Generation of real-time mode high-resolution water vapor fields from GPS observations
NASA Astrophysics Data System (ADS)
Yu, Chen; Penna, Nigel T.; Li, Zhenhong
2017-02-01
Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.
The New Tropospheric Product of the International GNSS Service
NASA Technical Reports Server (NTRS)
Byun, Sung H.; Bar-Sever, Yoaz E.; Gendt, Gerd
2005-01-01
We compare this new approach for generating the IGS tropospheric products with the previous approach, which was based on explicit combination of total zenith delay contributions from the IGS ACs. The new approach enables the IGS to rapidly generate highly accurate and highly reliable total zenith delay time series for many hundreds of sites, thus increasing the utility of the products to weather modelers, climatologists, and GPS analysts. In this paper we describe this new method, and discuss issues of accuracy, quality control, utility of the new products and assess its benefits.
IVS Pilot Project - Tropospheric Parameters
NASA Astrophysics Data System (ADS)
Boehm, J.; Schuh, H.; Engelhardt, G.; MacMillan, D.; Lanotte, R.; Tomasi, P.; Vereshchagina, I.; Haas, R.; Negusini, M.; Gubanov, V.
2003-04-01
In April 2002 the IVS (International VLBI Service for Geodesy and Astrometry) set up the IVS Pilot Project - Tropospheric Parameters and the Institute of Geodesy and Geophysics (IGG), Vienna, was asked to coordinate the project. After a call for participation six IVS Analysis Centers have joined the project and submitted their estimates of tropospheric parameters (wet and total zenith delays, horizontal gradients) for all IVS-R1 and IVS-R4 sessions since January 1st, 2002, on a regular basis. Using a two-step procedure the individual submissions are combined to stable and robust tropospheric parameters with 1h resolution and high accuracy. The zenith delays derived by VLBI are also compared with those provided by IGS (International GPS Service). At collocated sites (VLBI and GPS antennas at the same station) rather constant biases are found between the GPS and VLBI derived zenith delays, although both techniques are subject to the same tropospheric delays. Possible reasons for these biases are discussed.
NASA Technical Reports Server (NTRS)
Herring, Thomas A.; Quinn, Katherine J.
2012-01-01
NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.
Tropospheric Parameters Determined by VLBI Within the IVS
NASA Astrophysics Data System (ADS)
Schuh, H.; Boehm, J.
2003-12-01
In April 2002 the IVS (International VLBI Service for Geodesy and Astrometry) set up the Pilot Project - Tropospheric Parameters, and the Institute of Geodesy and Geophysics (IGG), Vienna, was put in charge of coordinating the project. Seven IVS Analysis Centers have joined the project and regularly submitted their estimates of tropospheric parameters (wet and total zenith delays, horizontal gradients) for all IVS-R1 and IVS-R4 sessions since January 1st, 2002. The individual submissions are combined by a two-step procedure to obtain stable, robust and highly accurate tropospheric parameter time series with one hour resolution. The internal accuracy of the combined wet zenith delays is between 2 and 4 mm. The zenith delays derived by VLBI are compared with those provided by the International GPS Service (IGS). At sites with co-located VLBI and GPS antennas the short-term variabilities of the GPS and VLBI derived zenith delays generally show a good agreement but biases are found between the results of the two techniques. Possible reasons for these biases are discussed. Since July 1st, 2003, within the IVS the tropospheric parameters are determined as operational products. The presentation also includes the VLBI CONT02 campaign of 15 days of continuous observing in the second half of October 2002.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
NASA Astrophysics Data System (ADS)
Luo, X.; Heck, B.; Awange, J. L.
2013-12-01
Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%.
NASA Astrophysics Data System (ADS)
Reuveni, Y.; Leontiev, A.
2016-12-01
Using GPS satellites signals, we can study atmospheric processes and coupling mechanisms, which can help us understand the physical conditions in the upper atmosphere that might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by geodetic stations on the ground are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy Precipitable Water Vapor (PWV) using collocated pressure and temperature measurements on the ground. Here, we present the use of Israel's geodetic GPS receivers network for extracting tropospheric zenith path delays combined with near Real Time (RT) METEOSAT-10 Water Vapor (WV) and surface temperature pixel intensity values (7.3 and 12.1 channels, respectively) in order to obtain absolute IWV (kg/m2) or PWV (mm) map distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS Zenith Total Delays (ZTD) and METEOSAT-10 surface temperature data compared with available radiosonde Precipitable IWV/PWV absolute values. The presented strategy can provide unprecedented temporal and special IWV/PWV distribution, which is needed as part of the accurate and comprehensive initial conditions provided by upper-air observation systems at temporal and spatial resolutions consistent with the models assimilating them.
NASA Technical Reports Server (NTRS)
Tralli, David M.; Dixon, Timothy H.; Stephens, Scott A.
1988-01-01
Surface Meteorological (SM) and Water Vapor Radiometer (WVR) measurements are used to provide an independent means of calibrating the GPS signal for the wet tropospheric path delay in a study of geodetic baseline measurements in the Gulf of California using GPS in which high tropospheric water vapor content yielded wet path delays in excess of 20 cm at zenith. Residual wet delays at zenith are estimated as constants and as first-order exponentially correlated stochastic processes. Calibration with WVR data is found to yield the best repeatabilities, with improved results possible if combined carrier phase and pseudorange data are used. Although SM measurements can introduce significant errors in baseline solutions if used with a simple atmospheric model and estimation of residual zenith delays as constants, SM calibration and stochastic estimation for residual zenith wet delays may be adequate for precise estimation of GPS baselines. For dry locations, WVRs may not be required to accurately model tropospheric effects on GPS baselines.
NASA Technical Reports Server (NTRS)
Tralli, David M.; Lichten, Stephen M.; Herring, Thomas A.
1992-01-01
Kalman filter estimates of zenith nondispersive atmospheric path delays at Westford, Massachusetts, Fort Davis, Texas, and Mojave, California, were obtained from independent analyses of data collected during January and February 1988 using the GPS and VLBI. The apparent accuracy of the path delays is inferred by examining the estimates and covariances from both sets of data. The ability of the geodetic data to resolve zenith path delay fluctuations is determined by comparing further the GPS Kalman filter estimates with corresponding wet path delays derived from water vapor radiometric data available at Mojave over two 8-hour data spans within the comparison period. GPS and VLBI zenith path delay estimates agree well within one standard deviation formal uncertainties (from 10-20 mm for GPS and 3-15 mm for VLBI) in four out of the five possible comparisons, with maximum differences of 5 and 21 mm over 8- to 12-hour data spans.
Ground-Based GPS Sensing of Azimuthal Variations in Precipitable Water Vapor
NASA Technical Reports Server (NTRS)
Kroger, P. M.; Bar-Sever, Y. E.
1997-01-01
Current models for troposphere delay employed by GPS software packages map the total zenith delay to the line-of-sight delay of the individual satellite-receiver link under the assumption of azimuthal homogeneity. This could be a poor approximation for many sites, in particular, those located at an ocean front or next to a mountain range. We have modified the GIPSY-OASIS II software package to include a simple non-symmetric mapping function (MacMillan, 1995) which introduces two new parameters.
Analysis of zenith tropospheric delay in tropical latitudes
NASA Astrophysics Data System (ADS)
Zablotskyj, Fedir; Zablotska, Alexandra
2010-05-01
The paper studies some peculiarities of the nature of zenith tropospheric delay in tropical latitudes. There are shown the values of dry and wet components of zenith tropospheric delay obtained by an integration of the radiosonde data at 9 stations: Guam, Seyshelles, Singapore, Pago Pago, Hilo, Koror, San Cristobal, San Juan and Belem. There were made 350 atmospheric models for the period from 11th to 20th of January, April, July and October 2008 at 0h and 12h UT (Universal Time). The quantities of the dry dd(aer) and wet dw(aer) components of zenith tropospheric delay were determined by means of the integration for each atmospheric model. Then the quantities of the dry dd(SA), dd(HO) and wet dw(SA), dw(HO) components of zenith tropospheric delay (Saastamoinen and Hopfield analytical models) were calculated by the surface values of the pressure P0, temperature t0, relative air humidity U0 on the height H0 and by the geographic latitude φ. It must be point out the following from the analysis of the averaged quantities and differences δdd(SA), δdd(HO), δdw(SA), δdw(HO) between the correspondent components of zenith tropospheric delay obtained by the radiosonde data and by the analytical models: zenith tropospheric delay obtained by the radiosonde data amounts to considerably larger value in the equatorial zone, especially, at the expense of the wet component, in contrast to high and middle latitudes. Thus, the dry component of zenith tropospheric delay is equal at the average 2290 mm and the wet component is 290 mm; by the results of the analysis of Saastamoinen and Hopfield models the dry component differences δdd(SA) and δdd(HO) are negative in all cases and average -20 mm. It is not typical neither for high latitudes nor for middle ones; the differences between the values of the wet components obtained from radiosonde data and of Saastamoinen and Hopfield models are positive in general. Therewith the δdw(HO) values are larger than the correspondent δdw(SA) ones on 20 ÷ 30 mm. This is because of that the tropospheric height, founded in the determination of the wet component by Hopfield model, does not correspond the mean real tropospheric height which is typical for the tropical latitudes; there are the considerable differences in the average values of zenith tropospheric delay between the stations of the equatorial zone. By the radiosonde data they can amount to 100 and more millimeters. These differences are caused by different character of the air humidity distribution along a height. Thus, for example, in the lower half of the troposphere the mean partial pressure of the water vapour is about 2 ÷ 2,5 times larger at Singapore station than at Hilo one. The recommendations concerning the modification of Saastamoinen and Hopfield models for the zone of tropical latitudes are given in conclusion of the paper.
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Sovers, O. J.
1994-01-01
The standard tropospheric calibration model implemented in the operational Orbit Determination Program is the seasonal model developed by C. C. Chao in the early 1970's. The seasonal model has seen only slight modification since its release, particularly in the format and content of the zenith delay calibrations. Chao's most recent standard mapping tables, which are used to project the zenith delay calibrations along the station-to-spacecraft line of sight, have not been modified since they were first published in late 1972. This report focuses principally on proposed upgrades to the zenith delay mapping process, although modeling improvements to the zenith delay calibration process are also discussed. A number of candidate approximation models for the tropospheric mapping are evaluated, including the semi-analytic mapping function of Lanyi, and the semi-empirical mapping functions of Davis, et. al.('CfA-2.2'), of Ifadis (global solution model), of Herring ('MTT'), and of Niell ('NMF'). All of the candidate mapping functions are superior to the Chao standard mapping tables and approximation formulas when evaluated against the current Deep Space Network Mark 3 intercontinental very long baselines interferometry database.
NASA Technical Reports Server (NTRS)
Moran, J. M.; Rosen, B. R.
1980-01-01
The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.
ITG: A New Global GNSS Tropospheric Correction Model
Yao, Yibin; Xu, Chaoqian; Shi, Junbo; Cao, Na; Zhang, Bao; Yang, Junjian
2015-01-01
Tropospheric correction models are receiving increasing attentions, as they play a crucial role in Global Navigation Satellite System (GNSS). Most commonly used models to date include the GPT2 series and the TropGrid2. In this study, we analyzed the advantages and disadvantages of existing models and developed a new model called the Improved Tropospheric Grid (ITG). ITG considers annual, semi-annual and diurnal variations, and includes multiple tropospheric parameters. The amplitude and initial phase of diurnal variation are estimated as a periodic function. ITG provides temperature, pressure, the weighted mean temperature (Tm) and Zenith Wet Delay (ZWD). We conducted a performance comparison among the proposed ITG model and previous ones, in terms of meteorological measurements from 698 observation stations, Zenith Total Delay (ZTD) products from 280 International GNSS Service (IGS) station and Tm from Global Geodetic Observing System (GGOS) products. Results indicate that ITG offers the best performance on the whole. PMID:26196963
Assessment of tropospheric delay mapping function models in Egypt: Using PTD database model
NASA Astrophysics Data System (ADS)
Abdelfatah, M. A.; Mousa, Ashraf E.; El-Fiky, Gamal S.
2018-06-01
For space geodetic measurements, estimates of tropospheric delays are highly correlated with site coordinates and receiver clock biases. Thus, it is important to use the most accurate models for the tropospheric delay to reduce errors in the estimates of the other parameters. Both the zenith delay value and mapping function should be assigned correctly to reduce such errors. Several mapping function models can treat the troposphere slant delay. The recent models were not evaluated for the Egyptian local climate conditions. An assessment of these models is needed to choose the most suitable one. The goal of this paper is to test the quality of global mapping function which provides high consistency with precise troposphere delay (PTD) mapping functions. The PTD model is derived from radiosonde data using ray tracing, which consider in this paper as true value. The PTD mapping functions were compared, with three recent total mapping functions model and another three separate dry and wet mapping function model. The results of the research indicate that models are very close up to zenith angle 80°. Saastamoinen and 1/cos z model are behind accuracy. Niell model is better than VMF model. The model of Black and Eisner is a good model. The results also indicate that the geometric range error has insignificant effect on slant delay and the fluctuation of azimuth anti-symmetric is about 1%.
Estimating Real-Time Zenith Tropospheric Delay over Africa Using IGS-RTS Products
NASA Astrophysics Data System (ADS)
Abdelazeem, M.
2017-12-01
Zenith Tropospheric Delay (ZTD) is a crucial parameter for atmospheric modeling, severe weather monitoring and forecasting applications. Currently, the international global navigation satellite system (GNSS) real-time service (IGS-RTS) products are used extensively in real-time atmospheric modeling applications. The objective of this study is to develop a real time zenith tropospheric delay estimation model over Africa using the IGS-RTS products. The real-time ZTDs are estimated based on the real-time precise point positioning (PPP) solution. GNSS observations from a number of reference stations are processed over a period of 7 days. Then, the estimated real-time ZTDs are compared with the IGS tropospheric products counterparts. The findings indicate that the estimated real-time ZTDs have millimeter level accuracy in comparison with the IGS counterparts.
Precise estimation of tropospheric path delays with GPS techniques
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1990-01-01
Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better.
Sensitivity of EAS measurements to the energy spectrum of muons
NASA Astrophysics Data System (ADS)
Espadanal, J.; Cazon, L.; Conceição, R.
2017-01-01
We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJET-II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm2 and ∼ 0 g/cm2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.
NASA Astrophysics Data System (ADS)
Hordyniec, Paweł; Rohm, Witold; Kapłon, Jan
2017-04-01
Post-fit residuals from Precise Point Positioning (PPP) carry the troposphere information except of multipath and residual antenna Phase Centre Variations (PCVs), when precise satellite orbits and clocks were introduced. Slant total delay (STD) of GNSS signal is a sum of a priori slant hydrostatic delay, estimated wet delay, asymetry introduced by the estimated zenith total delay (ZTD) horizontal gradients and a post-fit residual reduced by the systematic (site-dependant) effect. It was revealed, that application of reduced post-fit residuls to the slant total delays obtained from GNSS data processing increases the discrepancy with slant delays from raytracing (RT) through the Numerical Weather Model (NWM). One of the possible sources of that effect is neglected influence of hydrometeors in raytracing procedures. If the assumption of hydrometeor information existence in the PPP post-fit residuals is correct, we expect the diversity of slant delay discrepancies for satellite-receiver rays pointing or not the hydrometeors. Paper presents the spatial and temporal correlation analysis of the slant delay residuals (GNSS - RT) with hydrometeor phenomena recorded during the COST ES1206 GNSS4SWEC benchmark period (May 5th - June 29th, 2013). It presents the discussion of the results from different GNSS PPP slant delay estimation approaches including coordinates unconstraining or heavy constraining, and the calculation of slant delays with and without ZTD horizontal gradients estimation.
Global model of zenith tropospheric delay proposed based on EOF analysis
NASA Astrophysics Data System (ADS)
Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng
2017-07-01
Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.
IVS Tropospheric Parameters: Comparison with DORIS and GPS for CONT02
NASA Technical Reports Server (NTRS)
Schuh, Harald; Snajdrova, Kristyna; Boehm, Johannes; Willis, Pascal; Engelhardt, Gerald; Lanotte, Roberto; Tomasi, Paolo; Negusini, Monia; MacMillan, Daniel; Vereshchagina, Iraida
2004-01-01
In April 2002 the IVS (International VLBI Service for Geodesy and Astrometry) set up the Pilot Project - Tropospheric Parameters, and the Institute of Geodesy and Geophysics (IGG), Vienna, was put in charge of coordinating the project. Seven IVS Analysis Centers have joined the project and regularly submitted their estimates of tropospheric parameters (wet and total zenith delays, horizontal gradients) for all IVS-R1 mid IVS-R4 sessions since January 1st, 2002. The individual submissions are combined by a two-step procedure to obtain stable, robust and highly accurate tropospheric parameter time series with one hour resolution (internal accuracy: 2-4 ram). Starting with July 2003, the combined tropospheric estimates became operational IVS products. In the second half of October 2002 the VLBI campaign CONT02 was observed with 8 stations participating around the globe. At four of them (Gilmore Creek, U.S.A.; Hartebeesthoek, South Africa; Kokee Park, U.S.A.; Ny-Alesund, Norway) also total zenith delays from DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) are available and these estimates are compared with those from the IGS (International GPS Service) and the IVS. The distance from the DORIS beacons to the co-located GPS and VLBI stations is around 2 km or less for the four sites mentioned above.
Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations
NASA Astrophysics Data System (ADS)
Boehm, J.; Kouba, J.; Schuh, H.
2009-05-01
The Vienna Mapping Functions 1 (VMF1) as provided by the Institute of Geodesy and Geophysics (IGG) at the Vienna University of Technology are the most accurate mapping functions for the troposphere delays that are available globally and for the entire history of space geodetic observations. So far, the VMF1 coefficients have been released with a time delay of almost two days; however, many scientific applications require their availability in near real-time, e.g. the Ultra Rapid solutions of the International GNSS Service (IGS) or the analysis of the Intensive sessions of the International VLBI Service (IVS). Here we present coefficients of the VMF1 as well as the hydrostatic and wet zenith delays that have been determined from forecasting data of the European Centre for Medium-Range Weather Forecasts (ECMWF) and provided on global grids. The comparison with parameters derived from ECMWF analysis data shows that the agreement is at the 1 mm level in terms of station height, and that the differences are larger for the wet mapping functions than for the hydrostatic mapping functions and the hydrostatic zenith delays. These new products (VMF1-FC and hydrostatic zenith delays from forecast data) can be used in real-time analysis of geodetic data without significant loss of accuracy.
Monte Carlo Simulations for VLBI2010
NASA Astrophysics Data System (ADS)
Wresnik, J.; Böhm, J.; Schuh, H.
2007-07-01
Monte Carlo simulations are carried out at the Institute of Geodesy and Geophysics (IGG), Vienna, and at Goddard Space Flight Center (GSFC), Greenbelt (USA), with the goal to design a new geodetic Very Long Baseline Interferometry (VLBI) system. Influences of the schedule, the network geometry and the main stochastic processes on the geodetic results are investigated. Therefore schedules are prepared with the software package SKED (Vandenberg 1999), and different strategies are applied to produce temporally very dense schedules which are compared in terms of baseline length repeatabilities. For the simulation of VLBI observations a Monte Carlo Simulator was set up which creates artificial observations by randomly simulating wet zenith delay and clock values as well as additive white noise representing the antenna errors. For the simulation at IGG the VLBI analysis software OCCAM (Titov et al. 2004) was adapted. Random walk processes with power spectrum densities of 0.7 and 0.1 psec2/sec are used for the simulation of wet zenith delays. The clocks are simulated with Allan Standard Deviations of 1*10^-14 @ 50 min and 2*10^-15 @ 15 min and three levels of white noise, 4 psec, 8 psec and, 16 psec, are added to the artificial observations. The variations of the power spectrum densities of the clocks and wet zenith delays, and the application of different white noise levels show clearly that the wet delay is the critical factor for the improvement of the geodetic VLBI system. At GSFC the software CalcSolve is used for the VLBI analysis, therefore a comparison between the software packages OCCAM and CalcSolve was done with simulated data. For further simulations the wet zenith delay was modeled by a turbulence model. This data was provided by Nilsson T. and was added to the simulation work. Different schedules have been run.
Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey
NASA Astrophysics Data System (ADS)
Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan
2015-04-01
Global Navigation Satellite Systems (GNSS) have recently proved to be one of the crucial tools for determining continuous and precise precipitable water vapor (GNSS-MET networks). GNSS, especially CORS networks such as CORS-TR (the Turkish Network-RTK), provide high temporal and spatial accuracy for the wet tropospheric zenith delays which are then converted to the precipitable water vapor due to the fact that they can operate in all weather conditions continuously and economically. The accuracy of wet tropospheric zenith delay highly depends on the accuracy of precipitable water vapor content in the troposphere. Therefore, the precipitable water vapor is an important element of the tropospheric zenith delay. A number of studies can be found in the literature on the determination of the precipitable water vapor from the tropospheric zenith delay. Studies of Hogg showed that when the precipitable water vapor is known, the tropospheric zenith delay can be computed. Askne and Nodius have developed fundamental equations between the wet tropospheric zenith delay and the precipitable water vapor from the equation of the index of refraction in the troposphere. Furthermore, Bevis have developed a linear regression model to determine the weighted mean temperature (Tm) depending on the surface temperature (Ts) in Askne and Nodius studies. For this reason, nearly 9000 radiosonde profiles in USA were analyzed and the coefficients calculated. Similarly, there are other studies on the calculation of those coefficients for different regions: Solbrig for Germany, Liou for Taiwan, Jihyun for South Korea, Dongseob for North Korea, Suresh Raju for India, Boutiouta and Lahcene for Algeria, Bokoye for Canada, Baltink for Netherlands and Baltic, Bock for Africa. It is stated that the weighted mean temperature can be found with a root mean square error of ±2-5 K. In addition, there are studies on the calculation of the coefficients globally. Another model for the determination of precipitable water vapor is the conversion factor Q which is shown in Emardson and Derks' studies and also Jade and Vijayan's. Developing a regional model using either Tm-Ts equation or the conversion factor Q will provide a basis for GNSS Meteorology in Turkey which depends on the analysis of the radiosonde profile data. For this purpose, the radiosonde profiles from Istanbul, Ankara, Diyarbaki r, Samsun, Erzurum, Izmir, Isparta and Adana stations are analyzed with the radiosonde analysis algorithm in the context of the 'The Estimation of Atmospheric Water Vapour with GPS' Project which is funded by the Scientific and Technological Research Council of Turkey (TUBITAK). The Project is also in the COST Action ES1206: Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC). In this study, regional models using the conversion factor Q are used for the determination of precipitable water vapor, and applied to the GNSS derived wet tropospheric zenith delays. Henceforth, the estimated precipitable water vapor and the precipitable water vapor obtained from the radiosonde station are compared. The average of the differences between RS and models for Istanbul and Ankara stations are obtained as 2.0±1.6 mm, 1.6±1.6 mm, respectively.
Data assimilation of GNSS zenith total delays from a Nordic processing centre
NASA Astrophysics Data System (ADS)
Lindskog, Magnus; Ridal, Martin; Thorsteinsson, Sigurdur; Ning, Tong
2017-11-01
Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based receiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art kilometre-scale numerical weather prediction system. Different processing techniques have been implemented to derive the moisture-related GNSS information in the form of zenith total delays (ZTDs) and these are described and compared. In addition full-scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the ensuing forecast quality. The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been investigated. Results show benefits to forecast quality when using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.
Temporal and spatial characterization of zenith total delay (ZTD) in North Europe
NASA Astrophysics Data System (ADS)
Stoew, B.; Elgered, G.
2003-04-01
The estimates of ZTD are often treated as realizations of random walk stochastic processes. We derive the corresponding process parameters for 34 different locations in North Europe using two measurement techniques - Global Positioning System (GPS) and Water Vapor Radiometer (WVR). GPS-estimated ZTD is an excellent candidate for data assimilation in numerical weather prediction (NWP) models in terms of both spatial and temporal resolution. We characterize the long term behavior of the ZTD as a function of site latitude and height. The spatial characteristics of the ZTD are studied as a function of site separation and season. We investigate the influence of the time-interpolated atmospheric pressure data used for the estimation of zenith wet delay (ZWD) from ZTD. Characterization of extreme atmospheric events can aid the development of an early warning system. We consider two types of extreme meteorological phenomena with regard to their spatial scales. The first type concerns larger regions (including several GPS sites); the extreme weather is characterized by intense precipitation which may result in a flood. The second type is related to local variations in the ZWD/ZTD and can be used for detection/monitoring of passing atmospheric fronts.
Investigation of the Air Quality Change Effect on Gnss Signals
NASA Astrophysics Data System (ADS)
Gurbuz, G.; Gormus, K. S.; Altan, U.
2017-11-01
Air pollution is the most important environmental problem in Zonguldak city center. Since bituminous coal is used for domestic heating in houses and generating electricity in thermal power plants, particulate matter (PM10) is the leading air pollutant. Previous studies have shown that the water vapor in the troposphere is responsible for the tropospheric zenith delay in Global Navigation Satellite System (GNSS) measurements. In this study, data obtained from the ZONG GNSS station from Türkiye Ulusal Sabit GNSS Ağı (TUSAGA-Active network) in the central district of Zonguldak province, processed with GIPSY-OASIS II and GAMIT/GlobK software using the VMF1 mapping function, which is developed previously and considered to be the most accurate model. The resulting values were examined separately in terms of software. The meteorological parameters obtained from the Turkish State Meteorological Service and the air pollution values obtained from the Ministry of Environment and Urban Planning were analyzed and the zenith delay values were compared. When wet zenith delays of different days with different amounts of PM10 concentrations were examined in succession and under the same meteorological conditions, differences in the range of 20-40 mm on ZTD were observed.
Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay
NASA Technical Reports Server (NTRS)
Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan
2011-01-01
To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for
NASA Astrophysics Data System (ADS)
Yu, C.; Li, Z.; Penna, N. T.
2016-12-01
Precipitable water vapour (PWV) can be routinely retrieved from ground-based GPS arrays in all-weather conditions and also in real-time. But to provide dense spatial coverage maps, for example for calibrating SAR images, for correcting atmospheric effects in Network RTK GPS positioning and which may be used for numerical weather prediction, the pointwise GPS PWV measurements must be interpolated. Several previous interpolation studies have addressed the importance of the elevation dependency of water vapour, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. We present a tropospheric turbulence iterative decomposition model that decouples the total PWV into (i) a stratified component highly correlated with topography which therefore delineates the vertical troposphere profile, and (ii) a turbulent component resulting from disturbance processes (e.g., severe weather) in the troposphere which trigger uncertain patterns in space and time. We will demonstrate that the iterative decoupled interpolation model generates improved dense tropospheric water vapour fields compared with elevation dependent models, with similar accuracies obtained over both flat and mountainous terrain, as well as for both inland and coastal areas. We will also show that our GPS-based model may be enhanced with ECMWF zenith tropospheric delay and MODIS PWV, producing multi-data sources high temporal-spatial resolution PWV fields. These fields were applied to Sentinel-1 SAR interferograms over the Los Angeles region, for which a maximum noise reduction due to atmosphere artifacts reached 85%. The results reveal that the turbulent troposphere noise, especially those in a SAR image, often occupy more than 50% of the total zenith tropospheric delay and exert systematic, rather than random patterns.
Tropospheric delays from GNSS for application in coastal altimetry
NASA Astrophysics Data System (ADS)
Fernandes, M. Joana; Pires, Nelson; Lázaro, Clara; Nunes, Alexandra L.
2013-04-01
In the scope of the development of an improved methodology for the computation of the wet tropospheric correction for coastal altimetry, based on the use of tropospheric delays derived from GNSS (Global Navigation Satellite Systems), various studies have been conducted aiming to improve the estimation, at global scale, of GNSS-derived tropospheric delays.Amongst these studies, two are presented in this paper: (1) a global assessment of zenith total delays (ZTD) determined at international data centres such as EPN (EUREF Permanent Network) and IGS (International GNSS Service) by comparison with ZTD solutions computed at the University of Porto (U.Porto) using state-of-the-art methodologies and ZTD estimated from ERA Interim, the latest reanalysis dataset from ECMWF (European Centre for Medium-Range Weather Forecasts), (2) evaluation of the accuracy of the hydrostatic component of the tropospheric delay (zenith hydrostatic delay, ZHD) estimation from different sources of surface pressure.When compared with ERA Interim, both IGS and U.Porto ZTD are homogeneous with a mean standard deviation of the differences, for all analysed sites, of 12 mm. The U.Porto and IGS ZTD agree within 4 mm (1σ), while for EPN the same result is only valid for the period after November 2006. Before that date, the EPN solutions are slightly degraded and require an adequate correction.Aiming to evaluate the accuracy of ZHD determination from various sources of atmospheric pressure, a study is presented that compares ZHD values determined with in situ measurements of surface pressure at a global set of 63 coastal barometric sites (GNSS stations), the corresponding values obtained from ECMWF operational model, ERA Interim sea level pressure (SLP) and ZHD from the Vienna Mapping Functions 1 (VMF1).Results show that the global grids of sea level pressure provided by ECMWF operational model, either at 0.25° or 0.125° spacing, or the ERA Interim reanalysis product at 1.5°, allow the estimation of the hydrostatic component of the tropospheric delay with an accuracy of 1 to 3 mm at global scale, provided an adequate model for the height dependence of atmospheric pressure is adopted. In comparison, for VMF1 grids provided at 2.5° spacing, although the overall accuracy of ZHD estimation is 2-4 mm in most sites, in regions with high variability and strong seasonal signal in the surface pressure, VMF1 can reveal errors with a clear annual pattern and epochs for which the error exceeds the centimetre level. When used to estimate the wet component of the tropospheric delay (zenith wet delay, ZWD) for coastal altimetry, these errors can translate into errors of similar magnitude in sea level studies.
Benchmark Campaign of the COST Action GNSS4SWEC: Main Goals and Achievements
NASA Astrophysics Data System (ADS)
Dick, G.; Dousa, J.; Kacmarik, M.; Pottiaux, E.; Zus, F.; Brenot, H. H.; Moeller, G.; Kaplon, J.; Morel, L.; Hordyniec, P.
2016-12-01
This talk will give an overview of achievements of the Benchmark campaign, one of the central activities in the framework of the COST Action ES 1206 GNSS4SWEC. The main goal of the campaign is supporting the development and validation of advanced Global Navigation Satellite System (GNSS) tropospheric products, in particular high-resolution and ultra-fast/real-time zenith total delays (ZTD) and asymmetry products in terms of tropospheric horizontal gradients and slant delays.For the Benchmark campaign a complex data set of GNSS observations and various meteorological data were collected for a two-month period in 2013 (May-June) which included severe weather events in central Europe. An initial processing of data sets from GNSS and numerical weather models (NWM) provided independently estimated tropospheric reference products - ZTDs, tropospheric horizontal gradients and others. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and an accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting.The benchmark data set is also used for an extensive validation of line-of-sight tropospheric Slant Total Delays (STD) from GNSS, NWM-raytracing and Water Vapour Radiometer (WVR) solutions. Six institutions delivered their STDs based on GNSS observations processed using different software and strategies. STDs from NWM ray-tracing came from three institutions using three different NWM models. Results show generally a very good mutual agreement among all solutions from all techniques. Among all an influence of adding not cleaned as well as cleaned GNSS post-fit residuals, i.e. residuals with eliminated and not eliminated non-tropospheric systematic effects such as multipath, to estimated STDs will be presented.
Study of the Total Electron Content in Mars ionosphere from MARSIS data set
NASA Astrophysics Data System (ADS)
Bergeot, Nicolas; Witasse, Olivier; Kofman, Wlodek; Grima, Cyril; Mouginot, Jeremie; Peter, Kerstin; Pätzold, Martin; Dehant, Véronique
2016-04-01
Centimeter level accuracy on the signal delay will be required on X-band radio link for future Mars landers such as InSIGHT, aiming at better determining the interior structure of Mars. One of the main error sources in the estimated signal delay is directly linked to the Total Electron Content (TEC) values at Earth and Mars ionosphere level. While the Earth ionosphere is now well modeled and monitored at regional and global scales, this is not the case concerning the Mars' upper atmosphere. The present paper aims at establishing the basis to model the climatological behavior of the TEC on a global scale in the Mars' ionosphere. For that we analyzed ˜8.5 years of data (mid-2005 to 2014) of the vertical Total Electron Content (vTEC) expressed in TEC units (1 TECu = 1016e-.m-2) from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) radar. Our study takes advantage of the double data set of EUV solar index and Mars vTEC data to develop an empirical Model of Mars Ionosphere (MoMo). The finality of this model is to predict the vTEC at a given latitude, solar zenith angle and season taking only F10.7P solar index as input. To minimize the differences during the least-square adjustment between the modeled and observed vTEC, we considered (1) a 4th-order polynomial function to describe the vTEC diurnal behavior (2) a discretization with respect to Mars seasons (depending on Ls) and (3) two latitudinal sectors (North and South hemispheres). The mean of the differences between the model and the observations is 0.00±0.07 TECu with an error of the model around 0.1 TECu depending on the Solar Zenith Angle (SZA), season and hemisphere of interest (e.g. rms 0.12 TECu for SZA equal to 50°±5° in the Northern hemisphere during the spring season). Additionally, comparison with 250 Mars Express radio occultation data shows differences with MoMo predictions of 0.02±0.06 TECu for solar zenith angles below 50 degrees. Using the model we (1) highlighted different behaviors of Mars ionosphere depending on seasons, solar activity level, and latitudes; (2) estimated a maximum effect on X-Band signal delay (up plus down links) of ˜3 cm during the autumn season and high solar activity at the future InSIGHT lander location.
NASA Astrophysics Data System (ADS)
ćepni, Murat S.; Potts, Laramie V.; Miima, John B.
2013-09-01
electron content (TEC) estimates derived from Global Navigation Satellite System (GNSS) signal delays provide a rich source of information about the Earth's ionosphere. Networks of Global Positioning System (GPS) receivers data can be used to represent the ionosphere by a Global Ionospheric Map (GIM). Data input for GIMs is dual-frequency GNSS-only or a mixture of GNSS and altimetry observations. Parameterization of GNSS-only GIMs approaches the ionosphere as a single-layer model (SLM) to determine GPS TEC models over a region. Limitations in GNSS-only GIM TEC are due largely to the nonhomogenous global distribution of GPS tracking stations with large data gaps over the oceans. The utility of slant GPS ionospheric-induced path delays for high temporal resolution from a single-station data rate offers better representation of TEC over a small region. A station-based vertical TEC (TECV) approach modifies the traditional single-layer model (SLM) GPS TEC method by introducing a zenith angle weighting (ZAW) filter to capture signal delays from mostly near-zenith satellite passes. Comparison with GIMs shows the station-dependent TEC (SD-TEC) model exhibits robust performance under variable space weather conditions. The SD-TEC model was applied to investigate ionospheric TEC variability during the geomagnetic storm event of 9 March 2012 at midlatitude station NJJJ located in New Jersey, USA. The high temporal resolution TEC results suggest TEC production and loss rate differences before, during, and after the storm.
E-GVAP, the EIG EUMETNET GNSS Water Vapour Programme
NASA Astrophysics Data System (ADS)
Jones, J.; de Haan, S.; Vedel, H.
2011-12-01
The main purpose of E-GVAP is to deliver near real-time (NRT) ground based GNSS delay data for usage in operational meteorology. This involves the collection and processing of raw GNSS data to estimate zenith total delay (ZTD) and subsequent collection and distribution of ZTD data to European national meteorological services. Validation and quality control, production of 2D animated water vapour maps, development of best practices for GNSS data processing and data usage in Numerical Weather Prediction (NWP) models, are other important aspects. Furthermore there is a current push for more real-time observations which would have positive impacts in high both resolution NWP and for nowcasting applications. We present an overview of the current status of E-GVAP.
The Tropospheric Products of the International VLBI Service for Geodesy and Astrometry
NASA Technical Reports Server (NTRS)
Heinkelmann, Robert; Schwatke, Christian
2010-01-01
The IVS runs two tropospheric products: The IVS tropospheric parameter rapid combination monitors the zenith wet delay (ZWD) and zenith total delay (ZTD) of the rapid turnaround sessions R1 and R4. Goal of the combination is the identification and the exclusion of outliers by comparison and the assessment of the precision of current VLBI solutions in terms of tropospheric parameters. The rapid combination is done on a weekly basis four weeks after the observation files are released on IVS Data Centers. Since tropospheric and geodetic parameters, such as vertical station components, can significantly correlate, the consistency of the ZTD can be a measure of the consistency of the corresponding TRF as well. The ZWD mainly rely on accurate atmospheric pressure data. Thus, besides estimation techniques, modeling and analyst s noise, ZWD reflects differences in the atmospheric pressure data applied to the VLBI analysis. The second product, called tropospheric parameter long-term combination, aims for an accurate determination of climatological signals, such as trends of the atmospheric water vapor observed by VLBI. Therefore, the long-term homogeneity of atmospheric pressure data plays a crucial role for this product. The paper reviews the methods applied and results achieved so far and describes the new maintenance through DGFI.
NASA Technical Reports Server (NTRS)
Koblinsky, C. J.; Ryan, J.; Braatz, L.; Klosko, S. M.
1993-01-01
The overall accuracy of the U.S. Navy Geosat altimeter wet atmospheric range delay caused by refraction through the atmosphere is directly assessed by comparing the estimates made from the DMSP Special Sensor Microwave/Imager and the U.S. Navy Fleet Numerical Ocean Center forecast model for Geosat with measurements of total zenith columnar water vapor content from four VLBI sites. The assessment is made by comparing time series of range delay from various methods at each location. To determine the importance of diurnal variation in water vapor content in noncoincident estimates, the VLBI measurements were made at 15-min intervals over a few days. The VLBI measurements showed strong diurnal variations in columnar water vapor at several sites, causing errors of the order 3 cm rms in any noncoincident measurement of the wet troposphere range delay. These errors have an effect on studies of annual and interannual changes in sea level with Geosat data.
NASA Astrophysics Data System (ADS)
Ahmed, F.; Teferle, F. N.; Bingley, R. M.
2012-04-01
Since September 2011 the University of Luxembourg in collaboration with the University of Nottingham has been setting up two near real-time processing systems for ground-based GNSS data for the provision of zenith total delay (ZTD) and integrated water vapour (IWV) estimates. Both systems are based on Bernese v5.0, use the double-differenced network processing strategy and operate with a 1-hour (NRT1h) and 15-minutes (NRT15m) update cycle. Furthermore, the systems follow the approach of the E-GVAP METO and IES2 systems in that the normal equations for the latest data are combined with those from the previous four updates during the estimation of the ZTDs. NRT1h currently takes the hourly data from over 130 GNSS stations in Europe whereas NRT15m is primarily using the real-time streams of EUREF-IP. Both networks include additional GNSS stations in Luxembourg, Belgium and France. The a priori station coordinates for all of these stem from a moving average computed over the last 20 to 50 days and are based on the precise point positioning processing strategy. In this study we present the first ZTD and IWV estimates obtained from the NRT1h and NRT15m systems in development at the University of Luxembourg. In a preliminary evaluation we compare their performance to the IES2 system at the University of Nottingham and find the IWV estimates to agree at the sub-millimetre level.
Mendez Astudillo, Jorge; Lau, Lawrence; Tang, Yu-Ting; Moore, Terry
2018-02-14
As Global Navigation Satellite System (GNSS) signals travel through the troposphere, a tropospheric delay occurs due to a change in the refractive index of the medium. The Precise Point Positioning (PPP) technique can achieve centimeter/millimeter positioning accuracy with only one GNSS receiver. The Zenith Tropospheric Delay (ZTD) is estimated alongside with the position unknowns in PPP. Estimated ZTD can be very useful for meteorological applications, an example is the estimation of water vapor content in the atmosphere from the estimated ZTD. PPP is implemented with different algorithms and models in online services and software packages. In this study, a performance assessment with analysis of ZTD estimates from three PPP online services and three software packages is presented. The main contribution of this paper is to show the accuracy of ZTD estimation achievable in PPP. The analysis also provides the GNSS users and researchers the insight of the processing algorithm dependence and impact on PPP ZTD estimation. Observation data of eight whole days from a total of nine International GNSS Service (IGS) tracking stations spread in the northern hemisphere, the equatorial region and the southern hemisphere is used in this analysis. The PPP ZTD estimates are compared with the ZTD obtained from the IGS tropospheric product of the same days. The estimates of two of the three online PPP services show good agreement (<1 cm) with the IGS ZTD values at the northern and southern hemisphere stations. The results also show that the online PPP services perform better than the selected PPP software packages at all stations.
Evaluation of Real-Time Ground-Based GPS Meteorology
NASA Astrophysics Data System (ADS)
Fang, P.; Bock, Y.; Gutman, S.
2003-04-01
We demonstrate and evaluate a system to estimate zenith tropospheric delays in real time (5-10 minute latency) based on the technique of instantaneous GPS positioning as described by Bock et al. [2000] using data from the Orange County Real Time GPS Network. OCRTN is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming. Currently, ten sites are streaming data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays, and (3) RINEX data to decimated to 30 seconds. The network is composed of ten sites. The distribution of nine of the sites approximates a right triangle with two 60 km legs, and a tenth site on Catalina Island a distance of about 50 km (over water) from the hypotenuse of the triangle. Relative zenith delays are estimated every second with a latency less than a second. Median values are computed at a user-specified interval (e.g., 10 minutes) with outliers greater than 4 times the interquartile range rejected. We describe the results with those generated by our operational system using the GAMIT software, with a latency of 30-60 minutes. Earlier results (from a similar network) comparing 30-minute median RTD values to GAMIT 30-minute estimates indicate that the two solutions differ by about 1 cm. We also describe our approach to determining absolute zenith delays. If an Internet connection is available we will present a real-time demonstration. [Bock, Y., R. Nikolaidis, P. J. de Jonge, and M. Bevis, Instantaneous resolution of crustal motion at medium distances with the Global Positioning System, J. Geophys. Res., 105, 28,223-28,254, 2000.
Real-time Retrieving Atmospheric Parameters from Multi-GNSS Constellations
NASA Astrophysics Data System (ADS)
Li, X.; Zus, F.; Lu, C.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H.
2016-12-01
The multi-constellation GNSS (e.g. GPS, GLONASS, Galileo, and BeiDou) bring great opportunities and challenges for real-time retrieval of atmospheric parameters for supporting numerical weather prediction (NWP) nowcasting or severe weather event monitoring. In this study, the observations from different GNSS are combined together for atmospheric parameter retrieving based on the real-time precise point positioning technique. The atmospheric parameters retrieved from multi-GNSS observations, including zenith total delay (ZTD), integrated water vapor (IWV), horizontal gradient (especially high-resolution gradient estimates) and slant total delay (STD), are carefully analyzed and evaluated by using the VLBI, radiosonde, water vapor radiometer and numerical weather model to independently validate the performance of individual GNSS and also demonstrate the benefits of multi-constellation GNSS for real-time atmospheric monitoring. Numerous results show that the multi-GNSS processing can provide real-time atmospheric products with higher accuracy, stronger reliability and better distribution, which would be beneficial for atmospheric sounding systems, especially for nowcasting of extreme weather.
Retrieval of Total Ozone Amounts from Zenith-Sky Intensities in the Ultraviolet Region
NASA Technical Reports Server (NTRS)
Bojkov, B. R.; Bhartia, P. K.; Hilsenrath, E.; Labow, G. J.
2004-01-01
A new method to determine the total ozone column from zenith-sky intensities in the ultraviolet region has been developed for the Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV) operating at the NASA Goddard Space Flight Center. The total ozone column amounts are derived by comparing the ratio of measured intensities from three wavelengths with the equivalent ratios calculated by a radiative transfer model. The differences between the retrieved ozone column amounts and the collocated Brewer double monochromator are within 2% for the measurement period beginning in April 2001. The methodology, as well as the influences of the ozone profiles, aerosols, surface albedo, and the solar zenith angle on the retrieved total ozone amounts will be presented.
Spectral changes in the zenith skylight during total solar eclipses.
Hall, W N
1971-06-01
The relative spectral intensity of the zenith sky was measured with an optical scanning spectrometer at Nantucket Island, Massachusetts, during the total solar eclipse of 7 March 1970. The spectral ratios I(5100 A)/I(4300 A) and I(5900 A)/I(5100 A) at Nantucket remained unchanged for 96% or less obscuration of the sun by the moon. The results are compared with other recent relative spectral intensity measurements made during total solar eclipses. Comparison with other eclipse measurements for solar elevation angle at totality less than 45 degrees shows a blue color shift consistent with rayleigh scattering. Eclipses with solar elevation angles at totality greater than 45 degrees do not show consistent color shifts. This inconsistency may be due to difficulty in establishing a suitable reference spectrum for comparison with the spectral distribution of the zenith sky at totality. Selection of a suitable reference spectrum is discussed.
Inter-technique validation of tropospheric slant total delays
NASA Astrophysics Data System (ADS)
Kačmařík, Michal; Douša, Jan; Dick, Galina; Zus, Florian; Brenot, Hugues; Möller, Gregor; Pottiaux, Eric; Kapłon, Jan; Hordyniec, Paweł; Václavovic, Pavel; Morel, Laurent
2017-06-01
An extensive validation of line-of-sight tropospheric slant total delays (STD) from Global Navigation Satellite Systems (GNSS), ray tracing in numerical weather prediction model (NWM) fields and microwave water vapour radiometer (WVR) is presented. Ten GNSS reference stations, including collocated sites, and almost 2 months of data from 2013, including severe weather events were used for comparison. Seven institutions delivered their STDs based on GNSS observations processed using 5 software programs and 11 strategies enabling to compare rather different solutions and to assess the impact of several aspects of the processing strategy. STDs from NWM ray tracing came from three institutions using three different NWMs and ray-tracing software. Inter-techniques evaluations demonstrated a good mutual agreement of various GNSS STD solutions compared to NWM and WVR STDs. The mean bias among GNSS solutions not considering post-fit residuals in STDs was -0.6 mm for STDs scaled in the zenith direction and the mean standard deviation was 3.7 mm. Standard deviations of comparisons between GNSS and NWM ray-tracing solutions were typically 10 mm ± 2 mm (scaled in the zenith direction), depending on the NWM model and the GNSS station. Comparing GNSS versus WVR STDs reached standard deviations of 12 mm ± 2 mm also scaled in the zenith direction. Impacts of raw GNSS post-fit residuals and cleaned residuals on optimal reconstructing of GNSS STDs were evaluated at inter-technique comparison and for GNSS at collocated sites. The use of raw post-fit residuals is not generally recommended as they might contain strong systematic effects, as demonstrated in the case of station LDB0. Simplified STDs reconstructed only from estimated GNSS tropospheric parameters, i.e. without applying post-fit residuals, performed the best in all the comparisons; however, it obviously missed part of tropospheric signals due to non-linear temporal and spatial variations in the troposphere. Although the post-fit residuals cleaned of visible systematic errors generally showed a slightly worse performance, they contained significant tropospheric signal on top of the simplified model. They are thus recommended for the reconstruction of STDs, particularly during high variability in the troposphere. Cleaned residuals also showed a stable performance during ordinary days while containing promising information about the troposphere at low-elevation angles.
NASA Astrophysics Data System (ADS)
Raju, Suresh; Saha, Korak; Anupama, K.; Parameswaran, Krishnaswamy
Ground based GPS finds potential applications in many atmospheric studies such as the spatial distribution of columnar water vapor as well as tidal oscillations in the atmosphere. As the zenith tropospheric delay (ZTD) derived from GPS data is a function of atmospheric pressure, temperature and watervapor, the effect of atmospheric oscillations could reflect more promi-nently in its temporal variations. The GPS data with very high temporal resolution (5 min.) from thirteen IGS stations in the longitudinal sector of 50o-130oE are used to establish its potential for studying the atmospheric tidal, intra-seasonal and planetary oscillations. Very prominent tidal (diurnal and semi-diurnal) oscillations observed at all these stations, with am-plitude of the diurnal variation as ˜0.5-12+0.5 mm and that of the semi-diurnal variation in the range ˜0.1-5+0.2 mm. Although 90% of the delay is contributed by the dry atmospheric pressure (which shows prominent semi-diurnal oscillations) the tidal oscillations in the ZTD is dominated by the diurnal component. This effect could be attributed to the temporal variations of atmospheric water vapor in a diurnal scale. The amplitude of these variations in general is largest near the equator and decreases with increase in latitude. Interestingly, this latitudinal trend matches very well with the latitude variation of the precipitable water vapor (as well as the actual precipitation) in this longitudinal region. Though the values of ZTD at stations very close to equator stations do not show any prominent seasonal variation, as the latitude increases the annual variation in ZTD becomes more distinct. A prominent peak in ZTD is observed during the July-August period, which matches well with the annual variation of atmospheric water vapor. This shows that the diurnal and seasonal variation of ZTD is mainly governed by the corresponding variations in atmospheric water vapor, even though its contribution to the total delay is around 10%. Keywords: GPS, Tropospheric delay, Atmospheric oscillations # Dr. K. Parameswaran is supported by CSIR through Emeritus Scientist Scheme. * corresponding author: koraksaha@gmail.com
Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory
DOE R&D Accomplishments Database
SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.
2009-07-10
Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.
NASA Technical Reports Server (NTRS)
Heath, Donald F.; Ahmad, Zia
2001-01-01
In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.
Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA
NASA Technical Reports Server (NTRS)
Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen
2011-01-01
To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.
NASA Astrophysics Data System (ADS)
Masoumi, Salim; McClusky, Simon; Koulali, Achraf; Tregoning, Paul
2017-04-01
Improper modeling of horizontal tropospheric gradients in GPS analysis induces errors in estimated parameters, with the largest impact on heights and tropospheric zenith delays. The conventional two-axis tilted plane model of horizontal gradients fails to provide an accurate representation of tropospheric gradients under weather conditions with asymmetric horizontal changes of refractivity. A new parametrization of tropospheric gradients whereby an arbitrary number of gradients are estimated as discrete directional wedges is shown via simulations to significantly improve the accuracy of recovered tropospheric zenith delays in asymmetric gradient scenarios. In a case study of an extreme rain event that occurred in September 2002 in southern France, the new directional parametrization is able to isolate the strong gradients in particular azimuths around the GPS stations consistent with the "V" shape spatial pattern of the observed precipitation. In another study of a network of GPS stations in the Sierra Nevada region where highly asymmetric tropospheric gradients are known to exist, the new directional model significantly improves the repeatabilities of the stations in asymmetric gradient situations while causing slightly degraded repeatabilities for the stations in normal symmetric gradient conditions. The average improvement over the entire network is ˜31%, while the improvement for one of the worst affected sites P631 is ˜49% (from 8.5 mm to 4.3 mm) in terms of weighted root-mean-square (WRMS) error and ˜82% (from -1.1 to -0.2) in terms of skewness. At the same station, the use of the directional model changes the estimates of zenith wet delay by 15 mm (˜25%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urlings, T. A. J., E-mail: t-urlings@hotmail.com; Vries, A. C. de, E-mail: a.de.vries@mchaaglanden.nl; Mol van Otterloo, J. C. A. de, E-mail: a.de.molvanotterloo@mchaaglanden.nl
2015-06-15
PurposeThe purpose of this study was to objectify and evaluate risk factors for thromboembolic complications after treatment with a Zenith{sup ®} Low Profile Endovascular Graft (Zenith LP). Results were compared with those in the recent literature on endovascular aortic repair (EVAR) and with the thromboembolic complications in the patient group treated with a Zenith Flex Endovascular Graft in our institute in the period before the use of the Zenith LP.Materials and MethodsAll consecutive patients who were suitable for treatment with a Zenith LP endograft between October 2010 and December 2011 were included. The preprocedural computed tomography scan (CT), procedural angiographicmore » images, and the postprocedural CT scans were evaluated for risk factors for and signs of thromboembolic complications. All patients treated between December 2007 and November 2012 with a Zenith Flex endograft were retrospectively evaluated for thromboembolic complications.ResultsIn the study period 17 patients were treated with a LP Zenith endograft. Limb occlusion occurred in 35 % of the patients. Limb occlusions occurred in 24 % of the limbs at risk (one limb occluded twice). In one patient two risk factors for limb occlusion were identified. Between December 2007 and November 2012, a total of 43 patients were treated with a Zenith Flex endograft. No limb occlusion or distal embolization occurred.ConclusionDespite that this was a small retrospective study, the Zenith LP endograft seems to be associated with more frequent thromboembolic complications compared with the known limb occlusion rates in the literature and those of the patients treated with a Zenith Flex endograft in our institute.« less
NASA Astrophysics Data System (ADS)
Ding, Wenwu; Teferle, Norman; Kaźmierski, Kamil; Laurichesse, Denis; Yuan, Yunbin
2017-04-01
Observations from multiple Global Navigation Satellite System (GNSS) can improve the performance of real-time (RT) GNSS meteorology, in particular of the Zenith Total Delay (ZTD) estimates. RT ZTD estimates in combination with derived precipitable water vapour estimates can be used for weather now-casting and the tracking of severe weather events. While a number of published literature has already highlighted this positive development, in this study we describe an operational RT system for extracting ZTD using a modified version of the PPP-wizard (with PPP denoting Precise Point Positioning). Multi-GNSS, including GPS, GLONASS and Galileo, observation streams are processed using a RT PPP strategy based on RT satellite orbit and clock products from the Centre National d'Etudes Spatiales (CNES). A continuous experiment for 30 days was conducted, in which the RT observation streams of 20 globally distributed stations were processed. The initialization time and accuracy of the RT troposphere products using single and/or multi-system observations were evaluated. The effect of RT PPP ambiguity resolution was also evaluated. The results revealed that the RT troposphere products based on single system observations can fulfill the requirements of the meteorological application in now-casting systems. We noted that the GPS-only solution is better than the GLONASS-only solution in both initialization and accuracy. While the ZTD performance can be improved by applying RT PPP ambiguity resolution, the inclusion of observations from multiple GNSS has a more profound effect. Specifically, we saw that the ambiguity resolution is more effective in improving the accuracy, whereas the initialization process can be better accelerated by multi-GNSS observations. Combining all systems, RT troposphere products with an average accuracy of about 8 mm in ZTD were achieved after an initialization process of approximately 9 minutes, which supports the application of multi-GNSS observations and ambiguity resolution for RT meteorological applications.
VLBI-derived troposphere parameters during CONT08
NASA Astrophysics Data System (ADS)
Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.
2011-07-01
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.
The effect of tropospheric fluctuations on the accuracy of water vapor radiometry
NASA Technical Reports Server (NTRS)
Wilcox, J. Z.
1992-01-01
Line-of-sight path delay calibration accuracies of 1 mm are needed to improve both angular and Doppler tracking capabilities. Fluctuations in the refractivity of tropospheric water vapor limit the present accuracies to about 1 nrad for the angular position and to a delay rate of 3x10(exp -13) sec/sec over a 100-sec time interval for Doppler tracking. This article describes progress in evaluating the limitations of the technique of water vapor radiometry at the 1-mm level. The two effects evaluated here are: (1) errors arising from tip-curve calibration of WVR's in the presence of tropospheric fluctuations and (2) errors due to the use of nonzero beamwidths for water vapor radiometer (WVR) horns. The error caused by tropospheric water vapor fluctuations during instrument calibration from a single tip curve is 0.26 percent in the estimated gain for a tip-curve duration of several minutes or less. This gain error causes a 3-mm bias and a 1-mm scale factor error in the estimated path delay at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor column density present in the troposphere during the astrometric observation. The error caused by WVR beam averaging of tropospheric fluctuations is 3 mm at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor (and is proportionally higher for higher water vapor content) for current WVR beamwidths (full width at half maximum of approximately 6 deg). This is a stochastic error (which cannot be calibrated) and which can be reduced to about half of its instantaneous value by time averaging the radio signal over several minutes. The results presented here suggest two improvements to WVR design: first, the gain of the instruments should be stabilized to 4 parts in 10(exp 4) over a calibration period lasting 5 hours, and second, the WVR antenna beamwidth should be reduced to about 0.2 deg. This will reduce the error induced by water vapor fluctuations in the estimated path delays to less than 1 mm for the elevation range from zenith to 6 deg for most observation weather conditions.
NASA Astrophysics Data System (ADS)
Basak, Tamal; Chakrabarti, Sandip Kumar
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (DeltaA) and amplitude time delay (Deltat) (vis- ´a-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22(°) 27'N, 87(°) 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (alpha_{eff}) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Deltat). For the C-class flares we find that there is a direct correspondence between Deltat of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Deltat for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux phi_{max} independent of these time slots, the goodness of fit, as measured by reduced-chi(2) , actually worsens as the day progresses. The variation of the Z dependence of reduced-chi(2) seems to follow the variation of standard deviation of Z along the T_x-R_x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Deltat and phi_{max} was observed.
NASA Astrophysics Data System (ADS)
Basak, Tamal; Chakrabarti, Sandip K.
2013-12-01
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (Δ A) and amplitude time delay (Δ t) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22∘ 27'N, 87∘ 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ( α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δ t). For the C-class flares we find that there is a direct correspondence between Δ t of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δ t for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ϕ max independent of these time slots, the goodness of fit, as measured by reduced- χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced- χ 2 seems to follow the variation of standard deviation of Z along the T x - R x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Δ t and ϕ max was observed.
