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.
Study of wave form compensation at CSNS/RCS magnets
NASA Astrophysics Data System (ADS)
Xu, S. Y.; Fu, S. N.; Wang, S.; Kang, W.; Qi, X.; Li, L.; Deng, C. D.; Zhou, J. X.
2018-07-01
A method of wave form compensation for magnets of the Rapid Cycling Synchrotron (RCS), which is based on transfer function between magnetic field and exciting current, was investigated on the magnets of RCS of Chinese Spallation Neutron Source (CSNS). By performing wave form compensation, the magnetic field ramping function for RCS magnets can be accurately controlled to the given wave form, which is not limited to sine function. The method of wave form compensation introduced in this paper can be used to reduce the magnetic field tracking errors, and can also be used to accurately control the betatron tune for RCS.
Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin
2017-01-01
This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles
NASA Astrophysics Data System (ADS)
Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.
2009-12-01
The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.
A phase space approach to wave propagation with dispersion.
Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J
2015-08-01
A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
Short time propagation of a singular wave function: Some surprising results
NASA Astrophysics Data System (ADS)
Marchewka, A.; Granot, E.; Schuss, Z.
2007-08-01
The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.
NASA Astrophysics Data System (ADS)
Shemer, L.; Sergeeva, A.
2009-12-01
The statistics of random water wave field determines the probability of appearance of extremely high (freak) waves. This probability is strongly related to the spectral wave field characteristics. Laboratory investigation of the spatial variation of the random wave-field statistics for various initial conditions is thus of substantial practical importance. Unidirectional nonlinear random wave groups are investigated experimentally in the 300 m long Large Wave Channel (GWK) in Hannover, Germany, which is the biggest facility of its kind in Europe. Numerous realizations of a wave field with the prescribed frequency power spectrum, yet randomly-distributed initial phases of each harmonic, were generated by a computer-controlled piston-type wavemaker. Several initial spectral shapes with identical dominant wave length but different width were considered. For each spectral shape, the total duration of sampling in all realizations was long enough to yield sufficient sample size for reliable statistics. Through all experiments, an effort had been made to retain the characteristic wave height value and thus the degree of nonlinearity of the wave field. Spatial evolution of numerous statistical wave field parameters (skewness, kurtosis and probability distributions) is studied using about 25 wave gauges distributed along the tank. It is found that, depending on the initial spectral shape, the frequency spectrum of the wave field may undergo significant modification in the course of its evolution along the tank; the values of all statistical wave parameters are strongly related to the local spectral width. A sample of the measured wave height probability functions (scaled by the variance of surface elevation) is plotted in Fig. 1 for the initially narrow rectangular spectrum. The results in Fig. 1 resemble findings obtained in [1] for the initial Gaussian spectral shape. The probability of large waves notably surpasses that predicted by the Rayleigh distribution and is the highest at the distance of about 100 m. Acknowledgement This study is carried out in the framework of the EC supported project "Transnational access to large-scale tests in the Large Wave Channel (GWK) of Forschungszentrum Küste (Contract HYDRALAB III - No. 022441). [1] L. Shemer and A. Sergeeva, J. Geophys. Res. Oceans 114, C01015 (2009). Figure 1. Variation along the tank of the measured wave height distribution for rectangular initial spectral shape, the carrier wave period T0=1.5 s.
Mass-number and excitation-energy dependence of the spin cutoff parameter
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-12
Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less
On optimizing the treatment of exchange perturbations.
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Chipman, D. M.
1972-01-01
Most theories of exchange perturbations would give the exact energy and wave function if carried out to an infinite order. However, the different methods give different values for the second-order energy, and different values for E(1), the expectation value of the Hamiltonian corresponding to the zeroth- plus first-order wave function. In the presented paper, it is shown that the zeroth- plus first-order wave function obtained by optimizing the basic equation which is used in most exchange perturbation treatments is the exact wave function for the perturbation system and E(1) is the exact energy.
Wigner functions for evanescent waves.
Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George
2012-09-01
We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.
Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan
2011-01-01
The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.
Aktoz, Meryem; Yilmaztepe, Mustafa; Tatli, Ersan; Turan, Fatma Nesrin; Umit, Elif G; Altun, Armagan
2011-01-01
The aim of this study was to investigate ventricular functions and left atrial (LA) mechanical functions, atrial electromechanical coupling, and P wave dispersion in scleroderma patients. Twenty-six patients with scleroderma and twenty-four controls were included. Left and right ventricular (LV and RV) functions were evaluated using conventional echocardiography and tissue Doppler imaging (TDI). LA volumes were measured using the biplane area- -length method and LA mechanical function parameters were calculated. Inter-intraatrial electromechanical delays were measured by TDI. P wave dispersion was calculated by 12-lead electrocardiograms. LV myocardial performance indices (MPI) and RV MPI were higher in patients with scleroderma (p = 0.000, p = 0.000, respectively) while LA passive emptying fraction was decreased and LA active emptying fraction was increased (p = 0.051, p = 0.000, respectively). P wave dispersion and inter-intraatrial electromechanical delay were significantly higher in patients with scleroderma (25 [10-60] vs 20 [0-30], p = 0.000, 16.50 [7.28-26.38] vs 9.44 [3.79-15.78] and 11.33 [4.88-16.06] vs 4.00 [0-12.90], p < 0.05, respectively). Interatrial electromechanical delay was negatively correlated with LV E wave, (p = 0.018). LV E wave was demonstrated to be a factor independent of the interatrial electromechanical delay (R² = = 0.270, b = -0.52, p = 0.013). This study showed that in scleroderma patients, global functions of LV, RV and mechanical functions of LA were impaired, intra-interatrial electromechanical delays were prolonged and P wave dispersion was higher. LV E wave was demonstrated to be a factor that is independent of the interatrial electromechanical delay. Reduced LV E wave may also give additional information on the process of risk stratification of atrial fibrillation.
On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow
NASA Astrophysics Data System (ADS)
Jenssen, Helge Kristian
2017-12-01
Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ )=a^2ρ ^γ with γ >1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t( r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x( r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ >3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/ t.
Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling
2017-07-01
This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
NASA Astrophysics Data System (ADS)
Lan, Bo; Lowe, Michael J. S.; Dunne, Fionn P. E.
2015-10-01
A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.
Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain
NASA Astrophysics Data System (ADS)
Shrivastava, Rohit; Luding, Stefan
2017-04-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress-signals, interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies increases. Brian P. Lawney and Stefan Luding. Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems. AIP Conference Proceedings, 1542(1), 2013. Ibrahim Guven. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory and simulations (Doctoral dissertation). Rainer Tonn. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55(3):259 - 268, 1989. Rohit Kumar Shrivastava and Stefan Luding.: Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis, Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-83, in review, 2017.
Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation
NASA Astrophysics Data System (ADS)
Mancas, Stefan C.; Spradlin, Greg; Khanal, Harihar
2013-08-01
In this paper the effect of a small dissipation on waves is included to find exact solutions to the modified Benjamin, Bona, and Mahony (BBM) equation by viscosity. Using Lyapunov functions and dynamical systems theory, we prove that when viscosity is added to the BBM equation, in certain regions there still exist bounded traveling wave solutions in the form of solitary waves, periodic, and elliptic functions. By using the canonical form of Abel equation, the polynomial Appell invariant makes the equation integrable in terms of Weierstrass ℘ functions. We will use a general formalism based on Ince's transformation to write the general solution of dissipative BBM in terms of ℘ functions, from which all the other known solutions can be obtained via simplifying assumptions. Using ODE (ordinary differential equations) analysis we show that the traveling wave speed is a bifurcation parameter that makes transition between different classes of waves.
Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.
2013-06-15
The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less
Urban, Aleš; Hanzlíková, Hana; Kyselý, Jan; Plavcová, Eva
2017-12-13
This study aimed to assess the impacts of heat waves during the summer of 2015 on mortality in the Czech Republic and to compare them with those of heat waves back to the previous record-breaking summer of 1994. We analyzed daily natural-cause mortality across the country's entire population. A mortality baseline was determined using generalized additive models adjusted for long-term trends, seasonal and weekly cycles, and identified heat waves. Mortality deviations from the baseline were calculated to quantify excess mortality during heat waves, defined as periods of at least three consecutive days with mean daily temperature higher than the 95th percentile of annual distribution. The summer of 2015 was record-breaking in the total duration of heat waves as well as their total heat load. Consequently, the impact of the major heat wave in 2015 on the increase in excess mortality relative to the baseline was greater than during the previous record-breaking heat wave in 1994 (265% vs. 240%). Excess mortality was comparable among the younger age group (0-64 years) and the elderly (65+ years) in the 1994 major heat wave while it was significantly larger among the elderly in 2015. The results suggest that the total heat load of a heat wave needs to be considered when assessing its impact on mortality, as the cumulative excess heat factor explains the magnitude of excess mortality during a heat wave better than other characteristics such as duration or average daily mean temperature during the heat wave. Comparison of the mortality impacts of the 2015 and 1994 major heat waves suggests that the recently reported decline in overall heat-related mortality in Central Europe has abated and simple extrapolation of the trend would lead to biased conclusions even for the near future. Further research is needed toward understanding the additional mitigation measures required to prevent heat-related mortality in the Czech Republic and elsewhere.
Urban, Aleš; Hanzlíková, Hana; Kyselý, Jan; Plavcová, Eva
2017-01-01
This study aimed to assess the impacts of heat waves during the summer of 2015 on mortality in the Czech Republic and to compare them with those of heat waves back to the previous record-breaking summer of 1994. We analyzed daily natural-cause mortality across the country’s entire population. A mortality baseline was determined using generalized additive models adjusted for long-term trends, seasonal and weekly cycles, and identified heat waves. Mortality deviations from the baseline were calculated to quantify excess mortality during heat waves, defined as periods of at least three consecutive days with mean daily temperature higher than the 95th percentile of annual distribution. The summer of 2015 was record-breaking in the total duration of heat waves as well as their total heat load. Consequently, the impact of the major heat wave in 2015 on the increase in excess mortality relative to the baseline was greater than during the previous record-breaking heat wave in 1994 (265% vs. 240%). Excess mortality was comparable among the younger age group (0–64 years) and the elderly (65+ years) in the 1994 major heat wave while it was significantly larger among the elderly in 2015. The results suggest that the total heat load of a heat wave needs to be considered when assessing its impact on mortality, as the cumulative excess heat factor explains the magnitude of excess mortality during a heat wave better than other characteristics such as duration or average daily mean temperature during the heat wave. Comparison of the mortality impacts of the 2015 and 1994 major heat waves suggests that the recently reported decline in overall heat-related mortality in Central Europe has abated and simple extrapolation of the trend would lead to biased conclusions even for the near future. Further research is needed toward understanding the additional mitigation measures required to prevent heat-related mortality in the Czech Republic and elsewhere. PMID:29236040
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Lissenden, Cliff J.
2018-04-01
Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.
ERIC Educational Resources Information Center
Brody, Gene H.; Kim, Sooyeon; Murry, Velma McBride; Brown, Anita C.
2003-01-01
Tested links between early adolescent older sibling (OS) and younger sibling (YS) competence in rural African American families. Found that OS competence was stable across time and related to improvements in mothers' psychological functioning from Wave 1 to Wave 2. Mothers' Wave-2 psychological functioning related to Wave-3 involved-supportive…
Wave drag as the objective function in transonic fighter wing optimization
NASA Technical Reports Server (NTRS)
Phillips, P. S.
1984-01-01
The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.
Zachariah, Justin P; Rong, Jian; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Vasan, Ramachandran S; Mitchell, Gary F
2018-02-01
Vascular function varies with age because of physiological and pathological factors. We examined relations of longitudinal change in vascular function with change in metabolic traits. Longitudinal changes in vascular function and metabolic traits were examined in 5779 participants (mean age, 49.8±14.5 years; 54% women) who attended sequential examinations of the Framingham Offspring, Third Generation, and Omni-1 and Omni-2 cohorts. Multivariable regression analysis related changes in vascular measures (dependent variables), including carotid-femoral pulse wave velocity (CFPWV), forward pressure wave amplitude, characteristic impedance, central pulse pressure, and mean arterial pressure (MAP), with change in body mass index, fasting total:high-density lipoprotein cholesterol ratio, serum triglycerides, and blood glucose. Analyses accounted for baseline value of each vascular and metabolic measure, MAP change, and multiple comparisons. On follow-up (mean, 5.9±0.6 years), aortic stiffness (CFPWV, 0.2±1.6 m/s), and pressure pulsatility (forward pressure wave, 1.2±12.4 mm Hg; characteristic impedance, 23±73 dyne×sec/cm 5 ; central pulse pressure, 2.6±14.7 mm Hg; all P <0.0001) increased, whereas MAP fell (-3±10 mm Hg; P <0.0001). Worsening of each metabolic trait was associated with increases in CFPWV and MAP ( P <0.0001 for all associations) and an increase in MAP was associated with an increase in CFPWV. Overall, worsening metabolic traits were associated with worsening aortic stiffness and MAP. Opposite net change in aortic stiffness and MAP suggests that factors other than distending pressure contributed to the observed increase in aortic stiffness. Change in metabolic traits explained a greater proportion of the change in CFPWV and MAP than baseline metabolic values. © 2017 American Heart Association, Inc.
Black hole mass function from gravitational wave measurements
NASA Astrophysics Data System (ADS)
Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc
2017-05-01
We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10 % accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.
Variability in total ozone associated with baroclinic waves
NASA Technical Reports Server (NTRS)
Mote, Philip W.; Holton, James R.; Wallace, John M.
1991-01-01
One-point regression maps of total ozone formed by regressing the time series of bandpass-filtered geopotential height data have been analyzed against Total Ozone Mapping Spectrometer data. Results obtained reveal a strong signature of baroclinic waves in the ozone variability. The regressed patterns are found to be similar in extent and behavior to the relative vorticity patterns reported by Lim and Wallace (1991).
Point Judith, Rhode Island, Breakwater Risk Assessment
2015-08-01
output stations. Beach zones considered included the sandy beach to the west side of the HoR, which had significant dune features and was fronting...time dependency for crest height and wave parameters is assumed, hc = total damaged crest height of structure from toe , Lp is the local wave length...computed using linear wave theory and Tp, h is the toe depth, hc’ = total undamaged crest height of structure from toe , At = area of structure enclosed
NASA Astrophysics Data System (ADS)
Yang, Jinkyu; Silvestro, Claudio; Sangiorgio, Sophia N.; Borkowski, Sean L.; Ebramzadeh, Edward; De Nardo, Luigi; Daraio, Chiara
2012-01-01
We propose a new biomedical sensing technique based on highly nonlinear solitary waves to assess orthopaedic implant stability in a nondestructive and efficient manner. We assemble a granular crystal actuator consisting of a one-dimensional tightly packed array of spherical particles, to generate acoustic solitary waves. Via direct contact with the specimen, we inject acoustic solitary waves into a biomedical prosthesis, and we nondestructively evaluate the mechanical integrity of the bone-prosthesis interface, studying the properties of the waves reflected from the contact zone between the granular crystal and the implant. The granular crystal contains a piezoelectric sensor to measure the travelling solitary waves, which allows it to function also as a sensor. We perform a feasibility study using total hip arthroplasty (THA) samples made of metallic stems implanted in artificial composite femurs using polymethylmethacrylate for fixation. We first evaluate the sensitivity of the proposed granular crystal sensor to various levels of prosthesis insertion into the composite femur. Then, we impose a sequence of harsh mechanical loading on the THA samples to degrade the mechanical integrity at the stem-cement interfaces, using a femoral load simulator that simulates aggressive, accelerated physiological loading. We investigate the implant stability via the granular crystal sensor-actuator during testing. Preliminary results suggest that the reflected waves respond sensitively to the degree of implant fixation. In particular, the granular crystal sensor-actuator successfully detects implant loosening at the stem-cement interface following violent cyclic loading. This study suggests that the granular crystal sensor and actuator has the potential to detect metal-cement defects in a nondestructive manner for orthopaedic applications.
