Touch-screen technology usage in toddlers.
Ahearne, Caroline; Dilworth, Sinead; Rollings, Rachel; Livingstone, Vicki; Murray, Deirdre
2016-02-01
To establish the prevalence and patterns of use of touch-screen technologies in the toddler population. Parental questionnaires were completed for children aged 12 months to 3 years examining access to touch-screen devices and ability to perform common forms of interaction with touch-screen technologies. The 82 questionnaires completed on typically developing children revealed 71% of toddlers had access to touch-screen devices for a median of 15 min (IQR: 9.375-26.25) per day. By parental report, 24 months was the median age of ability to swipe (IQR: 19.5-30.5), unlock (IQR: 20.5-31.5) and active looking for touch-screen features (IQR: 22-30.5), while 25 months (IQR: 21-31.25) was the median age of ability to identify and use specific touch-screen features. Overall, 32.8% of toddlers could perform all four skills. From 2 years of age toddlers have the ability to interact purposefully with touch-screen devices and demonstrate a variety of common skills required to utilise touch-screen technology. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Development and Implementation of High School Chemistry Modules Using Touch-Screen Technologies
ERIC Educational Resources Information Center
Lewis, Maurica S.; Zhao, Jinhui; Montclare, Jin Kim
2012-01-01
Technology was employed to motivate and captivate students while enriching their in-class education. An outreach program is described that involved college mentors introducing touch-screen technology into a high school chemistry classroom. Three modules were developed, with two of them specifically tailored to encourage comprehension of molecular…
The Use of Touch-Screen Tablets at Home and Pre-School to Foster Emergent Literacy
ERIC Educational Resources Information Center
Neumann, Michelle M.; Neumann, David L.
2017-01-01
Young children living in technology-based communities are using touch-screen tablets (e.g. iPads) to engage with the digital world at an early age. The intuitive touch-screen interface, easily downloadable apps (applications) and mobility of tablets drive their increasing popularity with pre-schoolers. This review examines research to date on…
Klatzky, Roberta L; Giudice, Nicholas A; Bennett, Christopher R; Loomis, Jack M
2014-01-01
Many developers wish to capitalize on touch-screen technology for developing aids for the blind, particularly by incorporating vibrotactile stimulation to convey patterns on their surfaces, which otherwise are featureless. Our belief is that they will need to take into account basic research on haptic perception in designing these graphics interfaces. We point out constraints and limitations in haptic processing that affect the use of these devices. We also suggest ways to use sound to augment basic information from touch, and we include evaluation data from users of a touch-screen device with vibrotactile and auditory feedback that we have been developing, called a vibro-audio interface.
Shin, David H; Bohn, Deborah K; Agel, Julie; Lindstrom, Katy A; Cronquist, Sara M; Van Heest, Ann E
2015-05-01
To measure and compare hand function for children with normal hand development, congenital hand differences (CHD), and neuromuscular disease (NMD) using a function test with touch screen technology designed as an iPhone application. We measured touch screen hand function in 201 children including 113 with normal hand formation, 43 with CHD, and 45 with NMD. The touch screen test was developed on the iOS platform using an Apple iPhone 4. We measured 4 tasks: touching dots on a 3 × 4 grid, dragging shapes, use of the touch screen camera, and typing a line of text. The test takes 60 to 120 seconds and includes a pretest to familiarize the subject with the format. Each task is timed independently and the overall time is recorded. Children with normal hand development took less time to complete all 4 subtests with increasing age. When comparing children with normal hand development with those with CHD or NMD, in children aged less than 5 years we saw minimal differences; those aged 5 to 6 years with CHD took significantly longer total time; those aged 7 to 8 years with NMD took significantly longer total time; those aged 9 to 11 years with CHD took significantly longer total time; and those aged 12 years and older with NMD took significantly longer total time. Touch screen technology has becoming increasingly relevant to hand function in modern society. This study provides standardized age norms and shows that our test discriminates between normal hand development and that in children with CHD or NMD. Diagnostic III. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Bass, Sarah Bauerle; Gordon, Thomas F.; Ruzek, Sheryl Burt; Wolak, Caitlin; Ruggieri, Dominique; Mora, Gabriella; Rovito, Michael J.; Britto, Johnson; Parameswaran, Lalitha; Abedin, Zainab; Ward, Stephanie; Paranjape, Anuradha; Lin, Karen; Meyer, Brian; Pitts, Khaliah
2017-01-01
African Americans have higher colorectal cancer (CRC) mortality than White Americans and yet have lower rates of CRC screening. Increased screening aids in early detection and higher survival rates. Coupled with low literacy rates, the burden of CRC morbidity and mortality is exacerbated in this population, making it important to develop culturally and literacy appropriate aids to help low-literacy African Americans make informed decisions about CRC screening. This article outlines the development of a low-literacy computer touch-screen colonoscopy decision aid using an innovative marketing method called perceptual mapping and message vector modeling. This method was used to mathematically model key messages for the decision aid, which were then used to modify an existing CRC screening tutorial with different messages. The final tutorial was delivered through computer touch-screen technology to increase access and ease of use for participants. Testing showed users were not only more comfortable with the touch-screen technology but were also significantly more willing to have a colonoscopy compared with a “usual care group.” Results confirm the importance of including participants in planning and that the use of these innovative mapping and message design methods can lead to significant CRC screening attitude change. PMID:23132838
Infant Imitation from Television Using Novel Touch Screen Technology
ERIC Educational Resources Information Center
Zack, Elizabeth; Barr, Rachel; Gerhardstein, Peter; Dickerson, Kelly; Meltzoff, Andrew N.
2009-01-01
Infants learn less from a televised demonstration than from a live demonstration, the "video deficit effect." The present study employs a novel approach, using touch screen technology to examine 15-month olds' transfer of learning. Infants were randomly assigned either to within-dimension (2D/2D or 3D/3D) or cross-dimension (3D/2D or 2D/3D)…
Touch Interaction with 3D Geographical Visualization on Web: Selected Technological and User Issues
NASA Astrophysics Data System (ADS)
Herman, L.; Stachoň, Z.; Stuchlík, R.; Hladík, J.; Kubíček, P.
2016-10-01
The use of both 3D visualization and devices with touch displays is increasing. In this paper, we focused on the Web technologies for 3D visualization of spatial data and its interaction via touch screen gestures. At the first stage, we compared the support of touch interaction in selected JavaScript libraries on different hardware (desktop PCs with touch screens, tablets, and smartphones) and software platforms. Afterward, we realized simple empiric test (within-subject design, 6 participants, 2 simple tasks, LCD touch monitor Acer and digital terrain models as stimuli) focusing on the ability of users to solve simple spatial tasks via touch screens. An in-house testing web tool was developed and used based on JavaScript, PHP, and X3DOM languages and Hammer.js libraries. The correctness of answers, speed of users' performances, used gestures, and a simple gesture metric was recorded and analysed. Preliminary results revealed that the pan gesture is most frequently used by test participants and it is also supported by the majority of 3D libraries. Possible gesture metrics and future developments including the interpersonal differences are discussed in the conclusion.
Parental Reports on Touch Screen Use in Early Childhood
Cristia, Alejandrina; Seidl, Amanda
2015-01-01
Touch screens are increasingly prevalent, and anecdotal evidence suggests that young children are very drawn towards them. Yet there is little data regarding how young children use them. A brief online questionnaire queried over 450 French parents of infants between the ages of 5 and 40 months on their young child’s use of touch-screen technology. Parents estimated frequency of use, and further completed several checklists. Results suggest that, among respondent families, the use of touch screens is widespread in early childhood, meaning that most children have some exposure to touch screens. Among child users, certain activities are more frequently reported to be liked than others, findings that we discuss in light of current concern for children’s employment of time and the cognitive effects of passive media exposure. Additionally, these parental reports point to clear developmental trends for certain types of interactive gestures. These results contribute to the investigation of touch screen use on early development and suggest a number of considerations that should help improve the design of applications geared towards toddlers, particularly for scientific purposes. PMID:26083848
ERIC Educational Resources Information Center
O'Connor, Jane; Fotakopoulou, Olga
2016-01-01
The rise in personal ownership of touch-screen technology such as iPads and smartphones in the UK in recent years has led to the increasing use of such technology by babies and very young children. This article explores this practice via an online parental survey with 226 UK parents of children aged 0-3 years within the context of the current…
Li, Hui; Hsueh, Yeh; Wang, Fuxing; Bai, Xuejun; Liu, Tao; Zhou, Li
2017-01-01
Research shows that preschoolers are likely to anthropomorphize not only animals, but also inanimate toy after being exposed to books that personify these objects. Can such an effect also arise through young children’s use of touch-screen games? The present study is the first to examine whether playing a touch-screen personified train game affects young children’s anthropomorphism of real trains. Seventy-nine 4- and 6-year-old children were randomly assigned to play either a touch-screen game or a board game of Thomas the Tank Engine for 10 min. They completed the Individual Differences in Anthropomorphism Questionnaire–Child Form (IDAQ-CF) (two subscales: Technology/Inanimate Nature, Animate Nature) and an additional four items about the anthropomorphism of real trains, before (T1) and after (T2) the game. Overall results showed that children manifested a small but statistically significant increase in anthropomorphizing of real trains after their exposure to both games, claiming that real trains were like humans. Interestingly, 4-year-old children in the board game group tended to anthropomorphize real trains more than those in the touch-screen group, whereas the reverse was true for the 6-year-old children. The results suggest that touch-screen games may delay the decline of children’s anthropomorphism during the cognitive and socio-emotional transition that occurs in children aged 5–7. These findings have implications for future research on how touch-screen games increase children’s anthropomorphism of the real world, and more generally, for evaluation of the influence of the growing use of touch-screen games on young children’s learning. PMID:28179891
ERIC Educational Resources Information Center
McCollum, Brett M.; Regier, Lisa; Leong, Jaque; Simpson, Sarah; Sterner, Shayne
2014-01-01
The impact of touch-screen technology on spatial cognitive skills as related to molecular geometries was assessed through 102 one-on-one interviews with undergraduate students. Participants were provided with either printed 2D ball-and-stick images of molecules or manipulable projections of 3D molecular structures on an iPad. Following a brief…
Feasibility of using touch screen technology for early cognitive assessment in children.
Twomey, Deirdre M; Wrigley, Conal; Ahearne, Caroline; Murphy, Raegan; De Haan, Michelle; Marlow, Neil; Murray, Deirdre M
2018-03-13
To explore the feasibility of using a touch screen assessment tool to measure cognitive capacity in toddlers. 112 typically developing children with a median age of 31 months (IQR: 26-34) interacted with a touch screen cognitive assessment tool. We examined the sensitivity of the tool to age-related changes in cognition by comparing the number of items completed, speed of task completion and accuracy in two age groups; 24-29 months versus 30-36 months. Children aged 30-36 months completed more tasks (median: 18, IQR: 18-18) than those aged 24-29 months (median: 17, IQR: 15-18). Older children also completed two of the three working memory tasks and an object permanence task faster than their younger peers. Children became faster at completing the working memory items with each exposure and registered similar completion times on the hidden object retrieval items, despite task demands being twofold on the second exposure. A novel item required children to integrate what they had learnt on preceding items. The older group was more likely to complete this item and to do so faster than the younger group. Children as young as 24 months can complete items requiring cognitive engagement on a touch screen device, with no verbal instruction and minimal child-administrator interaction. This paves the way for using touch screen technology for language and administrator independent developmental assessment in toddlers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub
2017-04-25
Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.
Optical touch sensing: practical bounds for design and performance
NASA Astrophysics Data System (ADS)
Bläßle, Alexander; Janbek, Bebart; Liu, Lifeng; Nakamura, Kanna; Nolan, Kimberly; Paraschiv, Victor
2013-02-01
Touch sensitive screens are used in many applications ranging in size from smartphones and tablets to display walls and collaborative surfaces. In this study, we consider optical touch sensing, a technology best suited for large-scale touch surfaces. Optical touch sensing utilizes cameras and light sources placed along the edge of the display. Within this framework, we first find a sufficient number of cameras necessary for identifying a convex polygon touching the screen, using a continuous light source on the boundary of a circular domain. We then find the number of cameras necessary to distinguish between two circular objects in a circular or rectangular domain. Finally, we use Matlab to simulate the polygonal mesh formed from distributing cameras and light sources on a circular domain. Using this, we compute the number of polygons in the mesh and the maximum polygon area to give us information about the accuracy of the configuration. We close with summary and conclusions, and pointers to possible future research directions.
MTVis: tree exploration using a multitouch interface
NASA Astrophysics Data System (ADS)
Andrews, David; Teoh, Soon Tee
2010-01-01
We present MTVis, a multi-touch interactive tree visualization system. The multi-touch interface display hardware is built using the LED-LP technology, and the tree layout is based on RINGS, but enhanced with multitouch interactions. We describe the features of the system, and how the multi-touch interface enhances the user's experience in exploring the tree data structure. In particular, the multi-touch interface allows the user to simultaneously control two child nodes of the root, and rotate them so that some nodes are magnified, while preserving the layout of the tree. We also describe the other meaninful touch screen gestures the users can use to intuitively explore the tree.
The design of light pipe with microstructures for touch screen
NASA Astrophysics Data System (ADS)
Yang, Bo; Lu, Kan; Liu, Pengfei; Wei, Xiaona
2010-11-01
Touch screen has a very wide range of applications. Most of them are used in public information inquiries, for instance, service inquiries in telecommunication bureau, tax bureau, bank system, electric department, etc...Touch screen can also be used for entertainment and virtual reality applications too. Traditionally, touch screen was composed of pairs of infrared LED and correspondent receivers which were all installed in the screen frame. Arrays of LED were set in the adjacent sides of the frame of an infrared touch screen while arrays of the infrared receivers were fixed in each opposite side, so that the infrared detecting network was formed. While the infrared touch screen has some technical limitations nowadays such as the low resolution, limitations of touching methods and fault response due to environmental disturbances. The plastic material has a relatively high absorption rate for infrared light, which greatly limits the size of the touch screen. Our design uses laser diode as source and change the traditional inner structure of touch screen by using a light pipe with microstructures. The geometric parameters of the light pipe and the microstructures were obtained through equation solving. Simulation results prove that the design method for touch screen proposed in this paper could achieve high resolution and large size of touch screen.
Lindsay, Joseph; McLean, J Allen; Bains, Amrita; Ying, Tom; Kuo, M H
2013-01-01
Computer devices using touch-enabled technology are becoming more prevalent today. The application of a touch screen high definition surgical monitor could allow not only high definition video from an endoscopic camera to be displayed, but also the display and interaction with relevant patient and health related data. However, this technology has not been quickly embraced by all health care organizations. Although traditional keyboard or mouse-based software programs may function flawlessly on a touch-based device, many are not practical due to the usage of small buttons, fonts and very complex menu systems. This paper describes an approach taken to overcome these problems. A real case study was used to demonstrate the novelty and efficiency of the proposed method.
Brammer, C; Dawson, D; Joseph, M; Tipper, J; Jemmet, T; Liew, L; Spinou, C; Grew, N; Pigadas, N; Rehman, K
2017-05-01
This study aimed to assess head and neck cancer patient satisfaction with the use of a touch-screen computer patient-completed questionnaire for assessing Adult Co-morbidity Evaluation 27 co-morbidity scores prior to treatment, along with its clinical reliability. A total of 96 head and neck cancer patients were included in the audit. An accurate Adult Co-morbidity Evaluation 27 co-morbidity score was achieved via patient-completed questionnaire assessment for 97 per cent of participants. In all, 96 per cent of patients found the use of a touch-screen computer acceptable and would be willing to use one again, and 62 per cent would be willing to do so without help. Patients were more likely to be willing to use the computer again without help if they were aged 65 years or younger (χ2 test; p = 0.0054) or had a performance status of 0 or 1 (χ2 test; p = 0.00034). Use of a touch-screen computer is an acceptable approach for assessing Adult Co-morbidity Evaluation 27 scores at pre-treatment assessment in a multidisciplinary joint surgical-oncology clinic.
Design of Plant Eco-physiology Monitoring System Based on Embedded Technology
NASA Astrophysics Data System (ADS)
Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu
A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.
Bacterial contamination of computer touch screens.
Gerba, Charles P; Wuollet, Adam L; Raisanen, Peter; Lopez, Gerardo U
2016-03-01
The goal of this study was to determine the occurrence of opportunistic bacterial pathogens on the surfaces of computer touch screens used in hospitals and grocery stores. Opportunistic pathogenic bacteria were isolated on touch screens in hospitals; Clostridium difficile and vancomycin-resistant Enterococcus and in grocery stores; methicillin-resistant Staphylococcus aureus. Enteric bacteria were more common on grocery store touch screens than on hospital computer touch screens. Published by Elsevier Inc.
Pitchford, Nicola J; Outhwaite, Laura A
2016-01-01
Assessment of cognitive and motor functions is fundamental for developmental and neuropsychological profiling. Assessments are usually conducted on an individual basis, with a trained examiner, using standardized paper and pencil tests, and can take up to an hour or more to complete, depending on the nature of the test. This makes traditional standardized assessments of child development largely unsuitable for use in low-income countries. Touch screen tablets afford the opportunity to assess cognitive functions in groups of participants, with untrained administrators, with precision recording of responses, thus automating the assessment process. In turn, this enables cognitive profiling to be conducted in contexts where access to qualified examiners and standardized assessments are rarely available. As such, touch screen assessments could provide a means of assessing child development in both low- and high-income countries, which would afford cross-cultural comparisons to be made with the same assessment tool. However, before touch screen tablet assessments can be used for cognitive profiling in low-to-high-income countries they need to be shown to provide reliable and valid measures of performance. We report the development of a new touch screen tablet assessment of basic cognitive and motor functions for use with early years primary school children in low- and high-income countries. Measures of spatial intelligence, visual attention, short-term memory, working memory, manual processing speed, and manual coordination are included as well as mathematical knowledge. To investigate if this new touch screen assessment tool can be used for cross-cultural comparisons we administered it to a sample of children ( N = 283) spanning standards 1-3 in a low-income country, Malawi, and a smaller sample of children ( N = 70) from first year of formal schooling from a high-income country, the UK. Split-half reliability, test-retest reliability, face validity, convergent construct validity, predictive criterion validity, and concurrent criterion validity were investigated. Results demonstrate "proof of concept" that touch screen tablet technology can provide reliable and valid psychometric measures of performance in the early years, highlighting its potential to be used in cross-cultural comparisons and research.
Ross, Kirsty M.; Pye, Rachel E.; Randell, Jordan
2016-01-01
Touch screen storybooks turn reading into an interactive multimedia experience, with hotspot-activated animations, sound effects, and games. Positive and negative effects of reading multimedia stories have been reported, but the underlying mechanisms which explain how children’s learning is affected remain uncertain. The present study examined the effect of storybook format (touch screen and print) on story comprehension, and considered how level of touch screen interactivity (high and low) and shared reading behaviors (cognitive and emotional scaffolding, emotional engagement) might contribute to comprehension. Seven-year-olds (n = 22) were observed reading one touch screen storybook and one print storybook with their mothers. Story comprehension was inferior for the touch screen storybooks compared to the print formats. Touch screen interactivity level had no significant effect on comprehension but did affect shared reading behaviors. The mother–child dyads spent less time talking about the story in the highly interactive touch screen condition, despite longer shared reading sessions because of touch screen interactions. Positive emotional engagement was greater for children and mothers in the highly interactive touch screen condition, due to additional positive emotions expressed during touch screen interactions. Negative emotional engagement was greater for children when reading and talking about the story in the highly interactive condition, and some mothers demonstrated negative emotional engagement with the touch screen activities. The less interactive touch screen storybook had little effect on shared reading behaviors, but mothers controlling behaviors were more frequent. Storybook format had no effect on the frequency of mothers’ cognitive scaffolding behaviors (comprehension questions, word help). Relationships between comprehension and shared reading behaviors were examined for each storybook, and although length of the shared reading session and controlling behaviors had significant effects on comprehension, the mechanisms driving comprehension were not fully explained by the data. The potential for touch screen storybooks to contribute to cognitive overload in 7-year-old developing readers is discussed, as is the complex relationship between cognitive and emotional scaffolding behaviors, emotional engagement, and comprehension. Sample characteristics and methodological limitations are also discussed to help inform future research. PMID:27899903
Children's Learning from Touch Screens: A Dual Representation Perspective.
Sheehan, Kelly J; Uttal, David H
2016-01-01
Parents and educators often expect that children will learn from touch screen devices, such as during joint e-book reading. Therefore an essential question is whether young children understand that the touch screen can be a symbolic medium - that entities represented on the touch screen can refer to entities in the real world. Research on symbolic development suggests that symbolic understanding requires that children develop dual representational abilities, meaning children need to appreciate that a symbol is an object in itself (i.e., picture of a dog) while also being a representation of something else (i.e., the real dog). Drawing on classic research on symbols and new research on children's learning from touch screens, we offer the perspective that children's ability to learn from the touch screen as a symbolic medium depends on the effect of interactivity on children's developing dual representational abilities. Although previous research on dual representation suggests the interactive nature of the touch screen might make it difficult for young children to use as a symbolic medium, the unique interactive affordances may help alleviate this difficulty. More research needs to investigate how the interactivity of the touch screen affects children's ability to connect the symbols on the screen to the real world. Given the interactive nature of the touch screen, researchers and educators should consider both the affordances of the touch screen as well as young children's cognitive abilities when assessing whether young children can learn from it as a symbolic medium.
Toddlers and Touch Screens: Potential for Early Learning?
ERIC Educational Resources Information Center
Kirkorian, Heather L.; Pempek, Tiffany A.
2013-01-01
As interactive screens (e.g., tablet computers, smartphones) continue to enter the homes of young children, it becomes increasingly important to understand the impact of these technologies on development. Some studies suggest that while traditional television and videos hold little educational value for toddlers, young children may be able to…
Toddlers' Word Learning from Contingent and Noncontingent Video on Touch Screens
ERIC Educational Resources Information Center
Kirkorian, Heather L.; Choi, Koeun; Pempek, Tiffany A.
2016-01-01
Researchers examined whether contingent experience using a touch screen increased toddlers' ability to learn a word from video. One hundred and sixteen children (24-36 months) watched an on-screen actress label an object: (a) without interacting, (b) with instructions to touch "anywhere" on the screen, or (c) with instructions to touch a…
ERIC Educational Resources Information Center
Ben-Sasson, Ayelet; Lamash, Liron; Gal, Eynat
2013-01-01
The goal of this study was to examine whether a technological touch activated Collaborative Puzzle Game (CPG) increased positive social behaviors in children with high functioning autism spectrum disorder (HFASD). The CPG involved construction of a virtual puzzle by selecting and dragging pieces into the solution area on a touch screen table. The…
Examining the Usability of Touch Screen Gestures for Older and Younger Adults.
Gao, Qin; Sun, Qiqi
2015-08-01
We examined the usability issues associated with four touch screen gestures (clicking, dragging, zooming, and rotating) among older and younger users. It is especially important to accommodate older users' characteristics to ensure the accessibility of information and services that are important to their quality of life. Forty older and 40 younger participants completed four experiments, each of which focused on one gesture. The effects of age, type of touch screen (surface acoustic wave vs. optical), inclination angle (30°, 45°, 60°, and 75°), and user interface factors (clicking: button size and spacing; dragging: dragging direction and distance; zooming: design of zooming gesture; rotating: design of rotating gesture) on user performance and satisfaction were examined. Button sizes that are larger than 15.9 × 9.0 mm led to better performance and higher satisfaction. The effect of spacing was significant only when the button size was notably small or large. Rightward and downward dragging were preferred to leftward and upward dragging, respectively. The younger participants favored direct manipulation gestures using multiple fingers, whereas the older participants preferred the click-to design. The older participants working with large inclination angles of 60° to 75° reported a higher level of satisfaction than the older participants working with smaller angles. We proposed a set of design guidelines for touch screen user interfaces and discussed implications for the selection of appropriate technology and the configuration of the workspace. The implications are useful for the design of large touch screen applications, such as desktop computers, information kiosks, and health care support systems. © 2015, Human Factors and Ergonomics Society.
Effect of Touch Screen Tablet Use on Fine Motor Development of Young Children.
Lin, Ling-Yi; Cherng, Rong-Ju; Chen, Yung-Jung
2017-10-20
To investigate the effects of touch-screen tablet use on the fine motor development of preschool children without developmental delay. 40 children who used a touch-screen tablet more 60 minutes per week for at least 1 month received a 24-week home fine motor activity program using a touch-screen-tablet. 40 children matched for age (mean = 61.0 months) and sex who did not meet the criteria for previous tablet use received a 24-week program consisting of manual play activities. Motor performance was measured using the Bruininks-Oseretsky Test of Motor Proficiency. The two-factor mixed design ANOVA was used to compare performance of the touch-screen tablet and non-touch-screen tablet groups. Pretest analysis showed no group differences in motor performance and pinch strength. At posttest, children in the nontouch-screen-tablet group made significantly greater changes in fine motor precision (p < 0.001), fine motor integration (p = 0.008), and manual dexterity (p = 0.003). Using a touch screen tablet extensively might be disadvantageous for the fine motor development of preschool children.
ERIC Educational Resources Information Center
Hillier, Ashleigh; Greher, Gena; Queenan, Alexa; Marshall, Savannah; Kopec, Justin
2016-01-01
The use of technology in music education is gaining momentum, although very little work has focused on students with disabilities. Our "SoundScape" programme addressed this gap through implementing a technology-based music programme for adolescents and young adults with autism spectrum disorders (ASD). Programme participants met on a…
Shared Cognition Facilitated by Teacher Use of Interactive Whiteboard Technologies
ERIC Educational Resources Information Center
Redman, Christine; Vincent, John
2014-01-01
This paper reports on a study designed to examine the dialogic processes teachers used to sustain focused discussions, using questioning techniques and Interactive Whiteboards (IWBs). IWBs and their related technologies such as plasma touch screens and projected tablets have passed through several phases of implementation as classroom objects,…
Paper-based piezoelectric touch pads with hydrothermally grown zinc oxide nanowires.
Li, Xiao; Wang, Yu-Hsuan; Zhao, Chen; Liu, Xinyu
2014-12-24
This paper describes a new type of paper-based piezoelectric touch pad integrating zinc oxide nanowires (ZnO NWs), which can serve as user interfaces in paper-based electronics. The sensing functionality of these touch pads is enabled by the piezoelectric property of ZnO NWs grown on paper using a simple, cost-efficient hydrothermal method. A piece of ZnO-NW paper with two screen-printed silver electrodes forms a touch button, and touch-induced electric charges from the button are converted into a voltage output using a charge amplifier circuit. A touch pad consisting of an array of buttons can be readily integrated into paper-based electronic devices, allowing user input of information for various purposes such as programming, identification checking, and gaming. This novel design features ease of fabrication, low cost, ultrathin structure, and good compatibility with techniques in printed electronics, and further enriches the available technologies of paper-based electronics.
Touch-screen computerized education for patients with brain injuries.
Patyk, M; Gaynor, S; Kelly, J; Ott, V
1998-01-01
The use of computer technology for patient education has increased in recent years. This article describes a study that measures the attitudes and perceptions of healthcare professionals and laypeople regarding the effectiveness of a multimedia computer, the Brain Injury Resource Center (BIRC), as an educational tool. The study focused on three major themes: (a) usefulness of the information presented, (b) effectiveness of the multimedia touch-screen computer methodology, and (c) the appropriate time for making this resource available. This prospective study, conducted in an acute care medical center, obtained healthcare professionals' evaluations using a written survey and responses from patients with brain injury and their families during interviews. The findings have yielded excellent ratings as to the ease of understanding and usefulness of the BIRC. By using sight, sound, and touch, such a multimedia learning center has the potential to simplify patient and family education.
NASA Astrophysics Data System (ADS)
Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David
2013-04-01
Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.
Intentional Planning to Provide Technology to Students
ERIC Educational Resources Information Center
Flagg-Williams, Joan B.; Rey, Janice M.
2016-01-01
Mobile technology plays a prominent role in teaching and learning. To address this vital component of teacher preparation, the education department of a small college provided the freshman class with iPads. iPads were selected because they are common in public schools, lightweight, portable, touch-screen controlled and have an abundance of…
Displays: Entering a New Dimension
ERIC Educational Resources Information Center
Starkman, Neal
2007-01-01
As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…
Smaradottir, Berglind; Håland, Jarle; Martinez, Santiago
2017-01-01
A mobile device's touchscreen allows users to use a choreography of hand gestures to interact with the user interface. A screen reader on a mobile device is designed to support the interaction of visually disabled users while using gestures. This paper presents an evaluation of VoiceOver, a screen reader in Apple Inc. products. The evaluation was a part of the research project "Visually impaired users touching the screen - a user evaluation of assistive technology".
Suzuki, Eiji; Mackenzie, Lisa; Sanson-Fisher, Robert; Carey, Mariko; D'Este, Catherine; Asada, Hiromi; Toi, Masakazu
2016-08-01
Studies in western clinical settings suggest that touch screen computer surveys are an acceptable mode of collecting information about cancer patients' wellbeing We examined the acceptability of a touch screen tablet survey among cancer patients in Japan. Eligible patients (n = 262) attending a university hospital radiation therapy (RT) department were invited to complete a touch screen tablet survey about psychosocial communication and care. Survey consent and completion rates, the proportion and characteristics of patients who completed the touch screen survey unassisted, and patient-reported acceptability were assessed. Of 158 consenting patients (consent rate 60 % [95 % CI 54, 66 %] of eligible patients), 152 completed the touch screen computer survey (completion rate 58 % [95 % CI 52, 64 %] of eligible patients). The survey was completed without assistance by 74 % (n = 113; 95 % CI 67, 81 %) of respondents. Older age was associated with higher odds of having assistance with survey completion (OR 1.09; 95 % CI 1.04, 1.14 %). Ninety-two percent of patients (95 % CI 86, 96 %) felt that the touch screen survey was easy to use and 95 % (95 % CI 90, 98 %) agreed or strongly agreed that they were comfortable answering the questions. Overall, 65 % (95 % CI 57, 73 %) of respondents would be willing to complete such a survey more than once while waiting for RT treatment. Although patient self-reported acceptability of the touch screen survey was high, self-administered touch screen tablet surveys may not be entirely appropriate for older cancer patients or possibly for patients with lower educational attainment.
Display Techniques for Advanced Crew Stations (DTACS). Phase 1. Display Techniques Study.
1984-03-01
26 3.1.3 Off Screen Displays .. ................... 27 3.1.4 Flat Panel Displays. .. ................. 27 3.2 FORMAT REQUIREMENTS...Head-Up Display ....... .................... ... 96 4.5.2 Display Panel .... ................. 98 4.5.3 RGB Calligraphic Display ................ 99...117 3.4 VOICE WARNING/RESPONSE TECHNOLOGY .............. . i.117 5.5 TOUCH PANEL TECHNOLOGY ..... ................ ... 118 5.6
The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters.
Zack, Elizabeth; Barr, Rachel
2016-01-01
Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a two-dimensional (2D) screen and three-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 min to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa). Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants' learning.
The Role of Interactional Quality in Learning from Touch Screens during Infancy: Context Matters
Zack, Elizabeth; Barr, Rachel
2016-01-01
Interactional quality has been shown to enhance learning during book reading and play, but has not been examined during touch screen use. Learning to apply knowledge from a touch screen is complex for infants because it involves transfer of learning between a two-dimensional (2D) screen and three-dimensional (3D) object in the physical world. This study uses a touch screen procedure to examine interactional quality measured via maternal structuring, diversity of maternal language, and dyadic emotional responsiveness and infant outcomes during a transfer of learning task. Fifty 15-month-old infants and their mothers participated in this semi-naturalistic teaching task. Mothers were given a 3D object, and a static image of the object presented on a touch screen. Mothers had 5 min to teach their infant that a button on the real toy works in the same way as a virtual button on the touch screen (or vice versa). Overall, 64% of infants learned how to make the button work, transferring learning from the touch screen to the 3D object or vice versa. Infants were just as successful in the 3D to 2D transfer direction as they were in the 2D to 3D transfer direction. A cluster analysis based on emotional responsiveness, the proportion of diverse maternal verbal input, and amount of maternal structuring resulted in two levels of interactional quality: high quality and moderate quality. A logistic regression revealed the level of interactional quality predicted infant transfer. Infants were 19 times more likely to succeed and transfer learning between the touch screen and real object if they were in a high interactional quality dyad, even after controlling for infant activity levels. The present findings suggest that interactional quality between mother and infant plays an important role in making touch screens effective teaching tools for infants’ learning. PMID:27625613
ERIC Educational Resources Information Center
Guernsey, Lisa
2012-01-01
Touch-screen technologies, on-demand multimedia, and mobile devices are prompting a rethinking of education. In a world of increasing fiscal constraints, state leaders are under pressure to capitalize on these new technologies to improve productivity and help students excel. The task is daunting across the education spectrum, but for those in…
Understanding and Creating Accessible Touch Screen Interactions for Blind People
ERIC Educational Resources Information Center
Kane, Shaun K.
2011-01-01
Using touch screens presents a number of usability and accessibility challenges for blind people. Most touch screen-based user interfaces are optimized for visual interaction, and are therefore difficult or impossible to use without vision. This dissertation presents an approach to redesigning gesture-based user interfaces to enable blind people…
ERIC Educational Resources Information Center
Kim, Heejoo; Chacko, Priya; Zhao, Jinhui; Montclare, Jin Kim
2014-01-01
As part of an outreach program, we integrated chemistry apps with blogging to enhance the learning experience of students in and outside the classroom. Our outreach program involved college mentors who participated in the development and implementation of chemistry lessons alongside the classroom teacher. Three technology-rich modules that focused…
ERIC Educational Resources Information Center
Pellerin, Martine
2014-01-01
This article examines how the use of mobile technologies (iPods and tablets) in language classrooms contributes to redesigning task-based approaches for young language learners. The article is based on a collaborative action research (CAR) project in Early French Immersion classrooms in the province of Alberta, Canada. The data collection included…
ERIC Educational Resources Information Center
Alqahtani, Abdullah; Alqahtani, Fatimah; Alqurashi, Mohammed
2017-01-01
Digital technologies have revolutionized the way people acquire information and gain new knowledge. With a click or touch on the screen, anybody who is online can sail in the digital world and accomplish many things. As such, the optimal use of information and communication technology involves user comprehension, knowledge, and awareness of…
Qu, Zhenhong; Ghorbani, Rhonda P; Li, Hongyan; Hunter, Robert L; Hannah, Christina D
2007-03-01
Gross examination, encompassing description, dissection, and sampling, is a complex task and an essential component of surgical pathology. Because of the complexity of the task, standardized protocols to guide the gross examination often become a bulky manual that is difficult to use. This problem is further compounded by the high specimen volume and biohazardous nature of the task. As a result, such a manual is often underused, leading to errors that are potentially harmful and time consuming to correct-a common chronic problem affecting many pathology laboratories. To combat this problem, we have developed a simple method that incorporates complex text and graphic information of a typical procedure manual and yet allows easy access to any intended instructive information in the manual. The method uses the Object-Linking-and-Embedding function of Microsoft Word (Microsoft, Redmond, WA) to establish hyperlinks among different contents, and then it uses the touch screen technology to facilitate navigation through the manual on a computer screen installed at the cutting bench with no need for a physical keyboard or a mouse. It takes less than 4 seconds to reach any intended information in the manual by 3 to 4 touches on the screen. A 3-year follow-up study shows that this method has increased use of the manual and has improved the quality of gross examination. The method is simple and can be easily tailored to different formats of instructive information, allowing flexible organization, easy access, and quick navigation. Increased compliance to instructive information reduces errors at the grossing bench and improves work efficiency.
ERIC Educational Resources Information Center
Bullock, Christopher E.; Myers, Todd M.
2009-01-01
Acquisition and maintenance of touch-screen responding was examined in naive cynomolgus monkeys ("Macaca fascicularis") under automaintenance and classical conditioning arrangements. In the first condition of Experiment 1, we compared acquisition of screen touching to a randomly positioned stimulus (a gray square) that was either stationary or…
Young Children Learning from Touch Screens: Taking a Wider View
Lovato, Silvia B.; Waxman, Sandra R.
2016-01-01
Touch screen devices such as smartphones and tablets are now ubiquitous in the lives of American children. These devices permit very young children to engage interactively in an intuitive fashion with actions as simple as touching, swiping and pinching. Yet, we know little about the role these devices play in very young children’s lives or their impact on early learning and development. Here we focus on two areas in which existing research sheds some light on these issues with children under 3 years of age. The first measures transfer of learning, or how well children use information learned from screens to reason about events off-screen, using object retrieval and word learning tasks. The second measures the impact of interactive screens on parent-child interactions and story comprehension during reading time. More research is required to clarify the pedagogical potential and pitfalls of touch screens for infants and very young children, especially research focused on capabilities unique to touch screens and on the social and cultural contexts in which young children use them. PMID:27486421
Social Touch Technology: A Survey of Haptic Technology for Social Touch.
Huisman, Gijs
2017-01-01
This survey provides an overview of work on haptic technology for social touch. Social touch has been studied extensively in psychology and neuroscience. With the development of new technologies, it is now possible to engage in social touch at a distance or engage in social touch with artificial social agents. Social touch research has inspired research into technology mediated social touch, and this line of research has found effects similar to actual social touch. The importance of haptic stimulus qualities, multimodal cues, and contextual factors in technology mediated social touch is discussed. This survey is concluded by reflecting on the current state of research into social touch technology, and providing suggestions for future research and applications.
Technology Immersion: New Tools in the Hands of Well-Trained Staff Transform Teaching and Learning
ERIC Educational Resources Information Center
Peterson, Dennis L.
2005-01-01
This article discusses the technology immersion in the Minnetonka, Minn., School District. Imagine walking into a classroom where the teacher uses his finger on a giant touch screen to maneuver website data or diagram a sentence. Imagine every student in the class--even the one who hasn't spoken all semester--holding a response device to give the…
NASA Astrophysics Data System (ADS)
Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Cabibihan, John-John; Yoon, W. Jong; Kumar, Bijandra
2016-04-01
The ongoing revolution in touch panel technology and electronics demands the need for thin films, which are flexible, stretchable, conductive, and highly touch responsive. In this regard, conductive elastomer nanocomposites offer potential solutions for these stipulations; however, viability is limited to the poor dispersion of conductive nanomaterials such as graphene into the matrix. Here, we fabricated a reduced graphene oxide (rGO) and poly(dimethylsiloxane) (PDMS) elastomer based transparent and flexible conductive touch responsive film by dispersing rGO honeycombs uniformly into PDMS elastomer through an ionic liquid (IL) modification. Pursuing a simple, scalable, and safe method of solution casting, this provides a versatile and creative design of a transparent and stretchable rGO/IL-PDMS capacitive touch responsive, where rGO acts as a sensing element. This transparent film with ˜70% transmittance exhibits approximately a five times faster response in comparison to rGO/PDMS film, with negligible degradation over time. The performance of this touch screen film is expected to have applications in the emerging field of foldable electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Cabibihan, John-John
The ongoing revolution in touch panel technology and electronics demands the need for thin films, which are flexible, stretchable, conductive, and highly touch responsive. In this regard, conductive elastomer nanocomposites offer potential solutions for these stipulations; however, viability is limited to the poor dispersion of conductive nanomaterials such as graphene into the matrix. Here, we fabricated a reduced graphene oxide (rGO) and poly(dimethylsiloxane) (PDMS) elastomer based transparent and flexible conductive touch responsive film by dispersing rGO honeycombs uniformly into PDMS elastomer through an ionic liquid (IL) modification. Pursuing a simple, scalable, and safe method of solution casting, this provides amore » versatile and creative design of a transparent and stretchable rGO/IL-PDMS capacitive touch responsive, where rGO acts as a sensing element. This transparent film with ∼70% transmittance exhibits approximately a five times faster response in comparison to rGO/PDMS film, with negligible degradation over time. The performance of this touch screen film is expected to have applications in the emerging field of foldable electronics.« less
Coding & Robotics for Young Children? You Bet!
ERIC Educational Resources Information Center
Gadzikowski, Ann
2016-01-01
In 2012, the National Association for the Education of Young Children (NAEYC) revised its position statement regarding the appropriate use of technology in early childhood classrooms. The increased accessibility of touch screens on tablets and smart phones led to this revision, which moves the conversation from the question of "When shall we…
Multisensory Modalities for Blending and Segmenting among Early Readers
ERIC Educational Resources Information Center
Lee, Lay Wah
2016-01-01
With the advent of touch-screen interfaces on the tablet computer, multisensory elements in reading instruction have taken on a new dimension. This computer assisted language learning research aimed to determine whether specific technology features of a tablet computer can add to the functionality of multisensory instruction in early reading…
Improving Learning Outcomes: The iPad and Preschool Children with Disabilities
Chmiliar, Linda
2017-01-01
The digital age has reached early childhood, and the use of touch screens by young children is common place. Research on the use of touch screen tablets with young children is becoming more prevalent; however, less information is available on the use of touch screen tablets to support young children with disabilities. Touch screen tablets may offer possibilities to preschool children with disabilities to participate in learning in a digital way. The iPad provides easy interaction on the touch screen and access to a multitude of engaging early learning applications. This paper summarizes a pilot study with 8 young children with disabilities included in a preschool classroom, who were given iPads to use in class and at home for a period of 21 weeks. Systematic observations, classroom assessments, and teacher and parent interviews documented the improvements in learning outcomes for each child in many areas including, but not limited to: shape and color recognition, letter recognition, and tracing letters throughout six research cycles. PMID:28529493
Improving Learning Outcomes: The iPad and Preschool Children with Disabilities.
Chmiliar, Linda
2017-01-01
The digital age has reached early childhood, and the use of touch screens by young children is common place. Research on the use of touch screen tablets with young children is becoming more prevalent; however, less information is available on the use of touch screen tablets to support young children with disabilities. Touch screen tablets may offer possibilities to preschool children with disabilities to participate in learning in a digital way. The iPad provides easy interaction on the touch screen and access to a multitude of engaging early learning applications. This paper summarizes a pilot study with 8 young children with disabilities included in a preschool classroom, who were given iPads to use in class and at home for a period of 21 weeks. Systematic observations, classroom assessments, and teacher and parent interviews documented the improvements in learning outcomes for each child in many areas including, but not limited to: shape and color recognition, letter recognition, and tracing letters throughout six research cycles.