Acoustical Measurement of Nonlinear Internal Waves Using the Inverted Echo Sounder
2009-05-05
showed that the vertical round-trip travel time of an acoustic pulse allowed measurement of the variation of thermal stratification caused by internal...translate from distance to time , note that reflection from a position 56 m from zenith to a PIES at 1024-m depth would have a delay time of 2 ms. Note that...approximation of the travel time scatter, the delay to the arrival of the dis- tribution peak tp is directly related to the width b: t p 5 t 0 1 b. (24) The
A New Zenith Tropospheric Delay Grid Product for Real-Time PPP Applications over China.
Lou, Yidong; Huang, Jinfang; Zhang, Weixing; Liang, Hong; Zheng, Fu; Liu, Jingnan
2017-12-27
Tropospheric delay is one of the major factors affecting the accuracy of electromagnetic distance measurements. To provide wide-area real-time high precision zenith tropospheric delay (ZTD), the temporal and spatial variations of ZTD with altitude were analyzed on the bases of the latest meteorological reanalysis product (ERA-Interim) provided by the European Center for Medium-Range Weather Forecasts (ECMWF). An inverse scale height model at given locations taking latitude, longitude and day of year as inputs was then developed and used to convert real-time ZTD at GPS stations in Crustal Movement Observation Network of China (CMONOC) from station height to mean sea level (MSL). The real-time ZTD grid product (RtZTD) over China was then generated with a time interval of 5 min. Compared with ZTD estimated in post-processing mode, the bias and error RMS of ZTD at test GPS stations derived from RtZTD are 0.39 and 1.56 cm, which is significantly more accurate than commonly used empirical models. In addition, simulated real-time kinematic Precise Point Positioning (PPP) tests show that using RtZTD could accelerate the BDS-PPP convergence time by up to 32% and 65% in the horizontal and vertical components (set coordinate error thresholds to 0.4 m), respectively. For GPS-PPP, the convergence time using RtZTD can be accelerated by up to 29% in the vertical component (0.2 m).
Application of ray-traced tropospheric slant delays to geodetic VLBI analysis
NASA Astrophysics Data System (ADS)
Hofmeister, Armin; Böhm, Johannes
2017-08-01
The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.
Gong, W; Meyer, F J; Webley, P; Morton, D
2013-01-01
[1] Atmospheric phase delays are considered to be one of the main performance limitations for high-quality satellite radar techniques, especially when applied to ground deformation monitoring. Numerical weather prediction (NWP) models are widely seen as a promising tool for the mitigation of atmospheric delays as they can provide knowledge of the atmospheric conditions at the time of Synthetic Aperture Radar data acquisition. However, a thorough statistical analysis of the performance of using NWP production in radar signal correction is missing to date. This study provides a quantitative analysis of the accuracy in using operational NWP products for signal delay correction in satellite radar geodetic remote sensing. The study focuses on the temperate, subarctic, and Arctic climate regions due to a prevalence of relevant geophysical signals in these areas. In this study, the operational High Resolution Rapid Refresh over the Alaska region (HRRR-AK) model is used and evaluated. Five test sites were selected over Alaska (AK), USA, covering a wide range of climatic regimes that are commonly encountered in high-latitude regions. The performance of the HRRR-AK NWP model for correcting absolute atmospheric range delays of radar signals is assessed by comparing to radiosonde observations. The average estimation accuracy for the one-way zenith total atmospheric delay from 24 h simulations was calculated to be better than ∼14 mm. This suggests that the HRRR-AK operational products are a good data source for spaceborne geodetic radar observations atmospheric delay correction, if the geophysical signal to be observed is larger than 20 mm. PMID:25973360
Estimates of Zenith Total Delay trends from GPS reprocessing with autoregressive process
NASA Astrophysics Data System (ADS)
Klos, Anna; Hunegnaw, Addisu; Teferle, Felix Norman; Ebuy Abraha, Kibrom; Ahmed, Furqan; Bogusz, Janusz
2017-04-01
Nowadays, near real-time Zenith Total Delay (ZTD) estimates from Global Positioning System (GPS) observations are routinely assimilated into numerical weather prediction (NWP) models to improve the reliability of forecasts. On the other hand, ZTD time series derived from homogeneously re-processed GPS observations over long periods have the potential to improve our understanding of climate change on various temporal and spatial scales. With such time series only recently reaching somewhat adequate time spans, the application of GPS-derived ZTD estimates to climate monitoring is still to be developed further. In this research, we examine the character of noise in ZTD time series for 1995-2015 in order to estimate more realistic magnitudes of trend and its uncertainty than would be the case if the stochastic properties are not taken into account. Furthermore, the hourly sampled, homogeneously re-processed and carefully homogenized ZTD time series from over 700 globally distributed stations were classified into five major climate zones. We found that the amplitudes of annual signals reach values of 10-150 mm with minimum values for the polar and Alpine zones. The amplitudes of daily signals were estimated to be 0-12 mm with maximum values found for the dry zone. We examined seven different noise models for the residual ZTD time series after modelling all known periodicities. This identified a combination of white plus autoregressive process of fourth order to be optimal to match all changes in power of the ZTD data. When the stochastic properties are neglected, ie. a pure white noise model is employed, only 11 from 120 trends were insignificant. Using the optimum noise model more than half of the 120 examined trends became insignificant. We show that the uncertainty of ZTD trends is underestimated by a factor of 3-12 when the stochastic properties of the ZTD time series are ignored and we conclude that it is essential to properly model the noise characteristics of such time series when interpretations in terms of climate change are to be performed.
Homologous Deformation of the Effelsberg 100-m Telescope Determined with a Total Station
NASA Technical Reports Server (NTRS)
Nothnagel, Axel; Pietzner, Judith; Eling, Christian; Hering, Claudia
2010-01-01
Due to gravitation the main reflector of the Effelsberg 100-m telescope of the Max Planck Institute for Radio Astronomy is deformed whenever it is tilted from zenith to arbitrary elevation angles. However, the resulting shape always is a paraboloid again, though with different parameters, a phenomenon which is called homologous deformation. In summer 2008, we have carried out measurements with a total station to determine the magnitude of these deformations in order to evaluate existing assumptions provided by the manufacturer from the telescope's design phase. The measurements are based on a newly developed approach with a Leica TCRP 1201 total station mounted head down near the subreflector. Mini-retro-reflectors are placed at various locations on the paraboloid itself and on the subreflector support structure. The results indicate that the measurement setup is suitable for the purpose and provides the information needed for a determination of elevation dependent delay corrections. The focal length changes only by about 8 mm when the telescope is tilted from 90. to 7.5. elevation angle.
Zenith skylight intensity and color during the total solar eclipse of 20 July 1963.
Sharp, W E; Lloyd, J W; Silverman, S M
1966-05-01
The zenith skylight intensity was measured, with a resolution of 10 A, over the wavelength range from 5200 A to 6400 A during a total solar eclipse at Hermon, Maine. The intensity was found to change by about two orders of magnitude in the 2-min period before totality and reached a minimum during totality of 19.5 kR/A at 5200 A. The spectral distribution remained that of the day sky until the sun was more than 99.8% obscured. During totality, the shorter wavelengths were enhanced, indicating a shift to the blue in sky color. Comparisons with an independent measurement from an aircraft show that the intensity scale height of the secondary scattered component, predominating at totality, is significantly less than that of the day sky. The measurements are compared with the day and twilight sky.
2006-06-01
angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar
Improved estimation of Mars ionosphere total electron content
NASA Astrophysics Data System (ADS)
Cartacci, M.; Sánchez-Cano, B.; Orosei, R.; Noschese, R.; Cicchetti, A.; Witasse, O.; Cantini, F.; Rossi, A. P.
2018-01-01
We describe an improved method to estimate the Total Electron Content (TEC) of the Mars ionosphere from the echoes recorded by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005; Orosei et al., 2015) onboard Mars Express in its subsurface sounding mode. In particular, we demonstrate that this method solves the issue of the former algorithm described at (Cartacci et al., 2013), which produced an overestimation of TEC estimates on the day side. The MARSIS signal is affected by a phase distortion introduced by the Mars ionosphere that produces a variation of the signal shape and a delay in its travel time. The new TEC estimation is achieved correlating the parameters obtained through the correction of the aforementioned effects. In detail, the knowledge of the quadratic term of the phase distortion estimated by the Contrast Method (Cartacci et al., 2013), together with the linear term (i.e. the extra time delay), estimated through a radar signal simulator, allows to develop a new algorithm particularly well suited to estimate the TEC for solar zenith angles (SZA) lower than 95° The new algorithm for the dayside has been validated with independent data from MARSIS in its Active Ionospheric Sounding (AIS) operational mode, with comparisons with other previous algorithms based on MARSIS subsurface data, with modeling and with modeling ionospheric distortion TEC reconstruction.
NASA Astrophysics Data System (ADS)
Zheng, Fu; Lou, Yidong; Gu, Shengfeng; Gong, Xiaopeng; Shi, Chuang
2017-10-01
During past decades, precise point positioning (PPP) has been proven to be a well-known positioning technique for centimeter or decimeter level accuracy. However, it needs long convergence time to get high-accuracy positioning, which limits the prospects of PPP, especially in real-time applications. It is expected that the PPP convergence time can be reduced by introducing high-quality external information, such as ionospheric or tropospheric corrections. In this study, several methods for tropospheric wet delays modeling over wide areas are investigated. A new, improved model is developed, applicable in real-time applications in China. Based on the GPT2w model, a modified parameter of zenith wet delay exponential decay wrt. height is introduced in the modeling of the real-time tropospheric delay. The accuracy of this tropospheric model and GPT2w model in different seasons is evaluated with cross-validation, the root mean square of the zenith troposphere delay (ZTD) is 1.2 and 3.6 cm on average, respectively. On the other hand, this new model proves to be better than the tropospheric modeling based on water-vapor scale height; it can accurately express tropospheric delays up to 10 km altitude, which potentially has benefits in many real-time applications. With the high-accuracy ZTD model, the augmented PPP convergence performance for BeiDou navigation satellite system (BDS) and GPS is evaluated. It shows that the contribution of the high-quality ZTD model on PPP convergence performance has relation with the constellation geometry. As BDS constellation geometry is poorer than GPS, the improvement for BDS PPP is more significant than that for GPS PPP. Compared with standard real-time PPP, the convergence time is reduced by 2-7 and 20-50% for the augmented BDS PPP, while GPS PPP only improves about 6 and 18% (on average), in horizontal and vertical directions, respectively. When GPS and BDS are combined, the geometry is greatly improved, which is good enough to get a reliable PPP solution, the augmentation PPP improves insignificantly comparing with standard PPP.
Assessment of gingival symmetry with digital measuring tools and its reproducibility.
Wilson, David; Soileau, Kristi; Esquivel, Jonathan; Cordero, Adriana; Buchman, Wes; Maney, Pooja; Archontia Palaiologou, A
The aim of this study was to investigate the accuracy of digital measuring tools to measure the position of gingival zeniths and to assess its reproducibility between different examiners. A total of 108 subjects were photographed at the Louisiana State University School of Dentistry. The settings, positioning of the digital camera, and subjects' Frankfurt levels were standardized. A photograph was taken of the six anterior maxillary teeth of each subject, and their corresponding free gingival margins. Digital caliper measurements were taken intraorally from the zenith to the incisal edge of the right maxillary central incisor. A reference line was drawn across the screen on each image at the level of the zenith of tooth 8. Three calibrated examiners then measured the distance from the reference line to the zeniths of the other five anterior maxillary teeth. There was no statistically significant difference between the examiners regarding any of the measurements. Central incisors were at the same level in 84.24% of the subjects, and lateral incisors were within 0.5 mm of central incisors in only 58% of the subjects. Canine zeniths were within 0.5 mm of each other in 43% of the subjects. Only 28% of the subjects presented with zeniths of tooth 6 to tooth 11 within 0.5 mm of each other. Lateral incisors were at or beneath the line drawn from central incisors to cuspids in 90.8% of the subjects. Standardized digital photography taken with the aid of a stadiometer and used to evaluate esthetic parameters allowed for reproducible measurements.
NASA Astrophysics Data System (ADS)
Zhou, Feng; Li, Xingxing; Cai, Miaomiao; Chen, Wen; Dong, Danan; Schuh, Harald
2017-04-01
Since October 2011, the Russian GLONASS has been revitalized and is now fully operational with 24 satellites in orbit. It is critical to assess the benefits and problems of using GLONASS observations (i.e. GLONASS-only or combined GPS/GLONASS) for precise positioning and zenith total delay (ZTD) retrieval on a global scale using the precise point positioning (PPP) technique. In this contribution, extensive evaluations are conducted with GNSS data sets collected from 251 globally distributed stations of the International GNSS Service (IGS) network in July 2016. The stations are divided into 30 groups by antenna/radome types to investigate whether there are antenna/radome-dependent biases in position and ZTD results derived from GLONASS-only PPP. The positioning results do not show obvious antenna/radome-dependent biases except the stations with JAV_RINGANT_G3T/NONE. The averaged biases of the stations with JAV_RINGANT_G3T/NONE in horizontal component especially in north component can even achieve -9.0 mm. The standard deviation (STD) and root mean square (RMS) are used as indicators of positioning repeatability and accuracy, respectively. Compared with GPS-only PPP, smaller averaged STD and RMS values of GLONASS-only PPP are achieved in horizontal component, while larger ones in vertical component. Furthermore, the STD and RMS values of GPS/GLONASS combined PPP solutions are the smallest in horizontal and vertical components, indicating that adding GLONASS observations can achieve better positioning performance than GPS-only PPP. Meanwhile, better positioning repeatability and accuracy are found in north component than that in east component, which may be caused by the configuration of GNSS satellite orbit. With respect to GPS-only PPP-derived ZTD, the ZTD biases, accuracy, and correlation derived from GLONASS-only and GPS/GLONASS PPP solutions are antenna/radome-independent, while the biases and accuracy are slightly latitude- or Geometric Dilution of Precisions (GDOP)-dependent, as well as the ZTD correlation are highly latitude- or GDOP-dependent. We also studied the impact of the chosen elevation cutoff angles on the positioning and ZTD retrieval. GLONASS-only PPP is found more sensitive with the elevation cutoff angles than GPS-only PPP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keihm, S. J.; Bar-Server, Y.; Liljegren, J. C.
2002-06-01
Collocated measurements of opacity (from water vapor radiometer brightness temperatures) and wet path delay (from ground-based tracking of global positioning satellites) are used to constrain the model of atmospheric water vapor absorption in the 20-32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately five months of data was obtained from two experiment sites. At the Cloud and Radiation Testbed (CART)more » site near Lamont, Oklahoma, three independent water vapor radiometers (WVRs) provided near-continuous opacity measurements over the interval July-September 1998. At the NASA/Goldstone tracking station in the California desert two WVRs; obtained opacity data over the September-October 1997 interval. At both sites a Global Positioning Satellite (GPS) receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of four candidate absorption models referenced in the literature. With one exception, all three models provide agreement within 5% of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2-3% level. This absorption model accuracy level represents a significant improvement over that attainable using radiosondes.« less
Application of troposphere model from NWP and GNSS data into real-time precise positioning
NASA Astrophysics Data System (ADS)
Wilgan, Karina; Hadas, Tomasz; Kazmierski, Kamil; Rohm, Witold; Bosy, Jaroslaw
2016-04-01
The tropospheric delay empirical models are usually functions of meteorological parameters (temperature, pressure and humidity). The application of standard atmosphere parameters or global models, such as GPT (global pressure/temperature) model or UNB3 (University of New Brunswick, version 3) model, may not be sufficient, especially for positioning in non-standard weather conditions. The possible solution is to use regional troposphere models based on real-time or near-real time measurements. We implement a regional troposphere model into the PPP (Precise Point Positioning) software GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) developed at Wroclaw University of Environmental and Life Sciences. The software is capable of processing static and kinematic multi-GNSS data in real-time and post-processing mode and takes advantage of final IGS (International GNSS Service) products as well as IGS RTS (Real-Time Service) products. A shortcoming of PPP technique is the time required for the solution to converge. One of the reasons is the high correlation among the estimated parameters: troposphere delay, receiver clock offset and receiver height. To efficiently decorrelate these parameters, a significant change in satellite geometry is required. Alternative solution is to introduce the external high-quality regional troposphere delay model to constrain troposphere estimates. The proposed model consists of zenith total delays (ZTD) and mapping functions calculated from meteorological parameters from Numerical Weather Prediction model WRF (Weather Research and Forecasting) and ZTDs from ground-based GNSS stations using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zurich.
GPS-PWV Estimation and Analysis for CGPS Sites Operating in Mexico
NASA Astrophysics Data System (ADS)
Gutierrez, O.; Vazquez, G. E.; Bennett, R. A.; Adams, D. K.
2014-12-01
Eighty permanent Global Positioning System (GPS) tracking stations that belong to several networks spanning Mexico intended for diverse purposes and applications were used to estimate precipitable water vapor (PWV) using measurement series covering the period of 2000-2014. We extracted the GPS-PWV from the ionosphere-free double-difference carrier phase observations, processed using the GAMIT software. The GPS data were processed with a 30 s sampling rate, 15-degree cutoff angle, and precise GPS orbits disseminated by IGS. The time-varying part of the zenith wet delay was estimated using the Global Mapping Function (GMF), while the constant part is evaluated using the Neil tropospheric model. The data reduction to compute the zenith wet delay follows the step piecewise linear strategy, which is subsequently transformed to PWV estimated every 2-hr. Although there exist previous isolated studies for estimating PWV in Mexico, this study is an attempt to perform a more complete and comprehensive analysis of PWV estimation throughout the Mexican territory. Our resulting GPS-based PWV were compared to available PWV values for 30 stations that operate in Mexico and report the PWV to Suominet. This comparison revealed differences of 1 to 2 mm between the GPS-PWV solution and the PWV reported by Suominet. Accurate values of GPS-PWV will help enhance Mexico ability to investigate water vapor advection, convective and frontal rainfall and long-term climate variability.
Simulation and mitigation of higher-order ionospheric errors in PPP
NASA Astrophysics Data System (ADS)
Zus, Florian; Deng, Zhiguo; Wickert, Jens
2017-04-01
We developed a rapid and precise algorithm to compute ionospheric phase advances in a realistic electron density field. The electron density field is derived from a plasmaspheric extension of the International Reference Ionosphere (Gulyaeva and Bilitza, 2012) and the magnetic field stems from the International Geomagnetic Reference Field. For specific station locations, elevation and azimuth angles the ionospheric phase advances are stored in a look-up table. The higher-order ionospheric residuals are computed by forming the standard linear combination of the ionospheric phase advances. In a simulation study we examine how the higher-order ionospheric residuals leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in precise point positioning. The simulation study includes a few hundred globally distributed stations and covers the time period 1990-2015. We take a close look on the estimated zenith delays and tropospheric gradients as they are considered a data source for meteorological and climate related research. We also show how the by product of this simulation study, the look-up tables, can be used to mitigate higher-order ionospheric errors in practise. Gulyaeva, T.L., and Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In: New Developments in the Standard Model, edited by R.J. Larsen, pp. 1-39, NOVA, Hauppauge, New York, 2012, available at https://www.novapublishers.com/catalog/product_info.php?products_id=35812
NASA Astrophysics Data System (ADS)
Petrov, L.
2017-12-01
Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.
GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters
NASA Astrophysics Data System (ADS)
Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.
2003-12-01
The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.
Characterisation of J(O1D) at Cape Grim 2000-2005
NASA Astrophysics Data System (ADS)
Wilson, S. R.
2014-07-01
Estimates of the rate of production of excited oxygen atoms due to the photolysis of ozone J(O1D) have been derived from radiation measurements carried out at Cape Grim, Tasmania (40.6° S, 144.7° E). These estimates agree well with measurements made during SOAPEX-II and with model estimates of clear sky photolysis rates. Observations spanning 2000-2005 have been used to quantify the impact of season, cloud and ozone column amount. The annual cycle of J(O1D) has been investigated via monthly means. These means show an inter-annual variation (monthly standard deviation) of 9%, but in midsummer and midwinter this reduces to 3-4%. Factors dependent upon solar zenith angle and satellite derived total ozone column explain 87% of the observed signal variation of the individual measurements. The impact of total column ozone, expressed as a Radiation Amplification Factor (RAF), is found to be ~1.45, in agreement with model estimates. This ozone dependence explains 20% of the variation observed at medium solar zenith angles (30-50°). The impact of clouds results in a median reduction of 14% in J(O1D) for the same solar zenith angle range. At all solar zenith angles less than 50° approximately 10% of measurements show enhanced J(O1D) due to cloud scattering and this fraction climbs to 25% at higher solar angles. Including estimates of cloudiness derived from Long Wave Radiation measurements resulted in a statistically significant fit to observations but the quality of the fit did not increase significantly as measured by the reduced R2.
Neutral points of skylight polarization observed during the total eclipse on 11 August 1999.
Horváth, Gábor; Pomozi, István; Gál, József
2003-01-20
We report here on the observation of unpolarized (neutral) points in the sky during the total solar eclipse on 11 August 1999. Near the zenith a neutral point was observed at 450 nm at two different points of time during totality. Around this celestial point the distribution of the angle of polarization was heterogeneous: The electric field vectors on the one side were approximately perpendicular to those on the other side. At another moment of totality, near the zenith a local minimum of the degree of linear polarization occurred at 550 nm. Near the antisolar meridian, at a low elevation another two neutral points occurred at 450 nm at a certain moment during totality. Approximately at the position of these neutral points, at another moment of totality a local minimum of the degree of polarization occurred at 550 nm, whereas at 450 nm a neutral point was observed, around which the angle-of-polarization pattern was homogeneous: The electric field vectors were approximately horizontal on both sides of the neutral point.
NASA Astrophysics Data System (ADS)
Park, Han-Earl; Yoon, Ha Su; Yoo, Sung-Moon; Cho, Jungho
2017-04-01
Over the past decade, Global Navigation Satellite System (GNSS) was in the spotlight as a meteorological research tool. The Korea Astronomy and Space Science Institute (KASI) developed a GNSS precipitable water vapor (PWV) information management system to apply PWV to practical applications, such as very short-term weather forecast. The system consists of a DPR, DRS, and TEV, which are divided functionally. The DPR processes GNSS data using the Bernese GNSS software and then retrieves PWV from zenith total delay (ZTD) with the optimized mean temperature equation for the Korean Peninsula. The DRS collects data from eighty permanent GNSS stations in the southern part of the Korean Peninsula and provides the PWV retrieved from GNSS data to a user. The TEV is in charge of redundancy of the DPR. The whole process is performed in near real-time where the delay is ten minutes. The validity of the GNSS PWV was proved by means of a comparison with radiosonde data. In the experiment of numerical weather prediction model, the GNSS PWV was utilized as the initial value of the Weather Research & Forecasting (WRF) model for heavy rainfall event. As a result, we found that the forecasting capability of the WRF is improved by data assimilation of GNSS PWV.
Applying Kalman filtering to investigate tropospheric effects in VLBI
NASA Astrophysics Data System (ADS)
Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Heinkelmann, Robert; Liu, Li; Lu, Cuixian; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald
2014-05-01
Very Long Baseline Interferometry (VLBI) currently provides results, e.g., estimates of the tropospheric delays, with a delay of more than two weeks. In the future, with the coming VLBI2010 Global Observing System (VGOS) and increased usage of electronic data transfer, it is planned that the time between observations and results is decreased. This may, for instance, allow the integration of VLBI-derived tropospheric delays into numerical weather prediction models. Therefore, future VLBI analysis software packages need to be able to process the observational data autonomously in near real-time. For this purpose, we have extended the Vienna VLBI Software (VieVS) by a Kalman filter module. This presentation describes the filter and discusses its application for tropospheric studies. Instead of estimating zenith wet delays as piece-wise linear functions in a least-squares adjustment, the Kalman filter allows for more sophisticated stochastic modeling. We start with a random walk process to model the time-dependent behavior of the zenith wet delays. Other possible approaches include the stochastic model described by turbulence theory, e.g. the model by Treuhaft and Lanyi (1987). Different variance-covariance matrices of the prediction error, depending on the time of the year and the geographic latitude, have been tested. In winter and closer to the poles, lower variances and covariances are appropriate. The horizontal variations in tropospheric delays have been investigated by comparing three different strategies: assumption of a horizontally stratified troposphere, using north and south gradients modeled, e.g., as Gauss-Markov processes, and applying a turbulence model assuming correlations between observations in different azimuths. By conducting Monte-Carlo simulations of current standard VLBI networks and of future VGOS networks, the different tropospheric modeling strategies are investigated. For this purpose, we use the simulator module of VieVS which takes into account the errors due to the atomic clocks at the stations, the troposphere, and white noise processes. The simulated data as well as actual observational data from the two-week CONT11 campaign are analyzed using the Kalman filter, focusing on the tropospheric effects. The results of the different strategies are compared with solutions applying the classical least-squares method. An advantage of the Kalman filter is the possibility of easily integrating additional external information. It is expected that by including tropospheric delays from GNSS, water vapor radiometers, or ray-traced delays from numerical weather prediction models, the accuracy of the VLBI solution could be improved.
NRT Atmospheric Water Vapour Retrieval on the Area of Poland at IGG WUELS AC
NASA Astrophysics Data System (ADS)
Kaplon, Jan; Bosy, Jaroslaw; Sierny, Jan; Hadas, Tomasz; Rohm, Witold; Wilgan, Karina; Ryczywolski, Marcin; Oruba, Artur; Kroszczynski, Krzysztof
2013-04-01
Global Navigation Satellite Systems (GNSS) are designed for positioning, navigation and amongst other possible applications it can also be used to derive information about the state of the atmosphere. Continuous observations from GNSS receivers provide an excellent tool for studying the neutral atmosphere, currently in near real-time. The Near Real-Time (NRT) neutral atmosphere and water vapour distribution models are currently obtained with high resolution from Ground Base Augmentation Systems (GBAS), where reference stations are equipped with GNSS and meteorological sensors. The Poland territory is covered by dense network of GNSS stations in the frame of GBAS system called ASG-EUPOS (www.asgeupos.pl). This system was established in year 2008 by the Head Office of Geodesy and Cartography in the frame of the EUPOS project (www.eupos.org) for providing positioning services. The GNSS data are available from 130 reference stations located in Poland and neighbour countries. The ground meteorological observations in the area of Poland and neighbour countries are available from ASG-EUPOS stations included in EUREF Permanent Network (EPN) stations, airports meteorological stations (METAR messages stations), and stations managed by national Institute of Meteorology and Water Management (SYNOP messages stations). Institute of Geodesy and Geoinformatics (IGG) of Wroclaw University of Environmental and Life Sciences had created permanent NRT service of ZTD (Zenith Total Delay) estimation for the area of Poland from GPS observations called IGGHZG. The first part of the paper presents the methodology of NRT GNSS data processing for ASG-EUPOS stations for ZTD estimation and its comparison to the results coming from EPN ACs and Military University of Technology in Warsaw AC (MUT AC). Second part covers the procedure of IWV (atmospheric Integrated Water Vapour content) estimation at IGG from IGGHZG product and ZHD (Zenith Hydrostatic Delay) derived from Saastamoinen formula (1972) and meteorological observations from ASG-EUPOS stations, SYNOP (synoptic stations network) and METAR (airport meteorological stations). Paper presents comparison of IWV with the results from NWP (Numerical Weather Prediction) models HIRLAM (via EGVAPII - http://egvap.dmi.dk) and COAMPS (via MUT AC) as well.
Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1)
NASA Astrophysics Data System (ADS)
Kouba, J.
2008-04-01
The new gridded Vienna Mapping Function (VMF1) was implemented and compared to the well-established site-dependent VMF1, directly and by using precise point positioning (PPP) with International GNSS Service (IGS) Final orbits/clocks for a 1.5-year GPS data set of 11 globally distributed IGS stations. The gridded VMF1 data can be interpolated for any location and for any time after 1994, whereas the site-dependent VMF1 data are only available at selected IGS stations and only after 2004. Both gridded and site-dependent VMF1 PPP solutions agree within 1 and 2 mm for the horizontal and vertical position components, respectively, provided that respective VMF1 hydrostatic zenith path delays (ZPD) are used for hydrostatic ZPD mapping to slant delays. The total ZPD of the gridded and site-dependent VMF1 data agree with PPP ZPD solutions with RMS of 1.5 and 1.8 cm, respectively. Such precise total ZPDs could provide useful initial a priori ZPD estimates for kinematic PPP and regional static GPS solutions. The hydrostatic ZPDs of the gridded VMF1 compare with the site-dependent VMF1 ZPDs with RMS of 0.3 cm, subject to some biases and discontinuities of up to 4 cm, which are likely due to different strategies used in the generation of the site-dependent VMF1 data. The precision of gridded hydrostatic ZPD should be sufficient for accurate a priori hydrostatic ZPD mapping in all precise GPS and very long baseline interferometry (VLBI) solutions. Conversely, precise and globally distributed geodetic solutions of total ZPDs, which need to be linked to VLBI to control biases and stability, should also provide a consistent and stable reference frame for long-term and state-of-the-art numerical weather modeling.
Neutron measurements in near-Earth orbit with COMPTEL
NASA Technical Reports Server (NTRS)
Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.
1995-01-01
The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.
Comparison of recalculated Dobson and TOMS total ozone at Hradec Kralove, Czechoslovakia, 1978-1990
NASA Technical Reports Server (NTRS)
Stanek, Martin; Vanicek, Karel
1994-01-01
The reevaluated Dobson total ozone data from Hradec Kralove, Czechoslovakia were compared with independent Total Ozone Mapping Spectrophotometer (TOMS) 'version 6' data set. The comparison was performed by means of the parallel daily averages of ground-based and satellite total ozone pairs of the period November 1978 to December 1990. The comparison showed slight differences between both data series. Their average relative difference is 0.48 percent. The similar results have been reached for subsets of direct sun and zenith types of measurements as well. Their relative differences are 0.61 percent and 0.11 percent respectively. These facts indicate not only good mutual relation of both data sources but also reliability and accuracy of the zenith charts of the spectrophotometer No. 74 used at Hradec Kralove. Preliminary assessment of seasonal MU-dependence of the differences between Dobson and TOMS data was made while using total ozones of winter and summer months representing values of MU=2.70-5.20 and MU = 1.12-1.30 respectively. The results did not show systematic underestimation or overestimation of total ozone due to MU-dependence of the instrument at Hradec Kralove in both seasons.
NASA Technical Reports Server (NTRS)
Wellemeyer, C. G.; Taylor, S. L.; Gu, X. U.; Mcpeters, Richard D.; Hudson, R. D.
1990-01-01
Newly recalibrated version 6 Total Ozone Mapping Spectrometer (TOMS) data are used as a reference measurement in a comparison of monthly means of total ozone in 10 degree latitude zones from SBUV/2 and the nadir measurements from TOMS. These comparisons indicate a roughly linear long-term drift in SBUV/2 total ozone relative to TOMS of about 2.5 Dobson units per year at the equator over the first three years of SBUV/2. The pari justification technique is also applied to the SBUV/2 measurements in a manner similar to that used for SBUV and TOMS. The higher solar zenith angles associated with the afternoon orbit of NOAA-9 and the large changes in solar zenith angle associated with its changing equator crossing time degrade the accuracy of the pair justification method relative to its application to SBUV and TOMS, but the results are consistent with the SBUV/2-TOMS comparisons, and show a roughly linear drift in SBUV/2 of 2.5 to 4.5 Dobson units per year in equatorial ozone.
NASA Astrophysics Data System (ADS)
Bahmanabadi, Mahmud; Moghaddam, Saba Mortazavi
2018-05-01
A detailed simulation of showers with various zenith angles in atmosphere produced by different primary particles including gamma, proton, carbon, and iron at Alborz-I observatory level (35∘43‧N, 51∘20‧E, 1200 m a.s.l= 890 gcm-2), in the energy range 3 × 1013 eV-3 × 1015 eV, has been performed by means of the CORSIKA Monte Carlo code. The aim of this study is to examine the time structure of secondary particles in Extensive Air Showers (EAS) produced by the different primary particles. For each primary particle, the distribution of the mean values of the time delays of secondary particles relative to the first particle hitting the ground level in each EAS, <τi > =
Precision GPS orbit determination strategies for an earth orbiter and geodetic tracking system
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Bertiger, Willy I.; Border, James S.
1988-01-01
Data from two 1985 GPS field tests were processed and precise GPS orbits were determined. With a combined carrier phase and pseudorange, the 1314-km repeatability improves substantially to 5 parts in 10 to the 9th (0.6 cm) in the north and 2 parts in 10 to the 8th (2-3 cm) in the other components. To achieve these levels of repeatability and accuracy, it is necessary to fine-tune the GPS solar radiation coefficients and ground station zenith tropospheric delays.
Strategies for high-precision Global Positioning System orbit determination
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Border, James S.
1987-01-01
Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon
2016-07-01
Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.
Impact of selected troposphere models on Precise Point Positioning convergence
NASA Astrophysics Data System (ADS)
Kalita, Jakub; Rzepecka, Zofia
2016-04-01
The Precise Point Positioning (PPP) absolute method is currently intensively investigated in order to reach fast convergence time. Among various sources that influence the convergence of the PPP, the tropospheric delay is one of the most important. Numerous models of tropospheric delay are developed and applied to PPP processing. However, with rare exceptions, the quality of those models does not allow fixing the zenith path delay tropospheric parameter, leaving difference between nominal and final value to the estimation process. Here we present comparison of several PPP result sets, each of which based on different troposphere model. The respective nominal values are adopted from models: VMF1, GPT2w, MOPS and ZERO-WET. The PPP solution admitted as reference is based on the final troposphere product from the International GNSS Service (IGS). The VMF1 mapping function was used for all processing variants in order to provide capability to compare impact of applied nominal values. The worst case initiates zenith wet delay with zero value (ZERO-WET). Impact from all possible models for tropospheric nominal values should fit inside both IGS and ZERO-WET border variants. The analysis is based on data from seven IGS stations located in mid-latitude European region from year 2014. For the purpose of this study several days with the most active troposphere were selected for each of the station. All the PPP solutions were determined using gLAB open-source software, with the Kalman filter implemented independently by the authors of this work. The processing was performed on 1 hour slices of observation data. In addition to the analysis of the output processing files, the presented study contains detailed analysis of the tropospheric conditions for the selected data. The overall results show that for the height component the VMF1 model outperforms GPT2w and MOPS by 35-40% and ZERO-WET variant by 150%. In most of the cases all solutions converge to the same values during first hour of processing. Finally, the results have been compared against results obtained during calm tropospheric conditions.
Aplicaciones del sistema GPS en la búsqueda de sitios para Interferometría Astronómica Milimétrica
NASA Astrophysics Data System (ADS)
Meza, A.; Fernández, L.; Natali, P.; Moirano, J.; Brunini, C.
The water vapor content of the atmosphere is the biggest restriction to the Millimeter and Sub-millimeter Astronomy. It also plays a crucial role in most of the atmospheric processes. Nowadays water vapor is one of the less characterized meteorological parameter. It is a highly variable atmospheric constituent and its presence is a limiting factor to the obtention of high angular resolutions in interferometric observations of astrophysical interest. Thus, the improved determination of the percentage of precipitable water vapor (PWV) is widely appreciated when performing a site testing for Millimeter Astronomy (MA). It is extensive the use of Water Vapor Radiometers (WVRs) for characterizing the PWV. Using its typical frequency the WVR monitors at 22 Ghz., but some of them had been specially designed for MA at 183 Ghz (M.C. Wiedner, Atmospheric Water Vapour and Astronomical Millimetre Interferometry, PhD Thesis, 1998). Another possibility for PWV determinations are the Radiosondes (RS). A RS is a nothing but a set of sensors and radio transmitters carried out by a balloon up to 30.000 mts. They register twice a day (at 0 UTC and 12 UTC) the values of temperature, humidity and atmospheric pressure as a function of the altitude. All the observations are immediately transmitted to a ground station. At the beginning of the '90s GPS started to be used as an approach to the remote sensing of atmospheric water vapor (Bevis et al, Geophys. Res., 97, 15787, 1992). The radio signal GPS is delayed by the atmosphere as it propagate from the satellites to the ground-receivers. The tropospheric delay is modeled as the add of two contributions: a ``dry" and a ``wet" delay. Each of them is calculated as the product of a zenith path delay by a mapping function depending on the elevation angle. An estimate of the zenith wet delay can be transformed into an estimate of the PWV (Bevis et al, 1992; Hogg et al., A&A, 95, 304, 1981). Any of the former techniques can determine the PWV with an accuracy better than 1 millimeter of PWV. In this work we use the GPS to estimate the PWV. The procedure followed here is having comparable precision and accuracy with respect to the classical techniques (Coster et al., GPS-96, 625, 1996).
Modeling the global positioning system signal propagation through the ionosphere
NASA Technical Reports Server (NTRS)
Bassiri, S.; Hajj, G. A.
1992-01-01
Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.
Sea level measurements using multi-frequency GPS and GLONASS observations
NASA Astrophysics Data System (ADS)
Löfgren, Johan S.; Haas, Rüdiger
2014-12-01
Global Positioning System (GPS) tide gauges have been realized in different configurations, e.g., with one zenith-looking antenna, using the multipath interference pattern for signal-to-noise ratio (SNR) analysis, or with one zenith- and one nadir-looking antenna, analyzing the difference in phase delay, to estimate the sea level height. In this study, for the first time, we use a true Global Navigation Satellite System (GNSS) tide gauge, installed at the Onsala Space Observatory. This GNSS tide gauge is recording both GPS and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) signals and makes it possible to use both the one- and two-antenna analysis approach. Both the SNR analysis and the phase delay analysis were evaluated using dual-frequency GPS and GLONASS signals, i.e., frequencies in the L-band, during a 1-month-long campaign. The GNSS-derived sea level results were compared to independent sea level observations from a co-located pressure tide gauge and show a high correlation for both systems and frequency bands, with correlation coefficients of 0.86 to 0.97. The phase delay results show a better agreement with the tide gauge sea level than the SNR results, with root-mean-square differences of 3.5 cm (GPS L1 and L2) and 3.3/3.2 cm (GLONASS L1/L2 bands) compared to 4.0/9.0 cm (GPS L1/L2) and 4.7/8.9 cm (GLONASS L1/L2 bands). GPS and GLONASS show similar performance in the comparison, and the results prove that for the phase delay analysis, it is possible to use both frequencies, whereas for the SNR analysis, the L2 band should be avoided if other signals are available. Note that standard geodetic receivers using code-based tracking, i.e., tracking the un-encrypted C/A-code on L1 and using the manufacturers' proprietary tracking method for L2, were used. Signals with the new C/A-code on L2, the so-called L2 C , were not tracked. Using wind speed as an indicator for sea surface roughness, we find that the SNR analysis performs better in rough sea surface conditions than the phase delay analysis. The SNR analysis is possible even during the highest wind speed observed during this campaign (17.5 m/s), while the phase delay analysis becomes difficult for wind speeds above 6 m/s.
Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data
NASA Astrophysics Data System (ADS)
Ye, Shirong; Xia, Pengfei; Cai, Changsheng
2016-09-01
The near-real-time high spatial resolution of atmospheric water vapor distribution is vital in numerical weather prediction. GPS tomography technique has been proved effectively for three-dimensional water vapor reconstruction. In this study, the tomography processing is optimized in a few aspects by the aid of radiosonde and COSMIC historical data. Firstly, regional tropospheric zenith hydrostatic delay (ZHD) models are improved and thus the zenith wet delay (ZWD) can be obtained at a higher accuracy. Secondly, the regional conversion factor of converting the ZWD to the precipitable water vapor (PWV) is refined. Next, we develop a new method for dividing the tomography grid with an uneven voxel height and a varied water vapor layer top. Finally, we propose a Gaussian exponential vertical interpolation method which can better reflect the vertical variation characteristic of water vapor. GPS datasets collected in Hong Kong in February 2014 are employed to evaluate the optimized tomographic method by contrast with the conventional method. The radiosonde-derived and COSMIC-derived water vapor densities are utilized as references to evaluate the tomographic results. Using radiosonde products as references, the test results obtained from our optimized method indicate that the water vapor density accuracy is improved by 15 and 12 % compared to those derived from the conventional method below the height of 3.75 km and above the height of 3.75 km, respectively. Using the COSMIC products as references, the results indicate that the water vapor density accuracy is improved by 15 and 19 % below 3.75 km and above 3.75 km, respectively.
NASA Technical Reports Server (NTRS)
Merceret, Francis J.; Huddleston, Lisa L.
2014-01-01
A method for estimating the integrated precipitable water (IPW) content of the atmosphere using measurements of indicated infrared zenith sky temperature was validated over east-central Florida. The method uses inexpensive, commercial off the shelf, hand-held infrared thermometers (IRT). Two such IRTs were obtained from a commercial vendor, calibrated against several laboratory reference sources at KSC, and used to make IR zenith sky temperature measurements in the vicinity of KSC and Cape Canaveral Air Force Station (CCAFS). The calibration and comparison data showed that these inexpensive IRTs provided reliable, stable IR temperature measurements that were well correlated with the NOAA IPW observations.
Effect of Ram and Zenith Exposure on the Optical Properties of Polymers in Space
NASA Technical Reports Server (NTRS)
Li, Yuachun; de Groh, Kim K.; Banks, Bruce A.; Leneghan, Halle; Asmar, Olivia
2017-01-01
The temperature of spacecraft is influenced by the solar absorptance and thermal emittance of the external spacecraft materials. Optical and thermal properties can degrade over time in the harsh low Earth orbital (LEO) space environment where spacecraft external materials are exposed to various forms of radiation, thermal cycling, and atomic oxygen. Therefore, it is important to test the durability of spacecraft materials in the space environment. One objective of the Polymers and Zenith Polymers Experiments was to determine the effect of LEO space exposure on the optical properties of various spacecraft polymers. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission on the exterior of the International Space Station (ISS) for 1.5 years. Samples were flown in ram, wake or zenith directions, receiving varying amounts of atomic oxygen and solar radiation exposure. Total and diffuse reflectance and transmittance of flight and corresponding control samples were obtained post-flight using a Cary 5000 UV-Vis-NIR Spectrophotometer. Integrated air mass zero solar absorptance (s) of the flight and control samples were computed from the total transmittance and reflectance, and compared. The optical data are compared with similar polymers exposed to space for four years as part of MISSE 2, and with atomic oxygen erosion data, to help understand the degradation of these polymers in the space environment. Results show that prolonged space exposure increases the solar absorptance of some materials. Knowing which polymers remain stable will benefit future spacecraft design.
Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, I.; Myers, D.; Stoffel, T.
2008-12-01
Pyranometers are used outdoors to measure solar irradiance. By design, this type of radiometer can measure the; total hemispheric (global) or diffuse (sky) irradiance when the detector is unshaded or shaded from the sun disk, respectively. These measurements are used in a variety of applications including solar energy conversion, atmospheric studies, agriculture, and materials science. Proper calibration of pyranometers is essential to ensure measurement quality. This paper describes a step-by-step method for calculating and reporting the uncertainty of the calibration, using the guidelines of the ISO 'Guide to the Expression of Uncertainty in Measurement' or GUM, that is applied tomore » the pyranometer; calibration procedures used at the National Renewable Energy Laboratory (NREL). The NREL technique; characterizes a responsivity function of a pyranometer as a function of the zenith angle, as well as reporting a single; calibration responsivity value for a zenith angle of 45 ..deg... The uncertainty analysis shows that a lower uncertainty can be achieved by using the response function of a pyranometer determined as a function of zenith angle, in lieu of just using; the average value at 45..deg... By presenting the contribution of each uncertainty source to the total uncertainty; users will be able to troubleshoot and improve their calibration process. The uncertainty analysis method can also be used to determine the uncertainty of different calibration techniques and applications, such as deriving the uncertainty of field measurements.« less
Tilt Error in Cryospheric Surface Radiation Measurements at High Latitudes: A Model Study
NASA Astrophysics Data System (ADS)
Bogren, W.; Kylling, A.; Burkhart, J. F.
2015-12-01
We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250nm to 4500nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60◦, a sensor tilted by 1, 3, and 5◦ can respectively introduce up to 2.6, 7.7, and 12.8% error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.
Recalculated values of the total ozone amount over Oslo, 60 deg N, for the period 1979-1992
NASA Technical Reports Server (NTRS)
Larsen, Soren H. H.; Svendby, Tove; Tonnessen, Finn; Dahlback, Arne
1994-01-01
The total ozone amount over Oslo has been measured with the Dobson spectrophotometer No 56. The instrument was modified, calibrated, and intercompared in 1977 in Boulder. A new intercomparison was made in 1986 in Arosa. Much work has been done to make the zenith charts reliable. A new method has been introduced where one takes into account the change in the shape of the zenith chart curves which is caused by a change of the ozone profile when the ozone amount changes. According to the conclusion derived from the intercomparison in Arosa 1986, the instrument has not been stable. The R-N tables had to be altered, but not the Q-tables. We have tried to account for this change in our handling of the observation data. No statistical analyses of these data has yet been made, but the monthly averages of the raw data show a negative linear trend of about 4 percent for the whole period.
A New Method to Cross Calibrate and Validate TOMS, SBUV/2, and SCIAMACHY Measurements
NASA Technical Reports Server (NTRS)
Ahmad, Ziauddin; Hilsenrath, Ernest; Einaudi, Franco (Technical Monitor)
2001-01-01
A unique method to validate back scattered ultraviolet (buv) type satellite data that complements the measurements from existing ground networks is proposed. The method involves comparing the zenith sky radiance measurements from the ground to the nadir radiance measurements taken from space. Since the measurements are compared directly, the proposed method is superior to any other method that involves comparing derived products (for example, ozone), because comparison of derived products involve inversion algorithms which are susceptible to several type of errors. Forward radiative transfer (RT) calculations show that for an aerosol free atmosphere, the ground-based zenith sky radiance measurement and the satellite nadir radiance measurements can be predicted with an accuracy of better than 1 percent. The RT computations also show that for certain values of the solar zenith angles, the radiance comparisons could be better than half a percent. This accuracy is practically independent of ozone amount and aerosols in the atmosphere. Experiences with the Shuttle Solar Backscatter Ultraviolet (SSBUV) program show that the accuracy of the ground-based zenith sky radiance measuring instrument can be maintained at a level of a few tenth of a percent. This implies that the zenith sky radiance measurements can be used to validate Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV/2), and The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) radiance data. Also, this method will help improve the long term precision of the measurements for better trend detection and the accuracy of other BUV products such as tropospheric ozone and aerosols. Finally, in the long term, this method is a good candidate to inter-calibrate and validate long term observations of upcoming operational instruments such as Global Ozone Monitoring Experiment (GOME-2), Ozone Mapping Instrument (OMI), Ozone Dynamics Ultraviolet Spectrometer (ODUS), and Ozone Mapping and Profiler Suite (OMPS).
NASA Astrophysics Data System (ADS)
Boehm, Johannes; Werl, Birgit; Schuh, Harald
2006-02-01
In the analyses of geodetic very long baseline interferometry (VLBI) and GPS data the analytic form used for mapping of the atmosphere delay from zenith to the line of site is most often a three-parameter continued fraction in 1/sin(elevation). Using the 40 years reanalysis (ERA-40) data of the European Centre for Medium-Range Weather Forecasts for the year 2001, the b and c coefficients of the continued fraction form for the hydrostatic mapping functions have been redetermined. Unlike previous mapping functions based on data from numerical weather models (isobaric mapping functions (Niell, 2000) and Vienna mapping functions (VMF) (Boehm and Schuh, 2004)), the new c coefficients are dependent on the day of the year, and unlike the Niell mapping functions (Niell, 1996) they are no longer symmetric with respect to the equator (apart from the opposite phase for the two hemispheres). Compared to VMF, this causes an effect on the VLBI or GPS station heights that is constant and as large as 2 mm at the equator and that varies seasonally between 4 mm and 0 mm at the poles. The updated VMF, based on these new coefficients and called VMF1 hereinafter, yields slightly better baseline length repeatabilities for VLBI data. The hydrostatic and wet mapping functions are applied in various combinations with different kinds of a priori zenith delays in the analyses of all VLBI International VLBI Service for Geodesy and Astrometry (IVS)-R1 and IVS-R4 24-hour sessions of 2002 and 2003; the investigations concentrate on baseline length repeatabilities, as well as on absolute changes of station heights.
Constraints on a Broadcast Innovation: Zenith's Phonevision System, 1931-1972.
ERIC Educational Resources Information Center
Bellamy, Robert V., Jr.
1988-01-01
Demonstrates that the reason for Zenith's Phonevision's failure was the interweaving of such individual factors as the actions of the regulatory system and the opposition of the broadcast and film industries, along with the internal activities of Zenith and prevailing market conditions. (MS)
NASA Technical Reports Server (NTRS)
Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.
2004-01-01
Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.
Utilization of GPS Tropospheric Delays for Climate Research
NASA Astrophysics Data System (ADS)
Suparta, Wayan
2017-05-01
The tropospheric delay is one of the main error sources in Global Positioning Systems (GPS) and its impact plays a crucial role in near real-time weather forecasting. Accessibility and accurate estimation of this parameter are essential for weather and climate research. Advances in GPS application has allowed the measurements of zenith tropospheric delay (ZTD) in all weather conditions and on a global scale with fine temporal and spatial resolution. In addition to the rapid advancement of GPS technology and informatics and the development of research in the field of Earth and Planetary Sciences, the GPS data has been available free of charge. Now only required sophisticated processing techniques but user friendly. On the other hand, the ZTD parameter obtained from the models or measurements needs to be converted into precipitable water vapor (PWV) to make it more useful as a component of weather forecasting and analysis atmospheric hazards such as tropical storms, flash floods, landslide, pollution, and earthquake as well as for climate change studies. This paper addresses the determination of ZTD as a signal error or delay source during the propagation from the satellite to a receiver on the ground and is a key driving force behind the atmospheric events. Some results in terms of ZTD and PWV will be highlighted in this paper.
Gingival zenith positions and levels of the maxillary anterior dentition.
Chu, Stephen J; Tan, Jocelyn H-P; Stappert, Christian F J; Tarnow, Dennis P
2009-01-01
The location of the gingival zenith in a medial-lateral position relative to the vertical tooth axis of the maxillary anterior teeth remains to be clearly defined. In addition, the apex of the free gingival margin of the lateral incisor teeth relative to the gingival zeniths of the adjacent proximal teeth remains undetermined. Therefore, this investigation evaluated two clinical parameters: (1) the gingival zenith position (GZP) from the vertical bisected midline (VBM) along the long axis of each individual maxillary anterior tooth; and (2) the gingival zenith level (GZL) of the lateral incisors in an apical-coronal direction relative to the gingival line joining the tangents of the GZP of the adjacent central incisor and canine teeth under healthy conditions. A total of 240 sites in 20 healthy patients (13 females, 7 males) with an average age of 27.7 years were evaluated. The inclusion patient criteria were absence of periodontal disease, gingival recession, or gingival hypertrophy as well as teeth without loss of interdental papillae, spacing, crowding, existing restorations, and incisal attrition. GZP dimensions were measured with calibrated digital calipers for each individual tooth and within each tooth group in a medial-lateral direction from the VBM. GZLs were measured in an apical-coronal direction from a tangent line drawn on the diagnostic casts from the GZPs of the adjacent teeth. This study demonstrated that all central incisors displayed a distal GZP from the VBM, with a mean average of 1 mm. Lateral incisors showed a deviation of the gingival zenith by a mean of 0.4 mm. In 97.5% of the canine population, the GZP was centralized along the long axis of the canine. The mean distance of the contour of the gingival margin in an apical-coronal direction of the lateral incisors (GZL) relative to gingival line joining the tangent of the adjacent central and canine GZPs was approximately 1 mm. This investigation revealed a GZP mean value of 1 mm distal from the VBM for the central incisor tooth group. The lateral incisors showed a mean average of 0.4 mm. The canine tooth group demonstrated almost no deviations of the GZP from the VBM. The GZL of the lateral incisors relative to the adjacent central incisor and canine teeth were more coronal by approximately 1 mm. These data could be used as reference points during esthetic anterior oral rehabilitation. The information presented in this article can be clinically applied to reestablish the proper intratooth GZPs of the maxillary anterior teeth during periodontal crown lengthening or root coverage procedures. In addition, the intra-arch gingival level of the lateral incisor gingival zenith relative to the adjacent central and canine teeth can be appropriately established.
InSAR tropospheric delay mitigation by GPS observations: A case study in Tokyo area
NASA Astrophysics Data System (ADS)
Xu, Caijun; Wang, Hua; Ge, Linlin; Yonezawa, Chinatsu; Cheng, Pu
2006-03-01
Like other space geodetic techniques, interferometric synthetic aperture radar (InSAR) is limited by the variations of tropospheric delay noise. In this paper, we analyze the double-difference (DD) feature of tropospheric delay noise in SAR interferogram. By processing the ERS-2 radar pair, we find some tropospheric delay fringes, which have similar patterns with the GMS-5 visible-channel images acquired at almost the same epoch. Thirty-five continuous GPS (CGPS) stations are distributed in the radar scene. We analyze the GPS data by GIPSY-OASIS (II) software and extract the wet zenith delay (WZD) parameters at each station at the same epoch with the master and the slave image, respectively. A cosine mapping function is applied to transform the WZD to wet slant delay (WSD) in line-of-sight direction. Based on the DD WSD parameters, we establish a two-dimensional (2D) semi-variogram model, with the parameters 35.2, 3.6 and 0.88. Then we predict the DD WSD parameters by the kriging algorithm for each pixel of the interferogram, and subtract it from the unwrapped phase. Comparisons between CGPS and InSAR range changes in LOS direction show that the root of mean squares (RMS) decreased from 1.33 cm before correction to 0.87 cm after correction. From the result, we can conclude that GPS WZD parameters can be effectively used to identify and mitigate the large-scale InSAR tropospheric delay noise if the spatial resolution of GPS stations is dense enough.
NASA Astrophysics Data System (ADS)
Stoffel, Thomas L.; Myers, Daryl R.
2010-08-01
Measurement stations for solar radiation resource assessment data are expensive and labor intensive. For this reason, long-term solar radiation measurements are not widely available. Growing interest in solar renewable energy systems has generated a great number of questions about the quality of data obtained from inexpensive silicon photodiode radiometers versus costly thermopile radiometers. We analyze a year of daily total and monthly mean global horizontal irradiance measurements derived from 1-minute averages of 3-second samples of pyranometer signals. The data were collected simultaneously from both types of radiometers at the Solar Radiation Research Laboratory (SRRL) operated by the National Renewable Energy Laboratory in Golden, Colorado. All broadband radiometers in service at SRRL are calibrated annually using an outdoor method with reference radiometers traceable to the World Radiometric Reference. We summarized the data by daily total and monthly mean daily total amounts of solar radiation. Our results show that systematic and random errors (identified in our outdoor calibration process) in each type of radiometer cancel out over periods of one day or more. Daily total and mean monthly daily total solar energy measured by the two pyranometer types compare within 1% to 2%. The individual daily variations among different models of thermopile radiometers may be up to twice as large, up to +/-5%, being highest in the winter (higher average solar zenith angle conditions) and lowest in summer, consistent with the lower solar zenith angle conditions.
Near-midnight observations of nitric oxide delta- and gamma-band chemiluminescence
NASA Technical Reports Server (NTRS)
Tennyson, P. D.; Feldman, P. D.; Hartig, G. F.; Henry, R. C.
1986-01-01
Chemiluminescent nightglow emission of the nitric oxide delta and gamma bands was measured from a sounding rocket launched on April 27, 1981, near local midnight. The integrated band emission rates for this near zenith observation above 205 km were less than 10 Rayleighs. The solar zenith angle was 127 deg. The branching ratio from the C2Pi state to the A2Sigma(+) state of NO was determined from comparison of the total emission rate of the delta band system to that of the gamma band system and found to be 0.30 + or - 0.06. The branching ratios within each of the band systems were found to be consistent with previous theoretical and experimental determinations. The vertical atomic nitrogen distribution, derived with the use of a model atmosphere, was found to have a peak density of 2.0 x 10 to the 7th atoms/cu cm at an altitude of 205 km. The analysis of these data indicate the presence of residual NO emission above 270 km at local midnight on the order of 1 Rayleigh of total band emission.
Tilt error in cryospheric surface radiation measurements at high latitudes: a model study
NASA Astrophysics Data System (ADS)
Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve
2016-03-01
We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.
Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere.
Plass, G N; Kattawar, G W
1970-05-01
The polarization of the reflected and transmitted radiation is calculated for a realistic model of the earth's atmosphere at five wavelengths ranging from 0.27 micro to 1.67 micro. The single scattering matrix is calculated from the Mie theory for an aerosol size distribution appropriate for our atmosphere. The solar photons are followed through multiple collisions with the aerosols and the Rayleigh scattering centers in the atmosphere by a Monte Carlo method. The aerosol number density as well as the ratio of aerosol to Rayleigh scattering varies with height. The proportion of aerosol to Rayleigh scattering is adjusted for each wavelength; ozone absorption is included where appropriate. The polarization is presented as a function of the zenith and azimuthal angle for six values of the earth's albedo, two values of the solar zenith angle, and four values of the total aerosol concentration. In general the polarization decreases as the wavelength increases and as the total aerosol concentration increases (because of the increasing importance of aerosol scattering). In most situations the polarization is much more sensitive than the radiance to changes in the parameters which specify the atmosphere.