NASA Astrophysics Data System (ADS)
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
NASA Astrophysics Data System (ADS)
Baddour, Natalie
2018-02-01
Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
2011-02-01
seakeeping was the transient wave technique, developed analytically by Davis and Zarnick (1964). At the David Taylor Model Basin, Davis and Zarnick, and...Gersten and Johnson (1969) applied the transient wave technique to regular wave model experiments for heave and pitch, at zero forward speed. These...tests demonstrated a potential reduction by an order of magnitude of the total necessary testing time. The transient wave technique was also applied to
Lower hybrid accessibility in a large, hot reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziubek, R.A.
1995-02-01
Recent theoretical and experimental results indicate that driving a current in the outer radius of an RPF suppresses sawtooth activity and increases particle and energy confinement times. One candidate for a form of steady state current drive is the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave in an RFP plasma is investigated theoretically, with focus on the RFX machine of Padua, Italy. To drive current, the slow wave with frequency between 1.0--1.5 GHz is considered where optimal Landau damping is desired at r/a {approximately} 0.7. By numerically determining the values of the wave`smore » perpendicular index of refraction which satisfy the hot plasma dispersion relation, regions of propagation and evanescence can be found. The path of the wave can then be traced over a contour map of these regions so that accessibility can be clearly seen. The possibility of mode conversion events can be ascertained by plotting the values of the perpendicular index of refraction for the fast and slow wave and observing convergence points. To locate regions of maximum Landau damping, a technique developed by Stix was adapted for use with the slow wave in an RFP plasma. Results show that the slow wave is accessible to the target region without mode conversion so long as the value of the parallel index of refraction is correctly chosen at the edge of the plasma. Landau damping can also be optimized with this method. In an RFP, 2--20% of the electron population consists of fast electrons. Because this species alters the total electron distribution function and raises the effective temperature in the outer regions of the plasma, its presence is expected to shift the location of ideal Landau damping.« less
Wave attenuation across a tidal marsh in San Francisco Bay
Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.
2018-01-01
Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.
Wave functions of symmetry-protected topological phases from conformal field theories
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Ringel, Zohar
2016-03-01
We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.
NASA Astrophysics Data System (ADS)
Pan, Xiao-Yin; Slamet, Marlina; Sahni, Viraht
2010-04-01
We extend our prior work on the construction of variational wave functions ψ that are functionals of functions χ:ψ=ψ[χ] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions χ chosen such that the functional ψ[χ] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H-, the helium atom He, and its positive ions Li+ and Be2+. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W=∑irin,n=-2,-1,1,2, W=∑iδ(ri), W=-(1)/(2)∑i∇i2, and the two-particle operators W=∑nun,n=-2,-1,1,2, where u=|ri-rj|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals ψ[χ] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schrödinger equation, there exist ψ[χ] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.
Extracting a shape function for a signal with intra-wave frequency modulation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orms, Natalie; Rehn, Dirk; Dreuw, Andreas
Density-based wave function analysis enables unambiguous comparisons of electronic structure computed by different methods and removes ambiguity of orbital choices. Here, we use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such asmore » polyradicals. We also show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of bonding pattern.« less
Orms, Natalie; Rehn, Dirk; Dreuw, Andreas; ...
2017-12-21
Density-based wave function analysis enables unambiguous comparisons of electronic structure computed by different methods and removes ambiguity of orbital choices. Here, we use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such asmore » polyradicals. We also show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of bonding pattern.« less
Comparison of local exchange potentials of electron-N2 scattering
NASA Astrophysics Data System (ADS)
Rumble, J. R., Jr.; Truhlar, D. G.
1980-05-01
Vibrationally and electronically elastic electron scattering by N2 at 2-30 eV impact energy is considered. Static, static-exchange, and static-exchange-plus-polarization potentials, Cade-Sales-Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron-gas exchange potentials are examined. It is shown that the semiclassical exchange approximation is too attractive at low energy for N2. It is also shown quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until the differences are about 8% for the total integral cross section at 30 eV.
Theoretical L-shell Coster-Kronig energies 11 or equal to z or equal to 103
NASA Technical Reports Server (NTRS)
Chen, M. H.; Crasemann, B.; Huang, K. N.; Aoyagi, M.; Mark, H.
1976-01-01
Relativistic relaxed-orbital calculations of L-shell Coster-Kronig transition energies have been performed for all possible transitions in atoms with atomic numbers. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order approximation to the local approximation was thus included. Quantum-electrodynamic corrections were made. Each transition energy was computed as the difference between results of separate self-consistent-field calculations for the initial, singly ionized state and the final two-hole state. The following quantities are listed: total transition energy, 'electric' (Dirac-Hartree-Fock-Slater) contribution, magnetic and retardation contributions, and contributions due to vacuum polarization and self energy.
Receiver function analysis applied to refraction survey data
NASA Astrophysics Data System (ADS)
Subaru, T.; Kyosuke, O.; Hitoshi, M.
2008-12-01
For the estimation of the thickness of oceanic crust or petrophysical investigation of subsurface material, refraction or reflection seismic exploration is one of the methods frequently practiced. These explorations use four-component (x,y,z component of acceleration and pressure) seismometer, but only compressional wave or vertical component of seismometers tends to be used in the analyses. Hence, it is needed to use shear wave or lateral component of seismograms for more precise investigation to estimate the thickness of oceanic crust. Receiver function is a function at a place that can be used to estimate the depth of velocity interfaces by receiving waves from teleseismic signal including shear wave. Receiver function analysis uses both vertical and horizontal components of seismograms and deconvolves the horizontal with the vertical to estimate the spectral difference of P-S converted waves arriving after the direct P wave. Once the phase information of the receiver function is obtained, then one can estimate the depth of the velocity interface. This analysis has advantage in the estimation of the depth of velocity interface including Mohorovicic discontinuity using two components of seismograms when P-to-S converted waves are generated at the interface. Our study presents results of the preliminary study using synthetic seismograms. First, we use three types of geological models that are composed of a single sediment layer, a crust layer, and a sloped Moho, respectively, for underground sources. The receiver function can estimate the depth and shape of Moho interface precisely for the three models. Second, We applied this method to synthetic refraction survey data generated not by earthquakes but by artificial sources on the ground or sea surface. Compressional seismic waves propagate under the velocity interface and radiate converted shear waves as well as at the other deep underground layer interfaces. However, the receiver function analysis applied to the second model cannot clearly estimate the velocity interface behind S-P converted wave or multi-reflected waves in a sediment layer. One of the causes is that the incidence angles of upcoming waves are too large compared to the underground source model due to the slanted interface. As a result, incident converted shear waves have non-negligible energy contaminating the vertical component of seismometers. Therefore, recorded refraction waves need to be transformed from depth-lateral coordinate into radial-tangential coordinate, and then Ps converted waves can be observed clearly. Finally, we applied the receiver function analysis to a more realistic model. This model has not only similar sloping Mohorovicic discontinuity and surface source locations as second model but the surface water layer. Receivers are aligned on the sea bottom (OBS; Ocean Bottom Seismometer survey case) Due to intricately bounced reflections, simulated seismic section becomes more complex than the other previously-mentioned models. In spite of the complexity in the seismic records, we could pick up the refraction waves from Moho interface, after stacking more than 20 receiver functions independently produced from each shot gather. After these processing, the receiver function analysis is justified as a method to estimate the depths of velocity interfaces and would be the applicable method for refraction wave analysis. The further study will be conducted for more realistic model that contain inhomogeneous sediment model, for example, and finally used in the inversion of the depth of velocity interfaces like Moho.
Coulomb wave functions in momentum space
Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; ...
2015-10-15
We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10 -1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.« less
Coulomb wave functions with complex values of the variable and the parameters
NASA Astrophysics Data System (ADS)
Dzieciol, Aleksander; Yngve, Staffan; Fröman, Per Olof
1999-12-01
The motivation for the present paper lies in the fact that the literature concerning the Coulomb wave functions FL(η,ρ) and GL(η,ρ) is a jungle in which it may be hard to find a safe way when one needs general formulas for the Coulomb wave functions with complex values of the variable ρ and the parameters L and η. For the Coulomb wave functions and certain linear combinations of these functions we discuss the connection with the Whittaker function, the Coulomb phase shift, Wronskians, reflection formulas (L→-L-1), integral representations, series expansions, circuital relations (ρ→ρe±iπ) and asymptotic formulas on a Riemann surface for the variable ρ. The parameters L and η are allowed to assume complex values.
NASA Technical Reports Server (NTRS)
Chandra, S.; Mcpeters, R. D.
1986-01-01
Ozone measurements from 1970 to 1984 from the Nimbus 4 backscattered ultraviolet and the Nimbus 7 solar backscattered ultraviolet spectrometers show significant decrease in total ozone only after 1979. The downward trend is most apparent in October south of 70 deg S in the longitude zone 0 to 30 deg W where planetary wave activity is weak. Outside this longitude region, the trend in total ozone is much smaller due to strong interannual variability of wave activity. This paper gives a phenomenological description of ozone depletion in the Antarctic region based on vertical advection and transient planetary waves.
Geometric transformations of optical orbital angular momentum spatial modes
NASA Astrophysics Data System (ADS)
He, Rui; An, Xin
2018-02-01
With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal.
Positronium formation in e+ plus H- collisions
NASA Technical Reports Server (NTRS)
Straton, Jack C.; Drachman, Richard J.
1990-01-01
Cross sections for positronium formation by capture from the negative hydrogen ion are given. Orthogonalization corrections to the Coulomb (First) Born Approximation (CBA) differential and total cross sections are calculated using approximate H- wave functions of both Lowdin and Chandrasekhar. Various methods of orthogonalizing the unbound projectile to the possible bound states are considered. It is found that treating the atomic nuclei as if they were isotopic spin projections of a single type of nucleon gives cross sections that are an improvement over the CBA.
Rossby-gravity waves in tropical total ozone data
NASA Technical Reports Server (NTRS)
Stanford, J. L.; Ziemke, J. R.
1993-01-01
Evidence for Rossby-gravity waves in tropical data fields produced by the European Center for Medium Range Weather Forecasts (ECMWF) was recently reported. Similar features are observable in fields of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The observed features are episodic, have zonal (east-west) wavelengths of 6,000-10,000 km, and oscillate with periods of 5-10 days. In accord with simple linear theory, the modes exhibit westward phase progression and eastward group velocity. The significance of finding Rossby-gravity waves in total ozone fields is that (1) the report of similar features in ECMWF tropical fields is corroborated with an independent data set and (2) the TOMS data set is demonstrated to possess surprising versatility and sensitivity to relatively smaller scale tropical phenomena.
Protective measurement of the wave function of a single squeezed harmonic-oscillator state
NASA Astrophysics Data System (ADS)
Alter, Orly; Yamamoto, Yoshihisa
1996-05-01
A scheme for the "protective measurement"
NASA Astrophysics Data System (ADS)
Zhang, Yi; Vishwanath, Ashvin
2013-04-01
We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator. We demonstrate that this wave function is captured by the SU(2)2 Chern-Simons theory coupled to fermions. This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern-Simons theory coupled to fermions, by studying the SU(2)3 (Read-Rezayi-type state) and the SU(3)2 wave functions. An advantage of our projected Chern-insulator wave functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix, can be numerically calculated using Monte Carlo techniques.
Molecular processes in a high temperature shock layer
NASA Technical Reports Server (NTRS)
Guberman, S. L.
1985-01-01
The development of techniques for the calculation of electron capture widths, electronic wave functions, cross sections and rates needed for the description of the dissociative recombination (DR) of molecular ions with electrons were described. The cross sections and rates were calculated by using harmonic oscillator wave functions for the ion and a delta function approximation for the continuum vibrational wave function in the repulsive dissociative channel. In order to obtain DR cross sections of quantitative accuracy, a computer program which solves the one dimensional nuclear motion wave equation was revised to calculate the cross sections and rates. The program and the new results are described. Included is a discussion of large windows found in the dissociative recombination cross sections from excited ion vibrational levels. These windows have not been previously reported in the literature. The magnitude of the DR cross sections for several dissociative routes are sensitive to the location of the crossing of the neutral and ion potential curves. Studies of the effects of basis set and CI wave function size on vertical excitation energies are described. Preliminary studies on N2 and O2 using large scale wave functions are also reported.
A note on the accuracy of KS-DFT densities
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.
2017-11-01
The accuracy of the density of wave function methods and Kohn-Sham (KS) density functionals is studied using moments of the density, ⟨rn ⟩ =∫ ρ (r )rnd τ =∫0∞4 π r2ρ (r ) rnd r ,where n =-1 ,-2,0,1,2 ,and 3 provides information about the short- and long-range behavior of the density. Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) is considered as the reference density. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and 3d transition metals. The total density and valence only density are distinguished by dropping appropriate core orbitals. Among density functionals tested, CAMQTP00 and ωB97x show the least deviation for boron through neon neutral atoms. They also show accurate eigenvalues for the HOMO indicating that they should have a more correct long-range behavior for the density. For transition metals, some density functional approximations outperform some wave function methods, suggesting that the KS determinant could be a better starting point for some kinds of correlated calculations. By using generalized many-body perturbation theory (MBPT), the convergence of second-, third-, and fourth-order KS-MBPT for the density is addressed as it converges to the infinite-order coupled cluster result. For the transition metal test set, the deviations in the KS density functional theory methods depend on the amount of exact exchange the functional uses. Functionals with exact exchange close to 25% show smaller deviations from the CCSD(T) density.
A cryogenic 'set-and-forget' deformable mirror
NASA Astrophysics Data System (ADS)
Trines, Robin; Janssen, Huub; Paalvast, Sander; Teuwen, Maurice; Brandl, Bernhard; Rodenhuis, Michiel
2016-07-01
This paper discusses the development, realization and initial characterization of a demonstrator for a cryogenic 'set and forget' deformable mirror. Many optical and cryogenic infrared instruments on modern very and extremely large telescopes aim at diffraction-limited performance and require total wave front errors in the order of 50 nanometers or less. At the same time, their complex optical functionality requires either a large number of spherical mirrors or several complex free-form mirrors. Due to manufacturing and alignment tolerances, each mirror contributes static aberrations to the wave front. Many of these aberrations are not known in the design phase and can only be measured once the system has been assembled. A 'set-and-forget' deformable mirror can be used to compensate for these aberrations, making it especially interesting for systems with complex free-form mirrors or cryogenic systems where access to iterative realignment is very difficult or time consuming. The mirror with an optical diameter of 200 mm is designed to correct wave front aberrations of up to 2 μm root-mean square (rms). The shape of the wave front is approximated by the first 15 Zernike modes. Finite element analysis of the mirror shows a theoretically possible reduction of the wave front error from 2 μm to 53 nm rms. To produce the desired shapes, the mirror surface is controlled by 19 identical actuator modules at the back of the mirror. The actuator modules use commercially available Piezo-Knob actuators with a high technology readiness level (TRL). These provide nanometer resolution at cryogenic temperatures combined with high positional stability, and allow for the system to be powered off once the desired shape is obtained. The stiff design provides a high resonance frequency (>200 Hz) to suppress external disturbances. A full-size demonstrator of the deformable mirror containing 6 actuators and 13 dummy actuators is realized and characterized. Measurement results show that the actuators can provide sufficient stroke to correct the 2 μm rms WFE. The resolution of the actuator influence functions is found to be 0.24 nm rms or better depending on the position of the actuator within the grid. Superposition of the actuator influence functions shows that a 2 μm rms WFE can be accurately corrected with a 38 nm fitting error. Due to the manufacturing method of the demonstrator an artificially large print-through error of 182 nm is observed. The main cause of this print-through error has been identified and will be reduced in future design iterations. After these design changes the system is expected to have a total residual error of less than 70 nm and offer diffraction limited performance (λ14) for wavelengths of 1 μm and above.
