Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...
Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E
2010-09-17
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DO TIE LABORATORY BASED METHODS REALLY REFLECT FIELD CONDITIONS
Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...
FIELD VALIDATION OF SEDIMENT TOXCITY IDENTIFCATION AND EVALUATION METHODS
Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...
DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?
Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...
Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella
2016-12-09
Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive effects. The proposed model consists of three phases. In the first phase, rough set-based methods are used to select the most discriminative features for reducing the classification time and improving the classification performance. Due to the imbalanced class distribution, in the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique are used to solve the problem of imbalanced datasets. ITerative Sampling (ITS) method is proposed to avoid the limitations of those methods. ITS method has two steps. The first step (sampling step) iteratively modifies the prior distribution of the minority and majority classes. In the second step, a data cleaning method is used to remove the overlapping that is produced from the first step. In the third phase, Bagging classifier is used to classify an unknown drug into toxic or non-toxic. The experimental results proved that the proposed model performed well in classifying the unknown samples according to all toxic effects in the imbalanced datasets.
Holzhütter, H G; Genschow, E; Diener, W; Schlede, E
2003-05-01
The acute toxic class (ATC) methods were developed for determining LD(50)/LC(50) estimates of chemical substances with significantly fewer animals than needed when applying conventional LD(50)/LC(50) tests. The ATC methods are sequential stepwise procedures with fixed starting doses/concentrations and a maximum of six animals used per dose/concentration. The numbers of dead/moribund animals determine whether further testing is necessary or whether the test is terminated. In recent years we have developed classification procedures for the oral, dermal and inhalation routes of administration by using biometric methods. The biometric approach assumes a probit model for the mortality probability of a single animal and assigns the chemical to that toxicity class for which the best concordance is achieved between the statistically expected and the observed numbers of dead/moribund animals at the various steps of the test procedure. In previous publications we have demonstrated the validity of the biometric ATC methods on the basis of data obtained for the oral ATC method in two-animal ring studies with 15 participants from six countries. Although the test procedures and biometric evaluations for the dermal and inhalation ATC methods have already been published, there was a need for an adaptation of the classification schemes to the starting doses/concentrations of the Globally Harmonized Classification System (GHS) recently adopted by the Organization for Economic Co-operation and Development (OECD). Here we present the biometric evaluation of the dermal and inhalation ATC methods for the starting doses/concentrations of the GHS and of some other international classification systems still in use. We have developed new test procedures and decision rules for the dermal and inhalation ATC methods, which require significantly fewer animals to provide predictions of toxicity classes, that are equally good or even better than those achieved by using the conventional LD(50)/LC(50) methods. In order to cope with rather narrow dose/concentration classes of the GHS we have, as in our previous publications, combined the outcome of all results that can be obtained during testing for the allocation to one of the defined toxicity classes of the GHS. Our results strongly recommend the deletion of the dermal LD(50) and the inhalation LC(50) test as regulatory tests and the adoption of the dermal and inhalation ATC methods as internationally accepted alternatives.
Price, Charlotte; Stallard, Nigel; Creton, Stuart; Indans, Ian; Guest, Robert; Griffiths, David; Edwards, Philippa
2010-01-01
Acute inhalation toxicity of chemicals has conventionally been assessed by the median lethal concentration (LC50) test (organisation for economic co-operation and development (OECD) TG 403). Two new methods, the recently adopted acute toxic class method (ATC; OECD TG 436) and a proposed fixed concentration procedure (FCP), have recently been considered, but statistical evaluations of these methods did not investigate the influence of differential sensitivity between male and female rats on the outcomes. This paper presents an analysis of data from the assessment of acute inhalation toxicity for 56 substances. Statistically significant differences between the LC50 for males and females were found for 16 substances, with greater than 10-fold differences in the LC50 for two substances. The paper also reports a statistical evaluation of the three test methods in the presence of unanticipated gender differences. With TG 403, a gender difference leads to a slightly greater chance of under-classification. This is also the case for the ATC method, but more pronounced than for TG 403, with misclassification of nearly all substances from Globally Harmonised System (GHS) class 3 into class 4. As the FCP uses females only, if females are more sensitive, the classification is unchanged. If males are more sensitive, the procedure may lead to under-classification. Additional research on modification of the FCP is thus proposed. PMID:20488841
IDENTIFICATION AND EVALUATION OF STRESSORS IN TOXIC SEDIMENTS AND DREDGED MATERIALS
Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways for a number of reasons. Identification of specific classes of toxicants (or stressors) can be useful in designing effective sediment remediation methods and re...