Lü, Chun-guang; Wang, Wei-he; Yang, Wen-bo; Tian, Qing-iju; Lu, Shan; Chen, Yun
2015-11-01
New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future, because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention. Sensors carried on geostationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of total ozone retrieval on these observation geometries. TOMS V8 algorithm is developing and widely used in low orbit ozone detecting sensors, but it still lack of accuracy on big observation geometry, therefore, how to improve the accuracy of total ozone retrieval is still an urgent problem that demands immediate solution. Using moderate resolution atmospheric transmission, MODT-RAN, synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated, which refers to clear sky, multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles, moreover, the correlation and trends between atmospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data. According to these result data, a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries. The analysis results about total ozone and simulated UV backscatter radiance shows: Radiance in 317.5 nm (R₃₁₇.₅) decreased as the total ozone rise. Under the small solar zenith Angle (SZA) and the same total ozone, R₃₁₇.₅ decreased with the increase of view zenith Angle (VZA) but increased on the large SZA. Comparison of two fit models shows: without the condition that both SZA and VZA are large (> 80°), exponential fitting model and logarithm fitting model all show high fitting precision (R² > 0.90), and precision of the two decreased as the SZA and VZA rise. In most cases, the precision of logarithm fitting mode is about 0.9% higher than exponential fitting model. With the increasing of VZA or SZA, the fitting precision gradually lower, and the fall is more in the larger VZA or SZA. In addition, the precision of fitting mode exist a plateau in the small SZA range. The modified initial total ozone estimating model (ln(I) vs. Ω) is established based on logarithm fitting mode, and compared with traditional estimating model (I vs. ln(Ω)), that shows: the RMSE of ln(I) vs. Ω and I vs. ln(Ω) all have the down trend with the rise of total ozone. In the low region of total ozone (175-275 DU), the RMSE is obvious higher than high region (425-525 DU), moreover, a RMSE peak and a trough exist in 225 and 475 DU respectively. With the increase of VZA and SZA, the RMSE of two initial estimating models are overall rise, and the upraising degree is ln(I) vs. Ω obvious with the growing of SZA and VZA. The estimating result by modified model is better than traditional model on the whole total ozone range (RMSE is 0.087%-0.537% lower than traditional model), especially on lower total ozone region and large observation geometries. Traditional estimating model relies on the precision of exponential fitting model, and modified estimating model relies on the precision of logarithm fitting model. The improvement of the estimation accuracy by modified initial total ozone estimating model expand the application range of TOMS V8 algorithm. For sensor carried on geostationary orbit platform, there is no doubt that the modified estimating model can help improve the inversion accuracy on wide spatial and time range This modified model could give support and reference to TOMS algorithm update in the future.
NASA Astrophysics Data System (ADS)
Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng
2016-10-01
Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.
Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming
2016-01-01
Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.
Spectral measurements of the cosmic microwave background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogut, A.J.
1989-04-01
Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperaturemore » of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.« less
NASA Astrophysics Data System (ADS)
Kapłon, Jan; Stankunavicius, Gintautas
2016-04-01
The dense ground based augmentation networks can provide the important information for monitoring the state of neutral atmosphere. The GNSS&METEO research group at Wroclaw University of Environmental and Life Sciences (WUELS) is operating the self-developed near real-time service estimating the troposphere parameters from GNSS data for the area of Poland. The service is operational since December 2012 and it's results calculated from ASG-EUPOS GBAS network (120 stations) data are supporting the EGVAP (http://egvap.dmi.dk) project. At first the zenith troposphere delays (ZTD) were calculated in hourly intervals, but since September 2015 the service was upgraded to include SmartNet GBAS network (Leica Geosystems Polska - 150 stations). The upgrade included as well: increasing the result interval to 30 minutes, upgrade from Bernese GPS Software v. 5.0 to Bernese GNSS Software v. 5.2 and estimation of the ZTD and it's horizontal gradients. Processing includes nowadays 270 stations. The densification of network from 70 km of mean distance between stations to 40 km created the opportunity to investigate on it's impact on resolution of estimated ZTD and integrated water vapour content (IWV) fields during the weather events of high intensity. Increase in density of ZTD measurements allows to define better the meso-scale features within different synoptic systems (e.g. frontal waves, meso-scale convective systems, squall lines etc). These meso-scale structures, as a rule are short living but fast developing and hardly predictable by numerical models. Even so, such limited size systems can produce very hazardous phenomena - like widespread squalls and thunderstorms, tornadoes, heavy rains, snowfalls, hail etc. because of prevalence of Cb clouds with high concentration of IWV. Study deals with two meteorological events: 2015-09-01 with the devastating squalls and rainfall bringing 2M Euro loss of property in northern Poland and 2015-10-12 with the very active front bringing snowfall in southern part of the country. There are presented as well: the evaluation of differences in 2D fields of ZTD and IWV obtained from ASG-EUPOS network only and from ASG-EUPOS and SmartNet networks, their validation using IWV from numerical weather model and CM-SAF (Satellite Application Facility on Climate Monitoring) data. The results are interpreted towards the increase of possibility to detect the meso-scale weather features with densification of GNSS sensors network.
Multi-technique comparison of troposphere zenith delays and gradients during CONT08
NASA Astrophysics Data System (ADS)
Teke, Kamil; Böhm, Johannes; Nilsson, Tobias; Schuh, Harald; Steigenberger, Peter; Dach, Rolf; Heinkelmann, Robert; Willis, Pascal; Haas, Rüdiger; García-Espada, Susana; Hobiger, Thomas; Ichikawa, Ryuichi; Shimizu, Shingo
2011-07-01
CONT08 was a 15 days campaign of continuous Very Long Baseline Interferometry (VLBI) sessions during the second half of August 2008 carried out by the International VLBI Service for Geodesy and Astrometry (IVS). In this study, VLBI estimates of troposphere zenith total delays (ZTD) and gradients during CONT08 were compared with those derived from observations with the Global Positioning System (GPS), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and water vapor radiometers (WVR) co-located with the VLBI radio telescopes. Similar geophysical models were used for the analysis of the space geodetic data, whereas the parameterization for the least-squares adjustment of the space geodetic techniques was optimized for each technique. In addition to space geodetic techniques and WVR, ZTD and gradients from numerical weather models (NWM) were used from the European Centre for Medium-Range Weather Forecasts (ECMWF) (all sites), the Japan Meteorological Agency (JMA) and Cloud Resolving Storm Simulator (CReSS) (Tsukuba), and the High Resolution Limited Area Model (HIRLAM) (European sites). Biases, standard deviations, and correlation coefficients were computed between the troposphere estimates of the various techniques for all eleven CONT08 co-located sites. ZTD from space geodetic techniques generally agree at the sub-centimetre level during CONT08, and—as expected—the best agreement is found for intra-technique comparisons: between the Vienna VLBI Software and the combined IVS solutions as well as between the Center for Orbit Determination (CODE) solution and an IGS PPP time series; both intra-technique comparisons are with standard deviations of about 3-6 mm. The best inter space geodetic technique agreement of ZTD during CONT08 is found between the combined IVS and the IGS solutions with a mean standard deviation of about 6 mm over all sites, whereas the agreement with numerical weather models is between 6 and 20 mm. The standard deviations are generally larger at low latitude sites because of higher humidity, and the latter is also the reason why the standard deviations are larger at northern hemisphere stations during CONT08 in comparison to CONT02 which was observed in October 2002. The assessment of the troposphere gradients from the different techniques is not as clear because of different time intervals, different estimation properties, or different observables. However, the best inter-technique agreement is found between the IVS combined gradients and the GPS solutions with standard deviations between 0.2 and 0.7 mm.
NASA Astrophysics Data System (ADS)
Sapucci, L. F.; Monico, J. G.; Machado, L. T.
2007-05-01
In 2010 a new navigation and administration system of the air traffic, denominated CNS-ATM (Communication Navigation Surveillance - Air Traffic Management) should be running operationally in South America. This new system will basically employ the positioning techniques by satellites to the management and air traffic control. However, the efficiency of this new system demands the knowledge of the behavior of the atmosphere, consequently, an appropriated Zenithal Tropospheric Delay (ZTD) modeling in a regional scale. The predictions of ZTD values from Numeric Weather Prediction (NWP), denominated here dynamic modeling, is an alternative to model the atmospheric gases effects in the radio-frequency signals in real time. Brazilian Center for Weather Forecasting and Climate Studies (CPTEC) of the National Institute for Space Research (INPE), jointly with researchers from UNESP (Sao Paulo State University), has generated operationally prediction of ZTD values to South America Continent (available in the electronic address http:satelite.cptec.inpe.br/htmldocs/ztd/zenithal.htm). The available regional version is obtained using ETA model (NWP model with horizontal resolution of 20 km and 42 levels in the vertical). The application of NWP permit assess the temporal and spatial variation of ZTD values, which is an important characteristic of this techniques. The aim of the present paper is to investigate the ZTD seasonal variability over South America continent. A variability analysis of the ZTD components [hydrostatic(ZHD) and wet(ZWD)] is also presented, as such as discussion of main factors that influence this variation in this region. The hydrostatic component variation is related with atmospheric pressure oscillation, which is influenced by relief and high pressure centers that prevail over different region of the South America continent. The wet component oscillation is due to the temperature and humidity variability, which is also influenced by relief and by synoptic events like: the penetration the cold front from Antarctic pole into the continent and occurrence of humidity convergence zones. In South America there are two main convergence zones that has strong influence in the troposphere variability, the ITCZ (Inter Tropical Convergence Zone) and the SACZ (South Atlantic Convergence Zone) zones. These convergence zones are characterized by an extensive precipitation band and high nebulosity almost stationary. The physical processes associated with these convergence zones present strong impacts in the variability of ZWD values. This work aims to contribute with ZTD modeling over South America continent using NWP to identify where and when the ZTD values present lower predictability in this region, and consequently, minimizing the error in the GNSS positioning that apply this technique.
GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System
NASA Technical Reports Server (NTRS)
Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.
1992-01-01
We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
Profiling of poorly stratified smoky atmospheres with scanning lidar
Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao
2012-01-01
The multiangle data processing technique is considered based on using the signal measured in zenith (or close to zenith) as a core source for extracting the information about the vertical atmospheric aerosol loading. The multiangle signals are used as the auxiliary data to extract the vertical transmittance profile from the zenith signal. Simulated and experimental...
Performance Assessment of a Gnss-Based Troposphere Path Delay Estimation Software
NASA Astrophysics Data System (ADS)
Mariotti, Gilles; Avanzi, Alessandro; Graziani, Alberto; Tortora, Paolo
2013-04-01
Error budgets of Deep Space Radio Science experiments are heavily affected by interplanetary and Earth transmission media, that corrupt, due to their non-unitary refraction index, the radiometric information of signals coming from the spacecraft. An effective removal of these noise sources is crucial to achieve the accuracy and signal stability levels required by radio science applications. Depending on the nature of these refractions, transmission media are divided into dispersive (that consists of ionized particles, i.e. Solar Wind and Ionosphere) and non-dispersive ones (the refraction is caused by neutral particles: Earth Troposphere). While dispersive noises are successfully removed by multifrequency combinations (as for GPS with the well-known ionofree combination), the most accurate estimation of tropospheric noise is obtained using microwave radiometers (MWR). As the use of MWRs suffers from strong operational limitations (rain and heavy clouds conditions), the GNSS-based processing is still widely adopted to provide a cost-effective, all-weather condition estimation of the troposphere path delay. This work describes the development process and reports the results of a GNSS analysis code specifically aimed to the estimation of the path delays introduced by the troposphere above deep space complexes, to be used for the calibration of Range and Doppler radiometric data. The code has been developed by the Radio Science Laboratory of the University of Bologna in Forlì, and is currently in the testing phase. To this aim, the preliminary output is compared to MWR measurements and IGS TropoSINEX products in order to assess the reliability of the estimate. The software works using ionofree carrier-phase observables and is based upon a double-difference approach, in which the GNSS receiver placed nearby the Deep Space receiver acts as the rover station. Several baselines are then created with various IGS and EUREF stations (master or reference stations) in order to perform the differentiation. The code relies on several IGS products, like SP3 precise orbits and SINEX positions available for the master stations in order to remove several error components, while the phase ambiguities (both wide and narrow lane) are resolved using the modified LAMBDA (MLAMBDA) method. The double-differenced data are then processed by a Kalman Filter that estimates the contingent positioning error of the rover station, its Zenith Wet Delay (ZWD) and the residual phase ambiguities. On the other hand, the Zenith Hydrostatic Delay (ZHD) is preliminarily computed using a mathematical model, based on surface meteorological measurements. The final product of the developed code is an output file containing the estimated ZWD and ZHD time-series in a format compatible with the major orbit determination software, e.g. the CSP card format (TRK-2-23) used by NASA JPL's Orbit Determination Program.
Spatial Variability of Wet Troposphere Delays Over Inland Water Bodies
NASA Astrophysics Data System (ADS)
Mehran, Ali; Clark, Elizabeth A.; Lettenmaier, Dennis P.
2017-11-01
Satellite radar altimetry has enabled the study of water levels in large lakes and reservoirs at a global scale. The upcoming Surface Water and Ocean Topography (SWOT) satellite mission (scheduled launch 2020) will simultaneously measure water surface extent and elevation at an unprecedented accuracy and resolution. However, SWOT retrieval accuracy will be affected by a number of factors, including wet tropospheric delay—the delay in the signal's passage through the atmosphere due to atmospheric water content. In past applications, the wet tropospheric delay over large inland water bodies has been corrected using atmospheric moisture profiles based on atmospheric reanalysis data at relatively coarse (tens to hundreds of kilometers) spatial resolution. These products cannot resolve subgrid variations in wet tropospheric delays at the spatial resolutions (of 1 km and finer) that SWOT is intended to resolve. We calculate zenith wet tropospheric delays (ZWDs) and their spatial variability from Weather Research and Forecasting (WRF) numerical weather prediction model simulations at 2.33 km spatial resolution over the southwestern U.S., with attention in particular to Sam Rayburn, Ray Hubbard, and Elephant Butte Reservoirs which have width and length dimensions that are of order or larger than the WRF spatial resolution. We find that spatiotemporal variability of ZWD over the inland reservoirs depends on climatic conditions at the reservoir location, as well as distance from ocean, elevation, and surface area of the reservoir, but that the magnitude of subgrid variability (relative to analysis and reanalysis products) is generally less than 10 mm.
Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure
NASA Technical Reports Server (NTRS)
Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.
2013-01-01
As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.
NASA Technical Reports Server (NTRS)
Walter-Shea, E. A.; Blad, B. L.; Mesarch, M. A.; Hays, C. J.; Deering, D. W.; Eck, T. F.
1992-01-01
Instantaneous fractions of absorbed photosynthetically active radiation (APAR) were measured at the Streletskaya Steppe Reserve in conjunction with canopy bidirectional-reflected radiation measured at solar zenith angles ranging between 37 and 74 deg during the Kursk experiment (KUREX-91). APAR values were higher for KUREX-91 than those for the first ISLSCP field experiment (FIFE-89) and the amount of APAR of a canopy was a function of solar zenith angle, decreasing as solar zenith angle increased at the resrve. Differences in absorption are attributed to leaf area index (LAI) and leaf angle distribution and subsequently transmitted radiation interactions. LAIs were considerably higher at the reserve than those at the FIFE site. Leaf angle distributions of the reserve approach a uniform distribution while distributions at the FIFE site more closely approximate erectophile distributions. Reflected photosynthetically active radiation (PAR) components at KUREX-91 and FIFE-89 were similar in magnitude and in their response to solar zenith angle. Transmitted PAR increased with increasing solar zenith angle at KUREX-91 and decreased with increasing solar zenith angle at FIFE-89. Transmitted PAR at FIFE-89 was considerably larger than those at KUREX-91.
A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit
NASA Astrophysics Data System (ADS)
DeLuisi, John J.; Harris, Joyce M.
Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.
Atmospheric effects on radiometry from zenith of a plane with dark vertical protrusions
NASA Technical Reports Server (NTRS)
Otterman, J.
1983-01-01
Effects of an optically thin plane-parallel scattering atmosphere on radiometric imaging from the zenith of a specific surface-type are analyzed. The surface model was previously developed to describe arid steppe, where the sparse vegetation forms dark vertical protrusions from the bright soil-plane. The analysis is in terms of the surface reflectivity to the zenith r sub p for the direct beam, which is formulated as r sub p = r sub i exp (-s tan theta sub 0), where v sub i is the Lambert law reflectivity of the soil, the protrusions parameters s is the projection on a vertical plane of protrusions per unit area and theta sub 0 is the zenith angle. The surface reflectivity r sub p is approximately equal to that for the global irradiance (which is directly measured in the field) only for a narrow range of the solar zenith angles. The effects of the atmosphere when imaging large uniform areas of this type are comparable to those in imaging a Lambert surface with a reflectivity r sub p. Thus, the effects can be approximated by those in the case of a dark Lambert surface (analyzed previously), inasmuch as r sub p is smaller than the soil reflectivity r sub i for any off-zenith illumination. The surface becomes effectively darker with increasing solar zenith angle. Adjacency effects of a reflection from one area and scattering in the instantaneous field of view (object pixel) are analyzed as cross radiance and cross irradiance.
Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers
NASA Technical Reports Server (NTRS)
Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.
1985-01-01
The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.
Irradiance measurement errors due to the assumption of a Lambertian reference panel
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Kirchner, J. A.
1982-01-01
A technique is presented for determining the error in diurnal irradiance measurements that results from the non-Lambertian behavior of a reference panel under various irradiance conditions. Spectral biconical reflectance factors of a spray-painted barium sulfate panel, along with simulated sky radiance data for clear and hazy skies at six solar zenith angles, were used to calculate the estimated panel irradiances and true irradiances for a nadir-looking sensor in two wavelength bands. The inherent errors in total spectral irradiance (0.68 microns) for a clear sky were 0.60, 6.0, 13.0, and 27.0% for solar zenith angles of 0, 45, 60, and 75 deg, respectively. The technique can be used to characterize the error of a specific panel used in field measurements, and thus eliminate any ambiguity of the effects of the type, preparation, and aging of the paint.
NASA Astrophysics Data System (ADS)
Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel
2016-12-01
On its way through the atmosphere, radio signals are delayed and affected by bending and attenuation effects relative to a theoretical path in vacuum. In particular, the neutral part of the atmosphere contributes considerably to the error budget of space-geodetic observations. At the same time, space-geodetic techniques become more and more important in the understanding of the Earth's atmosphere, because atmospheric parameters can be linked to the water vapor content in the atmosphere. The tropospheric delay is usually taken into account by applying an adequate model for the hydrostatic component and by additionally estimating zenith wet delays for the highly variable wet component. Sometimes, the Ordinary Least Squares (OLS) approach leads to negative estimates, which would be equivalent to negative water vapor in the atmosphere and does, of course, not reflect meteorological and physical conditions in a plausible way. To cope with this phenomenon, we introduce an Inequality Constrained Least Squares (ICLS) method from the field of convex optimization and use inequality constraints to force the tropospheric parameters to be non-negative allowing for a more realistic tropospheric parameter estimation in a meteorological sense. Because deficiencies in the a priori hydrostatic modeling are almost fully compensated by the tropospheric estimates, the ICLS approach urgently requires suitable a priori hydrostatic delays. In this paper, we briefly describe the ICLS method and validate its impact with regard to station positions.
Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies
NASA Astrophysics Data System (ADS)
Mendoza, Luciano; Bianchi, Clara; Fernández, Laura; Natali, María Paula; Meza, Amalia; Moirano, Juan
2017-04-01
Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based GNSS products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, seven-year long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column integrated water vapour and troposphere zenith total delay (Bianchi et al. 2016). As preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2% per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model fairly reproduces the observed mean delays, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited form the underling atmospheric reanalysis. Additionally, the complete data set has been made openly available at a scientific repository (doi:10.1594/PANGAEA.858234). References: C. Bianchi, L. Mendoza, L. Fernandez, M. P. Natali, A. Meza, J. F. Moirano, Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies, Ann. Geophys., ISSN 0992-7689, eISSN 1432-0576, 34 (7), 623-639 (doi:10.5194/angeo-34-623-2016).
Using Meteosat-10 and GPS ZWD measurements for creating regional water vapor maps.
NASA Astrophysics Data System (ADS)
Leontiev, Anton; Reuveni, Yuval
2017-04-01
Water vapor (WV) is one of the greenhouse gases, which plays a crucial role in global warming. It's investigation is of great importance for climate and global warming studies. One of the main difficulties of such studies is that WV varies constantly across the lower part of the atmosphere. Currently, most of studies provides WV estimations using only one technique such as tropospheric GPS path delays [Duan et al.] or multi-spectral reflected measurements from different meteorological satellites such as the Meteosat series [Schroedter et al.]. Constructing WV maps using only interpolated GPS zenith wet delay (ZWD) estimations has a main disadvantage - it doesn't take in account clouds which are located outside the integrated GPS paths. Using our previous work [Leontiev, Reuveni, in review] we were able to estimate Meteosat-10 7.3 μm WV pixel values by extracting the mathematical dependency between the WV amount calculated using GPS ZWD and the Meteosat-10 data. Here, we present a new strategy which combines these two approaches for WV estimation by using the mathematical dependency between GPS-ZWD and Meteosat-10 in order to evaluate the WV amount at cloudy conditions when preforming the interpolation between adjusted GPS station inside our network. This approach increases the accuracy of the estimated regional water vapor maps. References: Duan, J. et al. (1996), GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water, J. Appl. Meteorol., 35(6), 830-838, doi:10.1175/15200450(1996)035<0830:GMDEOT>2.0.CO;2. Leontiev, A., Reuveni, Y.: Combining METEOSAT-10 satellite image data with GPS tropospheric path delays to estimate regional Integrated Water Vapor (IWV) distribution, Atmos. Meas. Tech. Discuss, doi:10.5194/amt-2016-217, in review, 2016. Schroedter-Homscheidt, M., A. Drews, and S. Heise (2008), Total water vapor column retrieval from MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperatures, Remote Sens. Environ., 112(1), 249-258, doi:10.1016/j.rse.2007.05.006
Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector
NASA Astrophysics Data System (ADS)
Jackson, M. E.; Holub, K.; Callahan, W.; Blatt, S.
2014-12-01
In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from GPS stations located near NOAA Radiosonde Observation (Upper-Air Observation) launch sites. A success metric was established that requires Trimble's PWV estimates to match ESRL/GSD's to within 1.5 mm 95% of the time, which corresponds to a ZTD uncertainty of less than 10 mm 95% of the time. Initial results indicate that Trimble/ENI data meet and exceed the ZTD metric, but for some stations PWV estimates are out of specification. These discrepancies are primarily due to how offsets between MET and GPS stations are handled and are easily resolved. Additional test networks are proposed that include low terrain/high moisture variability stations, high terrain/low moisture variability stations, as well as high terrain/high moisture variability stations. We will present results from further testing along with a timeline for the transition of the GPS-Met DAPS to an operational commercial service.
NASA Technical Reports Server (NTRS)
Eberhard, Wynn L.
1993-01-01
Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.
Shu, Bao; Liu, Hui; Xu, Longwei; Qian, Chuang; Gong, Xiaopeng; An, Xiangdong
2018-04-14
For GPS medium-long baseline real-time kinematic (RTK) positioning, the troposphere parameter is introduced along with coordinates, and the model is ill-conditioned due to its strong correlation with the height parameter. For BeiDou Navigation Satellite System (BDS), additional difficulties occur due to its special satellite constellation. In fact, relative zenith troposphere delay (RZTD) derived from high-precision empirical zenith troposphere models can be introduced. Thus, the model strength can be improved, which is also called the RZTD-constrained RTK model. In this contribution, we first analyze the factors affecting the precision of BDS medium-long baseline RTK; thereafter, 15 baselines ranging from 38 km to 167 km in different troposphere conditions are processed to assess the performance of RZTD-constrained RTK. Results show that the troposphere parameter is difficult to distinguish from the height component, even with long time filtering for BDS-only RTK. Due to the lack of variation in geometry for the BDS geostationary Earth orbit satellite, the long convergence time of ambiguity parameters may reduce the height precision of GPS/BDS-combined RTK in the initial period. When the RZTD-constrained model was used in BDS and GPS/BDS-combined situations compared with the traditional RTK, the standard deviation of the height component for the fixed solution was reduced by 52.4% and 34.0%, respectively.
Liu, Hui; Xu, Longwei; Qian, Chuang; Gong, Xiaopeng; An, Xiangdong
2018-01-01
For GPS medium-long baseline real-time kinematic (RTK) positioning, the troposphere parameter is introduced along with coordinates, and the model is ill-conditioned due to its strong correlation with the height parameter. For BeiDou Navigation Satellite System (BDS), additional difficulties occur due to its special satellite constellation. In fact, relative zenith troposphere delay (RZTD) derived from high-precision empirical zenith troposphere models can be introduced. Thus, the model strength can be improved, which is also called the RZTD-constrained RTK model. In this contribution, we first analyze the factors affecting the precision of BDS medium-long baseline RTK; thereafter, 15 baselines ranging from 38 km to 167 km in different troposphere conditions are processed to assess the performance of RZTD-constrained RTK. Results show that the troposphere parameter is difficult to distinguish from the height component, even with long time filtering for BDS-only RTK. Due to the lack of variation in geometry for the BDS geostationary Earth orbit satellite, the long convergence time of ambiguity parameters may reduce the height precision of GPS/BDS-combined RTK in the initial period. When the RZTD-constrained model was used in BDS and GPS/BDS-combined situations compared with the traditional RTK, the standard deviation of the height component for the fixed solution was reduced by 52.4% and 34.0%, respectively. PMID:29661999
Retrieval and Validation of Zenith and Slant Path Delays From the Irish GPS Network
NASA Astrophysics Data System (ADS)
Hanafin, Jennifer; Jennings, S. Gerard; O'Dowd, Colin; McGrath, Ray; Whelan, Eoin
2010-05-01
Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications has been the focus of a number of Europe-wide networks and projects, most recently the EUMETNET GPS water vapour programme. The results presented here are from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. These two receivers supplement the existing Ordnance Survey Ireland active network of 17 permanent ground-based receivers. A system to retrieve column-integrated atmospheric water vapour from the data provided by this network has been developed, based on the GPS Analysis at MIT (GAMIT) software package. The data quality of the zenith retrievals has been assessed using co-located radiosondes at the Valentia site and observations from a microwave profiling radiometer at the Mace Head site. Validation of the slant path retrievals requires a numerical weather prediction model and HIRLAM (High-Resolution Limited Area Model) version 7.2, the current operational forecast model in use at Met Éireann for the region, has been used for this validation work. Results from the data processing and comparisons with the independent observations and model will be presented.
Wu, B; Jin, Y
1997-09-20
After the volcanic eruption of Mt. Pinatubo the degree of polarization of skylight during twilight over Beijing was monitored with a polarimeter aimed at the local zenith. We analyze the effect of changes in the scattering coefficient of atmospheric aerosols for the case of multiple scattering on skylight polarization at the zenith and then discuss the evolution of skylight polarization over Beijing during the posteruption period. As a reference and for comparison we also discuss the evolution of the aerosol optical depth retrieved from the combination of skylight polarization and backscattering ratio measured by the polarimeter and a lidar for the period beginning with the eruption of Mt. Pinatubo through the end of 1993. The contributions of atmospheric aerosols at different altitudes to the ground-observed twilight polarization depend on the solar zenith angle. For larger solar zenith angles, the skylight polarization is mostly sensitive to aerosol variations in the upper layer that range from 15 to 30 km. The twilight polarization at the zenith from June 1991 to mid-1994 shows different features for three periods: (1) From October 1991 to February 1992, volcanic dust traveled to mid-latitudes, and the degree of polarization decreased substantially. (2) From February 1992 to November 1993, volcanic dust was dispersed the minimum degree of polarization at the solar zenith angle of 93.5 degrees disappeared and the maximum increased. In addition, polarization for solar zenith angles less than 90 degrees also increased. (3) From November 1993 to May 1994, most of the volcanic dust had fallen off, the atmosphere was restored to the background state, and the skylight polarization approached the preeruption condition.
NASA Astrophysics Data System (ADS)
Baldysz, Zofia; Nykiel, Grzegorz; Araszkiewicz, Andrzej; Figurski, Mariusz; Szafranek, Karolina
2016-09-01
The main purpose of this research was to acquire information about consistency of ZTD (zenith total delay) linear trends and seasonal components between two consecutive GPS reprocessing campaigns. The analysis concerned two sets of the ZTD time series which were estimated during EUREF (Reference Frame Sub-Commission for Europe) EPN (Permanent Network) reprocessing campaigns according to 2008 and 2015 MUT AC (Military University of Technology Analysis Centre) scenarios. Firstly, Lomb-Scargle periodograms were generated for 57 EPN stations to obtain a characterisation of oscillations occurring in the ZTD time series. Then, the values of seasonal components and linear trends were estimated using the LSE (least squares estimation) approach. The Mann-Kendall trend test was also carried out to verify the presence of linear long-term ZTD changes. Finally, differences in seasonal signals and linear trends between these two data sets were investigated. All these analyses were conducted for the ZTD time series of two lengths: a shortened 16-year series and a full 18-year one. In the case of spectral analysis, amplitudes of the annual and semi-annual periods were almost exactly the same for both reprocessing campaigns. Exceptions were found for only a few stations and they did not exceed 1 mm. The estimated trends were also similar. However, for the reprocessing performed in 2008, the trends values were usually higher. In general, shortening of the analysed time period by 2 years resulted in a decrease of the linear trends values of about 0.07 mm yr-1. This was confirmed by analyses based on two data sets.
An investigation of the solar zenith angle variation of D-region ionization
NASA Technical Reports Server (NTRS)
Ratnasiri, P. A. J.; Sechrist, C. F., Jr.
1975-01-01
Model calculations are carried out with a view to interpreting the solar zenith angle variation of D-region ionization. A model is developed for the neutral chemistry including the transport terms relating to molecular and eddy diffusion. The diurnal behavior is described of the minor neutral constituents formed in an oxygen-hydrogen-nitrogen atmosphere, in the height interval between 30 and 120 km. Computations carried out for two cases of the eddy diffusion coefficients models indicate that the constituents which are important for the D-region positive-ion chemistry do not show a significant variation with zenith angle for values up to 75 deg over the D-region heights. In the ion chemistry model, ion-pair production rates are calculated for solar X-rays between 1 A and 100 A, EUV radiations from 100 A up to the Lyman-alpha line, precipitating electrons, and galactic cosmic rays. The solar zenith angle variation of the positive-ion composition, negative-ion composition, and the electron densities are described up to 75 deg zenith angle, in the height interval between 60 and 100 km.
NASA Astrophysics Data System (ADS)
Papanikolaou, Xanthos; Anastasiou, Demitris; Marinou, Aggeliki; Zacharis, Vangelis; Paradissis, Demitris
2015-04-01
Dionysos Satellite Observatory and Higher Geodesy Laboratory of the National Technical University of Athens, have developed an automated processing scheme to accommodate the daily analysis of all available continuous GNSS stations in Greece. For the moment, a total of approximately 150 regional stations are processed, divided in 4 subnetworks. GNSS data are processed routinely on a daily basis, via Bernese GNSS Software v5.0, developed by AIUB. Each network is solved twice, within a period of 20 days, first using ultra-rapid products (with a latency of ~10 hours) and then using final products (with a latency of ~20 days). Observations are processed using carrier phase, modelled to double differences in the ionosphere-free linear combination. Analysis results, include coordinate estimates, ionospheric corrections (TEC maps) and hourly tropospheric parameters (zenith delay). This processing scheme, has proved helpful in investigating in near real-time abrupt geophysical phenomena, as in the 2011 Santorini inflation episode and the 2014 Kephalonia earthquake events. All analysis results and products are made available via a dedicated webpage. Additionally, most of the GNSS data are hosted in a GSAC web platform, available to all interested parties. Data and results are made available through the laboratory's dedicated website: http://dionysos.survey.ntua.gr/.
The Foundation GPS Water Vapor Inversion and its Application Research
NASA Astrophysics Data System (ADS)
Liu, R.; Lee, T.; Lv, H.; Fan, C.; Liu, Q.
2018-04-01
Using GPS technology to retrieve atmospheric water vapor is a new water vapor detection method, which can effectively compensate for the shortcomings of conventional water vapor detection methods, to provide high-precision, large-capacity, near real-time water vapor information. In-depth study of ground-based GPS detection of atmospheric water vapor technology aims to further improve the accuracy and practicability of GPS inversion of water vapor and to explore its ability to detect atmospheric water vapor information to better serve the meteorological services. In this paper, the influence of the setting parameters of initial station coordinates, satellite ephemeris and solution observation on the total delay accuracy of the tropospheric zenith is discussed based on the observed data. In this paper, the observations obtained from the observation network consisting of 8 IGS stations in China in June 2013 are used to inverse the water vapor data of the 8 stations. The data of Wuhan station is further selected and compared with the data of Nanhu Sounding Station in Wuhan The error between the two data was between -6mm-6mm, and the trend of the two was almost the same, the correlation reached 95.8 %. The experimental results also verify the reliability of ground-based GPS inversion of water vapor technology.
Atmospheric ozone and colors of the Antarctic twilight sky.
Lee, Raymond L; Meyer, Wolfgang; Hoeppe, Götz
2011-10-01
Zenith skylight is often distinctly blue during clear civil twilights, and much of this color is due to preferential absorption at longer wavelengths by ozone's Chappuis bands. Because stratospheric ozone is greatly depleted in the austral spring, such decreases could plausibly make Antarctic twilight colors less blue then, including at the zenith. So for several months in 2005, we took digital images of twilight zenith and antisolar skies at Antarctica's Georg von Neumayer Station. Our colorimetric analysis of these images shows only weak correlations between ozone concentration and twilight colors. We also used a spectroradiometer at a midlatitude site to measure zenith twilight spectra and colors. At both locations, spectral extinction by aerosols seems as important as ozone absorption in explaining colors seen throughout the twilight sky.
VLBI Analysis with the Multi-Technique Software GEOSAT
NASA Technical Reports Server (NTRS)
Kierulf, Halfdan Pascal; Andersen, Per-Helge; Boeckmann, Sarah; Kristiansen, Oddgeir
2010-01-01
GEOSAT is a multi-technique geodetic analysis software developed at Forsvarets Forsknings Institutt (Norwegian defense research establishment). The Norwegian Mapping Authority has now installed the software and has, together with Forsvarets Forsknings Institutt, adapted the software to deliver datum-free normal equation systems in SINEX format. The goal is to be accepted as an IVS Associate Analysis Center and to provide contributions to the IVS EOP combination on a routine basis. GEOSAT is based on an upper diagonal factorized Kalman filter which allows estimation of time variable parameters like the troposphere and clocks as stochastic parameters. The tropospheric delays in various directions are mapped to tropospheric zenith delay using ray-tracing. Meteorological data from ECMWF with a resolution of six hours is used to perform the ray-tracing which depends both on elevation and azimuth. Other models are following the IERS and IVS conventions. The Norwegian Mapping Authority has submitted test SINEX files produced with GEOSAT to IVS. The results have been compared with the existing IVS combined products. In this paper the outcome of these comparisons is presented.
Performance analysis of a GPS equipment by general linear models approach
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena; Gonçalves, Fernando M.; Correia, Anacleto
2017-06-01
One of the major challenges in processing high-accurate long baselines is the presence of un-modelled ionospheric and tropospheric delays. There are effective mitigation strategies for ionospheric biases, such as the ionosphere-free linear combination of L1 and L2 carrier-phase, which can remove about 98% of the first-order ionospheric biases. With few exceptions this was the solution found by LGO for the 11760 baselines processed in this research. Therefore, for successful results, the appropriated approach to the mitigation of biases due to tropospheric delays is vital. The main aim of the investigations presented in this work was to evaluate the improvements, or not, of the rate of baselines successfully produced by adopting an advanced tropospheric bias mitigation strategy as opposed to a sample tropospheric bias mitigation approach. In both cases LGO uses as a priori tropospheric model the simplified Hopfield model, improved in the first case with a zenith tropospheric scale factor per station. Being aware that 1D and 2D present different behaviors, both cases are analyzed individually with each strategy.
NASA Technical Reports Server (NTRS)
Belskiy, S. A.; Dmitriev, B. A.; Romanov, A. M.
1975-01-01
The value of EW asymmetry and coupling coefficients at different zenith angles were measured by means of a double coincidence crossed telescope which gives an opportunity to measure simultaneously the intensity of the cosmic ray hard component at zenith angles from 0 to 84 deg in opposite azimuths. The advantages of determining the coupling coefficients by the cosmic ray azimuth effect as compared to their measurement by the latitudinal effect are discussed.
The determination of the most applicable PWV model for Turkey
NASA Astrophysics Data System (ADS)
Deniz, Ilke; Gurbuz, Gokhan; Mekik, Cetin
2016-07-01
Water vapor is a key component for modelling atmosphere and climate studies. Moreover, long-term water vapor changes can be an independent source for detecting climate changes. Since Global Navigation Satellite Systems (GNSS) use microwaves passing through the atmosphere, atmospheric effects are modeled with high accuracy. Tropospheric effects on GNSS signals are estimated with total zenith delay parameter (ZTD) which is the sum of hydrostatic (ZHD) and wet zenith delay (ZWD). The first component can be obtained from meteorological observations with high accuracy; the second component, however, can be computed by subtracting ZHD from ZTD (ZWD=ZTD-ZHD). Afterwards, the weighted mean temperature (Tm) or the conversion factor (Q) is used for the conversion between the precipitable water vapor (PWV) and ZWD. The parameters Tm and Q are derived from the analysis of radiosonde stations' profile observations. Numerous Q and Tm models have been developed for each radiosonde station, radiosonde station group, countries and global fields such as Bevis Tm model and Emardson and Derks' Q models. So, PWV models (Tm and Q models) applied for Turkey have been developed using a year of radiosonde data (2011) from 8 radiosonde stations. In this study the models developed are tested by comparing PWVGNSS computed applying Tm and Q models to the ZTD estimates derived by Bernese and GAMIT/GLOBK software at GNSS stations established at Istanbul and Ankara with those from the collocated radiosonde stations (PWVRS) from October 2013 to December 2014 with the data obtained from a project (no 112Y350) supported by the Scientific and Technological Research Council of Turkey (TUBITAK). The comparison results show that PWVGNSS and PWVRS are in high correlation (86 % for Ankara and 90% for Istanbul). Thus, the most applicable model for Turkey and the accuracy of GNSS meteorology are investigated. In addition, Tm model was applied to the ZTD estimates of 20 TUSAGA-Active (CORS-TR) stations in the 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey and PWV were computed. ZTD estimates of these stations were computed using Bernese GNSS Software v5.0 during the period from June 2013 to June 2014. Preceding the PWV estimation, meteorological parameters for these stations (temperature, pressure and humidity) are derived by applying spherical harmonics modelling and interpolation to the above-mentioned meteorological parameters measured by meteorological stations surrounding TUSAGA-Active stations. Results of spherical harmonics modelling and interpolation yield the precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Also, the PWV of TUSAGA-Active stations selected were estimated.
MAVEN observations of dayside peak electron densities in the ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.
2017-01-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.
Visible and near-ultraviolet spectroscopy at Thule AFB (76.5 N) from January 28 - February 15, 1988
NASA Technical Reports Server (NTRS)
Mount, G. H.; Sanders, R. W.; Jakoubek, R. O.; Schmeltekopf, A. L.; Solomon, S.
1988-01-01
Near-ultraviolet and visible spectrographs identical to those employed at McMurdo Station, Antarctica (77.8 S) during the austral spring seasons of 1986 and 1987 were used to study the stratosphere above Thule, Greenland (76.5 N) during early spring, 1988. Observations were carried out both at night using the direct moon as a light source, and during the day by collecting the scattered light from the zenith sky when solar zenith angles were less than about 94.5 degrees. Excellent meteorological conditions prevailed in the troposphere and stratosphere at Thule. Surface weather was extremely clear over most of the period, facilitating measurements of the direct light from the moon. The lower stratospheric arctic polar vortex was located very near Thule throughout the observing period, and temperature at the 30 mbar level were typically below -80 C above Thule, according to the National Meteorological Center daily analyses. Thus conditions were favorable for polar stratospheric cloud formation above Thule. Total column ozone abundances were about 350 to 400 Dobson units, and did not suggest a clear temporal trend over the observing period. Stratospheric nitrogen dioxide measurements were complicated by the presence of a large component of tropospheric pollution on many occasions. Stratospheric nitrogen dioxide could be identified on most days using the absorption in the scattered light from the zenith sky, which greatly enhances the stratospheric airmass while suppressing the tropospheric contribution. These measurements suggest that the total vertical column abundance of nitrogen dioxide present over Thule in February was extremely low, sometimes as low as 3 x 10 to the 14th per sq cm. The abundance of nitrogen dioxide increased systemically from about 3 x 10 to the 14th in late January to 1.0 x 10 to the 15th per sq cm in mid-February, perhaps because of photolysis of N2O5 in the upper part of the stratosphere, near 25 to 35 km.
NASA Astrophysics Data System (ADS)
Bará, Salvador
2018-01-01
A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist-Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec-2 (in the root-mean-square sense) of its true value in the Johnson-Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.
Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.
1990-01-01
An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Murcray, D. G.
1986-01-01
Recent ground-based infrared solar spectra at 0.02 per cm resolution in the 3000 per cm region have been analyzed for the atmospheric content of HCl. Nonlinear spectral least-squares fitting applied to spectra obtained at several zenith angles shows little sensitivity of the results to tropospheric HCl but provides an accurate measurement of the total column amount.
Coulson, K L
1980-10-15
An extensive series of measurements of the intensity and polarization of the light from the zenith sky during periods of twilight was made at an altitude of 3400 m on the island of Hawaii during a 5-month period in 1977. This first of two papers is on the twilight polarization; the second will deal with intensity. The measurements were made in eight narrow spectral ranges between 0.32 and 0.90 microm under clear sky conditions. The data show that the degree of polarization at the zenith is a sensitive indicator of the existence of turbid layers at high levels in the atmosphere, and by monitoring the zenith skylight as a function of time during the twilight, it is possible to obtain qualitative information on both the altitude and relative density of the layers.
NASA Technical Reports Server (NTRS)
Smith, G. Louis; Manalo, Natividad; Suttles, John T.; Walker, Ira
1989-01-01
During January 1985, the scanning radiometer aboard the Earth Radiation Budget Satellite was operated to scan along-track. These data have been analyzed to produce limb-darkening functions for Earth emitted radiation, which relate the radiance in any given direction to the radiant exitance. Limb-darkening functions are presented in tabular form and shown as figures for 10 day cases and 12 night cases, corresponding to various scene types and latitude zones. The scene types were computed using measurements within 10 deg of zenith. The limb-darkening functions have values of 1.03 to 1.09 at zenith, with 1.06 being typical. It is found that latitude causes a variation on the order of 1 percent, except for zenith angles greater than 70 deg. These limb-darkening models are about 2 percent higher at zenith than the models derived from Nimbus 7 data.
TOMS total ozone data compared with northern latitude Dobson ground stations
NASA Technical Reports Server (NTRS)
Heese, B.; Barthel, K.; Hov, O.
1994-01-01
Ozone measurements from the Total Ozone Mapping Spectrometer on the Nimbus 7 satellite are compared with ground-based measurements from five Dobson stations at northern latitudes to evaluate the accuracy of the TOMS data, particularly in regions north of 50 deg N. The measurements from the individual stations show mean differences from -2.5 percent up to plus 8.3 percent relative to TOMS measurements and two of the ground stations, Oslo and Longyearbyen, show a significant drift of plus 1.2 percent and plus 3.7 percent per year, respectively. It can be shown from nearly simultaneous measurements in two different wavelength double pairs at Oslo that at least 2 percent of the differences result from the use of the CC' wavelength double pair instead of the standard AD wavelength double pair. Since all Norwegian stations used the CC' wavelength double pair exclusively a similar error can be assumed for Tromso and Longyearbyren. A comparison between the tropospheric ozone content in TOMS data and from ECC ozonesonde measurements at Ny-Alesund and Bear Island shows that the amount of tropospheric ozone in the standard profiles used in the TOMS algorithm is too low, which leads to an error of about 2 percent in total ozone. Particularly at high solar zenith angles (greater than 80 deg), Dobson measurements become unreliable. They are up to 20 percent lower than TOMS measurements averaged over solar zenith angles of 88 deg to 89 deg.
NASA Astrophysics Data System (ADS)
Dyer, A. C. R.; Ryden, K. A.; Hands, A. D. P.; Dyer, C.; Burnett, C.; Gibbs, M.
2018-03-01
Solar energetic particle events create radiation risks for aircraft, notably single-event effects in microelectronics along with increased dose to crew and passengers. In response to this, some airlines modify their flight routes after automatic alerts are issued. At present these alerts are based on proton flux measurements from instruments onboard satellites, so it is important that contemporary atmospheric radiation measurements are made and compared. This paper presents the development of a rapid-response system built around the use of radiosondes equipped with a radiation detector, Zenith, which can be launched from a Met Office weather station after significant solar proton level alerts are issued. Zenith is a compact, battery-powered solid-state radiation monitor designed to be connected to a Vaisala RS-92 radiosonde, which transmits all data to a ground station as it ascends to an altitude of 33 km. Zenith can also be operated as a stand-alone detector when connected to a laptop, providing real-time count rates. It can also be adapted for use on unmanned aerial vehicles. Zenith has been flown on the Met Office Civil Contingency Aircraft, taken to the European Organization for Nuclear Research-EU high energy Reference Field facility for calibration and launched on a meteorological balloon at the Met Office's weather station in Camborne, Cornwall, UK. During this sounding, Zenith measured the Pfotzer-Regener maximum to be at an altitude of 18-20 km where the count rate was measured to be 1.15 c s-1 cm-2 compared to 0.02 c s-1 cm-2 at ground level.
Asronomical refraction: Computational methods for all zenith angles
NASA Technical Reports Server (NTRS)
Auer, L. H.; Standish, E. M.
2000-01-01
It is shown that the problem of computing astronomical refraction for any value of the zenith angle may be reduced to a simple, nonsingular, numerical quadrature when the proper choice is made for the independent variable of integration.
Charge 4/3 leptons in cosmic rays
NASA Technical Reports Server (NTRS)
Wada, T.; Yamashita, Y.; Imaeda, K.; Yamamoto, I.
1985-01-01
A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
Real-Time Tropospheric Delay Estimation using IGS Products
NASA Astrophysics Data System (ADS)
Stürze, Andrea; Liu, Sha; Söhne, Wolfgang
2014-05-01
The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it opens the possibility to evaluate the potential of troposphere parameter determination in real-time and its effect to Precise Point Positioning. Starting with an offline investigation of the influence of different RTS products and a priori troposphere models the configuration delivering the best results is used for a real-time processing of the GREF (German Geodetic Reference) network over a suitable period of time. The evaluation of the derived ZTD parameters and station heights is done with respect to well proven GREF, EUREF, IGS, and E-GVAP analysis results. Keywords: GNSS, Zenith Tropospheric Delay, Real-time Precise Point Positioning
NASA Astrophysics Data System (ADS)
Coughlin, Michael; Stubbs, Christopher; Claver, Chuck
2016-06-01
We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope's u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3-0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.
NASA Astrophysics Data System (ADS)
Detweiler, L. G.; Glocer, A.; Benson, R. F.; Fung, S. F.
2016-12-01
In order to investigate and understand the role that different drivers play on the electron density altitude profile in the topside ionosphere of the polar regions, we used satellite radio-sounding data collected during the 1960s, 1970s, and 1980s to construct a series of graphs of electron density as a function of altitude and solar zenith angle. These data were gathered by the swept-frequency topside sounders from four of the satellites from the International Satellites for Ionospheric Studies (ISIS) program: Alouette 1 and 2, and ISIS 1 and 2, and were obtained from the NASA Space Physics Data Facility. In order to control for phenomenon known to effect electron density, we restricted our data set to data collected during a specific DST range (between -10 and 40 nT), and roughly constant solar radio flux values (between 40 and 90 W*m-2*Hz-1). To look at the effect of electron precipitation, we examine two separate cases, one above an invariant latitude of 60°, which includes precipitation, and one above 75°, which excludes precipitation. Under these restrictions we gathered a total of 407,500 altitude, solar zenith angle, and electron density data pairs. We then sorted these data pairs into bins of altitude and solar zenith angle, and present graphs of the medians of these binned data. We then fit our binned data to an exponential function representing hydrostatic equilibrium in the ionosphere presented in Kitamura et. al [2011]. We present graphs which show how well this best fit equation fits our data. Our results clearly show the strong dependence of electron density with respect to solar zenith angle, and demonstrates that electron precipitation can also influence the electron density profile, particularly on the nightside. We also examine how seasonal effects, via differences in the neutral thermosphere, can affect the electron density profiles. This study provides a climatological picture of what drives the topside electron density profile in the polar regions, and could be useful in future studies for model validation.
NASA Astrophysics Data System (ADS)
Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.
2011-11-01
This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.
Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere
NASA Astrophysics Data System (ADS)
Gegout, P.; Biancale, R.; Soudarin, L.
2011-10-01
The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.
NASA Astrophysics Data System (ADS)
Tsuda, T.; Ito, N.; Takeda, Y.; Realini, E.; Shinbori, A.
2016-12-01
We employ the GNSS meteorology technique to measure precipitable water vapor (PWV) from the propagation delay of GNSS signal in the atmosphere. We installed a hyper-dense GNSS network using 15 receivers with a horizontal spacing of 1-2 km in Uji, Japan (Uji network). We also obtained precipitation with a rain gauge at a nearby operational weather station and rain cloud distribution by an X-band radar. We selected 40 days from April 2011 to March 2013, when considerable precipitation was detected. Difference in PWV within 10 km was 3-10 mm during a heavy rain. We found PWV increased 10-20 minutes before a passage of a rain cloud. The maximum value of PWV correlated well with the amount of precipitation on the ground. The variance of PWV between the GNSS sites was enhanced during a heavy rain. For a future practical hyper-dense GNSS network system with many receivers, we consider to use inexpensive single frequency (SF) receivers. Because SF receiver cannot eliminate the ionospheric delay by itself, we interpolate the delay referring the delay measured by the nearby dual frequency (DF) receivers. We investigated ionospheric delay by the Uji network, taking advantages of Quasi-Zenith Satellite System (QZSS) that gives signals at high elevation angles. During a travelling ionospheric disturbance (TID), a wavy structure with a horizontal scale of several tens km was recognized. The ionospheric delay was compensated by a linear and quadratic interpolation, then the resulting error of PWV compared with DF solution was about 1.50 mm in RMS. For a real-time estimation of PWV, we used real-time satellite clock information corrected by GEONET. Difference of PWV between the real-time analysis and the post processing with the final orbit was 0.7 mm in RMS. We estimated an overall error of PWV with a dense SF-receiver network on a real-time basis was 1.7 mm in RMS.
Meteoroid stream flux densities and the zenith exponent
NASA Astrophysics Data System (ADS)
Molau, Sirko; Barentsen, Geert
2013-01-01
The MetRec software was recently extended to measure the limiting magnitude in real-time, and to determine meteoroid stream flux densities. This paper gives a short overview of the applied algorithms. We introduce the MetRec Flux Viewer, a web tool to visualize activity profiles on- line. Starting from the Lyrids 2011, high-quality flux density profiles were derived from IMO Video Network observations for every major meteor shower. They are often in good agreement with visual data. Analyzing the 2011 Perseids, we found systematic daily variations in the flux density profile, which can be attributed to a zenith exponent gamma > 1.0. We analyzed a number of meteor showers in detail and found zenith exponent variations from shower to shower in the range between 1.55 and 2.0. The average value over all analyzed showers is gamma = 1.75. In order to determine the zenith exponent precisely, the observations must cover a large altitude range (at least 45 degrees).
Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2009-01-01
The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment
NASA Astrophysics Data System (ADS)
Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.
2003-04-01
We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.
Optimizing an ELF/VLF Phased Array at HAARP
NASA Astrophysics Data System (ADS)
Fujimaru, S.; Moore, R. C.
2013-12-01
The goal of this study is to maximize the amplitude of 1-5 kHz ELF/VLF waves generated by ionospheric HF heating and measured at a ground-based ELF/VLF receiver. The optimization makes use of experimental observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. During these experiments, the amplitude, phase, and propagation delay of the ELF/VLF waves were carefully measured. The HF beam was aimed at 15 degrees zenith angle in 8 different azimuthal directions, equally spaced in a circle, while broadcasting a 3.25 MHz (X-mode) signal that was amplitude modulated (square wave) with a linear frequency-time chirp between 1 and 5 kHz. The experimental observations are used to provide reference amplitudes, phases, and propagation delays for ELF/VLF waves generated at these specific locations. The presented optimization accounts for the trade-off between duty cycle, heated area, and the distributed nature of the source region in order to construct a "most efficient" phased array. The amplitudes and phases generated by modulated heating at each location are combined in post-processing to find an optimal combination of duty cycle, heating location, and heating order.
2D PWV monitoring of a wide and orographically complex area with a low dense GNSS network
NASA Astrophysics Data System (ADS)
Ferrando, Ilaria; Federici, Bianca; Sguerso, Domenico
2018-04-01
This study presents an innovative procedure to monitor the precipitable water vapor (PWV) content of a wide and orographically complex area with low-density networks. The procedure, termed G4M (global navigation satellite system, GNSS, for Meteorology), has been developed in a geographic information system (GIS) environment using the free and open source GRASS GIS software (https://grass.osgeo.org). The G4M input data are zenith total delay estimates obtained from GNSS permanent stations network adjustment and pressure ( P) and temperature ( T) observations using existing infrastructure networks with different geographic distributions in the study area. In spite of the wide sensor distribution, the procedure produces 2D maps with high spatiotemporal resolution (up to 250 m and 6 min) based on a simplified mathematical model including data interpolation, which was conceived by the authors to describe the atmosphere's physics. In addition to PWV maps, the procedure provides ΔPWV and heterogeneity index maps: the former represents PWV variations with respect to a "calm" moment, which are useful for monitoring the PWV evolution; and the latter are promising indicators to localize severe meteorological events in time and space. This innovative procedure is compared with meteorological simulations in this paper; in addition, an application to a severe event that occurred in Genoa (Italy) is presented.[Figure not available: see fulltext.
Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm
NASA Astrophysics Data System (ADS)
Kataoka, Ryuho; Iwahashi, Kiyomi
2017-10-01
Red auroras were observed in Japan during an extreme magnetic storm that occurred on 17 September 1770. We show new evidence that the red aurora extended toward the zenith of Kyoto around midnight. The basic appearance of the historical painting of the red aurora is geometrically reproduced based on the inclination of the local magnetic field and a detailed description in a newly discovered diary. The presence of the inclined zenith aurora over Kyoto suggests that the intensity of the September 1770 magnetic storm is comparable to, or slightly larger than that of the September 1859 Carrington storm.
Ozone ground-based measurements by the GASCOD near-UV and visible DOAS system
NASA Technical Reports Server (NTRS)
Giovanelli, G.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Ravegnani, F.
1994-01-01
GASCOD, a near-ultraviolet and visible differential optical spectrometer, was developed at CNR's FISBAT Institute in Bologna, Italy, and first tested at Terra Nova Bay station in Antarctica (74.6 deg S, 164.6 deg E) during the summer expeditions 1988-1990 of PNRA (PNRA is the national research program in Antarctica, 'Programma Nazionale di Ricerche in Atartide'). A comparison with coincident O3 total column measurements taken in the same Antarctic area is presented, as is another comparison performed in Italy. Also introduced is an updated model for solar zenith measurements taken from a ground-based, upward-looking GASCOD spectrometer, which was employed for the 1991-92 winter campaign at Aer-Ostersund in Sweden (63.3 deg N, 13.1 deg E) during AESOE (European Arctic Stratospheric Ozone Experiment). The GASCOD can examine the spectra from 300 to 700 nm, in 50 nm steps, by moving the spectrometer's grating. At present, it takes measurements of solar zenith radiation in the 310-342 nm range for O3 and in the 405-463 nm range for NO2.
NASA Astrophysics Data System (ADS)
Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2015-04-01
Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.
Solar UV-B irradiance and total ozone in Italy: Fluctuations and trends
NASA Astrophysics Data System (ADS)
Casale, G. R.; Meloni, D.; Miano, S.; Palmieri, S.; Siani, A. M.; Cappellani, F.
2000-02-01
Solar UV irradiance spectra (290-325 nm) together with daily total ozone column observations have been collected since 1992 by means of Brewer spectrophotometers at two Italian stations (Rome and Ispra). The available Brewer irradiance data, recorded around noon and at fixed solar zenith angles, together with the output of a radiative transfer model (the STAR model) are presented and analyzed. The Brewer irradiance measurements and total ozone fluctuations and anomalies are investigated, pointing out the correlation between the high-frequency O3 components and irradiance at 305 nm. In addition, the total ozone long time series of Arosa (170 km apart from Ispra) and Vigna di Valle (very close to Rome) are analyzed to illustrate evidence of temporal variations and a possible trend.