Kim, Jeonghee; Park, Hangue; Ghovanloo, Maysam
2014-01-01
Tongue Drive System (TDS) is a wireless and wearable assistive technology (AT) that enables people with severe disabilities to control their computers, wheelchairs, and electronic gadgets using their tongue motion. We developed the TDS to control smartphone's (iPhone/iPod Touch) built-in and downloadable apps with a customized Bluetooth mouse module by emulating finger taps on the touchscreen. The TDS-iPhone Bluetooth mouse interface was evaluated by four able-bodied subjects to complete a scenario consisting of seven tasks, which were randomly ordered by using touch on the iPhone screen with index finger, a computer mouse on iPhone, and TDS-iPhone Bluetooth mouse interface with tongue motion. Preliminary results show that the average completion times of a scenario with touch, mouse, and TDS are 165.6 ± 14.50 s, 186.1 ± 15.37 s, and 651.6 ± 113.4 s, respectively, showing that the TDS is 84.37% and 81.16% slower than touch and mouse for speed of typing with negligible errors. Overall, considering the limited number of commands and unfamiliarity of the subjects with the TDS, we achieved acceptable results for hands-free functionality. PMID:23366818
Kim, Jeonghee; Park, Hangue; Ghovanloo, Maysam
2012-01-01
Tongue Drive System (TDS) is a wireless and wearable assistive technology (AT) that enables people with severe disabilities to control their computers, wheelchairs, and electronic gadgets using their tongue motion. We developed the TDS to control smartphone's (iPhone/iPod Touch) built-in and downloadable apps with a customized Bluetooth mouse module by emulating finger taps on the touchscreen. The TDS-iPhone Bluetooth mouse interface was evaluated by four able-bodied subjects to complete a scenario consisting of seven tasks, which were randomly ordered by using touch on the iPhone screen with index finger, a computer mouse on iPhone, and TDS-iPhone Bluetooth mouse interface with tongue motion. Preliminary results show that the average completion times of a scenario with touch, mouse, and TDS are 165.6 ± 14.50 s, 186.1 ± 15.37 s, and 651.6 ± 113.4 s, respectively, showing that the TDS is 84.37% and 81.16% slower than touch and mouse for speed of typing with negligible errors. Overall, considering the limited number of commands and unfamiliarity of the subjects with the TDS, we achieved acceptable results for hands-free functionality.
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Parrish, Russell V.
1990-01-01
A piloted simulation study was conducted comparing three different input methods for interfacing to a large screen, multiwindow, whole flight deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side arm controller. The multifunction control throttle and stick (MCTAS) concept employed a thumb switch located in the throttle handle. The touch screen concept provided data entry through a capacitive touch screen installed on the display surface. The objective and subjective results obtained indicate that, with present implementations, the thumball concept was the most appropriate for interfacing with aircraft systems/subsystems presented on a large screen display. Not unexpectedly, the completion time differences between the three concepts varied with the task being performed, although the thumball implementation consistently outperformed the other two concepts. However, pilot suggestions for improved implementations of the MCTAS and touch screen concepts could reduce some of these differences.
Interactive Whiteboards and Implications for Use in Education
ERIC Educational Resources Information Center
Gibson, Danita C.
2013-01-01
Interactive whiteboards (IWBs) have increasingly become a technology tool used in the educational field. IWBs are touch-sensitive screens that work in conjunction with a computer and a projector, and which are used to display information from a computer. As a qualitative case study, this study investigated the SMART Board-infused instructional…
Design of an interactive digital nutritional education package for elderly people.
Ali, Nazlena Mohamad; Shahar, Suzana; Kee, You Lee; Norizan, Azir Rezha; Noah, Shahrul Azman Mohd
2012-12-01
Designing a system for the elderly is crucial, as aging is associated with physiological changes that may impair perception, cognition and other social aspects; therefore, many aspects need consideration, especially in interface design. This study was conducted to develop a digital nutritional education package (WE Sihat) by following appropriate guidelines for elderly people to achieve better design interface and interaction. Touch-screen technology was used as a platform for user interaction. The nutritional content was based on previous nutrition studies and a lifestyle education package on healthy aging, which contains four modules. The questionnaires were distributed to 31 Malay subjects aged 60-76 years old, containing an evaluation about the overall content, graphics, design layout, colour, font size, audio/video, user-perceived satisfaction and acceptance levels. The findings showed positive feedback and acceptance. Most subjects agreed that the digital nutritional education package can increase their nutritional knowledge for a healthy lifestyle and is easy to use. The touch-screen technology was also well accepted by elderly people and can be used as a kiosk for disseminating nutrition education for healthy aging.
Lamb Wave Multitouch Ultrasonic Touchscreen.
Firouzi, Kamyar; Nikoozadeh, Amin; Carver, Thomas E; Khuri-Yakub, Butrus Pierre T
2016-12-01
Touchscreen sensors are widely used in many devices such as smart phones, tablets, and laptops with diverse applications. We present the design, analysis, and implementation of an ultrasonic touchscreen system that utilizes the interaction of transient Lamb waves with objects in contact with the screen. It attempts to improve on the existing ultrasound technologies, with the potential of addressing some of the weaknesses of the dominant technologies, such as the capacitive or resistive ones. Compared with the existing ultrasonic and acoustic modalities, among other advantages, it provides the capability of detecting several simultaneous touch points and also a more robust performance. The localization algorithm, given the hardware design, can detect several touch points with a very limited number of measurements (one or two). This in turn can significantly reduce the manufacturing cost.
Unusual Nature of Fingerprints and the Implications for Easy-to-Clean Coatings.
Stoehr, Bastian; McClure, Stuart; Höflich, Alexander; Al Kobaisi, Mohammad; Hall, Colin; Murphy, Peter J; Evans, Drew
2016-01-19
Irrespective of the technology, we now rely on touch to interact with devices such as smart phones, tablet computers, and control panels. As a result, touch screen technologies are frequently in contact with body grease. Hence, surface deposition arises from localized inhomogeneous finger-derived contaminants adhering to a surface, impairing the visual/optical experience of the user. In this study, we examined the contamination itself in order to understand its static and dynamic behavior with respect to deposition and cleaning. A process for standardized deposition of fingerprints was developed. Artificial sebum was used in this process to enable reproducibility for quantitative analysis. Fingerprint contamination was shown to be hygroscopic and to possess temperature- and shear-dependent properties. These results have implications for the design of easily cleanable surfaces.
A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators
NASA Astrophysics Data System (ADS)
Ju, Woo-Eon; Moon, Yong-Ju; Park, Cheon-Ho; Choi, Seung Tae
2014-07-01
To provide tactile feedback on flexible touch screens, transparent relaxor ferroelectric polymer film vibrators were designed and fabricated in this study. The film vibrator can be integrated underneath a transparent cover film or glass, and can also produce acoustic waves that cause a tactile sensation on human fingertips. Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer was used as the relaxor ferroelectric polymer because it produces a large strain under applied electric fields, shows a fast response, and has excellent optical transparency. The natural frequency of this tactile-feedback touch screen was designed to be around 200-240 Hz, at which the haptic perception of human fingertips is the most sensitive; therefore, the resonance of the touch screen at its natural frequency provides maximum haptic sensation. A multilayered relaxor ferroelectric polymer film vibrator was also demonstrated to provide the same vibration power at reduced voltage. The flexible P(VDF-TrFE-CTFE) film vibrators developed in this study are expected to provide tactile sensation not only in large-area flat panel displays, but also in flexible displays and touch screens.
Nishimura, T; Doi, K; Fujimoto, H
2015-08-01
Touch-sensitive screen terminals enabling intuitive operation are used as input interfaces in a wide range of fields. Tablet terminals are one of the most common devices with a touch-sensitive screen. They have a feature of good portability, enabling use under various conditions. On the other hand, they require a GUI designed to prevent decrease of usability under various conditions. For example, the angle of fingertip contact with the display changes according to finger posture during operation and how the case is held. When a human fingertip makes contact with an object, the contact area between the fingertip and contact object increases or decreases as the contact angle changes. A touch-sensitive screen detects positions using the change in capacitance of the area touched by the fingertip; hence, differences in contact area between the touch-sensitive screen and fingertip resulting from different forefinger angles during operation could possibly affect operability. However, this effect has never been studied. We therefore conducted an experiment to investigate the relationship between size/spacing and operability, while taking the effect of fingertip contact angle into account. As a result, we have been able to specify the button size and spacing conditions that enable accurate and fast operation regardless of the forefinger contact angle.
Teleoperated robotic sorting system
Roos, Charles E.; Sommer, Jr., Edward J.; Parrish, Robert H.; Russell, James R.
2008-06-24
A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.
Teleoperated robotic sorting system
Roos, Charles E.; Sommer, Edward J.; Parrish, Robert H.; Russell, James R.
2000-01-01
A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.
Social Media in a Content Course for the Digital Natives
ERIC Educational Resources Information Center
Lie, Anita
2013-01-01
Digital technologies and the Internet have revolutionized the way people gather information and acquire new knowledge. With a click of a button or a touch on the screen, any person who is wired to the internet can access a wealth of information, ranging from books, poems, articles, graphics, animations and so much more. It is imperative that…
English-Language Learning at Their Fingertips: How Can Teachers Use Tablets to Teach EFL Children?
ERIC Educational Resources Information Center
Alhinty, Mona
2015-01-01
The emergence of multi-touch screen tablets has increased the opportunities for mobile learning, as the unique capabilities and affordances of these devices give them an educational advantage over other mobile technologies. Tablets are progressively finding their way into classrooms and transforming modes of learning and teaching. However,…
ERIC Educational Resources Information Center
Linder, Sandra M.
2012-01-01
Teachers are using technological innovations--including interactive whiteboards--in pre-K-grade 3 classrooms across the country. An IWB is a wall-mounted, touch-sensitive flat screen. When connected to a computer (or another electronic device) and a projector, it displays enlarged instructional content (such as a math word problem, pictures or…
The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...
Development of high-performance low-reflection rugged resistive touch screens for military displays
NASA Astrophysics Data System (ADS)
Wang, Raymond; Wang, Minshine; Thomas, John; Wang, Lawrence; Chang, Victor
2010-04-01
Just as iPhones with sophisticated touch interfaces have revolutionised the human interface for the ubiquitous cell phone, the Military is rapidly adopting touch-screens as a primary interface to their computers and vehicle systems. This paper describes the development of a true military touch interface solution from an existing industrial design. We will report on successful development of 10.4" and 15.4" high performance rugged resistive touch panels using IAD sputter coating. Low reflectance (specular < 1% and diffuse < 0.07%) was achieved with high impact, dust, and chemical resistant surface finishes. These touch panels were qualified over a wide operational temperature range, -51°C to +80°C specifically for military and rugged industrial applications.
A review of sensing technologies for small and large-scale touch panels
NASA Astrophysics Data System (ADS)
Akhtar, Humza; Kemao, Qian; Kakarala, Ramakrishna
2017-06-01
A touch panel is an input device for human computer interaction. It consists of a network of sensors, a sampling circuit and a micro controller for detecting and locating a touch input. Touch input can come from either finger or stylus depending upon the type of touch technology. These touch panels provide an intuitive and collaborative workspace so that people can perform various tasks with the use of their fingers instead of traditional input devices like keyboard and mouse. Touch sensing technology is not new. At the time of this writing, various technologies are available in the market and this paper reviews the most common ones. We review traditional designs and sensing algorithms for touch technology. We also observe that due to its various strengths, capacitive touch will dominate the large-scale touch panel industry in years to come. In the end, we discuss the motivation for doing academic research on large-scale panels.
Pointing Device Performance in Steering Tasks.
Senanayake, Ransalu; Goonetilleke, Ravindra S
2016-06-01
Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.
A Review of the Use of Touch-Screen Mobile Devices by People with Developmental Disabilities
ERIC Educational Resources Information Center
Stephenson, Jennifer; Limbrick, Lisa
2015-01-01
This article presents a review of the research on the use of mobile touch-screen devices such as PDAs, iPod Touches, iPads and smart phones by people with developmental disabilities. Most of the research has been on very basic use of the devices as speech generating devices, as a means of providing video, pictorial and/or audio self-prompting and…
Mayousse, Céline; Celle, Caroline; Moreau, Eléonore; Mainguet, Jean-François; Carella, Alexandre; Simonato, Jean-Pierre
2013-05-31
Transparent flexible electrodes made of metallic nanowires, and in particular silver nanowires (AgNWs), appear as an extremely promising alternative to transparent conductive oxides for future optoelectronic devices. Though significant progresses have been made the last few years, there is still some room for improvement regarding the synthesis of high quality silver nanowire solutions and fabrication process of high performance electrodes. We show that the commonly used purification process can be greatly simplified through decantation. Using this process it is possible to fabricate flexible electrodes by spray coating with sheet resistance lower than 25 Ω sq⁻¹ at 90% transparency in the visible spectrum. These electrodes were used to fabricate an operative transparent flexible touch screen. To our knowledge this is the first reported AgNW based touch sensor relying on capacitive technology.
Glance strategies for using an in-vehicle touch-screen monitor.
DOT National Transportation Integrated Search
2009-04-01
In this study, subjects in a driving simulator followed a lead vehicle that continuously changed speed : while they also performed a secondary task on a touch-screen monitor that could be located at various : positions within the simulator. Subjects ...
A Qualitative Examination of Two Year-Olds Interaction with Tablet Based Interactive Technology
ERIC Educational Resources Information Center
Geist, Eugene A.
2012-01-01
The purpose of this study was to observe children naturally interacting with these touch screen devices. Little direct instruction was given to the children on the use of the devices however an adult did assist when needed. The device was introduced to the children as would be any other educational material such as play-dough, new items in the…
Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin
2018-05-22
Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.
Touch-screen task-element times for improving SAE recommended practice J2365 : a first proposal.
DOT National Transportation Integrated Search
2015-10-01
This report describes the identification of task elements and the estimation of their times for in-vehicle tasks such as dialing a phone number or finding a song using a touch screen. These : elements were derived from an experiment in which 24 drive...
Touch Screen Tablets and Emergent Literacy
ERIC Educational Resources Information Center
Neumann, Michelle M.; Neumann, David L.
2014-01-01
The use of touch screen tablets by young children is increasing in the home and in early childhood settings. The simple tactile interface and finger-based operating features of tablets may facilitate preschoolers' use of tablet application software and support their educational development in domains such as literacy. This article reviews…
Definition Of Touch-Sensitive Zones For Graphical Displays
NASA Technical Reports Server (NTRS)
Monroe, Burt L., III; Jones, Denise R.
1988-01-01
Touch zones defined simply by touching, while editing done automatically. Development of touch-screen interactive computing system, tedious task. Interactive Editor for Definition of Touch-Sensitive Zones computer program increases efficiency of human/machine communications by enabling user to define each zone interactively, minimizing redundancy in programming and eliminating need for manual computation of boundaries of touch areas. Information produced during editing process written to data file, to which access gained when needed by application program.
An ergonomics study of thumb movements on smartphone touch screen.
Xiong, Jinghong; Muraki, Satoshi
2014-01-01
This study investigated the relationships between thumb muscle activity and thumb operating tasks on a smartphone touch screen with one-hand posture. Six muscles in the right thumb and forearm were targeted in this study, namely adductor pollicis, flexor pollicis brevis, abductor pollicis brevis (APB), abductor pollicis longus, first dorsal interosseous (FDI) and extensor digitorum. The performance measures showed that the thumb developed fatigue rapidly when tapping on smaller buttons (diameter: 9 mm compared with 3 mm), and moved more slowly in flexion-extension than in adduction-abduction orientation. Meanwhile, the electromyography and perceived exertion values of FDI significantly increased in small button and flexion-extension tasks, while those of APB were greater in the adduction-abduction task. This study reveals that muscle effort among thumb muscles on a touch screen smartphone varies according to the task, and suggests that the use of small touch buttons should be minimised for better thumb performance.
Youth with cerebral palsy with differing upper limb abilities: how do they access computers?
Davies, T Claire; Chau, Tom; Fehlings, Darcy L; Ameratunga, Shanthi; Stott, N Susan
2010-12-01
To identify the current level of awareness of different computer access technologies and the choices made regarding mode of access by youth with cerebral palsy (CP) and their families. Survey. Two tertiary-level rehabilitation centers in New Zealand and Canada. Youth (N=60) with CP, Manual Ability Classification Scale (MACS) levels I to V, age 13 to 25 years. Not applicable. Questionnaire. Fifty (83%) of the 60 youth were aware of at least 1 available assistive technology (AT), such as touch screens and joysticks. However, only 34 youth (57%) were familiar with the accessibility options currently available in the most common operating systems. Thirty-three (94%) of 35 youth who were MACS I and II used a standard mouse and keyboard, while few chose to use assistive technology or accessibility options. In contrast, 10 (40%) of 25 youth who were MACS III to V used a variety of assistive technologies such as touch screens, joysticks, trackballs, and scanning technologies. This group also had the highest use of accessibility options, although only 15 (60%) of the 25 were aware of them. Most youth with CP were aware of, and used, assistive technologies to enhance their computer access but were less knowledgeable about accessibility options. Accessibility options allow users to modify their own computer interface and can thus enhance computer access for youth with CP. Clinicians should be knowledgeable enough to give informed advice in this area of computer access, thus ensuring that all youth with CP can benefit from both AT and accessibility options, as required. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xiangquan
According to the treatment needs of patients with limb movement disorder, on the basis of the limb rehabilitative training prototype, function of measure and control system are analyzed, design of system hardware and software is completed. The touch screen which is adopt as host computer and man-machine interaction window is responsible for sending commands and training information display; The PLC which is adopt as slave computer is responsible for receiving control command from touch screen, collecting the sensor data, regulating torque and speed of motor by analog output according to the different training mode, realizing ultimately active and passive training for limb rehabilitation therapy.
Hu, Jiandong; Hu, Jingfang; Luo, Fukun; Li, Wei; Jiang, Guoliang; Li, Zhengfeng; Zhang, Runna
2009-03-15
An economical and high-performance bioanalyzer, with no use of laptop computer, based on the use of TSPR1k23 biosensors was systematically designed, and validated experimentally for its high performance. The analyzer is composed of a micro-flow cell, a thermoelectric cooler (TEC), a clamp, a touch-screen monitor, and an electronic control unit (ECU) incorporated with photoelectric conversion device. The micro-flow cell is made of stainless steel with high thermal conductivity, and the micro-flow system is based on PID temperature-controlled algorithm to keep the constant temperature (25 degrees C) of the liquid sample via thermal exchange with the clamp. With a peristaltic pump implemented by an injection loop flow system, the bioanalyzer allows the core sensor to be completely exposed to samples. The touch-screen monitor displays the normalized response signal values updated every 0.25s, with a typical noise level less than 5RU (response unit) within 2h. The bioanalyzer was validated using hepatitis B surface antigen (HBsAg) as an example. Anti-HBsAg monoclonal antibody is adhered to the surface of the sensor chip by a bifunctional cross-linker with the technology of self-assembly. The duration of the HBsAg measurement only lasts 5min with a dilution factor ranging from 200 to 1200, optimized with a R-squared value 0.998. The results suggested that the bioanalyzer has higher selectivity, lower cost, expanded detection limit, and shorter measuring time as compared with the HBsAg ELISA kit, especially for low concentrations of analyte.
Schefte, David B; Hetland, Merete L
2010-01-01
The Danish DANBIO registry has developed open-source software for touch screens in the waiting room. The objective was to assess the validity of outcomes from self-explanatory patient questionnaires on touch screen in comparison with the traditional paper form in routine clinical care. Fifty-two AS patients and 59 RA patients completed Visual Analogue Scales (VASs) for pain, fatigue and global health, and Bath measures on Ankylosing Spondylitis Disease Activity Index (BASDAI) and Function Index (BASFI) (AS patients) or HAQs (RA patients) on touch screen and paper form in random order with a 1-h interval. Intra-class correlation coefficients (ICCs), 95% CIs and smallest detectable differences (SDDs) were calculated. ICC ranged from 0.922 to 0.988 (P < 0.001). The mean differences (95% CI) were: BASDAI [-0.5 (-14.5, 13.5) mm]; BASFI [-1.1 (-10.6, 8.4) mm]; Item 5 [-1.7 (-23.6, 20.2) mm] and Item 6 [-0.7 (-14.7, 13.3) mm] from BASDAI; HAQ score [0.023 (-0.183, 0.229)]. For VAS -0.4 to -2.8 mm (no significance for all except VAS global and VAS fatigue in RA). SDD for BASDAI was 14.0 mm; BASFI 9.5 mm; Item 5 21.8 mm; Item 6 14.0 mm; HAQ 0.206; VAS 11.1-18.8 mm. Self-explanatory touch screens based on the DANBIO open-source system generates valid results in AS and RA patients on completion of BASDAI, BASFI, HAQ and VAS scores for pain, fatigue and global health when compared with the traditional paper form. Implementation of touch screens in clinical practice is feasible and patients need no instruction.
Supporting medical communication for older patients with a shared touch-screen computer.
Piper, Anne Marie; Hollan, James D
2013-11-01
Increasingly health care facilities are adopting electronic medical record systems and installing computer workstations in patient exam rooms. The introduction of computer workstations into the medical interview process makes it important to consider the impact of such technology on older patients as well as new types of interfaces that may better suit the needs of older adults. While many older adults are comfortable with a traditional computer workstation with a keyboard and mouse, this article explores how a large horizontal touch-screen (i.e., a surface computer) may suit the needs of older patients and facilitates the doctor-patient interview process. Twenty older adults (age 60 to 88) used a prototype multiuser, multitouch system in our research laboratory to examine seven health care scenarios. Behavioral observations as well as results from questionnaires and a structured interview were analyzed. The older adults quickly adapted to the prototype system and reported that it was easy to use. Participants also suggested that having a shared view of one's medical records, especially charts and images, would enhance communication with their doctor and aid understanding. While this study is exploratory and some areas of interaction with a surface computer need to be refined, the technology is promising for sharing electronic patient information during medical interviews involving older adults. Future work must examine doctors' and nurses' interaction with the technology as well as logistical issues of installing such a system in a real world medical setting. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.
Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta
2015-05-01
Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).
Ranak, M S A Noman; Azad, Saiful; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.
Ranak, M. S. A. Noman; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z.
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)—a.k.a., Force Touch in Apple’s MacBook, Apple Watch, ZTE’s Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on—is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme. PMID:29084262
ERIC Educational Resources Information Center
Bullock, Emma P.; Shumway, Jessica F.; Watts, Christina M.; Moyer-Packenham, Patricia S.
2017-01-01
The purpose of this study was to contribute to the research on mathematics app use by very young children, and specifically mathematics apps for touch-screen mobile devices that contain virtual manipulatives. The study used a convergent parallel mixed methods design, in which quantitative and qualitative data were collected in parallel, analyzed…
ERIC Educational Resources Information Center
Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry
2016-01-01
This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The…
Address entry while driving: speech recognition versus a touch-screen keyboard.
Tsimhoni, Omer; Smith, Daniel; Green, Paul
2004-01-01
A driving simulator experiment was conducted to determine the effects of entering addresses into a navigation system during driving. Participants drove on roads of varying visual demand while entering addresses. Three address entry methods were explored: word-based speech recognition, character-based speech recognition, and typing on a touch-screen keyboard. For each method, vehicle control and task measures, glance timing, and subjective ratings were examined. During driving, word-based speech recognition yielded the shortest total task time (15.3 s), followed by character-based speech recognition (41.0 s) and touch-screen keyboard (86.0 s). The standard deviation of lateral position when performing keyboard entry (0.21 m) was 60% higher than that for all other address entry methods (0.13 m). Degradation of vehicle control associated with address entry using a touch screen suggests that the use of speech recognition is favorable. Speech recognition systems with visual feedback, however, even with excellent accuracy, are not without performance consequences. Applications of this research include the design of in-vehicle navigation systems as well as other systems requiring significant driver input, such as E-mail, the Internet, and text messaging.
Tablet PC interaction with digital micromirror device (DMD)
NASA Astrophysics Data System (ADS)
Refai, Hakki H.; Dahshan, Mostafa H.; Sluss, James J., Jr.
2007-02-01
Digital light processing (DLP) is an innovative display technology that uses an optical switch array, known as a digital micromirror device (DMD), which allows digital control of light. To date, DMDs have been used primarily as high-speed spatial light modulators for projector applications. A tablet PC is a notebook or slate-shaped mobile PC. Its touch screen or digitizing tablet technology allows the user to operate the notebook with a stylus or digital pen instead of using a keyboard or mouse. In this paper, we describe an interface solution that translates any sketch on the tablet PC screen to an identical mirror-copy over the cross-section of the DMD micromirrors such that the image of the sketch can be projected onto a special screen. An algorithm has been created to control each single micromirror of the hundreds of thousands of micromirrors that cover the DMD surface. We demonstrate the successful application of a DMD to a high-speed two-dimensional (2D) scanning environment, acquiring the data from the tablet screen and launching its contents to the projection screen; with very high accuracy up to 13.68 μm x 13.68 μm of mirror pitch.
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-01-01
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-12-02
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.
You can't touch this: touch-free navigation through radiological images.
Ebert, Lars C; Hatch, Gary; Ampanozi, Garyfalia; Thali, Michael J; Ross, Steffen
2012-09-01
Keyboards, mice, and touch screens are a potential source of infection or contamination in operating rooms, intensive care units, and autopsy suites. The authors present a low-cost prototype of a system, which allows for touch-free control of a medical image viewer. This touch-free navigation system consists of a computer system (IMac, OS X 10.6 Apple, USA) with a medical image viewer (OsiriX, OsiriX foundation, Switzerland) and a depth camera (Kinect, Microsoft, USA). They implemented software that translates the data delivered by the camera and a voice recognition software into keyboard and mouse commands, which are then passed to OsiriX. In this feasibility study, the authors introduced 10 medical professionals to the system and asked them to re-create 12 images from a CT data set. They evaluated response times and usability of the system compared with standard mouse/keyboard control. Users felt comfortable with the system after approximately 10 minutes. Response time was 120 ms. Users required 1.4 times more time to re-create an image with gesture control. Users with OsiriX experience were significantly faster using the mouse/keyboard and faster than users without prior experience. They rated the system 3.4 out of 5 for ease of use in comparison to the mouse/keyboard. The touch-free, gesture-controlled system performs favorably and removes a potential vector for infection, protecting both patients and staff. Because the camera can be quickly and easily integrated into existing systems, requires no calibration, and is low cost, the barriers to using this technology are low.
NASA Technical Reports Server (NTRS)
Jones, Denise R.
1990-01-01
A piloted simulation study was conducted comparing three different input methods for interfacing to a large-screen, multiwindow, whole-flight-deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side-arm controller. The touch screen concept provided data entry through a capacitive touch screen. The voice concept utilized a speech recognition system with input through a head-worn microphone. No single input concept emerged as the most desirable method of interacting with the display. Subjective results, however, indicate that the voice concept was the most preferred method of data entry and had the most potential for future applications. The objective results indicate that, overall, the touch screen concept was the most effective input method. There was also significant differences between the time required to perform specific tasks and the input concept employed, with each concept providing better performance relative to a specific task. These results suggest that a system combining all three input concepts might provide the most effective method of interaction.
Kietrys, David M; Gerg, Michael J; Dropkin, Jonathan; Gold, Judith E
2015-09-01
This study aimed to determine the effects of input device type, texting style, and screen size on upper extremity and trapezius muscle activity and cervical posture during a short texting task in college students. Users of a physical keypad produced greater thumb, finger flexor, and wrist extensor muscle activity than when texting with a touch screen device of similar dimensions. Texting on either device produced greater wrist extensor muscle activity when texting with 1 hand/thumb compared with both hands/thumbs. As touch screen size increased, more participants held the device on their lap, and chose to use both thumbs less. There was also a trend for greater finger flexor, wrist extensor, and trapezius muscle activity as touch screen size increased, and for greater cervical flexion, although mean differences for cervical flexion were small. Future research can help inform whether the ergonomic stressors observed during texting are associated with musculoskeletal disorder risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Marian, Anil A; Dexter, Franklin; Tucker, Peter; Todd, Michael M
2012-05-29
Anesthesia information management system (AIMS) records should be designed and configured to facilitate the accurate and prompt recording of multiple drugs administered coincidentally or in rapid succession. We proposed two touch-screen display formats for use with our department's new EPIC touch-screen AIMS. In one format, medication "buttons" were arranged in alphabetical order (i.e. A-C, D-H etc.). In the other, buttons were arranged in categories (Common, Fluids, Cardiovascular, Coagulation etc.). Both formats were modeled on an iPad screen to resemble the AIMS interface. Anesthesia residents, anesthesiologists, and Certified Registered Nurse Anesthetists (n = 60) were then asked to find and touch the correct buttons for a series of medications whose names were displayed to the side of the entry screen. The number of entries made within 2 minutes was recorded. This was done 3 times for each format, with the 1st format chosen randomly. Data were analyzed from the third trials with each format to minimize differences in learning. The categorical format had a mean of 5.6 more drugs entered using the categorical method in two minutes than the alphabetical format (95% confidence interval [CI] 4.5 to 6.8, P < 0.0001). The findings were the same regardless of the order of testing (i.e. alphabetical-categorical vs. categorical - alphabetical) and participants' years of clinical experience. Most anesthesia providers made no (0) errors for most trials (N = 96/120 trials, lower 95% limit 73%, P < 0.0001). There was no difference in error rates between the two formats (P = 0.53). The use of touch-screen user interfaces in healthcare is increasingly common. Arrangement of drugs names in a categorical display format in the medication order-entry touch screen of an AIMS can result in faster data entry compared to an alphabetical arrangement of drugs. Results of this quality improvement project were used in our department's design of our final intraoperative electronic anesthesia record. This testing approach using cognitive and usability engineering methods can be used to objectively design and evaluate many aspects of the clinician-computer interaction in electronic health records.
2012-01-01
Background Anesthesia information management system (AIMS) records should be designed and configured to facilitate the accurate and prompt recording of multiple drugs administered coincidentally or in rapid succession. Methods We proposed two touch-screen display formats for use with our department’s new EPIC touch-screen AIMS. In one format, medication “buttons” were arranged in alphabetical order (i.e. A-C, D-H etc.). In the other, buttons were arranged in categories (Common, Fluids, Cardiovascular, Coagulation etc.). Both formats were modeled on an iPad screen to resemble the AIMS interface. Anesthesia residents, anesthesiologists, and Certified Registered Nurse Anesthetists (n = 60) were then asked to find and touch the correct buttons for a series of medications whose names were displayed to the side of the entry screen. The number of entries made within 2 minutes was recorded. This was done 3 times for each format, with the 1st format chosen randomly. Data were analyzed from the third trials with each format to minimize differences in learning. Results The categorical format had a mean of 5.6 more drugs entered using the categorical method in two minutes than the alphabetical format (95% confidence interval [CI] 4.5 to 6.8, P < 0.0001). The findings were the same regardless of the order of testing (i.e. alphabetical-categorical vs. categorical - alphabetical) and participants’ years of clinical experience. Most anesthesia providers made no (0) errors for most trials (N = 96/120 trials, lower 95% limit 73%, P < 0.0001). There was no difference in error rates between the two formats (P = 0.53). Conclusions The use of touch-screen user interfaces in healthcare is increasingly common. Arrangement of drugs names in a categorical display format in the medication order-entry touch screen of an AIMS can result in faster data entry compared to an alphabetical arrangement of drugs. Results of this quality improvement project were used in our department’s design of our final intraoperative electronic anesthesia record. This testing approach using cognitive and usability engineering methods can be used to objectively design and evaluate many aspects of the clinician-computer interaction in electronic health records. PMID:22643058
NASA Technical Reports Server (NTRS)
Holzhausen, K. P.; Gaertner, K. P.
1985-01-01
A significant problem concerning the integration of display and switching functions is related to the fact that numerous informative data which have to be processed by man must be read from only a few display devices. A satisfactory ergonomic design of integrated display devices and keyboards is in many cases difficult, because not all functions which can be displayed and selected are simultaneously available. A technical solution which provides an integration of display and functional elements on the basis of the highest flexibility is obtained by using a cathode ray tube with a touch-sensitive screen. The employment of an integrated data input/output system is demonstrated for the cases of onboard and ground-based flight control. Ergonomic studies conducted to investigate the suitability of an employment of touch-sensitive screens are also discussed.
Burke, Daniel; Linder, Susan; Hirsch, Joshua; Dey, Tanujit; Kana, Daniel; Ringenbach, Shannon; Schindler, David; Alberts, Jay
2017-10-01
Information processing is typically evaluated using simple reaction time (SRT) and choice reaction time (CRT) paradigms in which a specific response is initiated following a given stimulus. The measurement of reaction time (RT) has evolved from monitoring the timing of mechanical switches to computerized paradigms. The proliferation of mobile devices with touch screens makes them a natural next technological approach to assess information processing. The aims of this study were to determine the validity and reliability of using of a mobile device (Apple iPad or iTouch) to accurately measure RT. Sixty healthy young adults completed SRT and CRT tasks using a traditional test platform and mobile platforms on two occasions. The SRT was similar across test modality: 300, 287, and 280 milliseconds (ms) for the traditional, iPad, and iTouch, respectively. The CRT was similar within mobile devices, though slightly faster on the traditional: 359, 408, and 384 ms for traditional, iPad, and iTouch, respectively. Intraclass correlation coefficients ranged from 0.79 to 0.85 for SRT and from 0.75 to 0.83 for CRT. The similarity and reliability of SRT across platforms and consistency of SRT and CRT across test conditions indicate that mobile devices provide the next generation of assessment platforms for information processing.
A Work Station For Control Of Changing Systems
NASA Technical Reports Server (NTRS)
Mandl, Daniel J.
1988-01-01
Touch screen and microcomputer enable flexible control of complicated systems. Computer work station equipped to produce graphical displays used as command panel and status indicator for command-and-control system. Operator uses images of control buttons displayed on touch screen to send prestored commands. Use of prestored library of commands reduces incidence of errors. If necessary, operator uses conventional keyboard to enter commands in real time to handle unforeseeable situations.
SEMICONDUCTOR INTEGRATED CIRCUITS A 10-bit 200-kS/s SAR ADC IP core for a touch screen SoC
NASA Astrophysics Data System (ADS)
Xingyuan, Tong; Yintang, Yang; Zhangming, Zhu; Wenfang, Sheng
2010-10-01
Based on a 5 MSBs (most-significant-bits)-plus-5 LSBs (least-significant-bits) C-R hybrid D/A conversion and low-offset pseudo-differential comparison approach, with capacitor array axially symmetric layout topology and resistor string low gradient mismatch placement method, an 8-channel 10-bit 200-kS/s SAR ADC (successive-approximation-register analog-to-digital converter) IP core for a touch screen SoC (system-on-chip) is implemented in a 0.18 μm 1P5M CMOS logic process. Design considerations for the touch screen SAR ADC are included. With a 1.8 V power supply, the DNL (differential non-linearity) and INL (integral non-linearity) of this converter are measured to be about 0.32 LSB and 0.81 LSB respectively. With an input frequency of 91 kHz at 200-kS/s sampling rate, the spurious-free dynamic range and effective-number-of-bits are measured to be 63.2 dB and 9.15 bits respectively, and the power is about 136 μW. This converter occupies an area of about 0.08 mm2. The design results show that it is very suitable for touch screen SoC applications.
The RNA Polymerase-Associated Factor 1 Complex Is Required for Plant Touch Responses
Jensen, Gregory S.; Fal, Kateryna; Hamant, Olivier
2017-01-01
Abstract Thigmomorphogenesis is a stereotypical developmental alteration in the plant body plan that can be induced by repeatedly touching plant organs. To unravel how plants sense and record multiple touch stimuli we performed a novel forward genetic screen based on the development of a shorter stem in response to repetitive touch. The touch insensitive (ths1) mutant identified in this screen is defective in some aspects of shoot and root thigmomorphogenesis. The ths1 mutant is an intermediate loss-of-function allele of VERNALIZATION INDEPENDENCE 3 (VIP3), a previously characterized gene whose product is part of the RNA polymerase II-associated factor 1 (Paf1) complex. The Paf1 complex is found in yeast, plants and animals, and has been implicated in histone modification and RNA processing. Several components of the Paf1 complex are required for reduced stem height in response to touch and normal root slanting and coiling responses. Global levels of histone H3K36 trimethylation are reduced in VIP3 mutants. In addition, THS1/VIP3 is required for wild type histone H3K36 trimethylation at the TOUCH3 (TCH3) and TOUCH4 (TCH4) loci and for rapid touch-induced upregulation of TCH3 and TCH4 transcripts. Thus, an evolutionarily conserved chromatin-modifying complex is required for both short- and long-term responses to mechanical stimulation, providing insight into how plants record mechanical signals for thigmomorphogenesis. PMID:28204553
ERIC Educational Resources Information Center
Mercier, Emma; Vourloumi, Georgia; Higgins, Steven
2017-01-01
Multi-touch technology is increasingly being used to support collaborative learning activities. However, to know how this technology can be used most effectively, we need to understand if collaborative interactions differ when groups are using multi-touch technology compared with other tools. In this paper, we compare the interactions of groups of…
U Can Touch This: How Tablets Can Be Used to Study Cognitive Development.
Semmelmann, Kilian; Nordt, Marisa; Sommer, Katharina; Röhnke, Rebecka; Mount, Luzie; Prüfer, Helen; Terwiel, Sophia; Meissner, Tobias W; Koldewyn, Kami; Weigelt, Sarah
2016-01-01
New technological devices, particularly those with touch screens, have become virtually omnipresent over the last decade. Practically from birth, children are now surrounded by smart phones and tablets. Despite being our constant companions, little is known about whether these tools can be used not only for entertainment, but also to collect reliable scientific data. Tablets may prove particularly useful for collecting behavioral data from those children (1-10 years), who are, for the most part, too old for studies based on looking times and too young for classical psychophysical testing. Here, we analyzed data from six studies that utilized touch screen tablets to deliver experimental paradigms in developmental psychology. In studies 1 and 2, we employed a simple sorting and recall task with children from the ages of 2-8. Study 3 (ages 9 and 10) extended these tasks by increasing the difficulty of the stimuli and adding a staircase-based perception task. A visual search paradigm was used in study 4 (ages 2-5), while 1- to 3-year-olds were presented with an extinction learning task in study 5. In study 6, we used a simple visuo-spatial paradigm to obtain more details about the distribution of reaction times on touch screens over all ages. We collected data from adult participants in each study as well, for comparison purposes. We analyzed these data sets in regard to four metrics: self-reported tablet usage, completeness of data, accuracy of responses and response times. In sum, we found that children from the age of two onwards are very capable of interacting with tablets, are able to understand the respective tasks and are able to use tablets to register their answers accordingly. Results from all studies reiterated the advantages of data collection through tablets: ease of use, high portability, low-cost, and high levels of engagement for children. We illustrate the great potential of conducting psychological studies in young children using tablets, and also discuss both methodological challenges and their potential solutions.
U Can Touch This: How Tablets Can Be Used to Study Cognitive Development
Semmelmann, Kilian; Nordt, Marisa; Sommer, Katharina; Röhnke, Rebecka; Mount, Luzie; Prüfer, Helen; Terwiel, Sophia; Meissner, Tobias W.; Koldewyn, Kami; Weigelt, Sarah
2016-01-01
New technological devices, particularly those with touch screens, have become virtually omnipresent over the last decade. Practically from birth, children are now surrounded by smart phones and tablets. Despite being our constant companions, little is known about whether these tools can be used not only for entertainment, but also to collect reliable scientific data. Tablets may prove particularly useful for collecting behavioral data from those children (1–10 years), who are, for the most part, too old for studies based on looking times and too young for classical psychophysical testing. Here, we analyzed data from six studies that utilized touch screen tablets to deliver experimental paradigms in developmental psychology. In studies 1 and 2, we employed a simple sorting and recall task with children from the ages of 2–8. Study 3 (ages 9 and 10) extended these tasks by increasing the difficulty of the stimuli and adding a staircase-based perception task. A visual search paradigm was used in study 4 (ages 2–5), while 1- to 3-year-olds were presented with an extinction learning task in study 5. In study 6, we used a simple visuo-spatial paradigm to obtain more details about the distribution of reaction times on touch screens over all ages. We collected data from adult participants in each study as well, for comparison purposes. We analyzed these data sets in regard to four metrics: self-reported tablet usage, completeness of data, accuracy of responses and response times. In sum, we found that children from the age of two onwards are very capable of interacting with tablets, are able to understand the respective tasks and are able to use tablets to register their answers accordingly. Results from all studies reiterated the advantages of data collection through tablets: ease of use, high portability, low-cost, and high levels of engagement for children. We illustrate the great potential of conducting psychological studies in young children using tablets, and also discuss both methodological challenges and their potential solutions. PMID:27458414
Design and algorithm research of high precision airborne infrared touch screen
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Bing; Wang, Shuang-Jie; Fu, Yan; Chen, Zhao-Quan
2016-10-01
There are shortcomings of low precision, touch shaking, and sharp decrease of touch precision when emitting and receiving tubes are failure in the infrared touch screen. A high precision positioning algorithm based on extended axis is proposed to solve these problems. First, the unimpeded state of the beam between emitting and receiving tubes is recorded as 0, while the impeded state is recorded as 1. Then, the method of oblique scan is used, in which the light of one emitting tube is used for five receiving tubes. The impeded information of all emitting and receiving tubes is collected as matrix. Finally, according to the method of arithmetic average, the position of the touch object is calculated. The extended axis positioning algorithm is characteristic of high precision in case of failure of individual infrared tube and affects slightly the precision. The experimental result shows that the 90% display area of the touch error is less than 0.25D, where D is the distance between adjacent emitting tubes. The conclusion is gained that the algorithm based on extended axis has advantages of high precision, little impact when individual infrared tube is failure, and using easily.
Zack, Elizabeth; Gerhardstein, Peter; Meltzoff, Andrew N.; Barr, Rachel
2012-01-01
Infants have difficulty transferring information between 2D and 3D sources. The current study extends Zack et al.’s (2009) touch screen imitation task to examine whether the addition of specific language cues significantly facilitates 15-month-olds’ transfer of learning between touch screens and real-world 3D objects. The addition of two kinds of linguistic cues (object label plus verb or nonsense name) did not elevate action imitation significantly above levels observed when such language cues were not used. Language cues hindered infants’ performance in the 3D→2D direction of transfer, but only for the object label plus verb condition. The lack of a facilitative effect of language is discussed in terms of competing cognitive loads imposed by conjointly transferring information across dimensions and processing linguistic cues in an action imitation task at this age. PMID:23121508
Angelides, Kimon; Matsunami, Risë K.; Engler, David A.
2015-01-01
Background: We evaluated the accuracy, precision, and linearity of the In Touch® blood glucose monitoring system (BGMS), a new color touch screen and cellular-enabled blood glucose meter, using a new rapid, highly precise and accurate 13C6 isotope-dilution liquid chromatography-mass spectrometry method (IDLC-MS). Methods: Blood glucose measurements from the In Touch® BGMS were referenced to a validated UPLC-MRM standard reference measurement procedure previously shown to be highly accurate and precise. Readings from the In Touch® BGMS were taken over the blood glucose range of 24-640 mg/dL using 12 concentrations of blood glucose. Ten In Touch® BGMS and 3 lots of test strips were used with 10 replicates at each concentration. A lay user study was also performed to assess the ease of use. Results: At blood glucose concentrations <75 mg/dL 100% of the measurements are within ±8 mg/dL from the true reference standard; at blood glucose levels >75 mg/dL 100% of the measurements are within ±15% of the true reference standard. 100% of the results are within category A of the consensus grid. Within-run precision show CV < 3.72% between 24-50 mg/dL and CV<2.22% between 500 and 600 mg/dL. The results show that the In Touch® meter exceeds the minimum criteria of both the ISO 15197:2003 and ISO 15197:2013 standards. The results from a user panel show that 100% of the respondents reported that the color touch screen, with its graphic user interface (GUI), is well labeled and easy to navigate. Conclusions: To our knowledge this is the first touch screen glucose meter and the first study where accuracy of a new BGMS has been measured against a true primary reference standard, namely IDLC-MS. PMID:26002836
Touch and Go: COMET Project Brings Multitouch Technology to the Military
2011-05-01
Defense AT&L: May–June 2011 28 Touch and Go COMET Project Brings Multitouch Technology to the Military Claire Heininger Report Documentation...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Touch and Go. COMET Project Brings Multitouch Technology to the Military 5a...research agreement. Now, just 2 years later, the same team of engineers and developers are on the cutting edge of multitouch technology for the armed
Myers, David R; Weiss, Alexander; Rollins, Margo R; Lam, Wilbur A
2017-10-06
Smartphone-based telehealth holds the promise of shifting healthcare from the clinic to the home, but the inability for clinicians to conduct remote palpation, or touching, a key component of the physical exam, remains a major limitation. This is exemplified in the assessment of acute abdominal pain, in which a physician's palpation determines if a patient's pain is life-threatening requiring emergency intervention/surgery or due to some less-urgent cause. In a step towards virtual physical examinations, we developed and report for the first time a "touch-capable" mHealth technology that enables a patient's own hands to serve as remote surrogates for the physician's in the screening of acute abdominal pain. Leveraging only a smartphone with its native accelerometers, our system guides a patient through an exact probing motion that precisely matches the palpation motion set by the physician. An integrated feedback algorithm, with 95% sensitivity and specificity, enabled 81% of tested patients to match a physician abdominal palpation curve with <20% error after 6 attempts. Overall, this work addresses a key issue in telehealth that will vastly improve its capabilities and adoption worldwide.