Toxic sediments pose a risk to aquatic life, human health and wildlife throughout the world. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are responsible for toxicological and ecological effects. The ability to identify the class or specifi...
Oral acute toxic class method: a successful alternative to the oral LD50 test.
Schlede, Eva; Genschow, Elke; Spielmann, Horst; Stropp, Gisela; Kayser, Detlev
2005-06-01
The oral acute toxic class method (ATC method) was developed as an alternative to replace the oral LD50 test. The ATC method is a sequential testing procedure using only three animals of one sex per step at any of the defined dose levels. Depending on the mortality rate three but never more than six animals are used per dose level. This approach results in the reduction of numbers of animals used in comparison to the LD50 test by 40-70%. The principle of the oral ATC method is based on the Probit model and it was first evaluated on a biometric basis before a national and subsequently an international ring study were conducted. The results demonstrated an excellent agreement between the toxicity and the animal numbers predicted biometrically and observed in the validation studies. The oral ATC method was adopted as an official test guideline by OECD in 1996 and was slightly amended in 2001. The ATC method has been successfully used in Germany and in 2003 >85% of all tests on acute oral toxicity testing was conducted as oral ATC tests. In member states of the European Union the ATC method is used in the range of 50% of all tests conducted. Meanwhile the oral LD50 test has been deleted by OECD, by the European Union and by the USA, making the use of alternatives to the oral LD50 test mandatory.
Custer, Kevin W; Burton, G Allen; Coelho, Ricardo S; Smith, Preston R
2006-09-01
Determining toxicity in streams during storm-water runoff can be highly problematic because of the fluctuating exposures of a multitude of stressors and the difficulty of linking these dynamic exposures with biological effects. An underlying problem with assessing storm-water quality is determining if toxicity exists and then which contaminant is causing the toxicity. The goal of this research is to provide an alternative to standard toxicity testing methods by incorporating an in situ toxicity identification evaluation (TIE) approach. A benthic in situ TIE bioassay (BiTIE) was developed for separating key chemical classes of stressors in streams during both low- and high-flow events to help discern between point and nonpoint sources of pollution. This BiTIE method allows for chemical class fractionation through the use of resins, and these resins are relatively specific for removing nonpolar organics (Dowex Optipore), ammonia (zeolite), and polywool (control). Three indigenous aquatic insects, a mayfly (Isonychia spp.), a caddisfly (Hydropsyche spp.), and a water beetle (Psephenus herricki), were placed in BiTIE chambers that were filled with natural substrates. Acute 96-h exposures were conducted at Honey Creek, New Carlisle, Ohio, USA (reference site), and Little Beavercreek, Beavercreek, Ohio, USA (impaired site). At both sites, significant (p < 0.025) stressor responses were observed using multiple species with polywool or no resin (control) treatments exhibiting < 80% survival and resin treatments with >80% survival. The BiTIE method showed stressor-response relationships in both runoff and base flow events during 96-h exposures. The method appears useful for discerning stressors with indigenous species in situ.
USDA-ARS?s Scientific Manuscript database
Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures ...
Wong, Yu-Ning; Egleston, Brian L; Sachdeva, Kush; Eghan, Naa; Pirollo, Melanie; Stump, Tammy K; Beck, John Robert; Armstrong, Katrina; Schwartz, Jerome Sanford; Meropol, Neal J
2013-09-01
When making treatment decisions, cancer patients must make trade-offs among efficacy, toxicity, and cost. However, little is known about what patient characteristics may influence these trade-offs. A total of 400 cancer patients reviewed 2 of 3 stylized curative and noncurative scenarios that asked them to choose between 2 treatments of varying levels of efficacy, toxicity, and cost. Each scenario included 9 choice sets. Demographics, cost concerns, numeracy, and optimism were assessed. Within each scenario, we used latent class methods to distinguish groups with discrete preferences. We then used regressions with group membership probabilities as covariates to identify associations. The median age of the patients was 61 years (range, 27-90 y). Of the total number of patients included, 25% were enrolled at a community hospital, and 99% were insured. Three latent classes were identified that demonstrated (1) preference for survival, (2) aversion to high cost, and (3) aversion to toxicity. Across all scenarios, patients with higher income were more likely to be in the class that favored survival. Lower income patients were more likely to be in the class that was averse to high cost (P<0.05). Similar associations were found between education, employment status, numeracy, cost concerns, and latent class. Even in these stylized scenarios, socioeconomic status predicted the treatment choice. Higher income patients may be more likely to focus on survival, whereas those of lower socioeconomic status may be more likely to avoid expensive treatment, regardless of survival or toxicity. This raises the possibility that insurance plans with greater cost-sharing may have the unintended consequence of increasing disparities in cancer care.