Hall viscosity of hierarchical quantum Hall states
NASA Astrophysics Data System (ADS)
Fremling, M.; Hansson, T. H.; Suorsa, J.
2014-03-01
Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.
Brody, Gene H; Kim, Sooyeon; Murry, Velma McBride; Brown, Anita C
2004-01-01
A 4-wave longitudinal design was used to examine protective links from child competence to behavioral problems in first- (M=10.97 years) and second- (M=8.27 years) born rural African American children. At 1-year intervals, teachers assessed child behavioral problems, mothers reported their psychological functioning, and both mothers and children reported parenting practices. Structural equation modeling indicated that child competence was linked with residualized positive changes in mothers' psychological functioning from Wave 1 to Wave 2. Mothers' psychological functioning and child competence at Wave 2 forecast involved-supportive parenting at Wave 3, which was associated negatively with externalizing and internalizing problems at Wave 4. The importance of replicating processes leading to outcomes among children in the same study is discussed.
NASA Astrophysics Data System (ADS)
Chandran, Benjamin D. G.; Perez, Jean C.; Verscharen, Daniel; Klein, Kristopher G.; Mallet, Alfred
2015-09-01
The interaction between Alfvén-wave turbulence and the background solar wind affects the cross helicity (\\int {d}3x {\\boldsymbol{v}}\\cdot {\\boldsymbol{B}}) in two ways. Non-WKB reflection converts outward-propagating Alfvén waves into inward-propagating Alfvén waves and vice versa, and the turbulence transfers momentum to the background flow. When both effects are accounted for, the total cross helicity is conserved. In the special case that the background density and flow speed are independent of time, the equations of cross-helicity conservation and total-energy conservation can be combined to recover a well-known equation derived by Heinemann and Olbert that has been interpreted as a non-WKB generalization of wave-action conservation. This latter equation (in contrast to cross-helicity and energy conservation) does not hold when the background varies in time.
NASA Astrophysics Data System (ADS)
Mueller, A.
2018-04-01
A new transparent artificial boundary condition for the two-dimensional (vertical) (2DV) free surface water wave propagation modelled using the meshless Radial-Basis-Function Collocation Method (RBFCM) as boundary-only solution is derived. The two-way artificial boundary condition (2wABC) works as pure incidence, pure radiation and as combined incidence/radiation BC. In this work the 2wABC is applied to harmonic linear water waves; its performance is tested against the analytical solution for wave propagation over horizontal sea bottom, standing and partially standing wave as well as wave interference of waves with different periods.
Adaptive multiconfigurational wave functions.
Evangelista, Francesco A
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N2 and the potential energy curves for the first three singlet states of C2. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu2O2(2+) core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Arterial wave reflection and subclinical left ventricular systolic dysfunction.
Russo, Cesare; Jin, Zhezhen; Takei, Yasuyoshi; Hasegawa, Takuya; Koshaka, Shun; Palmieri, Vittorio; Elkind, Mitchell Sv; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R
2011-03-01
Increased arterial wave reflection is a predictor of cardiovascular events and has been hypothesized to be a cofactor in the pathophysiology of heart failure. Whether increased wave reflection is inversely associated with left-ventricular (LV) systolic function in individuals without heart failure is not clear. Arterial wave reflection and LV systolic function were assessed in 301 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study using two-dimensional echocardiography and applanation tonometry of the radial artery to derive central arterial waveform by a validated transfer function. Aortic augmentation index (AIx) and wasted energy index (WEi) were used as indices of wave reflection. LV systolic function was measured by LV ejection fraction (LVEF) and tissue Doppler imaging (TDI). Mitral annulus peak systolic velocity (Sm), peak longitudinal strain and strain rate were measured. Participants with history of coronary artery disease, atrial fibrillation, LVEF less than 50% or wall motion abnormalities were excluded. Mean age of the study population was 68.3 ± 10.2 years (64.1% women, 65% hypertensive). LV systolic function by TDI was lower with increasing wave reflection, whereas LVEF was not. In multivariate analysis, TDI parameters of LV longitudinal systolic function were significantly and inversely correlated to AIx and WEi (P values from 0.05 to 0.002). In a community cohort without heart failure and with normal LVEF, an increased arterial wave reflection was associated with subclinical reduction in LV systolic function assessed by novel TDI techniques. Further studies are needed to investigate the prognostic implications of this relationship.
Extracorporeal shock wave therapy without local anesthesia for chronic lateral epicondylitis.
Pettrone, Frank A; McCall, Brian R
2005-06-01
The use of extracorporeal shock wave therapy for the treatment of lateral epicondylitis is controversial. The purpose of this study was to evaluate the use of extracorporeal shock wave therapy without local anesthesia to treat chronic lateral epicondylitis. One hundred and fourteen patients with a minimum six-month history of lateral epicondylitis that was unresponsive to conventional therapy were randomized into double-blind active treatment and placebo groups. The protocol consisted of three weekly treatments of either low-dose shock wave therapy without anesthetic or a sham treatment. Patients had a physical examination, including provocation testing and dynamometry, at one, four, eight, and twelve weeks and at six and twelve months after treatment. Radiographs, laboratory studies, and electrocardiograms were also evaluated prior to participation and at twelve weeks. A visual analog scale was used to evaluate pain, and an upper extremity functional scale was used to assess function. Crossover to active treatment was initiated for nonresponsive patients who had received the placebo and met the inclusion criteria after twelve weeks. A total of 108 of the 114 randomized patients completed all treatments and the twelve weeks of follow-up required by the protocol. Sixty-one patients completed one year of follow-up, whereas thirty-four patients crossed over to receive active treatment. A significant difference (p = 0.001) in pain reduction was observed at twelve weeks in the intent-to-treat cohort, with an improvement in the pain score of at least 50% seen in 61% (thirty-four) of the fifty-six patients in the active treatment group who were treated according to protocol compared with 29% (seventeen) of the fifty-eight subjects in the placebo group. This improvement persisted in those followed to one year. Functional activity scores, activity-specific evaluation, and the overall impression of the disease state all showed significant improvement as well (p < 0.05). Crossover patients also showed significant improvement after twelve weeks of active treatment, with 56% (nineteen of thirty-four) achieving an improvement in the pain score of at least 50% (p < 0.0001). These results demonstrate that low-dose shock wave therapy without anesthetic is a safe and effective treatment for chronic lateral epicondylitis.
NASA Astrophysics Data System (ADS)
Nandi, S.; Jana, Y. M.; Gupta, H. C.
2018-04-01
A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Baryons as Fock states of 3,5,... Quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
Shek, Daniel T L; Ma, Cecilia M S
2016-02-01
Using longitudinal data collected over 6 years, consumption of pornographic materials in adolescents in Hong Kong and the related demographic and psychosocial correlates were examined in this study. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: A longitudinal research design with 6 waves of data was used to examine consumption of pornographic materials in high school students. A total of 3291 high school students from 28 schools responded to the questionnaire at wave 1. Consumption of online pornography was higher than traditional pornography. There was an increase in consumption of pornographic materials in the high school years. Gender, family functioning, and positive youth development were related to the initial status of pornography consumption. Besides, gender, family intactness and positive youth development predicted rates of change in consumption of pornographic material over time. The present findings showed that gender, family functioning, and positive youth development are significant predictors for pornography consumption in Chinese adolescents. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Bailey, Kate M; Hempstead, Julie E; Tobias, Jeremy R; Borst, Luke B; Clode, Alison B; Posner, Lysa P
2013-06-01
To determine whether repeated exposure to clinically relevant concentrations of tricaine methanesulfonate (MS-222) would alter retinal function or induce histologically detectable retinal lesions in koi carp (Cyprinus carpio). Prospective, controlled, experimental study. 18 healthy koi carp. 2 fish were euthanized at the start of the study, and eyes were submitted for histologic evaluation as untreated controls. Anesthesia was induced in the remaining fish with 200 mg of MS-222/L and maintained with concentrations of 125 to 150 mg/L for a total exposure time of 20 minutes daily on 1 to 13 consecutive days. On days 1, 7, and 13, electroretinography of both eyes was performed in all fish remaining in the study, and 2 fish were euthanized immediately after each procedure for histologic evaluation of the eyes. Median b-wave amplitudes were compared among study days for right eyes and for left eyes via 1-way repeated-measures ANOVA with a Bonferroni correction for multiple comparisons. Median b-wave amplitudes on days 1, 7, and 13 were 17.7, 20.9, and 17.6 μV, respectively, for right eyes and 15.1, 16.9, and 14.3 μV, respectively, for left eyes. No significant differences in b-wave amplitudes were detected among study days. No histopathologic abnormalities were identified in the retinas of any fish treated with MS-222 or in control fish. Short-term exposure of koi carp to clinically relevant concentrations of MS-222 daily for up to 13 days was not associated with changes in retinal structure or function as measured in this study.
The interaction of turbulence with parallel and perpendicular shocks
NASA Astrophysics Data System (ADS)
Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.
2016-11-01
Interplanetary shocks exist in most astrophysical flows, and modify the properties of the background flow. We apply the Zank et al 2012 six coupled turbulence transport model equations to study the interaction of turbulence with parallel and perpendicular shock waves in the solar wind. We model the 1D structure of a stationary perpendicular or parallel shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions. A reduced turbulence transport model (the 4-equation model) is applied to parallel and perpendicular shock waves, and solved using a 4th- order Runge Kutta method. We compare the model results with ACE spacecraft observations. We identify one quasi-parallel and one quasi-perpendicular event in the ACE spacecraft data sets, and compute various turbulent observed values such as the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy in the upstream and downstream of the shock. We also calculate the error associated with each turbulent observed value, and fit the observed values by a least square method and use a Fourier series fitting function. We find that the theoretical results are in reasonable agreement with observations. The energy in turbulent fluctuations is enhanced and the correlation length is approximately constant at the shock. Similarly, the normalized cross helicity increases across a perpendicular shock, and decreases across a parallel shock.
Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography
NASA Astrophysics Data System (ADS)
Hosseini, Kasra; Sigloch, Karin
2015-10-01
The lower third of the mantle is sampled extensively by body waves that diffract around the earth's core (Pdiff and Sdiff phases), which could deliver highly resolved tomographic images of this poorly understood region. But core-diffracted waves-especially Pdiff waves-are not often used in tomography because they are difficult to model adequately. Our aim is to make core-diffracted body waves usable for global waveform tomography, across their entire frequency range. Here we present the data processing part of this effort. A method is demonstrated that routinely calculates finite-frequency traveltimes of Pdiff waves by cross-correlating large quantities of waveform data with synthetic seismograms, in frequency passbands ranging from 30.0 to 2.7 s dominant period. Green's functions for 1857 earthquakes, typically comprising thousands of seismograms, are calculated by theoretically exact wave propagation through a spherically symmetric earth model, up to 1 Hz dominant period. Out of 418 226 candidates, 165 651 (39.6 per cent) source-receiver pairs yielded at least one successful passband measurement of a Pdiff traveltime anomaly, for a total of 479 559 traveltimes in the eight passbands considered. Measurements of teleseismic P waves yielded 448 178 usable source-receiver paths from 613 057 candidates (73.1 per cent success rate), for a total of 2 306 755 usable teleseismic dT in eight passbands. Observed and predicted characteristics of Pdiff traveltimes are discussed and compared to teleseismic P for this very large data set. Pdiff measurements are noise-limited due to severe wave attenuation with epicentral distance and frequency. Measurement success drops from 40-60 per cent at 80° distance, to 5-10 per cent at 140°. Frequency has a 2-3 times stronger influence on measurement success for Pdiff than for P. The fewest usable dT measurements are obtained in the microseismic noise band, whereas the fewest usable teleseismic P measurements occur at the highest frequencies. dT anomalies are larger for Pdiff than for P, and frequency dependence of dT due to 3-D heterogeneity (rather than just diffraction) is larger for Pdiff as well. Projecting the Pdiff traveltime anomalies on their core-grazing segments, we retrieve well-known, large-scale structural heterogeneities of the lowermost mantle, such as the two Large Low Shear Velocity Provinces, an Ultra-Low Velocity Zone west of Hawaii, and subducted slab accumulations under East Asia and Central America.
NASA Astrophysics Data System (ADS)
Lauvergnat, David; Nauts, André; Justum, Yves; Chapuisat, Xavier
2001-04-01
The harmonic adiabatic approximation (HADA), an efficient and accurate quantum method to calculate highly excited vibrational levels of molecular systems, is presented. It is well-suited to applications to "floppy molecules" with a rather large number of atoms (N>3). A clever choice of internal coordinates naturally suggests their separation into active, slow, or large amplitude coordinates q', and inactive, fast, or small amplitude coordinates q″, which leads to an adiabatic (or Born-Oppenheimer-type) approximation (ADA), i.e., the total wave function is expressed as a product of active and inactive total wave functions. However, within the framework of the ADA, potential energy data concerning the inactive coordinates q″ are required. To reduce this need, a minimum energy domain (MED) is defined by minimizing the potential energy surface (PES) for each value of the active variables q', and a quadratic or harmonic expansion of the PES, based on the MED, is used (MED harmonic potential). In other words, the overall picture is that of a harmonic valley about the MED. In the case of only one active variable, we have a minimum energy path (MEP) and a MEP harmonic potential. The combination of the MED harmonic potential and the adiabatic approximation (harmonic adiabatic approximation: HADA) greatly reduces the size of the numerical computations, so that rather large molecules can be studied. In the present article however, the HADA is applied to our benchmark molecule HCN/CNH, to test the validity of the method. Thus, the HADA vibrational energy levels are compared and are in excellent agreement with the ADA calculations (adiabatic approximation with the full PES) of Light and Bačić [J. Chem. Phys. 87, 4008 (1987)]. Furthermore, the exact harmonic results (exact calculations without the adiabatic approximation but with the MEP harmonic potential) are compared to the exact calculations (without any sort of approximation). In addition, we compare the densities of the bending motion during the HCN/CNH isomerization, computed with the HADA and the exact wave function.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.; Kuz'menkov, L. S.
2017-11-01
A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an increase of module of the negative group velocity of the spin wave. The found dispersion equations are used for obtaining of an effective quantum hydrodynamics reproducing these results. This generalization requires the introduction of the corresponding equation of state for the thermal part of the spin current in the spin evolution equation.
Towards anti-causal Green's function for three-dimensional sub-diffraction focusing
NASA Astrophysics Data System (ADS)
Ma, Guancong; Fan, Xiying; Ma, Fuyin; de Rosny, Julien; Sheng, Ping; Fink, Mathias
2018-06-01
In causal physics, the causal Green's function describes the radiation of a point source. Its counterpart, the anti-causal Green's function, depicts a spherically converging wave. However, in free space, any converging wave must be followed by a diverging one. Their interference gives rise to the diffraction limit that constrains the smallest possible dimension of a wave's focal spot in free space, which is half the wavelength. Here, we show with three-dimensional acoustic experiments that we can realize a stand-alone anti-causal Green's function in a large portion of space up to a subwavelength distance from the focus point by introducing a near-perfect absorber for spherical waves at the focus. We build this subwavelength absorber based on membrane-type acoustic metamaterial, and experimentally demonstrate focusing of spherical waves beyond the diffraction limit.
Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function
NASA Astrophysics Data System (ADS)
Gao, Fei; Chang, Lei; Liu, Yu-xin
2017-07-01
We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Wave equations in conformal gravity
NASA Astrophysics Data System (ADS)
Du, Juan-Juan; Wang, Xue-Jing; He, You-Biao; Yang, Si-Jiang; Li, Zhong-Heng
2018-05-01
We study the wave equation governing massless fields of all spins (s = 0, 1 2, 1, 3 2 and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.
Giesbertz, Klaas J H; van Leeuwen, Robert
2014-05-14
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.
THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.
Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2013-09-15
We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.
Multi-Disciplinary Design Optimization Using WAVE
NASA Technical Reports Server (NTRS)
Irwin, Keith
2000-01-01
The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.