Wijting, Ingeborg; Rokx, Casper; Boucher, Charles; van Kampen, Jeroen; Pas, Suzan; de Vries-Sluijs, Theodora; Schurink, Carolina; Bax, Hannelore; Derksen, Maarten; Andrinopoulou, Eleni-Rosalina; van der Ende, Marchina; van Gorp, Eric; Nouwen, Jan; Verbon, Annelies; Bierman, Wouter; Rijnders, Bart
2017-12-01
The high genetic barrier to resistance of dolutegravir might allow for its use as maintenance monotherapy in patients with HIV. We investigated whether dolutegravir monotherapy was non-inferior to combination antiretroviral therapy (ART) for maintaining virological suppression in patients with HIV-1 infection successfully treated with combination ART. We did this open-label, phase 2, randomised non-inferiority trial at two medical centres in the Netherlands. Eligible patients (aged ≥18 years) were on combination ART, had been virologically suppressed (HIV RNA <50 copies per mL) for at least 6 months, and had CD4 nadirs of 200 cells per μL or higher, HIV RNA zeniths of 100 000 copies per mL or less, and no history of virological failure. Patients were randomly assigned (1:1), via a web-based block randomisation method (variable block sizes of 4 and 6), to switch to dolutegravir monotherapy (50 mg once a day) either immediately or after a delay of 24 weeks of continued combination ART. Randomisation was stratified by HIV RNA zenith (<50 000 copies per mL vs 50 000-99 999 copies per mL). Investigators and patients were not masked to group allocation. The primary endpoint was the proportion of patients with plasma HIV RNA viral loads of less than 200 copies per mL at week 24, with a non-inferiority margin of 12%. We did analyses in the on-treatment and intention-to-treat populations. This trial is registered with ClinicalTrials.gov, NCT02401828. Between March 10, 2015, and Feb 4, 2016, we randomly assigned 51 patients to the immediate switch group and 53 patients to the delayed switch group. One patient who received immediate monotherapy discontinued treatment at week 12 because of disturbed sleep. At week 24, dolutegravir monotherapy was non-inferior to combination ART, with plasma HIV RNA loads of 200 copies per mL or higher observed in 2% (1/50) of patients in the immediate switch group and in no patients in the delayed switch group (difference 2%, 95% CI -5 to 12). Of patients assigned to the delayed switch group, 47 (89%) switched to dolutegravir monotherapy at week 24, two (4%) of whom subsequently discontinued monotherapy because of headache (n=1) and disturbed sleep (n=1). Eight (8%) of the 95 patients who remained on dolutegravir monotherapy had virological failure; all had therapeutic plasma concentrations of dolutegravir. In three (38%) of the eight patients, mutations associated with resistance were detected in the integrase gene. According to a predefined stopping rule, detection of these mutations led to premature study discontinuation. Dolutegravir monotherapy was non-inferior to combination ART at 24 weeks. However, virological failure continued to occur thereafter and led to dolutegravir resistance. Dolutegravir should not be used as maintenance monotherapy. Erasmus Trustfonds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Site selection and directional models of deserts used for ERBE validation targets
NASA Technical Reports Server (NTRS)
Staylor, W. F.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.
NASA Astrophysics Data System (ADS)
Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard
2014-05-01
The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less than 45° and the peak altitudes rise for zenith angles larger than 60°. The latter is the opposite of the observed behavior. The explanation is that VIRA and VenusGRAM are valid only for high solar activity, although there is also very poor agreement with VeRa observations from the recent solar cycle, in which the solar activity increases to high values. The disagreement between the observation and simulation of the Venus electron density profiles proves, that the true encountered Venus atmosphere at ionospheric altitudes was denser but locally cooler than predicted by VIRA.
Checking ozone amounts by measurements of UV-irradiances
NASA Technical Reports Server (NTRS)
Seckmeyer, Gunther; Kettner, Christiane; Thiel, Stephen
1994-01-01
Absolute measurements of UV-irradiances in Germany and New Zealand are used to determine the total amounts of ozone. UV-irradiances measured and calculated for clear skies and for solar zenith angles less than 60 deg generally show a good accordance. The UVB-irradiances, however, show that the actual Dobson values are about 5 percent higher in Germany and about 3 percent higher in New Zealand compared to those obtained by our method. Possible reasons for these deviations are discussed.
2015-09-01
improve the life of people in underdeveloped countries, inspired me to engage and explore the world around me. This exploration eventually led me to the...in the world , it faces the possible challenge of a demographic drag on growth. In the past three decades, China has reaped a demographic dividend...that the World Bank’s demographic statistics point to 2015 as the year during which China’s total working age population (15–64) will reach its zenith
AirMSPI Level 1B2 V005 New Data for NASA’s SEAC4RS Campaign
Atmospheric Science Data Center
2018-05-07
AirMSPI Level 1B2 V005 New Data for NASA’s SEAC4RS Campaign Wednesday, February 14, 2018 ... 865, and 935 nm. The data products include radiance, time, solar zenith, solar azimuth, view zenith, and view azimuth for all spectral ...
Direct multiangle solution for poorly stratified atmospheres
Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao
2012-01-01
The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used...
Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith
NASA Astrophysics Data System (ADS)
Leyser, Thomas B.; James, H. Gordon; Gustavsson, Björn; Rietveld, Michael T.
2018-02-01
The response of ionospheric plasma to pumping by powerful HF (high frequency) electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association) Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer) spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O) conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.
NASA Technical Reports Server (NTRS)
Dahlback, Arne; Stamnes, Knut
1991-01-01
Accurate computation of atmospheric photodissociation and heating rates is needed in photochemical models. These quantities are proportional to the mean intensity of the solar radiation penetrating to various levels in the atmosphere. For large solar zenith angles a solution of the radiative transfer equation valid for a spherical atmosphere is required in order to obtain accurate values of the mean intensity. Such a solution based on a perturbation technique combined with the discrete ordinate method is presented. Mean intensity calculations are carried out for various solar zenith angles. These results are compared with calculations from a plane parallel radiative transfer model in order to assess the importance of using correct geometry around sunrise and sunset. This comparison shows, in agreement with previous investigations, that for solar zenith angles less than 90 deg adequate solutions are obtained for plane parallel geometry as long as spherical geometry is used to compute the direct beam attenuation; but for solar zenith angles greater than 90 deg this pseudospherical plane parallel approximation overstimates the mean intensity.
On-Sky Demonstration of a Fluid Atmospheric Dispersion Corrector
NASA Astrophysics Data System (ADS)
Zheng, J.; Saunders, W.; Lawrence, J. S.; Richards, S.
2013-02-01
The first on-sky demonstration of a fluid atmospheric dispersion corrector (FADC) is presented using the Anglo-Australian Telescope at Siding Spring Observatory. The atmospheric dispersion correction was observed with a three-colour CCD camera at the telescope’s Cassegrain focus. The FADC contains a pair of immiscible fluids in a small glass container placed very close to the telescope focal plane. A pair of fluid prisms is formed and the apex of the two prisms varies with telescope zenith angle because of gravity. Three chemicals were identified and tested for this purpose. We experimentally measured the FADC dispersion properties versus zenith angle and it is shown that its dispersion follows the tan(Z) law. We have been able to observe 6 stars at different zenith angles and show that the FADC can correct atmospheric dispersion up to 1‧‧ at a zenith angle of 52° across the visible spectral range of 400-700 nm. It is demonstrated that an FADC can function as a passive atmospheric dispersion corrector without any moving parts. Our on-sky measurement results show excellent agreement with the optical ray-tracing model.
Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band
NASA Technical Reports Server (NTRS)
Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.
2005-01-01
High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, C.; Wiscombe, W.
2010-01-01
The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets.
NASA Astrophysics Data System (ADS)
Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan
2016-04-01
An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water vapor field is determined by comparing slant integrated wet delays computed from the estimated wet refractivities with real GNSS wet delay estimates. This comparison is performed along different elevation and azimuth angles.
NASA Astrophysics Data System (ADS)
Shoji, Yoshinori; Sato, Kazutoshi; Yabuki, Masanori; Tsuda, Toshitaka
2017-11-01
We installed two global navigation satellite system (GNSS) antennas on a research vessel, the RYOFU MARU of the Japan Meteorological Agency, and conducted experimental observations to assess the GNSS-derived precipitable water vapor (PWV) from October 19, 2016, to August 6, 2017. One antenna was set on the mast (MAST), while another antenna was set on the upper deck (DECK). The GNSS analysis was conducted using the precise point positioning procedure with a real-time GNSS orbit. A quality control (QC) procedure based on the amount of zenith tropospheric delay (ZTD) time variation was proposed. After the QC was applied, the retrieved PWVs were compared to 77 radiosonde observations. The PWVs of MAST agreed with the radiosonde observations with a 1.7 mm root mean square (RMS) difference, a - 0.7-mm bias, and 3.6% rejection rate, while that of DECK showed a 3.2, - 0.8 mm, and 15.7%. The larger RMS and higher rejection rate of DECK imply a stronger multi-path effect on the deck. The differences in the GNSS PWV versus radiosonde observations were compared to the atmospheric delay, the estimated altitude of the GNSS antenna, the vessel's moving speed, the wind speed, and the wave height. The atmospheric delay and GNSS antenna altitude showed moderate correlation with the differences. The results suggest the kinematic PPP's potential for practical water vapor monitoring over oceans worldwide. At the same time, from the growing negative biases with the PWV value and with estimated antenna altitude, it could be inferred that the difficulty grows in separating the signal delay from the vertical coordinate under high-humidity conditions.[Figure not available: see fulltext.
The total ozone and UV solar radiation over Stara Zagora, Bulgaria
NASA Astrophysics Data System (ADS)
Mendeva, B.; Gogosheva, Ts.; Petkov, B.; Krastev, D.
Direct ground-based UV measurements and the total ozone content (TOC) over Stara Zagora, Bulgaria are presented. The observations are conducted by a scanning spectrophotometer, which measures the direct solar radiation in the range 290 - 360 nm with 1 nm resolution. For the time period 1998 -- 2003 the TOC data show seasonal variations, typical for the middle latitudes -- maximum in the spring and minimum in the autumn. The comparison of these TOC ground-based data to TOC satellite-borne data from the Global Ozone Monitoring Experiment (GOME) shows a seasonal dependence of the differences between the ground-based and satellite data. The relation between the UV radiation and TOC is investigated. Clear negative relationship is recognized between the total ozone and the irradiance of the wavelength 305 nm. The opposition of the two variables is significant ( r = - 0,62 ± 0,18) at 98 % confidence level. Yet, for 325 nm it is almost independent with the total ozone. The dependence of the UV-B radiation on the solar zenith angle at given TOC is also analyzed. A decrease of all wavelengths intensities with increase of the solar zenith angle is obtained but with different rate for each of them. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval 290-330 nm of the measured UV solar spectrum, weighted with an action spectrum, typical for each effect. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2,3 %.The eye-damaging doses are more influenced by the TOC changes and in this case RAF=-2,7%. The amount of these biological doses is in a direct ratio with the solar altitude over the horizon. This dependence is more markedly expressed at lower total ozone content in the atmosphere.
Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.
2013-12-01
A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC stations.
NASA Technical Reports Server (NTRS)
de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.
2016-01-01
The Polymers Experiment was exposed to the low Earth orbit (LEO) space environment for 2.14 and 2.0 years as part of the Materials International Space Station Experiment 8 (MISSE 8) and the Optical Reflector Materials Experiment-III (ORMatE-III), respectively. The experiment contained 42 samples, which were flown in either ram, wake, or zenith orientations. The primary objective was to determine the effect of solar exposure on the atomic oxygen erosion yield (Ey) of fluoropolymers. This paper provides an overview of the experiment with details on the polymers flown, the characterization techniques used, the atomic oxygen fluence for each exposure orientation, and the LEO Ey results. The Ey values for the fluoropolymers range from 1.45 x 10(exp -25) cm(exp 3)/atom for white Tedlar Registered Trademark? (polyvinyl fluoride with white titanium dioxide pigment) flown in the ram orientation to 6.32 x 10(exp -24) cm(exp 3)/atom for aluminized-Teflon Registered Trademark? fluorinated ethylene propylene (Al-FEP) flown in the zenith orientation. Erosion yield data for FEP flown in ram, wake and zenith orientations are compared, and the Ey was found to be highly dependent on orientation, hence environmental exposure. Teflon FEP had an order of magnitude higher Ey when flown in the zenith direction (6.32 x10(exp -24) cm(exp3)/atom) as compared to the ram direction (2.37 x 10(exp -25) cm(exp 3)/atom). The Ey of FEP was found to increase with a direct correlation to the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher Ey than clear FEP or Al-FEP further indicating that heating has a significant impact on the erosion of FEP, particularly in the zenith orientation.
Magnetic zenith effect in the ionospheric modification by an X-mode HF heater wave
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, N. F.; Borisova, T. D.; Haggstrom, I.; Rietveld, M. T.; Yeoman, T. K.
2013-12-01
We report experimental results aimed at an investigation of the magnetic zenith effect in the high latitude ionosphere F region from ionospheric modification by powerful HF heater wave with X-polarization. The ionospheric modification was produced by the HF heating facility at Tromsø (Norway) using the phased array with a narrow beam with of 6 degrees. Effective radiated power was varied between 450 and 1000 MW. The HF pump wave radiated in different directions relative to the magnetic field from 90 degrees (vertical) to 78 degrees (magnetic zenith) at frequencies near or above the ordinary-mode critical frequency. The response of the ionosphere plasma to the HF pump wave impact was checked by the UHF incoherent scatter radar located in the immediate vicinity of the HF heater. UHF radar was probing the plasma parameters, such as electron density and temperature (Ne and Te), HF-induced plasma and ion lines in the altitude range from 90 to 600 km. It was running in a scanning mode when UHF radar look angles were changed from 74 to 90 degrees by 1 or 2 degree step. It was clearly demonstrated that the strongest heater-induced effects took place in the magnetic field-aligned direction when HF pointing was also to the magnetic zenith. It was found that strong Ne enhancement of up to 80 % along magnetic field (artificial density ducts) were excited only under HF pumping towards magnetic zenith. The width of the artificial ducts comes to only 2 degrees. The Ne increases were accompanied by the Te enhancements of up to about 50 %. Less pronounced Te increases were also observed in the directions of 84 and 90 degrees. Strong Ne enhancements can be accompanied by excitation of strong HF-induced plasma and ion lines. Thus experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization.
NASA Astrophysics Data System (ADS)
Morozova, K.; Jaeger, R.; Balodis, J.; Kaminskis, J.
2017-10-01
Over several years the Institute of Geodesy and Geoinformatics (GGI) was engaged in the design and development of a digital zenith camera. At the moment the camera developments are finished and tests by field measurements are done. In order to check these data and to use them for geoid model determination DFHRS (Digital Finite element Height reference surface (HRS)) v4.3. software is used. It is based on parametric modelling of the HRS as a continous polynomial surface. The HRS, providing the local Geoid height N, is a necessary geodetic infrastructure for a GNSS-based determination of physcial heights H from ellipsoidal GNSS heights h, by H=h-N. The research and this publication is dealing with the inclusion of the data of observed vertical deflections from digital zenith camera into the mathematical model of the DFHRS approach and software v4.3. A first target was to test out and validate the mathematical model and software, using additionally real data of the above mentioned zenith camera observations of deflections of the vertical. A second concern of the research was to analyze the results and the improvement of the Latvian quasi-geoid computation compared to the previous version HRS computed without zenith camera based deflections of the vertical. The further development of the mathematical model and software concerns the use of spherical-cap-harmonics as the designed carrier function for the DFHRS v.5. It enables - in the sense of the strict integrated geodesy approach, holding also for geodetic network adjustment - both a full gravity field and a geoid and quasi-geoid determination. In addition, it allows the inclusion of gravimetric measurements, together with deflections of the vertical from digital-zenith cameras, and all other types of observations. The theoretical description of the updated version of DFHRS software and methods are discussed in this publication.
A GIS Procedure to Monitor PWV During Severe Meteorological Events
NASA Astrophysics Data System (ADS)
Ferrando, I.; Federici, B.; Sguerso, D.
2016-12-01
As widely known, the observation of GNSS signal's delay can improve the knowledge of meteorological phenomena. The local Precipitable Water Vapour (PWV), which can be easily derived from Zenith Total Delay (ZTD), Pressure (P) and Temperature (T) (Bevis et al., 1994), is not a satisfactory parameter to evaluate the occurrence of severe meteorological events. Hence, a GIS procedure, called G4M (GNSS for Meteorology), has been conceived to produce 2D PWV maps with high spatial and temporal resolution (1 km and 6 minutes respectively). The input data are GNSS, P and T observations not necessarily co-located coming from existing infrastructures, combined with a simplified physical model, owned by the research group.On spite of the low density and the different configurations of GNSS, P and T networks, the procedure is capable to detect severe meteorological events with reliable results. The procedure has already been applied in a wide and orographically complex area covering approximately the north-west of Italy and the French-Italian border region, to study two severe meteorological events occurred in Genoa (Italy) and other meteorological alert cases. The P, T and PWV 2D maps obtained by the procedure have been compared with the ones coming from meteorological re-analysis models, used as reference to obtain statistics on the goodness of the procedure in representing these fields. Additionally, the spatial variability of PWV was taken into account as indicator for representing potential critical situations; this index seems promising in highlighting remarkable features that precede intense precipitations. The strength and originality of the procedure lie into the employment of existing infrastructures, the independence from meteorological models, the high adaptability to different networks configurations, and the ability to produce high-resolution 2D PWV maps even from sparse input data. In the next future, the procedure could also be set up for near real-time applications.
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
2004-01-01
The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.
ERIC Educational Resources Information Center
San Jose State Univ., CA.
This report discusses the activities and outcomes of Project Zenith, which was designed to recruit two cohorts of bilingual graduate students to complete a graduate program with specialized skills in the diagnosis and treatment of communicative disorders in multicultural populations in the public schools. Included in the specialized training is…
VMF3/GPT3: refined discrete and empirical troposphere mapping functions
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Böhm, Johannes
2018-04-01
Incorrect modeling of troposphere delays is one of the major error sources for space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). Over the years, many approaches have been devised which aim at mapping the delay of radio waves from zenith direction down to the observed elevation angle, so-called mapping functions. This paper contains a new approach intended to refine the currently most important discrete mapping function, the Vienna Mapping Functions 1 (VMF1), which is successively referred to as Vienna Mapping Functions 3 (VMF3). It is designed in such a way as to eliminate shortcomings in the empirical coefficients b and c and in the tuning for the specific elevation angle of 3°. Ray-traced delays of the ray-tracer RADIATE serve as the basis for the calculation of new mapping function coefficients. Comparisons of modeled slant delays demonstrate the ability of VMF3 to approximate the underlying ray-traced delays more accurately than VMF1 does, in particular at low elevation angles. In other words, when requiring highest precision, VMF3 is to be preferable to VMF1. Aside from revising the discrete form of mapping functions, we also present a new empirical model named Global Pressure and Temperature 3 (GPT3) on a 5°× 5° as well as a 1°× 1° global grid, which is generally based on the same data. Its main components are hydrostatic and wet empirical mapping function coefficients derived from special averaging techniques of the respective (discrete) VMF3 data. In addition, GPT3 also contains a set of meteorological quantities which are adopted as they stand from their predecessor, Global Pressure and Temperature 2 wet. Thus, GPT3 represents a very comprehensive troposphere model which can be used for a series of geodetic as well as meteorological and climatological purposes and is fully consistent with VMF3.
Current status of the EPOS WG4 - GNSS and Other Geodetic Data
NASA Astrophysics Data System (ADS)
Fernandes, Rui; Bastos, Luísa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu
2013-04-01
WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support the European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also includes members from countries that formally are not part of the current phase of EPOS. In an ongoing effort, the majority of existing GNSS Research Infrastructures in Europe were identified. The current database, available at http://epos-couch.cloudant.com/epos-couch/_design/epos-couch/, lists a total of 50 Research Infrastructures managing a total of 1534 GNSS CORS sites. This presentation intends to detail the work being produced within the working group WG4 related with the definition of strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. The first step toward the design of an implementation and business plan is the definition of the core services for geodetic data within EPOS. In this talk, we will present the current status of the discussion about the content of core services. Three levels of core services could be distinguished, for which their content need to be defined. The 3 levels are: (1) the core services associated to data (diffusion, archive, long-term preservation, quality check, rapid analysis) (2) core services associated to geodetic products (analysis, products definition like position time series, velocity field and Zenithal Total Delay) (3) User oriented services (reference frames, real-time solutions for early warning systems, strain rate maps, meteorology, space weather, …). Current propositions and remaining open questions will be discussed.
Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC
NASA Technical Reports Server (NTRS)
Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.;
1998-01-01
Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.
Abu Hussein, Nahla B.; Habib, Ahmed E.; El Sayed, Yasmine M.
2016-01-01
Purpose. To examine causes as well as extent of delay in diagnosis and treatment of primary open angle glaucoma patients in a sample of Egyptians. Patients and Methods. 440 patients with primary open angle glaucoma were interviewed to evaluate delay in their diagnosis and treatment. The extent and cause of delay were investigated. The total delay interval, if any, was correlated with socioeconomic and other factors. Results. The median total delay was one year, with 50% of patients having a total delay of 1 year or less, of which 25% exhibited zero total delay. 25% of patients had a delay ranging from 1 to 3 years, and 25% had a total delay ranging from 3 to 27 years. Diagnostic delay accounted for 43.03% of cases. Longer delays were met in patients with certain socioeconomic factors. Patients with a positive family history of glaucoma displayed shorter delay periods. Conclusion. Significant delay in the diagnosis and treatment of glaucoma was found. Poor socioeconomic status seems to hinder timely diagnosis and treatment of POAG. Certain socioeconomic factors seem to correlate with the extent of delay. More effort is thus needed to subsidize the cost of investigations and treatment for glaucoma patients. PMID:28116140
A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow
NASA Astrophysics Data System (ADS)
Bourgeois, C. S.; Calanca, P.; Ohmura, A.
2006-10-01
Hemispherical directional reflectance factors (HDRF) were collected under solar zenith angles from 49° to 85°. The experimental site was the Greenland Summit Environmental Observatory (72°35'N, 34°30'W, 3203 m above sea level) where both the snow and the atmosphere are very clean. The observations were carried out for two prevailing snow surface types: a smooth surface with wind-broken small snow grains and a surface covered with rime causing a higher surface roughness. A specially designed Gonio-Spectrometer (wavelength range 350-1050 nm), was developed at the Institute for Atmospheric and Climate Science and used to collect spectral HDRFs over the hemisphere. The angular step size was 15° in zenith and azimuth. The HDRFs showed strong variations ranging from 0.6 to 13, depending on the solar zenith angle. The HDRF distribution was nearly isotropic at noon. It varied with increasing solar zenith angle, resulting in a strong forward scattering peak. Smooth surfaces exhibited stronger forward scattering than surfaces covered with rime. At a solar zenith of 85°, an HDRF of ˜13 was observed in the forward scattering direction for λ=900 nm. Spectral albedos were calculated by interpolating the HDRF data sets on a 2° grid and integrating individual wavelengths. Spectral albedos showed variations depending on the solar illumination geometry and the snow surface properties. Broadband albedos were calculated by integration of the spectral albedos over all wavelengths. The broadband albedos derived from directional measurements reproduced the diurnal pattern measured with two back-to-back broadband pyranometers.
The Solar Ultraviolet Environment at the Ocean.
Mobley, Curtis D; Diffey, Brian L
2018-05-01
Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for <20% of the UV exposure on a vertical surface. Total exposure depends strongly on solar zenith angle and azimuth angle relative to the sun. Sea surface roughness affects the UV exposures by only a few percent. For very clear waters and the sun high in the sky, the UV index within the water can be >10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Buntoung, Sumaman; Janjai, Serm; Nunez, Manuel; Choosri, Pranomkorn; Pratummasoot, Noppamas; Chiwpreecha, Kulanist
2014-11-01
Factors affecting the ratio of erythemal UV (UVER) to broadband (G) irradiance were investigated in this study. Data from four solar monitoring sites in Thailand, namely Chiang Mai, Ubon Ratchathani, Nakhon Pathom and Songkhla were used to investigate the UVER/G ratio in response to geometric and atmospheric parameters. These comprised solar zenith angle, aerosol load, total ozone column, precipitable water and clearness index. A modeling scheme was developed to isolate and examine the effect of each individual environmental parameter on the ratio. Results showed that all parameters with the exception of solar zenith angle and clearness index influenced the ratios in a linear manner. These results were also used to develop a semi-empirical model for estimating hourly erythemal UV irradiance. Data from 2009 to 2010 were used to construct the ratio model while validation was performed using erythemal UV irradiance at the above four sites in 2011. The validation results showed reasonable agreement with a root mean square difference of 13.5% and mean bias difference of - 0.5%, under all sky conditions and 10.9% and - 0.3%, respectively, under cloudless conditions.
Wet tropospheric delays forecast based on Vienna Mapping Function time series analysis
NASA Astrophysics Data System (ADS)
Rzepecka, Zofia; Kalita, Jakub
2016-04-01
It is well known that the dry part of the zenith tropospheric delay (ZTD) is much easier to model than the wet part (ZTW). The aim of the research is applying stochastic modeling and prediction of ZTW using time series analysis tools. Application of time series analysis enables closer understanding of ZTW behavior as well as short-term prediction of future ZTW values. The ZTW data used for the studies were obtained from the GGOS service hold by Vienna technical University. The resolution of the data is six hours. ZTW for the years 2010 -2013 were adopted for the study. The International GNSS Service (IGS) permanent stations LAMA and GOPE, located in mid-latitudes, were admitted for the investigations. Initially the seasonal part was separated and modeled using periodic signals and frequency analysis. The prominent annual and semi-annual signals were removed using sines and consines functions. The autocorrelation of the resulting signal is significant for several days (20-30 samples). The residuals of this fitting were further analyzed and modeled with ARIMA processes. For both the stations optimal ARMA processes based on several criterions were obtained. On this basis predicted ZTW values were computed for one day ahead, leaving the white process residuals. Accuracy of the prediction can be estimated at about 3 cm.
2007-01-01
Iwata, A. Iwasaki, Y. Fukuyama, F. Tappero, K. Hagimoto, T. Ikegami , and H. Murakami, 2004, “Ground Testbed for Quasi-Zenith Satellite Remote...JSASS, Tokyo), ISTS 2004-f-16. [7] T. Iwata, F. Tappero, M. Imae, Y. Fukuyama, K. Hagimoto, H. Murakami, T. Ikegami , A. Iwasaki, K. Nakajima, and Y
InSAR atmospheric correction using Himawari-8 Geostationary Meteorological Satellite
NASA Astrophysics Data System (ADS)
Kinoshita, Y.; Nimura, T.; Furuta, R.
2017-12-01
The atmospheric delay effect is one of the limitations for the accurate surface displacement detection by Synthetic Aperture Radar Interferometry (InSAR). Many previous studies have attempted to mitigate the neutral atmospheric delay in InSAR (e.g. Jolivet et al. 2014; Foster et al. 2006; Kinoshita et al. 2013). Hanssen et al. (2001) investigated the relationship between the 27 hourly observations of GNSS precipitable water vapor (PWV) and the infrared brightness temperature derived from visible satellite imagery, and showed a good correlation. Here we showed a preliminary result of the newly developed method for the neutral atmospheric delay correction using the Himawari-8 Japanese geostationary meteorological satellite data. The Himawari-8 satellite is the Japanese state-of-the-art geostationary meteorological satellite that has 16 observation channels and has spatial resolutions of 0.5 km (visible) and 2.0 km (near-infrared and infrared) with an time interval of 2.5 minutes around Japan. To estimate the relationship between the satellite brightness temperature and the atmospheric delay amount. Since the InSAR atmospheric delay is principally the same as that in GNSS, we at first compared the Himawari-8 data with the GNSS zenith tropospheric delay data derived from the Japanese dense GNSS network. The comparison of them showed that the band with the wavelength of 6.9 μm had the highest correlation to the GNSS observation. Based on this result, we developed an InSAR atmospheric delay model that uses the Himawari-8 6.9 μm band data. For the model validation, we generated InSAR images from the ESA's C-band Sentinel-1 SLC data with the GAMMA SAR software. We selected two regions around Tokyo and Sapporo (both in Japan) as the test sites because of the less temporal decorrelation. The validation result showed that the delay model reasonably estimate large scale phase variation whose spatial scale was on the order of over 20 km. On the other hand, phase variations of a few km scale were not estimated by the model. This would be due to the horizontal resolution of the input data (2 km in the 6.9 μm band). In the presentation we will show these results and the progress after the abstract submission, and discuss the limitation of our method and the future research plan.
Periodontics, Implantology, and Prosthodontics Integrated: The Zenith-Driven Rehabilitation
Cabral, Guilherme
2017-01-01
A customized treatment plan is important to reach results that will satisfy the patient providing esthetics, function, and long-term stability. This type of oral rehabilitation requires professionals from different dental specialties where communication is a major key point. Digital Smile Design allows the practitioners to plan and discuss the patient's condition to establish the proper treatment plan, which must be driven by the desired zenith position. The ideal gingival position will guide the professionals and determine the need to perform surgical procedures or orthodontic movement before placing the final restorations. In this article, the zenith-driven concept is discussed and a challenging case is presented with 4-year follow-up where tooth extraction, immediate implant placement, bone regeneration, and a connective tissue graft were performed. PMID:28713600
There is no bidirectional hot-spot in Sentinel-2 data
NASA Astrophysics Data System (ADS)
Li, Z.; Roy, D. P.; Zhang, H.
2017-12-01
The Sentinel-2 multi-spectral instrument (MSI) acquires reflective wavelength observations with directional effects due to surface reflectance anisotropy, often described by the bidirectional reflectance distribution function (BRDF). Recently, we quantified Sentinel-2A (S2A) BRDF effects for 20° × 10° of southern Africa sensed in January and in April 2016 and found maximum BRDF effects for the January data and at the western scan edge, i.e., in the back-scatter direction (Roy et al. 2017). The hot-spot is the term used to describe the increased directional reflectance that occurs over most surfaces when the solar and viewing directions coincide, and has been observed in wide-field of view data such as MODIS. Recently, we observed that Landsat data will not have a hot-spot because the global annual minimum solar zenith angle is more than twice the maximum view zenith angle (Zhang et al. 2016). This presentation examines if there is a S2A hot-spot which may be possible as it has a wider field of view (20.6°) and higher orbit (786 km) than Landsat. We examined a global year of S2A metadata extracted using the Committee on Earth Observation Satellite Visualization Environment (COVE) tool, computed the solar zenith angles in the acquisition corners, and ranked the acquisitions by the solar zenith angle in the back-scatter direction. The available image data for the 10 acquisitions with the smallest solar zenith angle over the year were ordered from the ESA and their geometries examined in detail. The acquisition closest to the hot-spot had a maximum scattering angle of 173.61° on its western edge (view zenith angle 11.91°, solar zenith angle 17.97°) and was acquired over 60.80°W 24.37°N on June 2nd 2016. Given that hot-spots are only apparent when the scattering angle is close to 180° we conclude from this global annual analysis that there is no hot-spot in Sentinel-2 data. Roy, D.P, Li, J., Zhang, H.K., Yan, L., Huang, H., Li, Z., 2017, Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance, RSE. 199, 25-38. Zhang, H. K., Roy, D.P., Kovalskyy, V., 2016, Optimal solar geometry definition for global long term Landsat time series bi-directional reflectance normalization, IEEE TGRS. 54(3), 1410-1418.
A grid-based tropospheric product for China using a GNSS network
NASA Astrophysics Data System (ADS)
Zhang, Hongxing; Yuan, Yunbin; Li, Wei; Zhang, Baocheng; Ou, Jikun
2017-11-01
Tropospheric delay accounts for one source of error in global navigation satellite systems (GNSS). To better characterize the tropospheric delays in the temporal and spatial domain and facilitate the safety-critical use of GNSS across China, a method is proposed to generate a grid-based tropospheric product (GTP) using the GNSS network with an empirical tropospheric model, known as IGGtrop. The prototype system generates the GTPs in post-processing and real-time modes and is based on the undifferenced and uncombined precise point positioning (UU-PPP) technique. GTPs are constructed for a grid form (2.0{°}× 2.5{°} latitude-longitude) over China with a time resolution of 5 min. The real-time GTP messages are encoded in a self-defined RTCM3 format and broadcast to users using NTRIP (networked transport of RTCM via internet protocol), which enables efficient and safe transmission to real-time users. Our approach for GTP generation consists of three sequential steps. In the first step, GNSS-derived zenith tropospheric delays (ZTDs) for a network of GNSS stations are estimated using UU-PPP. In the second step, vertical adjustments for the GNSS-derived ZTDs are applied to address the height differences between the GNSS stations and grid points. The ZTD height corrections are provided by the IGGtrop model. Finally, an inverse distance weighting method is used to interpolate the GNSS-derived ZTDs from the surrounding GNSS stations to the location of the grid point. A total of 210 global positioning system (GPS) stations from the crustal movement observation network of China are used to generate the GTPs in both post-processing and real-time modes. The accuracies of the GTPs are assessed against with ERA-Interim-derived ZTDs and the GPS-derived ZTDs at 12 test GPS stations, respectively. The results show that the post-processing and real-time GTPs can provide the ZTDs with accuracies of 1.4 and 1.8 cm, respectively. We also apply the GTPs in real-time kinematic GPS PPP, and the results show that the convergence time of the PPP solutions is shortened. These results confirm that the GTPs can act as an efficient information source to augment GNSS positioning over China.
NASA Astrophysics Data System (ADS)
Wang, Ling; Hu, Xiuqing; Chen, Lin
2017-09-01
Calibration is a critical step to ensure data quality and to meet the requirement of quantitative remote sensing in a broad range of scientific applications. One of the least expensive and increasingly popular methods of on-orbit calibration is the use of pseudo invariant calibration sites (PICS). A spatial homogenous and temporally stable area of 34 km2 in size around the center of Kunlun Mountain (KLM) over Tibetan Plateau (TP) was identified by our previous study. The spatial and temporal coefficient of variation (CV) this region was better than 4% for the reflective solar bands. In this study, the BRDF impacts of KLM glacier on MODIS observed TOA reflectance in band 1 (659 nm) are examined. The BRDF impact of KLM glacier with respect to the view zenith angle is studied through using the observations at a fixed solar zenith angle, and the effect with respect to the sun zenith angle is studied based on the observations collected at the same view angle. Then, the two widely used BRDF models are applied to our test data to simulate the variations of TOA reflectance due to the changes in viewing geometry. The first one is Ross-Li model, which has been used to produce the MODIS global BRDF albedo data product. The second one is snow surface BRDF model, which has been used to characterize the bidirectional reflectance of Antarctic snow. Finally, the accuracy and effectiveness of these two different BRDF models are tested through comparing the model of simulated TOA reflectance with the observed one. The results show that variations of the reflectances at a fixed solar zenith angle are close to the lambertian pattern, while those at a fixed sensor zenith angle are strongly anisotropic. A decrease in solar zenith angle from 50º to 20º causes an increase in reflectance by the level of approximated 50%. The snow surface BRDF model performs much better than the Ross-Li BRDF model to re-produce the Bi-Directional Reflectance of KLM glacier. The RMSE of snow surface BRDF model is 3.60%, which is only half of the RMSE when using Ross-Li model.
NASA Technical Reports Server (NTRS)
Sovers, O. J.; Lanyi, G. E.
1994-01-01
To compare the validity of current algorithms that map zenith tropospheric delay to arbitrary elevation angles, 10 different tropospheric mapping functions are used to analyze the current data base of Deep Space Network Mark 3 intercontinental very long baseline interferometric (VLBI) data. This analysis serves as a stringent test because of the high proportion of low-elevation observations necessitated by the extremely long baselines. Postfit delay and delay-rate residuals are examined, as well as the scatter of baseline lengths about the time-linear model that characterizes tectonic motion. Among the functions that utilize surface meteorological data as input parameters, the Lanyi 1984 mapping shows the best performance both for residuals and baselines, through the 1985 Davis function is statistically nearly identical. The next best performance is shown by the recent function of Niell, which is based on an examination of global atmospheric characteristics as a function of season and uses no weather data at the time of the measurements. The Niell function shows a slight improvement in residuals relative to Lanyi, but also an increase in baseline scatter that is significant for the California-Spain baseline. Two variants of the Chao mapping function, as well as the Chao tables used with the interpolation algorithm employed in the Orbit Determination Program software, show substandard behavior for both VLBI residuals and baseline scatter. The length of the California-Australia baseline (10,600 km) in the VLBI solution can vary by as much as 5 to 10 cm for the 10 mapping functions.
Utilising shade to optimize UV exposure for vitamin D
NASA Astrophysics Data System (ADS)
Turnbull, D. J.; Parisi, A. V.
2008-01-01
Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For diffuse UV exposures of 1/6 and 1/3 MED, solar zenith angles smaller than 60° and 50° respectively can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-330 nm) radiation without experiencing the high levels of damaging UVA observed in full sun.
Utilising shade to optimize UV exposure for vitamin D
NASA Astrophysics Data System (ADS)
Turnbull, D. J.; Parisi, A. V.
2008-06-01
Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Stephen E.; Huang, Dong; Vladutescu, Daniela Viviana
This article describes the approach and presents initial results, for a period of several minutes in north central Oklahoma, of an examination of clouds by high resolution digital photography from the surface looking vertically upward. A commercially available camera having 35-mm equivalent focal length up to 1200 mm (nominal resolution as fine as 6 µrad, which corresponds to 9 mm for cloud height 1.5 km) is used to obtain a measure of zenith radiance of a 30 m × 30 m domain as a two-dimensional image consisting of 3456 × 3456 pixels (12 million pixels). Downwelling zenith radiance varies substantiallymore » within single images and between successive images obtained at 4-s intervals. Variation in zenith radiance found on scales down to about 10 cm is attributed to variation in cloud optical depth (COD). Attention here is directed primarily to optically thin clouds, COD less than about 2. A radiation transfer model used to relate downwelling zenith radiance to COD and to relate the counts in the camera image to zenith radiance, permits determination of COD on a pixel-by-pixel basis. COD for thin clouds determined in this way exhibits considerable variation, for example, an order of magnitude within 15 m, a factor of 2 within 4 m, and 25% (0.12 to 0.15) over 14 cm. In conclusion, this approach, which examines cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opens new avenues for examination of cloud structure and evolution.« less
NASA Astrophysics Data System (ADS)
Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2014-05-01
Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004
Schwartz, Stephen E.; Huang, Dong; Vladutescu, Daniela Viviana
2017-03-08
This article describes the approach and presents initial results, for a period of several minutes in north central Oklahoma, of an examination of clouds by high resolution digital photography from the surface looking vertically upward. A commercially available camera having 35-mm equivalent focal length up to 1200 mm (nominal resolution as fine as 6 µrad, which corresponds to 9 mm for cloud height 1.5 km) is used to obtain a measure of zenith radiance of a 30 m × 30 m domain as a two-dimensional image consisting of 3456 × 3456 pixels (12 million pixels). Downwelling zenith radiance varies substantiallymore » within single images and between successive images obtained at 4-s intervals. Variation in zenith radiance found on scales down to about 10 cm is attributed to variation in cloud optical depth (COD). Attention here is directed primarily to optically thin clouds, COD less than about 2. A radiation transfer model used to relate downwelling zenith radiance to COD and to relate the counts in the camera image to zenith radiance, permits determination of COD on a pixel-by-pixel basis. COD for thin clouds determined in this way exhibits considerable variation, for example, an order of magnitude within 15 m, a factor of 2 within 4 m, and 25% (0.12 to 0.15) over 14 cm. In conclusion, this approach, which examines cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opens new avenues for examination of cloud structure and evolution.« less
Bidirectional reflectance measurement of zinc oxide in 0.25 to 2.5 microns spectrum
NASA Technical Reports Server (NTRS)
Scott, R. L., Jr.
1974-01-01
An experimental apparatus was designed and used to measure the bidirectional reflectance of zinc oxide in the spectrum 0.25 to 2.5 microns. The nonspecular reflectance is essentially Lambert for wavelengths above 0.40 microns with the most deviation occuring for large source zenith angles. Below 0.400 microns the nonspecular reflectance is greater than Lambert in all directions and is greatest in the forward and backscatter directions. The ratio of the specular component to the nonspecular component at a zenith of 0 degrees was found to increase with source zenith and wavelength for wavelengths above 0.400 microns. Below 0.400 microns this ratio increases as wavelengths decrease. The variation of bidirectional reflectance with wavelength was found to have the characteristics absorption for Zn0 for wavelength below 0.400 microns.
Estimating big bluestem albedo from directional reflectance measurements
NASA Technical Reports Server (NTRS)
Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.
1988-01-01
Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.
Comparison of OLYMPUS beacon and radiometric attenuation measurements at Blacksburg, Virginia
NASA Technical Reports Server (NTRS)
Snider, J. B.; Jacobson, M. D.; Beeler, R. H.; Hazen, D. A.
1991-01-01
Measurements of attenuation of the 20 and 30 GHz beacons onboard the OLYMPUS satellite are compared to simultaneous observations of atmospheric attenuation by a multichannel microwave radiometer along the same path. Departures from high correlation between the two measurements are believed to be related to differences in antenna beamwidths. Mean equivalent zenith attenuations derived from the slant path data are compared to zenith observations made at previous locations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
....D. and 0.165 inch wall thickness (gage 8) 4.000 inch O.D. and 0.148 inch wall thickness (gage 9) 4.000 inch O.D. and 0.165 inch wall thickness (gage 8) 4.500 inch O.D. and 0.203 inch wall thickness... investigation is Zenith Birla (India) Limited (previously known as Zenith Steel Pipes and Industries Ltd...
Zenith angle dependence of the geocoronal Lyman-alpha glow.
NASA Technical Reports Server (NTRS)
Paresce, F.; Kumar, S.; Bowyer, S.
1972-01-01
Review of the observations made on the zenith angle dependence and intensity of the geocoronal hydrogen Lyman-alpha glow by means of one of four extreme ultraviolet photometers flown to an altitude of 264 km on a Nike Tomahawk rocket launched from Thumba, India, in March 1970. The results obtained are compared with Meier and Mange's (1970) theoretical predictions. The possible causes for the discrepancies found are discussed.
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2013-04-01
We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.
NASA Astrophysics Data System (ADS)
Cong, Xiaoying; Balss, Ulrich; Eineder, Michael
2015-04-01
The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.
Estimates of delays in diagnosis of cervical cancer in Nepal
2014-01-01
Background Cervical cancer is the leading cause of cancer related deaths among women in Nepal. The long symptom to diagnosis interval means that women have advanced disease at presentation. The aim of this study was to identify, estimate and describe the extent of different delays in diagnosis of cervical cancer in Nepal. Methods A cross-sectional descriptive study was conducted in two tertiary cancer hospitals of Nepal. Face to face interview and medical records review were carried out among 110 cervical cancer patients. Total diagnostic delay was categorized into component delays: patient delay, health care providers delay, referral delay and diagnostic waiting time. Results Total 110 patients recruited in the study represented 40 districts from all three ecological regions of the country. Median total diagnostic delay was 157 days with more than three fourth (77.3%) of the patients having longer total diagnostic delay of >90 days. Out of the total diagnostic delay, median patient delay, median health care provider delay, median referral delay and median diagnostic waiting time were 68.5 days, 40 days, 5 days and 9 days respectively. Majority of the patients had experienced longer delay of each type except referral delay. Fifty seven percent of the patients had experienced longer patient delay of >60 days, 90% had suffered longer health care provider delay of >1 week, 31.8% had longer referral delay of >1 week and 66.2% had waited >1 week at diagnostic center for final diagnosis. Variation in each type of delay was observed among women with different attributes and in context of health care service delivery. Conclusions Longer delays were observed in all the diagnostic pathways except for referral delay and diagnostic waiting time. Among the delays, patient delay is of crucial importance because of its longer span, although health care provider delay is equally important. In the context of limited screening services in Nepal, the efforts should be to reduce the diagnostic delay especially patient and health care provider delay for early detection and reduction of mortality rate of cervical cancer. PMID:24533670
Analysis of error in TOMS total ozone as a function of orbit and attitude parameters
NASA Technical Reports Server (NTRS)
Gregg, W. W.; Ardanuy, P. E.; Braun, W. C.; Vallette, B. J.; Bhartia, P. K.; Ray, S. N.
1991-01-01
Computer simulations of orbital scenarios were performed to examine the effects of orbital altitude, equator crossing time, attitude uncertainty, and orbital eccentricity on ozone observations by future satellites. These effects were assessed by determining changes in solar and viewing geometry and earth daytime coverage loss. The importance of these changes on ozone retrieval was determined by simulating uncertainties in the TOMS ozone retrieval algorithm. The major findings are as follows: (1) Drift of equator crossing time from local noon would have the largest effect on the quality of ozone derived from TOMS. The most significant effect of this drift is the loss of earth daytime coverage in the winter hemisphere. The loss in coverage increases from 1 degree latitude for + or - 1 hour from noon, 6 degrees for + or - 3 hours from noon, to 53 degrees for + or - 6 hours from noon. An additional effect is the increase in ozone retrieval errors due to high solar zenith angles. (2) To maintain contiguous earth coverage, the maximum scan angle of the sensor must be increased with decreasing orbital altitude. The maximum scan angle required for full coverage at the equator varies from 60 degrees at 600 km altitude to 45 degrees at 1200 km. This produces an increase in spacecraft zenith angle, theta, which decreases the ozone retrieval accuracy. The range in theta was approximately 72 degrees for 600 km to approximately 57 degrees at 1200 km. (3) The effect of elliptical orbits is to create gaps in coverage along the subsatellite track. An elliptical orbit with a 200 km perigee and 1200 km apogee produced a maximum earth coverage gap of about 45 km at the perigee at nadir. (4) An attitude uncertainty of 0.1 degree in each axis (pitch, roll, yaw) produced a maximum scan angle to view the pole, and maximum solar zenith angle).
Monitoring Bio-Optical Processes Using NPP-VIIRS and MODIS-Aqua Ocean Color Products
2013-01-01
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...account for satellite sensor and solar zenith angles. Additionally, the Bidirectional Reflectance Distribution Function ( BRDF ) of the water particles is...similarly dependent on satellite and solar zenith and azimuth angles 4 . The influence of BRDF is more pronounced in a high scattering environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, M.A.; Smart, D.F.
1974-03-26
Using the trajectory-tracing technique, the asymptotic directions and cut-off rigidities for Palestine, Dallas, amd Midland,Texas were calculated as a function of various zenith and azimuth angles. Continuation of the trajectory-tracing process below the Stormer cutoff allows an evaluation of the reentrant albedo; the invariant latitude of the guiding center of the trajectory at the albedo origin is seen to be the same as the invariant latitude of the guiding center of the particle trajectory at the specified zenith and azimuth angle of the detection point. Tables of asymptotic directions, cutoff rigidities, and the location of the reentrant albedo for eachmore » of these locations are given. Summaries of cutoff rigidity calculations as a function of zenith and azimuth directions for some miscellaneous locations are also included. (GRA)« less
Tonnessen, Britt H; Sternbergh, W Charles; Money, Samuel R
2005-09-01
Freedom from migration is key to the durability of endovascular aneurysm repair (EVAR). This study evaluates the mid- and long-term incidence of migration with two different endografts. Between September 1997 and June 2004, 235 patients were scheduled for EVAR with an AneuRx (Medtronic/AVE Inc.) or Zenith (Cook) endograft. Patients with fusiform, infrarenal aneurysms and a minimum 12 months of follow-up were analyzed, for a final cohort of 130 patients. Migration was assessed on axial computed tomography (CT) (2.5 to 3 mm cuts) as the distance from the most caudal renal artery to the first slice containing endograft (AneuRx) or to the top of the bare suprarenal stent (Zenith). Aortic neck diameters were measured at the most caudal renal artery. The initial postoperative CT scan was the baseline. Migration was defined by caudal movement of the endograft at two thresholds, > or =5 mm and > or =10 mm, or any migration with a related clinical event. Life-table analysis demonstrated AneuRx freedom from migration (> or =10 mm or clinical event) was 96.1%, 89.5%, 78.0%, and 72.0% at 1, 2, 3, and 4 years, respectively. Zenith freedom from migration was 100%, 97.6%, 97.6%, and 97.6% at 1, 2, 3, and 4 years, respectively (P = .01, log-rank test). The stricter 5-mm migration threshold found 67.4% of AneuRx and 90.1% of Zenith patients free from migration at 4 years of follow-up. Twelve out of 14 (85.7%) AneuRx patients (12/14) with migration (> or =10 mm or clinical event) underwent 14 related secondary procedures (13 endovascular, 1 open conversion). The single Zenith patient with migration (> or =10 mm) has not required adjuvant treatment. Mean follow-up was 39.0 +/- 2.3 months (AneuRx) and 30.8 +/- 1.9 months (Zenith, P = .01). Patients with and without migration did not differ in age, gender ratio, aneurysm diameter, and neck diameter. However, initial neck length was shorter in patients with migration (22.1 +/- 2.1 mm vs 31.2 +/- 1.2 mm, P = .02). A subset of patients (21.6%) experienced significant (defined as > or =3 mm) maximum aortic neck dilation. Of the AneuRx patients, > or =3 mm aortic neck dilation affected 30.8% of migrators vs 13.0% of nonmigrators (P = .20). Endograft migration is a time-dependent phenomenon affected by both device choice and aortic neck length. A great majority of patients (85.7%) with migration of the AneuRx device ultimately required treatment. A minority of patients experienced aortic neck dilation that could be considered clinically significant. Careful surveillance for migration is an essential component of long-term follow-up after EVAR.
NASA Technical Reports Server (NTRS)
Preisig, Joseph Richard Mark
1988-01-01
A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.
Calculations of atmospheric refraction for spacecraft remote-sensing applications
NASA Technical Reports Server (NTRS)
Chu, W. P.
1983-01-01
Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.
Ionosphere of Mars observed by Mars Express.
NASA Astrophysics Data System (ADS)
Dubinin, Eduard; Fraenz, Markus; Andrews, Dave; Morgan, Dave
2016-04-01
The Martian ionosphere is studied at different solar zenith angles using the local electron number densities and total electron content (TEC) derived from the observations by MARSIS onboard Mars Express. The data are complemented by the ASPERA-3 observations which provide us with the information about upward/downward velocity of the low-energy ions and electron precipitation. We consider the Mars Express observations at different solar cycle intervals. Different factors which influence the ionosphere dynamics are analyzed. The focus is made on a role of the crustal magnetic field on the Martian ionosphere and its influence on ion escape.
Muon tomography imaging improvement using optimized limited angle data
NASA Astrophysics Data System (ADS)
Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew
2014-05-01
Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.
Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing
NASA Astrophysics Data System (ADS)
Bałdysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; KroszczyńSki, Krzysztof
2015-08-01
The GPS system can play an important role in activities related to the monitoring of climate. Long time series, coherent strategy, and very high quality of tropospheric parameter Zenith Tropospheric Delay (ZTD) estimated on the basis of GPS data analysis allows to investigate its usefulness for climate research as a direct GPS product. This paper presents results of analysis of 16-year time series derived from EUREF Permanent Network (EPN) reprocessing performed by the Military University of Technology. For 58 stations Lomb-Scargle periodograms were performed in order to obtain information about the oscillations in ZTD time series. Seasonal components and linear trend were estimated using Least Square Estimation (LSE) and Mann—Kendall trend test was used to confirm the presence of a linear trend designated by LSE method. In order to verify the impact of the length of time series on trend value, comparison between 16 and 18 years were performed.
Brewer spectrometer total ozone column measurements in Sodankylä
NASA Astrophysics Data System (ADS)
Karppinen, Tomi; Lakkala, Kaisa; Karhu, Juha M.; Heikkinen, Pauli; Kivi, Rigel; Kyrö, Esko
2016-06-01
Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.
NASA Technical Reports Server (NTRS)
Otterman, J.; Brakke, T.
1986-01-01
The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.
NASA Technical Reports Server (NTRS)
Frouin, Robert; Lingner, David W.; Gautier, Catherine; Baker, Karen S.; Smith, Ray C.
1989-01-01
A simple but accurate analytical formula was developed for computing the total and the photosynthetically available solar irradiances at the ocean surface under clear skies, which takes into account the processes of scattering by molecules and aerosols within the atmosphere and of absorption by the water vapor, ozone, and aerosols. These processes are parameterized as a function of solar zenith angle, aerosol type, atmospheric visibility, and vertically integrated water-vapor and ozone amounts. Comparisons of the calculated and measured total and photosynthetically available solar irradiances for several experiments in tropical and mid-latitude ocean regions show 39 and 14 Wm/sq m rms errors (6.5 and 4.7 percent of the average measured values) on an hourly time scale, respectively. The proposed forumula is unique in its ability to predict surface solar irradiance in the photosynthetically active spectral interval.
Improving BeiDou real-time precise point positioning with numerical weather models
NASA Astrophysics Data System (ADS)
Lu, Cuixian; Li, Xingxing; Zus, Florian; Heinkelmann, Robert; Dick, Galina; Ge, Maorong; Wickert, Jens; Schuh, Harald
2017-09-01
Precise positioning with the current Chinese BeiDou Navigation Satellite System is proven to be of comparable accuracy to the Global Positioning System, which is at centimeter level for the horizontal components and sub-decimeter level for the vertical component. But the BeiDou precise point positioning (PPP) shows its limitation in requiring a relatively long convergence time. In this study, we develop a numerical weather model (NWM) augmented PPP processing algorithm to improve BeiDou precise positioning. Tropospheric delay parameters, i.e., zenith delays, mapping functions, and horizontal delay gradients, derived from short-range forecasts from the Global Forecast System of the National Centers for Environmental Prediction (NCEP) are applied into BeiDou real-time PPP. Observational data from stations that are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiments network are processed, with the introduced NWM-augmented PPP and the standard PPP processing. The accuracy of tropospheric delays derived from NCEP is assessed against with the IGS final tropospheric delay products. The positioning results show that an improvement in convergence time up to 60.0 and 66.7% for the east and vertical components, respectively, can be achieved with the NWM-augmented PPP solution compared to the standard PPP solutions, while only slight improvement in the solution convergence can be found for the north component. A positioning accuracy of 5.7 and 5.9 cm for the east component is achieved with the standard PPP that estimates gradients and the one that estimates no gradients, respectively, in comparison to 3.5 cm of the NWM-augmented PPP, showing an improvement of 38.6 and 40.1%. Compared to the accuracy of 3.7 and 4.1 cm for the north component derived from the two standard PPP solutions, the one of the NWM-augmented PPP solution is improved to 2.0 cm, by about 45.9 and 51.2%. The positioning accuracy for the up component improves from 11.4 and 13.2 cm with the two standard PPP solutions to 8.0 cm with the NWM-augmented PPP solution, an improvement of 29.8 and 39.4%, respectively.
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Banks, Bruce A.; Yi, Grace T.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.; Asmar, Olivia C.; Leneghan, Halle A.; Sechkar, Edward A.
2016-01-01
Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. Two spaceflight experiments, the Polymers Experiment and the Zenith Polymers Experiment, were developed to determine the AO E(sub y) of various polymers flown in ram, wake or zenith orientations in LEO. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). The experiments included Kapton H(TradeMark) witness samples for AO fluence determination in ram and zenith orientations. The Polymers Experiment also included samples to determine whether AO erosion of high and low ash containing polymers is dependent on fluence. This paper provides an overview of the MISSE 7 mission, a description of the flight experiments with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) values ranged from 7.99x10(exp -28)cu cm/atom for TiO2/Al2O3 coated Teflon(TradeMark) fluorinated ethylene propylene (FEP) flown in the ram orientation to 1.22x10(exp -23cu cm/atom for polyvinyl alcohol (PVOH) flown in the zenith orientation. The E(sub y) of similar samples flown in different orientations has been compared to help determine solar exposure and associated heating effects on AO erosion. The E(sub y) data from these ISS spaceflight experiments provides valuable information for LEO spacecraft design purposes.
Spectral sea surface reflectance of skylight.
Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping
2017-02-20
In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.
Cosmic Rays In The Magnetosphere, 2. Apparent Cut-off Rigidities and Coupling Functions
NASA Astrophysics Data System (ADS)
Dorman, L. I.; Danilova, O. A.; Iucci, N.; Parisi, M.; Ptitsyna, N. G.; Tyasto, M. I.; Villoresi, G.
We calculate the apparent cut-off rigidities along the survey Italy-Antarctica-Italy** on the basis of results of Danilova et al. (2001) on trajectory calculations for inclined cut- off rigidities at eight azimuths (through 45?) and five zeniths angles (through 15?) along the survey. For calculations of apparent cut-off rigidities we use also the infor- mation on integral multiplicities of secondary neutrons in dependence of zenith angle of incident primary cosmic ray particles, as theoretically computed. This information is based on the theoretical calculations of meson-nuclear cascades for primary protons with different rigidities arriving to the EarthSs atmosphere at different zenith angles (Dorman and Pakhomov, 1979). These results have been checked and normalized by using coupling functions obtained in the same survey [Dorman et al. (2000)]. The determined apparent cut-off rigidities have been compared with results obtained by Clem et al. (1997) and with those used by Dorman et al. (2000) computed by using vertical cut-off rigidities, for trajectories especially calculated for the survey. On the basis of the apparent cut-off rigidities along the latitude survey, the coupling functions for neutron monitor and bare neutron counters found by Dorman et al. (2000) are now determined more accurately. **Survey realized with logistic and financial support of the Italian Antarctic Program (PNRA) and with the co-operation of IFSI-CNR. REFERENCES: Clem, J.M., et al. J. Geophys. Res., 102, 26,919 (1997). Danilova, O.A., et al., Latitude survey in December 1996-March 1997, 1. Cut-off rigidities for different azimuth and zenith angles, Paper ST13, This issue (2001) Dorman L.I. and Pakhomov N.I., "The dependence of the integral generation multiplicity of neutron component at various depths in the atmosphere on zenith angle on primary particle in- cidence". Proc. 16-th ICRC, Kyoto, 4, 416-420 (1979) Dorman, L.I., et al., J. Geophys. Res. 105 , 21,047 (2000).