Man-machine communication - A transparent switchboard for computers
NASA Technical Reports Server (NTRS)
Rasmussen, H.
1971-01-01
Device uses pattern of transparent contact touch points that are put on cathode ray tube screen. Touch point system compels more precise and unambiguous communication between man and machine than is possible with any other means, and speeds up operation responses.
Integration of advanced technologies to enhance problem-based learning over distance: Project TOUCH.
Jacobs, Joshua; Caudell, Thomas; Wilks, David; Keep, Marcus F; Mitchell, Steven; Buchanan, Holly; Saland, Linda; Rosenheimer, Julie; Lozanoff, Beth K; Lozanoff, Scott; Saiki, Stanley; Alverson, Dale
2003-01-01
Distance education delivery has increased dramatically in recent years as a result of the rapid advancement of communication technology. The National Computational Science Alliance's Access Grid represents a significant advancement in communication technology with potential for distance medical education. The purpose of this study is to provide an overview of the TOUCH project (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) with special emphasis on the process of problem-based learning case development for distribution over the Access Grid. The objective of the TOUCH project is to use emerging Internet-based technology to overcome geographic barriers for delivery of tutorial sessions to medical students pursuing rotations at remote sites. The TOUCH project also is aimed at developing a patient simulation engine and an immersive virtual reality environment to achieve a realistic health care scenario enhancing the learning experience. A traumatic head injury case is developed and distributed over the Access Grid as a demonstration of the TOUCH system. Project TOUCH serves as an example of a computer-based learning system for developing and implementing problem-based learning cases within the medical curriculum, but this system should be easily applied to other educational environments and disciplines involving functional and clinical anatomy. Future phases will explore PC versions of the TOUCH cases for increased distribution. Copyright 2003 Wiley-Liss, Inc.
An interactive, multi-touch videowall for scientific data exploration
NASA Astrophysics Data System (ADS)
Blower, Jon; Griffiths, Guy; van Meersbergen, Maarten; Lusher, Scott; Styles, Jon
2014-05-01
The use of videowalls for scientific data exploration is rising as hardware becomes cheaper and the availability of software and multimedia content grows. Most videowalls are used primarily for outreach and communication purposes, but there is increasing interest in using large display screens to support exploratory visualization as an integral part of scientific research. In this PICO presentation we will present a brief overview of a new videowall system at the University of Reading, which is designed specifically to support interactive, exploratory visualization activities in climate science and Earth Observation. The videowall consists of eight 42-inch full-HD screens (in 4x2 formation), giving a total resolution of about 16 megapixels. The display is managed by a videowall controller, which can direct video to the screen from up to four external laptops, a purpose-built graphics workstation, or any combination thereof. A multi-touch overlay provides the capability for the user to interact directly with the data. There are many ways to use the videowall, and a key technical challenge is to make the most of the touch capabilities - touch has the potential to greatly reduce the learning curve in interactive data exploration, but most software is not yet designed for this purpose. In the PICO we will present an overview of some ways in which the wall can be employed in science, seeking feedback and discussion from the community. The system was inspired by an existing and highly-successful system (known as the "Collaboratorium") at the Netherlands e-Science Center (NLeSC). We will demonstrate how we have adapted NLeSC's visualization software to our system for touch-enabled multi-screen climate data exploration.
Plasmonic transparent conductors
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.
2016-09-01
Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.
Zack, Elizabeth; Gerhardstein, Peter; Meltzoff, Andrew N; Barr, Rachel
2013-02-01
Infants have difficulty transferring information between 2D and 3D sources. The current study extends Zack, Barr, Gerhardstein, Dickerson & Meltzoff's (2009) touch screen imitation task to examine whether the addition of specific language cues significantly facilitates 15-month-olds' transfer of learning between touch screens and real-world 3D objects. The addition of two kinds of linguistic cues (object label plus verb or nonsense name) did not elevate action imitation significantly above levels observed when such language cues were not used. Language cues hindered infants' performance in the 3D→2D direction of transfer, but only for the object label plus verb condition. The lack of a facilitative effect of language is discussed in terms of competing cognitive loads imposed by conjointly transferring information across dimensions and processing linguistic cues in an action imitation task at this age. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.
Effects of input device and motion type on a cursor-positioning task.
Yau, Yi-Jan; Hwang, Sheue-Ling; Chao, Chin-Jung
2008-02-01
Many studies have investigated the performance of using nonkey-board input devices under static situations, but few have considered the effects of motion type on manipulating these input devices. In this study comparison of 12 mens' performance using four input devices (three trackballs: currently used, trackman wheel, and erectly held trackballs, as well as a touch screen) under five motion types of static, heave, roll, pitch, and random movements was conducted. The input device and motion type significantly affected movement speed and accuracy, and their interaction significantly affected the movement speed. The touch screen was the fastest but the least accurate input device. The erectly held trackball was the slowest, whereas the error rate of the currently used trackball was the lowest. Impairments of the random motion on movement time and error rate were larger than those of other motion types. Considering objective and subjective evaluations, the trackman wheel and currently used trackball were more efficient in operation than the erectly held trackball and touch screen under the motion environments.
NASA Astrophysics Data System (ADS)
Pournoury, M.; Zamiri, A.; Kim, T. Y.; Yurlov, V.; Oh, K.
2016-03-01
Capacitive touch sensor screen with the metal materials has recently become qualified for substitution of ITO; however several obstacles still have to be solved. One of the most important issues is moiré phenomenon. The visibility problem of the metal-mesh, in touch sensor module (TSM) is numerically considered in this paper. Based on human eye contract sensitivity function (CSF), moiré pattern of TSM electrode mesh structure is simulated with MATLAB software for 8 inch screen display in oblique view. Standard deviation of the generated moiré by the superposition of electrode mesh and screen image is calculated to find the optimal parameters which provide the minimum moiré visibility. To create the screen pixel array and mesh electrode, rectangular function is used. The filtered image, in frequency domain, is obtained by multiplication of Fourier transform of the finite mesh pattern (product of screen pixel and mesh electrode) with the calculated CSF function for three different observer distances (L=200, 300 and 400 mm). It is observed that the discrepancy between analytical and numerical results is less than 0.6% for 400 mm viewer distance. Moreover, in the case of oblique view due to considering the thickness of the finite film between mesh electrodes and screen, different points of minimum standard deviation of moiré pattern are predicted compared to normal view.
Alarm acknowledgement in a nuclear plant control room
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1994-01-01
Alarm acknowledgment can be made not only at the alarm tile array of a given console but via other touch sensitive alarm indications in the screen displays of the monitoring system at the same or other consoles; also, touching one tile can acknowledge multiple alarm sources.
Flat Panel Displays for Medical Monitoring Systems
2001-10-25
filter prevents light from passing (figure 2). FLAT PANEL DISPLAYS FOR MEDICAL MONITORING SYSTEMS A. Cebrián, J. Millet , I. García Department of...The touch screen is placed over the flat panel display as a filter (figure 10) and allows user interfaces based in direct finger touch (figure 11
Validation of the CSI health station 6K blood pressure kiosk.
Buxton, Iain L O; Adams, John Q; Gore, Mark; Sullivan, Charles R
2007-01-01
Established in 1978, Computerized Screening Inc. (CSI) is the manufacturer of medical kiosks that combine non-invasive & invasive preventive health-screening technology and services in the U.S. The centerpiece of CSl's health complement is the CSI Health Station, one-stop health information and screening using patented technology. The CSI Health Station (Model 6K) represents the corporation's evolution from its self-administered automated blood pressure monitors (Model 3K). CSI Health Stations also offer touch screen activated heart rate testing, patented, seated weight measurement and fitness evaluations plus other non-invasive features like BMI, resting metabolic rate, spirometry, pulse oximetry and customized health risk assessments or triage guidelines. Invasive testing such as urine analysis, cholesterol, and glucose is also accommodated in an attended setting. In addition, CSI Health Stations feature comprehensive, one-stop availability of health information, with access to a drug encyclopedia and an extensive library of health education videos, and information on local health providers and services. It also is web enabled and supports secure website access direct from the kiosk. The purpose of this study was to determine, using current standards from the Association for the Advancement of Medical Instrumentation (AAMI), whether or not the CSI 6K could accurately and reproducibly measure blood pressure in an ambulatory population in comparison to manual auscultation.
[Information technology in learning sign language].
Hernández, Cesar; Pulido, Jose L; Arias, Jorge E
2015-01-01
To develop a technological tool that improves the initial learning of sign language in hearing impaired children. The development of this research was conducted in three phases: the lifting of requirements, design and development of the proposed device, and validation and evaluation device. Through the use of information technology and with the advice of special education professionals, we were able to develop an electronic device that facilitates the learning of sign language in deaf children. This is formed mainly by a graphic touch screen, a voice synthesizer, and a voice recognition system. Validation was performed with the deaf children in the Filadelfia School of the city of Bogotá. A learning methodology was established that improves learning times through a small, portable, lightweight, and educational technological prototype. Tests showed the effectiveness of this prototype, achieving a 32 % reduction in the initial learning time for sign language in deaf children.
Expeditious illustration of layer-cake models on and above a tactile surface
NASA Astrophysics Data System (ADS)
Lopes, Daniel Simões; Mendes, Daniel; Sousa, Maurício; Jorge, Joaquim
2016-05-01
Too often illustrating and visualizing 3D geological concepts are performed by sketching in 2D mediums, which may limit drawing performance of initial concepts. Here, the potential of expeditious geological modeling brought by hand gestures is explored. A spatial interaction system was developed to enable rapid modeling, editing, and exploration of 3D layer-cake objects. User interactions are acquired with motion capture and touch screen technologies. Virtual immersion is guaranteed by using stereoscopic technology. The novelty consists of performing expeditious modeling of coarse geological features with only a limited set of hand gestures. Results from usability-studies show that the proposed system is more efficient when compared to a windows-icon-menu-pointer modeling application.
Caban-Martinez, Alberto J; Clarke, Tainya C; Davila, Evelyn P; Fleming, Lora E; Lee, David J
2011-04-01
Novel low-cost approaches for conducting rapid health assessments and health promotion interventions among underserved worker groups are needed. Recruitment and participation of construction workers is particularly challenging due to their often transient periods of work at any one construction site, and their limited time during work to participate in such studies. In the present methodology report, we discuss the experience, advantages and disadvantages of using touch screen handheld devices for the collection of field data from a largely underserved worker population. In March 2010, a workplace-centered pilot study to examine the feasibility of using a handheld personal device for the rapid health assessment of construction workers in two South Florida Construction sites was undertaken. A 45-item survey instrument, including health-related questions on tobacco exposure, workplace safety practices, musculoskeletal disorders and health symptoms, was programmed onto Apple iPod Touch® devices. Language sensitive (English and Spanish) recruitment scripts, verbal consent forms, and survey questions were all preloaded onto the handheld devices. The experience (time to survey administration and capital cost) of the handheld administration method was recorded and compared to approaches available in the extant literature. Construction workers were very receptive to the recruitment, interview and assessment processes conducted through the handheld devices. Some workers even welcomed the opportunity to complete the questionnaire themselves using the touch screen handheld device. A list of advantages and disadvantages emerged from this experience that may be useful in the rapid health assessment of underserved populations working in a variety of environmental and occupational health settings. Handheld devices, which are relatively inexpensive, minimize survey response error, and allow for easy storage of data. These technological research modalities are useful in the collection and assessment of environmental and occupational research data.
Lowres, Nicole; Krass, Ines; Neubeck, Lis; Redfern, Julie; McLachlan, Andrew J; Bennett, Alexandra A; Freedman, S Ben
2015-12-01
Atrial fibrillation guidelines advocate screening to identify undiagnosed atrial fibrillation. Community pharmacies may provide an opportunistic venue for such screening. To explore the experience of implementing an atrial fibrillation screening service from the pharmacist's perspective including: the process of study implementation; the perceived benefits; the barriers and enablers; and the challenges for future sustainability of atrial fibrillation screening within pharmacies. Setting Interviews were conducted face-to-face in the pharmacy or via telephone, according to pharmacist preference. The 'SEARCH-AF study' screened 1000 pharmacy customers aged ≥65 years using an iPhone electrocardiogram, identifying 1.5 % with undiagnosed atrial fibrillation. Nine pharmacists took part in semi-structured interviews. Interviews were transcribed in full and thematically analysed. Qualitative analysis of the experience of implementing an AF screening service from the pharmacist's perspective. Four broad themes relating to service provision were identified: (1) interest and engagement in atrial fibrillation screening by pharmacists, customers, and doctors with the novel, easy-to-use electrocardiogram technology serving as an incentive to undergo screening and an education tool for pharmacists to use with customers; (2) perceived benefits to the pharmacist including increased job satisfaction, improvement in customer relations and pharmacy profile by fostering enhanced customer care and the educational role of pharmacists; (3) implementation barriers including managing workflow, and enablers such as personal approaches for recruitment, and allocating time to discuss screening process and fears; and, (4) potential for sustainable future implementation including remuneration linked to government or pharmacy incentives, combined cardiovascular screening, and automating sections of risk-assessments using touch-screen technology. Atrial fibrillation screening in pharmacies is well accepted by pharmacists and customers. Many pharmacists combined atrial fibrillation screening with other health screens reporting improved time-efficiency and greater customer satisfaction. Widespread implementation of atrial fibrillation screening requires longterm funding, which could be provided for a combined cardiovascular screening service. Further research could focus on feasibility and cost-effectiveness of combined cardiovascular screening in pharmacies.
Sagari, Akira; Iso, Naoki; Moriuchi, Takefumi; Ogahara, Kakuya; Kitajima, Eiji; Tanaka, Koji; Tabira, Takayuki; Higashi, Toshio
2015-01-01
Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations. Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
2012-01-01
Background A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. Results Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. Conclusions Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD. PMID:22413862
Lejeune, François-Xavier; Mesrob, Lilia; Parmentier, Frédéric; Bicep, Cedric; Vazquez-Manrique, Rafael P; Parker, J Alex; Vert, Jean-Philippe; Tourette, Cendrine; Neri, Christian
2012-03-13
A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD. © 2012 Lejeune et al; licensee BioMed Central Ltd.
The MAGIC Touch: Combining MAGIC-Pointing with a Touch-Sensitive Mouse
NASA Astrophysics Data System (ADS)
Drewes, Heiko; Schmidt, Albrecht
In this paper, we show how to use the combination of eye-gaze and a touch-sensitive mouse to ease pointing tasks in graphical user interfaces. A touch of the mouse positions the mouse pointer at the current gaze position of the user. Thus, the pointer is always at the position where the user expects it on the screen. This approach changes the user experience in tasks that include frequent switching between keyboard and mouse input (e.g. working with spreadsheets). In a user study, we compared the touch-sensitive mouse with a traditional mouse and observed speed improvements for pointing tasks on complex backgrounds. For pointing task on plain backgrounds, performances with both devices were similar, but users perceived the gaze-sensitive interaction of the touch-sensitive mouse as being faster and more convenient. Our results show that using a touch-sensitive mouse that positions the pointer on the user’s gaze position reduces the need for mouse movements in pointing tasks enormously.
Telescope Array Control System Based on Wireless Touch Screen Platform
NASA Astrophysics Data System (ADS)
Fu, Xia-nan; Huang, Lei; Wei, Jian-yan
2017-10-01
Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.
Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications.
Nunes, Jivago Serrado; Castro, Nelson; Gonçalves, Sergio; Pereira, Nélson; Correia, Vitor; Lanceros-Mendez, Senentxu
2017-12-01
The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications.
Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications
Nunes, Jivago Serrado; Castro, Nelson; Pereira, Nélson; Correia, Vitor; Lanceros-Mendez, Senentxu
2017-01-01
The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications. PMID:29194414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Andrew E.; Soares, Alexei S.; Owen, Robin L.
Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. Our work illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from `point and click' to `touch and share', where results can be selected, annotated and discussed collaboratively. Furthermore, in the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting informationmore » can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient `screen to beam' approach. The application is not limited to the area of crystallization screening; `touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.« less
Bruno, Andrew E.; Soares, Alexei S.; Owen, Robin L.; ...
2016-11-11
Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. Our work illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from `point and click' to `touch and share', where results can be selected, annotated and discussed collaboratively. Furthermore, in the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting informationmore » can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient `screen to beam' approach. The application is not limited to the area of crystallization screening; `touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.« less
The Virtual Midas Touch: Helping Behavior After a Mediated Social Touch.
Haans, A; Usselsteijn, W A
2009-01-01
A brief touch on the upper arm increases people's altruistic behavior and willingness to comply with a request. In this paper, we investigate whether this Midas touch phenomenon would also occur under mediated conditions (i.e., touching via an arm strap equipped with electromechanical actuators). Helping behavior was more frequently endorsed in the touch, compared to the no-touch condition, but this difference was not found to be statistically significant. However, a meta-analytical comparison with published research demonstrated that the strength of the virtual Midas touch is of the same magnitude as that of the Midas touch in unmediated situations. The present experiment, thus, provides empirical evidence that touch-like qualities can be attributed to electromechanical stimulation. This is important for the field of mediated social touch of which the design rationale is based on the assumption that mediated touch by means of tactile feedback technologies is processed in ways similar to real physical contact.
Personalized Technology to Support Older Adults With and Without Cognitive Impairment Living at Home
Kerssens, Chantal; Kumar, Renu; Adams, Anne E.; Knott, Camilla C.; Matalenas, Laura; Sanford, Jon A.; Rogers, Wendy A.
2015-01-01
Although persons with dementia (PWD) and their family caregivers need in-home support for common neuropsychiatric symptoms (NPS), few if any assistive technologies are available to help manage NPS. This implementation study tested the feasibility and adoption of a touch screen technology, the Companion, that delivers psychosocial, nondrug interventions to PWD in their home to address individual NPS and needs. Interventions were personalized and delivered in-home for a minimum of 3 weeks. Post-intervention measures indicated the technology was easy to use, significantly facilitated meaningful and positive engagement, and simplified caregivers’ daily lives. Although intervention goals were met, caregivers had high expectations of their loved-one’s ability to regain independence. Care recipients used the system independently, but were limited by cognitive and physical impairments. We conclude the Companion can help manage NPS and offer caregiver respite at home. These data provide important guidance for design and deployment of care technology for the home. PMID:25614507
A Predeployment Limited Technical Assessment of the iPod Touch to Aid the United States Marine Corps
2009-08-01
public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES "Safari," " iTunes ," "iPod," "iPod touch," and "iPhone" are registered trademarks...Marine Corps unit and assessed during the EUE.1 1 “Safari,” “ iTunes ,” “iPod,” “iPod touch,” and “iPhone...application store, YouTube, the Apple Safari Web browser, maps, weather, and Apple iTunes . Participants then arranged a paper prototype home screen
Real-time interactive projection system based on infrared structured-light method
NASA Astrophysics Data System (ADS)
Qiao, Xiaorui; Zhou, Qian; Ni, Kai; He, Liang; Wu, Guanhao; Mao, Leshan; Cheng, Xuemin; Ma, Jianshe
2012-11-01
Interactive technologies have been greatly developed in recent years, especially in projection field. However, at present, most interactive projection systems are based on special designed interactive pens or whiteboards, which is inconvenient and limits the improvement of user experience. In this paper, we introduced our recent progress on theoretically modeling a real-time interactive projection system. The system permits the user to easily operate or draw on the projection screen directly by fingers without any other auxiliary equipment. The projector projects infrared striping patterns onto the screen and the CCD captures the deformational image. We resolve the finger's position and track its movement by processing the deformational image in real-time. A new way to determine whether the finger touches the screen is proposed. The first deformational fringe on the fingertip and the first fringe at the finger shadow are the same one. The correspondence is obtained, so the location parameters can be decided by triangulation. The simulation results are given, and errors are analyzed.
Digital Pain Drawings: Assessing Touch-Screen Technology and 3D Body Schemas.
Boudreau, Shellie A; Badsberg, Susanne; Christensen, Steffan W; Egsgaard, Line L
2016-02-01
To assess the consistency and level of agreement between pain drawings collected on (1) paper and a personal computer tablet; and (2) between a 2-dimensional (2D) line drawing and 3-dimensional (3D) body schema. Pain-free participants (N=24) recreated a premarked "pain" area from a 2D line drawing displayed on paper onto paper or tablet, and individuals with chronic neck pain (N=29) expressed their current pain on paper and tablet. A heterogeneous group (N=26) was recruited from cross-disciplinary pain clinic and expressed their pain on a 2D line drawing and a 3D body schema, as displayed on a tablet, and then completed an user-experience questionnaire. Pain drawings showed moderate to high level of consistency and a high level of agreement for paper and tablet and between 2D line drawing and 3D body schema. A fixed bias (-1.0042, P<0.001) revealed that pain areas were drawn slightly smaller on paper than on tablet, and larger on the 2D than the 3D body schema (-0.6371, P=0.003), as recorded on a tablet. Over one-third of individuals with chronic pain preferred and/or believed that the 3D body schema enabled a more accurate record; 12 believed they were equal, and 3 preferred the 2D line drawing. Pain drawings recorded with touch-screen technology provide equal reliability to paper but the size of the drawing slightly differs between the platforms. Although, 2D line drawings and 3D body schemas were similar in terms of consistency and reliability, it remains to be confirmed whether 3D body schemas increase the accuracy and precision of pain drawings.
Pitchford, Nicola J.; Kamchedzera, Elizabeth; Hubber, Paula J.; Chigeda, Antonie L.
2018-01-01
Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing. PMID:29559940
Pitchford, Nicola J; Kamchedzera, Elizabeth; Hubber, Paula J; Chigeda, Antonie L
2018-01-01
Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing.
Object detection system using SPAD proximity detectors
NASA Astrophysics Data System (ADS)
Stark, Laurence; Raynor, Jeffrey M.; Henderson, Robert K.
2011-10-01
This paper presents an object detection system based upon the use of multiple single photon avalanche diode (SPAD) proximity sensors operating upon the time-of-flight (ToF) principle, whereby the co-ordinates of a target object in a coordinate system relative to the assembly are calculated. The system is similar to a touch screen system in form and operation except that the lack of requirement of a physical sensing surface provides a novel advantage over most existing touch screen technologies. The sensors are controlled by FPGA-based firmware and each proximity sensor in the system measures the range from the sensor to the target object. A software algorithm is implemented to calculate the x-y coordinates of the target object based on the distance measurements from at least two separate sensors and the known relative positions of these sensors. Existing proximity sensors were capable of determining the distance to an object with centimetric accuracy and were modified to obtain a wide field of view in the x-y axes with low beam angle in z in order to provide a detection area as large as possible. Design and implementation of the firmware, electronic hardware, mechanics and optics are covered in the paper. Possible future work would include characterisation with alternative designs of proximity sensors, as this is the component which determines the highest achievable accur1acy of the system.
Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics.
Kang, Minpyo; Kim, Jejung; Jang, Bongkyun; Chae, Youngcheol; Kim, Jae-Hyun; Ahn, Jong-Hyun
2017-08-22
The development of input device technology in a conformal and stretchable format is important for the advancement of various wearable electronics. Herein, we report a capacitive touch sensor with good sensing capabilities in both contact and noncontact modes, enabled by the use of graphene and a thin device geometry. This device can be integrated with highly deformable areas of the human body, such as the forearms and palms. This touch sensor detects multiple touch signals in acute recordings and recognizes the distance and shape of the approaching objects before direct contact is made. This technology offers a convenient and immersive human-machine interface and additional potential utility as a multifunctional sensor for emerging wearable electronics and robotics.
Comparing Web and Touch Screen Transaction Log Files
Huntington, Paul; Williams, Peter
2001-01-01
Background Digital health information is available on a wide variety of platforms including PC-access of the Internet, Wireless Application Protocol phones, CD-ROMs, and touch screen public kiosks. All these platforms record details of user sessions in transaction log files, and there is a growing body of research into the evaluation of this data. However, there is very little research that has examined the problems of comparing the transaction log files of kiosks and the Internet. Objectives To provide a first step towards examining the problems of comparing the transaction log files of kiosks and the Internet. Methods We studied two platforms: touch screen kiosks and a comparable Web site. For both of these platforms, we examined the menu structure (which affects transaction log file data), the log-file structure, and the metrics derived from log-file records. Results We found substantial differences between the generated metrics. Conclusions None of the metrics discussed can be regarded as an effective way of comparing the use of kiosks and Web sites. Two metrics stand out as potentially comparable and valuable: the number of user sessions per hour and user penetration of pages. PMID:11720960
Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application
Yamanaka, Keiichiro; Vestergaard, Mun’delanji C.; Tamiya, Eiichi
2016-01-01
In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices. PMID:27775661
Physics Learning Strategies with Multi-touch Technology
NASA Astrophysics Data System (ADS)
Potter, Mark; Ilie, C.; Schofield, D.
2011-03-01
Advancements in technology have opened doorways to build new teaching and learning methods. Through conjunctive use of these technologies and methods, a classroom can be enriched to stimulate and improve student learning. The purpose of our research is to ascertain whether or not multi-touch technology enhances students' abilities to better comprehend and retain the knowledge taught in physics. At their basis, students learn via visual, aural, reading/writing, and kinesthetic styles. Labs provide for all but the aural style, while lectures lack kinesthetic learning. Pedagogical research indicates that kinesthetic learning is a fundamental, powerful, and ubiquitous learning style. By using multi-touch technology in lecture, not only can we accommodate kinesthetic learners, but we can also enrich the experiences of visual learners. Ushering to this wider array of students will hopefully lead to an increase in meaningful learning.
Therapeutic touch is good, but technology cannot be ignored.
Short, Linda
2010-09-22
While I agree that nurses should rely more on their sense of touch, sight and hearing when assessing patients (features September 8), this should be in conjunction with state-of-the-art technology and monitoring devices. We need to nurse in the 21st century, not the 19th.
Leeson, Cory E; Weaver, Robert A; Bissell, Taylor; Hoyer, Rachel; McClain, Corinne; Nelson, Douglas A; Samosky, Joseph T
2012-01-01
We have enhanced a common medical device, the chest tube drainage container, with electronic sensing of fluid volume, automated detection of critical alarm conditions and the ability to automatically send alert text messages to a nurse's cell phone. The PleurAlert system provides a simple touch-screen interface and can graphically display chest tube output over time. Our design augments a device whose basic function dates back 50 years by adding technology to automate and optimize a monitoring process that can be time consuming and inconvenient for nurses. The system may also enhance detection of emergency conditions and speed response time.
Administering Cognitive Tests Through Touch Screen Tablet Devices: Potential Issues.
Jenkins, Amy; Lindsay, Stephen; Eslambolchilar, Parisa; Thornton, Ian M; Tales, Andrea
2016-10-04
Mobile technologies, such as tablet devices, open up new possibilities for health-related diagnosis, monitoring, and intervention for older adults and healthcare practitioners. Current evaluations of cognitive integrity typically occur within clinical settings, such as memory clinics, using pen and paper or computer-based tests. In the present study, we investigate the challenges associated with transferring such tests to touch-based, mobile technology platforms from an older adult perspective. Problems may include individual variability in technical familiarity and acceptance; various factors influencing usability; acceptability; response characteristics and thus validity per se of a given test. For the results of mobile technology-based tests of reaction time to be valid and related to disease status rather than extraneous variables, it is imperative the whole test process is investigated in order to determine potential effects before the test is fully developed. Researchers have emphasized the importance of including the 'user' in the evaluation of such devices; thus we performed a focus group-based qualitative assessment of the processes involved in the administration and performance of a tablet-based version of a typical test of attention and information processing speed (a multi-item localization task), to younger and older adults. We report that although the test was regarded positively, indicating that using a tablet for the delivery of such tests is feasible, it is important for developers to consider factors surrounding user expectations, performance feedback, and physical response requirements and to use this information to inform further research into such applications.
Discipline, desire, and transgression in physiotherapy practice.
Nicholls, David A; Holmes, Dave
2012-08-01
Therapeutic touch has played an important part in human civilization and continues to contribute to our social relations and individual identities. Therapeutic touch has been a vital component in the development and definition of physiotherapy practice and continues to be one of the profession's principal distinguishing competencies. It is surprising then that while so much has been written about how to perform therapeutic touch techniques, little has been written about the role that these techniques have played in defining physiotherapy's professional identity. Drawing on the work of three postmodern philosophers, we offer a critique of physio-therapeutic approaches to therapeutic touch, examining why certain modes of touch were adopted by the profession in the past and not others; how the innate sensuality of touch had to be managed; and how the disciplinary technologies that surrounded the practice of massage came to define physiotherapy's professional identity. Our thesis is that the disciplinary technologies adopted by the profession in the 1890s endure today and that the profession's heavily disciplined approach to touch is now constraining new therapeutic possibilities that may be necessary if the profession is to respond to the demands of twenty-first century health care.
Assessing the Use of Input Devices for Teachers and Children in Early Childhood Education Programs
ERIC Educational Resources Information Center
Wood, Eileen; Willoughby, Teena; Schmidt, Alice; Porter, Lisa; Specht, Jacqueline; Gilbert, Jessica
2004-01-01
The impact of four computer input devices (mouse, EZ ball, touch pad, touch screen) for 81 preschoolers (ranging from 34 to 78 months of age) and 43 early childhood educators (mean age was 29 years and 9 months) was examined. Participants played two computer games with 10 trials for each game followed by a survey assessing their preferences for…
Scalability of Robotic Controllers: An Evaluation of Controller Options-Experiment II
2011-09-01
for the Soldier, to ensure mission success while maximizing the survivability and lethality through the synergistic interaction of equipment...based touch interface for gloved finger interactions . This interface had to have larger-than-normal touch-screen buttons for commanding the robot...C.; Hill, S.; Pillalamarri, K. Extreme Scalability: Designing Interfaces and Algorithms for Soldier-Robotic Swarm Interaction , Year 2; ARL- TR
Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah
2015-07-09
Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user's hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces.
The Effects of Room Design on Computer-Supported Collaborative Learning in a Multi-Touch Classroom
ERIC Educational Resources Information Center
Mercier, Emma M.; Higgins, Steven E.; Joyce-Gibbons, Andrew
2016-01-01
While research indicates that technology can be useful for supporting learning and collaboration, there is still relatively little uptake or widespread implementation of these technologies in classrooms. In this paper, we explore one aspect of the development of a multi-touch classroom, looking at two different designs of the classroom environment…
An Activity-Theoretic Approach to Multi-Touch Tools in Early Mathematics Learning
ERIC Educational Resources Information Center
Ladel, Silke; Kortenkamp, Ulrich
2013-01-01
In this article we present an activity theory based framework that can capture the complex situations that arise when modern technology like multi-touch devices are introduced in classroom situations. As these devices are able to cover more activities than traditional technologies, even computerbased, media, we have to accept that they now take a…
Exploring Teaching and Learning Using an iTouch Mobile Device
ERIC Educational Resources Information Center
Mayberry, John; Hargis, Jace; Boles, Larry; Dugas, Alex; O'Neill, Daniel; Rivera, Ajna; Meler, Monika
2012-01-01
Appropriate use of instructional technology can be an elusive quest for many faculty members. The iTouch is one of the latest technologies available to us, yet there is little literature on its use and effectiveness to support learners in their learning. Six new faculty members from various disciplines elected to integrate the device in their own…
FOCU:S--future operator control unit: soldier
NASA Astrophysics Data System (ADS)
O'Brien, Barry J.; Karan, Cem; Young, Stuart H.
2009-05-01
The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has been making strides in the implementation of three areas of small robot autonomy, namely platform autonomy, Soldier-robot interface, and tactical behaviors. It is CISD's belief that these three areas must be considered as a whole in order to provide Soldiers with useful capabilities. In addressing the Soldier-robot interface aspect, CISD has begun development on a unique dismounted controller called the Future Operator Control Unit: Soldier (FOCU:S) that is based on an Apple iPod Touch. The iPod Touch's small form factor, unique touch-screen input device, and the presence of general purpose computing applications such as a web browser combine to give this device the potential to be a disruptive technology. Setting CISD's implementation apart from other similar iPod or iPhone-based devices is the ARL software that allows multiple robotic platforms to be controlled from a single OCU. The FOCU:S uses the same Agile Computing Infrastructure (ACI) that all other assets in the ARL robotic control system use, enabling automated asset discovery on any type of network. Further, a custom ad hoc routing implementation allows the FOCU:S to communicate with the ARL ad hoc communications system and enables it to extend the range of the network. This paper will briefly describe the current robotic control architecture employed by ARL and provide short descriptions of existing capabilities. Further, the paper will discuss FOCU:S specific software developed for the iPod Touch, including unique capabilities enabled by the device's unique hardware.
Sticky-Finger Manipulation with a Multi-Touch Interface
2011-07-01
accessible, which makes them cost -effective potential replacements for traditional teleoperation interfaces. Perhaps the most important benefit that a multi...responses. Their model also took into account cloth thickness. A number of systems attempt to simulate cloth using position-based approaches instead of...can be stuck to the finger. Currently, the system does not take into account the exact shape and area of finger contact on the multi-touch screen and
Creating Joint Representations of Collaborative Problem Solving with Multi-Touch Technology
ERIC Educational Resources Information Center
Mercier, E.; Higgins, S.
2014-01-01
Multi-touch surfaces have the potential to change the nature of computer-supported collaborative learning, allowing more equitable access to shared digital content. In this paper, we explore how large multi-touch tables can be used by groups of students as an external representation of their group interaction processes. Video data from 24 groups…
[Intelligent watch system for health monitoring based on Bluetooth low energy technology].
Wang, Ji; Guo, Hailiang; Ren, Xiaoli
2017-08-01
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
ERIC Educational Resources Information Center
McManis, Mark H.; McManis, Lilla Dale
2016-01-01
The use of touch-based technologies by young children to improve academic skills has seen growth outpacing empirical evidence of its effectiveness. Due to the educational challenges low-income children face, the stakes for providing instructional technology with demonstrated efficacy are high. The current work presents an empirical study of the…
Haptics – Touchfeedback Technology Widening the Horizon of Medicine
Kapoor, Shalini; Arora, Pallak; Kapoor, Vikas; Jayachandran, Mahesh; Tiwari, Manish
2014-01-01
Haptics, or touchsense haptic technology is a major breakthrough in medical and dental interventions. Haptic perception is the process of recognizing objects through touch. Haptic sensations are created by actuators or motors which generate vibrations to the users and are controlled by embedded software which is integrated into the device. It takes the advantage of a combination of somatosensory pattern of skin and proprioception of hand position. Anatomical and diagnostic knowledge, when it is combined with this touch sense technology, has revolutionized medical education. This amalgamation of the worlds of diagnosis and surgical intervention adds precise robotic touch to the skill of the surgeon. A systematic literature review was done by using MEDLINE, GOOGLE SEARCH AND PubMed. The aim of this article was to introduce the fundamentals of haptic technology, its current applications in medical training and robotic surgeries, limitations of haptics and future aspects of haptics in medicine. PMID:24783164
Guo, Qiaohong; Cann, Beverley; McClement, Susan; Thompson, Genevieve; Chochinov, Harvey Max
2016-08-02
Hospitalized palliative patients need to keep in touch with their loved ones. Regular social contact may be especially difficult for individuals on palliative care in-patient units due to the isolating nature of hospital settings. Technology can help mitigate isolation by facilitating social connection. This study aimed to explore the acceptability of introducing internet-based communication and information technologies for patients on a palliative care in-patient unit. In the first phase of the Keep in Touch (KIT) project, a diverse group of key informants were consulted regarding their perspectives on web-based communication on in-patient palliative care units. Participants included palliative patients, family members, direct care providers, communication and information technology experts, and institutional administrators. Data was collected through focus groups, interviews and drop-in consultations, and was analyzed for themes, consensus, and major differences across participant groups. Hospitalized palliative patients and their family members described the challenges of keeping in touch with family and friends. Participants identified numerous examples of ways that communication and information technologies could benefit patients' quality of life and care. Patients and family members saw few drawbacks associated with the use of such technology. While generally supportive, direct care providers were concerned that patient requests for assistance in using the technology would place increased demands on their time. Administrators and IT experts recognized issues such as privacy and costs related to offering these technologies throughout an organization and in the larger health care system. This study affirmed the acceptability of offering internet-based communication and information technologies on palliative care in-patient units. It provides the foundation for trialing these technologies on a palliative in-patient unit. Further study is needed to confirm the feasibility of offering these technologies at the bedside.
Moderately reverberant learning ultrasonic pinch panel.
Nikolovski, Jean-Pierre
2013-10-01
Tactile sensing is widely used in human-computer interfaces. However, mechanical integration of touch technologies is often perceived as difficult by engineers because it often limits the freedom of style or form factor requested by designers. Recent work in active ultrasonic touch technologies has made it possible to transform thin glass plates, metallic sheets, or plastic shells into interactive surfaces. The method is based on a learning process of touch-induced, amplitude-disturbed diffraction patterns. This paper proposes, first, an evolution in the design with multiple dipole transducers that improves touch sensitivity or maximum panel size by a factor of ten, and improves robustness and usability in moderately reverberant panels, and second, defines a set of acoustic variables in the signal processing for the evaluation of sensitivity and radiating features. For proof of concept purposes, the design and process are applied to 3.2- and 6-mm-thick glass plates with variable damping conditions. Transducers are bonded to only one short side of the rectangular substrates. Measurements show that the highly sensitive free lateral sides are perfectly adapted for pinch-touch and pinch-slide interactions. The advantage of relative versus absolute touch disturbance measurement is discussed, together with tolerance to abutting contaminants.
ERIC Educational Resources Information Center
Gentry, Tony; Kriner, Richard; Sima, Adam; McDonough, Jennifer; Wehman, Paul
2015-01-01
Personal digital assistants (PDAs) are versatile task organizers that hold promise as assistive technologies for people with cognitive-behavioral challenges. This delayed randomized controlled trial compared two groups of adult workers with autism spectrum disorder (ASD) to determine whether the use of an Apple iPod Touch PDA as a vocational…
ERIC Educational Resources Information Center
Hung, Hui-Chun; Young, Shelley Shwu-Ching
2017-01-01
Handheld technologies with multi-touch functions have been embraced by the young generation and become their important tool for social and learning purposes. The purpose of this study was to explore how the state-of-art devices could be integrated into authentic art appreciation courses to motivate and enhance students' learning. It was conducted…
Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah
2015-01-01
Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces. PMID:26184202
Solving bezel reliability and CRT obsolescence
NASA Astrophysics Data System (ADS)
Schwartz, Richard J.; Bowen, Arlen R.; Knowles, Terry
2003-09-01
Scientific Research Corporation designed a Smart Multi-Function Color Display with Positive Pilot Feedback under the funding of an U. S. Navy Small Business Innovative Research program. The Smart Multi-Function Color Display can replace the obsolete monochrome Cathode Ray Tube display currently on the T-45C aircraft built by Boeing. The design utilizes a flat panel color Active Matrix Liquid Crystal Display and TexZec's patented Touch Thru Metal bezel technology providing both visual and biomechanical feedback to the pilot in a form, fit, and function replacement to the current T-45C display. Use of an existing color AMLCD, requires the least adaptation to fill the requirements of this application, thereby minimizing risk associated with developing a new display technology and maximizing the investment in improved user interface technology. The improved user interface uses TexZec's Touch Thru Metal technology to eliminate all of the moving parts that traditionally have limited Mean-Time-Between-Failure. The touch detection circuit consists of Commercial-Off-The-Shelf components, creating touch detection circuitry, which is simple and durable. This technology provides robust switch activation and a high level of environmental immunity, both mechanical and electrical. Replacement of all the T-45C multi-function displays with this design will improve the Mean-Time-Between-Failure and drastically reduce display life cycle costs. The design methodology described in this paper can be adapted to any new or replacement display.
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-01-01
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors. PMID:28368355
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-04-03
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.
Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
NASA Astrophysics Data System (ADS)
Yao, Shanshan; Zhu, Yong
2014-01-01
Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05496a
Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo
2016-02-21
We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.
Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takahashi, Shirushi; Kurosu, Akira; Takada, Aya; Saito, Kazuyuki
2016-05-01
A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples. © 2016 American Academy of Forensic Sciences.
Medical Utilization of Kiosks in the Delivery of Patient Education: A Systematic Review
Yvonne Chan, Yu-Feng; Nagurka, Roxanne; Bentley, Suzanne; Ordonez, Edgardo; Sproule, William
2014-01-01
Background: The utilization of kiosks has previously been shown to be effective for collecting information, delivering educational modules, and providing access to health information. We discuss a review of current literature for the utilization of kiosks for the delivery of patient education. Methods: The criteria for inclusion in this literature review were: (1) study discusses the utilization of kiosks for patient health education; (2) study discusses the use of touch screens for patient health information; (3) published in English. Our review includes searches via MEDLINE databases and Google Scholar for the years 1996-2014. Results: Overall, 167 articles were screened for final eligibility, and after discarding duplicates and non-eligible studies with abstract. Full-text review of 28 articles was included in the final analysis. Conclusion: The review of available literature demonstrates the effectiveness of touch screen kiosks to educate patients and to improve healthcare, both at a performance and cost advantage over other modes of patient education. PMID:25097831
A feature based comparison of pen and swipe based signature characteristics.
Robertson, Joshua; Guest, Richard
2015-10-01
Dynamic Signature Verification (DSV) is a biometric modality that identifies anatomical and behavioral characteristics when an individual signs their name. Conventionally signature data has been captured using pen/tablet apparatus. However, the use of other devices such as the touch-screen tablets has expanded in recent years affording the possibility of assessing biometric interaction on this new technology. To explore the potential of employing DSV techniques when a user signs or swipes with their finger, we report a study to correlate pen and finger generated features. Investigating the stability and correlation between a set of characteristic features recorded in participant's signatures and touch-based swipe gestures, a statistical analysis was conducted to assess consistency between capture scenarios. The results indicate that there is a range of static and dynamic features such as the rate of jerk, size, duration and the distance the pen traveled that can lead to interoperability between these two systems for input methods for use within a potential biometric context. It can be concluded that this data indicates that a general principle is that the same underlying constructional mechanisms are evident. Copyright © 2015 Elsevier B.V. All rights reserved.
Visual preference in a human-reared agile gibbon (Hylobates agilis).