A Study of the Errors of the Fixed-Node Approximation in Diffusion Monte Carlo
NASA Astrophysics Data System (ADS)
Rasch, Kevin M.
Quantum Monte Carlo techniques stochastically evaluate integrals to solve the many-body Schrodinger equation. QMC algorithms scale favorably in the number of particles simulated and enjoy applicability to a wide range of quantum systems. Advances in the core algorithms of the method and their implementations paired with the steady development of computational assets have carried the applicability of QMC beyond analytically treatable systems, such as the Homogeneous Electron Gas, and have extended QMC's domain to treat atoms, molecules, and solids containing as many as several hundred electrons. FN-DMC projects out the ground state of a wave function subject to constraints imposed by our ansatz to the problem. The constraints imposed by the fixed-node Approximation are poorly understood. One key step in developing any scientific theory or method is to qualify where the theory is inaccurate and to quantify how erroneous it is under these circumstances. I investigate the fixed-node errors as they evolve over changing charge density, system size, and effective core potentials. I begin by studying a simple system for which the nodes of the trial wave function can be solved almost exactly. By comparing two trial wave functions, a single determinant wave function flawed in a known way and a nearly exact wave function, I show that the fixed-node error increases when the charge density is increased. Next, I investigate a sequence of Lithium systems increasing in size from a single atom, to small molecules, up to the bulk metal form. Over these systems, FN-DMC calculations consistently recover 95% or more of the correlation energy of the system. Given this accuracy, I make a prediction for the binding energy of Li4 molecule. Last, I turn to analyzing the fixed-node error in first and second row atoms and their molecules. With the appropriate pseudo-potentials, these systems are iso-electronic, show similar geometries and states. One would expect with identical number of particles involved in the calculation, errors in the respective total energies of the two iso-electronic species would be quite similar. I observe, instead, that the first row atoms and their molecules have errors larger by twice or more in size. I identify a cause for this difference in iso-electronic species. The fixed-node errors in all of these cases are calculated by careful comparison to experimental results, showing that FN-DMC to be a robust tool for understanding quantum systems and also a method for new investigations into the nature of many-body effects.
Effects of wave shape on sheet flow sediment transport
Hsu, T.-J.; Hanes, D.M.
2004-01-01
A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh
2016-11-01
In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.
Jegger, David; da Silva, Rafaela; Jeanrenaud, Xavier; Nasratullah, Mohammad; Tevaearai, Hendrik; von Segesser, Ludwig K; Segers, Patrick; Gaillard, Virginie; Atkinson, Jeffrey; Lartaud, Isabelle; Stergiopulo, Nikolaos
2006-10-01
The vitamin D(3) and nicotine (VDN) model is one of isolated systolic hypertension (ISH) in which arterial calcification raises arterial stiffness and vascular impedance. The effects of VDN treatment on arterial and cardiac hemodynamics have been investigated; however, a complete analysis of ventricular-arterial interaction is lacking. Wistar rats were treated with VDN (VDN group, n = 9), and a control group (n = 10) was included without the VDN. At week 8, invasive indexes of cardiac function were obtained using a conductance catheter. Simultaneously, aortic pressure and flow were measured to derive vascular impedance and characterize ventricular-vascular interaction. VDN caused significant increases in systolic (138 +/- 6 vs. 116 +/- 13 mmHg, P < 0.01) and pulse (42 +/- 10 vs. 26 +/- 4 mmHg, P < 0.01) pressures with respect to control. Total arterial compliance decreased (0.12 +/- 0.08 vs. 0.21 +/- 0.04 ml/mmHg in control, P < 0.05), and pulse wave velocity increased significantly (8.8 +/- 2.5 vs. 5.1 +/- 2.0 m/s in control, P < 0.05). The arterial elastance and end-systolic elastance rose significantly in the VDN group (P < 0.05). Wave reflection was augmented in the VDN group, as reflected by the increase in the wave reflection coefficient (0.63 +/- 0.06 vs. 0.52 +/- 0.05 in control, P < 0.05) and the amplitude of the reflected pressure wave (13.3 +/- 3.1 vs. 8.4 +/- 1.0 mmHg in control, P < 0.05). We studied ventricular-arterial coupling in a VDN-induced rat model of reduced arterial compliance. The VDN treatment led to development of ISH and provoked alterations in cardiac function, arterial impedance, arterial function, and ventricular-arterial interaction, which in many aspects are similar to effects of an aged and stiffened arterial tree.
High-sensitivity C-reactive protein and cognitive decline: the English Longitudinal Study of Ageing.
Zheng, Fanfan; Xie, Wuxiang
2018-06-01
High-sensitivity C-reactive protein (hs-CRP) has been suggested to be involved in the process of cognitive decline. However, the results from previous studies exploring the relationship between hs-CRP concentration and cognitive decline are inconsistent. We employed data from wave 2 (2004-2005) to wave 7 (2014-2015) of the English Longitudinal Study of Ageing. Cognitive function was assessed at baseline (wave 2) and reassessed biennially at waves 3-7. A total of 5257 participants (54.9% women, mean age 65.4 ± 9.4 years) with baseline hs-CRP levels ranged from 0.2 to 210.0 mg/L (median: 2.0 mg/L, interquartile range: 0.9-4.1 mg/L) were studied. The mean follow-up duration was 8.1 ± 2.8 years, and the mean number of cognitive assessment was 4.9 ± 1.5. Linear mixed models show that a one-unit increment in natural log-transformed hs-CRP was associated with faster declines in global cognitive scores [-0.048 points/year, 95% confidence interval (CI) -0.072 to -0.023], memory scores (-0.022 points/year, 95% CI -0.031 to -0.013), and executive function scores (-0.025 points/year, 95% CI -0.043 to -0.006), after multivariable adjustment. Compared with the lowest quartile of hs-CRP, the multivariable-adjusted rate of global cognitive decline associated with the second, third, and highest quartile was faster by -0.043 points/year (95% CI -0.116 to 0.029), -0.090 points/year (95% CI -0.166 to -0.015), -0.145 (95% CI -0.221 to -0.069), respectively (p for trend <0.001). Similarly, memory and executive function also declined faster with increasing quartiles of hs-CRP. A significant association between hs-CRP concentration and long-term cognitive decline was observed in this study. Hs-CRP might serve as a biomarker for cognitive decline.
The Strange (Hi)story of Particles and Waves
NASA Astrophysics Data System (ADS)
Zeh, H. Dieter
2016-03-01
This is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are "occupied once" (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the "configuration" space of fundamental fields, or on another, as yet elusive, fundamental local basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-09-28
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums ofmore » cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.« less
Wave theory of turbulence in compressible media (acoustic theory of turbulence)
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.
NASA Astrophysics Data System (ADS)
Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.
2013-05-01
We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.
Astrophysics to z approx. 10 with Gravitational Waves
NASA Technical Reports Server (NTRS)
Stebbins, Robin; Hughes, Scott; Lang, Ryan
2007-01-01
The most useful characterization of a gravitational wave detector's performance is the accuracy with which astrophysical parameters of potential gravitational wave sources can be estimated. One of the most important source types for the Laser Interferometer Space Antenna (LISA) is inspiraling binaries of black holes. LISA can measure mass and spin to better than 1% for a wide range of masses, even out to high redshifts. The most difficult parameter to estimate accurately is almost always luminosity distance. Nonetheless, LISA can measure luminosity distance of intermediate-mass black hole binary systems (total mass approx.10(exp 4) solar mass) out to z approx.10 with distance accuracies approaching 25% in many cases. With this performance, LISA will be able to follow the merger history of black holes from the earliest mergers of proto-galaxies to the present. LISA's performance as a function of mass from 1 to 10(exp 7) solar mass and of redshift out to z approx. 30 will be described. The re-formulation of LISA's science requirements based on an instrument sensitivity model and parameter estimation will be described.
Dynamic response of some tentative compliant wall structures to convected turbulence fields
NASA Technical Reports Server (NTRS)
Nijim, H. H.; Lin, Y. K.
1977-01-01
Some tentative compliant wall structures designed for possible skin friction drag reduction are investigated. Among the structural models considered is a ribbed membrane backed by polyurethane or PVS plastisol. This model is simplified as a beam placed on a viscoelastic foundation as well as on a set of evenly spaced supports. The total length of the beam may be either finite or infinite, and the supports may be either rigid or elastic. Another structural model considered is a membrane mounted over a series of pretensioned wires, also evenly spaced, and the entire membrane is backed by an air cavity. The forcing pressure field is idealized as a frozen random pattern convected downstream at a characteristic velocity. The results are given in terms of the frequency response functions of the system, the spectral density of the structural motion, and the spectral density of the boundary layer pressure including the effect of structural motion. These results are used in a parametric study of structural configurations capable of generating favorable wave lengths, wave amplitudes, and wave speeds in the structural motion for potential drag reduction.
Classical Wave Model of Quantum-Like Processing in Brain
NASA Astrophysics Data System (ADS)
Khrennikov, A.
2011-01-01
We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.
Scattering by multiple cylinders located on both sides of an interface
NASA Astrophysics Data System (ADS)
Lee, Siu-Chun
2018-07-01
The solution for scattering by multiple parallel infinite cylinders located in adjacent half spaces with dissimilar refractive index is presented in this paper. The incident radiation is an arbitrarily polarized plane wave propagating in the upper half space in the plane perpendicular to the axis of the cylinders. The formulation of the electromagnetic field vectors utilized Hertz potentials that are expressed in terms of an expansion of cylindrical wave functions. It accounts for the near-field multiple scattering, Fresnel effect at the interface, and interaction between cylinders in both half spaces. Analytical formulas are derived for the electromagnetic field and Poynting vector in the far-field. The present solution provides the theoretical framework for deducing the solutions for scattering by cylinders located on either side of an interface irradiated by a propagating or an evanescent incident wave. Deduction of these solutions from the present formulation is demonstrated. Numerical results are presented to illustrate the frustration of total internal reflection and scattering of light beyond the critical angle by nanocylinders located in either or both half spaces.
NASA Astrophysics Data System (ADS)
Kobayashi, Katsushi
1997-06-01
The possibility of a spin density wave (SDW) state in a metallic carbon nanotube (CN) and its electronic properties are investigated within the Hartree-Fock self consistent field (SCF) energy-band calculation. Two kinds of spatial SDW states are assumed in this study. Each assumed SDW on the wave function is constructed with the degenerate π orbital in the metallic CN system. The results calculated for the one SDW model of CN always have a relative stability (˜ 0.1 eV/cell) in SCF total energy compared with the original model in which no SDW is assumed. All the results calculated for another SDW model are completely equal to the original one. Moreover, in the energy dispersion of the former stable SDW model, the degenerate π level found in the original model disappears and the band gap (3-5 eV) occurs around at the Fermi level. The energetic stability and the band gap are also found in the π-electron band calculation within the Hubbard Hamiltonian.
NASA Astrophysics Data System (ADS)
Rawles, Christopher; Thurber, Clifford
2015-08-01
We present a simple, fast, and robust method for automatic detection of P- and S-wave arrivals using a nearest neighbours-based approach. The nearest neighbour algorithm is one of the most popular time-series classification methods in the data mining community and has been applied to time-series problems in many different domains. Specifically, our method is based on the non-parametric time-series classification method developed by Nikolov. Instead of building a model by estimating parameters from the data, the method uses the data itself to define the model. Potential phase arrivals are identified based on their similarity to a set of reference data consisting of positive and negative sets, where the positive set contains examples of analyst identified P- or S-wave onsets and the negative set contains examples that do not contain P waves or S waves. Similarity is defined as the square of the Euclidean distance between vectors representing the scaled absolute values of the amplitudes of the observed signal and a given reference example in time windows of the same length. For both P waves and S waves, a single pass is done through the bandpassed data, producing a score function defined as the ratio of the sum of similarity to positive examples over the sum of similarity to negative examples for each window. A phase arrival is chosen as the centre position of the window that maximizes the score function. The method is tested on two local earthquake data sets, consisting of 98 known events from the Parkfield region in central California and 32 known events from the Alpine Fault region on the South Island of New Zealand. For P-wave picks, using a reference set containing two picks from the Parkfield data set, 98 per cent of Parkfield and 94 per cent of Alpine Fault picks are determined within 0.1 s of the analyst pick. For S-wave picks, 94 per cent and 91 per cent of picks are determined within 0.2 s of the analyst picks for the Parkfield and Alpine Fault data set, respectively. For the Parkfield data set, our method picks 3520 P-wave picks and 3577 S-wave picks out of 4232 station-event pairs. For the Alpine Fault data set, the method picks 282 P-wave picks and 311 S-wave picks out of a total of 344 station-event pairs. For our testing, we note that the vast majority of station-event pairs have analyst picks, although some analyst picks are excluded based on an accuracy assessment. Finally, our tests suggest that the method is portable, allowing the use of a reference set from one region on data from a different region using relatively few reference picks.
Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K
2016-02-01
This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Covariant extension of the GPD overlap representation at low Fock states
Chouika, N.; Mezrag, C.; Moutarde, H.; ...
2017-12-26
Here, we present a novel approach to compute generalized parton distributions within the lightfront wave function overlap framework. We show how to systematically extend generalized parton distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion lightfront wave functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon lightfront wave functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and tomore » a unification of generalized parton distributions and transverse momentum dependent parton distribution functions phenomenology through lightfront wave functions.« less
NASA Astrophysics Data System (ADS)
Borzdov, G. N.
2017-10-01
The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.
Giner, Emmanuel; Angeli, Celestino
2015-09-28
The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl2 and [CuCl4](2-) systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.
Conservation Laws and Ponderomotive Force for Non-WKB, MHD Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Webb, G. M.; Zank, G. P.; Kaghashvili, E. K.; Ratkiewicz, R. E.
2004-12-01
The interaction of non-WKB Alfvén waves in the Solar Wind was investigated by Heinemann and Olbert (1980), MacGregor and Charbonneau (1994) and others. MacGregor and Charbonneau (1994) investigated non-WKB Alfvén wave driven winds. We discuss both the canonical and physical wave stress energy tensors for non-WKB, MHD waves and the ponderomotive force exerted by the waves on the wind for the case where both compressible (magneto-acoustic type waves) and incompressible waves (Alfvén waves) are present. The equations for the waves include the effects of wave mixing (i.e. the interaction of the waves with each other via gradients in the background flow). Wave mixing is known to be an important element of turbulence theory in the Solar Wind. However, only the wave mixing of Alfvénic type disturbances have been accounted for in present models of Solar Wind turbulence (e.g. Zhou and Matthaeus, 1990), which use Elssässer variables to describe the perturbations. The relationship between the present analysis and nearly incompressible MHD (reduced MHD) is at present unclear. Also unclear is the relationship between the present analysis and theories using wave-mean field interactions (e.g. Grimshaw (1984), Holm (1999)). The analysis is based on a theory for wave and background stress-energy tensors developed by Webb et al. (2004a,b) using a Lagrangian formulation of the total system of waves and background plasma (see e.g. Dewar (1970) for the WKB case). Conservation laws for the total system of waves and background plasma result from application of Noether's theorems relating Lie symmetries of the action to conservation laws.
García de la Vega, J M; Omar, S; San Fabián, J
2017-04-01
Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.
Factors Influencing Army Accessions.