Tests of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data
NASA Astrophysics Data System (ADS)
Arteaga-Velázquez, J. C.; Rivera-Rangel, D.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; Souza, V. de; Pierro, F. Di; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K. H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2018-01-01
The KASCADE-Grande observatory was a ground-based air shower array dedicated to study the energy and composition of cosmic rays in the energy interval E = 1 PeV -1 EeV. The experiment consisted of different detector systems which allowed the simultaneous measurement of distinct components of air showers (EAS), such as the muon content. In this contribution, we study the total muon number and the lateral density distribution of muons in EAS detected by KASCADE-Grande as a function of the zenith angle and the total number of charged particles. The attenuation length of the muon content of EAS is also measured. The results are compared with the predictions of the SIBYLL 2.3 high-energy hadronic interaction model.
NASA Astrophysics Data System (ADS)
Janpaule, Inese; Haritonova, Diana; Balodis, Janis; Zarins, Ansis; Silabriedis, Gunars; Kaminskis, Janis
2015-03-01
Development of a digital zenith telescope prototype, improved zenith camera construction and analysis of experimental vertical deflection measurements for the improvement of the Latvian geoid model has been performed at the Institute of Geodesy and Geoinformatics (GGI), University of Latvia. GOCE satellite data was used to compute geoid model for the Riga region, and European gravimetric geoid model EGG97 and 102 data points of GNSS/levelling were used as input data in the calculations of Latvian geoid model.
Interpreting vegetation reflectance measurements as a function of solar zenith angle
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Smith, J. A.; Ranson, K. J.
1979-01-01
Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.
BOREAS RSS-2 Level-1B ASAS Image Data: At-Sensor Radiance in BSQ Format
NASA Technical Reports Server (NTRS)
Russell, C.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Dabney, P. W.; Kovalick, W.; Graham, D.; Bur, Michael; Irons, James R.; Tierney, M.
2000-01-01
The BOREAS RSS-2 team used the ASAS instrument, mounted on the NASA C-130 aircraft, to create at-sensor radiance images of various sites as a function of spectral wavelength, view geometry (combinations of view zenith angle, view azimuth angle, solar zenith angle, and solar azimuth angle), and altitude. The level-1b ASAS images of the BOREAS study areas were collected from April to September 1994 and March to July 1996.
NASA Astrophysics Data System (ADS)
Geng, J.; Bock, Y.; Reuveni, Y.
2014-12-01
Earthquake early warning (EEW) is a time-critical system and typically relies on seismic instruments in the area around the source to detect P waves (or S waves) and rapidly issue alerts. Thanks to the rapid development of real-time Global Navigation Satellite Systems (GNSS), a good number of sensors have been deployed in seismic zones, such as the western U.S. where over 600 GPS stations are collecting 1-Hz high-rate data along the Cascadia subduction zone, San Francisco Bay area, San Andreas fault, etc. GNSS sensors complement the seismic sensors by recording the static offsets while seismic data provide highly-precise higher frequency motions. An optimal combination of GNSS and accelerometer data (seismogeodesy) has advantages compared to GNSS-only or seismic-only methods and provides seismic velocity and displacement waveforms that are precise enough to detect P wave arrivals, in particular in the near source region. Robust real-time GNSS and seismogeodetic analysis is challenging because it requires a period of initialization and continuous phase ambiguity resolution. One of the limiting factors is unmodeled atmospheric effects, both of tropospheric and ionospheric origin. One mitigation approach is to introduce atmospheric corrections into precise point positioning with ambiguity resolution (PPP-AR) of clients/stations within the monitored regions. NOAA generates hourly predictions of zenith troposphere delays at an accuracy of a few centimeters, and 15-minute slant ionospheric delays of a few TECU (Total Electron Content Unit) accuracy from both geodetic and meteorological data collected at hundreds of stations across the U.S. The Scripps Orbit and Permanent Array Center (SOPAC) is experimenting with a regional ionosphere grid using a few hundred stations in southern California, and the International GNSS Service (IGS) routinely estimates a Global Ionosphere Map using over 100 GNSS stations. With these troposphere and ionosphere data as additional observations, we can shorten the initialization period and improve the ambiguity resolution efficiency of PPP-AR. We demonstrate this with data collected by a cluster of Real-Time Earthquake Analysis for Disaster mItigation (READI) network stations in southern California operated by UNAVCO/PBO and SOPAC.
Tropospheric products of the second GOP European GNSS reprocessing (1996-2014)
NASA Astrophysics Data System (ADS)
Dousa, Jan; Vaclavovic, Pavel; Elias, Michal
2017-09-01
In this paper, we present results of the second reprocessing of all data from 1996 to 2014 from all stations in International Association of Geodesy (IAG) Reference Frame Sub-Commission for Europe (EUREF) Permanent Network (EPN) as performed at the Geodetic Observatory Pecný (GOP). While the original goal of this research was to ultimately contribute to the realization of a new European Terrestrial Reference System (ETRS), we also aim to provide a new set of GNSS (Global Navigation Satellite System) tropospheric parameter time series with possible applications to climate research. To achieve these goals, we improved a strategy to guarantee the continuity of these tropospheric parameters and we prepared several variants of troposphere modelling. We then assessed all solutions in terms of the repeatability of coordinates as an internal evaluation of applied models and strategies and in terms of zenith tropospheric delays (ZTDs) and horizontal gradients with those of the ERA-Interim numerical weather model (NWM) reanalysis. When compared to the GOP Repro1 (first EUREF reprocessing) solution, the results of the GOP Repro2 (second EUREF reprocessing) yielded improvements of approximately 50 and 25 % in the repeatability of the horizontal and vertical components, respectively, and of approximately 9 % in tropospheric parameters. Vertical repeatability was reduced from 4.14 to 3.73 mm when using the VMF1 mapping function, a priori ZHD (zenith hydrostatic delay), and non-tidal atmospheric loading corrections from actual weather data. Raising the elevation cut-off angle from 3 to 7° and then to 10° increased RMS from coordinates' repeatability, which was then confirmed by independently comparing GNSS tropospheric parameters with the NWM reanalysis. The assessment of tropospheric horizontal gradients with respect to the ERA-Interim revealed a strong sensitivity of estimated gradients to the quality of GNSS antenna tracking performance. This impact was demonstrated at the Mallorca station, where gradients systematically grew up to 5 mm during the period between 2003 and 2008, before this behaviour disappeared when the antenna at the station was changed. The impact of processing variants on long-term ZTD trend estimates was assessed at 172 EUREF stations with time series longer than 10 years. The most significant site-specific impact was due to the non-tidal atmospheric loading followed by the impact of changing the elevation cut-off angle from 3 to 10°. The other processing strategy had a very small or negligible impact on estimated trends.
NASA Astrophysics Data System (ADS)
Baldysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; Kroszczynski, Krzysztof; Araszkiewicz, Andrzej
2015-04-01
In recent years, the GNSS system began to play an increasingly important role in the research related to the climate monitoring. Based on the GPS system, which has the longest operational capability in comparison with other systems, and a common computational strategy applied to all observations, long and homogeneous ZTD (Zenith Tropospheric Delay) time series were derived. This paper presents results of analysis of 16-year ZTD time series obtained from the EPN (EUREF Permanent Network) reprocessing performed by the Military University of Technology. To maintain the uniformity of data, analyzed period of time (1998-2013) is exactly the same for all stations - observations carried out before 1998 were removed from time series and observations processed using different strategy were recalculated according to the MUT LAC approach. For all 16-year time series (59 stations) Lomb-Scargle periodograms were created to obtain information about the oscillations in ZTD time series. Due to strong annual oscillations which disturb the character of oscillations with smaller amplitude and thus hinder their investigation, Lomb-Scargle periodograms for time series with the deleted annual oscillations were created in order to verify presence of semi-annual, ter-annual and quarto-annual oscillations. Linear trend and seasonal components were estimated using LSE (Least Square Estimation) and Mann-Kendall trend test were used to confirm the presence of linear trend designated by LSE method. In order to verify the effect of the length of time series on the estimated size of the linear trend, comparison between two different length of ZTD time series was performed. To carry out a comparative analysis, 30 stations which have been operating since 1996 were selected. For these stations two periods of time were analyzed: shortened 16-year (1998-2013) and full 18-year (1996-2013). For some stations an additional two years of observations have significant impact on changing the size of linear trend - only for 4 stations the size of linear trend was exactly the same for two periods of time. In one case, the nature of the trend has changed from negative (16-year time series) for positive (18-year time series). The average value of a linear trends for 16-year time series is 1,5 mm/decade, but their spatial distribution is not uniform. The average value of linear trends for all 18-year time series is 2,0 mm/decade, with better spatial distribution and smaller discrepancies.
Calibration of the KA Band Tracking of the Bepi-Colombo Spacecraft (more Experiment)
NASA Astrophysics Data System (ADS)
Barriot, J.; Serafini, J.; Sichoix, L.
2013-12-01
The radiosciences Bepi-Colombo MORE experiment will use X/X, X/Ka and Ka/Ka band radio links to make accurate measurements of the spacecraft range and range rate. Tropospheric zenith wet delays range from 1.5 cm to 10 cm, with high variability (less than 1000 s) and will impair these accurate measurements. Conditions vary from summer (worse) to winter (better), from day (worse) to night (better). These wet delays cannot be estimated from ground weather measurements and alternative calibration methods should be used in order to cope with the MORE requirements (no more than 3 mm at 1000 s). Due to the Mercury orbit, MORE measurements will be performed by daylight and more frequently in summer than in winter (from Northern hemisphere). Two systems have been considered to calibrate this wet delay: Water Vapor Radiometers (WVRs) and GPS receivers. The Jet Propulsion Laboratory has developed a new class of WVRs reaching a 5 percent accuracy for the wet delay calibration (0.75 mm to 5 mm), but these WVRs are expensive to build and operate. GPS receivers are also routinely used for the calibration of data from NASA Deep Space probes, but several studies have shown that GPS receivers can give good calibration (through wet delay mapping functions) for long time variations, but are not accurate enough for short time variations (100 to 1000 s), and that WVRs must be used to efficiently calibrate the wet troposphere delays over such time spans. We think that such a calibration could be done by assimilating data from all the GNSS constellations (GPS, GLONASS, Galileo, Beidou and IRNSS) that will be available at the time of the Bepi-Colombo arrival at Mercury (2021), provided that the underlying physics of the turbulent atmosphere and evapotranspiration processes are properly taken into account at such time scales. This implies to do a tomographic image of the troposphere overlying each Deep Space tracking station at time scales of less than 1000 s. For this purpose, we have developed a full representation of the wet refractivity of the atmosphere over the ground station along a basis of 3D Zernike functions with time-variable coefficients. We detail the algorithm that is used to constraint the inverse imaging of the wet troposphere at the target time scales, and give examples of such imaging from GPS data only.
Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001
Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.
2005-01-01
The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.
Coulson, K L
1981-05-01
This is the second of two papers based on an extensive series of measurements of the intensity and polarization of light from the zenith sky during periods of twilight made at an altitude of 3400 m on the island of Hawaii. Part 1 dealt with the skylight polarization; part 2 is on the measured intensity and quantities derived from the intensity. The principal results are that (1) the polarization and intensity of light from the zenith during twilight are sensitive indicators of the existence of turbid layers in the stratosphere and upper troposphere, and (2) at least at Mauna Loa primary scattering of the sunlight incident on the upper atmosphere during twilight is strongly dominant over secondary or multiple scattering at wavelengths beyond ~0.60microm, whereas this is much less true at shorter wavelengths. It is suggested that the development and general use of a simple twilight polarimeter would greatly facilitate determinations of turbidity in the upper layers of the atmosphere.
Solar Illumination Control of the Polar Wind
NASA Astrophysics Data System (ADS)
Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.
2017-11-01
Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.
Saifodine, Abuchahama; Gudo, Paula Samo; Sidat, Mohsin; Black, James
2013-06-07
TB control is based on the rapid identification of cases and their effective treatment. However, many studies have shown that there are important delays in diagnosis and treatment of patients with TB. The purpose of this study was to assess the prevalence of and identify risk factors associated with patient delay and health system delay among newly diagnosed patients with pulmonary TB. A cross sectional study was carried out in Beira city, Mozambique between September 2009 and February 2010. Patients in the first month of treatment were consecutively selected to this study if they had a diagnosis of pulmonary TB, had no history of previous TB treatment, and were 18 years or older and provided informed consent. Data was obtained through a questionnaire administered to the patients and from patients' files. Among the 622 patients included in the study the median age was 32 years (interquartile range, 26-40) and 272 (43.7%) were females. The median total delay, patient delay and health system delay was 150 days (interquartile range, 91-240), 61 days (28-113) and 62 days (37-120), respectively. The contribution of patient delay and health system delay to total delay was similar. Farming, visiting first a traditional healer, low TB knowledge and coexistence of a chronic disease were associated with increased patient delay. More than two visits to a health facility, farming and coexistence of a chronic disease were associated with increased health system delay. This study revealed a long total delay with a similar contribution of patient delay and health system delay. To reduce the total delay in this setting we need a combination of interventions to encourage patients to seek appropriate health care earlier and to expedite TB diagnosis within the health care system.
NASA Astrophysics Data System (ADS)
Sasmal, Sudipta; Basak, Tamal; Chakraborty, Suman; Palit, Sourav; Chakrabarti, Sandip K.
2017-07-01
Characteristics of very low frequency (VLF) signal depends on solar illumination across the propagation path. For a long path, solar zenith angle varies widely over the path and this has a significant influence on the propagation characteristics. To study the effect, Indian Centre for Space Physics participated in the 27th and 35th Scientific Expedition to Antarctica. VLF signals transmitted from the transmitters, namely, VTX (18.2 kHz), Vijayanarayanam, India, and NWC (19.8 kHz), North West Cape, Australia, were recorded simultaneously at Indian permanent stations Maitri and Bharati having respective geographic coordinates 70.75°S, 11.67°E, and 69.4°S, 76.17°E. A very stable diurnal variation of the signal has been obtained from both the stations. We reproduced the signal variations of VLF signal using solar zenith angle model coupled with long wavelength propagation capability (LWPC) code. We divided the whole path into several segments and computed the solar zenith angle (χ) profile. We assumed a linear relationship between the Wait's exponential model parameters effective reflection height (h'), steepness parameter (β), and solar zenith angle. The h' and β values were later used in the LWPC code to obtain the VLF signal amplitude at a particular time. The same procedure was repeated to obtain the whole day signal. Nature of the whole day signal variation from the theoretical modeling is also found to match with our observation to some extent.
NASA Astrophysics Data System (ADS)
Basoglu, Burak; Halicioglu, Kerem; Albayrak, Muge; Ulug, Rasit; Tevfik Ozludemir, M.; Deniz, Rasim
2017-04-01
In the last decade, the importance of high-precise geoid determination at local or national level has been pointed out by Turkish National Geodesy Commission. The Commission has also put objective of modernization of national height system of Turkey to the agenda. Meanwhile several projects have been realized in recent years. In Istanbul city, a GNSS/Levelling geoid was defined in 2005 for the metropolitan area of the city with an accuracy of ±3.5cm. In order to achieve a better accuracy in this area, "Local Geoid Determination with Integration of GNSS/Levelling and Astro-Geodetic Data" project has been conducted in Istanbul Technical University and Bogazici University KOERI since January 2016. The project is funded by The Scientific and Technological Research Council of Turkey. With the scope of the project, modernization studies of Digital Zenith Camera System are being carried on in terms of hardware components and software development. Accentuated subjects are the star catalogues, and centroiding algorithm used to identify the stars on the zenithal star field. During the test observations of Digital Zenith Camera System performed between 2013-2016, final results were calculated using the PSF method for star centroiding, and the second USNO CCD Astrograph Catalogue (UCAC2) for the reference star positions. This study aims to investigate the position accuracy of the star images by comparing different centroiding algorithms and available star catalogs used in astro-geodetic observations conducted with the digital zenith camera system.
The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica
NASA Astrophysics Data System (ADS)
Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander
2016-04-01
At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is calculated from the observed time series, demonstrating that changes in nitrogen dioxide content cause subsequent changes in the ozone layer. Attempt to explain this phenomenon as influence upper atmosphere on ozone layer is under discussed.
NASA Astrophysics Data System (ADS)
Douša, Jan; Dick, Galina; Kačmařík, Michal; Václavovic, Pavel; Pottiaux, Eric; Zus, Florian; Brenot, Hugues; Moeller, Gregor; Hinterberger, Fabian; Pacione, Rosa; Stuerze, Andrea; Eben, Kryštof; Teferle, Norman; Ding, Wenwu; Morel, Laurent; Kaplon, Jan; Hordyniec, Pavel; Rohm, Witold
2017-04-01
The COST Action ES1206 GNSS4SWEC addresses new exploitations of the synergy between developments in GNSS and meteorological communities. The Working Group 1 (Advanced GNSS processing techniques) deals with implementing and assessing new methods for GNSS tropospheric monitoring and precise positioning exploiting all modern GNSS constellations, signals, products etc. Besides other goals, WG1 coordinates development of advanced tropospheric products in support of weather numerical and non-numerical nowcasting. These are ultra-fast and high-resolution tropospheric products available in real time or in a sub-hourly fashion and parameters in support of monitoring an anisotropy of the troposphere, e.g. horizontal gradients and tropospheric slant path delays. This talk gives an overview of WG1 activities and, particularly, achievements in two activities, Benchmark and Real-time demonstration campaigns. For the Benchmark campaign a complex data set of GNSS observations and various meteorological data were collected for a two-month period in 2013 (May-June) which included severe weather events in central Europe. An initial processing of data sets from GNSS and numerical weather models (NWM) provided independently estimated reference parameters - ZTDs and tropospheric horizontal gradients. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and an accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting. The Benchmark data set is also used for an extensive validation of line-of-sight tropospheric Slant Total Delays (STD) from GNSS, NWM-raytracing and Water Vapour Radiometer (WVR) solutions. Seven institutions delivered their STDs estimated based on GNSS observations processed using different software and strategies. STDs from NWM ray-tracing came from three institutions using four different NWM models. Results show generally a very good mutual agreement among all solutions from all techniques. The influence of adding not cleaned GNSS post-fit residuals, i.e. residuals that still contains non-tropospheric systematic effects such as multipath, to estimated STDs will be presented. The Real-time demonstration campaign aims at enhancing and assessing ultra-fast GNSS tropospheric products for severe weather and NWM nowcasting. Results are showed from real-time demonstrations as well as offline production simulating real-time using Benchmark campaign.
NASA Astrophysics Data System (ADS)
Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.
Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.
The influence of sea fog inhomogeneity on its microphysical characteristics retrieval
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang
2008-10-01
A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.
Vacuum ultraviolet spectra of the late twilight airglow.
NASA Technical Reports Server (NTRS)
Buckley, J. L.; Moos, H. W.
1971-01-01
Evaluation of sounding rocket spectra of the late twilight (solar-zenith angle of 120 deg) ultraviolet airglow between 1260 and 1900 A. The only observed features are O I 1304 and 1356. When the instrument looked at an elevation of 17 deg above the western horizon, the brightnesses were 70 and 33 rayleighs, respectively. The upper limits on the total intensity of the Lyman-Birge-Hopfield and Vegard-Kaplan systems of N2 were 26 plus or minus 26 and 55 plus or minus 55 rayleighs, respectively. An estimate shows that a large part of the O I emissions may be due to excitation by conjugate-point electrons.
Ground-based determination of atmospheric radiance for correction of ERTS-1 data
NASA Technical Reports Server (NTRS)
Peacock, K.
1974-01-01
A technique is described for estimating the atmospheric radiance observed by a downward sensor (ERTS) using ground-based measurements. A formula is obtained for the sky radiance at the time of the ERTS overpass from the radiometric measurement of the sky radiance made at a particular solar zenith angle and air mass. A graph illustrates ground-based sky radiance measurements as a function of the scattering angle for a range of solar air masses. Typical values for sky radiance at a solar zenith angle of 48 degrees are given.
High-energy spectra of atmospheric neutrinos
NASA Astrophysics Data System (ADS)
Petrova, O. N.; Sinegovskaya, T. S.; Sinegovsky, S. I.
2012-12-01
A calculation of the atmospheric high-energy muon neutrino spectra and zenith-angle distributions is performed for two primary spectrum parameterizations (by Gaisser and Honda and by Zatsepin and Sokolskaya) with the use of QGSJET-II-03 and SIBYLL 2.1 hadronic models. A comparison of the zenith angle-averaged muon neutrino spectrum with the data of Frejus, AMANDA-II, and IceCube40 experiments makes it clear that, even at energies above 100 TeV, the prompt neutrino contribution is not apparent because of the considerable uncertainties of the experimental data in the high-energy region.
NASA Astrophysics Data System (ADS)
Tsujii, Toshiaki; Harigae, Masatoshi
Recently, some feasibility studies on a regional positioning system using the quasi-zenith satellites and the geostationary satellites have been conducted in Japan. However, the geometry of this system seems to be unsatisfactory in terms of the positioning accuracy in north-south direction. In this paper, an augmented satellite positioning system by the High Altitude Platform Systems (HAPS) is proposed since the flexibility of the HAPS location is effective to improve the geometry of satellite positioning system. The improved positioning performance of the augmented system is also demonstrated.
Imaging Radar Studies of Atmospheric Winds and Waves
1993-09-02
3*ZAWindow - ZASpread(dir) do 10004 ant - 1,3 0 C "c Test #1: Reject this Doppler frequency if both quadrature "c components are too small on any...dipole) - pd23(dir,dipole) - 2*pi If (pd23(dir,dipole) .At. -pi) 1 pd23(dir,dipole) - pd23(dir,dipole) + 2*pi c "c Tests #2,3,6,&7: The two zenith...thetal+theta2)/2 10098 continue c "c Tests #4 and #8: Both dipoles have separately determined zenith "c angles for one direction. Do these two values
Horizontal and sun-normal spectral biologically effective ultraviolet irradiances.
Parisi, A V; Kimlin, M G
1999-01-01
The dependence of the spectral biologically effective solar UV irradiance on the orientation of the receiver with respect to the sun has been determined for relatively cloud-free days at a sub-tropical Southern Hemisphere latitude for the solar zenith angle range 35-64 degrees. For the UV and biologically effective irradiances, the sun-normal to horizontal ratio for the total UV ranges from 1.18 +/- 0.05 to 1.27 +/- 0.06. The sun-normal to horizontal ratio for biologically effective irradiance is dependent on the relative effectiveness of the relevant action spectrum in the UV-A waveband. In contrast to the total UV, the diffuse UV and diffuse biologically effective irradiances are reduced in a sun-normal compared with a horizontal orientation by a factor ranging from 0.70 +/- 0.05 to 0.76 +/- 0.03.
Gamma-rays of 3 to 25 MeV from the galactic anti-center and pulsar NP 0532
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Moon, S. H.; Ryan, J. M.; Zych, A. D.; White, R. S.; Dayton, B.
1978-01-01
Gamma-rays of 3 to 25 MeV are reported from the galactic anticenter region and the Crab Pulsar, NP 0532. The observations were carried out from Palestine, Texas, on May 13, 1975. Gamma-rays from the galactic anticenter were observed as the Crab Nebula passed overhead within 10 deg of the zenith. Pulsed gamma-rays from NP 0532 were observed at a 4.4-sigma significance level. The total flux from 3-25 MeV is 0.0049 + or - 0.002 photon/sq cm-sec. The pulsed flux from NP 0532 from 3 to 25 MeV is 0.00043 + or - 0.00026 photon/sq cm-sec. The ratio of the total to the pulsed flux from 3 to 25 MeV is 11 + or - 8.
Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide
NASA Technical Reports Server (NTRS)
McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Schlesinger, Barry M.; Wellemeyer, Charles G.; Seftor, Colin J.; Jaross, Glen; Taylor, Steven L.; Swissler, Tom;
1996-01-01
Two data products from the Total Ozone Mapping Spectrometer (TOMS) onboard Nimbus-7 have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the instrument sensitivity are monitored by a spectral discrimination technique using measurements of the intrinsically stable wavelength dependence of derived surface reflectivity. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and drift is less than 1.0 percent per decade. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone amount and reflectivity in a I - degree latitude by 1.25 degrees longitude grid. The Level-3 product also is available on CD-ROM. Detailed descriptions of both HDF data files and the CD-ROM product are provided.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.
1992-01-01
Due to range safety considerations, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color instrument may be required to be launched into a near-noon descending node, as opposed to the ascending node used by the predecessor sensor, the Coastal Zone Color Scanner (CZCS). The relative importance of ascending versus descending near-noon orbits was assessed here to determine if descending node will meet the scientific requirements of SeaWiFS. Analyses focused on ground coverage, local times of coverage, solar and viewing geometries (zenith and azimuth angles), and sun glint. Differences were found in the areas covered by individual orbits, but were not important when taken over a 16 day repeat time. Local time of coverage was also different: for ascending node orbits the Northern Hemisphere was observed in the morning and the Southern Hemisphere in the afternoon, while for descending node orbits the Northern Hemisphere was observed in the afternoon and the Southern in the morning. There were substantial differences in solar azimuth and spacecraft azimuth angles both at equinox and at the Northern Hemisphere summer solstice. Negligible differences in solar and spacecraft zenith angles, relative azimuth angles, and sun glint were obtained at the equinox. However, large differences were found in solar zenith angles, relative azimuths, and sun glint for the solstice. These differences appeared to compensate across the scan, however, an increase in sun glint in descending node over that in ascending node on the western part of the scan was compensated by a decrease on the eastern part of the scan. Thus, no advantage or disadvantage could be conferred upon either ascending node or descending node for noon orbits. Analyses were also performed for ascending and descending node orbits that deviated from a noon equator crossing time. For ascending node, afternoon orbits produced the lowest mean solar zenith angles in the Northern Hemisphere, and morning orbits produced the lowest angles for the Southern Hemisphere. For descending node, morning orbits produced the lowest mean solar zenith angles for the Northern Hemisphere; afternoon orbits produced the lowest angles for the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Das, G. S.; Hazarika, P.; Goswami, U. D.
2018-07-01
We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by γ-ray, proton and iron primaries incident with various energies and at various zenith angles. This study is the extension of our earlier work [1] to cover a wide energy range of ground based γ-ray astronomy with a wide range of zenith angles (≤40°) of primary particles, as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the γ-ray initiated showers from the hadronic showers in the ground based γ-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is being used. Importantly, such study gives an insight on the nature of γ-ray and hadronic showers in general. In this work, the CORSIKA 6.990 simulation code is used for generation of EASs. Similarly to the case of Ref. [1], this study also revealed that, the lateral density and arrival time distributions of Cherenkov photons vary almost in accordance with the functions: ρch(r) =ρ0e-βr and tch(r) =t0eΓ/rλ respectively by taking different values of the parameters of functions for the type, energy and zenith angle of the primary particle. The distribution of Cherenkov photon's angular positions with respect to shower axis shows distinctive features depending on the primary type, its energy and the zenith angle. As a whole this distribution pattern for the iron primary is noticeably different from those for γ-ray and proton primaries. The value of the angular position at which the maximum number of Cherenkov photons are concentrated, increases with increase in energy of vertically incident primary, but for inclined primary it lies within a small value (≤1°) for almost all energies and primary types. No significant difference in the results obtained by using the high energy hadronic interaction models, viz., QGSJETII and EPOS has been observed.
Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei
2011-12-01
Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the rock and city architecture discrimination and minerals mapping.
NASA Astrophysics Data System (ADS)
Grams, Guilherme; Schuch, Nelson Jorge; Braga, Carlos Roberto; Purushottam Kane, Rajaram; Echer, Ezequiel; Ronan Coelho Stekel, Tardelli
Cosmic ray are charged particles, at the most time protons, that reach the earth's magne-tosphere from interplanetary space with velocities greater than the solar wind. When these impinge the atmosphere, they interact with atmosphere constituents and decay into sub-particles forming an atmospheric shower. The muons are the sub-particles which normally maintain the originated direction of the primary cosmic ray. A multi-directional muon detec-tor (MMD) was installed in 2001 and upgraded in 2005, through an international cooperation between Brazil, Japan and USA, and operated since then at the Southern Space Observatory -SSO/CRS/CCR/INPE -MCT, (29,4° S, 53,8° W, 480m a.s.l.), São Martinho da Serra, RS, a Brazil. The main objetive of this work is to present a statistical analysis of the intensity of muons, with energy between 50 and 170 GeV, in differents directions, measured by the SSO's multi-directional muon detector. The analysis was performed with data from 2006 and 2007 collected by the SSO's MMD. The MMD consists of two layers of 4x7 detectors with a total observation area of 28 m2 . The counting of muons in each directional channel is made by a coincidence of pulses pair, one from a detector in the upper layer and the other from a detector in the lower layer. The SSO's MMD is equipped with 119 directional channels for muon count rate measurement and is capable of detecting muons incident with zenithal angle between 0° and 75,53° . A statistical analysis was made with the MMD muon count rate for all the di-rectional channels. The average and the standard deviation of the muon count rate in each directional component were calculated. The results show lower cont rate for the channels with larger zenith, and higher cont rate with smaller zenith, as expected from the production and propagation of muons in the atmosphere. It is also possible to identify the Stormer cone. The SSO's MMD is also a detector component of the Global Muon Detector Network (GMDN), which has been developed in an international collaboration lead by Shinshu University, Japan.
Gowd, Snigdha; Shankar, T; Chatterjee, Suravi; Mohanty, Pritam; Sahoo, Nivedita; Baratam, Srinivas
2017-08-01
To investigate the two clinical parameters, such as gingival zenith positions (GZPs) and gingival zenith levels (GZLs), of maxillary anterior dentition in bimaxillary protrusion cases and collate it with severiety of crown inclination. Gingival zenith position and GZL in 40 healthy patients (29 females and 11 males) with an average age of 21.5 years were assessed. Inclusion criteria involved absence of periodontal diseases, Angle's class I molar relationship, and upper anterior proclination within 25 to 45° based on Steiner's analysis; exclusion criteria included spacing, crowding, anterior restoration and teeth with incisor attrition or rotation. The GZP was evaluated using digital calipers from voxel-based morphometry (VBM), and GZL was assessed from the tangent drawn from GZP of central incisor and canines to the linear vertical distance of GZP of lateral incisor. All the central incisors showed a GZP distal to VBM with a mean average of 1 mm. Severe proclination between 40 and 45° showed a statistically significant variation. Lateral incisors displayed a mean of 0.5 mm deviation of GZP from the vertically bisected midline. In 80% of canine population, GZP was centralized. We conclude that the degree of proclination of maxillary anterior dentition was correlated to the gingival contour in bimaxillary cases. The investigation revealed that there is a variation in the location of GZP as the severity of proclination increases. This study highlights the importance of microesthetics in fixed orthodontic treatment. The gingival contour should be unaltered while retraction during management of bimaxillary protrusion.
Jolitz, Rebecca D; McKay, Christopher P
2013-07-01
In extreme desert environments, photosynthetic microorganisms often live on the buried undersides of translucent rocks. Computing the light level reaching these locations requires 3D modeling of a finite rock. We report on Monte Carlo calculations of skylight and sunlight transmission through a partially buried flat cylindrical rock using one billion photons per simulation. Transmitted light level drops inversely with increasing rock opacity, as expected for purely scattering media. For a half-buried rock with an extinction coefficient of 0.1 cm(-1) (opacity of 0.2), transmission at the bottom is 64 % for sunlight at a solar zenith angle of 60° and 82 % for skylight. Transmitted light level increases slowly with increasing scattering asymmetry factor of the rock independent of illumination or depth buried. Transmitted sunlight at zenith through a thick half-buried rock (opacity of 0.6) is six times brighter at the bottom than the subsurface sides. Skylight transmits equally to the subsurface sides and bottom. When the sun is not straight overhead, the sunward side of the rock is brighter than the underside of the rock. Compared to the sunlight transmitted to the bottom, transmitted sunlight inclined at 60° is 24 times brighter at the subsurface side towards the sun and 14 times brighter at the subsurface side 70° away from the sun. Transmitted sunlight emitted from zenith and skylight is uniformly bright at the bottom regardless of how deeply the rock is buried. Sunlight not at zenith transmits preferentially to the sunward bottom edge depending on the depth the rock is buried.
Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner.
Gordon, H R; Brown, J W; Evans, R H
1988-03-01
For improved analysis of Coastal Zone Color Scanner (CZCS) imagery, the radiance reflected from a planeparallel atmosphere and flat sea surface in the absence of aerosols (Rayleigh radiance) has been computed with an exact multiple scattering code, i.e., including polarization. The results indicate that the single scattering approximation normally used to compute this radiance can cause errors of up to 5% for small and moderate solar zenith angles. At large solar zenith angles, such as encountered in the analysis of high-latitude imagery, the errors can become much larger, e.g.,>10% in the blue band. The single scattering error also varies along individual scan lines. Comparison with multiple scattering computations using scalar transfer theory, i.e., ignoring polarization, show that scalar theory can yield errors of approximately the same magnitude as single scattering when compared with exact computations at small to moderate values of the solar zenith angle. The exact computations can be easily incorporated into CZCS processing algorithms, and, for application to future instruments with higher radiometric sensitivity, a scheme is developed with which the effect of variations in the surface pressure could be easily and accurately included in the exact computation of the Rayleigh radiance. Direct application of these computations to CZCS imagery indicates that accurate atmospheric corrections can be made with solar zenith angles at least as large as 65 degrees and probably up to at least 70 degrees with a more sensitive instrument. This suggests that the new Rayleigh radiance algorithm should produce more consistent pigment retrievals, particularly at high latitudes.
Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite
NASA Astrophysics Data System (ADS)
Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi
The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.
Weather delay costs to trucking.
DOT National Transportation Integrated Search
2012-11-01
Estimates of the nations freight sector of transportation range to upwards of $600 billion of total gross domestic product with 70 percent of total value and 60 percent of total weight moving by truck. Weather-related delays can add significantly ...
Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide
NASA Technical Reports Server (NTRS)
Mcpeters, Richard D.; Krueger, Arlin J.; Bhartia, P. K.; Herman, Jay R.; Oaks, Arnold; Ahmad, Ziuddin; Cebula, Richard P.; Schlesinger, Barry M.; Swissler, Tom; Taylor, Steven L.
1993-01-01
Two tape products from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7 have been archived at the National Space Science Data Center. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio -- the albedo -- is used in ozone retrievals. In-flight measurements are used to monitor changes in the instrument sensitivity. The algorithm to retrieve total column ozone compares the observed ratios of albedos at pairs of wavelengths with pair ratios calculated for different ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard-deviation random error is 2 percent, and the drift is +/- 1.5 percent over 14.5 years. The High Density TOMS (HDTOMS) tape contains the measured albedos, the derived total ozone amount, reflectivity, and cloud-height information for each scan position. It also contains an index of SO2 contamination for each position. The Gridded TOMS (GRIDTOMS) tape contains daily total ozone and reflectivity in roughly equal area grids (110 km in latitude by about 100-150 km in longitude). Detailed descriptions of the tape structure and record formats are provided.
NASA Astrophysics Data System (ADS)
Vespe, Francesco; Baldini, Luca; Notarnicola, Claudia; Prati, Claudio; Zerbini, Susanna; Celidonio, G.
2011-11-01
The Italian Space Agency is funding 27 scientific projects in the framework of Cosmo/Skymed program (hereafter CSK) . A subset of them are focusing on the improvements of the quality and quantity of information which can be extracted from X-SAR data if integrated with other independent techniques like GPS or SAR imagery in L and C bands. The GPS observations, namely zenith total delays estimated by means of GPS ground stations, could be helpful to estimate the troposphere bias to remove from IN-SAR imagery. Another contribution of GPS could be the improvements of the orbits of Cosmo/SkyMed satellites. In particular the GPS navigation data of the CSK satellites could serve to improve the atmospheric drag models acting on them. The integration of SAR data in L and C bands on the other hand are helpful to investigate land hydrogeology parameters as well as to improve global precipitation observations. The combined use of L, C and X SAR data with different penetration depth could give profiles of land surface properties, especially in forest and snow/ice-packs. For what concern the use of X-SAR imagery for rain precipitation monitoring, particular attention will be paid to its polarimetric properties that we plan to determine aligning the CSK observations with those obtained with ground L and C radars. Anyway the study goals, the approaches proposed, the test sites identified and the external data selected for the development and validation will be described for each project. Particular attention will be paid to single the advantages that the research activities can benefit from the added potentials of CSK system: the more frequent revisiting time and the higher resolution capabilities.
NASA Astrophysics Data System (ADS)
Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.
2013-12-01
The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.
2014-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.
The GLORIE Campaign: Assessment of the Capabilities of Airborne GNSS-R for Land Remote Sensing.
NASA Astrophysics Data System (ADS)
Mangiarotti, S.; Motte, E.; Zribi, M., Sr.; Fanise, P., Sr.
2015-12-01
In June and July 2015 an intensive flight campaign was conducted over the south west of France to test the sensitivity of Global Navigation Satellite System Reflectometry (GNSS-R) to the geophysical parameters of continental surfaces. Namely, the parameters of interest were soil moisture, soil roughness, plant water content, forest biomass and level of inland water bodies and rivers. We used the GLORI polarimetric GNSS-R instrument, collecting raw 10MSPS 2-bit IQ direct (RHCP, zenith) and reflected (RHCP and LHCP, nadir) signals at GPS L1 frequency aboard the ATR-42 aircraft of the SAFIRE fleet. Simultaneous measurement of aircraft attitude and position were recorded. The flight plan included flyovers of several areas of interests, with collocated ground truth measurements of soil moisture, soil roughness, cultivated biomass, and forest biomass. Also flyovers of ponds, lakes and river were included for power calibration and altimetry retrievals. In total, 6 flights were performed between June 19th and July 6th, representing more than 15 hours of raw data. A conventional GNSS-R processing of the data was performed in order to compute the direct and reflected complex waveforms. A preliminary data analysis based on the variations of the ratio of reflected maximum correlation amplitude in the LHCP antenna to direct maximum correlated amplitude shows measurements sensitivity to soil type, land use and incidence angle. Also, first altimetric retrievals using phase-delay techniques shows very promising results over calm waters. Current work is ongoing in order to fit the observed polarimetric measurements with innovative bistatic scattering models capable of taking into account complex geometries and land use configurations.
Space and ground-based GNSS activities at NOAA
NASA Astrophysics Data System (ADS)
Cucurull, L.
2016-12-01
With the launch of the FORMOSAT-3/COSMIC satellites in April 2006, the availability of Global Navigation Satellite Systems (GNSS) Radio Occultation (RO) observations for operational Numerical Weather Prediction (NWP) applications began. GNSS RO profiles started being assimilated operationally in the major worldwide weather centers soon after. NOAA started assimilating RO data operationally in early 2007. After COSMIC, other missions carrying GNSS RO receivers became available for operational uses. The incorporation of RO observations into the operational assimilation systems was shown to improve global model forecast skill. Since its launch in 2006, the COSMIC constellation has been the mainstay of the global RO system. However, COSMIC is already past the end of its formal lifetime, and only three satellites are still operating. This has motivated NOAA to invest on the COSMIC-2 mission, a 12-satellite constellation, that will replace COSMIC. The first launch, in equatorial orbit, is planned for March 2017. In addition to the space-based component of the GNSS technique, NOAA is assimilating ground-based products into its operational regional models. Although most stations over CONUS provide estimates of Precipitable Water (PW), this is not the case outside the U.S., where the required auxiliary meteorological information is generally not available. Thus, in order to evaluate the impact of ground-based GNSS products on a global weather model, the assimilation of less derived products, such as zenith total delays, rather than PW, is necessary. The talk will include an update on current activities and future plans for the utilization of space and ground-based GNSS products at NOAA. In addition, an update on the COSMIC-2 mission will be discussed.
On the Impact of Inhomogeneities in Meteorological Data on VLBI Data Analysis
NASA Astrophysics Data System (ADS)
Balidakis, Kyriakos; Heinkelmann, Robert; Phogat, Apurva; Soja, Benedikt; Glaser, Susanne; Nilsson, Tobias; Karbon, Maria; Schuh, Harald
2016-12-01
In this study, we address the issue of the quality of meteorological data employed for VLBI data analysis. We use data from six numerical weather models (NWMs) to form references on which the homogenization process is based. We explore the impact of the choice of NWM as well as the way to extract data from it. Among our findings is that data from the surface fields of NWMs are not suitable for either geodetic analysis or homogenization efforts, whether they are in their original form or after they have been compensated for the height difference between the orography of the NWM and the actual elevation. The reason lies in the fact that for 77% of the VLBI stations a height bias larger than 2.5 mm appears, as well as an average bias in the zenith wet delay estimates of 12.2 mm. Should the proposed extraction approach be followed, the difference between operational and reanalysis NWMs is not significant for such an application. Our conclusions are based on the analysis of VLBI data over 13 years.
A neural network model for predicting weighted mean temperature
NASA Astrophysics Data System (ADS)
Ding, Maohua
2018-02-01
Water vapor is an important element of the Earth's atmosphere, and most of it concentrates at the bottom of the troposphere. Knowledge of the water vapor measured by Global Navigation Satellite Systems (GNSS) is an important direction of GNSS research. In particular, when the zenith wet delay is converted to precipitable water vapor, the weighted mean temperature T_m is a variable parameter to be determined in this conversion. The purpose of the study is getting a more accurate T_m model for global users by a combination of two different characteristics of T_m (i.e., the T_m seasonal variations and the relationships between T_m and surface meteorological elements). The modeling process was carried out by using the neural network technology. A multilayer feedforward neural network model (the NN) was established. The NN model is used with measurements of only surface temperature T_S . The NN was validated and compared with four other published global T_m models. The results show that the NN performed better than any of the four compared models on the global scale.
Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation
NASA Technical Reports Server (NTRS)
Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)
2017-01-01
A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.
Assessing health seeking behaviour among tuberculosis patients in rural South Africa.
Pronyk, R M; Makhubele, M B; Hargreaves, J R; Tollman, S M; Hausler, H P
2001-07-01
South Africa's rural Northern Province. To examine patterns of health seeking behaviour among hospitalised tuberculosis patients. Information on personal characteristics, health seeking behaviour and delays to presentation and hospitalisation was collected from hospitalised TB patients. Analysis of rates was used to investigate factors associated with delay. Among 298 patients, median total delay to hospitalisation was 10 weeks, with patient delay contributing a greater proportion than service provider delay. Patients more often presented initially to public hospitals (41%) or clinics (31 %) than to spiritual/traditional healers (15%) or private GPs (13%). Total delay was shorter amongst those presenting to hospitals than those presenting to clinics (rate ratio 1.33, 95%CI 1.13-1.85), with a significantly smaller proportion of the total delay attributable to the health service provider (18% vs. 42%). Those exhibiting a conventional risk profile for TB (migrants, alcohol drinkers, history of TB) were diagnosed most quickly by health services, while women remained undiagnosed for longer. Considerable delay exists between symptom onset and treatment initiation among pulmonary tuberculosis patients. While a substantial delay was attributable to late patient presentation, an important, preventable period of infectiousness was caused by the failure of recognised clinical services to diagnose tuberculosis among symptomatic individuals.
NASA Astrophysics Data System (ADS)
Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; Ansmann, Albert; Korenskiy, Michail; Borovoi, Anatoli; Hu, Qiaoyun; Bovchaliuk, Valentin; Whiteman, David N.
2018-04-01
Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR) effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.
NASA Technical Reports Server (NTRS)
Bais, Alkiviadis F.; Zerefos, Christos S.; Meleti, Charicleia; Ziomas, Ioannis C.
1994-01-01
Measurements of the UV-B erythemal dose, based on solar spectra acquired with a Brewer spectrophotometer at Thessaloniki, Greece, are compared to measurements performed with the recently introduced, by the Yankee Environmental Systems, (Robertson type) broad band solar UV-B detector. The spectral response function of this detector, when applied to the Brewer spectral UV-B measurements, results in remarkably comparable estimates of the erythemal UV-B dose. The two instruments provide similar information on the UV-B dose when they are cross-examined under a variety of meteorological and atmospheric conditions and over the a large range of solar zenith angles and total ozone.
NASA Astrophysics Data System (ADS)
Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna
2008-04-01
SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.
NASA Astrophysics Data System (ADS)
Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie
2012-07-01
The radiosciences Bepi-Colombo MORE experiment will use X/X, X/Ka and Ka/Ka band radio links to make accurate measurements of the spacecraft range and range rate. Tropospheric zenith wet delays range from 1.5 cm to 10 cm, with high variability (less than 1000 s) and will impair these accurate measurements. Conditions vary from summer (worse) to winter (better), from day (worse) to night (better). These wet delays cannot be estimated from ground weather measurements and alternative calibration methods should be used in order to cope with the MORE requirements (no more than 3 mm at 1000 s). Due to the Mercury orbit, MORE measurements will be performed by daylight and more frequently in summer than in winter (from Northern hemisphere). Two systems have been considered to calibrate this wet delay: Water Vapour Radiometers (WVRs) and GPS receivers. The Jet Propulsion Laboratory has developed a new class of WVRs reaching a 5 percent accuracy for the wet delay calibration (0.75 mm to 5 mm), but these WVRs are expensive to build and operate. GPS receivers are also routinely used for the calibration of data from NASA Deep Space probes, but several studies have shown that GPS receivers can give good calibration (through wet delay mapping functions) for long time variations, but are not accurate enough for short time variations (100 to 1000 s), and that WVRs must be used to efficiently calibrate the wet troposphere delays over such time spans. We think that such a calibration could be done by assimilating data from all the GNSS constellations (GPS, GLONASS, Galileo, Beidou and IRNSS) that will be available at the time of the Bepi-Colombo arrival at Mercury (2021), provided that the underlying physics of the turbulent atmosphere and evapotranspiration processes are properly taken into account at such time scales. This implies to do a tomographic image of the troposphere overlying each Deep Space tracking station at time scales of less than 1000 s. For this purpose, we have developed a full representation of the wet refractivity of the atmosphere over the ground station along a basis of 3D Zernike functions with time-variable coefficients. We detail the algorithm and the covariance functions derived from radiosoundings that are used to constraint the inverse imaging of the wet troposphere at the target time scales, and give examples of such imaging from GPS data only.
Wang, Lixin; Liang, Shuangchao; Xu, Xin; Chen, Bin; Jiang, Junhao; Shi, Zhenyu; Tang, Xiao; Zhou, Xiushi; Zhou, Min; Guo, Daqiao; Fu, Weiguo
2018-06-06
Bell-bottom technique (BBT) is one method to preserve the internal iliac artery during EVAR for abdominal aortic aneurysm(AAA) that extend to iliac artery. The data on the efficacy of this technique is still limited. We sought to evaluate the mid-term efficacy of BBT by using different stent-grafts in the treatment of AAA combined with iliac artery aneurysm (IAA). From January 2011 to December 2016, AAA patients with IAA using BBT to preserve the internal iliac artery were retrospectively analyzed in our institution. Patients were followed up at 3, 6 and then every 12 months after surgery. The outcomes among three types of stent-grafts (Zenith, Excluder and Endurant) were compared. BBT related endpoints including type Ib endoleak, IAA sac expansion, distal neck expansion and rupture during follow-up were compared. Other events including perioperative death, any other types of endoleak and corresponding management were also documented. A total of 125 patients with 141 IAAs were identified. Ninety-eight patients (78.4%) with 113 lesions (80.4%) received a median follow-up time of 38 months. The incidence of type Ib endoleak was 22.9%, 8.3%, 11.9% and 14.2% (P=0.19) in Zenith, Excluder, Endurant group and total patients respectively. The incidence of IAA sac enlargement was 17.1%, 5.6%, 7.1% and 9.7% (P=0.20). The incidence of IAA rupture was 8.6%, 0.0%, 0.0% and 2.7%(P=0.03). The incidence of IAA neck enlargement was 34.3%, 13.9%, 16.7% and 21.2%(P=0.07). Totally 14 cases (10.7%) received further treatment for BBT related issues. Although BBT remains a safe and effective treatment option to preserve internal iliac artery during standard EVAR with acceptable complication rates in Asians, different IAA rupture rates were found among three different stent-grafts. Our data first time revealed that the types of stent-grafts have influence on the final clinical outcome. Based on that, iliac extension should be selected appropriately while treating AAA-IAA. Copyright © 2018 Elsevier Inc. All rights reserved.
The comparison of BRDF model and validation of MCD43 products by the 2013 Dunhuang Gobi experiments
NASA Astrophysics Data System (ADS)
Li, Yuan; Rong, Zhi-guo; Zhang, Li-jun; Sun, Ling; Xu, Na
2014-11-01
BRDF has numerous applications in on-orbit satellites vicarious calibration. The 2013 Dunhuang Gobi surface directional reflectance measurements experiment were held during Aug. 20 to Aug. 28. In order to match the spatial resolution (0.25-1.25km) of meteorological satellites, 3*3 sample points were selected covering the 10*10km area. All the data were measured during (3 hours before and after) the noon without taking into account the large sun zenith angle because of the lack of the satellite passing through. Totally 9 groups of directional reflectance (DREF) were measured by the use of ASD (350-2500nm), standard reference board and a portable DREF measurement system. At each point, DREF were measured by different observation zenith angle (0, 20, 40 and 60 degree) and azimuth angle (0, 45, 90, 135, 180, 225, 270, 315 and 360 degree) in 30 minutes. Different BRDF models were selected such as Walthall, Sine Walthall, Hapke, Roujean and Ross-Li. The model coefficients were derived corresponding to the observed data. The relative differences (RD) of the models with respect to the measured values were calculated. The accuracy of MCD43 products in the Julian day of 233 and 241 were also validated. Results showed that Ross-Li model had the smallest RD. The RD between the DREF from MCD43 products and the measured values were 10.26%(233) and 8.96% (241)@550nm, respectively.
Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor
NASA Astrophysics Data System (ADS)
Wang, Xiaoming; Zhang, Kefei; Wu, Suqin; He, Changyong; Cheng, Yingyan; Li, Xingxing
2017-08-01
Surface pressure is a necessary meteorological variable for the accurate determination of integrated water vapor (IWV) using Global Navigation Satellite System (GNSS). The lack of pressure observations is a big issue for the conversion of historical GNSS observations, which is a relatively new area of GNSS applications in climatology. Hence the use of the surface pressure derived from either a blind model (e.g., Global Pressure and Temperature 2 wet, GPT2w) or a global atmospheric reanalysis (e.g., ERA-Interim) becomes an important alternative solution. In this study, pressure derived from these two methods is compared against the pressure observed at 108 global GNSS stations at four epochs (00:00, 06:00, 12:00 and 18:00 UTC) each day for the period 2000-2013. Results show that a good accuracy is achieved from the GPT2w-derived pressure in the latitude band between -30 and 30° and the average value of 6 h root-mean-square errors (RMSEs) across all the stations in this region is 2.5 hPa. Correspondingly, an error of 5.8 mm and 0.9 kg m-2 in its resultant zenith hydrostatic delay (ZHD) and IWV is expected. However, for the stations located in the mid-latitude bands between -30 and -60° and between 30 and 60°, the mean value of the RMSEs is 7.3 hPa, and for the stations located in the high-latitude bands from -60 to -90° and from 60 to 90°, the mean value of the RMSEs is 9.9 hPa. The mean of the RMSEs of the ERA-Interim-derived pressure across at the selected 100 stations is 0.9 hPa, which will lead to an equivalent error of 2.1 mm and 0.3 kg m-2 in the ZHD and IWV, respectively, determined from this ERA-Interim-derived pressure. Results also show that the monthly IWV determined using pressure from ERA-Interim has a good accuracy - with a relative error of better than 3 % on a global scale; thus, the monthly IWV resulting from ERA-Interim-derived pressure has the potential to be used for climate studies, whilst the monthly IWV resulting from GPT2w-derived pressure has a relative error of 6.7 % in the mid-latitude regions and even reaches 20.8 % in the high-latitude regions. The comparison between GPT2w and seasonal models of pressure-ZHD derived from ERA-Interim and pressure observations indicates that GPT2w captures the seasonal variations in pressure-ZHD very well.
Traversal of electromagnetic pulses through dispersive media with negative refractive index
NASA Astrophysics Data System (ADS)
Nanda, L.; Ramakrishna, S. A.
2017-05-01
We investigate the traversal of electromagnetic pulses through dispersive media with negative refractive index in such a way that no resonant effects come into play. It has been verified that for evanescent waves, the definitions of the group delay and the reshaping delay times get interchanged in comparison to the propagating waves. We show that for a negative refractive index medium (NRM) with ɛ(ω)=μ(ω), the reshaping delay time identically vanishes for propagating waves. The total delay time in NRM is otherwise contributed by both the group and the reshaping delay times, whereas for the case of broadband pulses in NRM the total delay time is always subluminal.
NASA Technical Reports Server (NTRS)
Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.
1980-01-01
The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less
Evolution of chemically processed air parcels in the lower stratosphere
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Douglass, Anne R.; Schoeberl, Mark R.
1994-01-01
Aircraft, ground-based, and satellite measurements indicate large concentrations of ClO in the lower stratosphere in and near the polar vortex. The amount of local ozone depletion caused by these large ClO concentrations will depend on the relative rates of ozone loss and ClO recovery. ClO recovery occurs when NO(x), from HNO3 photolysis, reacts with ClO to form ClONO2. We show that air parcels with large amounts of ClO will experience a subsequent ozone depletion that depends on the solar zenith angle. When the solar zenith angle is large in the middle of winter, the recovery of the ClO concentration in the parcel is slow relative to ozone depletion. In the spring, when the solar zenith angle is smaller, the ClO recovery is much faster. After ClO recovery, the chlorine chemistry has not returned to normal. The ClO has been converted to ClONO2. ClO production from further encounters with PSCs will be limited by the heterogeneous reaction of ClONO2 with water. Large ozone depletions, of the type seen in the Antarctic, occur only if there is significant irreversible denitrification in the air parcel.
Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect.
Castillo-Ruiz, Francisco J; Castro-Garcia, Sergio; Blanco-Roldan, Gregorio L; Sola-Guirado, Rafael R; Gil-Ribes, Jesus A
2016-05-19
Crown porosity influences radiation interception, air movement through the fruit orchard, spray penetration, and harvesting operation in fruit crops. The aim of the present study was to develop an accurate and reliable methodology based on transmitted radiation measurements to assess the porosity of traditional olive trees under different pruning treatments. Transmitted radiation was employed as an indirect method to measure crown porosity in two olive orchards of the Picual and Hojiblanca cultivars. Additionally, three different pruning treatments were considered to determine if the pruning system influences crown porosity. This study evaluated the accuracy and repeatability of four algorithms in measuring crown porosity under different solar zenith angles. From a 14° to 30° solar zenith angle, the selected algorithm produced an absolute error of less than 5% and a repeatability higher than 0.9. The described method and selected algorithm proved satisfactory in field results, making it possible to measure crown porosity at different solar zenith angles. However, pruning fresh weight did not show any relationship with crown porosity due to the great differences between removed branches. A robust and accurate algorithm was selected for crown porosity measurements in traditional olive trees, making it possible to discern between different pruning treatments.
NASA Astrophysics Data System (ADS)
Nicolet, Marcel
A study comparing, in the spectral UVB region, the various components of the solar radiation field in order to explain the large difference obtained in Apr. 1939 by Goetz in Chur (green meadows), Nicolet in Arosa (adequate location in the snow) and Penndorf on the Weisshorn (above the ski slopes) (Switzerland) is presented. Numerical results from detailed theoretical calculations aimed at evaluating the various absolute effects associated with height, solar zenith angle and surface albedo were obtained for the standard atmosphere. The variations with solar zenith angles from 0 to 90 deg and albedos between 0 and 1 are presented for a spherical terrestrial atmosphere at selected wavelengths between 301 and 325 nm in the UVB region. From simultaneous measurements made at the same solar zenith angles, it was found that the values obtained in Arosa were between 5 and 10 times those obtained in Chur and on the Weisshorn. Such results are explained by a maximum of reflectivity of the snow covering the slope facing the relatively low Sun and its associated multiple scattered radiation in addition to the multiple molecular scattering of the atmosphere.
Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry
NASA Astrophysics Data System (ADS)
Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.
2017-06-01
Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1976-01-01
In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.
High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope
NASA Astrophysics Data System (ADS)
Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.
2012-08-01
Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source extending the light curve derived by H.E.S.S. after the outburst. Finally, we find night-by-night variability with a maximal amplitude of a factor three to four and an intranight variability in one of the nights (MJD 53 945) with a similar amplitude.
Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies
NASA Technical Reports Server (NTRS)
Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.