Tanaka, Masayuki; Uchikoshi, Makiko
2010-01-01
Visual preference was evaluated in a male agile gibbon. The subject was raised by humans immediately after birth, but lived with his biological family from one year of age. Visual preference was assessed using a free-choice task in which five or six photographs of different primate species, including humans, were presented on a touch-sensitive screen. The subject touched one of them. Food rewards were delivered irrespective of the subject's responses. We prepared two types of stimulus sets. With set 1, the subject touched photographs of humans more frequently than those of other species, recalling previous findings in human-reared chimpanzees. With set 2, photographs of nine species of gibbons were presented. Chimpanzees touched photographs of white-handed gibbons more than those of other gibbon species. The gibbon subject initially touched photographs of agile gibbons more than white-handed gibbons, but after one and two years his choice patterns resembled the chimpanzees'. The results suggest that, as in chimpanzees, visual preferences of agile gibbons are not genetically programmed but develop through social experience during infancy.
Ben-Sasson, Ayelet; Lamash, Liron; Gal, Eynat
2013-09-01
The goal of this stud was to examine whether a technological touch activated Collaborative Puzzle Game (CPG) increased positive social behaviors in children with high functioning autism spectrum disorder (HFASD). The CPG involved construction of a virtual puzzle by selecting and dragging pieces into the solution area on a touch screen table. The target picture was presented on the top of the screen. Six dyads of children with HFASD (aged 8-11 years) engaged in the CPG in a Free Play (FP) mode in which partners could independently move puzzle pieces versus in an Enforced Collaboration (EC) mode in which partners could only move puzzle pieces together. Videos of the dames were coded for the frequencies of positive and negative social interaction, affect, play, and autistic behaviors. Parents completed the Social Responsiveness Scale (SRS). Wilcoxon Signed-ranks tests indicated that children with HFASD showed significantly higher frequencies of positive social interaction and collaborative play in the EC versus FP modes but there were no differences in negative social behaviors. Differences in social behaviors between partners during the puzzle games were not significant; however there were differences within pair in the severity of social deficits as assessed by the SRS questionnaire. The CPG in an EC mode was effective in promoting positive social interaction by requiring children to work together towards a mutual goal. However, the increased challenge in this mode, particularly for children with lower social-communication skills, suggests the need for establishing selection criteria and mediation steps for such interventions.
An Automated, Experimenter-Free Method for the Standardised, Operant Cognitive Testing of Rats
Rivalan, Marion; Munawar, Humaira; Fuchs, Anna; Winter, York
2017-01-01
Animal models of human pathology are essential for biomedical research. However, a recurring issue in the use of animal models is the poor reproducibility of behavioural and physiological findings within and between laboratories. The most critical factor influencing this issue remains the experimenter themselves. One solution is the use of procedures devoid of human intervention. We present a novel approach to experimenter-free testing cognitive abilities in rats, by combining undisturbed group housing with automated, standardized and individual operant testing. This experimenter-free system consisted of an automated-operant system (Bussey-Saksida rat touch screen) connected to a home cage containing group living rats via an automated animal sorter (PhenoSys). The automated animal sorter, which is based on radio-frequency identification (RFID) technology, functioned as a mechanical replacement of the experimenter. Rats learnt to regularly and individually enter the operant chamber and remained there for the duration of the experimental session only. Self-motivated rats acquired the complex touch screen task of trial-unique non-matching to location (TUNL) in half the time reported for animals that were manually placed into the operant chamber. Rat performance was similar between the two groups within our laboratory, and comparable to previously published results obtained elsewhere. This reproducibility, both within and between laboratories, confirms the validity of this approach. In addition, automation reduced daily experimental time by 80%, eliminated animal handling, and reduced equipment cost. This automated, experimenter-free setup is a promising tool of great potential for testing a large variety of functions with full automation in future studies. PMID:28060883
Blame it on the bossa nova: Transfer of perceived sexiness from music to touch.
Fritz, Thomas Hans; Brummerloh, Berit; Urquijo, Maria; Wegner, Katharina; Reimer, Enrico; Gutekunst, Sven; Schneider, Lydia; Smallwood, Jonathan; Villringer, Arno
2017-09-01
Emotion elicited through music transfers to subsequent processing of facial expressions. Music may accordingly function as a social technology by promoting social bonding. Here, we investigated whether music would cross-modally influence the perception of sensual touch, a behavior related to mating. A robot applied precisely controlled gentle touch to a group of healthy participants while they listened to music that varied with respect to its perceived sexiness. As the perceived sexiness of the music increased, so did the subjective sexiness of the touch stimulations. In short, the perception of sexiness transferred from music to touch. Because sensual touch is key to mating behavior and relates to procreation, this association has implications for the universality and evolutionary significance of music. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Smith-Konter, B. R.; Solis, T.
2012-12-01
A primary objective of the EarthScope Education and Outreach program is to transform technical science into teachable products for a technologically thriving generation. One of the most challenging milestones of scientific research, however, is often the translation of a technical result into a clear teachable moment that is accessible to a broader audience. As 4D multimedia now dominate most aspects of our social environment, science "teaching" now also requires intervention of visualization technology and animation to portray research results in an inviting and stimulating manner. Following the Incorporated Research Institutions for Seismology (IRIS)'s lead in developing interactive Earth science kiosk multimedia (bundled in a free product called Active Earth), we have made a major effort to construct and install customized EarthScope-themed touch screen kiosks in local communities. These kiosks are helping to educate a broader audience about EarthScope's unique instrumentation and observations using interactive animations, games, and virtual field trips. We are also developing new kiosk content that reflect career stories showcasing the personal journeys of EarthScope scientists. To truly bring the interactive aspect of our EarthScope kiosk media into the classroom, we have collaborated with local teachers to develop a one-page EarthScope TerraMap activity worksheet that guides students through kiosk content. These activities are shaping a new pathway for how teachers teach and students learn about planet Earth and its fantastic EarthScope - one click (and touch) at a time.
Implications for Advanced Nursing Practice in the Use of Therapeutic Touch.
1993-01-01
care units, where reliance on machines and technology have isolated and depersonalized patients. Before the boon of technology in health care, so...adjunctive therapies. Meehan (1990) recommends TT be taught as part of undergraduate or graduate nursing curricula or in a continuing education program of...staff (ANA, 1986). The CNS may serve as a resource person, preceptor and role model to staff Therapeutic Touch 47 nurses and nursing students , or member
Design of belt conveyor electric control device based on CC-link bus
NASA Astrophysics Data System (ADS)
Chen, Goufen; Zhan, Minhua; Li, Jiehua
2016-01-01
In view of problem of the existing coal mine belt conveyor is no field bus communication function, two levels belt conveyor electric control system design is proposed based on field bus. Two-stage belt conveyor electric control system consists of operation platform, PLC control unit, various sensors, alarm device and the water spraying device. The error protection is realized by PLC programming, made use of CC-Link bus technology, the data share and the cooperative control came true between host station and slave station. The real-time monitor was achieved by the touch screen program. Practical application shows that the system can ensure the coalmine production, and improve the automatic level of the coalmine transport equipment.
Recent advances in flexible and wearable organic optoelectronic devices
NASA Astrophysics Data System (ADS)
Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin
2018-01-01
Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).
A Multi-touch Tool for Co-creation
NASA Astrophysics Data System (ADS)
Ludden, Geke D. S.; Broens, Tom
Multi-touch technology provides an attractive way for knowledge workers to collaborate. Co-creation is an important collaboration process in which collecting resources, creating results and distributing these results is essential. We propose a wall-based multi-touch system (called CoCreate) in which these steps are made easy due to the notion of connected private spaces and a shared co-create space. We present our ongoing work, expert evaluation of interaction scenarios and future plans.
Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss
Whelan, Lynsay R.; Wagner, Nathan
2011-01-01
While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP) videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss. Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states. PMID:25945186
Technology for the Next-Generation-Mobile User Experience
NASA Astrophysics Data System (ADS)
Delagi, Greg
The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including specialized circuits, highly parallel architectures, and new packaging design. Another concern of the smart-mobile-companion user will be that their device is able to deliver an always-on, always-aware environment in a way that is completely seamless and transparent. These handsets will automatically determine the best and most appropriate modem link from the multiple choices on the device, including WiFi, LTE, 5G, and mmWave, based on which link will optimize performance, battery life, and network charges to deliver the best possible user experience. In the future, adaptive connectivity will require many different solutions, including the standard modem technologies of today, as well as new machine-machine interfaces and body-area-networks. All of the new and exciting applications and features of these mobile-companion devices are going to require additional energy due to added computational requirements. However, a gap in energy efficiency is quickly developing between the energy that can be delivered by today's battery technologies, and the energy needed to deliver all-day operation or 2-day always-on standby without a recharge. New innovations ranging from low-voltage digital and analog circuits, non-volatile memory, and adaptive power management, to energy harvesting, will be needed to further improve the battery life of these mobile companion devices. Increased bandwidth combined with decreased latency, higher power efficiency, energy harvesting, massive multimedia processing, and new interconnect technologies will all work together to revolutionize how we interact with our smart-companion devices. The implementation challenges in bringing these technologies to market may seem daunting and numerous at first, but with the strong collaboration in research and development from universities, government agencies, and corporations, the smart-mobile-companion devices of the future will likely become reality within 5 years!
Hutton, John S
2013-01-01
The issue of electronic media use by young children is increasingly important in pediatrics, a major risk factor for numerous chronic conditions. Despite guidelines in place since 1999, screen time is on the rise, aided by new formats removing practically all barriers of use. Key drivers are technological allure, confusion about developmental readiness, and perception of educational value, fueled by potent marketing. This article describes the development of Baby Unplugged, a series of children's board books celebrating "old-school," screen-free childhood. Written by a pediatrician who also owns a children's bookstore, the books were inspired and informed by advocacy projects in the areas of media use and early literacy as a pediatric resident. They reinforce AAP Electronic Media Guidelines, notably discouraging screen-based media under 2 years old, largely by encouraging healthy, fun alternatives. Examples include Pets, Book, and Yard. Multi-sensorial exploration and parent-child engagement are emphasized in a non-prescriptive way, featuring gender and ethnic diversity and activities that are accessible and inexpensive. The author describes challenges faced by pediatricians providing anticipatory guidance for media use, given limited time and resources and the perception that we are out of touch. This is heightened by oft-deceptive marketing of screen-based products more likely to be perceived as "cool." Reach Out and Read is cited as an example of a successful, "cool" intervention, though limited to select populations. Baby Unplugged takes advocacy to the marketplace, where the screen time battle is being lost.
Design and Evolution of the Asporto Heart Preservation Device.
Rivard, Andrew L
2015-06-01
The Asporto Heart Preservation Device is a system providing perfusion of cardioplegia to the donor heart using a computer-controlled peristaltic pump in a thermoelectrically cooled and insulated container. In 1998, a user interface was developed at the University of Minnesota consisting of a touch screen and battery-backed microcontroller. Power was supplied by a 120 VAC to 12 VDC converter. An upgrade to the insulated cooler and microcontroller occurred in 2002, which was followed by proof of concept experimental pre-clinical transplants and tests demonstrating the efficacy of the device with isolated donor hearts. During the period between 2002 and 2006, a variety of donor organ containers were developed, modified, and tested to provide an optimal sterile environment and fluid path. Parallel development paths encompass formalized design specifications for final prototypes of the touch screen/microcontroller, organ container, and thermoelectric cooler.
Solnica, Bogdan
2009-09-01
In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch UltraVue blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. 2009 Diabetes Technology Society.
Camilleri, Matt J; Malige, Ajith; Fujimoto, Jeffrey; Rempel, David M
2013-01-01
Direct touch displays can improve the human-computer experience and productivity; however, the higher hand locations may increase shoulder fatigue. Palm rejection (PR) technology may reduce shoulder loads by allowing the palms to rest on the display and increase productivity by registering the touched content and fingertips through the palms rather than shoulders. The effects of PR were evaluated by having participants perform touch tasks while posture and reaction force on the display were measured. Enabling PR, during which the subjects could place the palms on the display (but were not required to), resulted in increased wrist extension, force applied to the display and productivity, and less discomfort, but had no effect on the self-selected positioning of the display. Participants did not deliberately place their palms on the display; therefore, there was no reduction in shoulder load and the increased productivity was not due to improved hand registration. The increased productivity may have been due to reduced interruptions from palm contacts or reduced motor control demands.
Real-time graphic display utility for nuclear safety applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S.; Huang, X.; Taylor, J.
2006-07-01
With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long historymore » of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data input: a serial interface with field equipment and a serial input from the FPD touch screen. The mechanism for data collection from the field equipment consists of the regular exchange of the data update request messages and target commands sent to the equipment and the update messages returned to the FPC. The data updates from field equipment control displays presented on the graphic pages. Touch screen contacts are decoded to identify physical position that was contacted. If that position corresponds with one of the buttons on the graphic page, the software uses that input to initiate the function defined for the particular button contacted. In this paper, the FPC will be illustrated as a standalone system as well as a module in a dedicated control system. The GDU design concepts and its design flow will be demonstrated. The dedication process of the QNX RTOS needed for the GDU will be highlighted. Finally, the GDU with a specific application example used in one of the nuclear power plants will be presented. (authors)« less
Keystroke dynamics in the pre-touchscreen era
Ahmad, Nasir; Szymkowiak, Andrea; Campbell, Paul A.
2013-01-01
Biometric authentication seeks to measure an individual’s unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individuals’ typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts. PMID:24391568
Keystroke dynamics in the pre-touchscreen era.
Ahmad, Nasir; Szymkowiak, Andrea; Campbell, Paul A
2013-12-19
Biometric authentication seeks to measure an individual's unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individuals' typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts.
Movie magic in the clinic: computer-generated characters for automated health counseling.
Bickmore, Timothy
2008-11-06
In this presentation, I demonstrate how many of the technologies used in movie special effects and games have been successfully used in health education and behavior change interventions. Computer-animated health counselors simulate human face-to-face dialogue as a computer interface medium, including not only verbal behavior but nonverbal conversational behavior such as hand gesture, body posture shifts, and facial display of emotion. This technology has now been successfully used in a wide range of health interventions for education and counseling of patients and consumers, including applications in physical activity promotion, medication adherence, and hospital discharge. These automated counselors have been deployed on home computers, hospital-based touch screen kiosks, and mobile devices with integrated health behavior sensing capability. Development of these agents is an interdisciplinary endeavor spanning the fields of character modeling and animation, computational linguistics, artificial intelligence, health communication and behavioral medicine. I will give demonstrations of several fielded systems, describe the technologies and methodologies underlying their development, and present results from five randomized controlled trials that have been completed or are in progress.
Novel interactive virtual showcase based on 3D multitouch technology
NASA Astrophysics Data System (ADS)
Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian
2009-11-01
A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.
Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education
ERIC Educational Resources Information Center
Meletiou-Mavrotheris, Maria, Ed.; Mavrou, Katerina, Ed.; Paparistodemou, Efi, Ed.
2015-01-01
Despite increased interest in mobile devices as learning tools, the amount of available primary research studies on their integration into mathematics teaching and learning is still relatively small due to the novelty of these technologies. "Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education" presents…
High Touch in a High-Tech World
ERIC Educational Resources Information Center
Gibson, Cindy L.
2009-01-01
In a world of high tech and low touch, it is easy for public relations programs to stray from tried-and-true interpersonal strategies long associated with solid communication planning. New technologies allow communications professionals to quickly send e-mails and telephone calls to selected groups. Social media sites provide users immediate…
Rowther, Armaan A.; Dykzeul, Brad; Billimek, John; Abuhassan, Deyana; Anderson, Craig; Lotfipour, Shahram
2016-01-01
The prevalence of diabetes in the Middle East is increasing rapidly due to urbanization, reduced levels of physical activity, and a nutritional transition toward increased consumption of fats and refined carbohydrates. Preventive strategies are of paramount importance to stemming the tide. Portable touch-screen computer technology may hold an answer for alleviating the burdens of cost, time, and training that limit the implementation of diabetes risk screening and intervention, especially among refugees and other vulnerable populations. The Computer-Assisted Diabetes Risk Assessment and Education (CADRAE) Arabic-language intervention program is proposed as a model method for practicing proactive type 2 diabetes prevention in resource-limited settings of the Middle East that combines the efficiency of risk-score screening methods, the advantages of portable computer interface, and the spirit of brief motivational interviewing. This paper aims to describe the theory and novel design of CADRAE—introduced at the Noor Al Hussein Foundation's Institute of Family Health in January 2014—as well as discuss opportunities and challenges for its implementation and evaluation in primary or emergency care settings. Features of CADRAE are elucidated in detail, including development, translation, conceptual framework, theoretical basis, method of risk assessment, brief intervention style, definition of outcomes, requirements for implementation, and potential means of evaluation and quality improvement. CADRAE offers the first example of portable computer technology integrating diabetes risk screening with behavior change counseling tailored for an Arabic-speaking population of mostly refugees and could offer a valuable model for researchers and policy makers of the Middle East as well as other resource-limited settings. PMID:26835181
Haptic interface for vehicular touch screens.
DOT National Transportation Integrated Search
2013-02-01
Once the domain of purely physical controls such as knobs, : levers, buttons, and sliders, the vehicle dash is rapidly : transforming into a computer interface. This presents a : challenge for drivers, because the physics-based cues which : make trad...
Rapid Assessment of Contrast Sensitivity with Mobile Touch-screens
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2013-01-01
The availability of low-cost high-quality touch-screen displays in modern mobile devices has created opportunities for new approaches to routine visual measurements. Here we describe a novel method in which subjects use a finger swipe to indicate the transition from visible to invisible on a grating which is swept in both contrast and frequency. Because a single image can be swiped in about a second, it is practical to use a series of images to zoom in on particular ranges of contrast or frequency, both to increase the accuracy of the measurements and to obtain an estimate of the reliability of the subject. Sensitivities to chromatic and spatio-temporal modulations are easily measured using the same method. We will demonstrate a prototype for Apple Computer's iPad-iPod-iPhone family of devices, implemented using an open-source scripting environment known as QuIP (QUick Image Processing,
Exploring the use of tablet PCs in veterinary medical education: opportunity or obstacle?
Wang, Hong; Rush, Bonnie R; Wilkerson, Melinda; van der Merwe, Deon
2014-01-01
A tablet PC is a laptop computer with a touch screen and a digital pen or stylus that can be used for handwritten notes and drawings. The use of tablet PCs has been investigated in many disciplines such as engineering, mathematics, science, and education. The purpose of this article is to explore student and faculty attitudes toward and experiences with tablet PCs 6 years after the implementation of a tablet PC program in the College of Veterinary Medicine (CVM) at Kansas State University (K-State). This study reports that the use of tablet PCs has enhanced students' learning experiences through learner-interface interaction, learner-content interaction, learner-instructor interaction, and learner-learner interaction. This study also identifies digital distraction as the major negative experience with tablet PCs during class time. The tablet PC program provides CVM faculty the potential to pursue technology integration strategies that support expected learning outcomes and provides students the potential to develop self-monitoring and self-discipline skills that support learning with digital technologies.
Alonso-Martín, Fernando; Gamboa-Montero, Juan José; Castillo, José Carlos; Castro-González, Álvaro; Salichs, Miguel Ángel
2017-01-01
An important aspect in Human–Robot Interaction is responding to different kinds of touch stimuli. To date, several technologies have been explored to determine how a touch is perceived by a social robot, usually placing a large number of sensors throughout the robot’s shell. In this work, we introduce a novel approach, where the audio acquired from contact microphones located in the robot’s shell is processed using machine learning techniques to distinguish between different types of touches. The system is able to determine when the robot is touched (touch detection), and to ascertain the kind of touch performed among a set of possibilities: stroke, tap, slap, and tickle (touch classification). This proposal is cost-effective since just a few microphones are able to cover the whole robot’s shell since a single microphone is enough to cover each solid part of the robot. Besides, it is easy to install and configure as it just requires a contact surface to attach the microphone to the robot’s shell and plug it into the robot’s computer. Results show the high accuracy scores in touch gesture recognition. The testing phase revealed that Logistic Model Trees achieved the best performance, with an F-score of 0.81. The dataset was built with information from 25 participants performing a total of 1981 touch gestures. PMID:28509865
Alonso-Martín, Fernando; Gamboa-Montero, Juan José; Castillo, José Carlos; Castro-González, Álvaro; Salichs, Miguel Ángel
2017-05-16
An important aspect in Human-Robot Interaction is responding to different kinds of touch stimuli. To date, several technologies have been explored to determine how a touch is perceived by a social robot, usually placing a large number of sensors throughout the robot's shell. In this work, we introduce a novel approach, where the audio acquired from contact microphones located in the robot's shell is processed using machine learning techniques to distinguish between different types of touches. The system is able to determine when the robot is touched (touch detection), and to ascertain the kind of touch performed among a set of possibilities: stroke , tap , slap , and tickle (touch classification). This proposal is cost-effective since just a few microphones are able to cover the whole robot's shell since a single microphone is enough to cover each solid part of the robot. Besides, it is easy to install and configure as it just requires a contact surface to attach the microphone to the robot's shell and plug it into the robot's computer. Results show the high accuracy scores in touch gesture recognition. The testing phase revealed that Logistic Model Trees achieved the best performance, with an F -score of 0.81. The dataset was built with information from 25 participants performing a total of 1981 touch gestures.
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Ricciuti, Riccardo A; Trignani, Roberto; Oliva, Doretta; Signorino, Mario; D'Amico, Fiora; Sasanelli, Giovanni
2015-01-01
These two studies extended technology-aided programs to promote leisure and communication opportunities to a man with cervical spinal cord injury and a post-coma man with multiple disabilities. The studies involved the use of ABAB designs, in which A and B represented baseline and intervention phases, respectively. The programs focused on enabling the participants to activate songs, videos, requests, text messages, and telephone calls. These options were presented on a computer screen and activated through a small pressure microswitch by the man with spinal cord injury and a special touch screen by the post-coma man. To help the latter participant, who had no verbal skills, with requests and telephone calls, series of words and phrases were made available that he could activate in those situations. Data showed that both participants were successful in managing the programs arranged for them. The man with spinal cord injury activated mean frequencies of above five options per 10-min session. The post-coma man activated mean frequencies of about 12 options per 20-min session. Technology-aided programs for promoting leisure and communication opportunities might be successfully tailored to persons with spinal cord injury and persons with post-coma multiple disabilities. Implications for Rehabilitation Technology-aided programs may be critical to enable persons with pervasive motor impairment to engage in leisure activities and communication events independently. Persons with spinal cord injury, post-coma extended brain damage, and forms of neurodegenerative disease, such as amyotrophic lateral sclerosis, may benefit from those programs. The programs could be adapted to the participants' characteristics, both in terms of technology and contents, so as to improve their overall impact on the participants' functioning and general mood.
Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array
Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham
2017-01-01
The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045
Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.
Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham
2017-03-01
The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.
NASA Astrophysics Data System (ADS)
Woodard, G. C.; Carpenter, K. D.
2002-12-01
Sabino Canyon near Tucson, Arizona draws over 1 million visits per year. The centerpiece of the canyon is Sabino Creek, an ephemeral stream fed by seasonal snowmelt and monsoon rains. Frequently asked questions by canyon visitors include: How can a stream flow in the desert environment? Why are the surrounding mountaintops so much cooler and wetter? How can the stream flow without recent rain or snowmelt? Where does the water go? The NSF STC for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has partnered with the USGS and the USDA Forest Service to develop static displays and a touch-screen electronic kiosk for the Sabino Canyon Visitors Center that explain what streamflow is, where the waters of Sabino Creek originate, where they go, what conditions produce flash flooding, and the hydrology of sky island environments. The kiosk, and an associated Web site, also give current weather and streamflow conditions at various points in the canyon, plus typical and extreme conditions for the current date. Designing displays that attract and inform a diverse mix of visitors with varying levels of interest, reading levels, and attention spans is a major challenge. We have integrated static displays featuring light boxes with a touch-screen kiosk featuring graphics, animation, video, sound effects, and voice-overs. Optional sub-titles are in five languages. The goal is to attract visitors to the display and then meet their various interests and information needs. Hydrology is a foreign subject to the great majority of people, and opportunities to informally educate them are relatively scarce. This presentation will show how current multimedia technology can be combined with proven methods of informal experiential education to communicate some basic hydrologic principles.
NASA Astrophysics Data System (ADS)
Pierce, S. A.; Figueroa B, E.
2016-12-01
Sound science and adequate models of systems are necessary for environmental decisions, yet frequently it is insufficient. This study documents the outcome of a co-design effort that was convened initially to explore the potential role that technology may have in supporting multi-stakeholder deliberation about sustainability transitions for a region. The project aims to create science-based deliberation among diverse stakeholders about water-energy-mineral use and choices in the Atacama Desert region of Chile. An interactive dashboard that pairs stakeholder preferences, concept maps with natural resource valuation models seeks to visualize useful information. The ultimate goal is to improve levels of understanding and open possibilities for collaborative problem solving by engaging industry, academics, and indigenous communities in a long- term participatory modeling process. Collaborative discussions build technical knowledge and bridge across sectors that are often at odds over management of earth resources. The project began in the shadow of marked conflict and tensions among participants. Methodologically, tensions have been reduced by combining social process with information delivery that leverages interactive touch screen applications. Models and information act as boundary objects among participants and the tenets of a conflict resolution process called sustained dialogue provide guidance for facilitating the group sessions. Early results indicate that the gesture-enabled touch screens are useful for establishing an accessible environment for deliberation because subject matter experts and laypeople can interact with information with equal ease. Social process has been critical for bridging scales, managing group expectations and relationships, and addressing differences in epistemological and cultural perspectives. Recent incorporation of economic and resource valuation highlights new aspects and alternative views of tradeoffs and potential impacts.
Kleinman, L; Leidy, N K; Crawley, J; Bonomi, A; Schoenfeld, P
2001-02-01
Although most health-related quality of life questionnaires are self-administered by means of paper and pencil, new technologies for automated computer administration are becoming more readily available. Novel methods of instrument administration must be assessed for score equivalence in addition to consistency in reliability and validity. The present study compared the psychometric characteristics (score equivalence and structure, internal consistency, and reproducibility reliability and construct validity) of the Quality of Life in Reflux And Dyspepsia (QOLRAD) questionnaire when self-administered by means of paper and pencil versus touch-screen computer. The influence of age, education, and prior experience with computers on score equivalence was also examined. This crossover trial randomized 134 patients with gastroesophageal reflux disease to 1 of 2 groups: paper-and-pencil questionnaire administration followed by computer administration or computer administration followed by use of paper and pencil. To minimize learning effects and respondent fatigue, administrations were scheduled 3 days apart. A random sample of 32 patients participated in a 1-week reproducibility evaluation of the computer-administered QOLRAD. QOLRAD scores were equivalent across the 2 methods of administration regardless of subject age, education, and prior computer use. Internal consistency levels were very high (alpha = 0.93-0.99). Interscale correlations were strong and generally consistent across methods (r = 0.7-0.87). Correlations between the QOLRAD and Short Form 36 (SF-36) were high, with no significant differences by method. Test-retest reliability of the computer-administered QOLRAD was also very high (ICC = 0.93-0.96). Results of the present study suggest that the QOLRAD is reliable and valid when self-administered by means of computer touch-screen or paper and pencil.
Field-effect enhanced triboelectric colloidal quantum dot flexible sensor
NASA Astrophysics Data System (ADS)
Meng, Lingju; Xu, Qiwei; Fan, Shicheng; Dick, Carson R.; Wang, Xihua
2017-10-01
Flexible electronics, which is of great importance as fundamental sensor and communication technologies for many internet-of-things applications, has established a huge market encroaching into the trillion-dollar market of solid state electronics. For the capability of being processed by printing or spraying, colloidal quantum dots (CQDs) play an increasingly important role in flexible electronics. Although the electrical properties of CQD thin-films are expected to be stable on flexible substrates, their electrical performance could be tuned for applications in flexible touch sensors. Here, we report CQD touch sensors employing polydimethylsiloxane (PDMS) triboelectric films. The electrical response of touching activity is enhanced by incorporating CQD field-effect transistors into the device architecture. Thanks to the use of the CQD thin film as a current amplifier, the field-effect CQD touch sensor shows a fast response to various touching materials, even being bent to a large curvature. It also shows a much higher output current density compared to a PDMS triboelectric touch sensor.
Multi-Touch Tables and Collaborative Learning
ERIC Educational Resources Information Center
Higgins, Steve; Mercier, Emma; Burd, Liz; Joyce-Gibbons, Andrew
2012-01-01
The development of multi-touch tables, an emerging technology for classroom learning, offers valuable opportunities to explore how its features can be designed to support effective collaboration in schools. In this study, small groups of 10- to 11-year-old children undertook a history task where they had to connect various pieces of information…
Investigation of the cortical activation by touching fabric actively using fingers.
Wang, Q; Yu, W; He, N; Chen, K
2015-11-01
Human subjects can tactually estimate the perception of touching fabric. Although many psychophysical and neurophysiological experiments have elucidated the peripheral neural mechanisms that underlie fabric hand estimation, the associated cortical mechanisms are not well understood. To identify the brain regions responsible for the tactile stimulation of fabric against human skin, we used the technology of functional magnetic resonance imaging (fMRI), to observe brain activation when the subjects touched silk fabric actively using fingers. Consistent with previous research about brain cognition on sensory stimulation, large activation in the primary somatosensory cortex (SI), the secondary somatosensory cortex (SII) and moto cortex, and little activation in the posterior insula cortex and Broca's Area were observed when the subjects touched silk fabric. The technology of fMRI is a promising tool to observe and characterize the brain cognition on the tactile stimulation of fabric quantitatively. The intensity and extent of activation in the brain regions, especially the primary somatosensory cortex (SI) and the secondary somatosensory cortex (SII), can represent the perception of stimulation of fabric quantitatively. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Measuring attentional biases for threat in children and adults.
LoBue, Vanessa
2014-10-19
Investigators have long been interested in the human propensity for the rapid detection of threatening stimuli. However, until recently, research in this domain has focused almost exclusively on adult participants, completely ignoring the topic of threat detection over the course of development. One of the biggest reasons for the lack of developmental work in this area is likely the absence of a reliable paradigm that can measure perceptual biases for threat in children. To address this issue, we recently designed a modified visual search paradigm similar to the standard adult paradigm that is appropriate for studying threat detection in preschool-aged participants. Here we describe this new procedure. In the general paradigm, we present participants with matrices of color photographs, and ask them to find and touch a target on the screen. Latency to touch the target is recorded. Using a touch-screen monitor makes the procedure simple and easy, allowing us to collect data in participants ranging from 3 years of age to adults. Thus far, the paradigm has consistently shown that both adults and children detect threatening stimuli (e.g., snakes, spiders, angry/fearful faces) more quickly than neutral stimuli (e.g., flowers, mushrooms, happy/neutral faces). Altogether, this procedure provides an important new tool for researchers interested in studying the development of attentional biases for threat.
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-01-01
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs. PMID:26582471
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-11-19
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.
NASA Astrophysics Data System (ADS)
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-11-01
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.
What's Going on behind the Screens? Researching Young Students' Learning Pathways Using iPads
ERIC Educational Resources Information Center
Falloon, G.
2014-01-01
Since their introduction in 2010, much has been said and written about Apple's iPad (Apple Inc., Cupertino, CA, USA) and its potential to transform when and how students learn. Much of this hype has focused on attributes of the device such as its touch screen interface, light and portable form factor, easy-to-use operating system, and large…
Forward/up directional incompatibilities during cursor placement within graphical user interfaces.
Phillips, James G; Triggs, Thomas J; Meehan, James W
2005-05-15
Within graphical user interfaces, an indirect relationship between display and control may lead to directional incompatibilities when a forward mouse movement codes upward cursor motions. However, this should not occur for left/right movements or direct cursor controllers (e.g. touch sensitive screens). In a four-choice reaction time task, 12 participants performed movements from a central start location to a target situated at one of four cardinal points (top, bottom, left, right). A 2 x 2 x 2 design varied directness of controller (moving cursor on computer screen or pen on graphics tablet), compatibility of orientation of cursor controller with screen (horizontal or vertical) and axis of desired cursor motion (left/right or up/down). Incompatibility between orientation of controller and motion of cursor did not affect response latencies, possibly because both forward and upward movements are away from the midline and go up the visual field. However, directional incompatibilities between display and controller led to slower movement with prolonged accelerative phases. Indirect relationships between display and control led to less efficient movements with prolonged decelerative phases and a tendency to undershoot movements along the bottom/top axis. More direct cursor control devices, such as touch sensitive screens, should enhance the efficiency of aspects of cursor trajectories.
Evaluation of the Lewis and Clark travel and tourism information kiosk
DOT National Transportation Integrated Search
2003-12-08
Interactive touch screen kiosks can be a useful access point for people seeking tourism information. The Montana Department of Transportation (MDT) has successfully installed a network of traveler information kiosks under the Greater Yellowstone Regi...
LIVING SHORES GALLERY MX964015
An interactive computer kiosk will allow the Texas State Aquarium to deliver a considerable amount of information in an efficient and highly effective manner. Touch screen interactives have proven to be excellent teaching tools in the Aquarium's Jellies: Floating Phantoms galler...
Computers for Interactive Learning.
ERIC Educational Resources Information Center
Grabowski, Barbara; Aggen, William
1984-01-01
Analyzes features of computer-based interactive video including sophisticated answer judging, diagnostic feedback, simulation, animation, audible tones, touch sensitive screen, function keys, and video enhancements, and matches these to the characteristics and pedagogical styles of learners. The learner characteristics discussed include internal…
Laser-assisted fabrication of single-layer flexible touch sensor
Son, Seokwoo; Park, Jong Eun; Lee, Joohyung; Yang, Minyang; Kang, Bongchul
2016-01-01
Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device. PMID:27703204
Acoustic-tactile rendering of visual information
NASA Astrophysics Data System (ADS)
Silva, Pubudu Madhawa; Pappas, Thrasyvoulos N.; Atkins, Joshua; West, James E.; Hartmann, William M.
2012-03-01
In previous work, we have proposed a dynamic, interactive system for conveying visual information via hearing and touch. The system is implemented with a touch screen that allows the user to interrogate a two-dimensional (2-D) object layout by active finger scanning while listening to spatialized auditory feedback. Sound is used as the primary source of information for object localization and identification, while touch is used both for pointing and for kinesthetic feedback. Our previous work considered shape and size perception of simple objects via hearing and touch. The focus of this paper is on the perception of a 2-D layout of simple objects with identical size and shape. We consider the selection and rendition of sounds for object identification and localization. We rely on the head-related transfer function for rendering sound directionality, and consider variations of sound intensity and tempo as two alternative approaches for rendering proximity. Subjective experiments with visually-blocked subjects are used to evaluate the effectiveness of the proposed approaches. Our results indicate that intensity outperforms tempo as a proximity cue, and that the overall system for conveying a 2-D layout is quite promising.
Development of a press and drag method for hyperlink selection on smartphones.
Chang, Joonho; Jung, Kihyo
2017-11-01
The present study developed a novel touch method for hyperlink selection on smartphones consisting of two sequential finger interactions: press and drag motions. The novel method requires a user to press a target hyperlink, and if a touch error occurs he/she can immediately correct the touch error by dragging the finger without releasing it in the middle. The method was compared with two existing methods in terms of completion time, error rate, and subjective rating. Forty college students participated in the experiments with different hyperlink sizes (4-pt, 6-pt, 8-pt, and 10-pt) on a touch-screen device. When hyperlink size was small (4-pt and 6-pt), the novel method (time: 826 msec; error: 0.6%) demonstrated better completion time and error rate than the current method (time: 1194 msec; error: 22%). In addition, the novel method (1.15, slightly satisfied, in 7-pt bipolar scale) had significantly higher satisfaction scores than the two existing methods (0.06, neutral). Copyright © 2017 Elsevier Ltd. All rights reserved.
Gips, James
2015-01-01
Abstract As the rise of tablets and smartphones move the dominant interface for digital content from mouse or trackpad to direct touchscreen interaction, work is needed to explore the role of interfaces in shaping psychological reactions to online content. This research explores the role of direct-touch interfaces in product search and choice, and isolates the touch element from other form factor changes such as screen size. Results from an experimental study using a travel recommendation Web site show that a direct-touch interface (vs. a more traditional mouse interface) increases the number of alternatives searched, and biases evaluations toward tangible attributes such as décor and furniture over intangible attributes such as WiFi and employee demeanor. Direct-touch interfaces also elevate the importance of internal and subjective satisfaction metrics such as instinct over external and objective metrics such as reviews, which in turn increases anticipated satisfaction metrics. Findings suggest that interfaces can strongly affect how online content is explored, perceived, remembered, and acted on, and further work in interface psychology could be as fruitful as research exploring the content itself. PMID:26348814
Brasel, S Adam; Gips, James
2015-09-01
As the rise of tablets and smartphones move the dominant interface for digital content from mouse or trackpad to direct touchscreen interaction, work is needed to explore the role of interfaces in shaping psychological reactions to online content. This research explores the role of direct-touch interfaces in product search and choice, and isolates the touch element from other form factor changes such as screen size. Results from an experimental study using a travel recommendation Web site show that a direct-touch interface (vs. a more traditional mouse interface) increases the number of alternatives searched, and biases evaluations toward tangible attributes such as décor and furniture over intangible attributes such as WiFi and employee demeanor. Direct-touch interfaces also elevate the importance of internal and subjective satisfaction metrics such as instinct over external and objective metrics such as reviews, which in turn increases anticipated satisfaction metrics. Findings suggest that interfaces can strongly affect how online content is explored, perceived, remembered, and acted on, and further work in interface psychology could be as fruitful as research exploring the content itself.
Communication Technology Enhances a Magnet School.
ERIC Educational Resources Information Center
Harrison, Jennifer
2001-01-01
Explains how a web-based management tool helped Foothill Technology High School successfully solve its school management and communications needs to keep parents in touch with their children's progress. (GR)
NASA Astrophysics Data System (ADS)
Ito, Shusei; Uchida, Keitaro; Mizushina, Haruki; Suyama, Shiro; Yamamoto, Hirotsugu
2017-02-01
Security is one of the big issues in automated teller machine (ATM). In ATM, two types of security have to be maintained. One is to secure displayed information. The other is to secure screen contamination. This paper gives a solution for these two security issues. In order to secure information against peeping at the screen, we utilize visual cryptography for displayed information and limit the viewing zone. Furthermore, an aerial information screen with aerial imaging by retro-reflection, named AIRR enables users to avoid direct touch on the information screen. The purpose of this paper is to propose an aerial secure display technique that ensures security of displayed information as well as security against contamination problem on screen touch. We have developed a polarization-processing display that is composed of a backlight, a polarizer, a background LCD panel, a gap, a half-wave retarder, and a foreground LCD panel. Polarization angle is rotated with the LCD panels. We have constructed a polarization encryption code set. Size of displayed images are designed to limit the viewing position. Furthermore, this polarization-processing display has been introduced into our aerial imaging optics, which employs a reflective polarizer and a retro-reflector covered with a quarter-wave retarder. Polarization-modulated light forms the real image over the reflective polarizer. We have successfully formed aerial information screen that shows the secret image with a limited viewing position. This is the first realization of aerial secure display by use of polarization-processing display with retarder-film and retro-reflector.
Gainor, Sara Jane; Goins, R Turner; Miller, Lee Ann
2004-01-01
Making geriatric education available to rural faculty/preceptors, students, and practitioners presents many challenges. Often the only options considered for educating those in the health professions about geriatrics are either traditional face-to-face courses or distance education programs. The purpose of this paper was to examine the use of Web-based modules or courses and other distance learning technology in concert with traditional learning modalities. The Mountain State Geriatric Education Center explored the use of a multi-modal approach within a high-touch, high-tech framework. Our findings indicate the following: it is important to start where participants are ready to begin; flexibility and variety are needed; soliciting evaluative feedback from participants is valuable; there is a need to integrate distance learning with more traditional modalities; and a high-tech, high-touch approach provides a format which participants find acceptable, accessible, and attractive. This assertion does not rule out the use of technology for distance education but rather encourages educators to take advantage of a wide range of modalities, traditional and technological, to reach rural practitioners, faculty, and students.
Psychophysical Calibration of Mobile Touch-Screens for Vision Testing in the Field
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2015-01-01
The now ubiquitous nature of touch-screen displays in cell phones and tablet computers makes them an attractive option for vision testing outside of the laboratory or clinic. Accurate measurement of parameters such as contrast sensitivity, however, requires precise control of absolute and relative screen luminances. The nonlinearity of the display response (gamma) can be measured or checked using a minimum motion technique similar to that developed by Anstis and Cavanagh (1983) for the determination of isoluminance. While the relative luminances of the color primaries vary between subjects (due to factors such as individual differences in pre-retinal pigment densities), the gamma nonlinearity can be checked in the lab using a photometer. Here we compare results obtained using the psychophysical method with physical measurements for a number of different devices. In addition, we present a novel physical method using the device's built-in front-facing camera in conjunction with a mirror to jointly calibrate the camera and display. A high degree of consistency between devices is found, but some departures from ideal performance are observed. In spite of this, the effects of calibration errors and display artifacts on estimates of contrast sensitivity are found to be small.
To twist, roll, stroke or poke? A study of input devices for menu navigation in the cockpit.
Stanton, Neville A; Harvey, Catherine; Plant, Katherine L; Bolton, Luke
2013-01-01
Modern interfaces within the aircraft cockpit integrate many flight management system (FMS) functions into a single system. The success of a user's interaction with an interface depends upon the optimisation between the input device, tasks and environment within which the system is used. In this study, four input devices were evaluated using a range of Human Factors methods, in order to assess aspects of usability including task interaction times, error rates, workload, subjective usability and physical discomfort. The performance of the four input devices was compared using a holistic approach and the findings showed that no single input device produced consistently high performance scores across all of the variables evaluated. The touch screen produced the highest number of 'best' scores; however, discomfort ratings for this device were high, suggesting that it is not an ideal solution as both physical and cognitive aspects of performance must be accounted for in design. This study evaluated four input devices for control of a screen-based flight management system. A holistic approach was used to evaluate both cognitive and physical performance. Performance varied across the dependent variables and between the devices; however, the touch screen produced the largest number of 'best' scores.
2008-08-01
objects and “ feel ” the forces applied on the object by the other individual or object. Feedback including active touch or proprioceptive signals (e.g...observer will notice that certain touches will feel “bright” or “cold.” In fact, the “experimenter/observer” has just activated his/her tactile cold...2008). More than a feeling : bringing touch into astronauts’ spatial orientation. Microgravity Science and Technology. (In press). [11] Vos, W.K
NASA Astrophysics Data System (ADS)
Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo
2016-02-01
We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a
"The Most Poisonous Force in Technology"
ERIC Educational Resources Information Center
Carnevale, Dan
2007-01-01
Walt Mossberg, personal-technology columnist for "The Wall Street Journal," highlighted technology trends in his speech to a group of college presidents and other administrators. Mr. Mossberg touched a nerve when he called information-technology departments of large organizations, including colleges, "the most regressive and poisonous force in…
A novel flexible capacitive touch pad based on graphene oxide film.
Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai
2013-02-07
Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch "ON" to "OFF" voltage ratio up to ∼60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.
A novel flexible capacitive touch pad based on graphene oxide film
NASA Astrophysics Data System (ADS)
Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai
2013-01-01
Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch ``ON'' to ``OFF'' voltage ratio up to ~60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.
Virtual microscopy and digital pathology in training and education.
Hamilton, Peter W; Wang, Yinhai; McCullough, Stephen J
2012-04-01
Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human-computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eye-tracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered. © 2012 The Authors APMIS © 2012 APMIS.