1982-12-01
partial autocorrelations were examined for significant lags or a recognizable pattern such as a damped exponential or a sine wave. The TSP prugrams...decreasing function indicating nonstation- *arity or a very long sine wave where only a small portion of the wave is plotted. The partial...plot of the raw data appeared (Appendix E-1) to be either the middle of a long sine wave or a linearly decreasing function. This pattern is recognized
Diffraction and quantum control of wave functions in nonresonant two-photon absorption
NASA Astrophysics Data System (ADS)
Li, Baihong; Pang, Huafeng; Wang, Doudou; Zhang, Tao; Dong, Ruifang; Li, Yongfang
2018-03-01
In this study, the nonresonant two-photon absorption process in a two-level atom, induced by a weak chirped pulse, is theoretically investigated in the frequency domain. An analytical expression of the wave function expressed by Fresnel functions is obtained, and the two-photon transition probability (TPTP) versus the integral bandwidth, spectral width, and chirp parameter is analyzed. The results indicate that the oscillation evolution of the TPTP result from quantum diffraction of the wave function, which can be explained by analogy with Fresnel diffraction from a wide slit in the spatial domain. Moreover, the ratio between the real and imaginary parts of the excited state wave function and, hence, the atomic polarization, can be controlled by the initial phase of the excitation pulse. In some special initial phase of the excitation pulse, the wave functions with purely real or imaginary parts can be obtained by measuring the population probability. This work provides a novel perspective for understanding the physical details of the interactions between atoms and chirped light pulses in the multiphoton process.
Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.
Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos
2017-05-19
Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.
Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic
NASA Astrophysics Data System (ADS)
Aarnes, Ole Johan; Reistad, Magnar; Breivik, Øyvind; Bitner-Gregersen, Elzbieta; Ingolf Eide, Lars; Gramstad, Odin; Magnusson, Anne Karin; Natvig, Bent; Vanem, Erik
2017-04-01
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios. The CMIP5 model selection is based on their ability to reconstruct the present (1971-2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized. In total, the study comprises 35 wave model integrations, each about 30 years long, in total more than 1000 years. Here annual statistics of significant wave height are analyzed, including mean parameters and upper percentiles. There is general agreement among all models considered that the mean significant wave height is expected to decrease by the end of the 21st century. This signal is statistically significant also for higher percentiles, but less evident for annual maxima. The RCP8.5 scenario yields the strongest reduction in wave height. The exception to this is the north western part of the Norwegian Sea and the Barents Sea, where receding ice cover gives longer fetch and higher waves. The upper percentiles are reduced less than the mean wave height, suggesting that the future wave climate has higher variance than the historical period.
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Kang, Zeqing; Liang, Jianwen
2018-04-01
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic (TI) half-space. The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces, which are then applied to the total system with the opposite sign. By adding solutions restricted in the loaded layer to solutions from the reaction forces, the global solutions in the wavenumber domain are obtained, and the dynamic Green's functions in the space domain are recovered by the inverse Fourier transform. The presented formulations can be reduced to the isotropic case developed by Wolf (1985), and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI half-space subjected to horizontally distributed loads which are special cases of the more general problem addressed. The deduced Green's functions, in conjunction with boundary element methods, will lead to significant advances in the investigation of a variety of wave scattering, wave radiation and soil-structure interaction problems in a layered TI site. Selected numerical results are given to investigate the influence of material anisotropy, frequency of excitation, inclination angle and layered on the responses of displacement and stress, and some conclusions are drawn.
FAST TRACK COMMUNICATION: Finite-temperature magnetism in bcc Fe under compression
NASA Astrophysics Data System (ADS)
Sha, Xianwei; Cohen, R. E.
2010-09-01
We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.
NASA Astrophysics Data System (ADS)
Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen
2014-09-01
Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.
Uniform theory of the boundary diffraction wave
NASA Astrophysics Data System (ADS)
Umul, Yusuf Z.
2009-04-01
A uniform version of the potential function of the Maggi-Rubinowicz boundary diffraction wave theory is obtained by using the large argument expansion of the Fresnel integral. The derived function is obtained for the problem of diffraction of plane waves by a circular edge. The results are plotted numerically.
An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System
NASA Astrophysics Data System (ADS)
Vincent, Alan
1996-10-01
All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.
Analyses of Third Order Bose-Einstein Correlation by Means of Coulomb Wave Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyajima, Minoru; Mizoguchi, Takuya; Suzuki, Naomichi
2006-04-11
In order to include a correction by the Coulomb interaction in Bose-Einstein correlation (BEC), the wave function for the Coulomb scattering were introduced in the quantum optical approach to BEC in the previous work. If we formulate the amplitude written by Coulomb wave functions according to the diagram for BEC in the plane wave formulation, the formula for 3{pi} -BEC becomes simpler than that of our previous work. We re-analyze the raw data of 3{pi} -BEC by NA44 and STAR Collaborations by this formula. Results are compared with the previous ones.
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform
Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
Adaptive multiconfigurational wave functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions.more » The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.« less
Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates
NASA Astrophysics Data System (ADS)
Cho, Hee-Suk; Lee, Chang-Hwan
2018-01-01
We study gravitational wave searches for merging binary neutron stars (NSs). We use nonspinning template waveforms towards the signals emitted from aligned-spin NS-NS binaries, in which the spins of the NSs are aligned with the orbital angular momentum. We use the TaylorF2 waveform model, which can generate inspiral waveforms emitted from aligned-spin compact binaries. We employ the single effective spin parameter χeff to represent the effect of two component spins (χ1, χ2) on the wave function. For a target system, we choose a binary consisting of the same component masses of 1.4 M ⊙ and consider the spins up to χ i = 0.4. We investigate fitting factors of the nonspinning templates to evaluate their efficiency in gravitational wave searches for the aligned-spin NS-NS binaries. We find that the templates can achieve the fitting factors exceeding 0.97 only for the signals in the range of -0.2 ≲ χeff ≲ 0. Therefore, we demonstrate the necessity of using aligned-spin templates not to lose the signals outside that range. We also show how much the recovered total mass can be biased from the true value depending on the spin of the signal.
Visual and brainstem auditory evoked potentials in children with obesity.
Akın, Onur; Arslan, Mutluay; Akgün, Hakan; Yavuz, Süleyman Tolga; Sarı, Erkan; Taşçılar, Mehmet Emre; Ulaş, Ümit Hıdır; Yeşilkaya, Ediz; Ünay, Bülent
2016-03-01
The aim of our study is to investigate alterations in visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) in children with obesity. A total of 96 children, with a mean age of 12.1±2.0 years (range 9-17 years, 63 obese and 33 age and sex-matched control subjects) were included in the study. Laboratory tests were performed to detect insulin resistance (IR) and dyslipidemia. The latencies and amplitudes of VEP and BAEP were measured in healthy and obese subjects. The VEP P100, BAEP interpeak latency (IPL) I-III and IPL I-V averages of obese children were significantly longer than the control subjects. When the obese group was divided into two subgroups, those with IR and without IR, BAEP wave I, wave III and P100 wave latencies were found to be longer in the group with IR. A statistically significant correlation was observed between BAEP wave I latency, IPL I-V, IPL I-III and the homeostatic model assessment insulin resistance (HOMA IR) index and fasting insulin level. Our findings suggest that VEP and BAEP can be used to determine early subclinical on auditory and visual functions of obese children with insulin resistance. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Angular distribution of γ rays from neutron-induced compound states of 140La
NASA Astrophysics Data System (ADS)
Okudaira, T.; Takada, S.; Hirota, K.; Kimura, A.; Kitaguchi, M.; Koga, J.; Nagamoto, K.; Nakao, T.; Okada, A.; Sakai, K.; Shimizu, H. M.; Yamamoto, T.; Yoshioka, T.
2018-03-01
The angular distribution of individual γ rays, emitted from a neutron-induced compound-nuclear state via radiative capture reaction of 139La(n ,γ ) has been studied as a function of incident neutron energy in the epithermal region by using germanium detectors. An asymmetry ALH was defined as (NL-NH) /(NL+NH) , where NL and NH are integrals of low- and high-energy region of a neutron resonance respectively, and we found that ALH has the angular dependence of (A cosθγ+B ) , where θγ is the emitted angle of γ rays, with A =-0.3881 ±0.0236 and B =-0.0747 ±0.0105 in 0.74 eV p -wave resonance. This angular distribution was analyzed within the framework of interference between s - and p -wave amplitudes in the entrance channel to the compound-nuclear state, and it is interpreted as the value of the partial p -wave neutron width corresponding to the total angular momentum of the incident neutron combined with the weak matrix element, in the context of the mechanism of enhanced parity-violating effects. Additionally, we use the result to quantify the possible enhancement of the breaking of time-reversal invariance in the vicinity of the p -wave resonance.
Protective Measurement and Quantum Reality
NASA Astrophysics Data System (ADS)
Gao, Shan
2015-01-01
1. Protective measurements: an introduction Shan Gao; Part I. Fundamentals and Applications: 2. Protective measurements of the wave function of a single system Lev Vaidman; 3. Protective measurement, postselection and the Heisenberg representation Yakir Aharonov and Eliahu Cohen; 4. Protective and state measurement: a review Gennaro Auletta; 5. Determination of the stationary basis from protective measurement on a single system Lajos Diósi; 6. Weak measurements, the energy-momentum tensor and the Bohm approach Robert Flack and Basil J. Hiley; Part II. Meanings and Implications: 7. Measurement and metaphysics Peter J. Lewis; 8. Protective measurements and the explanatory gambit Michael Dickson; 9. Realism and instrumentalism about the wave function: how should we choose? Mauro Dorato and Frederico Laudisa; 10. Protective measurements and the PBR theorem Guy Hetzroni and Daniel Rohrlich; 11. The roads not taken: empty waves, waveform collapse and protective measurement in quantum theory Peter Holland; 12. Implications of protective measurements on de Broglie-Bohm trajectories Aurelien Drezet; 13. Entanglement, scaling, and the meaning of the wave function in protective measurement Maximilian Schlosshauer and Tangereen V. B. Claringbold; 14. Protective measurements and the nature of the wave function within the primitive ontology approach Vincent Lam; 15. Reality and meaning of the wave function Shan Gao; Index.
A new fifth parameter for transverse isotropy III: reflection and transmission coefficients
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2018-04-01
The effect of the newly defined fifth parameter, ηκ, of transverse anisotropy to the reflection and transmission coefficients, especially for P-to-S and S-to-P conversion coefficients, is examined. While ηκ systematically affects the P-to-S and S-to-P conversions, in the incidence angle range of the practical interest of receiver function studies, the effect may be asymmetric in a sense that P-wave receiver function is affected more than S-receiver function in terms of amplitude. This asymmetry may help resolving ηκ via extensive receiver function analysis. It is also found that P-wave anisotropy significantly influences P-to-S and S-to-P conversion coefficients that complicates the interpretation of receiver functions, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes but not to P-wave changes.
Parametric dependence of ocean wave-radar modulation transfer functions
NASA Technical Reports Server (NTRS)
Plant, W. J.; Keller, W. C.; Cross, A.
1983-01-01
Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.
Myocardial effects of local shock wave therapy in a Langendorff model.
Becker, M; Goetzenich, A; Roehl, A B; Huebel, C; de la Fuente, M; Dietz-Laursonn, K; Radermacher, K; Rossaint, R; Hein, M
2014-01-01
Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability. We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function. We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (-15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing. In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Yiqun; Urban, Matthew W; McGough, Robert J
2018-05-15
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.
Factorization breaking of A d T for polarized deuteron targets in a relativistic framework
Jeschonnek, Sabine; Van Orden, J. W.
2017-04-17
We discuss the possible factorization of the tensor asymmetrymore » $$A^T_d$$ measured for polarized deuteron targets within a relativistic framework. We define a reduced asymmetry and find that factorization holds only in plane wave impulse approximation and if $p$-waves are neglected. Our numerical results show a strong factorization breaking once final state interactions are included. We also compare the $d$-wave content of the wave functions with the size of the factored, reduced asymmetry and find that there is no systematic relationship of this quantity to the d-wave probability of the various wave functions.« less
Convergent close coupling versus the generalized Sturmian function approach: Wave-function analysis
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Mitnik, D. M.; Gasaneo, G.; Randazzo, J. M.; Kadyrov, A. S.; Fursa, D. V.; Bray, I.
2015-11-01
We compare the physical information contained in the Temkin-Poet (TP) scattering wave function representing electron-impact ionization of hydrogen, calculated by the convergent close-coupling (CCC) and generalized Sturmian function (GSF) methodologies. The idea is to show that the ionization cross section can be extracted from the wave functions themselves. Using two different procedures based on hyperspherical Sturmian functions we show that the transition amplitudes contained in both GSF and CCC scattering functions lead to similar single-differential cross sections. The single-continuum channels were also a subject of the present studies, and we show that the elastic and excitation amplitudes are essentially the same as well.
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus
NASA Technical Reports Server (NTRS)
Crawford, G. K.; Strangeway, R. J.; Russell, C. T.
1991-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.
Atomic electron energies including relativistic effects and quantum electrodynamic corrections
NASA Technical Reports Server (NTRS)
Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.
1977-01-01
Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.
Determination of structure parameters in strong-field tunneling ionization theory of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070
2010-03-15
In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less
Wouters, L.F.
1960-08-30
Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.
NASA Astrophysics Data System (ADS)
Hossen, Md. Belal; Roshid, Harun-Or; Ali, M. Zulfikar
2018-05-01
Under inquisition in this paper is a (2 + 1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.
NASA Astrophysics Data System (ADS)
Orsini, Antonio; Tomasi, Claudio; Calzolari, Francescopiero; Nardino, Marianna; Cacciari, Alessandra; Georgiadis, Teodoro
2002-04-01
Simultaneous measurements of downwelling short-wave solar irradiance and incoming total radiation flux were performed at the Reeves Nevè glacier station (1200 m MSL) in Antarctica on 41 days from late November 1994 to early January 1995, employing the upward sensors of an albedometer and a pyrradiometer. The downwelling short-wave radiation measurements were analysed following the Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132] procedure for classifying clouds, using the 50-min running mean values of standard deviation and the ratio of scaled observed to scaled clear-sky irradiance. Comparing these measurements with the Duchon and O'Malley rectangular boundaries and the local human observations of clouds collected on 17 days of the campaign, we found that the Duchon and O'Malley classification method obtained a success rate of 93% for cirrus and only 25% for cumulus. New decision criteria were established for some polar cloud classes providing success rates of 94% for cirrus, 67% for cirrostratus and altostratus, and 33% for cumulus and altocumulus. The ratios of the downwelling short-wave irradiance measured for cloudy-sky conditions to that calculated for clear-sky conditions were analysed in terms of the Kasten and Czeplak [Sol. Energy 24 (1980) 177] formula together with simultaneous human observations of cloudiness, to determine the empirical relationship curves providing reliable estimates of cloudiness for each of the three above-mentioned cloud classes. Using these cloudiness estimates, the downwelling long-wave radiation measurements (obtained as differences between the downward fluxes of total and short-wave radiation) were examined to evaluate the downwelling long-wave radiation flux normalised to totally overcast sky conditions. Calculations of the long-wave radiation flux were performed with the MODTRAN 3.7 code [Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., Shettle, E.P., Berk, A., Bernstein, L.S., Robertson, D.C., Acharya, P., Rothman, L.S., Selby, J.E.A., Gallery, W.O., Clough, S.A., 1996. In: Abreu, L.W., Anderson, G.P. (Eds.), The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA, 261 pp.] for both clear-sky and cloudy-sky conditions, considering various cloud types characterised by different cloud base altitudes and vertical thicknesses. From these evaluations, best-fit curves of the downwelling long-wave radiation flux were defined as a function of the cloud base height for the three polar cloud classes. Using these relationship curves, average estimates of the cloud base height were obtained from the three corresponding sub-sets of long-wave radiation measurements. The relative frequency histograms of the cloud base height defined by examining these three sub-sets were found to present median values of 4.7, 1.7 and 3.6 km for cirrus, cirrostratus/altostratus and cumulus/altocumulus, respectively, while median values of 6.5, 1.8 and 2.9 km were correspondingly determined by analysing only the measurements taken together with simultaneous cloud observations.
NASA Astrophysics Data System (ADS)
Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang
2017-11-01
A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.
Vorontsov, Mikhail A; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.
2012-04-01
Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKechnie, Scott; Booth, George H.; Cohen, Aron J.