A biosensor for cadmium based on bioconvective patterns
NASA Technical Reports Server (NTRS)
Noever, David A.; Matsos, Helen C.
1990-01-01
An 'in vitro' method for monitoring cadmium, one of the most lethal bivalent heavy metals, can detect biologically active levels. The effects of cadmium tend to concentrate in protozoa far above natural levels and therein begin transferring through freshwater food chains to animals and humans. In a small sample volume (approximately 5 ml) the method uses the toxic response to the protozoa, Tetrahymena pyriformis, to cadmium. The assay relies on macroscopic bioconvective patterns to measure the toxic response, giving a sensitivity better than 1 micro-g/1 and a toxicity threshold to 7 micro-g/1 for Cd(2+). Cadmium hinders pattern formation in a dose-dependent manner. Arrested organism growth arises from slowed division and mutation to non-dividing classes. Unlike previous efforts, this method can be performed in a shallow flow device and does not require electronic or chemical analyses to monitor toxicity.
Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans
Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.
2013-01-01
Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454
ProTox: a web server for the in silico prediction of rodent oral toxicity
Drwal, Malgorzata N.; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R.; Preissner, Robert
2014-01-01
Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein–ligand-based pharmacophore models (‘toxicophores’) for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. PMID:24838562
Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.
1995-01-01
This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.
Smith, Dennis A; Harrison, Anthony; Morgan, Paul
2011-04-18
The term class effect has gained in use to describe a side effect including toxicity common to a series of drugs. There is no definition of what constitutes a class effect, and it is not applied against a rigid set of criteria.Thus, the finding of toxicity in one of a series of drugs can raise the concern of a class effect, especially if one or more of the others shows findings even slightly related or at very much lower incidence. This is particularly problematic when the term is used loosely or speculatively on initial events that are themselves of low incidence and serious. This speculation exaggerates and distorts the scientific process in establishing the true benefit risk of the individual drugs and can lead to lengthy development times, or highly restrictive labeling, to the detriment of patient welfare. To provide better definition and application of the term, we suggest that the term class effect toxicity is only used when a clear mechanistic link has been established between a safety concern and drug class based on (I) where the primary pharmacology delivers a clear rationale for the observed findings and toxicities; and (II) where the secondary pharmacology is obligate to the class of the molecule and not subject to variation of structure, and the selectivity cannot be impacted significantly by variations in potency introduced by structural manipulation. With these categorizations, we believe class effect toxicity will be mainly confined to I with examples such as the tetracycline class of antibacterials which inhibit protein synthesis both as a mechanism of antibacterial activity and to produce hepatic injury by mitochondrial injury in the liver.
PowerPoint presentation summarizing method development research involving the persistent perfluorinated organic compounds. Review of data indicating widespread distribution of these materials and the potential for toxicity.
2017-01-01
Objective. To create and implement a class in ethnopharmacology that would educate student pharmacists on folk medicine, including home remedies and native plants that are used as alternative medicinal sources; active components of medicinal plants including toxicity issues and the mechanism of action of beneficial compounds, such as catechins and other flavonoids; and nutraceuticals and poisonous plants. Methods. In this three-credit hour class, herbal remedies are investigated from the standpoints of medical efficacy, potential toxicities and drug interactions with prescribed medications. Class discussions are conducted on the usefulness of remedies, the attitudes of practitioners toward traditional remedy use and the risks of relying on herbal preparations. Each student prepares a 15-minute presentation on a disease state, which covers modern pharmaceuticals and herbal or folk remedy alternatives used in that disease. Special emphasis is given to drug-herb interactions. Results. The class has gained popularity among students and consistently fills within the first hour of computerized registration. Students agree that being educated in the benefits and potential toxicities of herbal products will better prepare them to counsel their patients who use these remedies. The elective has been offered 10 times since 2007. Anecdotal comments from our alumni indicate that they have found the information to be very useful in their practice environments. Conclusion. Providing our students with a greater understanding of herbal remedies is essential to prepare them for practice. By including both the uses and potential toxicities, the student pharmacist is able to counsel her patients from a standpoint of expertise on these self-administered remedies. PMID:29367772
Case series: toxicity from 25B-NBOMe--a cluster of N-bomb cases.