1997-01-01
Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area viewed from nadir and from the side give two different radiance measurements but should yield the same flux when converted by the BDRF. The analytic BDRFs are in very good qualitative agreement with the ERBE models. The overcast scenes exhibit constant retrieved albedo over viewing zenith angles for solar zenith angles less than 60 degrees. The clear ocean model does not produce constant retrieved albedo over viewing zenith angles but gives an improvement over the ERBE operational clear sky ocean BDRF.
NASA Astrophysics Data System (ADS)
Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin
2016-09-01
A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.
Extracting Independent Local Oscillatory Geophysical Signals by Geodetic Tropospheric Delay
NASA Technical Reports Server (NTRS)
Botai, O. J.; Combrinck, L.; Sivakumar, V.; Schuh, H.; Bohm, J.
2010-01-01
Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization analysis show that ZTD and the geophysical signals exhibit (albeit subtle) site dependent phase synchronization index.
Mars radar clutter and surface roughness characteristics from MARSIS data
NASA Astrophysics Data System (ADS)
Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.
2018-01-01
Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.
Hutsell, Blake A; Banks, Matthew L
2015-08-15
Working memory is a domain of 'executive function.' Delayed nonmatching-to-sample (DNMTS) procedures are commonly used to examine working memory in both human laboratory and preclinical studies. The aim was to develop an automated DNMTS procedure maintained by food pellets in rhesus monkeys using a touch-sensitive screen attached to the housing chamber. Specifically, the DNMTS procedure was a 2-stimulus, 2-choice recognition memory task employing unidimensional discriminative stimuli and randomized delay interval presentations. DNMTS maintained a delay-dependent decrease in discriminability that was independent of the retention interval distribution. Eliminating reinforcer availability during a single delay session or providing food pellets before the session did not systematically alter accuracy, but did reduce total choices. Increasing the intertrial interval enhanced accuracy at short delays. Acute Δ(9)-THC pretreatment produced delay interval-dependent changes in the forgetting function at doses that did not alter total choices. Acute methylphenidate pretreatment only decreased total choices. All monkeys were trained to perform NMTS at the 1s training delay within 60 days of initiating operant touch training. Furthermore, forgetting functions were reliably delay interval-dependent and stable over the experimental period (∼6 months). Consistent with previous studies, increasing the intertrial interval improved DNMTS performance, whereas Δ(9)-THC disrupted DNMTS performance independent of changes in total choices. Overall, the touchscreen-based DNMTS procedure described provides an efficient method for training and testing experimental manipulations on working memory in unrestrained rhesus monkeys. Copyright © 2015 Elsevier B.V. All rights reserved.
A Low Power Linear Phase Programmable Long Delay Circuit.
Rodriguez-Villegas, Esther; Logesparan, Lojini; Casson, Alexander J
2014-06-01
A novel linear phase programmable delay is being proposed and implemented in a 0.35 μm CMOS process. The delay line consists of N cascaded cells, each of which delays the input signal by Td/N, where Td is the total line delay. The delay generated by each cell is programmable by changing a clock frequency and is also fully independent of the frequency of the input signal. The total delay hence depends only on the chosen clock frequency and the total number of cascaded cells. The minimum clock frequency is limited by the maximum time a voltage signal can effectively be held by an individual cell. The maximum number of cascaded cells will be limited by the effects of accumulated offset due to transistor mismatch, which eventually will affect the operating mode of the individual transistors in a cell. This latter limitation has however been dealt with in the topology by having an offset compensation mechanism that makes possible having a large number of cascaded cells and hence a long resulting delay. The delay line has been designed for scalp-based neural activity analysis that is predominantly in the sub-100 Hz frequency range. For these signals, the delay generated by a 31-cell cascade has been demonstrated to be programmable from 30 ms to 3 s. Measurement results demonstrate a 31 stage, 50 Hz bandwidth, 0.3 s delay that operates from a 1.1 V supply with power consumption of 270 nW.
Ozaki, Akihiko; Nomura, Shuhei; Leppold, Claire; Tsubokura, Masaharu; Tanimoto, Tetsuya; Yokota, Takeru; Saji, Shigehira; Sawano, Toyoaki; Tsukada, Manabu; Morita, Tomohiro; Ochi, Sae; Kato, Shigeaki; Kami, Masahiro; Nemoto, Tsuyoshi; Kanazawa, Yukio; Ohira, Hiromichi
2017-06-19
Little information is available concerning how patient delay may be affected by mass disasters. The main objectives of the present study are to identify whether there was a post-disaster increase in the risk of experiencing patient delay among breast cancer patients in an area affected by the 2011 triple disaster in Fukushima, Japan, and to elucidate factors associated with post-disaster patient delay. Sociodemographic factors (age, employment status, cohabitant status and evacuation status), health characteristics, and health access- and disaster-related factors were specifically considered. Records of symptomatic breast cancer patients diagnosed from 2005 to 2016 were retrospectively reviewed to calculate risk ratios (RRs) for patient delay in every year post-disaster compared with the pre-disaster baseline. Total and excessive patient delays were respectively defined as three months or more and twelve months or more from symptom recognition to first medical consultation. Logistic regression analysis was conducted for pre- and post-disaster patient delay in order to reveal any factors potentially associated with patient delay, and changes after the disaster. Two hundred nineteen breast cancer patients (122 pre-disaster and 97 post-disaster) were included. After adjustments for age, significant post-disaster increases in RRs of experiencing both total (RR: 1.66, 95% Confidence Interval (CI): 1.02-2.70, p < 0.05) and excessive patient delay (RR: 4.49, 95% CI: 1.73-11.65, p < 0.01) were observed. The RRs for total patient delay peaked in the fourth year post-disaster, and significant increases in the risk of excessive patient delay were observed in the second, fourth, and fifth years post-disaster, with more than five times the risk observed pre-disaster. A family history of any cancer was the only factor significantly associated with total patient delay post-disaster (odds ratio: 0.38, 95% CI: 0.15-0.95, p < 0.05), while there were no variables associated with delay pre-disaster. The triple disaster in Fukushima appears to have led to an increased risk of patient delay among breast cancer patients, and this trend has continued for five years following the disaster.
A demonstration of high precision GPS orbit determination for geodetic applications
NASA Technical Reports Server (NTRS)
Lichten, S. M.; Border, J. S.
1987-01-01
High precision orbit determination of Global Positioning System (GPS) satellites is a key requirement for GPS-based precise geodetic measurements and precise low-earth orbiter tracking, currently under study at JPL. Different strategies for orbit determination have been explored at JPL with data from a 1985 GPS field experiment. The most successful strategy uses multi-day arcs for orbit determination and includes fine tuning of spacecraft solar pressure coefficients and station zenith tropospheric delays using the GPS data. Average rms orbit repeatability values for 5 of the GPS satellites are 1.0, 1.2, and 1.7 m in altitude, cross-track, and down-track componenets when two independent 5-day fits are compared. Orbit predictions up to 24 hours outside the multi-day arcs agree within 4 m of independent solutions obtained with well tracked satellites in the prediction interval. Baseline repeatability improves with multi-day as compared to single-day arc orbit solutions. When tropospheric delay fluctuations are modeled with process noise, significant additional improvement in baseline repeatability is achieved. For a 246-km baseline, with 6-day arc solutions for GPS orbits, baseline repeatability is 2 parts in 100 million (0.4-0.6 cm) for east, north, and length components and 8 parts in 100 million for the vertical component. For 1314 and 1509 km baselines with the same orbits, baseline repeatability is 2 parts in 100 million for the north components (2-3 cm) and 4 parts in 100 million or better for east, length, and vertical components.
NASA Technical Reports Server (NTRS)
Ho, Christian; Golshan, Nasser
1999-01-01
We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The attenuation much depends on dust mass loading, dust size distribution, etc. Most large dust storm occur in the southern hemisphere during later spring and early summer when the southern hemisphere become suddenly hot.
Methods for analysis of passenger trip performance in a complex networked transportation system
NASA Astrophysics Data System (ADS)
Wang, Danyi
2007-12-01
The purpose of the Air Transportation System (ATS) is to provide safe and efficient transportation service of passengers and cargo. The on-time performance of a passenger's trip is a critical performance measurement of the Quality of Service (QOS) provided by any Air Transportation System. QOS has been correlated with airline profitability, productivity, customer loyalty and customer satisfaction (Heskett et al. 1994). Btatu and Barnhart have shown that official government and airline on-time performance metrics (i.e. flight-centric measures of air transportation) fail to accurately reflect the passenger experience (Btatu and Barnhart, 2005). Flight-based metrics do not include the trip delays accrued by passengers who were re-booked due to cancelled flights or missed connections. Also, flight-based metrics do not quantify the magnitude of the delay (only the likelihood) and thus fails to provide the consumer with a useful assessment of the impact of a delay. Passenger-centric metrics have not been developed because of the unavailability of airline proprietary data, which is also protected by anti-trust collusion concerns and civil liberty privacy restrictions. Moveover, the growth of the ATS is trending out of the historical range. The objectives of this research were to (1) estimate ATS-wide passenger trip delay using publicly accessible flight data, and (2) investigate passenger trip dynamics out of the range of historical data by building a passenger flow simulation model to predict impact on passenger trip time given anticipated changes in the future. The first objective enables researchers to conduct historical analysis on passenger on-time performance without proprietary itinerary data, and the second objective enables researchers to conduct experiments outside the range of historic data. The estimated passenger trip delay was for 1,030 routes between the 35 busiest airports in the United States in 2006. The major findings of this research are listed as follows: 1. High passenger trip delays are disproportionately generated by cancelled flights and missed connections. Passengers scheduled on cancelled flights or missed connections represent 3 percent of total enplanements, but generated 45 percent of total passenger trip delay. On average, passengers scheduled on cancelled flights experienced 607 minutes delay, and passengers who missed the connections experienced 341 minutes delay in 2006. The heavily skewed distribution of passenger trip delay reveals the fact that a small proportion of passengers experience heavy delays, which can not be reflected by flight-based performance metrics. 2. Trend analysis for passenger trip delays from 2000 to 2006 shows the increase in flight operations slowed down and leveled off in 2006, while enplanements kept increasing. This is due to the continuous increase in load factor. Load factor has increased from 69% in 2003 to 80% in 2006. Passenger performance is very sensitive to changes in flight operations: annual total passenger trip delay was increased by 17% and 7% from 2004 to 2005, and from 2005 to 2006, while flight operations barely increased (0.5% from 2004 to 2005, and no increase from 2005 to 2006) during the same time period. 3. Passenger trip delay is shown to have an asymmetric performance of passenger trip delay in terms of routes. Seventeen percent of the 1030 routes generated 50 percent of total passenger trip delays. An interesting observation is that routes between the New York metropolitan area and the Washington D.C. metropolitan area have the highest average passenger trip delays in the system. 4. In terms of airports, there is also an asymmetric performance of passenger trip delay. Nine of the 35 busiest airports generated 50 percent of total passenger trip delays. Some airports, especially major hubs, impact the passenger trip delays significantly more than others. Recognition of this asymmetric performance can help reduce the total passenger trip delay propagation in the air transportation network by making changes primarily in major airports, such as Atlanta, GA (ATL), Chicago O'Hare (ORD) and Newark (EWR) airports. 5. Congestion Flight Delay, Load Factor, Flight Cancellation Time, and Airline Cooperation Policy are the most significant factors affecting total passenger trip delay in the system.
Aeronomy report no. 73: Analysis of sounding rocket data from Punta Chilca, Peru
NASA Technical Reports Server (NTRS)
Fillinger, R. W., Jr.; Mechtly, E. A.; Walton, E. K.
1976-01-01
A technique is described for measuring electron concentrations in the lower portion of the ionosphere above Punta Chilca. A radio-propagation experiment for measuring Faraday rotation is combined with a dc/Langmuir probe experiment for measuring electron current. The results obtained from the analysis of radio and probe data from Nike Apache 14.532, which was launched at 20:26 UT on May 28, 1975, at a solar zenith angle of 60 deg are presented. A comparison of the profiles of electron concentration indicates that the value of the maximum ionization in the D region under quiet conditions is proportional to the square of the cosine of the solar zenith angle.
Plans for a new rio-imager experiment in Northern Scandinavia
NASA Astrophysics Data System (ADS)
Nielsen, E.; Hagfors, T.
1997-05-01
To observe the spatial variations and dynamics of charged particle precipitation in the high latitude ionosphere, a riometer experiment is planned, which from the ground will image the precipitation regions over an area of 300 × 300 km with a spatial resolution of 6 km in the zenith, increasing to 12 km at 60° zenith angle. The time resolution is one second. The spatial resolution represents a considerable improvement over existing imaging systems. The experiment employs a Mill's Cross technique not used before in riometer work: two 32 element rows of antennas form the antenna array, two 32 element Butler Matrices achieve directionality, and cross-correlation yield the directional intensities.
Beam-splitter switches based on zenithal bistable liquid-crystal gratings.
Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E
2014-10-01
The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.
NASA Astrophysics Data System (ADS)
Fujii, Hirofumi; Hara, Kazuhiko; Hayashi, Kohei; Kakuno, Hidekazu; Kodama, Hideyo; Nagamine, Kanetada; Sato, Kazuyuki; Sato, Kotaro; Kim, Shin-Hong; Suzuki, Atsuto; Takahashi, Kazuki; Takasaki, Fumihiko
2017-12-01
We have measured the cosmic muon flux in the zenith angle range {<} cos θ {<} 0.37 with a detector comprising planes of scintillator hodoscope bars and iron blocks inserted between them. The muon ranges for up to 9.5 m-thick iron blocks allow the provision of muon flux data integrated over corresponding threshold momenta up to 11.6 GeV/c. Such a dataset covering the horizontal direction is extremely useful for a technique called muon radiography, where the mass distribution inside a large object is investigated from the cosmic muon distribution measured behind the object.
C-band backscattering from corn canopies
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.
1991-01-01
A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.
Atmospheric aerosol profiling with a bistatic imaging lidar system.
Barnes, John E; Sharma, N C Parikh; Kaplan, Trevor B
2007-05-20
Atmospheric aerosols have been profiled using a simple, imaging, bistatic lidar system. A vertical laser beam is imaged onto a charge-coupled-device camera from the ground to the zenith with a wide-angle lens (CLidar). The altitudes are derived geometrically from the position of the camera and laser with submeter resolution near the ground. The system requires no overlap correction needed in monostatic lidar systems and needs a much smaller dynamic range. Nighttime measurements of both molecular and aerosol scattering were made at Mauna Loa Observatory. The CLidar aerosol total scatter compares very well with a nephelometer measuring at 10 m above the ground. The results build on earlier work that compared purely molecular scattered light to theory, and detail instrument improvements.
Landeiro, F; Leal, J; Gray, A M
2016-02-01
Delayed discharges represent an inefficient use of acute hospital beds. Social isolation and referral to a public-funded rehabilitation unit were significant predictors of delayed discharges while admission from an institution was a protective factor for older hip fracture patients. Preventing delays could save between 11.2 and 30.7 % of total hospital costs for this patient group. Delayed discharges of older patients from acute care hospitals are a major challenge for administrative, humanitarian, and economic reasons. At the same time, older people are particularly vulnerable to social isolation which has a detrimental effect on their health and well-being with cost implications for health and social care services. The purpose of the present study was to determine the impact and costs of social isolation on delayed hospital discharge. A prospective study of 278 consecutive patients aged 75 or older with hip fracture admitted, as an emergency, to the Orthopaedics Department of Hospital Universitário de Santa Maria, Portugal, was conducted. A logistic regression model was used to examine the impact of relevant covariates on delayed discharges, and a negative binomial regression model was used to examine the main drivers of days of delayed discharges. Costs of delayed discharges were estimated using unit costs from national databases. Mean age at admission was 85.5 years and mean length of stay was 13.1 days per patient. Sixty-two (22.3 %) patients had delayed discharges, resulting in 419 bed days lost (11.5 % of the total length of stay). Being isolated or at a high risk of social isolation, measured with the Lubben social network scale, was significantly associated with delayed discharges (odds ratio (OR) 3.5) as was being referred to a public-funded rehabilitation unit (OR 7.6). These two variables also increased the number of days of delayed discharges (2.6 and 4.9 extra days, respectively, holding all else constant). Patients who were admitted from an institution were less likely to have delayed discharges (OR 0.2) with 5.5 fewer days of delay. Total costs of delayed discharges were between 11.2 and 30.7 % of total costs (€2352 and €9317 per patient with delayed discharge) conditional on whether waiting costs for placement in public-funded rehabilitation unit were included. High risk of social isolation, social isolation and referral to public-funded rehabilitation units increase delays in patients' discharges from acute care hospitals.
Optimization of VLf/ELF Wave Generation using Beam Painting
NASA Astrophysics Data System (ADS)
Robinson, A.; Moore, R. C.
2017-12-01
A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.
NASA Technical Reports Server (NTRS)
Donovan, Sheila
1985-01-01
A full evaluation of the bidirectional reflectance properties of different vegetated surfaces was limited in past studies by instrumental inadequacies. With the development of the PARABOLA, it is now possible to sample reflectances from a large number of view angles in a short period of time, maintaining an almost constant solar zenith angle. PARABOLA data collected over five different canopies in Texas are analyzed. The objective of this investigation was to evaluate the intercanopy and intracanopy differences in bidirectional reflectance patterns. Particular attention was given to the separability of canopy types using different view angles for the red and the near infrared (NIR) spectral bands. Comparisons were repeated for different solar zenith angles. Statistical and other quantitative techniques were used to assess these differences. For the canopies investigated, the greatest reflectances were found in the backscatter direction for both bands. Canopy discrimination was found to vary with both view angle and the spectral reflectance band considered, the forward scatter view angles being most suited to observations in the NIR and backscatter view angles giving better results in the red band. Because of different leaf angle distribution characteristics, discrimination was found to be better at small solar zenith angles in both spectral bands.
Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes
Sato, Tatsuhiko
2016-01-01
A new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0” was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth’s atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model’s applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175
Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.
Sato, Tatsuhiko
2016-01-01
A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS).
Modeling radiative transfer with the doubling and adding approach in a climate GCM setting
NASA Astrophysics Data System (ADS)
Lacis, A. A.
2017-12-01
The nonlinear dependence of multiply scattered radiation on particle size, optical depth, and solar zenith angle, makes accurate treatment of multiple scattering in the climate GCM setting problematic, due primarily to computational cost issues. In regard to the accurate methods of calculating multiple scattering that are available, their computational cost is far too prohibitive for climate GCM applications. Utilization of two-stream-type radiative transfer approximations may be computationally fast enough, but at the cost of reduced accuracy. We describe here a parameterization of the doubling/adding method that is being used in the GISS climate GCM, which is an adaptation of the doubling/adding formalism configured to operate with a look-up table utilizing a single gauss quadrature point with an extra-angle formulation. It is designed to closely reproduce the accuracy of full-angle doubling and adding for the multiple scattering effects of clouds and aerosols in a realistic atmosphere as a function of particle size, optical depth, and solar zenith angle. With an additional inverse look-up table, this single-gauss-point doubling/adding approach can be adapted to model fractional cloud cover for any GCM grid-box in the independent pixel approximation as a function of the fractional cloud particle sizes, optical depths, and solar zenith angle dependence.
Optical Properties of Ice Particles in Young Contrails
NASA Technical Reports Server (NTRS)
Hong, Gang; Feng, Qian; Yang, Ping; Kattawar, George; Minnis, Patrick; Hu, Yong X.
2008-01-01
The single-scattering properties of four types of ice crystals (pure ice crystals, ice crystals with an internal mixture of ice and black carbon, ice crystals coated with black carbon, and soot coated with ice) in young contrails are investigated at wavelengths 0.65 and 2.13 micrometers using Mie codes from coated spheres. The four types of ice crystals have distinct differences in their single-scattering properties because of the embedded black carbon. The bulk scattering properties of young contrails consisting of the four types of ice crystals are further investigated by averaging their single-scattering properties over a typical ice particle size distribution found in young contrails. The effect of the radiative properties of the four types of ice particles on the Stokes parameters I, Q, U, and V is also investigated for different viewing zenith angles and relative azimuth angles with a solar zenith angle of 30 degrees using a vector radiative transfer model based on the adding-doubling technique. The Stokes parameters at a wavelength of 0.65 micrometers show pronounced differences for the four types of ice crystals. Those at a wavelength of 2.13 micrometers show similar variations with the viewing zenith angle and relative azimuth angle, but their values are noticeably different.
CIMEL Measurements of Zenith Radiances at the ARM Site
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Wiscombe, Warren; Lau, William K. M. (Technical Monitor)
2002-01-01
Starting from October 1, 2001, Cimel at the ARM Central Facility in Oklahoma has been switched to a new "cloud mode." This mode allows taking measurements of zenith radiance when the Sun in blocked by clouds. In this case, every 13 min. Cimel points straight up and takes 10 measurements with 9 sec. time interval. The new Cimel's mode has four filters at 440, 670, 870 and 1020 nm. For cloudy conditions, the spectral contrast in surface albedo dominates over Rayleigh and aerosol effects; this makes normalized zenith radiances at 440 and 670 as well as for 870 and 1020 almost indistinguishable. We compare Cimel measurements with other ARM cart site instruments: Multi-Filter Rotating Shadowband Radiometer (MFRSR), Narrow Field of View (NFOV) sensor, and MicroWave Radiometer(MWR). Based on Cimel and MFRSR 670 and 870 nm channels, we build a normalized difference cloud index (NDCI) for radiances and fluxes, respectively. Radiance NDCI from Cimel and flux NDCI from MFRSR are compared between themselves as well as with cloud Liquid Water Path (LWP) retrieved from MWR. Based on our theoretical calculations and preliminary data analysis,there is a good correlation between NDCIs and LWP for cloudy sky above green vegetation. Based on this correlation, an algorithm to retrieve cloud optical depth from NDCI is proposed.
Case study of mesospheric front dissipation observed over the northeast of Brazil
NASA Astrophysics Data System (ADS)
Fragoso Medeiros, Amauri; Paulino, Igo; Wrasse, Cristiano Max; Fechine, Joaquim; Takahashi, Hisao; Valentin Bageston, José; Paulino, Ana Roberta; Arlen Buriti, Ricardo
2018-03-01
On 3 October 2005 a mesospheric front was observed over São João do Cariri (7.4° S, 36.5° W). This front propagated to the northeast and appeared in the airglow images on the west side of the observatory. By about 1.5 h later, it dissipated completely when the front crossed the local zenith. Ahead of the front, several ripple structures appeared during the dissipative process of the front. Using coincident temperature profile from the TIMED/SABER satellite and wind profiles from a meteor radar at São João do Cariri, the background of the atmosphere was investigated in detail. On the one hand, it was noted that a strong vertical wind shear in the propagation direction of the front produced by a semidiunal thermal tide was mainly responsible for the formation of duct (Doppler duct), in which the front propagated up to the zenith of the images. On the other hand, the evolution of the Richardson number as well as the appearance of ripples ahead of the main front suggested that a presence of instability in the airglow layer that did not allow the propagation of the front to the other side of the local zenith.
Estimation of the remote-sensing reflectance from above-surface measurements.
Mobley, C D
1999-12-20
The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.
Kowalik, William S.; Marsh, Stuart E.; Lyon, Ronald J. P.
1982-01-01
A method for estimating the reflectance of ground sites from satellite radiance data is proposed and tested. The method uses the known ground reflectance from several sites and satellite data gathered over a wide range of solar zenith angles. The method was tested on each of 10 different Landsat images using 10 small sites in the Walker Lake, Nevada area. Plots of raw Landsat digital numbers (DNs) versus the cosine of the solar zenith angle (cos Z) for the the test areas are linear, and the average correlation coefficients of the data for Landsat bands 4, 5, 6, and 7 are 0.94, 0.93, 0.94, and 0.94, respectively. Ground reflectance values for the 10 sites are proportional to the slope of the DN versus cos Z relation at each site. The slope of the DN versus cos Z relation for seven additional sites in Nevada and California were used to estimate the ground reflectances of those sites. The estimates for nearby sites are in error by an average of 1.2% and more distant sites are in error by 5.1%. The method can successfully estimate the reflectance of sites outside the original scene, but extrapolation of the reflectance estimation equations to other areas may violate assumptions of atmospheric homogeneity.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)
2002-01-01
Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.
A Field Portable Hyperspectral Goniometer for Coastal Characterization
NASA Technical Reports Server (NTRS)
Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi
2012-01-01
During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.
Johnson, Karen; Toto, Tami; Jensen, Michael
2011-05-03
For the Ka ARM Zenith Radar (KAZR) data stream, kazrmd.b1 (md=moderate sensitivity), produces significant detection mask, corrects reflectivity for gaseous attenuation, and dealiases mean Doppler velocity.
Johnson, Karen; Toto, Tami; Jensen, Michael
2011-01-18
For the Ka ARM Zenith Radar (KAZR) data stream, kazrhi.b1 (hi=high sensitivity), produces significant detection mask, corrects reflectivity for gaseous attenuation, and dealiases mean Doppler velocity.
Johnson, Karen; Toto, Tami; Jensen, Michael
2011-01-18
For the Ka ARM Zenith Radar (KAZR) data stream, kazrge.b1 (ge=general sensitivity), produces significant detection mask, corrects reflectivity for gaseous attenuation, and dealiases mean Doppler velocity.
NASA Astrophysics Data System (ADS)
Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.
2013-12-01
Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed if hyperspectral ground-based data are available to validate the current modelling approaches. The results presented here extend the work of previous studies by recording the HDRF of Arctic snow covered tundra at high solar zenith angles over several sites. Demonstrating the strong forward scattering nature of snow reflectance at high solar zenith angles, but also showing clear wavelength dependence in the shape of the HDRF, and an increasing anisotropy with wavelength.
NASA Astrophysics Data System (ADS)
Gassmann, Ewa
Two distinctive features of underwater light field in the upper ocean were examined: the wave-induced high-frequency light fluctuations within the near-surface layer under sunny skies, and the asymmetry of horizontal radiance within the photic layer of the ocean. To characterize the spatiotemporal statistical properties of the wave-induced light fluctuations, measurements of downward plane irradiance were made with novel instrumentation within the top 10 m layer of the ocean at depths as shallow as 10 cm under sunny skies, different solar zenith angles, and weak to moderate wind speeds. It was found that the maximum intensity of light fluctuations occurs at depths as shallow as 20 cm under the most favorable conditions for wave focusing, which correspond to high sun in a clear sky with weak wind. The strong frequency dependence of light fluctuations at shallow near-surface depths indicates dominant frequency range of 1 -- 3 Hz under favorable conditions that shifts toward lower frequencies with increasing depth. The light fluctuations were found to be spatially correlated over horizontal distances varying from few up to 10 -- 20 cm at temporal scales of 0.3 -- 1 sec (at the dominant frequency of 1 -- 3 Hz). The distance of correlation showed a tendency to increase with increasing depth, solar zenith angle, and wind speed. The observed variations in spatiotemporal statistical properties of underwater light fluctuations with depth and environmental conditions are driven largely by weakening of sunlight focusing which is associated with light scattering within the water column, in the atmosphere and at the air-sea interface. To investigate the underwater horizontal radiance field, measurements of horizontal spectral radiance in two opposite directions (solar and anti-solar azimuths) within the solar principal plane were made within the photic layer of the open ocean. The ratio of these two horizontal radiances represents the asymmetry of horizontal radiance field. In addition to measurements, the radiative transfer simulations were also conducted to examine variations in the asymmetry of horizontal radiance at different light wavelengths as a function of solar zenith angle at different depths within the water column down to 200 m. It was demonstrated that the asymmetry of horizontal radiance increases with increasing solar zenith angle, reaching a maximum at angles of 60° -- 80° under clear skies at shallow depths (1 -- 10 m). At larger depths the maximum of asymmetry occurs at smaller solar zenith angles. The asymmetry was also found to increase with increasing light wavelength. The results from radiative transfer simulations provided evidence that variations in the asymmetry with solar zenith angle are driven largely by the diffuseness of light incident upon the sea surface and the geometry of illumination of the sea surface, both associated with changing position of the sun. In addition to contributions to the field of ocean optics, the findings of this dissertation have relevance for oceanic animal camouflage and vision as well as photosynthesis and other photochemical processes.
Gillesby, Erica; Burns, Suzan; Dempsey, Amy; Kirby, Shirley; Mogensen, Kami; Naylor, Kelly; Petrella, Joann; Vanicelli, Rebecca; Whelan, Breon
2010-01-01
To determine if the use of delayed pushing after the onset of the second stage of labor decreases the time of active pushing and decreases maternal fatigue. Randomized clinical trial. Labor and delivery unit of a not-for-profit community hospital. Convenience sample of nulliparous laboring women with epidural anesthesia. Immediate or delayed pushing (2 hours) during the second stage of labor at the time of complete cervical dilatation. The length of pushing, total length of the second stage, and maternal fatigue. A total of 77 women were studied (immediate pushing group=39; delayed pushing=38). The immediate pushing group averaged 94 (± 57) minutes in active pushing, while the delayed pushing group averaged 68 (± 46) minutes, a statistically significant difference (p=.04). No significant differences were found in fatigue scores between the immediate and delayed pushing groups (p>.05). We found that by delaying the onset of active pushing for 2 hours after the beginning of the second stage of labor, the time that nulliparous women with epidural anesthesia spent in active pushing was significantly decreased by 27%. Although the delayed pushing group rested for up to 2 hours, the total time in the second stage of labor averaged only 59 minutes longer than the immediate pushing group. © 2010 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
ADEOS Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide
NASA Technical Reports Server (NTRS)
Krueger, A.; Bhartia, P. K.; McPeters, R.; Herman, J.; Wellemeyer, C.; Jaross, G.; Seftor, C.; Torres, O.; Labow, G.; Byerly, W.;
1998-01-01
Two data products from the Total Ozone Mapping Spectrometer (ADEOS/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The ADEOS/ TOMS began taking measurements on September 11, 1996, and ended on June 29, 1997. The instrument measured backscattered Earth radiance and incoming solar irradiance; their ratio was used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement were monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the 9-month data record. The Level 2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level 3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. The Level 3 files containing estimates of UVB at the Earth surface and tropospheric aerosol information will also be available. Detailed descriptions of both HDF data files and the CDROM product are provided.
NASA Technical Reports Server (NTRS)
Clay, R. W.
1986-01-01
Ultra high energy (UHE) gamma ray astronomy is an exciting area which has added a new sense of purpose to ground based array work. There is much to be done before UHE gamma ray showers can be understood properly and it is important to remain conservative with claims while the properties of such showers are still not clear. The muon content is only one of the properties that needs to be clarified. It remains to be seen how well progress occurs on the second order problem of detailed interaction parameters once the gross features are clarified. The shower disk thickness has become an area of intense study with interest in Linsley's technique for measuremnts of giant showers and in the study of structure near the core for improving fast timing and studying delayed subshowers. Perhaps the most significant area of promise for the future is individual shower develpments with Cerenkov and, particularly, air fluorescence techniques. The importance and potential of having relatively complete information on a complete set of individual showers can hardly be overestimated. A complete understanding of the observation process is needed to determine whether or not the recorded data set is complete at a given energy, apparent core distance, and zenith angle.
NASA Astrophysics Data System (ADS)
He, Changyong; Wu, Suqin; Wang, Xiaoming; Hu, Andong; Wang, Qianxin; Zhang, Kefei
2017-06-01
The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models - GTm-III, GWMT-IV, and GTmN - using different data sources in 2014 - the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.
Simulation analysis of the effect of initial delay on flight delay diffusion
NASA Astrophysics Data System (ADS)
Que, Zufu; Yao, Hongguang; Yue, Wei
2018-01-01
The initial delay of the flight is an important factor affecting the spread of flight delays, so clarifying their relationship conduces to control flight delays in the aeronautical network. Through establishing a model of the chain aviation network and making simulation analysis of the effects of initial delay on the delay longitudinal diffusion, it’s found that the number of delayed airports in the air network, the total delay time and the average delay time of the delayed airport are generally positively correlated with the initial delay. This indicates that the occurrence of the initial delay should be avoided or reduced as much as possible to improve the punctuality of the flight.
NASA Astrophysics Data System (ADS)
Feng, K. H.; Moeini, O.; McElroy, C. T.; Evans, R. D.; Petropavlovskikh, I. V.
2015-12-01
Total column ozone measured by a Brewer Mark III spectrophotometer (#85) from 2008 to 2015 is compared to the data obtained from three different Dobson spectrophotometers (#80, #82 and #42) that have been operating in parallel with the Brewer at the Amundsen-Scott Station near the South Pole. Measurements are made using either direct sunlight or light from the moon (up to 2 weeks per month). The result of the comparison was used to assess the performance of the two instrument types and determine the stability of the measurement systems. Both instruments suffer from non-linearity due to the presence of instrumental stray light caused by the out-off-band radiations scattered from the optics within the instrument. Stray light results in an underestimated ozone column at large ozone path lengths. Since measurements made at the location of the station (Latitude 89.99o, Longitude -24.80o) have solar zenith angles of 66.5 degrees or greater, the issue of stray light is a particular concern.
NASA Astrophysics Data System (ADS)
Janjai, S.; Wattan, R.; Sripradit, A.
2015-12-01
Data from four stations in Thailand are used to model the ratio of photosynthetically active radiation (PAR) to broadband global solar radiation. The model expresses the ratio of PAR-to-broadband global solar radiation as a function of cloud index, aerosol optical depth, precipitable water, total ozone column and solar zenith angle. Data from the MTSAT-1R and OMI/AURA satellites are used to estimate the cloud index and total ozone column, respectively at each of the four stations, while aerosol optical depth and precipitable water are retrieved from Aerosol Robotic Network (AERONET) sunphotometer measurements, also available at each station. When tested against hourly measurements, the model exhibits a coefficient of variance (R2) equal to or better than 0.96, and root mean square difference (RMSD) in the range of 7.3-7.9% and mean bias difference (MBD) of -4.5% to 3.5%. The model compares favorably with other existing models.
Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Brown, James W.; Evans, Robert H.
1988-01-01
The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.
Geddes, Alexander; Robinson, John; Smale, Dan
2018-02-01
Atmospheric remote sensing by instruments such as spectrometers and interferometers often requires scheduling that is dependent on external factors, for example; time and solar (or lunar) zenith angle. Such instruments manufactured by Bruker often use the software package OPUS, which, while useful, is not flexible enough for automatic, repeated, atmospheric measurements of this nature. In this brief paper, we describe ASAP, a Python tool developed to run our network of Fourier transform interferometers in New Zealand and Antarctica. It allows the automated scheduling of measurements by time, lunar, or solar zenith angle while accounting for weather or other external parameters. There is a wide range of useful functions, all packaged in a simple graphical user interface; it is available on request.
Experimental test of plant canopy reflectance models on cotton
NASA Technical Reports Server (NTRS)
Lemaster, E. W.
1973-01-01
Spectroradiometric data on the bidirectional reflectance function was collected for a cotton canopy as a function of observer zenith angle, observer angle, and solar zenith angle. The area under study was about 40 miles from the Gulf of Mexico and the prevailing winds blew inland such that cloud formation increased during the day. The standard reflectance panel was constructed of plywood that had been spray painted with a flat white latex paint. Physical and optical plant parameters were measured. A time lapse mechanism was constructed to operate a 16 mm movie camera such that single frames could be exposed at intervals of one per second up to one per hour. Data were digitized from a strip chart recorder and reflectance panel measurements.
The UV dayglow 3, OI emissions at 989, 1027, 1152, 1304, and 1356A
NASA Technical Reports Server (NTRS)
Anderson, D. E., Jr.; Meier, R. R.; Feldman, P. D.; Gentieu, E. P.
1980-01-01
Rocket observations of the dayglow spectrum between 530 and 1500A were obtained on 9 January 1978 at a solar zenith angle of 56 deg. Data were obtained from 80 to 260 km with viewing angles of 40, 90, and 180 deg to the local zenith. OI emissions were observed at 989, 1027, 1152, 1304, and 1356A. Analysis of these data with a radiative transfer model using the energy dependences of currently accepted excitation cross sections, branching ratios and photoelectron fluxes shows that electron impact excitation is the primary source of these emissions. The infrared emission rates at 7990 and 11287A are also calculated in this analysis for comparison with previous observations and estimates.
Tropospheric delays derived from Kalman-filtered VLBI observations
NASA Astrophysics Data System (ADS)
Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Balidakis, Kyriakos; Lu, Cuixian; Anderson, James; Glaser, Susanne; Liu, Li; Mora-Diaz, Julian A.; Raposo-Pulido, Virginia; Xu, Minghui; Heinkelmann, Robert; Schuh, Harald
2015-04-01
One of the most important error sources in the products of space geodetic techniques is the troposphere. Currently, it is not possible to model the rapid variations in the path delay caused by water vapor with sufficient accuracy, thus it is necessary to estimate these delays in the data analysis. Very long baseline interferometry (VLBI) is well suited to determine wet delays with high accuracy and precision. Compared to GNSS, the analysis does not need to deal with effects related to code biases, multipath, satellite orbit mismodeling, or antenna phase center variations that are inherent in GNSS processing. VLBI data are usually analyzed by estimating geodetic parameters in a least squares adjustment. However, once the VLBI Global Observing System (VGOS) will have become operational, algorithms providing real-time capability, for instance a Kalman filter, should be preferable for data analysis. Even today, certain advantages of such a filter, for example, allowing stochastic modeling of geodetic parameters, warrant its application. The estimation of tropospheric wet delays, in particular, greatly benefits from the stochastic approach of the filter. In this work we have investigated the benefits of applying a Kalman filter in the VLBI data analysis for the determination of tropospheric parameters. The VLBI datasets considered are the CONT campaigns, which demonstrate state-of-the-art capabilities of the VLBI system. They are unique in following a continuous observation schedule over 15 days and in having data recorded at higher bandwidth than usual. The large amount of observations leads to a very high quality of geodetic products. CONT campaigns are held every three years; we have analyzed all CONT campaigns between 2002 and 2014 for this study. In our implementation of a Kalman filter in the VLBI software VieVS@GFZ, the zenith wet delays (ZWD) are modeled as random walk processes. We have compared the resulting time series to corresponding ones obtained from other sources (water vapor radiometers, GNSS, ray-traced delays from numerical weather models) and from a classical least squares solution of the VLBI data. Taking the radiometer time series as a reference, the Kalman filter solution showed the smallest root mean square. Due to the high correlation between the ZWD and station coordinates, investigations of the baseline lengths are of great interest in this context as well. Comparing baseline length repeatabilities from the classical least squares fit with those from the Kalman filter, the filter results present a better performance of up to 15%. To further improve the performance of the ZWD estimation, the noise parameters of the Kalman filter were modeled individually for each station. From ZWD time series at all involved VLBI sites, the power spectral densities of the white noise processes which are driving the random walk processes have been derived. Applying this station-based model results in an improvement of the baseline length repeatabilities of additional 2-3%.
The Causes of Logging Truck Delays on Two West Virginia Logging Operations
John E. Baumgras
1978-01-01
Logging truck downtime increases timber harvesting costs. To determine the extent and causes of truck delays, four logging trucks on two separate operations were monitored for a 7-month period by recording speedometers and with tallies of delay causes. The results show the number of truck delays per shift, their duration, and the total delay time per shift for eight...
DOT National Transportation Integrated Search
2010-10-01
Flight delay is a serious and widespread problem in the United States. Increasing flight delays place a significant strain on the US air travel system and cost airlines, passengers, and society at many billions of dollars each year. While a number of...
Impact of different NWM-derived mapping functions on VLBI and GPS analysis
NASA Astrophysics Data System (ADS)
Nikolaidou, Thalia; Balidakis, Kyriakos; Nievinski, Felipe; Santos, Marcelo; Schuh, Harald
2018-06-01
In recent years, numerical weather models have shown the potential to provide a good representation of the electrically neutral atmosphere. This fact has been exploited for the modeling of space geodetic observations. The Vienna Mapping Functions 1 (VMF1) are the NWM-based model recommended by the latest IERS Conventions. The VMF1 are being produced 6 hourly based on the European Centre for Medium-Range Weather Forecasts operational model. UNB-VMF1 provide meteorological parameters aiding neutral atmosphere modeling for VLBI and GNSS, based on the same concept but utilizing the Canadian Meteorological Centre model. This study presents comparisons between the VMF1 and the UNB-VMF1 in both delay and position domains, using global networks of VLBI and GPS stations. It is shown that the zenith delays agree better than 3.5 mm (hydrostatic) and 20 mm (wet) which implies an equivalent predicted height error of less than 2 mm. In the position domain and VLBI analysis, comparison of the weighted root-mean-square error (wrms) of the height component showed a maximum difference of 1.7 mm. For 48% of the stations, the use of VMF1 reduced the height wrms of the stations by 2.6% on average compared to a respective reduction of 1.7% for 41% of the stations employing the UNB-VMF1. For the subset of VLBI stations participating in a large number of sessions, neither mapping function outranked the other. GPS analysis using Precise Point Positioning had a sub-mm respective difference, while the wrms of the individual solutions had a maximum value of 12 mm for the 1-year-long analysis. A clear advantage of one NWM over the other was not shown, and the statistics proved that the two mapping functions yield equal results in geodetic analysis.
Khan, Badar Afzal; Shakeel, Nishi; Siddiqui, Emad Uddin; Kazi, Ghazala; Khan, Irum Qamar; Khursheed, Munawer; Feroze, Asher; Ejaz, Kiran; Khan, Sumaiya Tauseeq; Adel, Hatem
2016-05-01
To assess the impact of admission delay on the outcome of critical patients. The retrospective chart review was done at Aga Khan University Hospital, Karachi, and comprised adult patients visiting the Emergency Department during 2010. Outcome measures assessed were total hospital length of stay, total cost of the visit and in-hospital mortality. Patients admitted within 6 hours of presentation at Emergency Department were defined as non-delayed. Data was analysed using SPSS 19. Of the 49,532 patients reporting at the Emergency Department during the study period, 17,968 (36.3%) were admitted. Of them 2356(13%) were admitted to special or intensive care units, 1595(67.7%) of this sub-group stayed in the Emergency Department for >6 hours before being shifted to intensive care. The study focussed on 325(0.65%) of the total patients; 164(50.5%) in the non-delayed group and 161(49.5%) in the delayed group. The admitting diagnosis of myocardial infarction (p=0.00) and acute coronary syndrome (p=0.01) was significantly more common in the non-delayed group compared to other diagnoses like cerebrovascular attacks (p=0.03) which was significantly more common in the delayed group. There was no significant difference in the hospital length of stay between the two groups (p>0.05). The Emergency Department cost was significantly increased in the delayed group (p<0.05), but there was no difference in the overall hospital cost between the groups (p>0.05). There was no significant difference in the delayed and non-delayed groups, but long Emergency Department stays are distressing for both physicians and patients.
NASA Astrophysics Data System (ADS)
Jackson, Michael; Blatt, Stephan; Holub, Kirk
2015-04-01
In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from four sub networks of GPS stations located 1. near NOAA Radiosonde Observation (Upper-Air Observation) launch sites; 2. Stations with low terrain/high moisture variability (Gulf Coast); 3. Stations with high terrain/low moisture variability (Southern California); and 4. Stations with high terrain/high moisture variability (high terrain variability elev. > 1000m). For each network GSD and T/ENI run the same stations for 30 days, compare results, and perform an evaluation of the long-term solution accuracy, precision and reliability. Metrics for success include T/ENI PWV estimates within 1.5 mm of ESRL/GSD's estimates 95% of the time (ZTD uncertainty of less than 10 mm 95% of the time). The threshold for allowable variations in ZTD between NOAA GPS-Met and T/ENI processing are 10mm. The CRADA 1&2 Trimble processing show a variation of 4±2mm and 3±8mm respectively. The threshold for allowable variations in PWV between NOAA GPS-Met and T/ENI processing are 15mm. The CRADA 1&2 Trimble processing show a variation of 2±4mm and 10±13 respectively. The T/ENI PWV and ZTD values meet and exceed the requirements outlined in the CRADA for the first two networks processed. T/ENI Partnership brings a footprint of GNSS and meteorological stations that could significantly enhance the latency, temporal, and geographic density of ZTD and PWV over the US and Europe. We will provide a brief overview of the Trimble Pivot™ software and the Atmosphere App and present results from further testing along with a timeline for the transition of the GPS-Met DAPS to an operational commercial service.
Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012
NASA Astrophysics Data System (ADS)
van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.
2015-07-01
The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite data sets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6-hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite data sets are collected and then are corrected for biases as a function of solar zenith angle (SZA), viewing zenith angle (VZA), time (trend), and stratospheric temperature using surface observations of the ozone column from Brewer and Dobson spectrophotometers from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Subsequently the de-biased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM. The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43-year period 1970-2012. The chemistry transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. Backscatter ultraviolet (BUV) satellite observations have been included for the period 1970-1977. The total record is extended by 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° × 3° to 1° × 1°. The analysis is driven by 3-hourly meteorology from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) starting from 1979, and ERA-40 before that date. The chemistry parameterization has been updated. The performance of the MSR2 analysis is studied with the help of observation-minus-forecast (OmF) departures from the data assimilation, by comparisons with the individual station observations and with ozone sondes. The OmF statistics show that the mean bias of the MSR2 analyses is less than 1 % with respect to de-biased satellite observations after 1979.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1980-01-01
The column normalizing technique was used to adjust the data for variations in the amplitude of the signal due to look angle effects with respect to solar zenith angle along the scan lines (i.e., across columns). Evaluation of the data set containing the geometric and radiometric adjustments, indicates that the data set should be satisfactory for further processing and analysis. Software was developed for degrading the spatial resolution of the aircraft data to produce a total of four data sets for further analysis. The quality of LANDSAT 2 CCT data for the test site is good for channels four, five, and six. Channel seven was not present on the tape. The data received were reformatted and analysis of the test site area was initiated.
Reconciling quality and cost: A case study in interventional radiology.
Zhang, Li; Domröse, Sascha; Mahnken, Andreas
2015-10-01
To provide a method to calculate delay cost and examine the relationship between quality and total cost. The total cost including capacity, supply and delay cost for running an interventional radiology suite was calculated. The capacity cost, consisting of labour, lease and overhead costs, was derived based on expenses per unit time. The supply cost was calculated according to actual procedural material use. The delay cost and marginal delay cost derived from queueing models was calculated based on waiting times of inpatients for their procedures. Quality improvement increased patient safety and maintained the outcome. The average daily delay costs were reduced from 1275 € to 294 €, and marginal delay costs from approximately 2000 € to 500 €, respectively. The one-time annual cost saved from the transfer of surgical to radiological procedures was approximately 130,500 €. The yearly delay cost saved was approximately 150,000 €. With increased revenue of 10,000 € in project phase 2, the yearly total cost saved was approximately 290,000 €. Optimal daily capacity of 4.2 procedures was determined. An approach for calculating delay cost toward optimal capacity allocation was presented. An overall quality improvement was achieved at reduced costs. • Improving quality in terms of safety, outcome, efficiency and timeliness reduces cost. • Mismatch of demand and capacity is detrimental to quality and cost. • Full system utilization with random demand results in long waiting periods and increased cost.
Imaging and EISCAT radar measurements of an auroral prebreakup event
NASA Astrophysics Data System (ADS)
Safargaleev, V.; Turunen, T.; Lyatsky, W.; Manninen, J.; Kozlovsky, A.
1996-11-01
The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a short-lived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150-200 km) and electron (in E region) temperatures. During its occurrence, the electric field in the E-region was extremely large (sim150 mV/m). A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS) at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS. Acknowledgements. The work done by P. Henelius and E. Vilenius in programme development is gratefully acknowledged. Topical Editor D. Alcayde thanks I. Pryse and A. Vallance-Jones for their help in evaluating this paper.-> Correspondence to: T. Nygrén->
Novel artificial optical annular structures in the high latitude ionosphere over EISCAT
NASA Astrophysics Data System (ADS)
Kosch, M. J.; Rietveld, M. T.; Senior, A.; McCrea, I. W.; Kavanagh, A. J.; Isham, B.; Honary, F.
2004-06-01
The EISCAT low-gain HF facility has been used repeatedly to produce artificially stimulated optical emissions in the F-layer ionosphere over northern Scandinavia. On 12 November 2001, the high-gain HF facility was used for the first time. The pump beam zenith angle was moved in 3° steps along the north-south meridian from 3°N to 15°S, with one pump cycle per position. Only when pumping in the 9°S position were annular optical structures produced quite unexpectedly. The annuli were approximately centred on the pump beam but outside the -3 dB locus. The optical signature appears to form a cylinder, which was magnetic field-aligned, rising above the pump wave reflection altitude. The annulus always collapsed into the well-known optical blobs after ~60 s, whilst descending many km in altitude. All other pump beam directions produced optical blobs only. The EISCAT UHF radar, which was scanning from 3° to 15°S zenith angle, shows that enhanced ion-line backscatter persisted throughout the pump on period and followed the morphology of the optical signature. These observations provide the first experimental evidence that Langmuir turbulence can accelerate electrons sufficiently to produce the optical emissions at high latitudes. Why the optical annulus forms, and for only one zenith angle, remains unexplained.
Løvlien, M; Schei, B; Hole, T
2007-12-01
In patients with acute myocardial infarction (AMI), the delay between the onset of symptoms and hospital admission is a critical factor in reducing morbidity and mortality. To assess gender differences in prehospital delay among women and men with first time AMI, generate more knowledge about aspects influencing this delay and investigate responses to acute symptoms. Of 738 eligible patients, 149 women and 384 men responded to a questionnaire (72%). Over half of both women and men waited over one hour before they called for medical assistance and more than half the patients had a total prehospital delay exceeding two hours. Rapid development of symptoms and symptoms matching expectations reduced, self medication and consulting the spouse increased patient delay in both genders. Calling the Emergency Medical Service (EMS) reduced and calling a general practitioner increased total prehospital delay in both genders. ST-ELEVATION: (STEMI), symptoms experienced as unbearable and attributed as cardiac reduced patient delay, and symptoms from the back, shoulders or between scapulae increased prehospital delay, only in men. How patients responded to symptoms had vital impact on prehospital delay among both genders, but the experience and interpretation of symptoms had more influence in men than in women.
Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; ...
2013-02-01
In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel’s acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.« less
Relationships between processing delay and microbial load of broiler neck skin samples.
Lucianez, A; Holmes, M A; Tucker, A W
2010-01-01
The measurable microbial load on poultry carcasses during processing is determined by a number of factors including farm or origin, processing hygiene, and external temperature. This study investigated associations between carcass microbial load and progressive delays to processing. A total of 30 carcasses were delayed immediately after defeathering and before evisceration in a commercial abattoir in groups of five, and were held at ambient temperature for 1, 2, 3, 4, 6, and 8 h. Delayed carcasses were reintroduced to the processing line, and quantitative assessment of total viable count, coliforms, Staphylococcus aureus, and Pseudomonas spp. was undertaken on neck skin flap samples collected after carcass chilling and then pooled for each group. Sampling was repeated on 5 separate days, and the data were combined. Significant increases in total viable count (P = 0.001) and coliforms (P = 0.004), but not for S. aureus or Pseudomonas loads, were observed across the 8-h period of delay. In line with previous studies, there was significant variation in microbiological data according to sampling day. In conclusion, there is a significant and measurable decline in microbiological status of uneviscerated but defeathered poultry carcasses after an 8-h delay, but the variability of sampling results, reflecting the wide range of factors that impact microbial load, means that it is not possible to determine maximum or minimum acceptable periods of processing delay based on this criterion alone.
Marine stratus initiative at San Francisco International Airport
DOT National Transportation Integrated Search
1996-06-25
San Francisco International Airport is one of the busiest airports in the United States and one of the highest delay airports in terms of total aircraft delay hours and number of imposed air traffic delay programs. May through September, weather fore...
Chiung-Jui Su, Daniel; Yuan, Kuo-Shu; Weng, Shih-Feng; Hong, Rong-Bin; Wu, Ming-Ping; Wu, Hing-Man; Chou, Willy
2015-01-01
To investigate whether early rehabilitation reduces the occurrence of posttotal hip arthroplasty (THA) complications, adverse events, and medical expenses within one postoperative year. We retrospectively retrieve data from Taiwan's National Health Insurance Research Database. Patients who had undergone THA during the period from 1998 to 2010 were recruited, matched for propensity scores, and divided into 2 groups: early rehabilitation (Early Rehab) and delayed rehabilitation (Delayed Rehab). Eight hundred twenty of 999 THA patients given early rehabilitation treatments were matched to 205 of 233 THA patients given delayed rehabilitation treatments. The Delayed Rehab group had significantly (all p < 0.001) higher medical and rehabilitation expenses and more outpatient department (OPD) visits than the Early Rehab group. In addition, the Delayed Rehab group was associated with more prosthetic infection (odds ratio (OR): 3.152; 95% confidence interval (CI): 1.211-8.203; p < 0.05) than the Early Rehab group. Early rehabilitation can significantly reduce the incidence of prosthetic infection, total rehabilitation expense, total medical expenses, and number of OPD visits within the first year after THA.
NASA Technical Reports Server (NTRS)
Dickerson, R. R.; Stedman, D. H.; Chameides, W. L.; Crutzen, P. J.; Fishman, J.
1979-01-01
The paper presents an experimental technique which measures j/O3-O(1-D)/, the rate of solar photolysis of ozone to singlet oxygen atoms. It is shown that a flow actinometer carries dilute O3 in N2O into direct sunlight where the O(1D) formed reacts with N2O to form NO which chemiluminescence detects, with a time resolution of about one minute. Measurements indicate a photolysis rate of 1.2 (+ or - .2) x 10 to the -5/s for a cloudless sky, 45 deg zenith angle, 0.345 cm ozone column and zero albedo. Finally, ground level results compare with theoretical calculations based on the UV actinic flux as a function of ozone column and solar zenith angle.
Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Suttles, J. T.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śacute; Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.
2011-11-01
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60°, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~ 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.
Anisotropy of the permittivity field inferred from aspect-sensitive radar echoes
NASA Technical Reports Server (NTRS)
Waterman, A. T.
1984-01-01
An attempt is made to draw some quantitative conclusions regarding the anisotropy of the clear-air back-scattering mechanism based on the measured variation of echo power with zenith angle. The measurements were made by the SOUSY group of the Max Planck Institute for Aeronomy at Lindau, FRG. They installed their 47-MHz transmitter and antenna feed in the 300-meter diameter reflector at Arecibo. The resulting 1.7-degree beam was stepped successively through seven 1.7-degree intervals from 1.7 to 11.7 degrees in zenith angle, obtaining about four minutes of data at each setting. This procedure was carried out in an eastward pointing azimuth and in a northward pointing azimuth, the entire set of measurements consuming an hour and twenty minutes. Range resolution was 150 meters.
[Determinants of patient and health system delays for women with breast cancer in Morocco, 2013].
Benbakhta, B; Tazi, M; Benjaafar, N; Khattabi, A; Maaroufi, A
2015-06-01
In Morocco, breast cancer is the first most common cancer in women. It is diagnosed in most cases at an advanced stage. Delay in diagnosis and access to treatment for breast cancer increases morbidity and mortality. The objective of this study was to determine the consultation delay (patient delay), diagnosis delay and access to treatment delay (health system delays) of women with breast cancer admitted at the National Institute of Oncology in Rabat. Factors associated with these delays were analyzed. We conducted a cross-sectional study from December 2012 to May 2013 at the National Institute of Oncology in Rabat. Two hundred eligible and consenting women were interviewed using a structured and pre-tested questionnaire. Stages I and II were identified as "early stages" and III and IV as "advanced stages". In our population, 54% were diagnosed at an early stage of breast cancer and 46% at an advanced stage. The median total delay was 120 days (interquartile interval [IIQ]=81-202 days). The patient delay (median=65 days, IIQ=31-121) was longer than the health system delay (median=50 days, IIQ=29-77). High risk for a long total delay (more than 4 months) was observed for women who were aged over 65 years (OR=1.30, 95% CI 1.10-4.20), illiterate (OR=4.50, 95% CI 2.10-6.20), rural residents (OR=3.40, 95% CI 1.23-8.13), in a lower socioeconomic category (OR=4.75, 95% CI 1.45-15.60), without knowledge about breast self-examination (OR=5.67, 95% CI 2.65-12.15) and seen more than 2 times before diagnosis (OR=7.70, 95% CI 2.88-20.50). A long total delay increased the risk of being diagnosed at an advanced stage (OR=5.62, 95% CI 3.03-10.45). Efforts should be directed to providing good information to the population at risk, better access to screening and continuing medical training to enable diagnosis and early treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
A Comparison of TOMS Version 8 Total Column Ozone Data with Data from Groundstations
NASA Technical Reports Server (NTRS)
Labow, G. J.; McPeters, R. D.; Bhartia, P. K.
2004-01-01
The Nimbus-7 and Earth Probe Total Ozone Mapping Spectrometer (TOMS) data have been reprocessed with a new retrieval algorithm, (Version 8) and an updated calibration procedure. These data have been systematically compared to total ozone data from Brewer and Dobson spectrophotometers for 73 individual ground stations. The comparisons were made as a function of latitude, solar zenith angle, reflectivity and total ozone. Results show that the accuracy of the TOMS retrieval'is much improved when aerosols are present in the atmosphere, when snow/ice and sea glint are present, and when ozone in the northern hemisphere is extremely low. TOMS overpass data are derived from the single TOMS best match measurement, almost always located within one degree of the ground station and usually made within an hour of local noon. The version 8 Earth Probe TOMS ozone values have decreased by an average of about 1% due to a much better understanding of the calibration of the instrument. The remaining differences between TOMS and ground stations suggest that there are still small errors in the TOMS retrievals. But if TOMS is used as a transfer standard to compare ground stations, the large station-to-station differences suggest the possibility of significant instrument errors at some ground stations.