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density-functional theory (DFT) and wave function methods: Hartree-Fock theory (HF), second-order Møller-Plesset perturbation theory (MP2) and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionizationmore » energies obtained from total energy diff calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.« less
Impact of 120-W 2-μm continuous wave laser vapoenucleation of the prostate on sexual function.
Wang, Yubin; Shao, Jinkai; Lu, Yongning; Lü, Yongan; Li, Xiaodong
2014-03-01
The objective of this work is to evaluate the impact of 120-W 2-μm continuous wave (cw) laser vapoenucleation of the prostate in patients with benign prostatic hyperplasia (BPH) on sexual function. One hundred twenty-two consecutive patients with BPH were retrospectively collected in this study and were classified into two groups for surgical treatment with 2-μm cw laser vapoenucleation or transurethral resection of the prostate (TURP). International Index of Erectile Function (IIEF) and general assessment questions were completed before and 12 months after treatment to determine the impact on sexual function. A total of 33 patients (52.4%) in group 1 and 31 (52.5%) in group 2 reported various degrees of erectile dysfunction before surgery. Interestingly, an increase in IIEF-EF score by 2 points was reported by 16 (25.4%) and 14 (23.7%) patients, respectively, and mean EF score did show a marginal but not significant increase postoperatively in both group. Differences about orgasmic intercourse satisfaction, sexual desire domain, and overall satisfaction scores in each group were not significant between preoperative and postoperative, but there was a significant decrease in the orgasmic function domain score at 12 months postoperation in both groups (p < 0.001). The prevalence of postoperative retrograde ejaculation was significantly higher than at baseline assessment in two groups. This study demonstrates that there is no difference between 2 μm laser vapoenucleation and TURP in terms of impact on sexual function. No significant erectile function improvement was observed after surgery, but these two techniques significantly lowered the IIEF orgasmic function domain and this was mainly caused by retrograde ejaculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bytautas, Laimutis; Scuseria, Gustavo E.; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589
2015-09-07
The present study further explores the concept of the seniority number (Ω) by examining different configuration interaction (CI) truncation strategies in generating compact wave functions in a systematic way. While the role of Ω in addressing static (strong) correlation problem has been addressed in numerous previous studies, the usefulness of seniority number in describing weak (dynamic) correlation has not been investigated in a systematic way. Thus, the overall objective in the present work is to investigate the role of Ω in addressing also dynamic electron correlation in addition to the static correlation. Two systematic CI truncation strategies are compared beyondmore » minimal basis sets and full valence active spaces. One approach is based on the seniority number (defined as the total number of singly occupied orbitals in a determinant) and another is based on an excitation-level limitation. In addition, molecular orbitals are energy-optimized using multiconfigurational-self-consistent-field procedure for all these wave functions. The test cases include the symmetric dissociation of water (6-31G), N{sub 2} (6-31G), C{sub 2} (6-31G), and Be{sub 2} (cc-pVTZ). We find that the potential energy profile for H{sub 2}O dissociation can be reasonably well described using only the Ω = 0 sector of the CI wave function. For the Be{sub 2} case, we show that the full CI potential energy curve (cc-pVTZ) is almost exactly reproduced using either Ω-based (including configurations having up to Ω = 2 in the virtual-orbital-space) or excitation-based (up to single-plus-double-substitutions) selection methods, both out of a full-valence-reference function. Finally, in dissociation cases of N{sub 2} and C{sub 2}, we shall also consider novel hybrid wave functions obtained by a union of a set of CI configurations representing the full valence space and a set of CI configurations where seniority-number restriction is imposed for a complete set (full-valence-space and virtual) of correlated molecular orbitals, simultaneously. We discuss the usefulness of the seniority number concept in addressing both static and dynamic electron correlation problems along dissociation paths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüchow, Arne, E-mail: luechow@rwth-aachen.de; Jülich Aachen Research Alliance; Sturm, Alexander
2015-02-28
Jastrow correlation factors play an important role in quantum Monte Carlo calculations. Together with an orbital based antisymmetric function, they allow the construction of highly accurate correlation wave functions. In this paper, a generic expansion of the Jastrow correlation function in terms of polynomials that satisfy both the electron exchange symmetry constraint and the cusp conditions is presented. In particular, an expansion of the three-body electron-electron-nucleus contribution in terms of cuspless homogeneous symmetric polynomials is proposed. The polynomials can be expressed in fairly arbitrary scaling function allowing a generic implementation of the Jastrow factor. It is demonstrated with a fewmore » examples that the new Jastrow factor achieves 85%–90% of the total correlation energy in a variational quantum Monte Carlo calculation and more than 90% of the diffusion Monte Carlo correlation energy.« less
A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows
NASA Astrophysics Data System (ADS)
Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng
2018-05-01
A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.
NASA Astrophysics Data System (ADS)
Richardson, Christina E.; Andrews, Larry C.
1991-07-01
New spectra models have recently been developed for the spatial power spectra of temperature and refractive index fluctuations in the atmospheric boundary layer showing the characteristic 'bump' just prior to the dissipation ranges. Theoretical work involving these new models has led to new expressions for the phase structure function associated with a plane optical wave, although most experimental work has involved spherical waves. Following techniques similar to those used for the plane wave analysis, new expressions valid in geometrical and diffraction regimes are developed here for the phase structure function of a spherical optical wave propagating through clear-air atmospheric turbulence. Useful asymptotic formulas for small separation distances and the inertial subrange are derived from these general expressions.
Imaging and control of interfering wave packets in a dissociating molecule.
Skovsen, Esben; Machholm, Mette; Ejdrup, Tine; Thøgersen, Jan; Stapelfeldt, Henrik
2002-09-23
Using two identical 110 femtosecond (fs) optical pulses separated by 310 fs, we launch two dissociative wave packets in I2. We measure the square of the wave function as a function of both the internuclear separation, /Psi(R)/(2), and of the internuclear velocity, /Psi(v(R))/(2), by ionizing the dissociating molecule with an intense 20 fs probe pulse. Strong interference is observed in both /Psi(R)/(2) and in /Psi(v(R))/(2). The interference, and therefore the shape of the wave function, is controlled through the phase difference between the two dissociation pulses in good agreement with calculations.
Alam, Md Nur; Akbar, M Ali
2013-01-01
The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.
Green, Isabel; Stow, Daniel; Matthews, Fiona E; Hanratty, Barbara
2017-07-01
the number of people requiring care home support is projected to rise in future years, but little information is available on the needs of new care home residents. to measure the health and functioning of people moving into care homes and how they have changed between 2002 and 2015. English Longitudinal Study of Ageing. two hundred fifty-four of the 313 (1.99%) individuals who moved from the community into a care home, and were interviewed in the survey wave prior to entry. changes over time for number of health conditions and functional deficits (deficits in activities of daily living (ADL), and instrumental ADLs (IADLs)), assessed in the survey wave prior to admission. over time there were significant increases in the total number of health conditions and functional deficits amongst soon to be care home entrants (P = 0.0011), the proportion with high blood pressure (OR 1.37, 95% CI: 1.17-1.62, P < 0.0001), memory problems (OR 1.33, 95% CI: 1.11-1.61, P = 0.0021) or total number of IADL deficits (P = 0.008). Non-significant increases were observed in the proportion of care home entrants with cancer (OR 1.23, 95% CI: 0.93-1.65, P = 0.15), lung disease (OR 1.21, 95% CI: 0.85-1.75), heart disease (OR 1.12, 95% CI: 0.95-1.30) and arthritis (OR 1.11, 95% CI: 0.95-1.30). Stroke and ADL deficits did not increase. No differential ageing effect was observed. the support needs of care home entrants in England appear to be increasing over time. This has important implications for the provision and funding of care home places and community services. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society
Affect of Brush Seals on Wave Rotor Performance Assessed
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate wave rotor integration in an existing turboshaft engine. Recent theoretical efforts include simulating wave rotor dynamics (e.g., startup and load-change transient analysis), modifying the one-dimensional wave rotor code to simulate combustion internal to the wave rotor, and developing an analytical wave rotor design/analysis tool based on macroscopic balances for parametric wave rotor/engine analysis.
Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub
2017-03-01
[Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.
Chaotic Bohmian trajectories for stationary states
NASA Astrophysics Data System (ADS)
Cesa, Alexandre; Martin, John; Struyve, Ward
2016-09-01
In Bohmian mechanics, the nodes of the wave function play an important role in the generation of chaos. However, so far, most of the attention has been on moving nodes; little is known about the possibility of chaos in the case of stationary nodes. We address this question by considering stationary states, which provide the simplest examples of wave functions with stationary nodes. We provide examples of stationary wave functions for which there is chaos, as demonstrated by numerical computations, for one particle moving in three spatial dimensions and for two and three entangled particles in two dimensions. Our conclusion is that the motion of the nodes is not necessary for the generation of chaos. What is important is the overall complexity of the wave function. That is, if the wave function, or rather its phase, has a complex spatial variation, it will lead to complex Bohmian trajectories and hence to chaos. Another aspect of our work concerns the average Lyapunov exponent, which quantifies the overall amount of chaos. Since it is very hard to evaluate the average Lyapunov exponent analytically, which is often computed numerically, it is useful to have simple quantities that agree well with the average Lyapunov exponent. We investigate possible correlations with quantities such as the participation ratio and different measures of entanglement, for different systems and different families of stationary wave functions. We find that these quantities often tend to correlate to the amount of chaos. However, the correlation is not perfect, because, in particular, these measures do not depend on the form of the basis states used to expand the wave function, while the amount of chaos does.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufour, Valentin; Kaluarachchi, Udhara S.; Khasanov, Rustem
2016-07-13
Here, the temperature-pressure phase diagram of the ferromagnet LaCrGe 3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGemore » 3 is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haluk Denizli; James Mueller; Steven Dytman
2007-07-01
New cross sections for the reactionmore » $$ep \\to e'\\eta p$$ are reported for total center of mass energy $W$=1.5--2.3 GeV and invariant squared momentum transfer $Q^2$=0.13--3.3 GeV$^2$. This large kinematic range allows extraction of new information about response functions, photocouplings, and $$\\eta N$$ coupling strengths of baryon resonances. A sharp structure is seen at $$W\\sim$$ 1.7 GeV. The shape of the differential cross section is indicative of the presence of a $P$-wave resonance that persists to high $Q^2$. Improved values are derived for the photon coupling amplitude for the $$S_{11}$$(1535) resonance. The new data greatly expands the $Q^2$ range covered and an interpretation of all data with a consistent parameterization is provided.« less
Simulation of laser beam reflection at the sea surface
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2011-05-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.
Analytic Wave Functions for the Half-Filled Lowest Landau Level
NASA Astrophysics Data System (ADS)
Ciftja, Orion
We consider a two-dimensional strongly correlated electronic system in a strong perpendicular magnetic field at half-filling of the lowest Landau level (LLL). We seek to build a wave function that, by construction, lies entirely in the Hilbert space of the LLL. Quite generally, a wave function of this nature can be built as a linear combination of all possible Slater determinants formed by using the complete set of single-electron states that belong to the LLL. However, due to the vast number of Slater determinant states required to form such basis functions, the expansion is impractical for any but the smallest systems. Thus, in practice, the expansion must be truncated to a small number of Slater determinants. Among many possible LLL Slater determinant states, we note a particular special class of such wave functions in which electrons occupy either only even, or only odd angular momentum states. We focus on such a class of wave functions and obtain analytic expressions for various quantities of interest. Results seem to suggest that these special wave functions, while interesting and physically appealing, are unlikely to be a very good approximation for the exact ground state at half-filling factor. The overall quality of the description can be improved by including other additional LLL Slater determinant states. It is during this process that we identify another special family of suitable LLL Slater determinant states to be used in an enlarged expansion.
Simulation of wind wave growth with reference source functions
NASA Astrophysics Data System (ADS)
Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.
2013-04-01
We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdissμ4w?N (k)θ(? - ?diss) (3) Here frequency-dependent wave steepness μ2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its conformity with theoretical predictions, previous simulations [2,6,9], experimental parameterizations of wave spectra [1,4] and to specify tunable parameters of terms (2,3). These simulations showed realistic spatio-temporal scales of wave evolution and spectral shaping close to conventional parameterizations [e.g. 4]. An additional important feature of the numerical solutions is a saturation of frequency-dependent wave steepness μw in short-frequency range. The work was supported by the Russian government contract No.11.934.31.0035, Russian Foundation for Basic Research grant 11-05-01114-a and ONR grant N00014-10-1-0991. References [1] S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov. Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591:339-378, 2007. [2] S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov. Self-similarity of wind-driven seas. Nonl. Proc. Geophys., 12:891-946, 2005. [3] S. I. Badulin and V. E. Zakharov. New dissipation function for weakly turbulent wind-driven seas. ArXiv e-prints, (1212.0963), December 2012. [4] M. A. Donelan, J. Hamilton, and W. H. Hui. Directional spectra of wind-generated waves. Phil. Trans. Roy. Soc. Lond. A, 315:509-562, 1985. [5] M. A. Donelan and W. J. Pierson-jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5):4971-5029, 1987. [6] E. Gagnaire-Renou, M. Benoit, and S. I. Badulin. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669:178-213, 2011. [7] R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102:1-59, 1981. [8] D. J. Webb. Non-linear transfers between sea waves. Deep Sea Res., 25:279-298, 1978. [9] V. E. Zakharov, D. Resio, and A. N. Pushkarev. New wind input term consistent with experimental, theoretical and numerical considerations. ArXiv e-prints, (1212.1069), December 2012.
SHIPMO5: An Updated User’s Manual Incorporating New Wave Spectra and Ship-Referenced Forces
1992-04-01
equipment sliding, or of personnel loss-of- balance events, termed motion-induced interruptions. First consider an object on deck and suppose that the object...lateral force estimator in Reference 5. In the present work , this quantity will be called the port sliding estimator function, and denoted by Sport...0.170 , TIME FOR OPERATION " 60.0 a HEADING *$.LATE.LL*$$ **LONGITUDIILL*s TOTAL LFE NIl LFE Nil NI DEG G G 0.0 0.000 0.000 0.001 0.000 0.000 30.0 0.061
Electroform replication used for multiple X-ray mirror production
NASA Technical Reports Server (NTRS)
Kowalski, M. P.; Ulmer, M. P.; Purcell, W. R., Jr.; Loughlin, J. E. A.
1984-01-01
The electroforming technique for producing X-ray mirrors is described, and results of X-ray tests performed on copies made from a simple conical mandrel are reported. The design of the mandrel is depicted and the total reflectivity as well as the full-wave half modulation resolution are shown as a function of energy. The reported work has improved on previous studies by providing smaller grazing angles, making measurements at higher energies, producing about four times as many replicas from one mandrel, and obtaining better angular resolution.
1979-07-31
3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it
2015-09-28
The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl{sub 2} and [CuCl{sub 4}]{sup 2−} systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that eachmore » valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.« less
Evolution of ground-state wave function in CeCoIn5 upon Cd or Sn doping
NASA Astrophysics Data System (ADS)
Chen, K.; Strigari, F.; Sundermann, M.; Hu, Z.; Fisk, Z.; Bauer, E. D.; Rosa, P. F. S.; Sarrao, J. L.; Thompson, J. D.; Herrero-Martin, J.; Pellegrin, E.; Betto, D.; Kummer, K.; Tanaka, A.; Wirth, S.; Severing, A.
2018-01-01
We present linear polarization-dependent soft-x-ray absorption spectroscopy data at the Ce M4 ,5 edges of Cd- and Sn-doped CeCoIn5. The 4 f ground-state wave functions have been determined for their superconducting, antiferromagnetic, and paramagnetic ground states. The absence of changes in the wave functions in CeCo (In1-xCdx) 5 suggests that the 4 f -conduction-electron (c f ) hybridization is not affected by global Cd doping, thus supporting the interpretation of magnetic droplets nucleating long-range magnetic order. This is contrasted by changes in the wave function due to Sn substitution. Increasing Sn in CeCo (In1-ySny) 5 compresses the 4 f orbitals into the tetragonal plane of these materials, suggesting enhanced c f hybridization with the in-plane In(1) atoms and a homogeneous altering of the electronic structure. As these experiments show, the 4 f wave functions are a very sensitive probe of small changes in the hybridization of 4 f and conduction electrons, even conveying information about direction dependencies.