Bertollo, David N; Alexander, Mary Jane; Shinn, Marybeth; Aybar, Jalila B
2007-06-01
This column describes the nonproprietary software Talker, used to adapt screening instruments to audio computer-assisted self-interviewing (ACASI) systems for low-literacy populations and other populations. Talker supports ease of programming, multiple languages, on-site scoring, and the ability to update a central research database. Key features include highly readable text display, audio presentation of questions and audio prompting of answers, and optional touch screen input. The scripting language for adapting instruments is briefly described as well as two studies in which respondents provided positive feedback on its use.
Rules and Regulations for Education Programs for the Handicapped.
ERIC Educational Resources Information Center
Pace, R. Elwood; And Others
The manual presents Utah's rules and regulations for education programs serving handicapped students. Regulations touch upon the following topics (sample subtopics in parentheses): responsibilities of the State Office of Education (authority to make policy); child identification (child find and screening, referral, evaluation/classification…
Ag paste-based nanomesh electrodes for large-area touch screen panels
NASA Astrophysics Data System (ADS)
Chung, Sung-il; Kyeom Kim, Pan; Ha, Tae-gyu
2017-10-01
This study reports a novel method for fabricating a nickel nanomesh mold using phase shift lithography, suitable for use in large-area touch screen panel applications. Generally, the values of light transmittance and sheet resistance of metal mesh transparent conducting electrode (TCE) films are determined by the ratio of the aperture to metal areas. In this study, taking into consideration the optimal light transmittance, sheet resistance, and pattern visibility issues, the line width of the metal mesh pattern was ~1 µm, and the pitch of the pattern was ~100 µm. In addition, a novel method of manufacturing wiring electrodes using a phase shift lithography process was also developed and evaluated. A TCE film with a size of 370 mm × 470 mm was prepared and evaluated for its light transmittance and sheet resistance. In addition, wiring electrodes with a length of 70 mm were fabricated and their line resistances evaluated by varying their line width.
Horton, Emily L; Renganathan, Ramkesh; Toth, Bryan N; Cohen, Alexa J; Bajcsy, Andrea V; Bateman, Amelia; Jennings, Mathew C; Khattar, Anish; Kuo, Ryan S; Lee, Felix A; Lim, Meilin K; Migasiuk, Laura W; Zhang, Amy; Zhao, Oliver K; Oliveira, Marcio A
2017-01-01
To lay the groundwork for devising, improving, and implementing new technologies to meet the needs of individuals with visual impairments, a systematic literature review was conducted to: a) describe hardware platforms used in assistive devices, b) identify their various applications, and c) summarize practices in user testing conducted with these devices. A search in relevant EBSCO databases for articles published between 1980 and 2014 with terminology related to visual impairment, technology, and tactile sensory adaptation yielded 62 articles that met the inclusion criteria for final review. It was found that while earlier hardware development focused on pin matrices, the emphasis then shifted toward force feedback haptics and accessible touch screens. The inclusion of interactive and multimodal features has become increasingly prevalent. The quantity and consistency of research on navigation, education, and computer accessibility suggest that these are pertinent areas of need for the visually impaired community. Methodologies for usability testing ranged from case studies to larger cross-sectional studies. Many studies used blindfolded sighted users to draw conclusions about design principles and usability. Altogether, the findings presented in this review provide insight on effective design strategies and user testing methodologies for future research on assistive technology for individuals with visual impairments.
Focusing the EarthScope for a Broader Audience
NASA Astrophysics Data System (ADS)
Smith-Konter, B. R.
2011-12-01
One of the most challenging milestones of scientific research is often the translation of a technical result into a clear "teachable moment" that is accessible (and interesting!) to a broader audience. The success of this milestone can largely be measured by its effectiveness to inspire interest and enthusiasm in the non-scientist. Moreover, as 4D multimedia now dominates most aspects of our social environment, science "teaching" now also requires intervention of visualization technology and animation to portray research results in an inviting and stimulating manner. In response to these needs, a primary objective of the EarthScope Education and Outreach program is to transform technical science into teachable products for a technologically thriving generation. Following the Incorporated Research Institutions for Seismology (IRIS)'s lead in developing interactive Earth science kiosk multimedia (bundled in a free product called Active Earth), a major focus of this EarthScope CAREER project is aimed at the construction and installation of customized EarthScope-themed touch screen kiosks in local communities. These kiosks are helping to educate a broader audience about EarthScope's unique instrumentation and observations using interactive animations, games, and virtual field trips. An additional focus of this CAREER project is aimed at the development of several Earthquakes in Action teaching modules for grades 6-12, which have been successfully tested and implemented in both teacher-prep courses and an annual high school summer geosciences camp at the University of Texas at El Paso. These activities are beginning to shape a new pathway for how teachers teach and students learn about planet Earth and its fantastic EarthScope - one click (and touch) at a time.
Mirror-touch and ticker tape experiences in synesthesia
Chun, Charlotte A.; Hupé, Jean-Michel
2013-01-01
A fundamental question in the field of synesthesia is whether it is associated with other cognitive phenomena. The current study examined synesthesia's connections with phenomenal traits of mirror-touch and ticker tape experiences, as well as the representation of the three phenomena in the population, across gender and domain of work/study. Mirror-touch is the automatic, involuntary experience of tactile sensation on one's own body when others are being touched. For example, seeing another person's arm being stroked can evoke physical touch sensation on one's own arm. Ticker tape is the automatic visualization of spoken words or thoughts, such as a teleprompter. For example, when spoken to, a ticker taper might see mentally the spoken words displayed in front of his face or as coming out of the speaker's mouth. To explore synesthesia's associations with these phenomena, a diverse group (n = 3743) was systematically recruited from eight universities and one public museum in France to complete an online screening. Of the 1017 eligible respondents, synesthetes (across all subtypes) reported higher rates of mirror-touch and ticker tape than non-synesthetes, suggesting that synesthesia is associated with these phenomenal traits. However, effect sizes were small and we could not rule out that response bias influenced these associations. Mirror-touch and ticker tape were independent. No differences were found across gender or domain of work and study in prevalence of synesthesia, mirror-touch or ticker tape. The prevalence of ticker tape, unknown so far, was estimated at about 7%, an intermediate rate between estimates of grapheme-color (2–4%) and sequence-space synesthesia (9–14%). Within synesthesia, grapheme-personification, also called ordinal-linguistic personification (OLP) was the most common subtype and was estimated around 12%. Co-occurences of the different types of synesthesia were higher than chance, though at the level of small effect sizes. PMID:24223561
Design of a Multi-Touch Tabletop for Simulation-Based Training
2014-06-01
receive, for example using point and click mouse-based computer interactions to specify the routes that vehicles take as part of a convoy...learning, coordination and support for planning. We first provide background in tabletop interaction in general and survey earlier efforts to use...tremendous progress over the past five years. Touch detection technologies now enable multiple users to interact simultaneously on large areas with
Development of multi-touch panel backlight system
NASA Astrophysics Data System (ADS)
Chomiczewski, J.; Długosz, M.; Godlewski, G.; Kochanowicz, M.
2013-10-01
The paper presents design, simulation analysis, and measurements of parameters of optical multi touch panel backlight system. Comparison of optical technology with commercially available solutions was also performed. The numerical simulation of laser based backlight system was made. The influence of the laser power, beam divergence, and placing reflective surfaces on the uniformity of illumination were examined. Optimal illumination system was used for further studies.
OCRA, a Mobile Learning Prototype for Understanding Chemistry Concepts
ERIC Educational Resources Information Center
Shariman, Tenku Putri Norishah; Talib, Othman
2017-01-01
This research studies the effects of an interactive multimedia mobile learning application on students' understanding of chemistry concepts. The Organic Chemistry Reaction Application (OCRA), a mobile learning prototype with touch screen commands, was applied in this research. Through interactive multimedia techniques, students can create and…
Development of Android Based Powered Intelligent Wheelchair for Quadriplegic Persons
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Ghosh, Tathagata; Kumar, Pradeep; Bhawna, Shruthi. S.
2017-08-01
Several surveys give us the view that both children and adults benefit substantially from access towards independent mobility. With the inventions of technology, no individuals are satisfied with traditional manual operated machines. To accommodate population, researchers are using technology, originally developed for mobile robots to create ‘intelligent wheelchairs’. It’s a major challenge for quadriplegic persons as they really find it difficult to manipulate powered wheelchair during the activities of their daily living. As the Smartphone era has evolved with innovative android based applications, engineers are improving and trying to make such machines simple and cheap to the next level. In this paper, we present a development of android based powered intelligent wheelchair to assist the quadriplegic person by making them self sufficient in controlling the wheelchair. The wheels of the chair can be controlled by the voice or gesture movement or by touching the screen of the android app by the challenged persons. The system uses the Bluetooth communication to interface the microcontroller and the inbuilt sensors in the android Smartphone. According to the commands received from android phone, the kinematics of the wheels are controlled.
Application of an imaging system to a museum exhibition for developing interactive exhibitions
NASA Astrophysics Data System (ADS)
Miyata, Kimiyoshi; Inoue, Yuka; Takiguchi, Takahiro; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2009-10-01
In the National Museum of Japanese History, 215,759 artifacts are stored and used for research and exhibitions. In museums, due to the limitation of space in the galleries, a guidance system is required to satisfy visitors' needs and to enhance their understanding of the artifacts. We introduce one exhibition using imaging technology to improve visitors' understanding of a kimono (traditional Japanese clothing) exhibition. In the imaging technology introduced, one data projector, one display with touch panel interface, and magnifiers were used as exhibition tools together with a real kimono. The validity of this exhibition method was confirmed by results from a visitors' interview survey. Second, to further develop the interactive guidance system, an augmented reality system that consisted of cooperation between the projector and a digital video camera was also examined. A white paper board in the observer's hand was used as a projection screen and also as an interface to control the images projected on the board. The basic performance of the proposed system was confirmed; however continuous development was necessary for applying the system to actual exhibitions.
3D Printing of Biomolecular Models for Research and Pedagogy
Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel
2017-01-01
The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403
Koroglu, Mehmet; Gunal, Selami; Yildiz, Fatma; Savas, Mehtap; Ozer, Ali; Altindis, Mustafa
2015-12-30
Touch-screen mobile phones/devices (TMPs/Ds) are increasingly used in hospitals. They may act as a mobile reservoir for microbial pathogens. The rates of microbial contamination of TMPs/Ds and keypad mobile phones (KMPs) with respect to different variables including use by healthcare workers (HCWs)/non-HCWs and the demographic characteristics of users were investigated. A total of 205 mobile phones/devices were screened for microbial contamination: 76 devices belonged to HCWs and 129 devices belonged to the non-HCW group. By rubbing swabs to front screen, back, keypad, and metallic surfaces of devices, 444 samples were collected. Of 205 mobile phones/devices, 143 (97.9%) of the TMPs/Ds and 58 (98.3%) of the KMPs were positive for microbial contamination, and there were no significant differences in contamination rates between these groups, although TMPs/Ds had significantly higher microbial load than KMPs (p <0.05). The significant difference in this analysis was attributable to the screen size of mobile phones ≥ 5". Microbial contamination rates increased significantly as phone size increased (p <0.05). Higher numbers of coagulase-negative Staphylococci (CNS) were isolated from KMPs than TMPs/Ds (p = 0.049). The incidence of Enterococcus spp. was higher on the KMPs of HCWs, and methicillin resistant CNS was higher from the TMPs/Ds of non-HCWs (p <0.05). Isolation of CNS, Streptococcus spp. and Escherichia coli was higher from the TMPs/Ds of HCWs (p <0.05). We found no significant difference between TMP/Ds and KMPs in terms of microbial contamination, but TMP/Ds harboured more colonies and total microbial counts increased with screen size.
Sales Communications in a Mobile World: Using the Latest Technology and Retaining the Personal Touch
ERIC Educational Resources Information Center
Norris, Daniel T.
2007-01-01
Salespeople increasingly have the opportunity to use technology to more quickly communicate with a larger number of clients and customers. Mobile technology, in particular, gives salespeople many advantages in rapidly reaching a large customer base. Furthermore, customers are increasingly employing mobile technology, making them increasingly…
Exploring cardinality in the era of touchscreen-based technology
NASA Astrophysics Data System (ADS)
Sedaghatjou, Mina; Campbell, Stephen R.
2017-11-01
This paper explores how a young child (56 m) builds an understanding of the cardinality principle through communicative, touchscreen-based activities involving talk, gesture and body engagement working via multimodal, touchscreen interface using contemporary mobile technology. Drawing upon Nemirovsky's perceptuomotor integration theoretical lens and other foundational aspects of Husserlian phenomenology, we present an in-depth case study of a preschool child developing mathematical expertise and tool fluency using an iPad application called TouchCounts to operate with cardinal numbers. Overall, this study demonstrates that the one-on-one multimodal touch, sight and auditory feedback via a touchscreen device can serve to assist in a child's development of cardinality.
Developing affordable multi-touch technologies for use in physics
NASA Astrophysics Data System (ADS)
Potter, Mark; Ilie, Carolina; Schofield, Damian; Vampola, David
2012-02-01
Physics is one of many areas which has the ability to benefit from a number of different teaching styles and sophisticated instructional tools due to it having both theoretical and practical applications which can be explored. The purpose of this research is to develop affordable large scale multi-touch interfaces which can be used within and outside of the classroom as both an instruction technology and a computer supported collaborative learning tool. Not only can this technology be implemented at university levels, but also at the K-12 level of education. Pedagogical research indicates that kinesthetic learning is a fundamental, powerful, and ubiquitous learning style [1]. Through the use of these types of multi-touch tools and teaching methods which incorporate them, the classroom can be enriched to allow for better comprehension and retention of information. This is due in part to a wider range of learning styles, such as kinesthetic learning, which are being catered to within the classroom. [4pt] [1] Wieman, C.E, Perkins, K.K., Adams, W.K., ``Oersted Medal Lecture 2007: Interactive Simulations for teaching physics: What works, what doesn't and why,'' American Journal of Physics. 76 393-99.
Mental transformations of spatial stimuli in humans and in monkeys: rotation vs. translocation.
Nekovarova, Tereza; Nedvidek, Jan; Klement, Daniel; Rokyta, Richard; Bures, Jan
2013-03-01
We studied the ability of monkeys and humans to orient in one spatial frame ("response frame") according to abstract spatial stimuli presented in another spatial frame ("stimulus frame"). The stimuli were designed as simple maps of the "response space". We studied how the transformations of these stimuli affected the performance. The subjects were trained to choose a particular position in the response frame - either on a touch screen (monkeys) or on a keyboard (humans) - according to schematic spatial stimuli presented on the stimulus screen. The monkeys responded by touching one of four circles shown in corners of a rectangle displayed on the touch screen. The correct position was signaled by the stimulus ("map") presented on the stimulus screen. The map was a complementary rectangle, but only with one circle shown ("pointer"). The position of this circle indicated the correct position in the response frame. In the first experiment we only manipulated stimuli presented on the computer screen. The "map" was originally shown in the same position and orientation as the "response pattern" but later the position and the rotation of the map on the screen were changing. Such transformations of the stimuli allow us to study the mental operations that the animals performed and how particular mental transformations mutually differed. In the second experiment we tested whether the monkeys relied more on stimuli presented on the screen or on the surrounding stable environment and objects. We compared the performance of animals in tasks with rotated virtual maps in a stable surrounding environment with the performance in tasks where we rotated the surrounding frame (computer monitor), whereas the stimuli on the screen remained stable. In the third experiment we tested human subjects in analogous tests to compare the ability and cognitive strategies of monkeys and humans in this task. We showed that the mental strategies that monkeys used for orientation in one spatial frame according to the map presented in the other spatial frame depended on the type of stimulus manipulation. We demonstrated that for monkeys there was a difference between solving "mental rotation" and "mental translocation" in this experimental design. We showed that humans were able both to mentally rotate and translocate the displayed stimuli. However, the mental rotation was more difficult than mental translocation also for them. These experiments help us to understand how the monkeys perceive the abstract spatial information, create the representation of space and how they transform the information about the position obtained from one spatial frame into another. The comparison between humans and monkeys allows us to study this cognitive ability in phylogeny. Copyright © 2012 Elsevier B.V. All rights reserved.
Computerized Testing in a Hospital Setting: Psychometric and Psychological Effects.
ERIC Educational Resources Information Center
Peterson, Leif; And Others
1996-01-01
This Swedish study sought to evaluate a touch-screen computer-based (CB) test administration system in a hospital setting in comparison with paper-and-pencil administrative routine. Patients were given psychometric tests (involving depression, mood, and intelligence measurement) in both formats. Patient pleasantness, activation, and calmness were…
The Teaching Green School Building: A Framework for Linking Architecture and Environmental Education
ERIC Educational Resources Information Center
Cole, Laura B.
2014-01-01
The "Teaching Green School Building" is an emergent type of school building that attempts to engage building users with environmental issues in buildings. Architectural interventions in these buildings range from signage to interactive touch screens to gardens and demonstration kitchens that foster educational programmes about…
Zooming in on Children's Thinking
ERIC Educational Resources Information Center
Tucker, Steven; Shumway, Jessica F.; Moyer-Packenham, Patricia S.; Jordan, Kerry E.
2016-01-01
Teachers increasingly use virtual manipulatives and other apps on touch-screen devices (e.g., "iPads") in an effort to help students understand mathematics concepts. However, students experience these apps and their affordances in different ways. The purpose of this article is to inform teachers' decisions about app implementation in the…
ERIC Educational Resources Information Center
Liu, Min; Navarrete, Cesar C.; Wivagg, Jennifer
2014-01-01
This case study investigated a m-learning initiative by a large school district in the United States to provide iPod touch devices 24/7 to teachers and students of English Language Learners. We described the initiative and presented the research findings of its implementation for two years at elementary and middle school levels. The results…
JPRS Report, Science & Technology USSR: Life Sciences.
1988-07-01
practical problems must be actively expanded. The restructuring and the improvements must touch every component of the pharmacy service. Accomplishing...Ministry of Health touched on that. The situation today has gotten rather complex. Over the past 20 years, the number of physicians in the country...Prosthetics and Prosthesis Building [TsNIIPP]; A. P. Kuzhckin, deputy science director of TsNIIPP; M. V. Davydov, general director of the Mos- cow
Virtual patient simulator for distributed collaborative medical education.
Caudell, Thomas P; Summers, Kenneth L; Holten, Jim; Hakamata, Takeshi; Mowafi, Moad; Jacobs, Joshua; Lozanoff, Beth K; Lozanoff, Scott; Wilks, David; Keep, Marcus F; Saiki, Stanley; Alverson, Dale
2003-01-01
Project TOUCH (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) investigates the feasibility of using advanced technologies to enhance education in an innovative problem-based learning format currently being used in medical school curricula, applying specific clinical case models, and deploying to remote sites/workstations. The University of New Mexico's School of Medicine and the John A. Burns School of Medicine at the University of Hawai'i face similar health care challenges in providing and delivering services and training to remote and rural areas. Recognizing that health care needs are local and require local solutions, both states are committed to improving health care delivery to their unique populations by sharing information and experiences through emerging telehealth technologies by using high-performance computing and communications resources. The purpose of this study is to describe the deployment of a problem-based learning case distributed over the National Computational Science Alliance's Access Grid. Emphasis is placed on the underlying technical components of the TOUCH project, including the virtual reality development tool Flatland, the artificial intelligence-based simulation engine, the Access Grid, high-performance computing platforms, and the software that connects them all. In addition, educational and technical challenges for Project TOUCH are identified. Copyright 2003 Wiley-Liss, Inc.
Children aged 6-24 months like to watch YouTube videos but could not learn anything from them.
Yadav, Savita; Chakraborty, Pinaki; Mittal, Prabhat; Arora, Udit
2018-03-20
Parents sometimes show young children YouTube videos on their smartphones. We studied the interaction of 55 Indian children born between December 2014 and May 2015 who watched YouTube videos when they were 6-24 months old. The children were recruited by the researchers using professional and personal contacts and visited by the same two observers at four ages, for at least 10 minutes. The observers recorded the children's abilities to interact with touch screens and identify people in videos and noted what videos attracted them the most. The children were attracted to music at six months of age and were interested in watching the videos at 12 months. They could identify their parents in videos at 12 months and themselves by 24 months. They started touching the screen at 18 months and could press the buttons that appeared on the screen, but did not understand their use. The children preferred watching dance performances by multiple artists with melodical music, advertisements for products they used and videos showing toys and balloons. Children up to two years of age could be entertained and kept busy by showing them YouTube clips on smartphones, but did not learn anything from the videos. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Sakai, Hiromi; Nagano, Akinori; Seki, Keiko; Okahashi, Sayaka; Kojima, Maki; Luo, Zhiwei
2018-07-01
We developed a virtual reality test to assess the cognitive function of Japanese people in near-daily-life environment, namely, a virtual shopping test (VST). In this test, participants were asked to execute shopping tasks using touch panel operations in a "virtual shopping mall." We examined differences in VST performances among healthy participants of different ages and correlations between VST and screening tests, such as the Mini-Mental State Examination (MMSE) and Everyday Memory Checklist (EMC). We included 285 healthy participants between 20 and 86 years of age in seven age groups. Therefore, each VST index tended to decrease with advancing age; differences among age groups were significant. Most VST indices had a significantly negative correlation with MMSE and significantly positive correlation with EMC. VST may be useful for assessing general cognitive decline; effects of age must be considered for proper interpretation of the VST scores.
Design of transparent conductors and periodic two-dimensional electron gases without doping
NASA Astrophysics Data System (ADS)
Zhang, Xiuwen; Zhang, Lijun; Zunger, Alex; Perkins, John; Materials by Design Team; John D. Perkins Collaboration
The functionality of transparency plus conductivity plays an important role in renewable energy and information technologies, including applications such as solar cells, touch-screen sensors, and flat panel display. However, materials with such seemingly contraindicated properties are difficult to come by. The traditional strategy for designing bulk transparent conductors (TCs) starts from a wide-gap insulator and finds ways to make it conductive by extensive doping. We propose a different strategy for TC design--starting with a metallic conductor and designing transparency by control of intrinsic interband transitions and intraband plasmonic frequency. We identified specific design principles for prototypical intrinsic TC classes and searched computationally for materials that satisfy them. The electron gases in the 3D intrinsic TCs demonstrate intriguing properties, such as periodic 2D electron gas regions with very high carrier density. We will discuss a more extended search of these functionalities, in parallel with stability and growability calculations
Computer assisted outcomes research in orthopedics: total joint replacement.
Arslanian, C; Bond, M
1999-06-01
Long-term studies are needed to determine clinically relevant outcomes within the practice of orthopedic surgery. Historically, the patient's subjective feelings of quality of life have been largely ignored. However, there has been a strong movement toward measuring perceived quality of life through such instruments as the SF-36. In a large database from an orthopedic practice results are presented. First, computerized data entry using touch screen technology is not only cost effective but user friendly. Second, patients undergoing hip or knee arthroplasty surgeries make statistically significant improvements in seven of the eight domains of the SF-36 in the first 3 months after surgery. Additional statistically significant improvements over the next 6 to 12 months are also seen. The data are presented here in detail to demonstrate the benefits of a patient outcomes program, to enhance the understanding and use of outcomes data and to encourage further work in outcomes measurement in orthopedics.
Secret Characters: The Interaction of Narrative and Technology.
ERIC Educational Resources Information Center
Jones, Gwyneth
2002-01-01
Presents an autobiographical sketch of a science fiction writer's relationship with the Information Technology revolution, from the Commodore PET to Microsoft 2000: a creator of imaginary futures privileged to observe an "imaginary future" in the act of becoming present reality. Touches on the nature of narrative and technology, the changing…
A Green Touch for the Future of Distance Education
ERIC Educational Resources Information Center
Gundogan, M. Banu; Eby, Gulsun
2012-01-01
This paper aims to draw attention to the sustainability of distance learning in terms of the design process based on learner characteristics and technology usage. Distance learning has become a cyberized system owing its presence to developments in digital technologies. Technological developments solve some immediate problems but also have the…
ERIC Educational Resources Information Center
Glazner, Steve, Comp.
2012-01-01
Technology touches people's lives virtually every second of the day. The work world is especially rich with changing technologies, new innovations, and continually revised processes for greater effectiveness and efficiency. One could easily say that a boiler is a boiler, or a carpet is a carpet, but the reality is that all components of all the…
Very Slow Search and Reach: Failure to Maximize Expected Gain in an Eye-Hand Coordination Task
Zhang, Hang; Morvan, Camille; Etezad-Heydari, Louis-Alexandre; Maloney, Laurence T.
2012-01-01
We examined an eye-hand coordination task where optimal visual search and hand movement strategies were inter-related. Observers were asked to find and touch a target among five distractors on a touch screen. Their reward for touching the target was reduced by an amount proportional to how long they took to locate and reach to it. Coordinating the eye and the hand appropriately would markedly reduce the search-reach time. Using statistical decision theory we derived the sequence of interrelated eye and hand movements that would maximize expected gain and we predicted how hand movements should change as the eye gathered further information about target location. We recorded human observers' eye movements and hand movements and compared them with the optimal strategy that would have maximized expected gain. We found that most observers failed to adopt the optimal search-reach strategy. We analyze and describe the strategies they did adopt. PMID:23071430
'Not a job for a man': factors in the use of touch by male nursing staff.
Whiteside, James; Butcher, Dan
While the numbers of male nursing staff are growing in both the UK and the USA, there remains a significant imbalance both in terms of the total number and the specialities in which male staff choose to work. Management, education and technology-dominated roles, characterised as 'high-tech, low-touch' specialities attract disproportionately larger numbers of male nursing staff. The aim of this narrative literature review was to explore and critically review the factors that influence the perception and use of touch by male nursing staff in contemporary healthcare settings. A comprehensive review of the literature was undertaken using significant online databases focusing on evidence from peer-reviewed journals published in English. Key influential factors arising from 11 selected studies included male nurses' definitions of touch; fear of touch misinterpretation; coping strategies employed; the assessment of certain groups of patients; gender-derived stressors; the emotional experiences of male staff; and the limited consideration of these issues in the pre-registration nursing curriculum. A range of factors regarding touch impact on the way male nurses use touch when caring for patients. A lack of research-based education in the preparation of male students leads to the development of various protective strategies. There is a need for the particular challenges facing male students and staff to be explicitly addressed within undergraduate and post-qualifying education and training programmes.
Automated touch screen device for recording complex rodent behaviors
Mabrouk, O.S.; Dripps, I.J.; Ramani, S.; Chang, C.; Han, J.L.; Rice, KC; Jutkiewicz, E.M.
2016-01-01
Background Monitoring mouse behavior is a critical step in the development of modern pharmacotherapies. New Method Here we describe the application of a novel method that utilizes a touch display computer (tablet) and software to detect, record, and report fine motor behaviors. A consumer-grade tablet device is placed in the bottom of a specially made acrylic cage allowing the animal to walk on the device (MouseTrapp). We describe its application in open field (for general locomotor studies) which measures step lengths and velocity. The device can perform light-dark (anxiety) tests by illuminating half of the screen and keeping the other half darkened. A divider is built into the lid of the device allowing the animal free access to either side. Results Treating mice with amphetamine and the delta opioid peptide receptor agonist SNC80 stimulated locomotor activity on the device. Amphetamine increased step velocity but not step length during its peak effect (40–70 min after treatment), thus indicating detection of subtle amphetamine-induced effects. Animals showed a preference (74% of time spent) for the darkened half compared to the illuminated side. Comparison with Existing Method Animals were videotaped within the chamber to compare quadrant crosses to detected motion on the device. The slope, duration and magnitude of quadrant crosses tightly correlated with overall locomotor activity as detected by Mousetrapp. Conclusions We suggest that modern touch display devices such as MouseTrapp will be an important step toward automation of behavioral analyses for characterizing phenotypes and drug effects. PMID:24952323
Jensen, Roxanne E.; Rothrock, Nan E.; DeWitt, Esi Morgan; Spiegel, Brennan; Tucker, Carole A.; Crane, Heidi M.; Forrest, Christopher B.; Patrick, Donald L.; Fredericksen, Rob; Shulman, Lisa M.; Cella, David; Crane, Paul K.
2016-01-01
Background Patient-reported outcomes (PROs) are gaining recognition as key measures for improving the quality of patient care in clinical care settings. Three factors have made the implementation of PROs in clinical care more feasible: increased use of modern measurement methods in PRO design and validation, rapid progression of technology (e.g., touch screen tablets, Internet accessibility, and electronic health records (EHRs)), and greater demand for measurement and monitoring of PROs by regulators, payers, accreditors, and professional organizations. As electronic PRO collection and reporting capabilities have improved, the challenges of collecting PRO data have changed. Objectives To update information on PRO adoption considerations in clinical care, highlighting electronic and technical advances with respect to measure selection, clinical workflow, data infrastructure, and outcomes reporting. Methods Five practical case studies across diverse healthcare settings and patient populations are used to explore how implementation barriers were addressed to promote the successful integration of PRO collection into the clinical workflow. The case studies address selecting and reporting of relevant content, workflow integration, pre-visit screening, effective evaluation, and EHR integration. Conclusions These case studies exemplify elements of well-designed electronic systems, including response automation, tailoring of item selection and reporting algorithms, flexibility of collection location, and integration with patient health care data elements. They also highlight emerging logistical barriers in this area, such as the need for specialized technological and methodological expertise, and design limitations of current electronic data capture systems. PMID:25588135
Touchscreen everywhere: on transferring a normal planar surface to a touch-sensitive display.
Dai, Jingwen; Chung, Chi-Kit Ronald
2014-08-01
We address how a human-computer interface with small device size, large display, and touch-input facility can be made possible by a mere projector and camera. The realization is through the use of a properly embedded structured light sensing scheme that enables a regular light-colored table surface to serve the dual roles of both a projection screen and a touch-sensitive display surface. A random binary pattern is employed to code structured light in pixel accuracy, which is embedded into the regular projection display in a way that the user perceives only regular display but not the structured pattern hidden in the display. With the projection display on the table surface being imaged by a camera, the observed image data, plus the known projection content, can work together to probe the 3-D workspace immediately above the table surface, like deciding if there is a finger present and if the finger touches the table surface, and if so, at what position on the table surface the contact is made. All the decisions hinge upon a careful calibration of the projector-camera-table surface system, intelligent segmentation of the hand in the image data, and exploitation of the homography mapping existing between the projector's display panel and the camera's image plane. Extensive experimentation including evaluation of the display quality, hand segmentation accuracy, touch detection accuracy, trajectory tracking accuracy, multitouch capability and system efficiency are shown to illustrate the feasibility of the proposed realization.
Mobile viewer system for virtual 3D space using infrared LED point markers and camera
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Taneji, Shoto
2006-09-01
The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.
A Framework for Designing Collaborative Learning Environments Using Mobile AR
ERIC Educational Resources Information Center
Cochrane, Thomas; Narayan, Vickel; Antonczak, Laurent
2016-01-01
Smartphones provide a powerful platform for augmented reality (AR). Using a smartphone's camera together with the built in GPS, compass, gyroscope, and touch screen enables the real world environment to be overlaid with contextual digital information. The creation of mobile AR environments is relatively simple, with the development of mobile AR…
A Conceptual Framework for Emergent Digital Literacy
ERIC Educational Resources Information Center
Neumann, Michelle M.; Finger, Glenn; Neumann, David L.
2017-01-01
As we progress in the 21st century, children learn to become proficient readers and writers of both digital and non-digital texts. Knowledge, skills, and understandings of literacy emerge through sociocultural interactions with non-digital tools (e.g., paper-printed books) and digital tools (e.g., touch screen tablets). However, debate is ongoing…
A Typology for Observing Children's Engagement with eBooks at Preschool
ERIC Educational Resources Information Center
Roskos, Kathleen; Burstein, Karen; You, Byeong-Keun
2012-01-01
This research reports a two-phase descriptive study of young children's engagement with ebooks conducted in Head Start classrooms. Phase 1 focused on the development of a typology as an analytic framework for observing engagement with ebooks in different formats (shared book; independent book browsing) and across devices (stationary touch screen;…
Independent Living Functions for the Elderly (IN-LIFE): Supporting Communication in Dementia.
Smith, Sarah K; Astell, Arlene J
2017-01-01
Independent Living Functions for the Elderly (IN-LIFE) is a 3 year multidisciplinary, multisite European project that aims to prolong and support independent living for people with cognitive impairments, through (ICT) services. Sheffield is one of six research sites and is focused on enhancing communication and conversations using touch screen computers.
Communication Technology: The Magic of Touch
ERIC Educational Resources Information Center
Deal, Walter F.
2008-01-01
It is interesting to note how technology has changed the way that people communicate with one another. Several of the major historical developments of communication are: (1) language; (2) alphabet; and (3) writing. These early forms of communication enabled humans to go beyond verbal and symbolic communication and on to such technologies as the…
Boards on the Move: Surfboards, Skateboards, Snowboards, and Kiteboards
ERIC Educational Resources Information Center
Moye, Johnny J.; Ritz, John M.
2009-01-01
Technological advances through mathematics and science have made possible the modification of boarding sports. This article discusses the development of sport technologies that use boards and also touches on the social and cultural effects of the new technologies. It identifies many new forms of sports equipment that were spawned from modifying…
Advances in upper limb stroke rehabilitation: a technology push.
Loureiro, Rui C V; Harwin, William S; Nagai, Kiyoshi; Johnson, Michelle
2011-10-01
Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.
An iPhone Game with GOES-R Insight
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. J.; Fisher, D. K.; Leon, N.; Space Place Team
2011-12-01
Our team developed a game, "Satellite Insight," for iPhone, iPod, or iPad. The game highlights the environmental and weather data-gathering potential of the next generation GOES-R satellite. We aimed to create a game that would have educational value, feature a real NOAA mission, and increase awareness of the GOES satellites and especially of the societal benefits deriving from this next generation of technology. We also wanted to reach a different, broader audience of a wider age range than we normally target with our NASA (spaceplace.nasa.gov) and NOAA (scijinks.gov) websites for kids. Oh . . . and we wanted the game to be fun. Although we had developed many fun and educational Flash games hosted on our Space Place and SciJinks Weather Laboratory websites for kids, developing an iOS game presented some different challenges: (1) players are usually interested in playing only very short games, under two minutes; (2) we wanted the game to appeal to a range of ages; and (3) the small touch screen requires a totally different type of interface design. The game is about gathering and storing different types of data collected by GOES-R, with the data rate increasing rapidly while you try to keep up. Six different types (colors, with different symbols) of tiles drop down from the top of a grid and collect in the columns. Touch any block that is in a group of three or more like blocks, then touch the GOES-R satellite icon below the grid to "save" the data and clear the selected blocks off the grid. If more than two columns completely fill up, the game is over. The "data rate" speeds up quickly, making it more challenging to keep the grid from overflowing. "Power-up" symbols appear periodically, which, when touched, do helpful things, such as clear out your tallest column. Players try to beat their own best "survival" time. The first lesson we learned in developing this game was to make sure the game play concept was simple and feasible to implement. Our first idea, in which the player combined raw data types to create processed GOES-R data products, turned out to require human invention of each and every game scenario. It would have been way too labor intensive to create enough of them to keep the game interesting. The second lesson we learned was the need to simplify the science. We had to come up with a much simplified set of data to represent the numerous and sophisticated data types collected by GOES-R's six major instruments. The third lesson was that the interface must take into account that the user's two thumbs cover about 25% of the screen, thus elements must placed and spaced accordingly. And the fourth lesson was that game behavior may need to be modified or enhanced (with "power-ups" and rate adjustments, for example) to make the game fun.
Parker, Simon; Ciaccio, Maria; Cook, Erica; Davenport, Graham; Cooper, Alun; Grange, Simon; Smitham, Peter
2015-01-01
We have validated our touch-screen-modified FRAX® tool against the traditional healthcare professional-led questionnaire, demonstrating strong concordance between doctor- and patient-derived results. We will use this in outpatient clinics and general practice to increase our capture rate of at-risk patients, making valuable use of otherwise wasted patient waiting times. Outpatient clinics offer an opportunity to collect valuable health information from a captive population. We have previously developed a modified fracture risk assessment (FRAX®) tool, enabling patients to self-assess their osteoporotic fracture risk in a touch-screen computer format and demonstrated its acceptability with patients. We aim to validate the accuracy of our tool against the traditional questionnaire. Fifty patients over 50 years of age within the fracture clinic independently completed a paper equivalent of our touch-screen-modified FRAX® questionnaire. Responses were analysed against the traditional healthcare professional (HCP)-led questionnaire which was carried out afterwards. Correlation was assessed by sensitivity, specificity, Cohen's kappa statistic and Fisher's exact test for each potential FRAX® outcome of "treat", "measure BMD" and "lifestyle advice". Age range was 51-98 years. The FRAX® tool was completed by 88 % of patients; six patients lacked confidence in estimating either their height or weight. Following question adjustment according to patient response and feedback, our tool achieved >95 % sensitivity and specificity for the "treat" and "lifestyle advice" groups, and 79 % sensitivity and 100 % specificity in the "measure BMD" group. Cohen's kappa value ranged from 0.823 to 0.995 across all groups, demonstrating "very good" agreement for all. Fisher's exact test demonstrated significant concordance between doctor and patient decisions. Our modified tool provides a simple, accurate and reliable method for patients to self-report their own FRAX® score outside the clinical contact period, thus releasing the HCP from the time required to complete the questionnaire and potentially increasing our capture rate of at-risk patients.
ERIC Educational Resources Information Center
Yamashita, Irene
1995-01-01
Several CD-ROM products are being developed in Hawaii as part of MIDAS (Multimedia Industry for the Development of Academic Software), which helps promote technology in the classroom. The article examines how technology provides opportunities for students to develop higher thinking and problem-solving skills. (SM)
A flexible touch-pressure sensor array with wireless transmission system for robotic skin
NASA Astrophysics Data System (ADS)
Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping
2016-06-01
Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.
A flexible touch-pressure sensor array with wireless transmission system for robotic skin.
Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping
2016-06-01
Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.
Tactile Feedback Display with Spatial and Temporal Resolutions
Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli
2013-01-01
We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications. PMID:23982053
Tactile feedback display with spatial and temporal resolutions.
Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli
2013-01-01
We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.
Tactile Feedback Display with Spatial and Temporal Resolutions
NASA Astrophysics Data System (ADS)
Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli
2013-08-01
We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.
Home Diabetes Monitoring through Touch-Tone Computer Data Entry and Voice Synthesizer Response
Arbogast, James G.; Dodrill, William H.
1984-01-01
Current studies suggest that the control of Diabetes mellitus can be improved with home monitoring of blood sugars. Voice synthesizers and recent technology, allowing decoding of Touch-Tone® pulses into their digital equivalents, make it possible for diabetics with no more sophisticated equipment than a Touch-Tone® telephone to enter their blood sugars directly into a medical office computer. A working prototype that can provide physicians with timely, logically oriented information about their diabetics is discussed along with plans to expand this concept into giving the patients uncomplicated therapeutic advice without the need for a direct patient/physician interaction. The potential impact on health care costs and the management of other chronic diseases is presented.
Herrick, D B; Nakhasi, A; Nelson, B; Rice, S; Abbott, P A; Saber Tehrani, A S; Rothman, R E; Lehmann, H P; Newman-Toker, D E
2013-01-01
Self-administered computer-assisted interviewing (SACAI) gathers accurate information from patients and could facilitate Emergency Department (ED) diagnosis. As part of an ongoing research effort whose long-range goal is to develop automated medical interviewing for diagnostic decision support, we explored usability attributes of SACAI in the ED. Cross-sectional study at two urban, academic EDs. Convenience sample recruited daily over six weeks. Adult, non-level I trauma patients were eligible. We collected data on ease of use (self-reported difficulty, researcher documented need for help), efficiency (mean time-per-click on a standardized interview segment), and error (self-report age mismatched with age derived from electronic health records) when using SACAI on three different instruments: Elo TouchSystems ESY15A2 (finger touch), Toshiba M200 (with digitizer pen), and Motion C5 (with digitizer pen). We calculated descriptive statistics and used regression analysis to evaluate the impact of patient and computer factors on time-per-click. 841 participants completed all SACAI questions. Few (<1%) thought using the touch computer to ascertain medical information was difficult. Most (86%) required no assistance. Participants needing help were older (54 ± 19 vs. 40 ± 15 years, p<0.001) and more often lacked internet at home (13.4% vs. 7.3%, p = 0.004). On multivariate analysis, female sex (p<0.001), White (p<0.001) and other (p = 0.05) race (vs. Black race), younger age (p<0.001), internet access at home (p<0.001), high school graduation (p = 0.04), and touch screen entry (vs. digitizer pen) (p = 0.01) were independent predictors of decreased time-per-click. Participant misclick errors were infrequent, but, in our sample, occurred only during interviews using a digitizer pen rather than a finger touch-screen interface (1.9% vs. 0%, p = 0.09). Our results support the facility of interactions between ED patients and SACAI. Demographic factors associated with need for assistance or slower interviews could serve as important triggers to offering human support for SACAI interviews during implementation. Understanding human-computer interactions in real-world clinical settings is essential to implementing automated interviewing as means to a larger long-term goal of enhancing clinical care, diagnostic accuracy, and patient safety.
Herrick, D. B.; Nakhasi, A.; Nelson, B.; Rice, S.; Abbott, P. A.; Saber Tehrani, A. S.; Rothman, R. E.; Lehmann, H. P.; Newman-Toker, D. E.
2013-01-01
Objective Self-administered computer-assisted interviewing (SACAI) gathers accurate information from patients and could facilitate Emergency Department (ED) diagnosis. As part of an ongoing research effort whose long-range goal is to develop automated medical interviewing for diagnostic decision support, we explored usability attributes of SACAI in the ED. Methods Cross-sectional study at two urban, academic EDs. Convenience sample recruited daily over six weeks. Adult, non-level I trauma patients were eligible. We collected data on ease of use (self-reported difficulty, researcher documented need for help), efficiency (mean time-per-click on a standardized interview segment), and error (self-report age mismatched with age derived from electronic health records) when using SACAI on three different instruments: Elo TouchSystems ESY15A2 (finger touch), Toshiba M200 (with digitizer pen), and Motion C5 (with digitizer pen). We calculated descriptive statistics and used regression analysis to evaluate the impact of patient and computer factors on time-per-click. Results 841 participants completed all SACAI questions. Few (<1%) thought using the touch computer to ascertain medical information was difficult. Most (86%) required no assistance. Participants needing help were older (54 ± 19 vs. 40 ± 15 years, p<0.001) and more often lacked internet at home (13.4% vs. 7.3%, p = 0.004). On multivariate analysis, female sex (p<0.001), White (p<0.001) and other (p = 0.05) race (vs. Black race), younger age (p<0.001), internet access at home (p<0.001), high school graduation (p = 0.04), and touch screen entry (vs. digitizer pen) (p = 0.01) were independent predictors of decreased time-per-click. Participant misclick errors were infrequent, but, in our sample, occurred only during interviews using a digitizer pen rather than a finger touch-screen interface (1.9% vs. 0%, p = 0.09). Discussion Our results support the facility of interactions between ED patients and SACAI. Demographic factors associated with need for assistance or slower interviews could serve as important triggers to offering human support for SACAI interviews during implementation. Conclusion Understanding human-computer interactions in real-world clinical settings is essential to implementing automated interviewing as means to a larger long-term goal of enhancing clinical care, diagnostic accuracy, and patient safety. PMID:23874364
Patient care in a technological age.
Dragon, Natalie
2006-07-01
In this electronically wired world of the 21 st century, the health care system has tapped into technology available at the touch of a button. Scientific discoveries, high-tech equipment, electronic medical records, Smarticards, and long distance diagnosis using telehealth technology have all been embraced. But Natalie Dragon asks, what are the implications for nurses and the outcomes on patient care?