Riggio, Egidio
2012-08-01
Extra-projected Natrelle 510 belongs to a new generation of silicone breast implants. A single-surgeon prospective study set out to investigate the device's features, outcomes, and complications, and devise a proper measurement method based on the zenith system. From December 2004 to June 2010, 75 subjects (150 implants) were enrolled in four cohorts: primary augmentation (66.7%), primary mastopexy augmentation (17.3%), secondary implant exchange (9.3%), and secondary implant exchange+pexy (6.7%). The system used to select the implant correlated the point of maximal projection (vertex-zenith) and nipple position. The surgical approach included (1) narrow pocket, preferably dual-plane; (2) device vertex 1-2.5 cm beneath nipple (zenith range=12°-23°) related to a nipple-inframammary fold distance of 7-7.5 cm at maximal stretch and a nipple-sternum/lower-pole line distance of 4-5 cm; (3) inframammary fold lowered minimally; (4) vertex at ±1 cm from the midbreast meridian crossing the nipple; and (5) maximizing the biomechanical effects between soft-tissue dynamics, firmer gel pressure, and pectoralis major counterpressure to expand the lower skin (dynamic tension). Mean follow-up was 26.5 months (range=6-72); in 20 subjects; follow-up was over 3 years (average=50 months) with a 90.8% patient satisfaction rate. This rate was lower in patients with preoperative ptosis. There was inframammary preservation with 60% of the implants and modification in 40% (0.80±0.45 cm). The overall complication rate per implant was 16.6% and included wound healing/scarring (7%), malrotation (2.6%, only 1% after primary augmentation), rippling (2%), capsular contracture (1.3%), and bottoming-out (0.6%). The revision rate was 6%, of which 3.3% were pocket revisions. Greater skills are required through the learning curve, patient education, case selection, planning using the nipple-vertex relationship (the zenith system), and improved surgical manipulation. Indications and contraindications were analyzed. Cosmetic results were compliant with different breast shapes, and excellent for the breast with poor projection, in thin subjects, and those with low BMI. Ptotic breast should require a larger amount of pexy, 510 did not lift the breast enough. Based on vertex-nipple distance, dynamic tension, and skin extensibility, this new approach gives guidelines and methods to perform breast augmentation with extra-projected implants. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266.
Subvisual Cirrus cloud properties derived from a FIRE IFO case study
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Griffin, M. K.; Dodd, G. C.
1990-01-01
From the central Wisconsin IFO field at Wausau, the Mobile Polarization Lidar and a surface radiation station from the Lamont-Doherty Geological Observatory observed two very tenuous cirrus clouds on 21 October 1986. The clouds were present just below the height of the tropopause, between -60 to -70 C. The first cloud was not detected visually, and is classified as subvisual cirrus. The second, a relatively narrow cloud band that was probably the remnants of an aircraft contrail, can be termed zenith-subvisual since, although it was invisible in the zenith direction, it could be discerned when viewed at lower elevation angles and also due to strong solar forward-scattering and corona effects. The observations provide an opportunity to assess the threshold cloud optical thickness associated with cirrus cloud visibility. Ruby lidar backscattered signals were converted to isotropic volume backscatter coefficients by applying the pure-molecular scattering assumption just below the cloud base. The backscattering coefficient due to the cloud is then obtained and expressed in relation to the molecular backscattering coefficient in terms of the scattering ratio R. The linear depolarization ratio for the cloud is computed after removing the essentially parallel-polarized scattering contribution from air molecules. The values are also applied to determine the cloud optical thickness through the use of backscatter-to-extinction ratio, and the concentration of cloud particles using the backscattering gain, and the effective diameter of the particles obtained from the analysis of solar corona photographs. The sizes of the particles generating the corona are related to the angular separations between the centers of the red bands and the sun, yielding diameters of approximately 25 microns. The direct and diffuse components of shortwave radiation fluxes, measured by full hemispheric pyranometers, were used to compute the nadir optical thickness of the total atmosphere.
Chapman Solar Zenith Angle variations at Titan
NASA Astrophysics Data System (ADS)
Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd
2016-10-01
Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.
Ship-borne measurements of erythemal UV irradiance and ozone content in various climate zones.
Wuttke, Sigrid; El Naggar, Saad; Bluszcz, Thaddäus; Schrems, Otto
2007-10-01
Ship-borne measurements of spectral as well as biologically effective UV irradiance have been performed on the German research vessel Polarstern during the Atlantic transect from Bremerhaven, Germany (53.5 degrees N, 8.5 degrees E), to Cape Town, South Africa (33.6 degrees S, 18.3 degrees E), from 13 October to 17 November 2005. Such measurements are required to study UV effects on marine organisms. They are also necessary to validate satellite-derived surface UV irradiance. Cloud free radiative transfer calculations support the investigation of this latitudinal dependence. Input parameters, such as total ozone column and aerosol optical depth have been measured on board as well. Using these measured parameters, the modelled cloudless noontime UVA irradiance (320-400 nm) shows the expected dependence on varying minimum solar zenith angles (SZA) at different latitudes. The modelled cloudless noontime UVB irradiance (290-320 nm) does not show this clear dependence on SZA due to the strong influence of ozone absorption in this spectral range. The maximum daily dose of erythemal irradiance of 5420 J m(-1) was observed on 14 November 2005, when the ship was in the tropical Atlantic south of the equator. The expected UV maximum should have been observed with the sun in the zenith during local noon (11 November). Stratiform clouds reduced the dose to 3835 J m(-1). In comparison, the daily erythemal doses in the mid-latitudinal Bay of Biscay only reached values between 410 and 980 J m(-1) depending on cloud conditions. The deviation in daily erythemal dose derived from different instruments is around 5%. The feasibility to perform ship-borne measurements of spectral UV irradiance is demonstrated.
Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation
NASA Astrophysics Data System (ADS)
Desai, Shantanu; Kahya, Emre
2018-02-01
We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Weak equivalence principle by using observations of "nano-shot" giant pulses from the Crab pulsar with time-delay <0.4 ns, as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Weak equivalence principle in terms of the PPN parameter Δ γ < 2.41× 10^{-15}. From the time-difference between simultaneous optical and radio observations, we get Δ γ < 1.54× 10^{-9}. We also point out differences in our calculation of Shapiro delay and that from two recent papers (Yang and Zhang, Phys Rev D 94(10):101501, 2016; Zhang and Gong, Astrophys J 837:134, 2017), which used the same observations to obtain a corresponding limit on Δ γ.
Camera characterization for all-sky polarization measurements during the 2017 solar eclipse
NASA Astrophysics Data System (ADS)
Hashimoto, Taiga; Dahl, Laura M.; Laurie, Seth A.; Shaw, Joseph A.
2017-08-01
A solar eclipse provides a rare opportunity to observe skylight polarization during conditions that are fundamentally different than what we see every day. On 21 August 2017 we will measure the skylight polarization during a total solar eclipse in Rexburg, Idaho, USA. Previous research has shown that during totality the sky polarization pattern is altered significantly to become nominally symmetric about the zenith. However, there are still questions remaining about the details of how surface reflectance near the eclipse observation site and optical properties of aerosols in the atmosphere influence the totality sky polarization pattern. We will study how skylight polarization in a solar eclipse changes through each phase and how surface and atmospheric features affect the measured polarization signatures. To accomplish this, fully characterizing the cameras and fisheye lenses is critical. This paper reports measurements that include finding the camera sensitivity and its relationship to the required short exposure times, measuring the camera's spectral response function, mapping the angles of each camera pixel with the fisheye lens, and taking test measurements during daytime and twilight conditions. The daytime polarimetric images were compared to images from an existing all-sky polarization imager and a polarimetric radiative transfer model.
NASA Astrophysics Data System (ADS)
Gommenginger, C.; Foti, G.
2015-12-01
GNSS-Reflectometry (GNSS-R) is a ground breaking ocean remote sensing technique that exploits reflected signals from Global Navigation Satellite Systems (GNSS) to retrieve geophysical information about the ocean surface such as near-surface winds above the ocean. Adopting a bistatic radar configuration, signals emitted by GNSS satellites flying in Medium Earth Orbit (MEO) are received by a GNSS-R receiver on a Low Earth Orbit (LEO) observatory utilizing both a zenith antenna to receive the direct signal from the GNSS and a nadir antenna to acquire the earth-reflected signal. The reflected signal originated from a glistening zone on the ocean surface sited around the Specular Point (SP), the geometrical point on the Earth surface where GNSS signals are forward scattered in the specular direction. The two signals are correlated for different shifts in time (delay) and frequency (Doppler) relative to the specular point (SP) to produce a so-called Delay Doppler Map (DDM) of forward-scattered electromagnetic power over the surface. This paper gives an overview of recent results obtained for wind speed and ocean roughness retrieval with the Low-Earth-Orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission experiment in 2003. We present examples of onboard-processed delay Doppler Maps, including excellent DDM data quality for winds up to 27.9 m/s. The relationship between observed GNSS-R signals, wind speed and ocean roughness is explored using global collocated matchup datasets with METOP ASCAT scatterometer winds and WaveWatch3 numerical wave model output. Several Geophysical Model Functions are proposed, that make it possible to retrieve wind speed without bias and with a precision of the order of 2 m/s even without calibration. This work demonstrates the capabilities of low-cost, low-mass, low-power GNSS-R receivers ahead of their launch on the NASA CYGNSS constellation in 2016.
The Potential of Tropospheric Gradients for Regional Precipitation Prediction
NASA Astrophysics Data System (ADS)
Boisits, Janina; Möller, Gregor; Wittmann, Christoph; Weber, Robert
2017-04-01
Changes of temperature and humidity in the neutral atmosphere cause variations in tropospheric path delays and tropospheric gradients. By estimating zenith wet delays (ZWD) and gradients using a GNSS reference station network the obtained time series provide information about spatial and temporal variations of water vapour in the atmosphere. Thus, GNSS-based tropospheric parameters can contribute to the forecast of regional precipitation events. In a recently finalized master thesis at TU Wien the potential of tropospheric gradients for weather prediction was investigated. Therefore, ZWD and gradient time series at selected GNSS reference stations were compared to precipitation data over a period of six months (April to September 2014). The selected GNSS stations form two test areas within Austria. All required meteorological data was provided by the Central Institution for Meteorology and Geodynamics (ZAMG). Two characteristics in ZWD and gradient time series can be anticipated in case of an approaching weather front. First, an induced asymmetry in tropospheric delays results in both, an increased magnitude of the gradient and in gradients pointing towards the weather front. Second, an increase in ZWD reflects the increased water vapour concentration right before a precipitation event. To investigate these characteristics exemplary test events were processed. On the one hand, the sequence of the anticipated increase in ZWD at each GNSS station obtained by cross correlation of the time series indicates the direction of the approaching weather front. On the other hand, the corresponding peak in gradient time series allows the deduction of the direction of movement as well. To verify the results precipitation data from ZAMG was used. It can be deduced, that tropospheric gradients show high potential for predicting precipitation events. While ZWD time series rather indicate the orientation of the air mass boundary, gradients rather indicate the direction of movement of an approaching weather front. Additionally our investigations have shown that gradients are able to capture the characteristics of an approaching weather front twenty to thirty hours before the precipitation event, which allows a first indication well in advance. Thus in conclusion, the utilization of GNSS tropospheric parameters, in particular tropospheric gradients, has the potential to contribute substantially to weather forecasting models.
Is early cord clamping, delayed cord clamping or cord milking best?
Vatansever, Binay; Demirel, Gamze; Ciler Eren, Elif; Erel, Ozcan; Neselioglu, Salim; Karavar, Hande Nur; Gundogdu, Semra; Ulfer, Gozde; Bahadir, Selcen; Tastekin, Ayhan
2018-04-01
To compare the antioxidant status of three cord clamping procedures (early clamping, delayed clamping and milking) by analyzing the thiol-disulfide balance. This randomized controlled study enrolled 189 term infants who were divided into three groups according to the cord clamping procedure: early clamping, delayed clamping and milking. Blood samples were collected from the umbilical arteries immediately after clamping, and the thiol/disulfide homeostasis was analyzed. The native and total thiol levels were significantly (p < .05) lower in the early cord clamping group compared with the other two groups. The disulfide/total thiol ratio was significantly (p = .026) lower in the delayed cord clamping and milking groups compared with the early clamping groups. Early cord clamping causes the production of more disulfide bonds and lower thiol levels, indicating that oxidation reactions are increased in the early cord clamping procedure compared with the delayed cord clamping and milking procedures. The oxidant capacity is greater with early cord clamping than with delayed clamping or cord milking. Delayed cord clamping or milking are beneficial in neonatal care, and we suggest that they be performed routinely in all deliveries.
NASA Astrophysics Data System (ADS)
Zempila, Melina Maria; Fountoulakis, Ilias; Taylor, Michael; Kazadzis, Stelios; Arola, Antti; Koukouli, Maria Elissavet; Bais, Alkiviadis; Meleti, Chariklia; Balis, Dimitrios
2018-06-01
The aim of this study is to validate the Ozone Monitoring Instrument (OMI) erythemal dose rates using ground-based measurements in Thessaloniki, Greece. In the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, a Yankee Environmental System UVB-1 radiometer measures the erythemal dose rates every minute, and a Norsk Institutt for Luftforskning (NILU) multi-filter radiometer provides multi-filter based irradiances that were used to derive erythemal dose rates for the period 2005-2014. Both these datasets were independently validated against collocated UV irradiance spectra from a Brewer MkIII spectrophotometer. Cloud detection was performed based on measurements of the global horizontal radiation from a Kipp & Zonen pyranometer and from NILU measurements in the visible range. The satellite versus ground observation validation was performed taking into account the effect of temporal averaging, limitations related to OMI quality control criteria, cloud conditions, the solar zenith angle and atmospheric aerosol loading. Aerosol optical depth was also retrieved using a collocated CIMEL sunphotometer in order to assess its impact on the comparisons. The effect of total ozone columns satellite versus ground-based differences on the erythemal dose comparisons was also investigated. Since most of the public awareness alerts are based on UV Index (UVI) classifications, an analysis and assessment of OMI capability for retrieving UVIs was also performed. An overestimation of the OMI erythemal product by 3-6% and 4-8% with respect to ground measurements is observed when examining overpass and noontime estimates respectively. The comparisons revealed a relatively small solar zenith angle dependence, with the OMI data showing a slight dependence on aerosol load, especially at high aerosol optical depth values. A mean underestimation of 2% in OMI total ozone columns under cloud-free conditions was found to lead to an overestimation in OMI erythemal doses of 1-5%.While OMI overestimated the erythemal dose rates over the range of cloudiness conditions examined, its UVIs were found to be reliable for the purpose of characterizing the ambient UV radiation impact.
Wu, George; Yeung, Stanley; Chen, Frank
2017-01-01
Neurokinin-1 receptor antagonist, 5-hydroxytryptamine-3 receptor antagonist, and dexamethasone combination therapy is the standard of care for the prevention of chemotherapy-induced nausea and vomiting. Herein, we describe the physical and chemical stability of an injectable emulsion of the Neurokinin-1 receptor antagonist rolapitant 185 mg in 92.5 mL (free base, 166.5 mg in 92.5 mL) admixed with either 2.5 mL of dexamethasone sodium phosphate (10 mg) or 5 mL of dexamethasone sodium phosphate (20 mg). Admixtures were prepared and stored in two types of container closures (glass and Crystal Zenith plastic bottles) and four types of intravenous administration tubing sets (or intravenous tubing sets). The assessment of the physical and chemical stability was conducted on admixtures packaged in bottled samples stored at room temperature (20°C to 25°C under fluorescent light) and evaluated at 0, 1, and 6 hours. For admixtures in intravenous tubing sets, the assessment of physicochemical stability was performed after 0 and 7 hours of storage at 20°C to 25°C, and then after 20 hours (total 27 hours) under refrigeration (2°C to 8°C) and protected from light. Physical stability was assessed by visually examining the bottle contents under normal room light and measuring turbidity and particulate matter. Chemical stability was assessed by measuring the pH of the admixture and determining drug concentrations through high-performance liquid chromatographic analysis. Results showed that all samples were physically compatible throughout the duration of the study. The admixtures stayed within narrow and acceptable ranges in pH, turbidity, and particulate matter. Admixtures of rolapitant and dexamethasone were chemically stable when stored in glass and Crystal Zenith bottles for at least 6 hours at room temperature, as well as in the four selected intravenous tubing sets for 7 hours at 20°C to 25°C and then for 20 (total 27 hours) hours at 2°C to 8°C. No loss of potency of any admixed component occurred in the samples stored at the temperature ranges studied. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Large tunable optical delays via self-phase modulation and dispersion
NASA Astrophysics Data System (ADS)
Okawachi, Yoshitomo; Sharping, Jay E.; Xu, Chris; Gaeta, Alexander L.
2006-12-01
We demonstrate all-optically tunable delays in optical fiber via a dispersive stage and two stages of nonlinear spectral broadening and filtering. With this scheme, we achieve continuously tunable delays of 3.5- ps pulses and advancements over a total range of more than 1200 pulsewidths. Our technique is applicable to a wide range of pulse durations and delays.
Way-Scaling to Reduce Power of Cache with Delay Variation
NASA Astrophysics Data System (ADS)
Goudarzi, Maziar; Matsumura, Tadayuki; Ishihara, Tohru
The share of leakage in cache power consumption increases with technology scaling. Choosing a higher threshold voltage (Vth) and/or gate-oxide thickness (Tox) for cache transistors improves leakage, but impacts cell delay. We show that due to uncorrelated random within-die delay variation, only some (not all) of cells actually violate the cache delay after the above change. We propose to add a spare cache way to replace delay-violating cache-lines separately in each cache-set. By SPICE and gate-level simulations in a commercial 90nm process, we show that choosing higher Vth, Tox and adding one spare way to a 4-way 16KB cache reduces leakage power by 42%, which depending on the share of leakage in total cache power, gives up to 22.59% and 41.37% reduction of total energy respectively in L1 instruction- and L2 unified-cache with a negligible delay penalty, but without sacrificing cache capacity or timing-yield.
NASA Astrophysics Data System (ADS)
Michell, R. G.; Lynch, K. A.; Heinselman, C. J.; Stenbaek-Nielsen, H. C.
2008-11-01
We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR). On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm), was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs), the first observed with PFISR. These times corresponded to (a) when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b) when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a) and (b) was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m-3. Broad-band extremely low frequency (BBELF) wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs) and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground-based signatures could have many implications. One specific example of interest is identifying and following the temporal and spatial evolution of regions of potential ion outflow over large spatial and temporal scales using ground-based optical observations.
A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure
NASA Astrophysics Data System (ADS)
Min, Q.; Yin, B.; Li, S.; Berndt, J.; Harrison, L.; Joseph, E.; Duan, M.; Kiedron, P.
2014-06-01
Various studies indicate that high-resolution oxygen A-band spectrum has the capability to retrieve the vertical profiles of aerosol and cloud properties. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July, 2011. By using a single telescope, the HABS instrument measures the direct solar and the zenith diffuse radiation subsequently. HABS exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high-spectrum resolution (0.016 nm), and high out-of-band rejection (10-5). For the spectral retrievals of HABS measurements, a simulator is developed by combining a discrete ordinates radiative transfer code (DISORT) with the High Resolution Transmission (HITRAN) database HITRAN2008. The simulator uses a double-k approach to reduce the computational cost. The HABS-measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the discrepancies between measurements and simulations, indicated by confidence intervals (95%) of relative difference, are (-0.06, 0.05) and (-0.08, 0.09) for solar zenith angles of 27 and 72°, respectively. For zenith diffuse spectra, the related discrepancies between measurements and simulations are (-0.06, 0.05) and (-0.08, 0.07) for solar zenith angles of 27 and 72°, respectively. The main discrepancies between measurements and simulations occur at or near the strong oxygen absorption line centers. They are mainly due to two kinds of causes: (1) measurement errors associated with the noise/spikes of HABS-measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration; (2) modeling errors in the simulation, including the error of model parameters setting (e.g., oxygen absorption line parameters, vertical profiles of temperature and pressure) and the lack of treatment of the rotational Raman scattering. The high-resolution oxygen A-band measurements from HABS can constrain the active radar retrievals for more accurate cloud optical properties (e.g., cloud optical depth, effective radius), particularly for multi-layer clouds and for mixed-phase clouds.
Sky radiance at a coastline and effects of land and ocean reflectivities
NASA Astrophysics Data System (ADS)
Kreuter, Axel; Blumthaler, Mario; Tiefengraber, Martin; Kift, Richard; Webb, Ann R.
2017-12-01
We present a unique case study of the spectral sky radiance distribution above a coastline. Results are shown from a measurement campaign in Italy involving three diode array spectroradiometers which are compared to 3-D model simulations from the Monte Carlo model MYSTIC. On the coast, the surrounding is split into two regions, a diffusely reflecting land surface and a water surface which features a highly anisotropic reflectance function. The reflectivities and hence the resulting radiances are a nontrivial function of solar zenith and azimuth angle and wavelength. We show that for low solar zenith angles (SZAs) around noon, the higher land albedo causes the sky radiance at 20° above the horizon to increase by 50 % in the near infrared at 850 nm for viewing directions towards the land with respect to the ocean. Comparing morning and afternoon radiances highlights the effect of the ocean's sun glint at high SZA, which contributes around 10 % to the measured radiance ratios. The model simulations generally agree with the measurements to better than 10 %. We investigate the individual effects of model input parameters representing land and ocean albedo and aerosols. Different land and ocean bi-directional reflectance functions (BRDFs) do not generally improve the model agreement. However, consideration of the uncertainties in the diurnal variation of aerosol optical depth can explain the remaining discrepancies between measurements and model. We further investigate the anisotropy effect of the ocean BRDF which is featured in the zenith radiances. Again, the uncertainty of the aerosol loading is dominant and obscures the modelled sun glint effect of 7 % at 650 nm. Finally, we show that the effect on the zenith radiance is restricted to a few kilometres from the coastline by model simulations along a perpendicular transect and by comparing the radiances at the coast to those measured at a site 15 km inland. Our findings are relevant to, for example, ground-based remote sensing of aerosol characteristics, since a common technique is based on sky radiance measurements along the solar almucantar.
Surface acoustic wave unidirectional transducers for quantum applications
NASA Astrophysics Data System (ADS)
Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per
2017-02-01
The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.
Internet stream synchronization using Concord
NASA Astrophysics Data System (ADS)
Sreenan, Cormac J.; Narendran, B.; Agrawal, Prathima; Shivakumar, Narayanan
1996-03-01
Using packet networks to transport multimedia introduces delay variations within and across streams, necessitating synchronization at the receiver. This requires stream data to be buffered prior to presentation, which also increases its total end to end delay. Concord recognizes that applications may wish to influence the underlying synchronization policy in terms of its effect on quality of service. It provides a single framework for synchronization within and across streams and employs an application specific tradeoff between packet losses, delay and inter- stream skew. We present a new predictive approach for synchronization and a selection of results from an extensive evaluation of Concord for use in the Internet. A trace driven simulator is used, allowing a direct comparison with alternative approaches. We demonstrate that Concord can operate with lower maximum delay and less variation in total end to end delay, which in turn can allow receiver buffer requirements to be reduced.
Minimizing the Delay at Traffic Lights
ERIC Educational Resources Information Center
Van Hecke, Tanja
2009-01-01
Vehicles holding at traffic lights is a typical queuing problem. At crossings the vehicles experience delay in both directions. Longer periods with green lights in one direction are disadvantageous for the vehicles coming from the other direction. The total delay for getting through the traffic point is what counts. This article presents an…
2017-02-01
to cost increases and schedule delays and (2) what is known about the costs of benefits foregone because of project delays. GAO compared the...Contributors to Cost Increases and Schedule Delays 13 Total Cost of Benefits Foregone from Project Delays at Olmsted Is Uncertain 27 Agency Comments...would take 7 years. The Corps also estimated benefits , such as transportation cost savings, associated with the project. However, once the project was
2013-05-24
iss036e004042 (5/24/2013) --- View of Materials on International Space Station Experiment - 8 (MISSE-8) which is installed on the ExPRESS Logistics Carrier 2 (ELC-2),located on the S3 Truss Outboard Zenith site.
Interpretation of surface and planetary directional albedos for vegetated regions
NASA Technical Reports Server (NTRS)
Cess, Robert D.; Vulis, Inna L.
1989-01-01
An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.
Geocoronal imaging with Dynamics Explorer
NASA Technical Reports Server (NTRS)
Rairden, R. L.; Frank, L. A.; Craven, J. D.
1986-01-01
The ultraviolet photometer of the University of Iowa spin-scan auroral imaging instrumentation on board Dynamics Explorer-1 has returned numerous hydrogen Lyman alpha images of the geocorona from altitudes of 570 km to 23,300 km (1.09 R sub E to 4.66 R sub E geocentric radial distance). The hydrogen density gradient is shown by a plot of the zenith intensities throughout this range, which decrease to near celestial background values as the spacecraft approaches apogee. Characterizing the upper geocorona as optically thin (single-scattering), the zenith intensity is converted directly to vertical column density. This approximation loses its validity deeper in the geocorona, where the hydrogen is demonstrated to be optically thick in that there is no Lyman alpha limb brightening. Further study of the geocoronal hydrogen distribution will require computer modeling of the radiative transfer.
The O II /7320-7330 A/ airglow - A morphological study
NASA Technical Reports Server (NTRS)
Yee, J. H.; Abreu, V. J.; Hays, P. B.
1981-01-01
A statistical study of the 7320-30 A airglow arising from the metastable transition between aP and aD states of atomic oxygen ions was conducted by analyzing the data taken from the visible airglow experiment on the Atmosphere Explorer satellites C and E during the time periods between 1974 and 1979. Averaged column emission rate profiles as a function of solar zenith angle and solar activity variation are presented. The galactic background has been carefully subtracted. The result shows that the rate of decreasing emission as a function of solar zenith angle agrees with the theoretical calculation based upon a neutral atmosphere model and the solar spectrum as measured by the EUV spectrometer on the Atmosphere Explorer satellite. Furthermore, an expected increase with solar activity also appeared in a plot of emission brightness versus solar 10.7-cm flux.
Soybean canopy reflectance as a function of view and illumination geometry
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.; Bauer, M. E.
1981-01-01
Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions, for various solar zenith and azimuth angles over portions of three days, in an experimental characterization of a soybean field by means of its reflectances and physical and agronomic attributes. Results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength, and row direction, as well as the state of canopy development. Shadows between rows were found to affect visible wavelength band reflectance to a greater extent than near-IR reflectance. A model describing reflectance variation as a function of projected solar and viewing angles is proposed, which approximates the visible wavelength band reflectance variations of a canopy with a well-defined row structure.
NASA Technical Reports Server (NTRS)
Richardson, A. J. (Principal Investigator)
1983-01-01
The equivalence of three separate investigations that related LANDSAT digital count (DC) to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cosZ, where Z is the solar zenith angle, for surfaces of constant R. The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface R. Both of these investigators used LANDSAT 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and R based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four LANDSAT MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory.
Influence of ground level SO2 on the diffuse to direct irradiance ratio in the middle ultraviolet
NASA Technical Reports Server (NTRS)
Klenk, K. F.; Green, A. E. S.
1977-01-01
The dependence of the ratio of the diffuse to direct irradiances at the ground were examined for a wavelength of 315.1 nm. A passive remote sensing method based on ratio measurements for obtaining the optical thickness of SO2 in the vertical column was proposed. If, in addition to the ratio measurements, the SO2 density at the ground is determining using an appropriate point-sampling technique then some inference on the vertical extent of SO2 can be drawn. An analytic representation is presented of the ratio for a wide range of SO2 and aerosol optical thicknesses and solar zenith angles which can be inverted algebraically to give the SO2 optical thickness in terms of the measured ratio, aerosol optical thickness and solar zenith angle.
NASA Technical Reports Server (NTRS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-01-01
On the occasion of the June 3, 1982 intense gamma-ray solar flare a significant increase in counting rate due to solar neutrons was observed by the neutron monitors of Junsfraujoch and Lomnicky Stit located at middle latitudes and high altitudes. In spite of a larger detector employed and of the smaller solar zenith angle, the amplitude of the same event observed at Rome was much smaller and the statistical fluctuations of the salactic cosmic ray background higher than the ones registered at the two mountain stations, because of the greater atmospheric depth at which the Rome monitor is located. The effeciency for detecting a solar neutron event by a NM-64 monitor as a function of the Sun zenith angle, atmospheric depth and threshold rigidity of the station was studied.
NASA Technical Reports Server (NTRS)
Crisp, D.
1997-01-01
The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.
Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha
2018-01-01
Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.
Presentation of a new BRDF measurement device
NASA Astrophysics Data System (ADS)
Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene
1998-12-01
The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.
Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi
2006-01-01
An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.
On the accurate estimation of gap fraction during daytime with digital cover photography
NASA Astrophysics Data System (ADS)
Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.
2015-12-01
Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.
NASA Astrophysics Data System (ADS)
Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.
2018-04-01
The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).
Calibration and Testing of Digital Zenith Camera System Components
NASA Astrophysics Data System (ADS)
Ulug, Rasit; Halicioglu, Kerem; Tevfik Ozludemir, M.; Albayrak, Muge; Basoglu, Burak; Deniz, Rasim
2017-04-01
Starting from the beginning of the new millennium, thanks to the Charged-Coupled Device (CCD) technology, fully or partly automatic zenith camera systems are designed and used in order to determine astro-geodetic deflections of the vertical components in several countries, including Germany, Switzerland, Serbia, Latvia, Poland, Austria, China and Turkey. The Digital Zenith Camera System (DZCS) of Turkey performed successful observations yet it needs to be improved in terms of automating the system and increasing observation accuracy. In order to optimize the observation time and improve the system, some modifications have been implemented. Through the modification process that started at the beginning of 2016, some DZCS components have been replaced with the new ones and some new additional components have been installed. In this presentation, the ongoing calibration and testing process of the DZCS are summarized in general. In particular, one of the tested system components is the High Resolution Tiltmeter (HRTM), which enable orthogonal orientation of DZCS to the direction of plump line, is discussed. For the calibration of these components, two tiltmeters with different accuracies (1 nrad and 0.001 mrad) were observed nearly 30 days. The data recorded under different environmental conditions were divided into hourly, daily, and weekly subsets. In addition to the effects of temperature and humidity, interoperability of two tiltmeters were also investigated. Results show that with the integration of HRTM and the other implementations, the modified DZCS provides higher accuracy for the determination of vertical deflections.
NASA Technical Reports Server (NTRS)
Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.
1978-01-01
The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.
The measurement of upward going muons using the MACRO detector.
NASA Astrophysics Data System (ADS)
Montaruli, T.
1999-01-01
The upward-going muon flux (Eμ > 1 GeV) has been measured with the underground detector MACRO at LNGS. The total number of measured events is compatible at the 8% c.l. with the expected one. Moreover, the zenith angular distribution of the measured flux does not match the expectation showing a deficit in the vertical direction where the apparatus performance is best known. Assuming an oscillation hypothesis with parameters in the range recently suggested to solve the atmospheric neutrino problem, the agreement increases, but not significantly. The results of an indirect dark matter search for a signal of WIMPs from the core of the Sun and of the Earth are given. Neutrino astronomy with MACRO is giving interesting results regarding possible high energy neutrino emission from pointlike sources and coincidences of neutrino events with γ-ray bursts.
ZWD time series analysis derived from NRT data processing. A regional study of PW in Greece.
NASA Astrophysics Data System (ADS)
Pikridas, Christos; Balidakis, Kyriakos; Katsougiannopoulos, Symeon
2015-04-01
ZWD (Zenith Wet/non-hydrostatic Delay) estimates are routinely derived Near Real Time from the new established Analysis Center in the Department of Geodesy and Surveying of Aristotle University of Thessaloniki (DGS/AUT-AC), in the framework of E-GVAP (EUMETNET GNSS water vapour project) since October 2014. This process takes place on an hourly basis and yields, among else, station coordinates and tropospheric parameter estimates for a network of 90+ permanent GNSS (Global Navigation Satellite System) stations. These are distributed at the wider part of Hellenic region. In this study, temporal and spatial variability of ZWD estimates were examined, as well as their relation with coordinate series extracted from both float and fixed solution of the initial phase ambiguities. For this investigation, Bernese GNSS Software v5.2 was used for the acquisition of the 6 month dataset from the aforementioned network. For time series analysis we employed techniques such as the Generalized Lomb-Scargle periodogram and Burg's maximum entropy method due to inefficiencies of the Discrete Fourier Transform application in the test dataset. Through the analysis, interesting results for further geophysical interpretation were drawn. In addition, the spatial and temporal distributions of Precipitable Water vapour (PW) obtained from both ZWD estimates and ERA-Interim reanalysis grids were investigated.
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Thurman, S. W.
1992-01-01
An approximate six-parameter analytic model for Earth-based differential range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 micro-rad, and angular rate precision on the order of 10 to 25 x 10(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wideband and narrowband (delta) VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 micro-rad, and angular rate precisions of 0.5 to 1.0 x 10(exp -12) rad/sec.
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Thurman, S. W.
1992-01-01
An approximate six-parameter analytic model for Earth-based differenced range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 microrad, and angular rate precision on the order of 10 to 25(10)(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wide band and narrow band (delta)VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 /microrad, and angular rate precisions of 0.5 to 1.0(10)(exp -12) rad/sec.
GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters
NASA Technical Reports Server (NTRS)
Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory
2013-01-01
Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.
NASA Astrophysics Data System (ADS)
Wang, X.; Zhang, P.; Sun, Z.
2018-04-01
Interferometric synthetic aperture radar(InSAR), as a space geodetictechnology, had been testified a high potential means of earth observation providing a method fordigital elevation model (DEM) and surface deformation monitoring of high precision. However, the accuracy of the interferometric synthetic aperture radar is mainly limited by the effects of atmospheric water vapor. In order to effectively measure topography or surface deformations by synthetic aperture radar interferometry (InSAR), it is necessary to mitigate the effects of atmospheric water vapor on the interferometric signals. This paper analyzed the atmospheric effects on the interferogram quantitatively, and described a result of estimating Precipitable Water Vapor (PWV) from the the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and the ground-based GPS, compared the MERIS/MODIS PWV with the GPS PWV. Finally, a case study for mitigating atmospheric effects in interferogramusing with using the integration of MERIS and MODIS PWV overSouthern California is given. The result showed that such integration approach benefits removing or reducing the atmospheric phase contribution from the corresponding interferogram, the integrated Zenith Path Delay Difference Maps (ZPDDM) of MERIS and MODIS helps reduce the water vapor effects efficiently, the standard deviation (STD) of interferogram is improved by 23 % after the water vapor correction than the original interferogram.
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T.T.; Keller, J.O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant. 10 figs.
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T. Tazwell; Keller, Jay O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant.
ERIC Educational Resources Information Center
Mathematics and Computer Education, 1987
1987-01-01
Presented are reviews of several microcomputer software programs. Included are reviews of: (1) Microstat (Zenith); (2) MathCAD (MathSoft); (3) Discrete Mathematics (True Basic); (4) CALCULUS (True Basic); (5) Linear-Kit (John Wiley); and (6) Geometry Sensei (Broderbund). (RH)
Caldwell, John T.; Kunz, Walter E.; Cates, Michael R.; Franks, Larry A.
1985-01-01
Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.
Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.
1982-07-07
Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.
[Delays in diagnosing and treating tuberculosis in Croatia].
Jurčev-Savičević, Anamarija; Popović-Grle, Sanja; Mulić, Rosanda; Smoljanović, Mladen; Miše, Kornelija
2012-09-01
The aim of this study was to determine factors causing delay in tuberculosis diagnosis and treatment in Croatia. It included 240 adults with pulmonary tuberculosis, who were interviewed for demographics, socioeconomic, lifestyle, and personal health data. Total delay was defined as a number of days from the onset of symptoms to the initiation of therapy. The median and the 75th percentile of the total delay were 68 and 120 days, respectively: 16.7 % of the patients initiated treatment within the first month, 23.8 % within the second month, 23.3 % within the third month, 12.9 % within the fourth month, and 23.3 % more than four months after the symptoms appeared. Long delay (exceeding median delay) was strongly associated with drug abuse (p=0.021). Extreme delay (75th percentile of delay) was significantly associated with the lowest level of education (p=0.021), below minimal income (p=0.039), minimal to average income (p=0.020), current smoking (p=0.050), and co-morbidity (p=0.048). In the multivariate model, long delay remained associated with drug abuse, while extreme delay was associated with the lowest level of education (p=0.033) and current (p=0.017) and ex-smoking (p=0.045).In a setting with decreasing TB incidence, the reported delay can be reduced by increasing health education, not only about tuberculosis per se, but about health in general and attitudes towards prevention and early care. It is also important to increase tuberculosis knowledge among healthcare workers as well as their diagnostic skills.
Wagner-Johnston, Nina D; Sloan, Jeff A; Liu, Heshan; Kearns, Ann E; Hines, Stephanie L; Puttabasavaiah, Suneetha; Dakhil, Shaker R; Lafky, Jacqueline M; Perez, Edith A; Loprinzi, Charles L
2015-08-01
Postmenopausal women with breast cancer receiving aromatase inhibitors are at an increased risk of bone loss. The current study was undertaken to determine whether upfront versus delayed treatment with zoledronic acid (ZA) impacted bone loss. This report described the 5-year follow-up results. A total of 551 postmenopausal women with breast cancer who completed tamoxifen treatment and were undergoing daily letrozole treatment were randomized to either upfront (274 patients) or delayed (277 patients) ZA at a dose of 4 mg intravenously every 6 months. In the patients on the delayed treatment arm, ZA was initiated for a postbaseline bone mineral density T-score of <-2.0 or fracture. The incidence of a 5% decrease in the total lumbar spine bone mineral density at 5 years was 10.2% in the upfront treatment arm versus 41.2% in the delayed treatment arm (P<.0001). A total of 41 patients in the delayed treatment arm were eventually started on ZA. With the exception of increased NCI Common Toxicity Criteria (CTC) grade 1/2 elevated creatinine and fever in the patients treated on the upfront arm and cerebrovascular ischemia among those in the delayed treatment arm, there were no significant differences observed between arms with respect to the most common adverse events of arthralgia and back pain. Osteoporosis occurred less frequently in the upfront treatment arm (2 vs 8 cumulative cases), although this difference was not found to be statistically significant. Bone fractures occurred in 24 patients in the upfront treatment arm versus 25 patients in the delayed treatment arm. Immediate treatment with ZA prevented bone loss compared with delayed treatment in postmenopausal women receiving letrozole and these differences were maintained at 5 years. The incidence of osteoporosis or fractures was not found to be significantly different between treatment arms. © 2015 American Cancer Society.
Ranchon, Florence; Vantard, Nicolas; Henin, Emilie; Bachy, Emmanuel; Sarkozy, Clémentine; Karlin, Lionel; Bouafia-Sauvy, Fadhela; Gouraud, Aurore; Schwiertz, Verane; Bourbon, Estelle; Baudouin, Amandine; Caffin, Anne Gaelle; Vial, Thierry; Salles, Gilles; Rioufol, Catherine
2018-04-01
The aim of this retrospective cohort study was to investigate the incidence of delayed methotrexate elimination in patients treated with high-dose methotrexate (≥1 g/m 2 ) for haematological malignancy and to identify the impact of interacting drugs, especially proton-pump inhibitors (PPIs) and ranitidine. All patients treated with high-dose methotrexate over a 6 year period in the haematology department of the Lyon Sud University Hospital (Hospices Civils de Lyon, France) were included. Potential risk factors for delayed methotrexate elimination were tested in a generalized linear model by univariate analysis: patient age, gender, methotrexate dose, administration of PPI or ranitidine, and concomitant nephrotoxic drugs. A total of 412 cycles of methotrexate were administered to 179 patients. Proton-pump inhibitors were co-administered with methotrexate in 127 cycles and ranitidine in 192 cycles. Ninety-three cycles included no antacid drugs. A total of 918 plasma methotrexate assays were performed. Methotrexate concentrations were checked at 24 hours in 92% of cycles. Delayed methotrexate elimination was observed in 20.9% of cycles. A total of 63 cycles with delayed methotrexate elimination were only identified on plasma methotrexate measures at 72 hours: ie, plasma methotrexate was in the normal range at 24 and 48 hour post injection. Use of PPI/ranitidine or no antacid drugs did not increase risk of delayed elimination, with respectively delayed methotrexate elimination in 20.5%, 21.9%, and 19.4% of cycles (P = .89). Impaired baseline creatinine clearance showed significant association in univariate analysis. Fifteen patients showed grade 1 acute kidney injury, 1 grade 2, 2 grade 3, and none grade 4. For half of these cases, delayed methotrexate elimination was observed and the 2 grade 3 events appeared in patients treated with PPIs. This retrospective study suggests that there is no association between concomitant use of proton-pump inhibitors (pantoprazole and esomeprazole) or ranitidine and delayed methotrexate elimination. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Amato, Franceso; Rosoldi, Marco; Madonna, Fabio
2015-04-01
Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3. radiosondes (processed using GRUAN processing algorithm); 4. a microwave radiometer (data processed using a retrieval based on a neural network). F. Amato, M. Rosoldi, and F. Madonna Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3. radiosondes (processed using GRUAN processing algorithm); 4. a microwave radiometer (data processed using a retrieval based on a neural network). Discrepancies between the time series will be shown and critically discussed.
NASA Technical Reports Server (NTRS)
Nienow, J. A.; McKay, C. P.; Friedmann, E. I.
1988-01-01
Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15 degrees. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135 degrees or greater than 225 degrees. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock.
NASA Astrophysics Data System (ADS)
Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.
2018-06-01
Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.
Aab, Alexander
2015-03-30
In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2018-04-01
The Yakutsk array data set in the energy interval (1017,1019) eV is revisited in order to interpret the zenith angle distribution of an extensive air shower event rate of ultra-high-energy cosmic rays. The close relation of the distribution to the attenuation of the main measurable parameter of showers, ρ600, is examined. Measured and expected distributions are used to analyze the arrival directions of cosmic rays on an equatorial map including the energy range below 1018 eV , which was previously avoided due to the reduced trigger efficiency of the array in the range. While the null hypothesis cannot be rejected with data from the Yakutsk array, an upper limit on the fraction of cosmic rays from a separable source in the uniform background is derived as a function of declination and energy.
NASA Technical Reports Server (NTRS)
Gioulgkidis, Konstantinos; Lowe, Robert P.; Mcelroy, C. Tom
1994-01-01
The Umkehr method for retrieving the gross features of the vertical ozone distribution requires measurements of the ratio of zenith-sky radiances at two wavelengths in the near-UV region while the solar zenith angle (SZA) changes from 60 to 90 degrees. A Brewer spectrophotometer was used for taking such measurements extending the SZA range down to 96 degrees. Analyzed data from the Spring of 1991 imply that observations at twilight are of great significance in improving ozone retrievals in the upper stratosphere. Judged by the variance reduction for Umkehr layers 9 to 12 (25-30 percent for layer 11) and the increase in separation and amplitude of the averaging kernels for the relevant layers, the ozone retrievals in the upper stratosphere are shown to be in better agreement with climatological means.
The displacement of the sun from the galactic plane using IRAS and faust source counts
NASA Technical Reports Server (NTRS)
Cohen, Martin
1995-01-01
I determine the displacement of the Sun from the Galactic plane by interpreting IRAS point-source counts at 12 and 25 microns in the Galactic polar caps using the latest version of the SKY model for the point-source sky (Cohen 1994). A value of solar zenith = 15.5 +/- 0.7 pc north of the plane provides the best match to the ensemble of useful IRAS data. Shallow K counts in the north Galactic pole are also best fitted by this offset, while limited FAUST far-ultraviolet counts at 1660 A near the same pole favor a value near 14 pc. Combining the many IRAS determinations with the few FAUST values suggests that a value of solar zenith = 15.0 +/- 0.5 pc (internal error only) would satisfy these high-latitude sets of data in both wavelength regimes, within the context of the SKY model.
Geocoronal imaging with Dynamics Explorer - A first look
NASA Technical Reports Server (NTRS)
Rairden, R. L.; Frank, L. A.; Craven, J. D.
1983-01-01
The ultraviolet photometer of the University of Iowa spin-scan auroral imaging instrumentation on board Dynamics Explorer-1 has returned numerous hydrogen Lyman alpha images of the geocorona from altitudes of 570 km to 23,300 km (1.09 R sub E to 4.66 R sub E geocentric radial distance). The hydrogen density gradient is shown by a plot of the zenith intensities throughout this range, which decrease to near celestial background values as the spacecraft approaches apogee. Characterizing the upper geocorona as optically thin (single-scattering), the zenith intensity is converted directly to vertical column density. This approximation loses its validity deeper in the geocorona, where the hydrogen is demonstrated to be optically thick in that there is no Lyman alpha limb brightening. Further study of the geocoronal hydrogen distribution will require computer modeling of the radiative transfer. Previously announced in STAR as N83-20889
Clear water radiances for atmospheric correction of coastal zone color scanner imagery
NASA Technical Reports Server (NTRS)
Gordon, H. R.; Clark, D. K.
1981-01-01
The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.
Relationship between large horizontal electric fields and auroral arc elements
NASA Astrophysics Data System (ADS)
Lanchester, B. S.; Kailá, K.; McCrea, I. W.
1996-03-01
High time resolution optical measurements in the magnetic zenith are compared with European Incoherent Scatter (EISCAT) field-aligned measurements of electron density at 0.2-s resolution and with horizontal electric field measurements made at 278 km with resolution of 9 s. In one event, 20 min after a spectacular auroral breakup, a system of narrow and active arc elements moved southward into the magnetic zenith, where it remained for several minutes. During a 30-s interval of activity in a narrow arc element very close to the radar beam, the electric field vectors at 3-s resolution were found to be extremely large (up to 400 mVm-1) and to point toward the bright optical features in the arc, which moved along its length. It is proposed that the large electric fields are short-lived and are directly associated with the particle precipitation that causes the bright features in auroral arc elements.
Building Shadow Detection from Ghost Imagery
NASA Astrophysics Data System (ADS)
Zhou, G.; Sha, J.; Yue, T.; Wang, Q.; Liu, X.; Huang, S.; Pan, Q.; Wei, J.
2018-05-01
Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification). The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.
Search for neutrino generated air shower candidates with energy ≥ 1019 eV and Zenith angle θ
NASA Astrophysics Data System (ADS)
Knurenko, Stanislav; Petrov, Igor; Sabourov, Artem
2017-06-01
The description of the methodology and results of searching for air showers generated by neutral particles such as high energy gamma quanta and astroneutrinos are presented. For this purpose, we conducted a comprehensive analysis of the data: the electron, the muon and the EAS Cerenkov light, and their response time in scintillation and Cherenkov detectors. Air showers with energy more than 5·1018 eV and zenith angle θ ≥ 55∘ are selected and analyzed. Search results indicate a lack of air shower events formed by gamma-rays or high-energy neutrinos, but it does not mean that such air showers do not exist in nature; for example, experiments that recorded showers having a marked low muon content, i.e., "Muonless", are likely to be candidates for showers produced by neutral primary particles.
Variation in spectral response of soybeans with respect to illumination, view, and canopy geometry
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Biehl, L. L.; Bauer, M. E.
1984-01-01
Comparisons of the spectral response for incomplete (well-defined row structure) and complete (overlapping row structure) canopies of soybeans indicated a greater dependence on Sun and view geometry for the incomplete canopies. Red and near-IR reflectance for the incomplete canopy decreased as solar zenith angle increased for a nadir view angle until the soil between the plant rows was completely shaded. Thereafter for increasing solar zenith angle, the red reflectance leveled off and the near-IR reflectance increased. A 'hot spot' effect was evident for the red and near-IR reflectance factors. The 'hot spot' effect was more pronounced for the red band based on relative reflectance value changes. The ratios of off-nadir to nadir acquired data reveal that off-nadir red band reflectance factors more closely approximated straightdown measurements for time periods away from solar noon. Normalized difference generally approximated straightdown measurements during the middle portion of the day.
Measuring the apparent size of the Moon with a digital camera
NASA Astrophysics Data System (ADS)
Ellery, Adam; Hughes, Stephen
2012-09-01
The Moon appears to be much larger closer to the horizon than when higher in the sky. This is called the ‘Moon illusion’ since the observed size of the Moon is not actually larger when the Moon is just above the horizon. This paper describes a technique for verifying that the observed size of the Moon is not larger on the horizon. The technique can be performed easily in a high-school teaching environment. Moreover, the technique demonstrates the surprising fact that the observed size of the Moon is actually smaller on the horizon due to atmospheric refraction. For the purposes of this paper, several images of the Moon were taken with it close to the horizon and close to the zenith. The images were processed using a free program called ImageJ. The Moon was found to be 5.73 ± 0.04% smaller in area on the horizon then at the zenith.
Kliore, A J; Woo, R; Armstrong, J W; Patel, I R; Croft, T A
1979-02-23
Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.
VERITAS Observations of the Nova in V407 Cygni
NASA Technical Reports Server (NTRS)
Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.;
2012-01-01
We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1- 10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imaging Telescope Array System during 2010 March 19-26 at relatively large zenith angles, due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 10(exp -12) erg/sq cm/s (at the 95% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.
A three-dimensional study of 30- to 300-MeV atmospheric gamma rays
NASA Technical Reports Server (NTRS)
Thompson, D. J.
1974-01-01
A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. A knowledge of these atmospheric secondaries has significant applications to the study of cosmic gamma rays. For detectors carried on balloons, atmospherically produced gamma rays are the major source of background. For satellite detectors, atmospheric secondaries provide a calibration source. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. A new model of atmospheric secondary production has calculated the depth, the energy, and the zenith angle dependence of gamma rays above 30 MeV, using a comprehensive three-dimensional Monte Carlo model of the nucleon-meson-electromagnetic cascade.
Daylight levels during the solar eclipse of 11 August 1999
NASA Astrophysics Data System (ADS)
Darula, S.; Kambezidis, H. D.; Kittler, R.
Solar eclipses are unique phenomena not only for astronomical and space observations but also for terrestrial; they create unique conditions of sunbeam blockage which cause not only the reduction of direct sunlight but also the dimming of skylight from the whole sky vault. Very favorable conditions were met during the recent August 1999 solar eclipse in Athens, Greece and Bratislava, Slovakia. General class daylight stations operate within the International Daylight Measurements Program in the two cities. One-minute data of global/diffuse illuminance and zenith luminance from those stations have been used to provide information about their levels and the daylight reduction rate during the eclipse. An approximate formula for the estimation of sunlight and skylight illuminance levels as well as zenith luminance using relative luminance sky patterns is also presented in this work. To achieve this, recently developed sky standards together with their parameterizations are utilized.
Using Time Delay to Teach Literacy to Students with Severe Developmental Disabilities
ERIC Educational Resources Information Center
Browder, Diane; Ahlgrim-Delzell, Lynn; Spooner, Fred; Mims, Pamela J.; Baker, Joshua N.
2009-01-01
A review of the literature was conducted for articles published between 1975 and 2007 on the application of time delay as an instructional procedure to teach word and picture recognition to students with severe developmental disabilities in an effort to evaluate time delay as an evidence-based practice. A total of 30 experiments were analyzed…
20 CFR 416.1453 - The decision of an administrative law judge.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the findings of fact and the reasons for the decision. The administrative law judge must base the... document that sets forth the key data, findings of fact, and narrative rationale for the decision. If the... instance may be extended by the total number of days of the delays. The delays include delays in submitting...
Ray-traced tropospheric total slant delays for GNSS processing
NASA Astrophysics Data System (ADS)
Hobiger, T.; Ichikawa, R.; Hatanaka, Y.; Yutsudo, T.; Iwashita, C.; Miyahara, B.; Koyama, Y.; Kondo, T.
2007-12-01
Numerical weather models have undergone an improvement of spatial and temporal resolution in the recent years, which made their use for GNSS applications feasible. Ray-tracing through such models permits the computation of total troposphere delays and ray-bending angles. At the National Institute of Information and Communications Technology (NICT), Japan the so-called KAshima RAy-tracing Tools (KARAT) have been developed which allow to obtain troposphere delay corrections in real-time. Together with fine-mesh weather models from the Japanese Meteorological Agency (JMA) huge parts of the East Asian region, including Japan, Korea, Taiwan and East China, can be covered. The Japanese GEONET with its more than 1300 GNSS receivers represent an ideal test-bed for the evaluation of the performance of KARAT. In cooperation with the Geographical Survey Institute (GSI), Japan more than 1.6 billion observations, covering measurements from July 1st until August 31st, 2006, were processed and the corresponding troposphere delays were used to modify the original RINEX files by subtraction of code- and phase delays. These modified observations were processed by a dedicated analysis run of the GEONET operation center, taking advantage of the computer cluster at GSI. First results from this study, together with an in-depth discussion about the assets and drawbacks of the reduction of troposphere total slant delays will be given in this presentation. Additionally an overview about KARAT, the treatment of observational data and the impact of future refined numerical weather models on GNSS analysis will be included in this contribution.
The benefit of modeled ozone data for the reconstruction of a 99-year UV radiation time series
NASA Astrophysics Data System (ADS)
Junk, J.; Feister, U.; Helbig, A.; GöRgen, K.; Rozanov, E.; KrzyśCin, J. W.; Hoffmann, L.
2012-08-01
Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVERtime series. Therefore, we combined ground-based measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory, Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVERfor the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVERprovide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.
NASA Astrophysics Data System (ADS)
Junk, J.; Feister, U.; Rozanov, E.; Krzyścin, J. W.
2013-05-01
Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVER time series. Therefore, we combined groundbased measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVER for the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVER provide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.
1999-01-01
To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
NASA Astrophysics Data System (ADS)
Mirizzi, Alessandro
2013-10-01
The flavor evolution of neutrinos emitted by a supernova (SN) core is strongly affected by the refractive effects associated with the neutrino-neutrino interactions in the deepest stellar regions. Till now, all numerical studies have assumed the axial symmetry for the “multi-angle effects” associated with the neutrino-neutrino interactions. Recently, it has been pointed out in Raffelt, Sarikas, and Seixas [Phys. Rev. Lett. 111, 091101 (2013)] that if this assumption is removed, a new multi-azimuthal-angle (MAA) instability emerges in the flavor evolution of the dense SN neutrino gas, in addition to the one caused by multi-zenith-angle effects. Inspired by this result, for the first time we numerically solve the nonlinear neutrino propagation equations in SN, introducing the azimuthal angle as an angular variable in addition to the usual zenith angle. We consider simple energy spectra with an excess of νe over ν¯e. We find that even starting with a complete axial symmetric neutrino emission, the MAA effects would lead to significant flavor conversions in normal mass hierarchy, in cases otherwise stable under the only multi-zenith-angle effects. The final outcome of the flavor conversions, triggered by the MAA instability, depends on the initial asymmetry between νe and ν¯e spectra. If it is sufficiently large, final spectra would show an ordered behavior with spectral swaps and splits. Conversely, for small flavor asymmetries flavor decoherence among angular modes develops, also affecting the flavor evolution in the inverted mass hierarchy.
Midlatitude ionospheric D region: Height, sharpness, and solar zenith angle
NASA Astrophysics Data System (ADS)
Thomson, Neil R.; Clilverd, Mark A.; Rodger, Craig J.
2017-08-01
VLF radio amplitude and phase measurements are used to find the height and sharpness of the D region of the ionosphere at a mid to high geomagnetic dip latitude of 52.5°. The two paths used are both from the 23.4 kHz transmitter, DHO, in north Germany with the first path being northward and mainly over the sea along the west coast of Denmark over a range of 320-425 km, and the second, also mainly all-sea, to a single fixed recording receiver at Eskdalemuir in Scotland ( 750 km). From plots of the measured amplitudes and phases versus distance for the first of these paths compared with calculations using the U.S. Navy code, ModeFinder, the Wait height and sharpness parameters of the D region at midday in summer 2015 are found to be H' = 72.8 ± 0.2 km and β = 0.345 ± 0.015 km-1 at a solar zenith angle 33°. From phase and amplitude measurements at other times of day on the second path, the daytime changes in H' and β as functions of solar zenith angle are determined from shortly after dawn to shortly before dusk. Comparisons are also made between the modal ModeFinder calculations and wave hop calculations, with both giving similar results. The parameters found here should be useful in understanding energy inputs to the D region from the radiation belts, solar flares, or transient luminous events. The midday values may be sufficiently precise to be useful for monitoring climate change.