Observations of the directional distribution of the wind energy input function over swell waves
NASA Astrophysics Data System (ADS)
Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.
2016-02-01
Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.
Effect of aberrations in human eye on contrast sensitivity function
NASA Astrophysics Data System (ADS)
Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi
2011-06-01
The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.
WAVE2 is required for directed cell migration and cardiovascular development.
Yamazaki, Daisuke; Suetsugu, Shiro; Miki, Hiroaki; Kataoka, Yuki; Nishikawa, Shin-Ichi; Fujiwara, Takashi; Yoshida, Nobuaki; Takenawa, Tadaomi
2003-07-24
WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.
NASA Astrophysics Data System (ADS)
Adem, Abdullahi Rashid
2016-05-01
We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.
Coronary wave energy: a novel predictor of functional recovery after myocardial infarction.
De Silva, Kalpa; Foster, Paul; Guilcher, Antoine; Bandara, Asela; Jogiya, Roy; Lockie, Tim; Chowiencyzk, Phil; Nagel, Eike; Marber, Michael; Redwood, Simon; Plein, Sven; Perera, Divaka
2013-04-01
Revascularization after acute coronary syndromes provides prognostic benefit, provided that the subtended myocardium is viable. The microcirculation and contractility of the subtended myocardium affect propagation of coronary flow, which can be characterized by wave intensity analysis. The study objective was to determine in acute coronary syndromes whether early wave intensity analysis-derived microcirculatory (backward) expansion wave energy predicts late viability, defined by functional recovery. Thirty-one patients (58±11 years) were enrolled after non-ST elevation myocardial infarction. Regional left ventricular function and late-gadolinium enhancement were assessed by cardiac magnetic resonance imaging, before and 3 months after revascularization. The backward-traveling (microcirculatory) expansion wave was derived from wave intensity analysis of phasic coronary pressure and velocity in the infarct-related artery, whereas mean values were used to calculate hyperemic microvascular resistance. Twelve-hour troponin T, left ventricular ejection fraction, and percentage late-gadolinium enhancement mass were 1.35±1.21 µg/L, 56±11%, and 8.4±6.0%, respectively. The infarct-related artery backward-traveling (microcirculatory) expansion wave was inversely correlated with late-gadolinium enhancement infarct mass (r=-0.81; P<0.0001) and strongly predicted regional left ventricular recovery (r=0.68; P=0.001). By receiver operating characteristic analysis, a backward-traveling (microcirculatory) expansion wave threshold of 2.8 W m(-2) s(-2)×10(5) predicted functional recovery with sensitivity and specificity of 0.91 and 0.82 (AUC 0.88). Hyperemic microvascular resistance correlated with late-gadolinium enhancement mass (r=0.48; P=0.03) but not left ventricular recovery (r=-0.34; P=0.07). The microcirculation-derived backward expansion wave is a new index that correlates with the magnitude and location of infarction, which may allow for the prediction of functional myocardial recovery. Coronary wave intensity analysis may facilitate myocardial viability assessment during cardiac catheterization.
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2018-06-05
The original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H 2 ' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσ u orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig. 1b, c for the uncorrelated description are identical, while Fig. 1e, f for the correlated case are significantly different.' The correct version replaces 'Fig. 1e, f' with 'Fig. 2e and f'.
Wang, Yan; Chen, Kean
2017-10-01
A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elekina, E. N.; Martynenko, A. P.
2010-03-01
On the basis of perturbative QCD and the relativistic quark model we calculate relativistic and bound state corrections in the pair production of S-wave and P-wave charmonium states. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S- and P-wave mesons are taken into account. For the gluon and quark propagators entering the production vertex function we use a truncated expansion in the ratio of the relative quark momenta to the center-of-mass energy {radical}(s) up to the secondmore » order. The relativistic treatment of the wave functions makes all such second order terms convergent, thus allowing the reliable calculation of their contributions to the production cross section. Relativistic corrections to the quark bound state wave functions in the rest frame are considered by means of the QCD generalization of the standard Breit potential. It turns out that the examined effects change essentially the nonrelativistic results of the cross section for the reaction e{sup +}+e{sup -{yields}}J/{Psi}({eta}{sub c})+{chi}{sub cJ}(h{sub c}) at the center-of-mass energy {radical}(s)=10.6 GeV.« less
NASA Astrophysics Data System (ADS)
Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa
2018-03-01
The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.
Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
Ismail-Beigi, Sohrab
2017-09-27
The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.
Degenerate R-S perturbation theory
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Certain, P. R.
1973-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.
NASA Astrophysics Data System (ADS)
Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.
2018-05-01
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.
NASA Astrophysics Data System (ADS)
Aranha, R. F.; Soares, I. Damião; Tonini, E. V.
2012-01-01
We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.
Universal potential-barrier penetration by initially confined wave packets
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2007-07-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.
NASA Astrophysics Data System (ADS)
Sauer, K.; Malaspina, D.; Pulupa, M.
2016-12-01
Instead of starting with an unstable electron beam, our focus is directed on the nonlinear response of Langmuir oscillations which are driven after beam stabilization by the still persisting current of the (stable) two-electron plasma. The velocity distribution function of the second population forms a plateau with weak damping over a more or less extended wave number range k. As shown by PIC simulations, this so-called plateau plasma drives primarily Langmuir oscillations at the plasma frequency ωe with k=0 over long times without remarkable change of the distribution function. The Langmuir oscillations, however, act as pump wave for parametric decay by which an electron-acoustic wave slightly below ωe and a counter-streaming ion-acoustic wave are generated. Both high-frequency waves have nearly the same amplitude which is simply given by the product of plateau density and velocity. Beating of these two wave types leads to pronounced Langmuir amplitude modulation, in good agreement with solar wind and foreshock WIND observations where waveforms and electron distribution functions have simultaneously been analyzed.
A Study of Regional Wave Source Time Functions of Central Asian Earthquakes
NASA Astrophysics Data System (ADS)
Xie, J.; Perry, M. R.; Schult, F. R.; Wood, J.
2014-12-01
Despite the extensive use of seismic regional waves in seismic event identification and attenuation tomography, very little is known on how seismic sources radiate energy into these waves. For example, whether regional Lg wave has the same source spectrum as that of the local S has been questioned by Harr et al. and Frenkel et al. three decades ago; many current investigators assume source spectra in Lg, Sn, Pg, Pn and Lg coda waves have either the same or very similar corner frequencies, in contrast to local P and S spectra whose corner frequencies differ. The most complete information on how the finite source ruptures radiate energy into regional waves is contained in the time domain source time functions (STFs). To estimate the STFs of regional waves using the empirical Green's function (EGF) method, we have been substantially modifying a semi-automotive computer procedure to cope with the increasingly diverse and inconsistent naming patterns of new data files from the IRIS DMC. We are applying the modified procedure to many earthquakes in central Asia to study the STFs of various regional waves to see whether they have the same durations and pulse shapes, and how frequently source directivity occur. When applicable, we also examine the differences between STFs of local P and S waves and those of regional waves. The result of these analyses will be presented at the meeting.
Nearshore Wave and Current Dynamics
1999-09-30
bottom perturbation and an " influence function ". This influence function has its maximum at the shoreline and decays away from the shore. Also, the...magnitude of the influence function increases with edge-wave mode. These results show that the dispersion relationship is more sensitive to the
Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lenain, L.; Melville, W. K.
2016-02-01
While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.
Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, Anand
2012-01-01
We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
NASA Technical Reports Server (NTRS)
Baumeiste, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A
2011-05-01
Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity-a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of endothelial vasodilator function was found. This trial was registered at clinicaltrials.gov as NCT00553904.
Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A
2011-01-01
Background: Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. Objective: The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. Design: We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. Results: In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Conclusions: Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity—a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of endothelial vasodilator function was found. This trial was registered at clinicaltrials.gov as NCT00553904. PMID:21411615
Pan, Hui; Chen, Bin
2014-01-01
Two-dimensional materials have attracted increasing attention because of their particular properties and potential applications in next-generation nanodevices. In this work, we investigate the physical and chemical properties of waved graphenes/nanoribbons based on first-principles calculations. We show that waved graphenes are compressible up to a strain of 50% and ultra-flexible because of the vanishing in-plane stiffness. The conductivity of waved graphenes is reduced due to charge decoupling under high compression. Our analysis of pyramidalization angles predicts that the chemistry of waved graphenes can be easily controlled by modulating local curvatures. We further demonstrate that band gaps of armchair waved graphene nanoribbons decrease with the increase of compression if they are asymmetrical in geometry, while increase if symmetrical. For waved zigzag nanoribbons, their anti-ferromagnetic states are strongly enhanced by increasing compression. The versatile functions of waved graphenes enable their applications in multi-functional nanodevices and sensors. PMID:24569444
NASA Technical Reports Server (NTRS)
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
Budía Alba, A; López Acón, J D; Polo-Rodrigo, A; Bahílo-Mateu, P; Trassierra-Villa, M; Boronat-Tormo, F
2015-06-01
To assess the safety of increasing the number of waves per session in the treatment of urolithiasis using extracorporeal lithotripsy. Prospective, comparative, nonrandomized parallel study of patients with renoureteral lithiasis and an indication for extracorporeal lithotripsy who were consecutively enrolled between 2009 and 2010. We compared group I (160 patients) treated on schedule with a standard number of waves/session (mean 2858,3±302,8) using a Dornier lithotripter U/15/50 against group II (172 patients) treated with an expanded number of waves/session (mean, 6728,9±889,6) using a Siemens Modularis lithotripter. The study variables were age, sex, location, stone size, number of waves/session and total number of waves to resolution, stone-free rate (SFR) and rate of complications (Clavien-Dindo classification). Student's t-test and the chi-squared test were employed for the statistical analysis. The total rate of complications was 11.9% and 10.46% for groups I and II, respectively (P=.39). All complications were minor (Clavien-Dindo grade I). The most common complications were colic pain and hematuria in groups I and II, respectively, with a similar treatment intolerance rate (P>.05). The total number of waves necessary was lower in group II than in group I (P=.001), with SFRs of 96.5% and 71.5%, respectively (P=.001). Treatment with an expanded number of waves per session in extracorporeal lithotripsy does not increase the rate of complications or their severity. However, it could increase the overall effectiveness of the treatment. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Existence and amplitude bounds for irrotational water waves in finite depth
NASA Astrophysics Data System (ADS)
Kogelbauer, Florian
2017-12-01
We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.
1984-01-01
A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.
The relationship between J waves and contact of lung cancer with the heart.
Hayashi, Hideki; Wu, Qi; Horie, Minoru
2017-09-01
J waves result mainly from an increased density of transient outward current (I to ). Mechanical stretch to the heart activates multiple signal transduction pathways, in which I to may be involved. The purpose of this study was to test the hypothesis that mechanical contact of lung cancer with the heart may manifest J waves. We reviewed 12-lead electrocardiograms to examine whether J waves were associated with contact of lung cancer with the heart. J waves were defied as an elevation of ≥0.1 mV at the junction between QRS complex and ST segment with either notching or slurring morphology. The locational interaction between lung cancer and the heart was determined by computed tomography image. A total of 264 patients (176 men; mean 68.5 ± 10.7 years) with lung cancer were evaluated. The prevalence of J waves was 25.4% in the total population. J waves were present in 40 of 44 (90.9%) patients with the contact. In contrast, J waves were present in 25 of 220 (11.4%) patients without the contact. The sensitivity and specificity of the contact for J waves were 90.9% and 88.6%, respectively. The odds ratio of the contact with the heart to the presence of J waves was 78 (95% confidence interval 25.7-236.4). The appearance of J waves that coincided with the development of lung cancer was observed in 12 patients. The presence of J waves was associated with the contact of lung cancer with the heart. © 2017 Wiley Periodicals, Inc.
Functions of fish skin: flexural stiffness and steady swimming of longnose gar, Lepisosteus osseus
Long; Hale; Mchenry; Westneat
1996-01-01
The functions of fish skin during swimming remain enigmatic. Does skin stiffen the body and alter the propagation of the axial undulatory wave? To address this question, we measured the skin's in situ flexural stiffness and in vivo mechanical role in the longnose gar Lepisosteus osseus. To measure flexural stiffness, dead gar were gripped and bent in a device that measured applied bending moment (N m) and the resulting midline curvature (m-1). From these values, the flexural stiffness of the body (EI in N m2) was calculated before and after sequential alterations of skin structure. Cutting of the dermis between two caudal scale rows significantly reduced the flexural stiffness of the body and increased the neutral zone of curvature, a region of bending without detectable stiffness. Neither bending property was significantly altered by the removal of a caudal scale row. These alterations in skin structure were also made in live gar and the kinematics of steady swimming was measured before and after each treatment. Cutting of the dermis between two caudal scale rows, performed under anesthesia, changed the swimming kinematics of the fish: tailbeat frequency (Hz) and propulsive wave speed (body lengths per second, L s-1) decreased, while the depth (in L) of the trailing edge of the tail increased. The decreases in tailbeat frequency and wave speed are consistent with predictions of the theory of forced, harmonic vibrations; wave speed, if equated with resonance frequency, is proportional to the square root of a structure's stiffness. While it did not significantly reduce the body's flexural stiffness, surgical removal of a caudal scale row resulted in increased tailbeat amplitude and the relative total hydrodynamic power. In an attempt to understand the specific function of the scale row, we propose a model in which a scale row resists medio-lateral force applied by a single myomere, thus functioning to enhance mechanical advantage for bending. Finally, surgical removal of a precaudal scale row did not significantly alter any of the kinematic variables. This lack of effect is associated with a lower midline curvature of the precaudal region during swimming compared with that of the caudal region. Overall, these results demonstrate a causal relationship between skin, the passive flexural stiffness it imparts to the body and the influence of body stiffness on the undulatory wave speed and cycle frequency at which gar choose to swim.
NASA Technical Reports Server (NTRS)
Guberman, S.; Dalgarno, A.; Posen, A.; Kwok, T. L.
1986-01-01
Multiconfiguration variational calculations of the electronic wave functions of the a 3Sigma(+)g and b 3Sigma(+)u states of molecular hydrogen are presented, and the electric dipole transition moment between them (of interest in connection with stellar atmospheres and the UV spectrum of the Jovian planets) is obtained. The dipole moment is used to calculate the probabilities of radiative transitions from the discrete vibrational levels of the a 3Sigma(+)g state to the vibrational continuum of the repulsive b 3Sigma(+)u state as functions of the wavelength of the emitted photons. The total transition probabilities and radiative lifetimes of the levels v prime = 0-20 are presented.
Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine
2016-09-01
Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should help further exploration of the mode of action of this therapy on erectile tissue. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar
2015-12-28
The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum ismore » associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.« less
NASA Astrophysics Data System (ADS)
Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh
2018-01-01
A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.
Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny
2017-03-14
Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.
Chung, Eric; Wang, Juan
2017-12-01
Current treatment for erectile dysfunction (ED) mostly attempts to improve erectile function with limited impact on altering the underlying pathophysiology of ED. Recent animal experiments have supported the notion that low intensity extracorporeal shockwave therapy (LIESWT) significantly improves penile hemodynamics and might induce structural changes that regenerate penile tissue. Areas covered: This review article provides an overview of the basic mechanics and clinical studies pertaining to LIESWT and its use in the field of ED. We identify several key aspects of LIESWT and compare contemporary LIESWT machines and their clinical outcomes. Expert commentary: There is emerging and strong literature to support the use of LIESWT in men with ED, with many clinical studies reported encouraging results in the use of LIESWT with improved erectile function, good safety records, and short-term durability. However, there is a need to define which subgroup of ED population is best suited and the LIESWT treatment protocol including LIESWT template, modality of shock waves energy, emission frequency, and total energy delivery. More stringent randomised controlled trials are warranted before there is widespread acceptance of this LIESWT technology as the standard of care in ED.