Technology in Community-Based Organizations that Serve Older People: High Tech Meets High Touch
ERIC Educational Resources Information Center
Renold, Carl; Meronk, Cheryl; Kelly, Christopher
2005-01-01
Appropriate implementation of information technology (IT) can help create a more efficient, less costly, and higher-quality service-delivery environment for community-based organizations that serve older people. Relevant studies and reports on technology in healthcare can be compared and applied to these organizations. This study is the result of…
Technological Change in the Auto Industry. CAW Technology Project.
ERIC Educational Resources Information Center
Robertson, David; Wareham, Jeff
Today the auto industry is going through the most radical restructuring it has experienced since its birth. Included in this upheaval is a dramatic reorganization of the workplace, and technology has been both a catalyst and a central part of such change. The issues involved touch every facet of workplace life: job classifications and demarcation…
Intact Procedural Motor Sequence Learning in Developmental Coordination Disorder
ERIC Educational Resources Information Center
Lejeune, Caroline; Catale, Corinne; Willems, Sylvie; Meulemans, Thierry
2013-01-01
The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6-12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact…
Using an Interactive Computer Program to Communicate With the Wilderness Visitor
David W. Harmon
1992-01-01
The Bureau of Land Management, Oregon State Office, identified a need for a tool to communicate with wilderness visitors, managers, and decisionmakers regarding wilderness values and existing resource information in 87 wilderness study areas. An interactive computer program was developed using a portable Macintosh computer, a touch screen monitor, and laser disk player...
ERIC Educational Resources Information Center
Moore, Holly Carrell; Adair, Jennifer Keys
2015-01-01
In this article we share descriptive findings from two qualitative, grounded theory (Glaser, 1978, 1992, 1998) studies on how two distinct groups of learners--prekindergarteners and preservice teachers in early childhood education coursework--used touch-screen tablets in their playful, discovery-based learning processes. We found similarities…
Visual Search in Typically Developing Toddlers and Toddlers with Fragile X or Williams Syndrome
ERIC Educational Resources Information Center
Scerif, Gaia; Cornish, Kim; Wilding, John; Driver, Jon; Karmiloff-Smith, Annette
2004-01-01
Visual selective attention is the ability to attend to relevant visual information and ignore irrelevant stimuli. Little is known about its typical and atypical development in early childhood. Experiment 1 investigates typically developing toddlers' visual search for multiple targets on a touch-screen. Time to hit a target, distance between…
The Effect of Heterogeneity on Numerical Ordering in Rhesus Monkeys
ERIC Educational Resources Information Center
Cantlon, Jessica F.; Brannon, Elizabeth M.
2006-01-01
We investigated how within-stimulus heterogeneity affects the ability of rhesus monkeys to order pairs of the numerosities 1 through 9. Two rhesus monkeys were tested in a touch screen task where the variability of elements within each visual array was systematically varied by allowing elements to vary in color, size, shape, or any combination of…
Design and Formative Evaluation of an Information Kiosk on Cattle Health for Landless Cattle Owners
ERIC Educational Resources Information Center
Ramkumar, S.; Garforth, C.; Rao, S. V. N.; Heffernan, C.
2007-01-01
This paper describes and analyses the experience of designing, installing and evaluating a farmer-usable touch screen information kiosk on cattle health in a veterinary institution in Pondicherry. The contents of the kiosk were prepared based on identified demands for information on cattle health, arrived at through various stakeholders meetings.…
Agile Integration of Complex Systems
2010-11-01
touch screens for dismounted warfighters or first responders Laptops for mounted warfighters or first responders Multitouch would be useful for all...Messaging Service provides basic distribution support for the other SOAF services, as shown in Figure 3. This support includes interacting with the...entered with the details necessary to accomplish the respective interactions of consuming and providing services. The combination of additional
How Interactive Is the Interactive Whiteboard?
ERIC Educational Resources Information Center
Quashie, Valerie
2009-01-01
An interactive whiteboard (IWB) is simply a surface onto which a computer screen can be displayed, via a projector. It is touch-sensitive and lets one use a pen like a mouse, controlling the computer from the board itself. Everything that can be displayed on a computer can be displayed onto the whiteboard and, if the computer is linked to speakers…
Solnica, Bogdan
2009-01-01
In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch® UltraVue™ blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. PMID:20144432
A touch probe method of operating an implantable RFID tag for orthopedic implant identification.
Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H
2013-06-01
The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.
Information sampling behavior with explicit sampling costs
Juni, Mordechai Z.; Gureckis, Todd M.; Maloney, Laurence T.
2015-01-01
The decision to gather information should take into account both the value of information and its accrual costs in time, energy and money. Here we explore how people balance the monetary costs and benefits of gathering additional information in a perceptual-motor estimation task. Participants were rewarded for touching a hidden circular target on a touch-screen display. The target’s center coincided with the mean of a circular Gaussian distribution from which participants could sample repeatedly. Each “cue” — sampled one at a time — was plotted as a dot on the display. Participants had to repeatedly decide, after sampling each cue, whether to stop sampling and attempt to touch the hidden target or continue sampling. Each additional cue increased the participants’ probability of successfully touching the hidden target but reduced their potential reward. Two experimental conditions differed in the initial reward associated with touching the hidden target and the fixed cost per cue. For each condition we computed the optimal number of cues that participants should sample, before taking action, to maximize expected gain. Contrary to recent claims that people gather less information than they objectively should before taking action, we found that participants over-sampled in one experimental condition, and did not significantly under- or over-sample in the other. Additionally, while the ideal observer model ignores the current sample dispersion, we found that participants used it to decide whether to stop sampling and take action or continue sampling, a possible consequence of imperfect learning of the underlying population dispersion across trials. PMID:27429991
Computer Technology Resources for Literacy Projects.
ERIC Educational Resources Information Center
Florida State Council on Aging, Tallahassee.
This resource booklet was prepared to assist literacy projects and community adult education programs in determining the technology they need to serve more older persons. Section 1 contains the following reprinted articles: "The Human Touch in the Computer Age: Seniors Learn Computer Skills from Schoolkids" (Suzanne Kashuba);…
Touching the Future by Training Students as Technology Workers.
ERIC Educational Resources Information Center
Wodarz, Nan
1999-01-01
Describes a technology consultant's training of promising students as network administrators as part of a high-school work-study program. Success hinged on combining work with education, providing supervision and mentoring, using knowledgeable trainers, not substituting students for staff shortcomings, and installing adequate computer security.…
ERIC Educational Resources Information Center
Morrison, Tom
2003-01-01
Describes how school restrooms can get a fresher and healthier look with new technologies and better-trained custodial workers. Examples include more automated, no-touch systems and efficient cleaning products. (EV)
Adaptive electric potential sensors for smart signal acquisition and processing
NASA Astrophysics Data System (ADS)
Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.
2007-07-01
Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.
Look At That! Video Chat and Joint Visual Attention Development Among Babies and Toddlers.
McClure, Elisabeth R; Chentsova-Dutton, Yulia E; Holochwost, Steven J; Parrott, W G; Barr, Rachel
2018-01-01
Although many relatives use video chat to keep in touch with toddlers, key features of adult-toddler interaction like joint visual attention (JVA) may be compromised in this context. In this study, 25 families with a child between 6 and 24 months were observed using video chat at home with geographically separated grandparents. We define two types of screen-mediated JVA (across- and within-screen) and report age-related increases in the babies' across-screen JVA initiations, and that family JVA usage was positively related to babies' overall attention during video calls. Babies today are immersed in a digital world where formative relationships are often mediated by a screen. Implications for both infant social development and developmental research are discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Mathematics on the Move: Using Mobile Technologies to Support Student Learning (Part 2)
ERIC Educational Resources Information Center
Attard, Catherine; Northcote, Maria
2012-01-01
Continuing the series of articles on teaching mathematics with technology, this article furthers the authors' exploration of the use of a range of mobile technologies to enhance teachers' practices in the primary mathematics classroom. In Part 1 of this article, the authors explored the use of the iPod Touch and iPad. In Part 2, they explore…
A Positive or Negative Force for Democracy: The Technology Instructional Paradox
ERIC Educational Resources Information Center
Diem, Richard A.
2006-01-01
Over the past two decades, the technology "revolution" has evolved to touch nearly every aspect of the people's lives. More than just a convenience, this force has become a necessity throughout business, government, and education. One of the most invasive forces of technology is the way in which it plays a role in the types of instructional…
Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit.
Mateu, Juan; Lasala, María José; Alamán, Xavier
2015-08-31
In this paper, we present Virtual Touch, a toolkit that allows the development of educational activities through a mixed reality environment such that, using various tangible elements, the interconnection of a virtual world with the real world is enabled. The main goal of Virtual Touch is to facilitate the installation, configuration and programming of different types of technologies, abstracting the creator of educational applications from the technical details involving the use of tangible interfaces and virtual worlds. Therefore, it is specially designed to enable teachers to themselves create educational activities for their students in a simple way, taking into account that teachers generally lack advanced knowledge in computer programming and electronics. The toolkit has been used to develop various educational applications that have been tested in two secondary education high schools in Spain.
Access to the Arts through Assistive Technology.
ERIC Educational Resources Information Center
Frame, Charles
Personnel in the rehabilitation field have come to recognize the possibilities and implications of computers as assistive technology for disabled persons. This manual provides information on how to adapt the Unicorn Board, Touch Talker/Light Talker overlays, the Adaptive Firmware Card setup disk, and Trace-Transparent Access Module (T-TAM) to…
Touch HDR: photograph enhancement by user controlled wide dynamic range adaptation
NASA Astrophysics Data System (ADS)
Verrall, Steve; Siddiqui, Hasib; Atanassov, Kalin; Goma, Sergio; Ramachandra, Vikas
2013-03-01
High Dynamic Range (HDR) technology enables photographers to capture a greater range of tonal detail. HDR is typically used to bring out detail in a dark foreground object set against a bright background. HDR technologies include multi-frame HDR and single-frame HDR. Multi-frame HDR requires the combination of a sequence of images taken at different exposures. Single-frame HDR requires histogram equalization post-processing of a single image, a technique referred to as local tone mapping (LTM). Images generated using HDR technology can look less natural than their non- HDR counterparts. Sometimes it is only desired to enhance small regions of an original image. For example, it may be desired to enhance the tonal detail of one subject's face while preserving the original background. The Touch HDR technique described in this paper achieves these goals by enabling selective blending of HDR and non-HDR versions of the same image to create a hybrid image. The HDR version of the image can be generated by either multi-frame or single-frame HDR. Selective blending can be performed as a post-processing step, for example, as a feature of a photo editor application, at any time after the image has been captured. HDR and non-HDR blending is controlled by a weighting surface, which is configured by the user through a sequence of touches on a touchscreen.
Emotion-prints: interaction-driven emotion visualization on multi-touch interfaces
NASA Astrophysics Data System (ADS)
Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas
2015-01-01
Emotions are one of the unique aspects of human nature, and sadly at the same time one of the elements that our technological world is failing to capture and consider due to their subtlety and inherent complexity. But with the current dawn of new technologies that enable the interpretation of emotional states based on techniques involving facial expressions, speech and intonation, electrodermal response (EDS) and brain-computer interfaces (BCIs), we are finally able to access real-time user emotions in various system interfaces. In this paper we introduce emotion-prints, an approach for visualizing user emotional valence and arousal in the context of multi-touch systems. Our goal is to offer a standardized technique for representing user affective states in the moment when and at the location where the interaction occurs in order to increase affective self-awareness, support awareness in collaborative and competitive scenarios, and offer a framework for aiding the evaluation of touch applications through emotion visualization. We show that emotion-prints are not only independent of the shape of the graphical objects on the touch display, but also that they can be applied regardless of the acquisition technique used for detecting and interpreting user emotions. Moreover, our representation can encode any affective information that can be decomposed or reduced to Russell's two-dimensional space of valence and arousal. Our approach is enforced by a BCI-based user study and a follow-up discussion of advantages and limitations.
NASA Astrophysics Data System (ADS)
Sumkin, Jules; Zheng, Bin; Gruss, Michelle; Drescher, John; Leader, Joseph; Good, Walter; Lu, Amy; Cohen, Cathy; Shah, Ratan; Zuley, Margarita; Gur, David
2008-03-01
Using electrical impedance spectroscopy (EIS) technology to detect breast abnormalities in general and cancer in particular has been attracting research interests for decades. Large clinical tests suggest that current EIS systems can achieve high specificity (>= 90%) at a relatively low sensitivity ranging from 15% to 35%. In this study, we explore a new resonance frequency based electrical impedance spectroscopy (REIS) technology to measure breast tissue EIS signals in vivo, which aims to be more sensitive to small tissue changes. Through collaboration between our imaging research group and a commercial company, a unique prototype REIS system has been assembled and preliminary signal acquisition has commenced. This REIS system has two detection probes mounted in the two ends of a Y-shape support device with probe separation of 60 mm. During REIS measurement, one probe touches the nipple and the other touches to an outer point of the breast. The electronic system continuously generates sweeps of multi-frequency electrical pulses ranging from 100 to 4100 kHz. The maximum electric voltage and the current applied to the probes are 1.5V and 30mA, respectively. Once a "record" command is entered, multi-frequency sweeps are recorded every 12 seconds until the program receives a "stop recording" command. In our imaging center, we have collected REIS measurements from 150 women under an IRB approved protocol. The database includes 58 biopsy cases, 78 screening negative cases, and other "recalled" cases (for additional imaging procedures). We measured eight signal features from the effective REIS sweep of each breast. We applied a multi-feature based artificial neural network (ANN) to classify between "biopsy" and normal "non-biopsy" breasts. The ANN performance is evaluated using a leave-one-out validation method and ROC analysis. We conducted two experiments. The first experiment attempted to classify 58 "biopsy" breasts and 58 "non-biopsy" breasts acquired on 58 women each having one breast recommended for biopsy. The second experiment attempted to classify 58 "biopsy" breasts and 58 negative breasts from the set of screening negative cases. The areas under ROC curves are 0.679 +/- 0.033 and 0.606 +/- 0.035 for the first and the second experiment, respectively. The preliminary results demonstrate (1) even with this rudimentary system with only one paired probes there is a measurable signal of changes in breast tissue demonstrating the feasibility of applying REIS technology for identifying at least some women with highly suspicious breast abnormalities and (2) the electromagnetic asymmetry between two breasts may be more sensitive in detecting changes in the abnormal breast. To further improve the REIS system performance, we are currently designing a new REIS system with multiple electrical probes and a more sophisticated analysis scheme.
Expanding Education and Workforce Opportunities through Digital Badges
ERIC Educational Resources Information Center
Alliance for Excellent Education, 2013
2013-01-01
In the twenty-first century, learning takes place almost everywhere, at all times, on all kinds of paths and at all kinds of paces. With the click of a mouse or the touch of a screen, young people and adults can access a wealth of information, analyze it, and produce new knowledge at any time. These learning opportunities break wide open the…
ERIC Educational Resources Information Center
Ostroff, Daniel; Shneiderman, Ben
1988-01-01
Describes a study that measured the speed, error rates, and subjective evaluation of arrow jump keys, a jump mouse, number keys, and a touch screen in an interactive encyclopedia. The results of previous studies are discussed as well as the findings of this study. Improvements in selection devices are suggested. (41 references) (Author/CLB)
Forms of the Materials Shared between a Teacher and a Pupil
ERIC Educational Resources Information Center
Klubal, Libor; Kostolányová, Katerina
2016-01-01
Methods of using ICT is hereby amended. We merge from the original model of work on one computer to the model of cloud services and mobile touch screen devices use. Way of searching for and delivering of information between a pupil and a teacher is closely related with this matter as well. This work detects common and preferred procedures of…
ERIC Educational Resources Information Center
da Silva, André Constantino; Freire, Fernanda Maria Pereira; de Arruda, Alan Victor Pereira; da Rocha, Heloísa Vieira
2013-01-01
e-Learning environments offer content, such text, audio, video, animations, using the Web infrastructure and they are designed to users interacting with keyboard, mouse and a medium-sized screen. Mobile devices, such as smartphones and tablets, have enough computation power to render Web pages, allowing browsing the Internet and access e-Learning…
ERIC Educational Resources Information Center
Neumann, Michelle M.
2018-01-01
Mothers play a key role in scaffolding children's writing using traditional tools, such as paper and pencil. However, little is known about how mothers scaffold young children's writing using touch-screen tablets (e.g., iPads) and the associations between maternal scaffolding and emergent literacy. Mother-child dyads (N = 47; M child…
Commentary: Tablet PCs--Lightweights with a Teaching Punch
ERIC Educational Resources Information Center
Parslow, Graham R.
2010-01-01
Tablet (or slate) computers are a group of small portable computers that have two features in common, a touch screen and wireless connectivity to the web. At the 2010 Consumer Electronics show held in January in Las Vegas, this category of product caused the greatest interest ahead of the release of the Apple iPad (www.cesweb.org). The tablet PC…
Establishment and Usability Evaluation of an Interactive AR Learning System on Conservation of Fish
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Wang, Cheng-Hung; Sie, Zong-Yuan; Chang, Shei-Hsi
2011-01-01
In this study, we develop an interactive AR Learning System based on Augmented Reality and interactive touch-screen. The learning content knowledge is about conservation of fish in Taiwan. The system combines the game by the concept of AR book which allows children to learn about the importance of conservation of fish. A mechanism is designed to…
ERIC Educational Resources Information Center
Nielsen, Louise; Heffernan, Claire; Lin, Yibo; Yu, Jun
2010-01-01
This article describes the findings from the assessment of a touch-screen, multi-media learning program on livestock health and production: "The Daktari." The program was tested on a sample of 62 livestock keepers in the Nairobi slums of Kariobangi and Kibera. The study examined prior knowledge regarding three livestock diseases (liver…
A New Way of Using the Interactive Whiteboard in a High School Physics Classroom: A Case Study
ERIC Educational Resources Information Center
Gregorcic, Bor; Etkina, Eugenia; Planinsic, Gorazd
2018-01-01
In recent decades, the interactive whiteboard (IWB) has become a relatively common educational tool in Western schools. The IWB is essentially a large touch screen, that enables the user to interact with digital content in ways that are not possible with an ordinary computer-projector-canvas setup. However, the unique possibilities of IWBs are…
Analysis of Subjects' Vulnerability in a Touch Screen Game Using Behavioral Metrics.
Parsinejad, Payam; Sipahi, Rifat
2017-12-01
In this article, we report results on an experimental study conducted with volunteer subjects playing a touch-screen game with two unique difficulty levels. Subjects have knowledge about the rules of both game levels, but only sufficient playing experience with the easy level of the game, making them vulnerable with the difficult level. Several behavioral metrics associated with subjects' playing the game are studied in order to assess subjects' mental-workload changes induced by their vulnerability. Specifically, these metrics are calculated based on subjects' finger kinematics and decision making times, which are then compared with baseline metrics, namely, performance metrics pertaining to how well the game is played and a physiological metric called pnn50 extracted from heart rate measurements. In balanced experiments and supported by comparisons with baseline metrics, it is found that some of the studied behavioral metrics have the potential to be used to infer subjects' mental workload changes through different levels of the game. These metrics, which are decoupled from task specifics, relate to subjects' ability to develop strategies to play the game, and hence have the advantage of offering insight into subjects' task-load and vulnerability assessment across various experimental settings.
Planning in human children (Homo sapiens) assessed by maze problems on the touch screen.
Miyata, Hiromitsu; Itakura, Shoji; Fujita, Kazuo
2009-02-01
The authors examined how human children perform on maze tasks on the touch screen and whether the children plan the solution of the mazes. In Experiment 1, the authors exposed children around 3 years of age to a maze having an L-shaped line as a barrier that can be solved by moving an illustration of a dog (the target) to that of a bone (the goal) with their fingers. The participants successfully solved the maze by taking efficient routes more frequently than chance, although the authors found no evidence that a preview of the maze before starting to solve the task facilitated their performance. In Experiment 2, using a plus-shaped maze, the authors found that 3- and 4-year-old children plan and adjust their moves while solving the maze, with 4-year-olds showing more advanced and higher-level planning than 3-year-olds. Similarity of these results to what the authors previously found in pigeons tested in the same tasks may suggest an analogy for planning capacity in the behavioral level across taxa and developmental stages. Copyright 2009 APA, all rights reserved.
A Method for Rapid Measurement of Contrast Sensitivity on Mobile Touch-Screens
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2016-01-01
Touch-screen displays in cell phones and tablet computers are now pervasive, making them an attractive option for vision testing outside of the laboratory or clinic. Here we de- scribe a novel method in which subjects use a finger swipe to indicate the transition from visible to invisible on a grating which is swept in both contrast and frequency. Because a single image can be swiped in about a second, it is practical to use a series of images to zoom in on particular ranges of contrast or frequency, both to increase the accuracy of the measurements and to obtain an estimate of the reliability of the subject. Sensitivities to chromatic and spatio-temporal modulations are easily measured using the same method. A proto- type has been developed for Apple Computer's iPad/iPod/iPhone family of devices, implemented using an open-source scripting environment known as QuIP (QUick Image Processing, http://hsi.arc.nasa.gov/groups/scanpath/research.php). Preliminary data show good agreement with estimates obtained from traditional psychophysical methods as well as newer rapid estimation techniques. Issues relating to device calibration are also discussed.
NASA Astrophysics Data System (ADS)
Debout, Vincent; Pettier, Sophie
2014-06-01
Airbus Defence and Space, Space System is involved in a global roadmap for launchers in order to substitute hexavalent chromium (CrVI) and Cadmium in the current surface treatments on metallic structures.Within this framework, a screening of trivalent chromium (CrIII) conversion solutions for touch-up applications has been carried out since this step is crucial to perform local application or to repair minor damages on launcher structures but it leads to higher risks of exposure for the workers.Three commercial CrIII conversion solutions have been evaluated on high performance aluminum alloys such as AA2024 T3 and AA7175 T7351 that are often used as structural materials.This preliminary investigation highlights the effect of surface preparation, rinsing and conversion process on the final corrosion performance of conversion coatings (CCs). The results are also discussed in terms of visual aspect and adhesion with new Cr-free primers.Two operating sets of parameters are identified with promising results that represent the first steps towards the development of a new Cr-free touch-up process.
Zhang, Ling; Kong, Hui; Ting Chin, Chien; Liu, Shaoxiong; Fan, Xinmin; Wang, Tianfu; Chen, Siping
2014-03-01
Current automation-assisted technologies for screening cervical cancer mainly rely on automated liquid-based cytology slides with proprietary stain. This is not a cost-efficient approach to be utilized in developing countries. In this article, we propose the first automation-assisted system to screen cervical cancer in manual liquid-based cytology (MLBC) slides with hematoxylin and eosin (H&E) stain, which is inexpensive and more applicable in developing countries. This system consists of three main modules: image acquisition, cell segmentation, and cell classification. First, an autofocusing scheme is proposed to find the global maximum of the focus curve by iteratively comparing image qualities of specific locations. On the autofocused images, the multiway graph cut (GC) is performed globally on the a* channel enhanced image to obtain cytoplasm segmentation. The nuclei, especially abnormal nuclei, are robustly segmented by using GC adaptively and locally. Two concave-based approaches are integrated to split the touching nuclei. To classify the segmented cells, features are selected and preprocessed to improve the sensitivity, and contextual and cytoplasm information are introduced to improve the specificity. Experiments on 26 consecutive image stacks demonstrated that the dynamic autofocusing accuracy was 2.06 μm. On 21 cervical cell images with nonideal imaging condition and pathology, our segmentation method achieved a 93% accuracy for cytoplasm, and a 87.3% F-measure for nuclei, both outperformed state of the art works in terms of accuracy. Additional clinical trials showed that both the sensitivity (88.1%) and the specificity (100%) of our system are satisfyingly high. These results proved the feasibility of automation-assisted cervical cancer screening in MLBC slides with H&E stain, which is highly desirable in community health centers and small hospitals. © 2013 International Society for Advancement of Cytometry.
Putting a finishing touch on GECIs.
Rose, Tobias; Goltstein, Pieter M; Portugues, Ruben; Griesbeck, Oliver
2014-01-01
More than a decade ago genetically encoded calcium indicators (GECIs) entered the stage as new promising tools to image calcium dynamics and neuronal activity in living tissues and designated cell types in vivo. From a variety of initial designs two have emerged as promising prototypes for further optimization: FRET (Förster Resonance Energy Transfer)-based sensors and single fluorophore sensors of the GCaMP family. Recent efforts in structural analysis, engineering and screening have broken important performance thresholds in the latest generation for both classes. While these improvements have made GECIs a powerful means to perform physiology in living animals, a number of other aspects of sensor function deserve attention. These aspects include indicator linearity, toxicity and slow response kinetics. Furthermore creating high performance sensors with optically more favorable emission in red or infrared wavelengths as well as new stably or conditionally GECI-expressing animal lines are on the wish list. When the remaining issues are solved, imaging of GECIs will finally have crossed the last milestone, evolving from an initial promise into a fully matured technology.
Ion irradiation of AZO thin films for flexible electronics
NASA Astrophysics Data System (ADS)
Boscarino, Stefano; Torrisi, Giacomo; Crupi, Isodiana; Alberti, Alessandra; Mirabella, Salvatore; Ruffino, Francesco; Terrasi, Antonio
2017-02-01
Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O+ or Ar+ ion beams (30-350 keV, 3 × 1015-3 × 1016 ions/cm2) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a complete relief of the lattice strain upon ion beam irradiation. Indeed, the resistivity of thin AZO films irradiated at room temperature decreased of two orders of magnitude, similarly to a thermal annealing at 400 °C. We also show that the improvement of the electrical properties does not simply depend on the strain or polycrystalline domain size, as often stated in the literature.
Investigation of ITO free transparent conducting polymer based electrode
NASA Astrophysics Data System (ADS)
Sharma, Vikas; Sapna, Sachdev, Kanupriya
2016-05-01
The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.
ERIC Educational Resources Information Center
Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente
2017-01-01
The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain…
Computer-automated dementia screening using a touch-tone telephone.
Mundt, J C; Ferber, K L; Rizzo, M; Greist, J H
2001-11-12
This study investigated the sensitivity and specificity of a computer-automated telephone system to evaluate cognitive impairment in elderly callers to identify signs of early dementia. The Clinical Dementia Rating Scale was used to assess 155 subjects aged 56 to 93 years (n = 74, 27, 42, and 12, with a Clinical Dementia Rating Scale score of 0, 0.5, 1, and 2, respectively). These subjects performed a battery of tests administered by an interactive voice response system using standard Touch-Tone telephones. Seventy-four collateral informants also completed an interactive voice response version of the Symptoms of Dementia Screener. Sixteen cognitively impaired subjects were unable to complete the telephone call. Performances on 6 of 8 tasks were significantly influenced by Clinical Dementia Rating Scale status. The mean (SD) call length was 12 minutes 27 seconds (2 minutes 32 seconds). A subsample (n = 116) was analyzed using machine-learning methods, producing a scoring algorithm that combined performances across 4 tasks. Results indicated a potential sensitivity of 82.0% and specificity of 85.5%. The scoring model generalized to a validation subsample (n = 39), producing 85.0% sensitivity and 78.9% specificity. The kappa agreement between predicted and actual group membership was 0.64 (P<.001). Of the 16 subjects unable to complete the call, 11 provided sufficient information to permit us to classify them as impaired. Standard scoring of the interactive voice response-administered Symptoms of Dementia Screener (completed by informants) produced a screening sensitivity of 63.5% and 100% specificity. A lower criterion found a 90.4% sensitivity, without lowering specificity. Computer-automated telephone screening for early dementia using either informant or direct assessment is feasible. Such systems could provide wide-scale, cost-effective screening, education, and referral services to patients and caregivers.
Toh, Siao Hui; Coenen, Pieter; Howie, Erin K.
2017-01-01
Background The use of mobile touch screen devices (MTSDs) has increased rapidly over the last decade, and there are concerns that their use may have negative musculoskeletal consequences; yet evidence on the association of MTSD use with musculoskeletal symptoms and exposures is currently dispersed. The aim of this study was to systematically review available literature on musculoskeletal symptoms and exposures associated with MTSD use. The synthesised information may facilitate wise use of MTSDs and may identify areas in need of further research. Methods EMBASE, Medline, Scopus, PsycINFO and Proquest electronic databases were searched for articles published up to June 2016, using keywords describing MTSD, musculoskeletal symptoms (e.g. pain, discomfort) and musculoskeletal exposures (e.g. posture, muscle activity). Two reviewers independently screened the articles, extracted relevant data and assessed methodological quality of included studies. Due to heterogeneity in the studies, a meta-analysis was not possible and a structured narrative synthesis of the findings was undertaken. Results A total of 9,908 articles were screened for eligibility with 45 articles finally included for review. Included articles were of cross-sectional, case-control or experimental laboratory study designs. No longitudinal studies were identified. Findings were presented and discussed in terms of the amount, features, tasks and positions of MTSD use and its association with musculoskeletal symptoms and musculoskeletal exposures. Conclusions There is limited evidence that MTSD use, and various aspects of its use (i.e. amount of usage, features, tasks and positions) are associated with musculoskeletal symptoms and exposures. This is due to mainly low quality experimental and case-control laboratory studies, with few cross-sectional and no longitudinal studies. Further research is warranted in order to develop guidelines for wise use of MTSDs. PMID:28787453
Guigas, Bruno
2017-09-01
SpecPad is a new device-independent software program for the visualization and processing of one-dimensional and two-dimensional nuclear magnetic resonance (NMR) time domain (FID) and frequency domain (spectrum) data. It is the result of a project to investigate whether the novel programming language DART, in combination with Html5 Web technology, forms a suitable base to write an NMR data evaluation software which runs on modern computing devices such as Android, iOS, and Windows tablets as well as on Windows, Linux, and Mac OS X desktop PCs and notebooks. Another topic of interest is whether this technique also effectively supports the required sophisticated graphical and computational algorithms. SpecPad is device-independent because DART's compiled executable code is JavaScript and can, therefore, be run by the browsers of PCs and tablets. Because of Html5 browser cache technology, SpecPad may be operated off-line. Network access is only required during data import or export, e.g. via a Cloud service, or for software updates. A professional and easy to use graphical user interface consistent across all hardware platforms supports touch screen features on mobile devices for zooming and panning and for NMR-related interactive operations such as phasing, integration, peak picking, or atom assignment. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
A Small District's Big Innovator
ERIC Educational Resources Information Center
Butler, Kevin
2010-01-01
This article profiles Cashton (Wisconsin) Public Schools Superintendent Brad Saron. Saron has always had a passion for technology. He has brought his personal passion for technology to bear in his job as superintendent of the 584-student Cashton Public Schools. As a principal and then as superintendent, he introduced iPod Touches, iPads, wireless…
Interactive Virtual and Physical Manipulatives for Improving Students' Spatial Skills
ERIC Educational Resources Information Center
Ha, Oai; Fang, Ning
2018-01-01
An innovative educational technology called interactive virtual and physical manipulatives (VPM) is developed to improve students' spatial skills. With VPM technology, not only can students touch and play with real-world physical manipulatives in their hands but also they can see how the corresponding virtual manipulatives (i.e., computer…
BodyHeat Encounter: Performing Technology in Pedagogical Spaces of Surveillance/Intimacy
ERIC Educational Resources Information Center
Fels, Lynn; Ricketts, Kathryn
2015-01-01
What occurs when videographer and performer encounter each other through the lens of a camera? This collaborative performative inquiry focuses on embodiment and emergent narrative as realized through an encounter between technology and the visceral body--a relational body that smells, touches, sees, hears and feels the emergent world through…
Integrating Traditional Learning and Games on Large Displays: An Experimental Study
ERIC Educational Resources Information Center
Ardito, Carmelo; Lanzilotti, Rosa; Costabile, Maria F.; Desolda, Giuseppe
2013-01-01
Current information and communication technology (ICT) has the potential to bring further changes to education. New learning techniques must be identified to take advantage of recent technological tools, such as smartphones, multimodal interfaces, multi-touch displays, etc. Game-based techniques that capitalize on ICT have proven to be very…
Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit
Mateu, Juan; Lasala, María José; Alamán, Xavier
2015-01-01
In this paper, we present Virtual Touch, a toolkit that allows the development of educational activities through a mixed reality environment such that, using various tangible elements, the interconnection of a virtual world with the real world is enabled. The main goal of Virtual Touch is to facilitate the installation, configuration and programming of different types of technologies, abstracting the creator of educational applications from the technical details involving the use of tangible interfaces and virtual worlds. Therefore, it is specially designed to enable teachers to themselves create educational activities for their students in a simple way, taking into account that teachers generally lack advanced knowledge in computer programming and electronics. The toolkit has been used to develop various educational applications that have been tested in two secondary education high schools in Spain. PMID:26334275
ERIC Educational Resources Information Center
McGonigle-Chalmers, Maggie; Alderson-Day, Ben; Fleming, Joanna; Monsen, Karl
2013-01-01
Nine low-functioning children with profound expressive language impairment and autism were studied in terms of their responsiveness to a computer-based learning program designed to assess syntactic awareness. The children learned to touch words on a screen in the correct sequence in order to see a corresponding animation, such as "monkey…
The Effects of the Size and Weight of a Mobile Device on an Educational Game
ERIC Educational Resources Information Center
Furio, David; Gonzalez-Gancedo, Santiago; Juan, M.-Carmen; Segui, Ignacio; Costa, Maria
2013-01-01
In this paper, we present an educational game for an iPhone and a Tablet PC. The main objective of the game was to reinforce children's knowledge about the water cycle. The game included different interaction forms like the touch screen and the accelerometer and combined AR mini-games with non-AR mini-games for better gameplay immersion. The main…
Pointing with the Left and Right Hands in Congenitally Blind Children
ERIC Educational Resources Information Center
Ittyerah, Miriam; Gaunet, Florence; Rossetti, Yves
2007-01-01
Congenitally blind and blindfolded sighted children at ages of 6, 8, 10 and 12 years performed a pointing task with their left and right index fingers at an array of three targets on a touch screen to immediate (0 s) and delayed (4 s) instructions. Accuracy was greater for immediate than delayed pointing and there was an effect of delay for the…
Inspiring Generations through Knowledge and Discovery. Strategic Plan. Fiscal Years 2010-2015
ERIC Educational Resources Information Center
Smithsonian Institution, 2015
2015-01-01
Imagine being able to access all known information about an insect species--whether it was discovered 100 years or 100 days ago--with one touch of the screen. Picture a world in which you can not only see Smithsonian objects online but also hear them and watch them in motion. Or imagine learning that Smithsonian astrophysicists discovered a new,…
ERIC Educational Resources Information Center
O'Neill, John; Rehfeldt, Ruth Anne
2016-01-01
The purpose of the present experiment was to replicate and extend the literature on using selection-based instruction to teach responses to interview questions by (a) evaluating the emergence of recombinative (i.e., combinations of taught) and novel (i.e., untaught) topography-based intraverbal responses, in addition to exact repetitions of taught…
A simple device to assess and train motor coordination.
Petrofsky, J S; Petrofsky, D
2004-01-01
The purpose of this project was to develop a computer program which can be used on a laptop or other IBM-based computer to assess and train motor coordination in children with closed head trauma or cerebral palsy. Muscle coordination was assessed by the child's ability to track a series of lines of increasing complexity. A stylus was used by the child to trace lines on a computer screen. Two different line tests were used. In the first, lines of various complexities were drawn on the screen at various angles. The child was asked to trace the line and the accuracy with which the line was traced was determined, providing a score. In a second test, a line was drawn on the screen and the child was asked to trace the line as it was drawn. The error in tracking the line and the time to track the line both were used to evaluate and score the child's performance. Finally, a 'Winnie the Pooh' character was flashed on the screen with distracters such as trees and other animals, and the child was asked to touch the Pooh. By increasing the speed of movement and decreasing the duration that the characters appeared on the screen, the child could be challenged. Successful touching of a character resulted in a positive score. Six children with cerebral palsy were compared to five children who did not have cerebral palsy, to evaluate the device. While both groups of children showed an increase in motor skills using the program, the increase seen in the children with cerebral palsy was 5-fold greater than that of the control group. While only a few children were tested with the device, the device seems to prove quite useful for physical and occupational therapy for working on motor skills in children. More investigation is warranted.
2003-12-17
KENNEDY SPACE CENTER, FLA. -- A new control tower is nearing completion at the KSC Shuttle Landing Facility. It will replace the old tower in use since 1987. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.
2003-12-17
KENNEDY SPACE CENTER, FLA. -- The existing control tower seen here at the edge of the KSC Shuttle Landing Facility is being replaced. In use since 1987, the old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.
Handheld colorimeter for determination of heavy metal concentrations
NASA Astrophysics Data System (ADS)
López Ruiz, N.; Ariza, M.; Martínez Olmos, A.; Vukovic, J.; Palma, A. J.; Capitan-Vallvey, L. F.
2011-08-01
A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.
Tews, Matthew; Brennan, Kimberly; Begaz, Tomer; Treat, Robert
2011-01-01
Background Hand-held mobile learning technology provides opportunities for clinically relevant self-instructional modules to augment traditional bedside teaching. Using this technology as a teaching tool has not been well studied. We sought to evaluate medical students’ case presentation performance and perception when viewing short, just-in-time mobile learning videos using the iPod touch prior to patient encounters. Methods Twenty-two fourth-year medical students were randomized to receive or not to receive instruction by video, using the iPod Touch, prior to patient encounters. After seeing a patient, they presented the case to their faculty, who completed a standard data collection sheet. Students were surveyed on their perceived confidence and effectiveness after using these videos. Results Twenty-two students completed a total of 67 patient encounters. There was a statistically significant improvement in presentations when the videos were viewed for the first time (p=0.032). There was no difference when the presentations were summed for the entire rotation (p=0.671). The reliable (alpha=0.97) survey indicated that the videos were a useful teaching tool and gave students more confidence in their presentations. Conclusions Medical student patient presentations were improved with the use of mobile instructional videos following first time use, suggesting mobile learning videos may be useful in medical student education. If direct bedside teaching is unavailable, just-in-time iPod touch videos can be an alternative instructional strategy to improve first-time patient presentations by medical students. PMID:22013378
Southeast Asia Report, No. 1317
1983-07-25
Indonesian soil is an economical way very much depends on the technology which we possess. With the technology which we have now only about one...Students Association at Bandung Technological Institute. Touching on Indonesia’s needs for energy, Minister Subroto said that con- sumption goes up...not yet been signed and which might possibly be carried out by private firms will be fully turned over to pri- vate companies without the
Wearable Writing: Enriching Student Peer Review with Point-of-View Video Feedback Using Google Glass
ERIC Educational Resources Information Center
Tham, Jason Chew Kit
2017-01-01
As technology continues to become more ubiquitous and touches almost every aspect of the composing process, students and teachers are faced with new means to make writing a multimodal experience. This article embraces the emerging sector of wearable technology, presenting wearable writing strategies that would reimagine composition pedagogy.…
Learning Chinese Characters via Mobile Technology in a Primary School Classroom
ERIC Educational Resources Information Center
Lu, Jie; Meng, Sue; Tam, Vincent
2014-01-01
This paper describes a project, including the design, development, and use of a mobile application (referred to as application hereafter) for learning Chinese as a second language in a bilingual primary school. The application was designed for iPod Touch Apple technology with the purpose to facilitate learning of a fundamental set of 200 Chinese…
Suchomel, Miranda; Diab-Elschahawi, Magda; Kundi, Michael; Assadian, Ojan
2013-08-30
Non-touch fittings have been reported to be susceptible for Pseudomonas aeruginosa accumulation. A number of factors may contribute to this, including the frequency of usage, duration of water stagnation, or presence of plastic materials. Programmable non-touch fittings are appearing which allow regular automated post-flushing with cold water to prevent water stagnation. However, the ideal duration of post-flushing is unknown as well as the effect of pre-rinsing with cold water before use. Eight non-touch fittings with brass valve blocks were mounted on a mobile test sink and connected to the same central water pipe source, differing only in presence or absence of water connection pipes, length of connection pipe, frequency of usage, and time intervals for pre- and post-usage water flush. The total bacteria colony-forming unit (cfu) counts were obtained by the spread plate technique. Low frequency of water use in combination with a long stagnating water column resulted in high bacterial cfu counts. Post-usage flushing for 2 seconds did not differ from no flushing. Flushing for 10 seconds with cold water after use or 30 seconds flush before use were both the most effective measures to prevent non-touch fittings from biofilm formation over a period of 20 weeks. Further improvements in water fitting technology could possibly solve the problem of bacterial water contamination in health care settings.
Technologic developments in the field of photonics for the detection of urinary bladder cancer.
Palmer, Scott; Sokolovski, Sergei G; Rafailov, Edik; Nabi, Ghulam
2013-12-01
Bladder cancer is a common cause of morbidity and mortality worldwide in an aging population. Each year, thousands of people, mostly men, are diagnosed with this disease, but many of them present too late to receive optimal treatment. As with all cancers, early diagnosis of bladder cancer significantly improves the efficacy of therapy and increases survival and recurrence-free survival rates. Ongoing research has identified many limitations about the sensitivity of standard diagnostic procedures in detecting early-stage tumors and precancerous changes. The consequences of this are often tumor progression and increased tumor burden, leading to a decrease in patient quality of life and a vast increase in treatment costs. The necessity for improved early detection of bladder cancer has spurred on research into novel methods that use a wide range of biological and photonic phenomena. This review will broadly discuss standard detection methodologies and their major limitations before covering novel photonic techniques for early tumor detection and staging, assessing their diagnostic accuracy for flat and precancerous changes. We will do so in the context of both cystoscopic examination and the screening of voided urine and will also touch on the concept of using photonic technology as a surgical tool for tumor ablation. Copyright © 2013 Elsevier Inc. All rights reserved.
Hayabusa—Its technology and science accomplishment summary and Hayabusa-2
NASA Astrophysics Data System (ADS)
Kawaguchi, Jun'ichiro; Fujiwara, Akira; Uesugi, Tono
2008-05-01
Hayabusa performed five descents last November, among which two touching-down flights were included. Actually Hayabusa made three touching-downs and one long landing on the surface of Itokawa during those two flights. This paper summarizes how series of descents were planned and operated. The contents focus their attention on the correction maneuvers planning as well as what kind of terminals with what kind of software tools were actually built and used. The project team had distilled and accumulated their experiences through the rehearsal flights and accomplished this difficult mission. This paper presents the entire story about it.
Anthro-Centric Multisensory Interface for Vision Augmentation/Substitution
2013-02-01
for human perception of the visual environment. Figure 1: (left) Photograph of the Argus™ I and II Retinal Prosthesis System epiretinal...scleralband (a);the visualprocessing unit (b);spectacle m ounted m iniature cam era (c). Figure 3. C olour photo of A rgus II epiretinal prosthesis ...items in the environment. Alternatively, we have also implemented a touch screen mechanism that allows the user to feel the pixels under his or her
Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu
2016-05-25
Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.
Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki
2016-01-01
We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30–70 Ohm/square), optical transmittance values (89–90%), and haze (0.5–1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle. PMID:27677410
Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki
2016-09-28
We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.
NASA Astrophysics Data System (ADS)
Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki
2016-09-01
We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.
Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.
Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo
2017-07-19
Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.