The integration of astro-geodetic data observed with ACSYS to the local geoid models Istanbul-Turkey
NASA Astrophysics Data System (ADS)
Halicioglu, Kerem; Ozludemir, M. Tevfik; Deniz, Rasim; Ozener, Haluk; Albayrak, Muge; Ulug, Rasit; Basoglu, Burak
2017-04-01
Astro-geodetic deflections of the vertical components provide accurate and valuable information of Earth's gravity filed. Conventional methods require considerable effort and time whereas new methods, namely digital zenith camera systems (DZCS), have been designed to eliminate drawbacks of the conventional methods, such as observer dependent errors, long observation times, and to improve the observation accuracy. The observation principle is based on capturing star images near zenithal direction to determine astronomical coordinates of the station point with the integration of CCD, telescope, tiltmeters, and GNSS devices. In Turkey a new DZCS have been designed and tested on control network located in Istanbul, of which the geoid height differences were known with the accuracy of ±3.5 cm. Astro-geodetic Camera System (ACSYS) was used to determine the deflections of the vertical components with an accuracy of ±0.1 - 0.3 arc seconds, and results were compared with geoid height differences using astronomical levelling procedure. The results have also been compared with the ones calculated from global geopotential models. In this study the recent results of the first digital zenith camera system of Turkey are presented and the future studies are introduced such as the current developments of the system including hardware and software upgrades as well as the new observation strategy of the ACSYS. We also discuss the contribution and integration of the astro-geodetic deflections of the vertical components to the geoid determination studies in the light of information of current ongoing projects being operated in Turkey.
Bronner Murrison, L; Ananthakrishnan, R; Swaminathan, A; Auguesteen, S; Krishnan, N; Pai, M; Dowdy, D W
2016-04-01
The diagnosis and treatment of tuberculosis (TB) in India are characterized by heavy private-sector involvement. Delays in treatment remain poorly characterized among patients seeking care in the Indian private sector. To assess delays in TB diagnosis and treatment initiation among patients diagnosed in the private sector, and pathways to care in an urban setting. Cross-sectional survey of 289 consecutive patients diagnosed with TB in the private sector and referred for anti-tuberculosis treatment through a public-private mix program in Chennai from January 2014 to February 2015. Among 212 patients with pulmonary TB, 90% first contacted a formal private provider, and 78% were diagnosed by the first or second provider seen after a median of three visits per provider. Median total delay was 51 days (mean 68). Consulting an informal (rather than formally trained) provider first was associated with significant increases in total delay (absolute increase 22.8 days, 95%CI 6.2-39.5) and in the risk of prolonged delay >90 days (aRR 2.4, 95%CI 1.3-4.4). Even among patients seeking care in the formal (vs. informal) private sector in Chennai, diagnostic delays are substantial. Novel strategies are required to engage private providers, who often serve as the first point of contact.
Downs, Nathan; Parisi, Alfio
2012-01-01
In this research, the erythemally effective UV measured using miniaturized polysulphone dosimeters to over 1250 individual body sites and collected over a 4-year period is presented relative to the total exposed skin surface area (SSA) of a life-size manikin model. A new term is also introduced, the mean exposure fraction (MEF). The MEF is used to weight modeled or measured horizontal plane UV exposures to the total unprotected SSA of an individual and is defined as the ratio of exposure per unit area received by the unprotected skin surfaces of the body relative to the exposure received on a horizontal plane. The MEF has been calculated for a range of solar zenith angles (SZA) to provide a sunburning energy data set weighted to the actual SSA of a typically clothed individual. For this research, the MEF was determined as 0.15, 0.26 and 0.41 in the SZA ranges 0°-30°, 30°-50° and 50°-80° providing information that can be used in a variety of different ambient, latitudinal and seasonal climates where total human body UV exposure information is not available. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Merged Long-Term Data Sets from TOMS and SBUV Total Ozone Measurements
NASA Technical Reports Server (NTRS)
Stolarski, Richard; McPeters, Richard; Labow, Gordon J.; Hollandsworth, Stacey; Flynn, Larry; Einaudi, Franco (Technical Monitor)
2000-01-01
Total ozone has been measured by a series of nadir-viewing satellite instruments. These measurements begin with the Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter UltraViolet (SBUV) instruments on Nimbus 7, launched in late 1978. The measurements have continued with the Meteor 3 TOMS, Earth Probe TOMS, and NOAA 9,11,14 SBUV/2 instruments. The problem for producing a long-term data set is establishing the relative calibration of the various instruments to better than 1%. There was a nearly two year gap between the Meteor 3 TOMS and the Earth Probe TOMS. This gap is filled by the NOAA 9 and 11 SBUV/2 instruments, but they were in drifting orbits that result in effective gaps in the record when the equator crossing time occurs at large solar zenith angle. We have used recently re-derived calibrations of the SBUV instruments using the D-pair (306/313 nm wavelengths) data at the equator. These equatorial D-pair measurements should maintain the internal calibration of each instrument better than previous approaches. We then use the comparisons between instruments during their overlap periods to establish a consistent calibration over the entire data set. The resulting merged ozone data set is independent of the ground-based Dobson/Brewer network.
NASA Technical Reports Server (NTRS)
de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.
2017-01-01
Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft, it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. A spaceflight experiment, called the Polymers Experiment, which contained 42 samples, was developed to determine the effect of solar exposure on the AO E(sub y) of fluoropolymers flown in ram, wake, or zenith orientations. The Polymers Experiment was exposed to the LEO space environment on the exterior of the International Space Station (ISS) as part of the Materials International Space Station Experiment 8 (MISSE 8) mission. The MISSE 8 mission included samples flown in a zenith/nadir orientation for 2.14 years in the MISSE 8 Passive Experiment Container (PEC), and samples flown in a ram/wake orientation for 2.0 years in the Optical Reflector Materials Experiment-III (ORMatEIII) tray. The experiment included Kapton H (Registered Trademark) witness samples for AO fluence determination in each orientation. This paper provides an overview of the MISSE 8 mission, a description of the flight experiment with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) of Teflon fluorinated ethylene propylene (FEP) samples flown in ram, wake, and zenith orientations have been compared, and the E(sub y) was found to be highly dependent on orientation and therefore environmental exposure. The FEP E(sub y) was found to directly correlate with the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher E(sub y) than clear FEP or Al-FEP further indicating that heating has a significant impact on the erosion of FEP. This experiment provides valuable LEO flight data on the erosion of Teflon FEP, a commonly used spacecraft thermal insulation.
NASA Astrophysics Data System (ADS)
Aas, Eyvind; HøJerslev, Niels K.
1999-04-01
A primary data set consisting of 70 series of angular radiance distributions observed in clear blue western Mediterranean water and a secondary set of 12 series from the more green and turbid Lake Pend Oreille, Idaho, have been analyzed. The results demonstrate that the main variation of the shape of the downward radiance distribution occurs within the Snell cone. Outside the cone the variation of the shape decreases with increasing zenith angle. The most important shape changes of the upward radiance appear within the zenith angle range 90°-130°. The variation in shape reaches its minimum around nadir, where an almost constant upward radiance distribution implies that a flat sea surface acts like a Lambert emitter within ±8% in the zenith angle interval 140°-180° in air. The ratio Q of upward irradiance and nadir radiance, as well as the average cosines μd and μu for downward and upward radiance, respectively, have rather small standard deviations, ≤10%, within the local water type. In contrast, the irradiance reflectance R has been observed to change up to 400% with depth in the western Mediterranean, while the maximum observed change of Q with depth is only 40%. The dependence of Q on the solar elevation for blue light at 5 m depth in the Mediterranean coincides with observations from the central Atlantic as well as with model computations. The corresponding dependence of μd shows that diffuse light may have a significant influence on its value. Two simple functions describing the observed angular radiance distributions are proposed, and both functions can be determined by two field observations as input parameters. The ɛ function approximates the azimuthal means of downward radiance with an average error ≤7% and of upward radiance with an error of ˜1%. The α function describes the zenith angle dependence of the azimuthal means of upward radiance with an average error ≤7% in clear ocean water, increasing to ≤20% in turbid lake water. The a function suggests that the range of variation for μu falls between 0 and 1/2, and for Q it is between π and 2π. The limits of both ranges are confirmed by observations. By combining the ɛ and α functions, a complete angular description of the upward radiance field is achieved.
Kansal, Vinay; Nagpal, Sudhir; Jetty, Prasad
2017-12-01
Objective Endovascular aneurysm repair for ruptured abdominal aortic aneurysm is being increasingly applied as the intervention of choice. The purpose of this study was to determine whether survival and reintervention rates after ruptured abdominal aortic aneurysm vary between endograft devices. Methods This cohort study identified all ruptured abdominal aortic aneurysms performed at The Ottawa Hospital from January 1999 to May 2015. Data collected included patient demographics, stability index at presentation, adherence to device instructions for use, endoleaks, reinterventions, and mortality. Kruskal-Wallis test was used to compare outcomes between groups. Mortality outcomes were assessed using Kaplan-Meier survival analysis, and multivariate Cox regression modeling. Results One thousand sixty endovascular aneurysm repairs were performed using nine unique devices. Ninety-six ruptured abdominal aortic aneurysms were performed using three devices: Cook Zenith ( n = 46), Medtronic Endurant ( n = 33), and Medtronic Talent ( n = 17). The percent of patients presented in unstable or extremis condition was 30.2, which did not differ between devices. Overall 30-day mortality was 18.8%, and was not statistically different between devices ( p = 0.16), although Medtronic Talent had markedly higher mortality (35.3%) than Cook Zenith (15.2%) and Medtronic Endurant (15.2%). AUI configuration was associated with increased 30-day mortality (33.3% vs. 12.1%, p = 0.02). Long-term mortality and graft-related reintervention rates at 30 days and 5 years were similar between devices. Instructions for use adherence was similar across devices, but differed between the ruptured abdominal aortic aneurysm and elective endovascular aneurysm repair cohorts (47.7% vs. 79.0%, p < 0.01). Notably, two patients who received Medtronic Talent grafts underwent open conversion >30 days post-endovascular aneurysm repair ( p = 0.01). Type 1 endoleak rates differed significantly across devices (Cook Zenith 0.0%, Medtronic Endurant 18.2%, Medtronic Talent 17.6%, p = 0.01). Conclusion Although we identified device-related differences in endoleak rates, there were no significant differences in reintervention rates or mortality outcomes. Favorable outcomes of Cook Zenith and Medtronic Endurant over Medtronic Talent reflect advances in endograft technology and improvements in operator experience over time. Results support selection of endograft by operator preference for ruptured abdominal aortic aneurysm.
NASA Technical Reports Server (NTRS)
King, M. D.
1979-01-01
A hemispherical radiometer has been used to obtain spectrally narrow-band measurements of the downward hemispheric diffuse and total (global) flux densities at varying solar zenith angles on 14 days over Tucson. Data are presented which illustrate the effects of temporally varying atmospheric conditions as well as clear stable conditions on the ratio of the diffuse to direct solar radiation at the earth's surface. The ground albedo and the effective imaginary term of the complex refractive index of atmospheric particulates are derived from the diffuse-direct ratio measurements on seven clear stable days at two wavelengths using the statistical procedure described by King and Herman (1979). Results indicate that the downwelling diffuse radiation field in the midvisible region in Tucson can be adequately described by Mie scattering theory if the ground albedo is 0.279 + or - 0.100 and the index of absorption is 0.0306 + or - 0.0082.
Optical properties of marine stratocumulus clouds modified by ships
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1993-01-01
Results are presented of an application of the diffusion domain method to multispectral solar radiation measurements obtained deep within a marine stratocumulus cloud layer modified by pollution from ships. In situ airborne measurements of the relative angular distribution of scattered radiation are compared to known asymptotic expressions for the intensity field deep within an optically thick cloud layer. Analytical expressions relating the ratio of the nadir-to-zenith intensities to surface reflectance, similarity parameter, and scaled optical depth beneath the aircraft flight level are used to analyze measurements obtained with the cloud absorption radiometer mounted on the University of Washington's C-131A research aircraft. It is shown that the total optical thickness of the cloud layer increased in the ship tracks, in contrast to the similarity parameter, which decreased. The decrease in absorption was a direct consequence of the reduction in cloud droplet size that occurred within the ship tracks.
NASA Technical Reports Server (NTRS)
King, M. D.
1983-01-01
Computational results are presented for the separate terms in the Fourier expansion of the phase function and the reflection function of a semiinfinite, conservatively scattering atmosphere composed of cloud particles. The calculations involve successive applications of invariant imbedding, doubling, and asymptotic fitting methods to cover the range from very thin to very thick atmospheres. From the results, the ratio of the total reflection function to the first-order reflection function is determined as well as the number of terms required to describe the reflection function to an accuracy of 0.1 percent. The number of terms required depends strongly on the zenith angles of incidence and reflection as well as on details of the phase function. These results are compared with similar results obtained for a Henyey-Greenstein phase function having the same asymmetry factor as in the cloud model.
Measurements of the cosmic microwave background temperature at 1.47 GHz
NASA Technical Reports Server (NTRS)
Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Levin, S. M.; Limon, M.; Smoot, G. F.; Witebsky, C.
1993-01-01
We have used a radio-frequency-gain total-power radiometer to measure the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California in 1988 September and from the South Pole in 1989 December. The CMB thermodynamic temperature, T(CMB), is 2.27 +/- 0.25 K (68 percent confidence limit) measured from White Mountain and 2.26 +/- 0.20 K from the South Pole site. The combined result is 2.26 +/- 0.19 K. The correction for Galactic emission has been derived from scaled low-frequency maps and constitutes the main source of error. The atmospheric signal is extrapolated from our zenith scan measurements at higher frequencies. These results are consistent with our previous measurement at 1.41 GHz and about 2.5 sigma from the 2.74 +/- 0.01 K global average CMB temperature.
A fast-locking all-digital delay-locked loop for phase/delay generation in an FPGA
NASA Astrophysics Data System (ADS)
Zhujia, Chen; Haigang, Yang; Fei, Liu; Yu, Wang
2011-10-01
A fast-locking all-digital delay-locked loop (ADDLL) is proposed for the DDR SDRAM controller interface in a field programmable gate array (FPGA). The ADDLL performs a 90° phase-shift so that the data strobe (DQS) can enlarge the data valid window in order to minimize skew. In order to further reduce the locking time and to prevent the harmonic locking problem, a time-to-digital converter (TDC) is proposed. A duty cycle corrector (DCC) is also designed in the ADDLL to adjust the output duty cycle to 50%. The ADDLL, implemented in a commercial 0.13 μm CMOS process, occupies a total of 0.017 mm2 of active area. Measurement results show that the ADDLL has an operating frequency range of 75 to 350 MHz and a total delay resolution of 15 ps. The time interval error (TIE) of the proposed circuit is 60.7 ps.
Data Turbine Activities at NASA
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.
2008-01-01
Mission Support Features: a) Shirtsleeve environment, . 18 scientists; b) worldwide deployment experience; c) Extensive modifications to support in-situ and remote sensing instruments 1) zenith and nadir viewports; 2) modified power systems; 3) 19 inch rack mounting; 4) on-board data acquisition network.
The Evolution Of Telework In The Federal Government
DOT National Transportation Integrated Search
2000-02-01
This paper documents the evolution of the Telework movement in the Federal government. This movement, which has spanned the last quarter century, is still unfolding and has yet to reach its zenith. The history of Federal telework reflects the evoluti...
Kempenaers, Kristof; Van Calster, Ben; Vandoren, Cindy; Sermon, An; Metsemakers, Willem-Jan; Vanderschot, Paul; Misselyn, Dominique; Nijs, Stefaan; Hoekstra, Harm
2018-06-01
Controversy remains around acceptable surgical delay of acute hip fractures with current guidelines ranging from 24 to 48 h. Increasing healthcare costs force us to consider the economic burden as well. We aimed to evaluate the adjusted effect of surgical delay for hip fracture surgery on early mortality, healthcare costs and readmission rate. We hypothesized that shorter delays resulted in lower early mortality and costs. In this retrospective cohort study 2573 consecutive patients aged ≥50 years were included, who underwent surgery for acute hip fractures between 2009 and 2017. Main endpoints were thirty- and ninety-day mortality, total cost, and readmission rate. Multivariable regression included sex, age and ASA score as covariates. Thirty-day mortality was 5% (n = 133), ninety-day mortality 12% (n = 304). Average total cost was €11960, dominated by hospitalization (59%) and honoraria (23%). Per 24 h delay, the adjusted odds ratio was 1.07 (95% CI 0.98-1.18) for thirty-day mortality, 1.12 (95% CI 1.04-1.19) for ninety-day mortality, and 0.99 (95% CI = 0.88-1.12) for readmission. Per 24 h delay, costs increased with 7% (95% CI 6-8%). For mortality, delay was a weaker predictor than sex, age, and ASA score. For costs, delay was the strongest predictor. We did not find clear cut-points for surgical delay after which mortality or costs increased abruptly. Despite only modest associations with mortality, we observed a steady increase in healthcare costs when delaying surgery. Hence, a more pragmatic approach with surgery as soon as medically and organizationally possible seems justifiable over rigorous implementation of the current guidelines. Copyright © 2018 Elsevier Ltd. All rights reserved.
Factors Associated with Delayed Ejection in Mishaps Between 1993 and 2013.
Miles, John E
2015-09-01
The purpose of this investigation was to identify factors associated with Air Force aviators delaying ejection during in-flight emergencies. The investigator reviewed all reports within the Air Force Safety Automated System describing mishaps that resulted in the destruction of Air Force ejection-seat equipped aircraft between 1993 and 2013. Crewmembers were classified as either timely or delayed ejectors based on altitude at onset of emergency, altitude at ejection, and a determination regarding whether or not the aircraft was controlled during the mishap sequence. Univariate analysis and multivariate logistic regression were used to explore the association between delayed ejection and multiple potential risk factors. In total, 366 crewmembers were involved in in-flight emergencies in ejection-seat-equipped aircraft that resulted in the loss of the aircraft; 201 (54.9%) of these crewmembers delayed ejection until their aircraft had descended below recommended minimum ejection altitudes. Multivariate analysis indicated that independent risk factors for delayed ejection included increased crewmember flight hours and a mechanical or human-factors related cause of the emergency versus bird strike or midair collision. This investigation provided quantitative assessments of factors associated with aviators delaying ejection during in-flight emergencies. Increased odds of delay among crewmembers with greater than 1500 total flight hours suggests that complacency and overconfidence may adversely influence the ejection decision to at least as great a degree as inexperience. Increased odds of delay during mechanical and human factors mishaps confirms previously reported hypotheses and reaffirms the importance of targeting these areas to reduce aviator injuries and fatalities.
Vishwasrao, Chandrahas; Ananthanarayan, Laxmi
2017-01-01
There has been limited research on extending the shelf-life of sapota (Manilkara zapota L. var. Kalipatti) fruit. An edible coating made up of methyl cellulose (MC) and palm oil (PO) was applied to study the extension in shelf-life. Changes in physical and chemical properties of fruit were studied along with peroxidase (POD), polyphenol oxidase (PPO) and pectin methylesterase (PME) activities during post-harvest ripening of sapota. The fruits coated with 15 g L -1 MC and 11.25 g L -1 PO showed significant (P < 0.05) delay in physiological weight loss, decrease in fruit firmness losses as well as slower fruit darkening. The coating on the fruits resulted in better retention of ascorbic acid, delayed the loss of total phenolic content, and delayed the increase in total soluble solids and total reducing sugars as compared to control fruits. The coating either delayed or reduced the enzyme activities of POD, PPO and PME of the fruit. The results suggest that edible coating made up of MC-PO has potential to maintain the quality of sapota fruit. The edible coating extended the shelf-life of sapota fruit by 3 days preserving fruit quality up to 7 days at 24 ± 1 °C and 65 ± 5 %RH. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Advanced corrections for InSAR using GPS and numerical weather models
NASA Astrophysics Data System (ADS)
Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.
2016-12-01
The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.
Consistency of different tropospheric models and mapping functions for precise GNSS processing
NASA Astrophysics Data System (ADS)
Graffigna, Victoria; Hernández-Pajares, Manuel; García-Rigo, Alberto; Gende, Mauricio
2017-04-01
The TOmographic Model of the IONospheric electron content (TOMION) software implements a simultaneous precise geodetic and ionospheric modeling, which can be used to test new approaches for real-time precise GNSS modeling (positioning, ionospheric and tropospheric delays, clock errors, among others). In this work, the software is used to estimate the Zenith Tropospheric Delay (ZTD) emulating real time and its performance is evaluated through a comparative analysis with a built-in GIPSY estimation and IGS final troposphere product, exemplified in a two-day experiment performed in East Australia. Furthermore, the troposphere mapping function was upgraded from Niell to Vienna approach. On a first scenario, only forward processing was activated and the coordinates of the Wide Area GNSS network were loosely constrained, without fixing the carrier phase ambiguities, for both reference and rover receivers. On a second one, precise point positioning (PPP) was implemented, iterating for a fixed coordinates set for the second day. Comparisons between TOMION, IGS and GIPSY estimates have been performed and for the first one, IGS clocks and orbits were considered. The agreement with GIPSY results seems to be 10 times better than with the IGS final ZTD product, despite having considered IGS products for the computations. Hence, the subsequent analysis was carried out with respect to the GIPSY computations. The estimates show a typical bias of 2cm for the first strategy and of 7mm for PPP, in the worst cases. Moreover, Vienna mapping function showed in general a fairly better agreement than Niell one for both strategies. The RMS values' were found to be around 1cm for all studied situations, with a slightly fitter performance for the Niell one. Further improvement could be achieved for such estimations with coefficients for the Vienna mapping function calculated from raytracing as well as integrating meteorological comparative parameters.
Pastoralism and delay in diagnosis of TB in Ethiopia
Gele, Abdi A; Bjune, Gunnar; Abebe, Fekadu
2009-01-01
Background Tuberculosis (TB) is a major public health problem in the Horn of Africa with Ethiopia being the most affected where TB cases increase at the rate of 2.6% each year. One of the main contributing factors for this rise is increasing transmission due to large number of untreated patients, serving as reservoirs of the infection within the communities. Reduction of the time between onset of TB symptoms to diagnosis is therefore a prerequisite to bring the TB epidemic under control. The aim of this study was to measure duration of delay among pastoralist TB patients at TB management units in Somali Regional State (SRS) of Ethiopia. Methods A cross sectional study of 226 TB patients with pastoralist identity was conducted in SRS of Ethiopia from June to September 2007. Patients were interviewed using questionnaire based interview. Time between onset of TB symptoms and first visit to a professional health care provider (patient delay), and the time between first visits to the professional health care provider to the date of diagnosis (medical provider's delay) were analyzed. Both pulmonary and extrapulmonary TB patients were included in the study. Result A total of 226 pastoralist TB patients were included in this study; 93 (41.2%) were nomadic pastoralists and 133 (58.8%) were agro-pastoralists. Median patient delay was found to be 60 days with range of 10–1800 days (83 days for nomadic pastoralists and 57 days for agro-pastoralists). Median health care provider's delay was 6 days and median total delay was 70 days in this study. Patient delay constituted 86% of the total delay. In multivariate logistic regression analysis, nomadic pastoralism (aOR. 2.69, CI 1.47–4.91) and having low biomedical knowledge on TB (aOR. 2.02, CI 1.02–3.98) were significantly associated with prolonged patient delay. However, the only observed risk factor for very long patient delay >120 days was distance to health facility (aOR.4.23, CI 1.32–13.54). Extra-pulmonary TB was the only observed predictor for health care providers' delay (aOR. 3.39, CI 1.68–6.83). Conclusion Patient delay observed among pastoralist TB patients in SRS is one of the highest reported so far from developing countries, exceeding two years in some patients. This long patient delay appears to be associated with patient's inadequate knowledge of the disease and distance to health care facility with nomadic pastoralists being the most affected. Regional TB control programmes need to consider the exceptional circumstances of pastoralists, to maximise their access to TB services. PMID:19128498
Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter
NASA Technical Reports Server (NTRS)
Lay, R.
1977-01-01
The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.
ERIC Educational Resources Information Center
Naito, Mika; Suzuki, Toshiko
2011-01-01
This study investigated the development of the ability to reflect on one's personal past and future. A total of 64 4- to 6-year-olds received tasks of delayed self-recognition, source memory, delay of gratification, and a newly developed task of future-oriented action timing. Although children's performance on delayed self-recognition, source…
A Longitudinal Investigation of Conflict and Delay Inhibitory Control in Toddlers and Preschoolers
ERIC Educational Resources Information Center
Joyce, Amanda W.; Kraybill, Jessica H.; Chen, Nan; Cuevas, Kimberly; Deater-Deckard, Kirby; Bell, Martha Ann
2016-01-01
Research Findings: A total of 81 children participated in a longitudinal investigation of inhibitory control (IC) from 2 to 4 years of age. Child IC was measured via maternal report and laboratory measures under conditions of conflict and delay. Performance on delay IC tasks at 3 years was related to performance on these same tasks at 2 and…
An alternative approach to calculating Area-Under-the-Curve (AUC) in delay discounting research.
Borges, Allison M; Kuang, Jinyi; Milhorn, Hannah; Yi, Richard
2016-09-01
Applied to delay discounting data, Area-Under-the-Curve (AUC) provides an atheoretical index of the rate of delay discounting. The conventional method of calculating AUC, by summing the areas of the trapezoids formed by successive delay-indifference point pairings, does not account for the fact that most delay discounting tasks scale delay pseudoexponentially, that is, time intervals between delays typically get larger as delays get longer. This results in a disproportionate contribution of indifference points at long delays to the total AUC, with minimal contribution from indifference points at short delays. We propose two modifications that correct for this imbalance via a base-10 logarithmic transformation and an ordinal scaling transformation of delays. These newly proposed indices of discounting, AUClog d and AUCor d, address the limitation of AUC while preserving a primary strength (remaining atheoretical). Re-examination of previously published data provides empirical support for both AUClog d and AUCor d . Thus, we believe theoretical and empirical arguments favor these methods as the preferred atheoretical indices of delay discounting. © 2016 Society for the Experimental Analysis of Behavior.
[Determinants of tuberculosis diagnosis delay in limited resources countries].
Ndeikoundam Ngangro, N; Chauvin, P; Halley des Fontaines, V
2012-02-01
Delayed diagnoses of pulmonary tuberculosis contribute to the spread of the epidemic. This study aims to identify risk factors associated with patient delay (from symptoms onset to the first visit), health system delay (from the first visit to the tuberculosis treatment initiation) and total delay (sum of the patient and the health system delay) in low income and high tuberculosis burden countries. A systematic literature review has been performed using the keywords: "tuberculosis"; "delay", care seeking"; "health care seeking behavior"; "diagnosis" and "treatment". Only quantitative studies showing delays for pulmonary tuberculosis adult cases were included in this review. Low income, gender, rural life, unemployment, ageing and misunderstanding the microbial cause of tuberculosis are associated with delayed diagnoses. Systemic factors including low health care coverage, patient expenditures and entry into the health system by consulting a traditional healer or a non-skilled professional delay the beginning of tuberculosis treatment. Delays can be used as indicators to evaluate tuberculosis control programs. Active case finding in the households of contagious patients can help to diminish diagnostic delays in low-income countries with high endemicity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Optimizing MRI Logistics: Prospective Analysis of Performance, Efficiency, and Patient Throughput.
Beker, Kevin; Garces-Descovich, Alejandro; Mangosing, Jason; Cabral-Goncalves, Ines; Hallett, Donna; Mortele, Koenraad J
2017-10-01
The objective of this study is to optimize MRI logistics through evaluation of MRI workflow and analysis of performance, efficiency, and patient throughput in a tertiary care academic center. For 2 weeks, workflow data from two outpatient MRI scanners were prospectively collected and stratified by value added to the process (i.e., value-added time, business value-added time, or non-value-added time). Two separate time cycles were measured: the actual MRI process cycle as well as the complete length of patient stay in the department. In addition, the impact and frequency of delays across all observations were measured. A total of 305 MRI examinations were evaluated, including body (34.1%), neurologic (28.9%), musculoskeletal (21.0%), and breast examinations (16.1%). The MRI process cycle lasted a mean of 50.97 ± 24.4 (SD) minutes per examination; the mean non-value-added time was 13.21 ± 18.77 minutes (25.87% of the total process cycle time). The mean length-of-stay cycle was 83.51 ± 33.63 minutes; the mean non-value-added time was 24.33 ± 24.84 minutes (29.14% of the total patient stay). The delay with the highest frequency (5.57%) was IV or port placement, which had a mean delay of 22.82 minutes. The delay with the greatest impact on time was MRI arthrography for which joint injection of contrast medium was necessary but was not accounted for in the schedule (mean delay, 42.2 minutes; frequency, 1.64%). Of 305 patients, 34 (11.15%) did not arrive at or before their scheduled time. Non-value-added time represents approximately one-third of the total MRI process cycle and patient length of stay. Identifying specific delays may expedite the application of targeted improvement strategies, potentially increasing revenue, efficiency, and overall patient satisfaction.
NASA Astrophysics Data System (ADS)
Wald, L.; Blanc, Ph.
2010-09-01
Satellite-derived assessments of surface downwelling solar irradiance are more and more used by engineering companies in solar energy. Performances are judged satisfactory for the time being. Nevertheless, requests for more accuracy are increasing, in particular in the spectral definition and in the decomposition of the global radiation into direct and diffuse radiations. One approach to reach this goal is to improve both the modelling of the radiative transfer and the quality of the inputs describing the optical state. Within their joint project Heliosat-4, DLR and MINES ParisTech have adopted this approach to create advanced databases of solar irradiance succeeding to the current ones HelioClim and SolEMi. Regarding the model, we have opted for libRadtran, a well-known model of proven quality. As many similar models, running libRadtran is very time-consuming when it comes to process millions or more pixels or grid cells. This is incompatible with real-time operational process. One may adopt the abacus approach, or look-up tables, to overcome the problem. The model is run for a limited number of cases, covering the whole range of values taken by the various inputs of the model. Abaci are such constructed. For each real case, the irradiance value is computed by interpolating within the abaci. In this way, real-time can be envisioned. Nevertheless, the computation of the abaci themselves requires large computing capabilities. In addition, searching the abaci to find the values to interpolate can be time-consuming as the abaci are very large: several millions of values in total. Moreover, it raises the extrapolation problem of parameter out-of-range during the utilisation of the abaci. Parameterisation, when possible, is a means to reduce the amount of computations to be made and subsequently, the computation effort to create the abaci, the size of the abaci, the extrapolation and the searching time. It describes in analytical manner and with a few parameters the change in irradiance with a specific variable. The communication discusses two parameterisations found in the literature. One deals with the solar zenith angle, the other with the altitude. We assess their performances in retrieving solar irradiance for 32 spectral bands, from 240 nm to 4606 nm. The model libRadtran is run to create data sets for all sun zenith angles (every 5 degrees) and all altitudes (every km). These data sets are considered as a reference. Then, for each parameterisation, we compute the parameters using two irradiance values for specific values of angle (e.g., 0 and 60 degrees) or altitude (e.g., 0 and 3 km). The parameterisations are then applied to other values of angle and altitude. Differences between these assessments and the reference values of irradiance are computed and analysed. We conclude on the level of performances of each parameterisation for each spectral band as well as for the total irradiance. We discuss the possible use of these parameterisations in the future method Heliosat-4 and possible improvements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793 (MACC project).
Registration of ‘Zenith' black bean
USDA-ARS?s Scientific Manuscript database
‘Zenith’ black bean (Phaseolus vulgaris L.) (Reg. no. CV- , PI -), developed by Michigan State University AgBioResearch was released in 2014 as an upright, full-season cultivar with anthracnose [caused by Colletotrichum lindemuthianum (Sacc. et Magnus) Lams.-Scrib] resistance and excellent canning q...
ATTENUATION OF VISIBLE SUNLIGHT BY LIMITED VISIBILITY AND CLOUDINESS
Variability in the irradiance measurements arises from systematic changes in the solar zenith angle (SZA), cloudiness and changing visibility. Measurements in the wavelength band centered on 612 nm serve as a reference for the initial characterization of the effects of cloudy ...
NASA Astrophysics Data System (ADS)
Moore, A. W.; Bock, Y.; Geng, J.; Gutman, S. I.; Laber, J. L.; Morris, T.; Offield, D. G.; Small, I.; Squibb, M. B.
2012-12-01
We describe a system under development for generating ultra-low latency tropospheric delay and precipitable water vapor (PWV) estimates in situ at a prototype network of geodetic GPS sites in southern California, and demonstrating their utility in forecasting severe storms commonly associated with flooding and debris flow events along the west coast of North America through infusion of this meteorological data at NOAA National Weather Service (NWS) Forecast Offices and the NOAA Earth System Research Laboratory (ESRL). The first continuous geodetic GPS network was established in southern California in the early 1990s and much of it was converted to real-time (latency <1s) high-rate (1Hz) mode over the following decades. GPS stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV using collocated pressure and temperature measurements, the basis for GPS meteorology (Bevis et al. 1992, 1994; Duan et al. 1996) as implemented by NOAA with a nationwide distribution of about 300 GPS-Met stations providing PW estimates at subhourly resolution currently used in operational weather forecasting in the U.S. We improve upon the current paradigm of transmitting large quantities of raw data back to a central facility for processing into higher-order products. By operating semi-autonomously, each station will provide low-latency, high-fidelity and compact data products within the constraints of the narrow communications bandwidth that often occurs in the aftermath of natural disasters. The onsite ambiguity-resolved precise point positioning solutions are enabled by a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS and a low-cost MEMS meteorological sensor package. The decreased latency (~5 minutes) PW estimates will provide the detailed knowledge of the distribution and magnitude of PW that NWS forecasters require to monitor and predict severe winter storms, landfalling atmospheric rivers, and summer thunderstorms associated with the North American monsoon. On the national level, the ESRL will evaluate the utility of ultra-low resolution GNSS observations to improve NOAA's warning and forecast capabilities. The overall objective is to better forecast, assess, and mitigate natural hazards through the flow of information from multiple geodetic stations to scientists, mission planners, decision makers, and first responders.
Delayed Ego Strength Development in Opioid Dependent Adolescents and Young Adults.
Abramoff, Benjamin A; Lange, Hannah L H; Matson, Steven C; Cottrill, Casey B; Bridge, Jeffrey A; Abdel-Rasoul, Mahmoud; Bonny, Andrea E
2015-01-01
Objective. To evaluate ego strengths, in the context of Erikson's framework, among adolescents and young adults diagnosed with opioid dependence as compared to non-drug using youth. Methods. Opioid dependent (n = 51) and non-drug using control (n = 31) youth completed the self-administered Psychosocial Inventory of Ego Strengths (PIES). The PIES assesses development in the framework of Erikson's ego strength stages. Multivariate linear regression modeling assessed the independent association of the primary covariate (opioid dependent versus control) as well as potential confounding variables (e.g., psychiatric comorbidities, intelligence) with total PIES score. Results. Mean total PIES score was significantly lower in opioid dependent youth (231.65 ± 30.39 opioid dependent versus 270.67 ± 30.06 control; p < 0.01). Evaluation of the PIES subscores found significant (p < 0.05) delays in all ego strength areas (hope, will, purpose, competence, fidelity, love, care, and wisdom). When adjusting for potential confounders, opioid dependence remained a significant (p < 0.001) independent predictor of total PIES score. Conclusion. Adolescents with opioid dependence demonstrated significant delays in ego strength development. A treatment approach acknowledging this delay may be needed in the counseling and treatment of adolescents with opioid dependence.
Delayed Ego Strength Development in Opioid Dependent Adolescents and Young Adults
Abramoff, Benjamin A.; Lange, Hannah L. H.; Matson, Steven C.; Cottrill, Casey B.; Bridge, Jeffrey A.; Abdel-Rasoul, Mahmoud; Bonny, Andrea E.
2015-01-01
Objective. To evaluate ego strengths, in the context of Erikson's framework, among adolescents and young adults diagnosed with opioid dependence as compared to non-drug using youth. Methods. Opioid dependent (n = 51) and non-drug using control (n = 31) youth completed the self-administered Psychosocial Inventory of Ego Strengths (PIES). The PIES assesses development in the framework of Erikson's ego strength stages. Multivariate linear regression modeling assessed the independent association of the primary covariate (opioid dependent versus control) as well as potential confounding variables (e.g., psychiatric comorbidities, intelligence) with total PIES score. Results. Mean total PIES score was significantly lower in opioid dependent youth (231.65 ± 30.39 opioid dependent versus 270.67 ± 30.06 control; p < 0.01). Evaluation of the PIES subscores found significant (p < 0.05) delays in all ego strength areas (hope, will, purpose, competence, fidelity, love, care, and wisdom). When adjusting for potential confounders, opioid dependence remained a significant (p < 0.001) independent predictor of total PIES score. Conclusion. Adolescents with opioid dependence demonstrated significant delays in ego strength development. A treatment approach acknowledging this delay may be needed in the counseling and treatment of adolescents with opioid dependence. PMID:26664819
Delays in the operating room: signs of an imperfect system.
Wong, Janice; Khu, Kathleen Joy; Kaderali, Zul; Bernstein, Mark
2010-06-01
Delays in the operating room have a negative effect on its efficiency and the working environment. In this prospective study, we analyzed data on perioperative system delays. One neurosurgeon prospectively recorded all errors, including perioperative delays, for consecutive patients undergoing elective procedures from May 2000 to February 2009. We analyzed the prevalence, causes and impact of perioperative system delays that occurred in one neurosurgeon's practice. A total of 1531 elective surgical cases were performed during the study period. Delays were the most common type of error (33.6%), and more than half (51.4%) of all cases had at least 1 delay. The most common cause of delay was equipment failure. The first cases of the day and cranial cases had more delays than subsequent cases and spinal cases, respectively. A delay in starting the first case was associated with subsequent delays. Delays frequently occur in the operating room and have a major effect on patient flow and resource utilization. Thorough documentation of perioperative delays provides a basis for the development of solutions for improving operating room efficiency and illustrates the principles underlying the causes of operating room delays across surgical disciplines.
Delayed fission of atomic nuclei (To the 50th anniversary of the discovery)
NASA Astrophysics Data System (ADS)
Skobelev, N. K.
2017-09-01
The history of the discovery of delayed nuclear fission is presented, and the retrospective of investigations into this phenomenon that were performed at various research centers worldwide is outlined. The results obtained by measuring basic delayed-fission features, including the fission probability, the total kinetic energy of fission fragments, and their mass distributions, are analyzed. Recommendations concerning further studies in various regions of nuclear map with the aim of searches for and investigation of atomic nuclei undergoing delayed fission are given. Lines of further research into features of delayed fission with the aim of solving current problems of fission physics are discussed.
New Cloud Science from the New ARM Cloud Radar Systems (Invited)
NASA Astrophysics Data System (ADS)
Wiscombe, W. J.
2010-12-01
The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
Effect of the atmosphere on the color coordinates of sunlit surfaces
NASA Astrophysics Data System (ADS)
Willers, Cornelius J.; Viljoen, Johan W.
2016-02-01
Aerosol attenuation in the atmosphere has a relatively weak spectral variation compared to molecular absorption. However, the solar spectral irradiance differs considerably for the sun at high zenith angles versus the sun at low zenith angles. The perceived color of a sunlit object depends on the object's spectral reflectivity as well as the irradiance spectrum. The color coordinates of the sunlit object, hence also the color balance in a scene, shift with changes in the solar zenith angle. The work reported here does not claim accurate color measurement. With proper calibration mobile phones may provide reasonably accurate color measurement, but the mobile phones used for taking these pictures and videos are not scientific instruments and were not calibrated. The focus here is on the relative shift of the observed colors, rather than absolute color. The work in this paper entails the theoretical analysis of color coordinates of surfaces and how they change for different colored surfaces. Then follows three separate investigations: (1) Analysis of a number of detailed atmospheric radiative transfer code (Modtran) runs to show from the theory how color coordinates should change. (2) Analysis of a still image showing how the colors of two sample surfaces vary between sunlit and shaded areas. (3) Time lapse video recordings showing how the color coordinates of a few surfaces change as a function of time of day. Both the theoretical and experimental work shows distinct shifts in color as function of atmospheric conditions. The Modtran simulations demonstrate the effect from clear atmospheric conditions (no aerosol) to low visibility conditions (5 km visibility). Even under moderate atmospheric conditions the effect was surprisingly large. The experimental work indicated significant shifts during the diurnal cycle.
Radiation in the earth's atmosphere: its radiance, polarization, and ellipticity.
Hitzfelder, S J; Plass, G N; Kattawar, G W
1976-10-01
The complete radiation field including polarization is calculated by the matrix operator method for a model of the real atmosphere. The radiance, direction and amount of polarization, and ellipticity are obtained at the top and bottom of the atmosphere for three values of the surface albedo (0, 0.15, 0.90) and five solar zenith angles. Scattering and absorption by molecules (including ozone) and by aerosols are taken into account together with the variation of the number density of these substances with height. All results are calculated for both a normal aerosol number and a distribution that is one-third of the normal amount at all heights. The calculated values show general qualitative agreement with the available experimental measurements. The position of the neutral points of the polarization in the principal plane is a sensitive indicator of the characteristics of the aerosol particles in the atmosphere, since it depends on the sign and value of the single scattered polarization for scattering angles around 20 degrees and 160 degrees for transmitted and reflected photons, respectively. This, in turn, depends on the index of refraction and size distribution of the aerosols. The neutral point position does not depend appreciably on the surface albedo and, over a considerable range, depends little on the solar zenith angle. The value of the maximum polarization in the principal plane depends on the aerosol amount, surface albedo, and solar zenith angle. It could be used to measure the aerosol amount. The details of the ellipticity curves are similar to those for scattering from pure aerosol layers and, thus, are little modified by the Rayleigh scattering. Aerosols could be identified by their characteristic ellipticity curves.
Search for the sterile neutrino mixing with the ICAL detector at INO
NASA Astrophysics Data System (ADS)
Behera, S. P.; Ghosh, Anushree; Choubey, Sandhya; Datar, V. M.; Mishra, D. K.; Mohanty, A. K.
2017-05-01
The study has been carried out on the prospects of probing the sterile neutrino mixing with the magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO), using atmospheric neutrinos as a source. The so-called 3 + 1 scenario is considered for active-sterile neutrino mixing and lead to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed using the neutrino event generator NUANCE, modified for ICAL, and folded with the detector resolutions obtained by the INO collaboration from a full GEANT4-based detector simulation. A comparison has been made between the results obtained from the analysis considering only the energy and zenith angle of the muon and combined with the hadron energy due to the neutrino induced event. A small improvement has been observed with the addition of the hadron information to the muon. In the analysis we consider neutrinos coming from all zenith angles and the Earth matter effects are also included. The inclusion of events from all zenith angles improves the sensitivity to sterile neutrino mixing by about 35% over the result obtained using only down-going events. The improvement mainly stems from the impact of Earth matter effects on active-sterile mixing. The expected precision of ICAL on the active-sterile mixing is explored and the allowed confidence level (C.L.) contours presented. At the assumed true value of 10° for the sterile mixing angles and marginalization over Δ m^2_{41} and the sterile mixing angles, the upper bound at 90% C.L. (from two-parameter plots) is around 20^deg; for θ _{14} and θ _{34}, and about 12°c for θ _{24}.
NASA Astrophysics Data System (ADS)
Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.
2017-12-01
Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.
Optical stabilization for time transfer infrastructure
NASA Astrophysics Data System (ADS)
Vojtech, Josef; Altmann, Michal; Skoda, Pavel; Horvath, Tomas; Slapak, Martin; Smotlacha, Vladimir; Havlis, Ondrej; Munster, Petr; Radil, Jan; Kundrat, Jan; Altmannova, Lada; Velc, Radek; Hula, Miloslav; Vohnout, Rudolf
2017-08-01
In this paper, we propose and present verification of all-optical methods for stabilization of the end-to-end delay of an optical fiber link. These methods are verified for deployment within infrastructure for accurate time and stable frequency distribution, based on sharing of fibers with research and educational network carrying live data traffic. Methods range from path length control, through temperature conditioning method to transmit wavelength control. Attention is given to achieve continuous control for relatively broad range of delays. We summarize design rules for delay stabilization based on the character and the total delay jitter.
Measuring and computing natural ground-water recharge at sites in south-central Kansas
Sophocleous, M.A.; Perry, C.A.
1987-01-01
To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)
Orbit determination based on meteor observations using numerical integration of equations of motion
NASA Astrophysics Data System (ADS)
Dmitriev, V.; Lupovka, V.; Gritsevich, M.
2014-07-01
We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed technique, we provide calculated orbits for several cases, including well-known meteorite-producing fireballs. A comparison of our estimates with previously published ones is also provided.
Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.
Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa
2009-01-01
UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).
Austin, David; Yan, Andrew T; Spratt, James C; Kunadian, Vijay; Edwards, Richard J; Egred, Mohaned; Bagnall, Alan J
2014-09-01
Delayed arrival to a primary percutaneous coronary intervention (PPCI)-capable hospital following ST-elevation myocardial infarction (STEMI) is associated with poorer outcome. The influence of patient characteristics on delayed presentation during STEMI is unknown. This was a retrospective observational study. Patients presenting for PPCI from March 2008 to November 2011 in the north of England (Northumbria, Tyne and Wear) were included. The outcomes were self-presentation to a non-PPCI-capable hospital, symptom to first medical contact (STFMC) time, total ischaemic time and mortality during follow-up. STEMI patients included numbered 2297; 619 (26.9%) patients self-presented to a non-PPCI-capable hospital. STFMC of >30 min and total ischaemic time of >180 min was present in 1521 (70.7%) and 999 (44.9%) cases, respectively. Self-presentation was the strongest predictor of prolonged total ischaemic time (odds ratio, OR (95% confidence interval, CI): 5.05 (3.99-6.39)). Married patients (OR 1.38 (1.10-1.74)) and patients living closest to an Emergency Room self-presented more commonly (driving time (vs. ≤10 min) 11-20 min OR 0.66 (0.52-0.83), >20 minutes OR 0.46 (0.33-0.64). Unmarried females waited longest to call for help (OR vs. married males 1.89 (1.29-2.78) and experienced longer total ischaemic times (OR 1.51 (1.10-2.07)). Married patients had a borderline association with lower mortality (hazard ratio 0.75 (0.53-1.05), p=0.09). Unmarried female patients had the longest treatment delays. Married patients and those living closer to an Emergency Room self-present more frequently. Early and exclusive use of the ambulance service may reduce treatment delay and improve STEMI outcome. © The European Society of Cardiology 2014.
Li, Peng; Huang, Chuanhe; Liu, Qin
2014-01-01
In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656
NASA Astrophysics Data System (ADS)
Gehlot, B. K.; Koopmans, L. V. E.; de Bruyn, A. G.; Zaroubi, S.; Brentjens, M. A.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Yatawatta, S.
2018-05-01
Contamination due to foregrounds (Galactic and Extra-galactic), calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a pilot study of a field centered on 3C196 using LOFAR Low Band (56-70 MHz) observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork' structure in the 2D power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon (EoR/CD window). We show that this structure largely arises due to strong instrumental polarization leakage (˜30%) towards Cas A (˜21 kJy at 81 MHz, brightest source in northern sky), which is far away from primary field of view. We measure an extremely small ionospheric diffractive scale (rdiff ≈ 430 m at 60 MHz) towards Cas A resembling pure Kolmogorov turbulence compared to rdiff ˜ 3 - 20 km towards zenith at 150 MHz for typical ionospheric conditions. This is one of the smallest diffractive scales ever measured at these frequencies. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations (e.g. with SKA-low and HERA) in the same frequency window.
Guo, Jiong Jiong; Yang, Huilin; Qian, Haixin; Huang, Lixin; Guo, Zhongxing; Tang, Tiansi
2010-03-01
It has been well recognized that malnutrition causes wounds to heal inadequately and incompletely. Malnutrition is often observed in the elderly, and it appears to be more severe in patients with hip fracture than in the general aging population. Few prospective studies give a detailed account of the identification and classification of nutritional status in the elderly. The objective of this study was to evaluate the effects of different nutritional measurements on wound healing status after hip fracture in the elderly. From September 2002 to December 2007, 207 hip fracture patients older than 60 y treated surgically were reviewed for preoperative nutritional status. There were 81 males and 126 females with an average age of 75.93 y (62-91 y); 131 cases with femoral neck fractures, 76 cases with intertrochanteric fractures. Parameters indicative of nutritional status (serum albumin, serum transferrin, serum pre-albumin, and total lymphocyte count levels) at the time of admission were assessed, along with anthropometric measurements, Rainey MacDonald nutritional index, and MNA tool. Suture removal was performed on postoperative day 14. Delayed wound healing complicated 46 (22.2%) of the 207 cases. The preoperative serum transferring total lymphocyte count levels, MNA total score, and Rainey MacDonald nutritional index were significantly lower for patients who subsequently had delayed wound healing. When all variables were subjected to multivariate analysis, only total lymphocyte count levels and MNA total score showed significant value in predicting which patients would have delayed wound healing. Through prophylactic antibiotics and adherence to strict aseptic precautions, on follow-up, wound healing was normal in all patients. Patients at risk for delayed wound healing problems after hip fracture can be identified using relatively inexpensive laboratory test such as TLC and MNA tool. The clinician must be aware of the risk values of both measurements. We believe this information is particularly important before planning procedures of hip fractures in the elderly. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Sources of delayed provision of neurosurgical care in a rural kenyan setting
Mansouri, Alireza; Chan, Vivien; Njaramba, Veronica; Cadotte, David W.; Albright, A. Leland; Bernstein, Mark
2015-01-01
Background: Delay to neurosurgical care can result in significant morbidity and mortality. In this study, we aim to identify and quantify the sources of delay to neurosurgical consultation and care at a rural setting in Kenya. Methods: A mixed-methods, cross-sectional analysis of all patients admitted to the neurosurgical department at Kijabe Hospital (KH) was conducted: A retrospective analysis of admissions from October 1 to December 31, 2013 and a prospective analysis from June 2 to June 20, 2014. Sources of delay were categorized and quantified. The Kruskal–Wallis test was used to identify an overall significant difference among diagnoses. The Mann–Whitney U test was used for pairwise comparisons within groups; the Bonferroni correction was applied to the alpha level of significance (0.05) according to the number of comparisons conducted. IBM SPSS version 22.0 (SPSS, Chicago, IL) was used for statistical analyses. Results: A total of 332 admissions were reviewed (237 retrospective, 95 prospective). The majority was pediatric admissions (median age: 3 months). Hydrocephalus (35%) and neural tube defects (NTDs; 27%) were most common. At least one source of delay was identified in 192 cases (58%); 39 (12%) were affected by multiple sources. Delay in primary care (PCPs), in isolation or combined with other sources, comprised 137 of total (71%); misdiagnosis or incorrect management comprised 46 (34%) of these. Finances contributed to delays in 25 of 95 prospective cases. At a median delay of 49 and 200.5 days, the diagnoses of hydrocephalus and tumors were associated with a significantly longer delay compared with NTDs (P < 0.001). Conclusion: A substantial proportion of patients experienced delays in procuring pediatric neurosurgical care. Improvement in PCP knowledge base, implementation of a triage and referral process, and development of community-based funding strategies can potentially reduce these delays. PMID:25745587
Lateral and Time Distributions of Extensive Air Showers for CHICOS
NASA Astrophysics Data System (ADS)
Jillings, C. J.; Wells, D.; Chan, K. C.; Hill, J.; Falkowski, B.; Sepikas, J.
2005-04-01
We report results of a series of detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers. We have parameterized both distributions as a function of distance from the shower axis, energy of the primary cosmic-ray proton, and incident zenith angle. Muons and electrons are parameterized separately. These parameterizations can be easily used in maximum-likelihood reconstruction of air showers. Calculations were performed for primary energies between 10^18 and 10^21eV and zenith angles out to approximately 50^o. The calculations are appropriate for the California High School Cosmic Ray Observatory: a 400 km^2 array of scintillation detectors in Los Angeles county. The average elevation of the array is approximately 250 meters above sea level. Currently 64 of 90 sites are operational. The array will be completed this year. We thank the NSF, the CURE program at the Jet Propulsion Laboratory, the SURF program at Caltech, and the Chinese University of Hong Kong.
Investigation of very high energy cosmic rays by means of inclined muon bundles
NASA Astrophysics Data System (ADS)
Bogdanov, A. G.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Shutenko, V. V.; Trinchero, G.; Yashin, I. I.
2018-03-01
In a typical approach to extensive air shower (EAS) investigations, horizontal arrays are used and near-vertical EAS are detected. In contrast, in this work vertically arranged muon detectors are used to study inclined EAS. At large zenith angles, EAS consisting solely of muon component are employed. The transverse dimensions of EAS rapidly increase when the zenith angle increases. Hence, EAS in a wide energy interval can be explored by means of a relatively small detector. Here we present results of the analysis of the data on inclined muon bundles accumulated from 2002 to 2016 in the DECOR experiment. For the first time, these results demonstrate with more than 3σ significance the existence of the second knee in the EAS muon component spectrum near 1017 eV primary energy. An excess of muon bundles at energies about 1 EeV found earlier in DECOR data has been confirmed and analyzed in detail. It is highly likely that the obtained outcomes indicate the appearance of new processes of muon generation.
MAVEN Mapping of Plasma Clouds Near Mars
NASA Astrophysics Data System (ADS)
Hurley, D.; Tran, T.; DiBraccio, G. A.; Espley, J. R.; Soobiah, Y. I. J.
2017-12-01
Brace et al. identified parcels of ionospheric plasma above the nominal ionosphere of Venus, dubbed plasma clouds. These were envisioned as instabilities on the ionopause that evolved to escaping parcels of ionospheric plasma. Mars Global Surveyor (MGS) Electron Reflectometer (ER) also detected signatures of ionospheric plasma above the nominal ionopause of Mars. Initial examination of the MGS ER data suggests that plasma clouds are more prevalent at Mars than at Venus, and similarly exhibit a connection to rotations in the upstream Interplanetary Magnetic Field (IMF) as Zhang et al. showed at Venus. We examine electron data from Mars to determine the locations of plasma clouds in the near-Mars environment using MGS and MAVEN data. The extensive coverage of the MAVEN orbit enables mapping an occurrence rate of the photoelectron spectra in Solar Wind Electron Analyzer (SWEA) data spanning all relevant altitudes and solar zenith angles. Martian plasma clouds are observed near the terminator like at Venus. They move to higher altitude as solar zenith angle increases, consistent with the escaping plasma hypothesis.
Zenith 1 truss transfer ceremony
NASA Technical Reports Server (NTRS)
2000-01-01
The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build- ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.
Zenith 1 truss transfer ceremony
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.
Matrix operator theory of radiative transfer. 2: scattering from maritime haze.
Kattawar, G W; Plass, G N; Catchings, F E
1973-05-01
Matrix operator theory is used to calculate the reflected and transmitted radiance of photons that have interacted with plane-parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo are tabulated. The forward peak and other features in the single scattered phase function cause the radiance in many cases to be very different from that for Rayleigh scattering. In particular the variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked and the relative limb darkening under very thick layers is greater for haze M than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = 0 is always greater and the cloud albedo is always less for haze M than for Rayleigh layers.
Overview for Attached Payload Accommodations and Environments
NASA Technical Reports Server (NTRS)
Schaffer, Craig; Cook, Gene; Nabizadeh, Rodney; Phillion, James
2007-01-01
External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.
Year-round measurements of ozone at 66 deg S with a visible spectrometer
NASA Technical Reports Server (NTRS)
Roscoe, Howard K.; Oldham, Derek J.; Squires, James A. C.; Pommereau, Jean-Pierre; Goutail, Florence; Sarkissian, Alain
1994-01-01
In March 1990, a zenith-sky UV-visible spectrometer of the design 'Systeme Automatique d'Obervation Zenithal' (SAOZ) was installed at Faraday in Antarctica (66.3 deg S, 64.3 deg W). SAOZ records spectra between 290 and 600 nm during daylight. Its analysis program fits laboratory spectra of constituents, at various wavelengths, to the differential of the ratio of the observed spectrum and a reference spectrum. The least-squares fitting procedure minimizes the sum-of-squares of residuals. Ozone is deduced from absorption in its visible bands between 500 and 560 nm. The fortunate colocation of this SAOZ with the well-calibrated Dobson at Faraday has allowed us to examine the calibration of the zero of the SAOZ, difficult at visible wavelengths because of the small depth of absorption. Here we describe recent improvements and limitations to this calibration, and discuss SAOZ measurements of ozone during winter in this important location at the edge of the Antarctic vortex.
NASA Technical Reports Server (NTRS)
Roth, A.; Perner, D.
1994-01-01
Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.
Reflectance-Based Sensor Validation Over Ice Surfaces
NASA Technical Reports Server (NTRS)
Jaross, Glen; Dodge, James C. (Technical Monitor)
2003-01-01
During this period work was performed in the following areas. These areas are defined in the Work Schedule presented in the original proposal: BRDF development, Data acquisition and processing, THR Table generation and Presentations and Publications. BRDF development involves creating and/or modifying a reflectance model of the Antarctic surface. This model must, for a temporal and spatial average, be representative of the East Antarctic plateau and be expressed in terms of the three standard surface angles: solar zenith angle (SolZA), view zenith angle (SatZA), and relative azimuth angle (RelAZ). We successfully acquired a limited amount of NOAA-9 AVHRR data for radiance validation. The data were obtained from the Laboratory for Terrestrial Physics at Goddard Space Flight Center. We developed our own reading and unpacking software, which we used to select Channel 1 data (visible). We then applied geographic subsetting criteria (same as used for TOMS), and wrote only the relevant data to packed binary files. We proceeded with analysis of these data, which is not yet complete.