Nearshore Wave and Current Dynamics
1997-09-30
relationship is proportional to the (cross-shore) integral of the product of the bottom perturbation and an " influence function ". This influence function has...its maximum at the shoreline and decays away from the shore. Also, the magnitude of the influence function increases with edge-wave mode. These
Nearshore Wave and Current Dynamics
1998-09-30
to the (cross-shore) integral of the product of the bottom perturbation and an " influence function ". This influence function has its maximum at the...shoreline and decays away from the shore. Also, the magnitude of the influence function increases with edge-wave mode. These results show that the
Quantum-shutter approach to tunneling time scales with wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge
2005-07-15
The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less
The relationship between loudness intensity functions and the click-ABR wave V latency.
Serpanos, Y C; O'Malley, H; Gravel, J S
1997-10-01
To assess the relationship of loudness growth and the click-evoked auditory brain stem response (ABR) wave V latency-intensity function (LIF) in listeners with normal hearing or cochlear hearing loss. The effect of hearing loss configuration on the intensity functions was also examined. Behavioral and electrophysiological intensity functions were obtained using click stimuli of comparable intensities in listeners with normal hearing (Group I; n = 10), and cochlear hearing loss of flat (Group II; n = 10) or sloping (Group III; n = 10) configurations. Individual intensity functions were obtained from measures of loudness growth using the psychophysical methods of absolute magnitude estimation and production of loudness (geometrically averaged to provide the measured loudness function), and from the wave V latency measures of the ABR. Slope analyses for the behavioral and electrophysiological intensity functions were separately performed by group. The loudness growth functions for the groups with cochlear hearing loss approximated the normal function at high intensities, with overall slope values consistent with those reported from previous psychophysical research. The ABR wave V LIF for the group with a flat configuration of cochlear hearing loss approximated the normal function at high intensities, and was displaced parallel to the normal function for the group with sloping configuration. The relationship between the behavioral and electrophysiological intensity functions was examined at individual intensities across the range of the functions for each subject. A significant relationship was obtained between loudness and the ABR wave V LIFs for the groups with normal hearing and flat configuration of cochlear hearing loss; the association was not significant (p = 0.10) for the group with a sloping configuration of cochlear hearing loss. The results of this study established a relationship between loudness and the ABR wave V latency for listeners with normal hearing, and flat cochlear hearing loss. In listeners with a sloping configuration of cochlear hearing loss, the relationship was not significant. This suggests that the click-evoked ABR may be used to estimate loudness growth at least for individuals with normal hearing and those with a flat configuration of cochlear hearing loss. Predictive equations were derived to estimate loudness growth for these groups. The use of frequency-specific stimuli may provide more precise information on the nature of the relationship between loudness growth and the ABR wave V latency, particularly for listeners with sloping configurations of cochlear hearing loss.
NASA Technical Reports Server (NTRS)
Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig
2016-01-01
Highly energetic electrons in the Earths Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 13002300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.
Atrial and ventricular function after cardioversion of atrial fibrillation.
Xiong, C.; Sonnhag, C.; Nylander, E.; Wranne, B.
1995-01-01
OBJECTIVE--Previous studies on atrial recovery after cardioversion of atrial fibrillation have not taken into account new knowledge about the pathophysiology of transmitral and transtricuspid flow velocity patterns. It is possible to shed further light on this problem if atrioventricular inflow velocity, venous filling pattern, and atrioventricular annulus motion are recorded and interpreted together. DESIGN--Prospective examinations of mitral and tricuspid transvalvar flow velocities, superior caval and pulmonary venous filling, and mitral and tricuspid annulus motion were recorded using Doppler echocardiography. Examinations were performed before and 24 hours, 1 month, and 20 months after cardioversion. SETTING--Tertiary referral centre for cardiac disease with facilities for invasive and non-invasive investigation. PATIENTS--16 patients undergoing cardioversion of atrial fibrillation in whom sinus rhythm had persisted for 24 hours or more. RESULTS--Before conversion there was no identifiable A wave in transvalvar flow recordings. The total motion of the tricuspid and mitral annulus was subnormal and there was no identifiable atrial component. Venous flow patterns in general showed a low systolic velocity. After conversion, A waves and atrial components were seen in all patients and increased significantly (P < 0.01) with time. There was a similar time course for the amplitude of annulus atrial components, an increased systolic component of venous inflow, an increased A wave velocity, and a decreased E/A ratio of the transvalvar velocity curves. The ventricular component of annulus motion was unchanged. Changes in general occurred earlier on the right side than the left. CONCLUSIONS--This study indicates that, in addition to the previously known electromechanical dissociation of atrial recovery that exists after cardioversion of atrial fibrillation, there may also be a transient deterioration of ventricular function modulating the transvalvar inflow velocity recordings. Function on the right side generally becomes normal earlier than on the left. Integration of information from transvalvar inflow curves, annulus motion, and venous filling patterns gives additional insight into cardiac function. PMID:7547019
Cooper, Leroy L; Himali, Jayandra J; Torjesen, Alyssa; Tsao, Connie W; Beiser, Alexa; Hamburg, Naomi M; DeCarli, Charles; Vasan, Ramachandran S; Seshadri, Sudha; Pase, Matthew P; Mitchell, Gary F
2017-08-17
Relations of orthostatic change in blood pressure with brain structure and function have not been studied thoroughly, particularly in younger, healthier individuals. Elucidation of factors that contribute to early changes in brain integrity may lead to development of interventions that delay or prevent cognitive impairment. In a sample of the Framingham Heart Study Third Generation (N=2119; 53% women; mean age±SD, 47±8 years), we assessed orthostatic change in mean arterial pressure (MAP), aortic stiffness (carotid-femoral pulse wave velocity), neuropsychological function, and markers of subclinical brain injury on magnetic resonance imaging. Multivariable regression analyses were used to assess relations between orthostatic change in MAP and brain structural and neuropsychological outcomes. Greater orthostatic increase in MAP on standing was related to better Trails B-A performance among participants aged <49 years (β±SE, 0.062±0.029; P =0.031) and among participants with carotid-femoral pulse wave velocity <6.9 m/s (β±SE, 0.063±0.026; P =0.016). This relation was not significant among participants who were older or had stiffer aortas. Conversely, greater orthostatic increase in MAP was related to larger total brain volume among older participants (β±SE, 0.065±0.029; P =0.023) and among participants with carotid-femoral pulse wave velocity ≥6.9 m/s (β±SE, 0.078±0.031; P =0.011). Blunted orthostatic increase in MAP was associated with smaller brain volume among participants who were older or had stiffer aortas and with poorer executive function among persons who were younger or who had more-elastic aortas. Our findings suggest that the brain is sensitive to orthostatic change in MAP, with results dependent on age and aortic stiffness. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
Correlation techniques and measurements of wave-height statistics
NASA Technical Reports Server (NTRS)
Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.
1972-01-01
Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.
NASA Astrophysics Data System (ADS)
Tornquist, Mattias
The research presented in this thesis covers wave-particle interactions for relativistic (0.5-10 MeV) electrons in Earth's outer radiation belt (r = 3-7 RE, or L-shells: L = 3-7) interacting with magnetospheric Pc-5 (ULF) waves. This dissertation focuses on ideal models for short and long term electron energy and radial position scattering caused by interactions with ULF waves. We use test particle simulations to investigate these wave-particle interactions with ideal wave and magnetic dipole fields. We demonstrate that the wave-particle phase can cause various patterns in phase space trajectories, i.e. local acceleration, and that for a global electron population, for all initial conditions accounted for, has a negligible net energy scattering. Working with GSM polar coordinates, the relevant wave field components are EL, Ephi and Bz, where we find that the maximum energy scattering is 3-10 times more effective for Ephi compared to EL in a magnetic dipole field with a realistic dayside compression amplitude. We also evaluate electron interactions with two coexisting waves for a set of small frequency separations and phases, where it is confirmed that multi-resonant transport is possible for overlapping resonances in phase space when the Chirikov criterion is met (stochasticity parameter K = 1). The electron energy scattering enhances with decreasing frequency separation, i.e. increasing K, and is also dependent on the phases of the waves. The global acceleration is non-zero, can be onset in about 1 hour and last for > 4 hours. The adiabatic wave-particle interaction discussed up to this point can be regarded as short-term scattering ( tau ˜ hours ). When the physical problem extends to longer time scales (tau ˜ days ) the process ceases to be adiabatic due to the introduction of stochastic element in the system and becomes a diffusive process. We show that any mode in a broadband spectrum can contribute to the total diffusion rate for a particular drift frequency within the spectral band via dynamic phases. Each mode contributes maximally at a phase reset frequency fr = 2.63fk, where fk is the mode frequency. We experiment with electron diffusion due to interaction with wave broadband spectra in MLT sectors and find the phase reset effect being strongest when there is no azimuthal wave vector (msec = 0) within the sector. DLL rapidly coheres to the local PSD as the wave number increases and, for example, at msec = 1.00+/-0.25 the effect of phase resets is only 10-30% as strong as for msec = 0. Since phase resets depend on particle drift frequencies when MLT sectors are involved, a consequence is that DLL must adjust as a function of L-shell as well. For example, from the local PSD as the sole contributor to diffusion Schulz and Lanzerotte (1979) has shown that DLL ˜ L6 , but we prove that the function becomes DLL ˜ L5 with some variations due to fd and MLT sector width. The final part of this dissertation evaluates a pre storm commencement event on November 7, 2004, when Earth's magnetopause was struck by a high-speed solar wind with a mostly northward component of interplanetary magnetic field. We obtained a global MHD field simulated by the OpenGGC model for the interval 17:00-18:40 in universal time from NASA's Community Coordinated Modeling Center. Global distribution plots of the electric and magnetic field PSD reveal strong ULF waves spanning the whole dayside sector. There are distinct electric field modes at approximately 0.9, 2.3 and 3.7-6.3 mHz within the dayside sector, which we then used in test-particle simulations and the variance calculations in order to evaluate the diffusion coefficients. To ensure diffusion by sufficient stochasticity, we run the event by repeating the interval 10 times in series for a total duration of 12 hours. For the wave electric fields, the predicted diffusion coefficient due to local PSD matches the outcome from simulated electron scattering at 0.9 and 2.3 mHz. The diffusion due to the wider frequency band at 3.7-6.3 mHz does not fit the PSD profile alone, and requires phase resets in non-resonant modes within the spectrum to yield an agreement between the calculations and the simulations. Furthermore, only msec = 1 provides the correct solution. We have thus demonstrated the importance in including both the MLT sector width and wave number as additional significant factors apart from the local PSD in determining the diffusion coefficient for a realistic wave field. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
NASA Astrophysics Data System (ADS)
Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Zou, Li
2017-12-01
In this paper, the generalized variable-coefficient forced Kadomtsev-Petviashvili (gvcfKP) equation is investigated, which can be used to characterize the water waves of long wavelength relating to nonlinear restoring forces. Using a dependent variable transformation and combining the Bell’s polynomials, we accurately derive the bilinear expression for the gvcfKP equation. By virtue of bilinear expression, its solitary waves are computed in a very direct method. By using the Riemann theta function, we derive the quasiperiodic solutions for the equation under some limitation factors. Besides, an effective way can be used to calculate its homoclinic breather waves and rogue waves, respectively, by using an extended homoclinic test function. We hope that our results can help enrich the dynamical behavior of the nonlinear wave equations with variable-coefficient.
Nonlocality of the original Einstein-Podolsky-Rosen state
NASA Astrophysics Data System (ADS)
Cohen, O.
1997-11-01
We examine the properties and behavior of the original Einstein-Podolsky-Rosen (EPR) wave function [Phys. Rev. 47, 777 (1935)] and related Gaussian-correlated wave functions. We assess the degree of entanglement of these wave functions and consider an argument of Bell [Ann. (N.Y.) Acad. Sci. 480, 263 (1986)] based on the Wigner phase-space distribution [Phys. Rev. 40, 749 (1932)], which implies that the original EPR correlations can accommodate a local hidden-variable description. We extend Bell's analysis to the related Gaussian wave functions. We then show that it is possible to identify definite nonlocal aspects for the original EPR state and related states. We describe possible experiments that would demonstrate these nonlocal features through violations of Bell inequalities. The implications of our results, and in particular their relevance for the causal interpretation of quantum mechanics, are considered.
Trial wave functions for a composite Fermi liquid on a torus
NASA Astrophysics Data System (ADS)
Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.
2018-01-01
We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.
Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.
Vallone, Giuseppe; Dequal, Daniele
2016-01-29
Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
Imaging Crustal Structure with Waveform and HV Ratio of Body-wave Receiver Function
NASA Astrophysics Data System (ADS)
Chong, J.; Chu, R.; Ni, S.; Meng, Q.; Guo, A.
2017-12-01
It is known that receiver function has less constraint on the absolute velocity, and joint inversion of receiver function and surface wave dispersion has been widely applied to reduce the non-uniqueness of velocity and interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the radial and vertical receiver functions to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion. The method has been applied to the dense seismic array of ChinArray program in SE Tibet during the time period from August 2011 to August 2012 in SE Tibet (ChinArray-Himalaya, 2011). The measurements of receiver function HV ratio reveals the lateral variation of the tectonics in of the study region. And main features of the velocity structure imagined by the new joint inversion method are consistent with previous studies. KEYWORDS: receiver function HV ratio, receiver function waveform inversion, crustal structure ReferenceChinArray-Himalaya. 2011. China Seismic Array waveform data of Himalaya Project. Institute of Geophysics, China Earthquake Administration. doi:10.12001/ChinArray.Data. Himalaya. Jiajun Chong, Risheng Chu*, Sidao Ni, Qingjun Meng, Aizhi Guo, 2017. Receiver Function HV Ratio, a New Measurement for Reducing Non-uniqueness of Receiver Function Waveform Inversion. (under revision)
Palmieri, A; Imbimbo, C; Creta, M; Verze, P; Fusco, F; Mirone, V
2012-04-01
Extracorporeal shock wave therapy improves erectile function in patients with Peyronie's disease. However, erectile dysfunction still persists in many cases. We aimed to investigate the effects of extracorporeal shock wave therapy plus tadalafil 5 mg once daily in the management of patients with Peyronie's disease and erectile dysfunction not previously treated. One hundred patients were enrolled in a prospective, randomized, controlled study. Patients were randomly allocated to receive either extracorporeal shock wave therapy alone for 4 weeks (n = 50) or extracorporeal shock wave therapy plus tadalafil 5 mg once daily for 4 weeks (n = 50). Main outcome measures were: erectile function (evaluated through the shortened version of the International Index of Erectile Function), pain during erection (evaluated through a Visual Analog Scale), plaque size, penile curvature and quality of life (evaluated through an internal questionnaire). Follow-up evaluations were performed after 12 and 24 weeks. In both groups, at 12 weeks follow-up, mean Visual Analog Scale score, mean International Index of Erectile Function score and mean quality of life score ameliorated significantly while mean plaque size and mean curvature degree were unchanged. Intergroup analysis revealed a significantly higher mean International Index of Erectile Function score and quality of life score in patients receiving the combination. After 24 weeks, intergroup analysis revealed a significantly higher mean International Index of Erectile Function score and mean quality of life score in patients that received extracorporeal shock wave therapy plus tadalafil. In conclusion extracorporeal shock wave therapy plus tadalafil 5 mg once daily may represent a valid conservative strategy for the management of patients with Peyronie's disease and erectile dysfunction. © 2011 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.
Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory
NASA Astrophysics Data System (ADS)
Ohnishi, Yu-ya; Ten-no, Seiichiro
2013-09-01
The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.