Honrado, Carlos; Dong, Tao
2014-01-01
Incidence of urinary tract infections (UTIs) is the second highest among all infections; thus, there is a high demand for bacteriuria detection. Escherichia coli are the main cause of UTIs, with microscopy methods and urine culture being the detection standard of these bacteria. However, the urine sampling and analysis required for these methods can be both time-consuming and complex. This work proposes a capacitive touch screen sensor (CTSS) concept as feasible alternative for a portable UTI detection device. Finite element method (FEM) simulations were conducted with a CTSS model. An exponential response of the model to increasing amounts of E. coli and liquid samples was observed. A measurable capacitance change due to E. coli presence and a tangible difference in the response given to urine and water samples were also detected. Preliminary experimental studies were also conducted on a commercial CTSS using liquid solutions with increasing amounts of dissolved ions. The CTSS was capable of distinguishing different volumes of liquids, also giving an exponential response. Furthermore, the CTSS gave higher responses to solutions with a superior amount of ions. Urine samples gave the top response among tested liquids. Thus, the CTSS showed the capability to differentiate solutions by their ionic content. PMID:25196109
Kim, Huhn; Song, Haewon
2014-05-01
Nowadays, many automobile manufacturers are interested in applying the touch gestures that are used in smart phones to operate their in-vehicle information systems (IVISs). In this study, an experiment was performed to verify the applicability of touch gestures in the operation of IVISs from the viewpoints of both driving safety and usability. In the experiment, two devices were used: one was the Apple iPad, with which various touch gestures such as flicking, panning, and pinching were enabled; the other was the SK EnNavi, which only allowed tapping touch gestures. The participants performed the touch operations using the two devices under visually occluded situations, which is a well-known technique for estimating load of visual attention while driving. In scrolling through a list, the flicking gestures required more time than the tapping gestures. Interestingly, both the flicking and simple tapping gestures required slightly higher visual attention. In moving a map, the average time taken per operation and the visual attention load required for the panning gestures did not differ from those of the simple tapping gestures that are used in existing car navigation systems. In zooming in/out of a map, the average time taken per pinching gesture was similar to that of the tapping gesture but required higher visual attention. Moreover, pinching gestures at a display angle of 75° required that the participants severely bend their wrists. Because the display angles of many car navigation systems tends to be more than 75°, pinching gestures can cause severe fatigue on users' wrists. Furthermore, contrary to participants' evaluation of other gestures, several participants answered that the pinching gesture was not necessary when operating IVISs. It was found that the panning gesture is the only touch gesture that can be used without negative consequences when operating IVISs while driving. The flicking gesture is likely to be used if the screen moving speed is slower or if the car is in heavy traffic. However, the pinching gesture is not an appropriate method of operating IVISs while driving in the various scenarios examined in this study. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals.
Boyce, John M
2016-01-01
Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer's recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating "self-disinfecting" surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer "no-touch" (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm) light. These "no-touch" technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections. In conclusion, continued efforts to improve traditional manual disinfection of surfaces are needed. In addition, Environmental Services departments should consider the use of newer disinfectants and no-touch decontamination technologies to improve disinfection of surfaces in healthcare.
Flow chemistry: A light touch to a deadly problem
NASA Astrophysics Data System (ADS)
Booker-Milburn, Kevin
2012-06-01
Flow chemistry has grown in stature as a technique with the potential to deliver synthetic complexity with assembly-line-like efficiency. Application of flow technology to the front-line antimalarial drug artemisinin promises to revolutionalize treatment.
ERIC Educational Resources Information Center
Georgia State Dept. of Human Resources, Atlanta. Div. of Rehabilitation Services.
This packet of materials was originally intended for participants in a 1991 conference on assistive technology for the disabled. After a detailed listing of the conference schedule, individual sections provide abstracts, biographical sketches, and summaries concerning the following conference topics: blending, computer labs, family, grants and…
ERIC Educational Resources Information Center
Walta, Caroline; Nicholas, Howard
2013-01-01
Hand-held technologies are pervasive and convenient in everyday use, but less commonly associated with the delivery of teacher education programs. This has implications for the way graduate teachers view the challenge of utilising these devices once they become classroom teachers, as pre-service teachers generally associate these devices with…
The wings of Daedalus: The convergence of myth and technology in 20th century culture
NASA Technical Reports Server (NTRS)
Kowitt, Mark E.; Kaplan, Michael S.
1993-01-01
In the second half of the 20th century, age-old human fantasies of leaving the Earth and touching the stars have been fulfilled by advances in space science and technology, whose roots are threaded through our history. Current advances are so explosive that the fundamental orientation of Western culture is being radically altered.
Telescope Array Control System Based on Wireless Touch Screen Platform
NASA Astrophysics Data System (ADS)
Fu, X. N.; Huang, L.; Wei, J. Y.
2016-07-01
GWAC (Ground-based Wide Angle Cameras) are the ground-based observational instruments of the Sino-French cooperation SVOM (Space Variable Objects Monitor) astronomical satellite, and Mini-GWAC is a pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system, which is based on wireless serial interface module to communicate. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test. The system uses the touch-control PC which is based on the Windows CE system as the upper-computer, the wireless transceiver module and PLC (Programmable Logic Controller) as the core. It has the advantages of low cost, reliable data transmission, and simple operation. So far, the control system has been applied to Mini-GWAC successfully.
Space Operations Learning Center
NASA Technical Reports Server (NTRS)
Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng
2012-01-01
The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.
Smart boards: a reemerging technology.
Brigham, Tara J
2013-01-01
Smart boards, also known as interactive whiteboards (IWBs), are large, interactive, touch-sensitive displays that are mainly used for presentation or educational purposes. While some may not consider this an emerging technology today, changes in the design and capabilities challenge that line of thinking. This column will explain what a smart board is, provide a brief history about it, and describe where it is currently used and why it might be a technology to consider having in a library today.
ERIC Educational Resources Information Center
Miles, Rhea; Zambone, Alana
2017-01-01
Students who are blind or visually impaired (BVI), like all students, need to conduct scientific investigations that involve measurements and reading experimental procedures. Best instructional practices for BVI students include touch and hearing experiences. Related strategies and tools include electronic textbooks, assistive technologies such as…
A Teacher's Introduction to Remote Sensing.
ERIC Educational Resources Information Center
Kirman, Joseph M.
1997-01-01
Defines remote sensing as the examination of something without touching it. Generally, this refers to satellite and aerial photographic images. Discusses how this technology and resulting knowledge can be integrated into geography classes. Includes a sample unit using images. (MJP)
ERIC Educational Resources Information Center
Wario, Ruth Diko; Ireri, Bonface Ngari; De Wet, Lizette
2016-01-01
Since Apple released the iPad in 2010, it has been widely adopted for teaching and learning. Its graphical user interface combined with touch screen features engages users by attracting their attention. However, the level of engagement that would influence learning is not well understood. This case study investigated the use of iPads when engaging…
ERIC Educational Resources Information Center
Baker, Joseph M.; Moyer-Packenham, Patricia S.; Tucker, Stephen I.; Shumway, Jessica F.; Jordan, Kerry E.; Gillam, Ronald B.
2018-01-01
Functional near-infrared spectroscopy (fNIRS) is an easy to use neuroimaging technique that is portable and maintains a liberal tolerance to movement. As such, fNIRS represents an ideal tool to observe children's neural activity as they engage in real-world classroom activities, such as the interaction with digital math apps on an iPad. Here, we…
Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations
2013-08-01
monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines
Web Applications and Thin Clients in the Navy
2011-09-01
say thank you to his family and shipmates for all the encouragement and distractions, when he needed them the most. xviii THIS PAGE INTENTIONALLY...to take full advantage of touch screen features, like journal software that converts handwriting to standard text (Mallick, 2003). 5. Smart Pads...outsourcing Web Applications have no direct control or access to the system and therefore no say in how the network is managed (Clouse, n.d.). Any issues
Anthro-Centric Multisensory Interface for Vision Augmentation/Substitution
2011-02-01
Alternatively, we have also implemented a touch screen mechanism that allows the user to feel the pixels under his or her fingertip via the tongue while...recognition with the optic nerve visual prosthesis . Artificial Organs, 27, 996 – 1004. Walcott, E. C., & Langdon, R. B. (2001). Short-term plasticity of...National Academy of Sciences, 102(4), 1181-1186. Weiland, J. D., Liu, W., & Humayun, M. S. (2005). Retinal prosthesis . Annual Review of Biomedical
Nanocellulose as Material Building Block for Energy and Flexible Electronics
NASA Astrophysics Data System (ADS)
Hu, Liangbing
2014-03-01
In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.
Active Matrix OLED Test Report
NASA Technical Reports Server (NTRS)
Salazar, George
2013-01-01
This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits from the environmental testing results by understanding its performance limitations/shortcomings to improve subsequent generations of AMOLED technology. Note that the AMOLED used in this test was not deSigned for the space environment but rather for commercial/industrial terrestrial applications.
Mechanically Compliant Electronic Materials for Wearable Photovoltaics and Human-Machine Interfaces
NASA Astrophysics Data System (ADS)
O'Connor, Timothy Francis, III
Applications of stretchable electronic materials for human-machine interfaces are described herein. Intrinsically stretchable organic conjugated polymers and stretchable electronic composites were used to develop stretchable organic photovoltaics (OPVs), mechanically robust wearable OPVs, and human-machine interfaces for gesture recognition, American Sign Language Translation, haptic control of robots, and touch emulation for virtual reality, augmented reality, and the transmission of touch. The stretchable and wearable OPVs comprise active layers of poly-3-alkylthiophene:phenyl-C61-butyric acid methyl ester (P3AT:PCBM) and transparent conductive electrodes of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and devices could only be fabricated through a deep understanding of the connection between molecular structure and the co-engineering of electronic performance with mechanical resilience. The talk concludes with the use of composite piezoresistive sensors two smart glove prototypes. The first integrates stretchable strain sensors comprising a carbon-elastomer composite, a wearable microcontroller, low energy Bluetooth, and a 6-axis accelerometer/gyroscope to construct a fully functional gesture recognition glove capable of wirelessly translating American Sign Language to text on a cell phone screen. The second creates a system for the haptic control of a 3D printed robot arm, as well as the transmission of touch and temperature information.
Oehl, M; Sutter, C
2015-05-01
With aging visual feedback becomes increasingly relevant in action control. Consequently, visual device and task characteristics should more and more affect tool use. Focussing on late working age, the present study aims to investigate age-related differences in processing task irrelevant (display size) and task relevant visual information (task difficulty). Young and middle-aged participants (20-35 and 36-64 years of age, respectively) sat in front of a touch screen with differently sized active touch areas (4″ to 12″) and performed pointing tasks with differing task difficulties (1.8-5 bits). Both display size and age affected pointing performance, but the two variables did not interact and aiming duration moderated both effects. Furthermore, task difficulty affected the pointing durations of middle-aged adults moreso than those of young adults. Again, aiming duration accounted for the variance in the data. The onset of an age-related decline in aiming duration can be clearly located in middle adulthood. Thus, the fine psychomotor ability "aiming" is a moderator and predictor for age-related differences in pointing tasks. The results support a user-specific design for small technical devices with touch interfaces. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
ERIC Educational Resources Information Center
Pegrum, Mark; Oakley, Grace; Faulkner, Robert
2013-01-01
This paper reports on the adoption of mobile handheld technologies in ten Western Australian independent schools, based on interviews with staff conducted in 2011. iPads were the most popular device, followed by iPod Touches and iPhones. Class sets were common at lower levels, with 1:1 models becoming increasingly common at higher levels. Mobile…
ERIC Educational Resources Information Center
Stav, John; Nielsen, Kjetil; Hansen-Nygard, Gabrielle; Thorseth, Trond
2010-01-01
A new type of Student Response System (SRS) based up on the latest wireless technologies and hand held mobile devices has been developed to enhance active learning methods and assess students' understanding. The key services involve a set of XML technologies, web services and modern mobile devices. A group consisting of engineers, scientists and…
Investigation of ITO free transparent conducting polymer based electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vikas; Sapna,; Sachdev, Kanupriya
2016-05-23
The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coatedmore » polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.« less
Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics
NASA Astrophysics Data System (ADS)
Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet
2015-03-01
Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.
Putting a finishing touch on GECIs
Rose, Tobias; Goltstein, Pieter M.; Portugues, Ruben; Griesbeck, Oliver
2014-01-01
More than a decade ago genetically encoded calcium indicators (GECIs) entered the stage as new promising tools to image calcium dynamics and neuronal activity in living tissues and designated cell types in vivo. From a variety of initial designs two have emerged as promising prototypes for further optimization: FRET (Förster Resonance Energy Transfer)-based sensors and single fluorophore sensors of the GCaMP family. Recent efforts in structural analysis, engineering and screening have broken important performance thresholds in the latest generation for both classes. While these improvements have made GECIs a powerful means to perform physiology in living animals, a number of other aspects of sensor function deserve attention. These aspects include indicator linearity, toxicity and slow response kinetics. Furthermore creating high performance sensors with optically more favorable emission in red or infrared wavelengths as well as new stably or conditionally GECI-expressing animal lines are on the wish list. When the remaining issues are solved, imaging of GECIs will finally have crossed the last milestone, evolving from an initial promise into a fully matured technology. PMID:25477779
NASA Technical Reports Server (NTRS)
Gill, Esther Naomi
1986-01-01
A review was conducted of software packages currently on the market which might be integrated with the interface language and aid in reaching the objectives of customization, standardization, transparency, reliability, maintainability, language substitutions, expandability, portability, and flexibility. Recommendations are given for best choices in hardware and software acquisition for inhouse testing of these possible integrations. Software acquisition in the line of tools to aid expert-system development and/or novice program development, artificial intelligent voice technology and touch screen or joystick or mouse utilization as well as networking were recommended. Other recommendations concerned using the language Ada for the user interface language shell because of its high level of standardization, structure, and ability to accept and execute programs written in other programming languages, its DOD ownership and control, and keeping the user interface language simple so that multiples of users will find the commercialization of space within their realm of possibility which is, after all, the purpose of the Space Station.
Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien
2015-12-01
Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article. © The Author(s) 2015.
A portable fNIRS system with eight channels
NASA Astrophysics Data System (ADS)
Si, Juanning; Zhao, Ruirui; Zhang, Yujin; Zuo, Nianming; Zhang, Xin; Jiang, Tianzi
2015-03-01
Abundant study on the hemodynamic response of a brain have brought quite a few advances in technologies of measuring it. The most benefitted is the functional near infrared spectroscope (fNIRS). A variety of devices have been developed for different applications. Because portable fNIRS systems were more competent to measure responses either of special subjects or in natural environment, several kinds of portable fNIRS systems have been reported. However, they all required a computer for receiving data. The extra computer increases the cost of a fNIRS system. What's more noticeable is the space required to locate the computer even for a portable system. It will discount the portability of the fNIRS system. So we designed a self-contained eight channel fNIRS system, which does not demand a computer to receive data and display data in a monitor. Instead, the system is centered by an ARM core CPU, which takes charge in organizing data and saving data, and then displays data on a touch screen. The system has also been validated by experiments on phantoms and on subjects in tasks.
Printable Transparent Conductive Films for Flexible Electronics.
Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei
2018-03-01
Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The "Smart Dining Table": Automatic Behavioral Tracking of a Meal with a Multi-Touch-Computer.
Manton, Sean; Magerowski, Greta; Patriarca, Laura; Alonso-Alonso, Miguel
2016-01-01
Studying how humans eat in the context of a meal is important to understanding basic mechanisms of food intake regulation and can help develop new interventions for the promotion of healthy eating and prevention of obesity and eating disorders. While there are a number of methodologies available for behavioral evaluation of a meal, there is a need for new tools that can simplify data collection through automatic and online analysis. Also, there are currently no methods that leverage technology to add a dimension of interactivity to the meal table. In this study, we examined the feasibility of a new technology for automatic detection and classification of bites during a laboratory meal. We used a SUR40 multi-touch tabletop computer, powered by an infrared camera behind the screen. Tags were attached to three plates, allowing their positions to be tracked, and the saturation (a measure of the infrared intensity) in the surrounding region was measured. A Kinect camera was used to record the meals for manual verification and provide gesture detection for when the bites were taken. Bite detections triggered classification of the source plate by the SUR40 based on saturation flux in the preceding time window. Five healthy subjects (aged 20-40 years, one female) were tested, providing a total sample of 320 bites. Sensitivity, defined as the number of correctly detected bites out of the number of actual bites, was 67.5%. Classification accuracy, defined as the number of correctly classified bites out of those detected, was 82.4%. Due to the poor sensitivity, a second experiment was designed using a single plate and a Myo armband containing a nine-axis accelerometer as an alternative method for bite detection. The same subjects were tested (sample: 195 bites). Using a simple threshold on the pitch reading of the magnetometer, the Myo data achieved 86.1% sensitivity vs. 60.5% with the Kinect. Further, the precision of positive predictive value was 72.1% for the Myo vs. 42.8% for the Kinect. We conclude that the SUR40 + Myo combination is feasible for automatic detection and classification of bites with adequate accuracy for a range of applications.
2009-07-01
REPORT NUMBER US Army Medical Research Institute of Chemical Defense ATTN: MCMR-CDT-N 3100 Ricketts Point Road Aberdeen Proving Ground, MD...Medical Research Institute of Chemical Defense Aberdeen Proving Ground, MD 21010-5400 ATTN: MCMR-CDZ-I 11. SPONSOR/MONITOR’S REPORT 3100 Ricketts...CONTINGENCY CHRISTOPHER E. BULLOCK AND TODD M. MYERS UNITED STATES ARMY MEDICAL RESEARCH INSTITUTE OF CHEMICAL DEFENSE Acquisition and maintenance of
Anthro-Centric Multisensory Interface for Vision Augmentation/Substitution (ACMI-VAS)
2014-02-01
Argus™ I and II Retinal Prosthesis System epiretinal microelectrode arrays (Second Sight Medical Products, Inc, Sylmar, CA) recently approved for use in...Figure 3. C olour photo of A rgus II epiretinal prosthesis secured to the retina w ith a retinaltack. Figure 4. Subject using the A rgus II device perform...in the environment. Alternatively, we have also implemented a touch screen mechanism that allows the user to feel the pixels under his or her
Characteristics of a Maritime Interdiction Operations Unmanned Ground Vehicle
2012-04-01
obstacles taller than its height. It comes with a suite of software that provides behaviors such as automatic self-righting and stair climbing (although the...unit we tested was a prototype and the stair climbing behavior had not been perfected). It also has a small wrist-mounted OCU with a touch screen...operations, often in hostile environments. There is a need for a small tactical robot that can be deployed ahead of the team to provide enhanced
Theiler, R; Spielberger, J; Bischoff, H A; Bellamy, N; Huber, J; Kroesen, S
2002-06-01
The Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index is a previously described self-administered questionnaire covering three domains: pain, stiffness and function. It has been validated in patients with osteoarthritis (OA) of the hip or knee in a paper-based format. To validate the WOMAC 3.0 using a numerical rating scale in a computerized touch screen format allowing immediate evaluation of the questionnaire. In the computed version cartoons, written and audio instruments were included in order facilitate application. Fifty patients, demographically balanced, with radiographically proven primary hip or knee OA completed the classical paper and the new computerized WOMAC version. Subjects were randomized either to paper format or computerized format first to balance possible order effects. The intra-class correlation coefficients for pain, stiffness and function values were 0.915, 0.745 and 0.940, respectively. The Spearman correlation coefficients for pain, stiffness and function were 0.88, 0.77 and 0.87, respectively. These data indicate that the computerized WOMAC OA index 3.0 is comparable to the paper WOMAC in all three dimensions. The computerized version would allow physicians to get an immediate result and if present a direct comparison with a previous exam. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved.
Advanced methods for displays and remote control of robots.
Eliav, Ami; Lavie, Talia; Parmet, Yisrael; Stern, Helman; Edan, Yael
2011-11-01
An in-depth evaluation of the usability and situation awareness performance of different displays and destination controls of robots are presented. In two experiments we evaluate the way information is presented to the operator and assess different means for controlling the robot. Our study compares three types of displays: a "blocks" display, a HUD (head-up display), and a radar display, and two types of controls: touch screen and hand gestures. The HUD demonstrated better performance when compared to the blocks display and was perceived to have greater usability compared to the radar display. The HUD was also found to be more useful when the operation of the robot was more difficult, i.e., when using the hand-gesture method. The experiments also pointed to the importance of using a wide viewing angle to minimize distortion and for easier coping with the difficulties of locating objects in the field of view margins. The touch screen was found to be superior in terms of both objective performance and its perceived usability. No differences were found between the displays and the controllers in terms of situation awareness. This research sheds light on the preferred display type and controlling method for operating robots from a distance, making it easier to cope with the challenges of operating such systems. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Pilcher, Janine; Holliday, Mark; Ebmeier, Stefan; McKinstry, Steve; Messaoudi, Fatiha; Weatherall, Mark; Beasley, Richard
2016-01-01
The SmartTouch Ventolin monitor (Adherium, Auckland, New Zealand) is an electronic monitor for use with a Ventolin metered dose inhaler, which records the date and time of inhaler actuations. This technology has the potential to allow in-depth analysis of patterns of inhaler use in clinical trial settings. The aim of this study was to determine the accuracy of the SmartTouch Ventolin monitor in recording Ventolin actuations. 20 SmartTouch Ventolin monitors were attached to Ventolin metered dose inhalers. Bench testing was performed over a 10-week period, to reflect the potential time frame between visits in a clinical trial. Inhaler actuations were recorded in a paper diary, which was compared with data uploaded from the monitors. 2560 actuations were performed during the 10-week study period. Monitor sensitivity for diary-recorded actuations was 99.9% with a lower 97.5% confidence bound of 99.7%. The positive predictive value for diary-recorded actuations was 100% with a 97.5% lower confidence bound of 99.9%. The SmartTouch Ventolin monitor is highly accurate in recording and retaining electronic data. It can be recommended for use in clinical trial settings in which training and quality control systems are incorporated into study protocols to ensure accurate data acquisition.
Pilcher, Janine; Holliday, Mark; Ebmeier, Stefan; McKinstry, Steve; Messaoudi, Fatiha; Weatherall, Mark; Beasley, Richard
2016-01-01
Background The SmartTouch Ventolin monitor (Adherium, Auckland, New Zealand) is an electronic monitor for use with a Ventolin metered dose inhaler, which records the date and time of inhaler actuations. This technology has the potential to allow in-depth analysis of patterns of inhaler use in clinical trial settings. The aim of this study was to determine the accuracy of the SmartTouch Ventolin monitor in recording Ventolin actuations. Methods 20 SmartTouch Ventolin monitors were attached to Ventolin metered dose inhalers. Bench testing was performed over a 10-week period, to reflect the potential time frame between visits in a clinical trial. Inhaler actuations were recorded in a paper diary, which was compared with data uploaded from the monitors. Results 2560 actuations were performed during the 10-week study period. Monitor sensitivity for diary-recorded actuations was 99.9% with a lower 97.5% confidence bound of 99.7%. The positive predictive value for diary-recorded actuations was 100% with a 97.5% lower confidence bound of 99.9%. Conclusions The SmartTouch Ventolin monitor is highly accurate in recording and retaining electronic data. It can be recommended for use in clinical trial settings in which training and quality control systems are incorporated into study protocols to ensure accurate data acquisition. PMID:27026805
Weber, David J; Kanamori, Hajime; Rutala, William A
2016-08-01
This article reviews 'no touch' methods for disinfection of the contaminated surface environment of hospitalized patients' rooms. The focus is on studies that assessed the effectiveness of ultraviolet (UV) light devices, hydrogen peroxide systems, and self-disinfecting surfaces to reduce healthcare-associated infections (HAIs). The contaminated surface environment in hospitals plays an important role in the transmission of several key nosocomial pathogens including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Clostridium difficile, Acinetobacter spp., and norovirus. Multiple clinical trials have now demonstrated the effectiveness of UV light devices and hydrogen peroxide systems to reduce HAIs. A limited number of studies have suggested that 'self-disinfecting' surfaces may also decrease HAIs. Many studies have demonstrated that terminal cleaning and disinfection with germicides is often inadequate and leaves environmental surfaces contaminated with important nosocomial pathogens. 'No touch' methods of room decontamination (i.e., UV devices and hydrogen peroxide systems) have been demonstrated to reduce key nosocomial pathogens on inoculated test surfaces and on environmental surfaces in actual patient rooms. Further UV devices and hydrogen peroxide systems have been demonstrated to reduce HAI. A validated 'no touch' device or system should be used for terminal room disinfection following discharge of patients on contact precautions. The use of a 'self-disinfecting' surface to reduce HAI has not been convincingly demonstrated.
High-Tech Versus High-Touch: Components of Hospital Costs Vary Widely.
Song, Paula H; Reiter, Kristin L; Yi Xu, Wendy
The recent release by the Centers for Medicare & Medicaid Services of hospital charge and payment data to the public has renewed a national dialogue on hospital costs and prices. However, to better understand the driving force of hospital pricing and to develop strategies for controlling expenditures, it is important to understand the underlying costs of providing hospital services. We use Medicare Provider and Analysis Review inpatient claims data and Medicare cost report data for fiscal years 2008 and 2012 to examine variations in the contribution of "high-tech" resources (i.e., technology/medical device-intensive resources) versus "high-touch" resources (i.e., labor-intensive resources) to the total costs of providing two common services, as well as assess how these costs have changed over time. We found that high-tech inputs accounted for a greater proportion of the total costs of surgical service, whereas medical service costs were primarily attributable to high-touch inputs. Although the total costs of services did not change significantly over time, the distribution of high-tech, high-touch, and other costs for each service varied considerably across hospitals. Understanding resource inputs and the varying contribution of these inputs by clinical condition is an important first step in developing effective cost control strategies.
The Computerization of Career Services: Critical Issues To Consider.
ERIC Educational Resources Information Center
Davidson, M. Meghan
2001-01-01
Looks at the technological changes in the delivery of career services in colleges and universities and examines seven critical issues: appropriate web-based services, student diversity, ethical responsibilities, high-tech and high-touch, holistic approach, staffing and financial considerations, and outcomes. (JOW)
Networked Multimedia: Are We There Yet?
ERIC Educational Resources Information Center
Wyman, Bill
1997-01-01
Discusses the technological advances in electronic communication over the last 30 years. Touches on various real-time interactive multimedia communications, including video on demand, videocassettes, laser discs, CD-ROM, a history of networking, terminal/host and client/server networking, intraoperability and interoperability and multimedia…
Iakimova, L D
1997-01-01
The article touches upon hygienic problems associated with mechanization and automation of major hydroelectric power stations. The authors present criteria to evaluate work conditions of the main occupations participating in the technologic process of hydroelectric power stations.
ERIC Educational Resources Information Center
Boody, Charles G., Ed.
1986-01-01
Six articles on music and computing address development of computer-based music technology, computer assisted instruction (CAI) in ear training and music fundamentals, a machine-independent data structure for musical pitch relationship representation, touch tablet input device in a melodic dictation CAI game, and systematic evaluation strategies…
ERIC Educational Resources Information Center
Serapiglia, Anthony; Serapiglia, Constance
2011-01-01
Handheld computer technology has been available for decades. The college student today has been exposed to various types of handheld computing devices for most of their lives yet there is little known about how a college student utilizes this type of technology tool as a learning advantage to an anytime or place scenario. This study looks at how…
2003-12-17
KENNEDY SPACE CENTER, FLA. -- Two control towers are seen at the edge of the KSC Shuttle Landing Facility, the old one in front and the nearly completed new tower in back. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.
Surface Microbiology of Smartphone Screen Protectors Among Healthcare Professionals.
Raza, Ibrahim; Raza, Awais; Razaa, Syed Ahmad; Sadar, Ahmad Bani; Qureshi, Ahmad Uzair; Talib, Usama; Chi, Gerald
2017-12-26
The use of smartphones with touch screens has become a norm for healthcare professionals (HCP). The risk of smart screen contamination has been proven, and guidelines are available to deal with possible contamination. A large number of smartphone users apply plastic or glass screen protectors onto their mobile phone screens to prevent scratches. However, these materials are not scratch proof, and their antipathogenic properties have not been studied. We have conducted a study to determine the frequency of smartphone screen protector contamination and compared the data with contamination on the bare area on the same mobile screens. The sample size included only HCPs working in acute care settings and having at least eight hours of exposure time every day. A total of 64 samples were collected, which reported 62.5% (n = 40/64) positive culture swabs from the protected areas of the screen and 45.3% (n = 29/64) from the unprotected area of the screen. Micrococcus and Gram-negative rods grew only on samples taken from the protected area whereas the bare area showed no such growth. There was no statistically significant difference in the frequency based on smart screen size, duration of use during duty hours, or the setting where it was used. Smartphone screen protectors from healthcare providers may harbor pathogenic bacteria, especially in acute care settings. Coagulase-negative Staphylococci followed by Bacillus species were the most commonly yielded bacteria among house officers and postgraduate trainees in the present study.
Assessing mouse alternatives to access to computer: a case study of a user with cerebral palsy.
Pousada, Thais; Pareira, Javier; Groba, Betania; Nieto, Laura; Pazos, Alejandro
2014-01-01
The purpose of this study is to describe the process of assessment of three assistive devices to meet the needs of a woman with cerebral palsy (CP) in order to provide her with computer access and use. The user has quadriplegic CP, with anarthria, using a syllabic keyboard. Devices were evaluated through a three-step approach: (a) use of a questionnaire to preselect potential assistive technologies, (b) use of an eTAO tool to determine the effectiveness of each devised, and (c) a conducting semi-structured interview to obtain qualitative data. Touch screen, joystick, and trackball were the preselected devices. The best device that met the user's needs and priorities was joystick. The finding was corroborated by both the eTAO tool and the semi-structured interview. Computers are a basic form of social participation. It is important to consider the special needs and priorities of users and to try different devices when undertaking a device-selection process. Environmental and personal factors have to be considered, as well. This leads to a need to evaluate new tools in order to provide the appropriate support. The eTAO could be a suitable instrument for this purpose. Additional research is also needed to understand how to better match devices with different user populations and how to comprehensively evaluate emerging technologies relative to users with disabilities.
Al-Khathaami, Ali M.; Alshahrani, Saeed M.; Kojan, Suleiman M.; Al-Jumah, Mohammed A.; Alamry, Ahmed A.; El-Metwally, Ashraf A.
2015-01-01
Objectives: To determine the degree of satisfaction and acceptance of stroke patients, their relatives, and healthcare providers toward using telestroke technology in Saudi Arabia. Methods: A cross-sectional study was conducted between October and December 2012 at King Abdulaziz Medical City, Ministry of National Guard Affairs, Riyadh, Saudi Arabia. The Remote Presence Robot (RPR), the RP-7i® (FDA- cleared) provided by InTouch Health was used in the study. Patients and their relatives were informed that the physician would appear through a screen on top of a robotic device, as part of their clinical care. Stroke patients admitted through the emergency department, and their relatives, as well as healthcare providers completed a self-administered satisfaction questionnaire following the telestroke consultation sessions. Results: Fifty participants completed the questionnaire. Most subjects agreed that the remote consultant interview was useful and that the audiovisual component of the intervention was of high quality; 98% agreed that they did not feel shy or embarrassed during the remote interview, were able to understand the instruction of the consultant, and recommended its use in stroke management. Furthermore, 92% agreed or strongly agreed that the use of this technology can efficiently replace the physical presence of a neurologist. Conclusion: Results suggest that the use of telestroke medicine is culturally acceptable among stroke patients and their families in Saudi Arabia and favorably received by healthcare providers. PMID:25630777
Al-Khathaami, Ali M; Alshahrani, Saeed M; Kojan, Suleiman M; Al-Jumah, Mohammed A; Alamry, Ahmed A; El-Metwally, Ashraf A
2015-01-01
To determine the degree of satisfaction and acceptance of stroke patients, their relatives, and healthcare providers toward using telestroke technology in Saudi Arabia. A cross-sectional study was conducted between October and December 2012 at King Abdulaziz Medical City, Ministry of National Guard Affairs, Riyadh, Saudi Arabia. The Remote Presence Robot (RPR), the RP-7i (FDA- cleared) provided by InTouch Health was used in the study. Patients and their relatives were informed that the physician would appear through a screen on top of a robotic device, as part of their clinical care. Stroke patients admitted through the emergency department, and their relatives, as well as healthcare providers completed a self-administered satisfaction questionnaire following the telestroke consultation sessions. Fifty participants completed the questionnaire. Most subjects agreed that the remote consultant interview was useful and that the audiovisual component of the intervention was of high quality; 98% agreed that they did not feel shy or embarrassed during the remote interview, were able to understand the instruction of the consultant, and recommended its use in stroke management. Furthermore, 92% agreed or strongly agreed that the use of this technology can efficiently replace the physical presence of a neurologist. Results suggest that the use of telestroke medicine is culturally acceptable among stroke patients and their families in Saudi Arabia and favorably received by healthcare providers.
Tung, James Y; Lulic, Tea; Gonzalez, Dave A; Tran, Johnathan; Dickerson, Clark R; Roy, Eric A
2015-05-01
Although motion analysis is frequently employed in upper limb motor assessment (e.g. visually-guided reaching), they are resource-intensive and limited to laboratory settings. This study evaluated the reliability and accuracy of a new markerless motion capture device, the Leap Motion controller, to measure finger position. Testing conditions that influence reliability and agreement between the Leap and a research-grade motion capture system were examined. Nine healthy young adults pointed to 15 targets on a computer screen under two conditions: (1) touching the target (touch) and (2) 4 cm away from the target (no-touch). Leap data was compared to an Optotrak marker attached to the index finger. Across all trials, root mean square (RMS) error of the Leap system was 17.30 ± 9.56 mm (mean ± SD), sampled at 65.47 ± 21.53 Hz. The % viable trials and mean sampling rate were significantly lower in the touch condition (44% versus 64%, p < 0.001; 52.02 ± 2.93 versus 73.98 ± 4.48 Hz, p = 0.003). While linear correlations were high (horizontal: r(2) = 0.995, vertical r(2) = 0.945), the limits of agreement were large (horizontal: -22.02 to +26.80 mm, vertical: -29.41 to +30.14 mm). While not as precise as more sophisticated optical motion capture systems, the Leap Motion controller is sufficiently reliable for measuring motor performance in pointing tasks that do not require high positional accuracy (e.g. reaction time, Fitt's, trails, bimanual coordination).
Touch the sky with your hands: a special Planetarium for blind, deaf, and motor disabled
NASA Astrophysics Data System (ADS)
García, Beatriz; Maya, Javier; Mancilla, Alexis; Álvarez, Silvina Pérez; Videla, Mariela; Yelós, Diana; Cancio, Angel
2015-03-01
The Planetarium for the blind, deaf, and motor disabled is part of the program on Astronomy and Inclusion of the Argentina Pierre Auger Foundation (FOPAA) and the Institute in Technologies and Detection of Astroparticles-Mendoza (ITeDAM).
Innovator: A Tradition of Excellence through Innovation, 1998-1999.
ERIC Educational Resources Information Center
Italia, Nancy, Ed.
1999-01-01
This document presents four Innovator newsletters from the League for Innovation in the Community College (California). Number one contains the following articles: "Focus on Globalization, Learning, and the Human Touch for 1998 Conference on Information Technology,""Internet-in-Education Project Exceeds Goals,""First…
Vehicle health management technology needs
NASA Technical Reports Server (NTRS)
Hammond, Walter E.; Jones, W. G.
1992-01-01
Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.
Large Scale Reduction of Graphite Oxide Project
NASA Technical Reports Server (NTRS)
Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy
2015-01-01
This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ruiyi; Das, Suprem R; Jeong, Changwook
Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices, and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. Several alternative material systems have been investigated. The development of high-performance hybrid structures provides a route towards robust, scalable and low-cost approaches for realizing high-performance TCE.
Intelligent Advanced Communications IP Telephony Feasibility for the U.S. Navy. Volume 1
2007-10-01
Monitors Control and Bearer Designed by the There are no bearing Circuitry Health through Non - manufacture of the circuits to be testing in Selectable... controlled process, only replacing non -tactical end devices at first and then replacing tactical when the sailors and the commanding officers build up...looked at as an alternative to the touch screen in a non -software research . A complete review of development of voice is larger then this test bed can
Nucleation and Growth Control of ZnO via Impurity-mediated Crystallization
2015-01-02
Characteristics of Crystalline Silicon/Si Quantum Dot/Poly(3,4-ethylenedioxythiophene) Hybrid Solar Cells ”, G. Uchida, Y. Wang, D. Ichida, H. Seo, K. Kamataki, N...Electron Transfer of Dye-Sensitized Solar Cell Using Vanadium Doped TiO2 ”, H. Seo, Y. Wang, D. Ichida, G. Uchida, N. Itagaki, K. Koga, M. Shiratani, S...conductive oxide (TCO) in flat-panel displays, touch screens on smartphones, organic light-emitting diodes (OLEDs), solar cells , etc [1-6]. The resistivity
Computer-aided testing of pilot response to critical in-flight events
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.
1984-01-01
This research on pilot response to critical in-flight events employs a unique methodology including an interactive computer-aided scenario-testing system. Navigation displays, instrument-panel displays, and assorted textual material are presented on a touch-sensitive CRT screen. Problem diagnosis scenarios, destination-diversion scenarios and combined destination/diagnostic tests are available. A complete time history of all data inquiries and responses is maintained. Sample results of diagnosis scenarios obtained from testing 38 licensed pilots are presented and discussed.
Superconducting RF, the History, Challenges and Promise
Padamsee, Hasan
2018-01-01
After a short survey of on-going accelerator applications, I will discuss future applications prospects for this enabling technology, both near term and long term. A selection of technology highlights will serve as an introduction to outstanding issues for all types of applications, from pulsed high gradient to CW medium gradient. Finally I will touch upon the limits of niobium and the prospects of new materials. The talk will be targeted at a general audience.
An iOS Application for Evaluating Whole-body Vibration Within a Workplace Risk Management Process.
McGlothlin, James; Burgess-Limerick, R; Lynas, D
2015-01-01
Workplace management of whole-body vibration exposure requires systematic collection of whole-body vibration data in conjunction with the numerous variables which influence vibration amplitudes. The cost and complexity of commercially available measurement devices is an impediment to the routine collection of such data by workplaces. An iOS application (WBV) has been developed which allows an iPod Touch to be used to measure whole-body vibration exposures. The utility of the application was demonstrated by simultaneously obtaining 98 pairs of whole-body vibration measurements from both the iPod Touch application and a commercially available whole-body vibration device during the operation of a variety of vehicles and mobile plant in operation at a surface coal mine. The iOS application installed on a fifth-generation iPod Touch was shown to provide a 95% confidence of +/- 0.077 m/s(2) r.m.s. constant error for the vertical direction. Situations in which vibration levels lay within the ISO2631.1 health guidance caution zone were accurately identified, and the qualitative features of the frequency spectra were reproduced. The low cost and relative simplicity of the application has potential to facilitate its use as a screening tool to identify situations in which musculoskeletal disorders may arise as a consequence of exposure to whole-body vibration.
Bai, Sunhye; Repetti, Rena L.; Sperling, Jacqueline B.
2015-01-01
Research on family socialization of positive emotion has primarily focused on the infant and toddler stages of development, and relied on observations of parent-child interactions in highly structured laboratory environments. Little is known about how children's spontaneous expressions of positive emotion are maintained in the uncontrolled settings of daily life, particularly within the family and during the school-age years. This naturalistic observational study examines three family behaviors - mutual display of positive emotion, touch and joint leisure – that surround 8 to 12 year-old children's spontaneous expressions of positive emotion, and tests whether these behaviors help to sustain children's expressions. Recordings taken of 31 families in their homes and communities over two days were screened for moments when children spontaneously expressed positive emotion in the presence of at least one parent. Children were more likely to sustain their expressions of positive emotion when mothers, fathers or siblings showed positive emotion, touched, or participated in a leisure activity. There were few differences in the ways that mothers and fathers socialized their sons’ and daughters’ positive emotion expressions. This study takes a unique, ecologically valid approach to assess how family members connect to children's expressions of positive emotion in middle childhood. Future observational studies should continue to explore mechanisms of family socialization of positive emotion, in laboratory and naturalistic settings. PMID:26524382
Ahuja, A K; Dorn, J D; Caspi, A; McMahon, M J; Dagnelie, G; daCruz, L; Stanga, P; Humayun, M S; Greenberg, R J
2012-01-01
Background/aims To determine to what extent subjects implanted with the Argus II retinal prosthesis can improve performance compared with residual native vision in a spatial-motor task. Methods High-contrast square stimuli (5.85 cm sides) were displayed in random locations on a 19″ (48.3 cm) touch screen monitor located 12″ (30.5 cm) in front of the subject. Subjects were instructed to locate and touch the square centre with the system on and then off (40 trials each). The coordinates of the square centre and location touched were recorded. Results Ninety-six percent (26/27) of subjects showed a significant improvement in accuracy and 93% (25/27) show a significant improvement in repeatability with the system on compared with off (p<0.05, Student t test). A group of five subjects that had both accuracy and repeatability values <250 pixels (7.4 cm) with the system off (ie, using only their residual vision) was significantly more accurate and repeatable than the remainder of the cohort (p<0.01). Of this group, four subjects showed a significant improvement in both accuracy and repeatability with the system on. Conclusion In a study on the largest cohort of visual prosthesis recipients to date, we found that artificial vision augments information from existing vision in a spatial-motor task. Clinical trials registry no NCT00407602. PMID:20881025
ERIC Educational Resources Information Center
Woolf, Harry
This collection of four essays brings together the outer, external public aspect of scientific activities, and the internal, private world of scientific thought. Originally delivered as lectures at Johns Hopkins University for the Shell Companies Foundation Lectures on Science, Technology, and Society, these essays touch upon the broader aspects…
Architectural Environment: A Resource Kit.
ERIC Educational Resources Information Center
J.B. Speed Art Museum, Louisville, KY.
There are many ways to approach the investigation of architecture. One can look at structural form, climate and topography, the aesthetics of style and decoration, building function, historical factors, cultural meanings, or technology and techniques associated with construction. This resource kit touches upon a few of these approaches, ranging…
From the Science Fair to the NASDAQ
ERIC Educational Resources Information Center
Kissinger, Peter T.
2007-01-01
Electrochemistry, which combines chemistry and electronics, is an exciting field and those who are in this field are very versatile scientists. Electrochemistry is a combination of true phenomena and an instrument to teach much about other fields and its technological advances touch many other fields as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, J.E.; Durfee, R.C.
Explorers from competing teams race to find a mysterious lost city in the heart of Africa. The American team is continuously in touch with its Houston home base through satellite communications. In flight, team leader Karen Ross displays a map of Africa on her computer screen and notes the multicolored lines suggesting different routes from city to city and into the rain forest. Each pathway is accompanied by a precise estimate of travel time to the final destination. Zooming in on the target area, she switches to satellite images and interprets them in shades of blue, purple, and green. Atmore » each checkpoint, the team reports its progress and gets a revised estimate of arrival time. Beset by difficulties, the explorers ask for a faster route, but the computer says the alternative is too dangerous. A simulation model with data representing geology, terrain, vegetation, weather, and many other geographic factors predicts local hazards, including the impending eruption of a nearby volcano. The Americans take the faster route anyway and beat the odds. This fictional account of emerging geographic information system (GIS) technologies comes from Michael Crichton`s 1980 novel Congo, which was made into a 1995 movie. The same technologies were highlighted in Clive Cussler`s 1988 techno-thriller Treasure. In reality, GIS technology began more than a quarter of a century ago at key universities and government laboratories in the United States and Canada. Since 1969, Oak Ridge National Laboratory has been among the leading institutions in this diverse, now booming field. GIS has been evolving through new forms and applications ever since.« less
Yang, Ya; Zhang, Hulin; Lin, Zong-Hong; Zhou, Yu Sheng; Jing, Qingshen; Su, Yuanjie; Yang, Jin; Chen, Jun; Hu, Chenguo; Wang, Zhong Lin
2013-10-22
We report human skin based triboelectric nanogenerators (TENG) that can either harvest biomechanical energy or be utilized as a self-powered tactile sensor system for touch pad technology. We constructed a TENG utilizing the contact/separation between an area of human skin and a polydimethylsiloxane (PDMS) film with a surface of micropyramid structures, which was attached to an ITO electrode that was grounded across a loading resistor. The fabricated TENG delivers an open-circuit voltage up to -1000 V, a short-circuit current density of 8 mA/m(2), and a power density of 500 mW/m(2) on a load of 100 MΩ, which can be used to directly drive tens of green light-emitting diodes. The working mechanism of the TENG is based on the charge transfer between the ITO electrode and ground via modulating the separation distance between the tribo-charged skin patch and PDMS film. Furthermore, the TENG has been used in designing an independently addressed matrix for tracking the location and pressure of human touch. The fabricated matrix has demonstrated its self-powered and high-resolution tactile sensing capabilities by recording the output voltage signals as a mapping figure, where the detection sensitivity of the pressure is about 0.29 ± 0.02 V/kPa and each pixel can have a size of 3 mm × 3 mm. The TENGs may have potential applications in human-machine interfacing, micro/nano-electromechanical systems, and touch pad technology.
Effects of Technology on Experienced Job Characteristics and Job Satisfaction.
1980-07-01
Ability to discriminate between odors (sense of smell) 23. Ability to discriminate between salty , sour, sweet (sense of taste ) 24. Ability to remember...Ability to estimate speed Ability to estimate quality Sense of touch Sense of smell Sense of taste Cognitive .833 Ability to remember names Ability to
Penetrating the Fog: Analytics in Learning and Education
ERIC Educational Resources Information Center
Siemens, George; Long, Phil
2011-01-01
Attempts to imagine the future of education often emphasize new technologies--ubiquitous computing devices, flexible classroom designs, and innovative visual displays. But the most dramatic factor shaping the future of higher education is something that people cannot actually touch or see: "big data and analytics." Learning analytics is still in…
Students' Stories of Studying Abroad: Reflections upon Return
ERIC Educational Resources Information Center
Costello, Jane
2015-01-01
Study abroad brings an enriching experience to students' academic and personal lives. This narrative essay relays two students' experiences with study abroad sojourns and touches upon their technology use during their study abroad as recounted in semi-structured interviews. Details of their cultural experiences and reflections thereof as well as…
Creating New Mathematical Applications Utilizing SMART Table
ERIC Educational Resources Information Center
Seals, Cheryl D.; Swanier, Cheryl S.; Nyagwencha, Justus Nyamweya; Cagle, Ashley L.; Houser, Navorro
2011-01-01
SMART Technologies is leading the way for interactive learning, through their many different tools. The SMART Table is a multi-user, multi-touch interactive interface that not only teaches children different concepts in fun ways (Steurer P., 2003), but it also inspires cooperative competition. In Alabama, the state curriculum for kindergarten…
Tactile Media for the Visually Handicapped.
ERIC Educational Resources Information Center
Diodato, Virgil
New technological developments allow even the most severely visually handicapped person to read print, sense images, and operate calculators and meters. One of these new developments is the Optacon, which converts printed images to vibrations sensed by finger touch, and may be used to read print, handwriting, and calculator displays. Another…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... touch upon impermissible subject matters because they may convey pricing information and bidding... FCC auction does not constitute an endorsement by the FCC of any particular service, technology, or... habitats, historical or archaeological sites, Indian religious sites, floodplains, and surface features. In...
Touch for Socioemotional and Physical Well-Being: A Review
ERIC Educational Resources Information Center
Field, Tiffany
2010-01-01
This review briefly summarizes recent empirical research on touch. The research includes the role of touch in early development, touch deprivation, touch aversion, emotions that can be conveyed by touch, the importance of touch for interpersonal relationships and how friendly touch affects compliance in different situations. MRI data are reviewed…
Giannini, Vincenzo; Maier, Stefan A.; Craster, Richard V.
2016-01-01
According to the hydrodynamic Drude model, surface plasmon resonances of metallic nanostructures blueshift owing to the non-local response of the metal’s electron gas. The screening length characterizing the non-local effect is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained non-local description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary-shaped nanometallic structures is then developed. The effect of non-locality is not always a perturbation and we present a detailed analysis of the ‘bonding’ modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalization of those predicted assuming a local metal permittivity. PMID:27493575
Parmar, Rajni; Brewer, Barbara B; Szalacha, Laura A
2018-03-01
The purpose of the study was to determine (1) recruitment feasibility; (2) intervention adherence; (3) intervention acceptability; and (4) the preliminary effects of touch or foot massage interventions on anxiety during a magnetic resonance imaging (MRI). A quasi-experimental design was used. Foot massage and touch were the intervention groups and "presence" was the control group. The study was conducted at the Center for Neurosciences, a freestanding facility, in southern Arizona. The sample (N = 60) was predominantly Caucasian (58.3%), married (55%), and college educated (43.3%). There were 39 females and 21 males. Fifty-three percent of the participants had an MRI head scan. Recruitment feasibility was the percentage of participants enrolled out of those screened. Adherence to foot massage and touch interventions was measured by the researcher's ability to apply full intervention for 20 min. Four factors measured participants' acceptance of the interventions as follows: (1) comfort; (2) acceptability of the length of the treatment; (3) perception of effectiveness; and (4) recommendation of treatment as part of routine MRI care. The MRI technologists' acceptability was measured by whether the intervention: (1) disrupted the workflow and (2) affected the length of the scan. State anxiety was assessed verbally by a single 10-point Likert type item. Recruitment feasibility was 78.2%. There were no barriers to the intervention protocol for 91.6% participants. The overall mean value of perceived effectiveness was 8.53, SD = 2.4 on a 10-point Likert type question. There was a significant difference among the three groups in terms of perceived effectiveness of the intervention F (2, 57) = 15.19, p < 0.001. Multilevel modeling documented that the foot massage intervention was a significant predictor of decreasing anxiety (β = -1.35, SE = 0.63, p < 0.01). The use of foot massage or touch is feasible, acceptable by patients and technologists, and the use of foot massage was associated with lower state anxiety.
NASA Explores the Carina Nebula by Touch
2017-12-08
Release Date March 30, 2010 The raised arcs, lines, dots, and other markings in this 17-by-11-inch Hubble Space Telescope image of the Carina Nebula highlight important features in the giant gas cloud, allowing visually impaired people to feel what they cannot see and form a picture of the nebula in their minds. To read more abou this image go to: www.nasa.gov/mission_pages/hubble/science/carina-touch.html Credit: NASA, ESA, and M. Mutchler (STScI/AURA) and N. Grice (You Can Do Astronomy LLC) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Vasquez, Brandon P; Binns, Malcolm A; Anderson, Nicole D
2016-03-01
Little is known about the relationship of executive functioning with age-related increases in response time (RT) distribution indices (intraindividual standard deviation [ISD], and ex-Gaussian parameters mu, sigma, tau). The goals of this study were to (a) replicate findings of age-related changes in response time distribution indices during an engaging touch-screen RT task and (b) investigate age-related changes in the relationship between executive functioning and RT distribution indices. Healthy adults (24 young [aged 18-30], 24 young-old [aged 65-74], and 24 old-old [aged 75-85]) completed a touch-screen attention task and a battery of neuropsychological tests. The relationships between RT performance and executive functions were examined with structural equation modeling (SEM). ISD, mu, and tau, but not sigma, increased with age. SEM revealed tau as the most salient RT index associated with neuropsychological measures of executive functioning. Further analysis demonstrated that correlations between tau and a weighted executive function composite were significant only in the old-old group. Our results replicate findings of greater RT inconsistency in older adults and reveal that executive functioning is related to tau in adults aged 75-85. These results support literature identifying tau as a marker of cognitive control, which deteriorates in old age. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry
2016-03-01
This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The study used a convergent mixed methods design, in which quantitative and qualitative data were collected concurrently to answer the research questions (Creswell and Plano Clark 2011). Videos were used to capture each child's interactions with the virtual manipulative mathematics apps, document learning performance and efficiency, and record children's interactions with the affordances within the apps. Quantitized video data answered the research question on differences in children's learning performance and efficiency between pre- and post-assessments. A Wilcoxon matched pairs signed-rank test was used to explore these data. Qualitative video data was used to identify affordance access by children when using each app, identifying 95 potential helping and hindering affordances among the 18 apps. The results showed that there were changes in children's learning performance and efficiency when children accessed a helping or a hindering affordance. Helping affordances were more likely to be accessed by children who progressed between the pre- and post-assessments, and the same affordances had helping and hindering effects for different children. These results have important implications for the design of virtual manipulative mathematics learning apps.
An anesthesia information system for monitoring and record keeping during surgical anesthesia.
Klocke, H; Trispel, S; Rau, G; Hatzky, U; Daub, D
1986-10-01
We have developed an anesthesia information system (AIS) that supports the anesthesiologist in monitoring and recording during a surgical operation. In development of the system, emphasis was placed on providing an anesthesiologist-computer interface that can be adapted to typical situations during anesthesia and to individual user behavior. One main feature of this interface is the integration of the input and output of information. The only device for interaction between the anesthesiologist and the AIS is a touch-sensitive, high-resolution color display screen. The anesthesiologist enters information by touching virtual function keys displayed on the screen. A data window displays all data generated over time, such as automatically recorded vital signs, including blood pressure, heart rate, and rectal and esophageal temperatures, and manually entered variables, such as administered drugs, and ventilator settings. The information gathered by the AIS is presented on the cathode ray tube in several pages. A main distributor page gives an overall view of the content of every work page. A one-page record of the anesthesia is automatically plotted on a multicolor digital plotter during the operation. An example of the use of the AIS is presented from a field test of the system during which it was evaluated in the operating room without interfering with the ongoing operation. Medical staff who used the AIS imitated the anesthesiologist's recording and information search behavior but did not have responsibility for the conduct of the anesthetic.
Finger tracking for hand-held device interface using profile-matching stereo vision
NASA Astrophysics Data System (ADS)
Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau
2013-01-01
Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.
Smartphone home monitoring of ECG
NASA Astrophysics Data System (ADS)
Szu, Harold; Hsu, Charles; Moon, Gyu; Landa, Joseph; Nakajima, Hiroshi; Hata, Yutaka
2012-06-01
A system of ambulatory, halter, electrocardiography (ECG) monitoring system has already been commercially available for recording and transmitting heartbeats data by the Internet. However, it enjoys the confidence with a reservation and thus a limited market penetration, our system was targeting at aging global villagers having an increasingly biomedical wellness (BMW) homecare needs, not hospital related BMI (biomedical illness). It was designed within SWaP-C (Size, Weight, and Power, Cost) using 3 innovative modules: (i) Smart Electrode (lowpower mixed signal embedded with modern compressive sensing and nanotechnology to improve the electrodes' contact impedance); (ii) Learnable Database (in terms of adaptive wavelets transform QRST feature extraction, Sequential Query Relational database allowing home care monitoring retrievable Aided Target Recognition); (iii) Smartphone (touch screen interface, powerful computation capability, caretaker reporting with GPI, ID, and patient panic button for programmable emergence procedure). It can provide a supplementary home screening system for the post or the pre-diagnosis care at home with a build-in database searchable with the time, the place, and the degree of urgency happened, using in-situ screening.
Reach out to one and you reach out to many: social touch affects third-party observers.
Schirmer, Annett; Reece, Christy; Zhao, Claris; Ng, Erik; Wu, Esther; Yen, Shih-Cheng
2015-02-01
Casual social touch influences emotional perceptions, attitudes, and behaviours of interaction partners. We asked whether these influences extend to third-party observers. To this end, we developed the Social Touch Picture Set comprising line drawings of dyadic interactions, half of which entailed publicly acceptable casual touch and half of which served as no-touch controls. In Experiment 1, participants provided basic image norms by rating how frequently they observed a displayed touch gesture in everyday life and how comfortable they were observing it. Results implied that some touch gestures were observed more frequently and with greater comfort than others (e.g., handshake vs. hug). All gestures, however, obtained rating scores suitable for inclusion in Experiments 2 and 3. In Experiment 2, participants rated perceived valence, arousal, and likeability of randomly presented touch and no-touch images without being explicitly informed about touch. Image characters seemed more positive, aroused, and likeable when they touched as compared to when they did not touch. Image characters seemed more negative and aroused, but were equally likeable, when they received touch as compared to when there was no physical contact. In Experiment 3, participants passively viewed touch and no-touch images while their eye movements were recorded. Differential gazing at touch as compared to no-touch images emerged within the first 500 ms following image exposure and was largely restricted to the characters' upper body. Gazing at the touching body parts (e.g., hands) was minimal and largely unaffected by touch, suggesting that touch processing occurred outside the focus of visual attention. Together, these findings establish touch as an important visual cue and provide novel insights into how this cue modulates socio-emotional processing in third-party observers. © 2014 The British Psychological Society.
The data and system Nikkei Telecom "Industry/Technology Information Service"
NASA Astrophysics Data System (ADS)
Kurata, Shizuya; Sueyoshi, Yukio
Nihoh Keizai Shimbun started supplying "Industry/Technology Information Service" from July 1989 as a part of Nikkei Telecom Package, which is online information service using personal computers for its terminals. Previously Nikkei's database service mainly covered such areas as economy, corporations and markets. On the other hand, the new "Industry/Technology Information Service" (main data covers industry by industry information-semi macro) is attracting a good deal of attention as it is the first to supply science and technology related database which has not been touched before. Moreover it is attracting attention technically as it has an access by gateway system to JOIS which is the first class science technology file in Japan. This report introduces data and system of "Industry/Technology Information Service" briefly.
Leuty, Valerie; Boger, Jennifer; Young, Laurel; Hoey, Jesse; Mihailidis, Alex
2013-01-01
Engagement in creative occupations has been shown to promote well-being for older adults with dementia. Providing access to such occupations is often difficult, as successful participation requires face-time with a person who is knowledgeable in facilitating engagement as well as access to any required resources, such as an arts studio. In response, a computer-based device, the Engaging Platform for Art Development (ePAD), was created to with the aim of enabling more independent access to art creation, ePAD is a an artificially intelligent touch-screen device that estimates a client's level of engagement and provides prompts to encourage engagement if the client becomes disengaged. ePAD is customizable such that an art therapist can choose themes and tools that they feel reflect their client's needs and preferences. This article presents a mixed-methods study that evaluated ePAD's usability by six older adult (with mild-to-moderate dementia) and art therapist dyads. Usability measures suggest that all participants found ePAD engaging but did not find prompts effective. Future development of ePAD includes improving the prompts, implementing the recommendations made by participants in this research, and long-term testing in more naturalistic art therapy contexts.
Portable Virtual Training Units
NASA Technical Reports Server (NTRS)
Malone, Reagan; Johnston, Alan
2015-01-01
The Mission Operations Lab initiated a project to design, develop, deliver, test, and validate a unique training system for astronaut and ground support personnel. In an effort to keep training costs low, virtual training units (VTUs) have been designed based on images of actual hardware and manipulated by a touch screen style interface for ground support personnel training. This project helped modernized the training system and materials by integrating them with mobile devices for training when operators or crew are unavailable to physically train in the facility. This project also tested the concept of a handheld remote device to control integrated trainers using International Space Station (ISS) training simulators as a platform. The portable VTU can interface with the full-sized VTU, allowing a trainer co-located with a trainee to remotely manipulate a VTU and evaluate a trainee's response. This project helped determine if it is useful, cost effective, and beneficial for the instructor to have a portable handheld device to control the behavior of the models during training. This project has advanced NASA Marshall Space Flight Center's (MSFC's) VTU capabilities with modern and relevant technology to support space flight training needs of today and tomorrow.
NASA Astrophysics Data System (ADS)
Ye, Linchao; Belloni, Paola; Möller, Knut
2011-10-01
Within the framework of a project conducted together with an industrial partner, a self-disinfecting operation interface with a glass panel is being developed. The concept of self-disinfection is based on the exploitation of the photocatalytical effect induced by a TiO2-coating on the glass surface under UV(A) light, which would make the touch screen antimicrobial. High-power UV-LEDs instead of conventional UV-lamps have been employed as light source. The main goal and challenge of the optical design is to generate an efficient and preferably homogeneous UV field on the TiO2-coated side while keeping the UV-LEDs concealed, i.e. invisible to the user. Therefore common backlighting systems have been used as reference and modified to meet the concrete requirements. Primary analysis and optical simulations have been performed with the software LightTools®. Several patterns for light redirection (i.e. 3D-spherical texture, 3D-rectangular texture and 2D-circular serigraph) have been investigated, compared and evaluated. Finally the pattern design which both fulfills all the predefined boundary conditions and simultaneously reduces the costs has been chosen.
Early detection of glaucoma by means of a novel 3D computer‐automated visual field test
Nazemi, Paul P; Fink, Wolfgang; Sadun, Alfredo A; Francis, Brian; Minckler, Donald
2007-01-01
Purpose A recently devised 3D computer‐automated threshold Amsler grid test was used to identify early and distinctive defects in people with suspected glaucoma. Further, the location, shape and depth of these field defects were characterised. Finally, the visual fields were compared with those obtained by standard automated perimetry. Patients and methods Glaucoma suspects were defined as those having elevated intraocular pressure (>21 mm Hg) or cup‐to‐disc ratio of >0.5. 33 patients and 66 eyes with risk factors for glaucoma were examined. 15 patients and 23 eyes with no risk factors were tested as controls. The recently developed 3D computer‐automated threshold Amsler grid test was used. The test exhibits a grid on a computer screen at a preselected greyscale and angular resolution, and allows patients to trace those areas on the grid that are missing in their visual field using a touch screen. The 5‐minute test required that the patients repeatedly outline scotomas on a touch screen with varied displays of contrast while maintaining their gaze on a central fixation marker. A 3D depiction of the visual field defects was then obtained that was further characterised by the location, shape and depth of the scotomas. The exam was repeated three times per eye. The results were compared to Humphrey visual field tests (ie, achromatic standard or SITA standard 30‐2 or 24‐2). Results In this pilot study 79% of the eyes tested in the glaucoma‐suspect group repeatedly demonstrated visual field loss with the 3D perimetry. The 3D depictions of visual field loss associated with these risk factors were all characteristic of or compatible with glaucoma. 71% of the eyes demonstrated arcuate defects or a nasal step. Constricted visual fields were shown in 29% of the eyes. No visual field changes were detected in the control group. Conclusions The 3D computer‐automated threshold Amsler grid test may demonstrate visual field abnormalities characteristic of glaucoma in glaucoma suspects with normal achromatic Humphrey visual field testing. This test may be used as a screening tool for the early detection of glaucoma. PMID:17504855
Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report
NASA Technical Reports Server (NTRS)
Salazar, George A.
2013-01-01
This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits from the environmental testing results by understanding its performance limitations/shortcomings to improve subsequent generations of AMOLED technology. Note that the AMOLED used in this test was not deSigned for the space environment but rather for commercial/industrial terrestrial applications.
Potential of Mobile Learning in Teaching of ESL Academic Writing
ERIC Educational Resources Information Center
Zaki, Arlina Ahmad; Yunus, Melor Md
2015-01-01
The potentials of mobile learning in teaching academic writing skills for ESL students are explored in this paper. Although there have been studies on MALL to improve writing skills, academic writing was never really touched. Few aspects are covered like the changes in educational technology, defining MALL, identifying issues in academic writing…
High Tech/High Touch: A Synergy Applicable to Career Development.
ERIC Educational Resources Information Center
Pyle, K. Richard
1985-01-01
A method for using group counseling to enhance the learning and personal satisfaction of computer-assisted career guidance is discussed. The author states that this combination of the human and the technological element appears to have real power in assisting individuals to increase significantly their career maturity in a relatively short period…
Touch NMR: An NMR Data Processing Application for the iPad
ERIC Educational Resources Information Center
Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…
Making Nature's Wisdom Public: The Affirmation of Planet Earth as a Living Organism.
ERIC Educational Resources Information Center
Cohen, Michael J.
Planet Earth is a living organism that preserves and regenerates itself and shares information with humans through sensations, feelings, and actions. After early humans migrated from their tropical origins to colder climates, they developed technologies to impose their tropical memories on their new surroundings and lost touch with their ancient…
ERIC Educational Resources Information Center
Dodds, Richard; Mason, Christine Y.
2005-01-01
Although cell phones keep kids in touch with families and personal digital assistants (PDA's) help organize assignments and give Internet access, when they are added to the school climate, educators must reassess policies so technology does not interfere with instruction time. This article discusses the several effects of cell phones to K-6…
2013-01-19
School children react to food shrinking in a vacuum chamber during an Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)
AmosWEB ... Economics with a Touch of Whimsy!
ERIC Educational Resources Information Center
Avalos, Antonio; Amos, Orley M. Jr.
2002-01-01
Describes AmosWEB.com as a collection of unique resources for students and instructors devoted to uncovering the most effective means of using technology to teach economics. States that most of the resources are designed for college level introductory courses but can be used with high school students and graduate business and engineering students.…
ERIC Educational Resources Information Center
Duncan, Mike R.; Birrell, Bob; Williams, Toni
2005-01-01
Virtual Reality (VR) is primarily a visual technology. Elements such as haptics (touch feedback) and sound can augment an experience, but the visual cues are the prime driver of what an audience will experience from a VR presentation. At its inception in 2001 the Centre for Advanced Visualization (CFAV) at Niagara College of Arts and Technology…
Educators Eye Ning Transition to a Pay Model
ERIC Educational Resources Information Center
Davis, Michelle R.
2010-01-01
The author reports on a move by the online social-networking site Ning to start charging for its services which has raised worries that new fees could stifle educators' technological collaboration and creativity and touch off similar moves by other companies that provide comparable services heavily used by educators. Ning, which provides a…
Touch Tablet Surprises: A Preschool Teacher's Story
ERIC Educational Resources Information Center
Shifflet, Rena; Toledo, Cheri; Mattoon, Cassandra
2012-01-01
A year and a half ago, Rena, Cheri, and Cassandra were introduced to each other by a colleague because they shared an interest in exploring the impact newer technologies have on learning in early childhood classrooms. They meet regularly to share ideas and information on how to incorporate tablets using best practices. Cassandra's preschool…
Emotional Maturity of Internet Users
ERIC Educational Resources Information Center
Dangwal, Kiran Lata; Srivastava, Shipra
2016-01-01
Internet has been emerged as a most powerful tool for communication and exchange of information all over the world. More recently the web 2.0 tools has provoked a revolution and unlocked a new dimension in the field of communication and technology; this ongoing digital revolution has touched and turned almost every sphere of life of its users…
A Theoretical Framework and Model towards Media-Rich Social Presence Design Practices
ERIC Educational Resources Information Center
Elwood, Susan; McCaleb, Karen; Fernandez, Mary; Keengwe, Jared
2014-01-01
Educators are seeing rapid developments in online instruction with regard to not only available technologies, but also in design and teaching practices. Developing and maintaining social presence in an online environment is paramount to the success of a learning environment. This article touches upon some historical perspectives of social presence…
Rolling-element bearings: A review of the state of the art
NASA Technical Reports Server (NTRS)
Anderson, W. J.; Zaretsky, E. V.
1973-01-01
Some of the research conducted which has brought rolling-element technology to its present state is discussed. Areas touched upon are material effects, processing variables, operating variables, design optimization, lubricant effects and lubrication methods. Finally, problem areas are discussed in relation to the present state-of-the-art and anticipated requirements.
Unpacking Students' Conceptualizations through Haptic Feedback
ERIC Educational Resources Information Center
Magana, A. J.; Balachandran, S.
2017-01-01
While it is clear that the use of computer simulations has a beneficial effect on learning when compared to instruction without computer simulations, there is still room for improvement to fully realize their benefits for learning. Haptic technologies can fulfill the educational potential of computer simulations by adding the sense of touch.…
Read, Write, Touch: Co-Construction and Multiliteracies in a Third-Grade Digital Writing Exercise
ERIC Educational Resources Information Center
Cordero, Kristina; Nussbaum, Miguel; Ibaseta, Valentina; Otaíza, María José; Chiuminatto, Pablo
2018-01-01
Many researchers and educators believe that reading and writing instruction needs to change in order to reflect the multimodal, technological, interactive nature of communication today. To date, few studies have examined how touchscreen devices may influence primary school students' reading and writing practices. Guided by Vygotsky's notion of…
Complementary health care: a welcome addition to an employee benefits program.
DeVries, George
2003-09-01
One up-and-coming approach to controlling health care costs is complementary health care, which does not rely on advances in high-tech, invasive technology or expensive new pharmaceuticals, but rather focuses much more on the high-touch, direct practitioner care. It often offers lower cost alternatives to traditional medicine.
Investigating Students' Ideas about Buoyancy and the Influence of Haptic Feedback
ERIC Educational Resources Information Center
Minogue, James; Borland, David
2016-01-01
While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
...) which specify that Illinois' surface coating VOC emission limitations shall not apply to touch-up and... Administrative Code (Ill. Adm. Code) by adding a ``small container exemption'' for pleasure craft surface coating... technology (RACT) policy. DATES: This final rule is effective on May 20, 2013. ADDRESSES: EPA has established...
ICT in Education: A Critical Literature Review and Its Implications
ERIC Educational Resources Information Center
Fu, Jo Shan
2013-01-01
This review summarizes the relevant research on the use of information and communication technology (ICT) in education. Specifically, it reviews studies that have touched upon the merits of ICT integration in schools, barriers or challenges encountered in the use of ICT, factors influencing successful ICT integration, in-service and pre-service…
A Framework for Mobile Apps in Colleges and Universities: Data Mining Perspective
ERIC Educational Resources Information Center
Singh, Archana; Ranjan, Jayanthi
2016-01-01
The Enterprise mobility communication technology provides easy and quick accessibility to data and information integrated into one single touch point device. This device incorporates or integrates all the processes into small applications or App and thus increases the workforce capability of knowledge workers. "App" which is a small set…
Teaching Bovine Abdominal Anatomy: Use of a Haptic Simulator
ERIC Educational Resources Information Center
Kinnison, Tierney; Forrest, Neil David; Frean, Stephen Philip; Baillie, Sarah
2009-01-01
Traditional methods of teaching anatomy to undergraduate medical and veterinary students are being challenged and need to adapt to modern concerns and requirements. There is a move away from the use of cadavers to new technologies as a way of complementing the traditional approaches and addressing resource and ethical problems. Haptic (touch)…
Infusing Technology into Customer Relationships: Balancing High-Tech and High-Touch
NASA Astrophysics Data System (ADS)
Salomann, Harald; Kolbe, Lutz; Brenner, Walter
In today's business environment, self-service is becoming increasingly important. In order to promote their self-service activities, banks have created online-only products and airlines offer exclusive discounts for passengers booking online. Self-service technologies' practical applications demonstrate this approach's potential. For example, Amtrak introduced an IVR (Interactive Voice Response) system, allowing cost savings of 13m; likewise Royal Mail installed an IVR system leading to a reduction of its customer service costs by 25% (Economist 2004).
Please Touch: Object Properties that Invite Touch.
Klatzky, R L; Peck, J
2012-01-01
Touch has received increasing interest in marketing, given research indicating that contact with products influences evaluation and the tendency to purchase. However, little is known from the marketing or psychophysical literature about visible attributes of objects that elicit touch for hedonic purposes. In these studies, participants rated the tendency of pictured objects to invite touch, or "touch-ability." Rated touch-ability varied reliably with structural attributes of objects, and the structural influences were distinct from those on other ratings such as attractiveness and apparent expense. Although the trends varied across object sets, touch-ability generally declined as surface textures became markedly rough and shape complexity became extreme. Holding stimulus factors constant, touch-ability also varied with the specific hand movements that were anticipated. Finally, mean touch-ability ratings were correlated across participants with the "Need for Touch" scale, which measures an individual's tendency to touch products. The studies point to touch-ability as a potential factor that might be incorporated into product design.
Monitoring Resource Utilization in a Health Care Coordination Program.
Popejoy, Lori L; Jaddoo, Julie; Sherman, Jan; Howk, Christopher; Nguyen, Raymond; Parker, Jerry C
2015-01-01
This initial article describes the development of a health care coordination intervention and documentation system designed using the Agency for Healthcare Research and Quality (AHRQ) Care Coordination Atlas framework for Centers for Medicare & Medicaid-funded innovation project, Leveraging Information Technology to Guide High-Tech, High-Touch Care (LIGHT). The study occurred at an academic medical center that serves 114 counties. Twenty-five registered nurse care managers (NCMs) were hired to work with 137 providers in 10 family community and internal medicine clinics. Patients were allocated into one of the four tiers on the basis of their chronic medical conditions and health care utilization. Using a documentation system on the basis of the AHRQ domains developed for this study, time and touch data were calculated for 8,593 Medicare, Medicaid, or dual-eligible patients. We discovered through the touch and time analysis that the majority of health care coordination activity occurred in the AHRQ domains of communication, assess needs and goals, and facilitate transitions, accounting for 79% of the NCM time and 61% of the touches. As expected, increasing tier levels resulted in increased use of NCM resources. Tier 3 accounted for roughly 16% of the patients and received 159 minutes/member (33% of total minutes), and Tier 4 accounted for 4% of patients and received 316 minutes/member (17% of all minutes). In contrast Tier 2, which did not require routine touches per protocol, had 5,507 patients (64%), and those patients received 5,246 hours of health care coordination, or 57 minutes/member, and took 48% of NCM time. 1. The AHRQ Care Coordination Atlas offered a systematic way to build a documentation system that allowed for the extraction of data that was used to calculate the amount of time and the number of touches that NCMs delivered per member. 2. Using a framework to systematically guide the work of health care coordination helped NCMs to think strategically about the care being delivered, and has implications for improving coordination of care. 3. For the purpose of reimbursement and communication with payers about quality metrics, it is vital that the type of touches and amount of time spent in delivering care coordination be documented in a manner that can be easily retrieved to guide practice decisions.
Weintek interfaces for controlling the position of a robotic arm
NASA Astrophysics Data System (ADS)
Barz, C.; Ilia, M.; Ilut, T.; Pop-Vadean, A.; Pop, P. P.; Dragan, F.
2016-08-01
The paper presents the use of Weintek panels to control the position of a robotic arm, operated step by step on the three motor axes. PLC control interface is designed with a Weintek touch screen. The HMI Weintek eMT3070a is the user interface in the process command of the PLC. This HMI controls the local PLC, entering the coordinate on the axes X, Y and Z. The subject allows the development in a virtual environment for e-learning and monitoring the robotic arm actions.
A monitoring system based on electric vehicle three-stage wireless charging
NASA Astrophysics Data System (ADS)
Hei, T.; Liu, Z. Z.; Yang, Y.; Hongxing, CHEN; Zhou, B.; Zeng, H.
2016-08-01
An monitoring system for three-stage wireless charging was designed. The vehicle terminal contained the core board which was used for battery information collection and charging control and the power measurement and charging control core board was provided at the transmitting terminal which communicated with receiver by Bluetooth. A touch-screen display unit was designed based on MCGS (Monitor and Control Generated System) to simulate charging behavior and to debug the system conveniently. The practical application shown that the system could be stable and reliable, and had a favorable application foreground.
2015-10-02
hour per response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining the data needed, and...architecture of MECH v0.1 is shown in Figure 1. The Android MECH-App shown on the left side of the figure is for end users to request tactical risk...when or where the next attack will take place. 3 2 MECH-App MECH-App runs on a touch screen based Android device for end users to access the
Endres, J; Welch, T; Perseli, T
2001-01-01
A multimedia touch-screen kiosk was used to assess food safety knowledge and convey food safety principles to 93 high school science teachers and 165 students. The kiosk program based on the FightBAC messages informed users of correct responses and reasons for the response. Teachers correctly answered more questions than students; however, for the areas of hand washing, sources of foodborne illness, and handling of leftover foods, at least 40% of both students and teachers provided incorrect answers.
Mobile phone-based self-management tools for type 2 diabetes: the few touch application.
Arsand, Eirik; Tatara, Naoe; Østengen, Geir; Hartvigsen, Gunnar
2010-03-01
Mobile phones and other mobile information and communication technology applications and technologies hold great potential as a basis for powerful patient-operated self-management tools within diabetes. The work presented shows how such tools can be designed for supporting lifestyle changes among people with type 2 diabetes and how these were perceived by a group of 12 patients during a 6-month period. The study used focus groups, interviews, feasibility testing, questionnaires, paper prototyping, and prototyping of both software and hardware components. The design process was iterative, addressing the various elements several times at an increasing level of detail. The final test of the application was done qualitatively in everyday settings in a cohort of 12 people with type 2 diabetes, aged 44-70 (four men and eight women). A mobile phone-based system called the Few Touch application was developed. The system includes an off-the-shelf blood glucose (BG) meter, a tailor-made step counter, and software for recording food habits and providing feedback on how users perform in relation to their own personal goals. User feedback from the 6-month user intervention demonstrated good usability of the tested system, and several of the participants adjusted their medication, food habits, and/or physical activity. Of the five different functionalities, the cohort considered the BG sensor system the best. It was shown that it is possible and feasible to design an application where several sensors and feedback applications are integrated in an overall system. The presented Few Touch application challenges people with type 2 diabetes to think about how they can improve their health, providing them with a way to capture and analyze relevant personal information about their disease. The half-year user intervention demonstrated that the system had a motivational effect on the users. (c) 2010 Diabetes Technology Society.
McAlearney, Ann Scheck; Sieck, Cynthia J; Hefner, Jennifer L; Aldrich, Alison M; Walker, Daniel M; Rizer, Milisa K; Moffatt-Bruce, Susan D; Huerta, Timothy R
2016-11-29
For patients with complex care needs, engagement in disease management activities is critical. Chronic illnesses touch almost every person in the United States. The costs are real, personal, and pervasive. In response, patients often seek tools to help them manage their health. Patient portals, personal health records tethered to an electronic health record, show promise as tools that patients value and that can improve health. Although patient portals currently focus on the outpatient experience, the Ohio State University Wexner Medical Center (OSUWMC) has deployed a portal designed specifically for the inpatient experience that is connected to the ambulatory patient portal available after discharge. While this inpatient technology is in active use at only one other hospital in the United States, health care facilities are currently investing in infrastructure necessary to support large-scale deployment. Times of acute crisis such as hospitalization may increase a patient's focus on his/her health. During this time, patients may be more engaged with their care and especially interested in using tools to manage their health after discharge. Evidence shows that enhanced patient self-management can lead to better control of chronic illness. Patient portals may serve as a mechanism to facilitate increased engagement. The specific aims of our study are (1) to investigate the independent effects of providing both High Tech and High Touch interventions on patient-reported outcomes at discharge, including patients' self-efficacy for managing chronic conditions and satisfaction with care; and (2) to conduct a mixed-methods analysis to determine how providing patients with access to MyChart Bedside (MCB, High Tech) and training/education on patient portals, and MyChart Ambulatory (MCA, High Touch) will influence engagement with the patient portal and relate to longer-term outcomes. Our proposed 4-year study uses a mixed-methods research (MMR) approach to evaluate a randomized controlled trial studying the effectiveness of a High Tech intervention (MCB, the inpatient portal), and an accompanying High Touch intervention (training patients to use the portal to manage their care and conditions) in a sample of hospitalized patients with two or more chronic conditions. This study measures how access to a patient portal tailored to the inpatient stay can improve patient experience and increase patient engagement by (1) improving patients' perceptions of the process of care while in the hospital; (2) increasing patients' self-efficacy for managing chronic conditions; and (3) facilitating continued use of a patient portal for care management after discharge. In addition, we aim to enhance patients' use of the portal available to outpatients (MCA) once they are discharged. This study has been funded by the Agency for Healthcare Research and Quality (AHRQ). Research is ongoing and expected to conclude in August 2019. Providing patients real-time access to health information can be a positive force for change in the way care is provided. Meaningful use policies require minimum demonstrated use of patient portal technology, most often in the ambulatory setting. However, as the technology matures to bridge the care transition, there is a greater need to understand how patient portals transform care delivery. By working in concert with patients to address and extend current technologies, our study aims to advance efforts to increase patients' engagement in their care and develop a template for how other hospitals might integrate similar technologies. ©Ann Scheck McAlearney, Cynthia J Sieck, Jennifer L Hefner, Alison M Aldrich, Daniel M Walker, Milisa K Rizer, Susan D Moffatt-Bruce, Timothy R Huerta. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 29.11.2016.
Immersive Visualization of the Solid Earth
NASA Astrophysics Data System (ADS)
Kreylos, O.; Kellogg, L. H.
2017-12-01
Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs, or using commodity low-cost virtual reality headsets such as HTC's Vive. The recent emergence of high-quality commodity VR means that researchers can buy a complete VR system off the shelf, install it and the 3D Visualizer software themselves, and start using it for data analysis immediately.
The “Smart Dining Table”: Automatic Behavioral Tracking of a Meal with a Multi-Touch-Computer
Manton, Sean; Magerowski, Greta; Patriarca, Laura; Alonso-Alonso, Miguel
2016-01-01
Studying how humans eat in the context of a meal is important to understanding basic mechanisms of food intake regulation and can help develop new interventions for the promotion of healthy eating and prevention of obesity and eating disorders. While there are a number of methodologies available for behavioral evaluation of a meal, there is a need for new tools that can simplify data collection through automatic and online analysis. Also, there are currently no methods that leverage technology to add a dimension of interactivity to the meal table. In this study, we examined the feasibility of a new technology for automatic detection and classification of bites during a laboratory meal. We used a SUR40 multi-touch tabletop computer, powered by an infrared camera behind the screen. Tags were attached to three plates, allowing their positions to be tracked, and the saturation (a measure of the infrared intensity) in the surrounding region was measured. A Kinect camera was used to record the meals for manual verification and provide gesture detection for when the bites were taken. Bite detections triggered classification of the source plate by the SUR40 based on saturation flux in the preceding time window. Five healthy subjects (aged 20–40 years, one female) were tested, providing a total sample of 320 bites. Sensitivity, defined as the number of correctly detected bites out of the number of actual bites, was 67.5%. Classification accuracy, defined as the number of correctly classified bites out of those detected, was 82.4%. Due to the poor sensitivity, a second experiment was designed using a single plate and a Myo armband containing a nine-axis accelerometer as an alternative method for bite detection. The same subjects were tested (sample: 195 bites). Using a simple threshold on the pitch reading of the magnetometer, the Myo data achieved 86.1% sensitivity vs. 60.5% with the Kinect. Further, the precision of positive predictive value was 72.1% for the Myo vs. 42.8% for the Kinect. We conclude that the SUR40 + Myo combination is feasible for automatic detection and classification of bites with adequate accuracy for a range of applications. PMID:26903934
Baptista-Pires, Luis; Mayorga-Martínez, Carmen C; Medina-Sánchez, Mariana; Montón, Helena; Merkoçi, Arben
2016-01-26
We demonstrate a graphene oxide printing technology using wax printed membranes for the fast patterning and water activation transfer using pressure based mechanisms. The wax printed membranes have 50 μm resolution, longtime stability and infinite shaping capability. The use of these membranes complemented with the vacuum filtration of graphene oxide provides the control over the thickness. Our demonstration provides a solvent free methodology for printing graphene oxide devices in all shapes and all substrates using the roll-to-roll automatized mechanism present in the wax printing machine. Graphene oxide was transferred over a wide variety of substrates as textile or PET in between others. Finally, we developed a touch switch sensing device integrated in a LED electronic circuit.
Technology-enhanced human interaction in psychotherapy.
Imel, Zac E; Caperton, Derek D; Tanana, Michael; Atkins, David C
2017-07-01
Psychotherapy is on the verge of a technology-inspired revolution. The concurrent maturation of communication, signal processing, and machine learning technologies begs an earnest look at how these technologies may be used to improve the quality of psychotherapy. Here, we discuss 3 research domains where technology is likely to have a significant impact: (1) mechanism and process, (2) training and feedback, and (3) technology-mediated treatment modalities. For each domain, we describe current and forthcoming examples of how new technologies may change established applications. Moreover, for each domain we present research questions that touch on theoretical, systemic, and implementation issues. Ultimately, psychotherapy is a decidedly human endeavor, and thus the application of modern technology to therapy must capitalize on-and enhance-our human capacities as counselors, students, and supervisors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Lupisella, Mark L.; Mueller, Thomas
2016-01-01
This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015 Workshop session.
Fixed-interval performance and self-control in infants.
Darcheville, J C; Rivière, V; Wearden, J H
1993-01-01
Twenty-six infants, 3 to 23 months old, were trained on fixed-interval schedules ranging from 10 s to 80 s. The operant response was touching an illuminated location on a touch-sensitive screen, and 20 s of cartoon presentation was the reinforcer. The subjects were also trained in a six-phase self-control procedure in which the critical phases involved choice between 20 s of cartoon available after a 0.5-s delay (impulsive choice) and 40 s of cartoon delayed for 40 s (self-controlled choice). All the youngest children (3 to 5 months) showed long postreinforcement pauses on the fixed-interval schedule, with most intervals involving the emission of a single, reinforced, response, and all made self-controlled choices. Older subjects (9 to 23 months) either produced the same pattern as the younger ones on the fixed-interval schedule (classified as pause-sensitive subjects) or produced short pauses and higher steady response rates (classified as pause-insensitive subjects). All pause-sensitive subjects made self-controlled choices in the self-control condition, and all pause-insensitive subjects made impulsive ones. PMID:8409821
Creating new futures in nursing education: envisioning the evolution of e-nursing education.
Neuman, Lois H
2006-01-01
This article discusses the explosion of technology and its impact on nursing education in the face of a nurse educator shortage. An attempt is made to answer the following questions:What incremental changes in technology do we have now? How do we envision technology being used in the future? Four scenarios of nontraditional approaches to nursing education are presented. They touch on the delivery of education with increased technology and universal access; the teacher as educator/mentor/coach; the product, including testing, outcomes, competencies, and process; and attracting and keeping human attention. The final section focuses on issues to consider as nurse leaders and educators bring nursing education into the future.
ERIC Educational Resources Information Center
Bazerman, Charles
1994-01-01
Discusses the way in which letters sent to Thomas Edison following the report that he had solved the problem of incandescent lighting reveal the many discursive worlds that Edison's work touched. Claims these letters indicate how a technological accomplishment is also a multiple, complex social, and communicative accomplishment, creating place and…
Using the iPhone and iPod Touch@Work
ERIC Educational Resources Information Center
Kendall, Susan; Nino, Mary; Stewart, Sandra
2010-01-01
The Dr. Martin Luther King, Jr. Library is a joint co-managed library of the San Jose Public Library and the San Jose State University Library, located in San Jose, California, the capital of Silicon Valley. Working in this merged public and academic environment, the authors find that the uses of technology transcend the differences and enhance…
Using the iPod to Teach Freedom and Independence
ERIC Educational Resources Information Center
Schmitz, Mike
2010-01-01
Technology is making it easier for people with disabilities to function independently in their homes, workplaces, schools, and communities. Things that were once thought impossible are now possible with the aid of new tools available to assist in the transition toward independent living. None have had as big an impact as the iPod Touch. When most…