Gee, Paul; Schep, Leo J; Jensen, Berit P; Moore, Grant; Barrington, Stuart
2016-01-01
Background A new class of hallucinogens called NBOMes has emerged. This class includes analogues 25I-NBOMe, 25C-NBOMe and 25B-NBOMe. Case reports and judicial seizures indicate that 25I-NBOMe and 25C-NBOMe are more prevalently abused. There have been a few confirmed reports of 25B-NBOMe use or toxicity. Report Observational case series. This report describes a series of 10 patients who suffered adverse effects from 25B-NBOMe. Hallucinations and violent agitation predominate along with serotonergic/stimulant signs such as mydriasis, tachycardia, hypertension and hyperthermia. The majority (7/10) required sedation with benzodiazepines. Analytical method 25B-NBOMe concentrations in plasma and urine were quantified in all patients using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Peak plasma levels were measured between 0.7-10.1 ng/ml. Discussion The NBOMes are desired by users because of their hallucinogenic and stimulant effects. They are often sold as LSD or synthetic LSD. Reported cases of 25B- NBOMe toxicity are reviewed and compared to our series. Seizures and one pharmacological death have been described but neither were observed in our series. Based on our experience with cases of mild to moderate toxicity, we suggest that management should be supportive and focused on preventing further (self) harm. High doses of benzodiazepines may be required to control agitation. Patients who develop significant hyperthermia need to be actively managed. Conclusions Effects from 25B-NBOMe in our series were similar to previous individual case reports. The clinical features were also similar to effects from other analogues in the class (25I-NBOMe, 25C-NBOMe). Violent agitation frequently present along with signs of serotonergic stimulation. Hyperthermia, rhabdomyolysis and kidney injury were also observed.
ProTox: a web server for the in silico prediction of rodent oral toxicity.
Drwal, Malgorzata N; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R; Preissner, Robert
2014-07-01
Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein-ligand-based pharmacophore models ('toxicophores') for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...
Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc
PowerPoint presentation summarizing method development research involving the persistent perfluorinated organic compounds. Review of data indicating widespread distribution of these materials and the potential for toxicity.
COMPUTATIONAL INVESTIGATION OF CHEMICAL REACTIVITY IN RELATION TO BIOACTIV A TION AND TOXICITY ACROSS CLASSES OF HALOORGANICS: BROMINATION VS. CHLORINATION.
Halogenation is a common feature of many classes of environmental contaminants, and often plays a crucial role in po...
Classifying environmental pollutants: Part 3. External validation of the classification system.
Verhaar, H J; Solbé, J; Speksnijder, J; van Leeuwen, C J; Hermens, J L
2000-04-01
In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.
Assessment of acrylamide toxicity using a battery of standardised bioassays.
Zovko, Mira; Vidaković-Cifrek, Željka; Cvetković, Želimira; Bošnir, Jasna; Šikić, Sandra
2015-12-01
Acrylamide is a monomer widely used as an intermediate in the production of organic chemicals, e.g. polyacrylamides (PAMs). Since PAMs are low cost chemicals with applications in various industries and waste- and drinking water treatment, a certain amount of non-polymerised acrylamide is expected to end up in waterways. PAMs are non-toxic but acrylamide induces neurotoxic effects in humans and genotoxic, reproductive, and carcinogenic effects in laboratory animals. In order to evaluate the effect of acrylamide on freshwater organisms, bioassays were conducted on four species: algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata, duckweed Lemna minor and water flea Daphnia magna according to ISO (International Organization for Standardisation) standardised methods. This approach ensures the evaluation of acrylamide toxicity on organisms with different levels of organisation and the comparability of results, and it examines the value of using a battery of low-cost standardised bioassays in the monitoring of pollution and contamination of aquatic ecosystems. These results showed that EC50 values were lower for Desmodesmus subspicatus and Pseudokirchneriella subcapitata than for Daphnia magna and Lemna minor, which suggests an increased sensitivity of algae to acrylamide. According to the toxic unit approach, the values estimated by the Lemna minor and Daphnia magna bioassays, classify acrylamide as slightly toxic (TU=0-1; Class 1). The results obtained from algal bioassays (Desmodesmus subspicatus and Pseudokirchneriella subcapitata) revealed the toxic effect of acrylamide (TU=1-10; Class 2) on these organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.
2000-04-01
A multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites and in the conduct of environmental risk assessments. The research approach is based on the predominance of three classes of toxicants in sediments: ammonia, nonpolar organic chemicals, and metals. Here the authors describe a procedure for characterizing acute toxicity caused by metals in whole marine sediments. The procedure involves adding a chelating resin to sediments, resulting in the sequestration of bioavailable metal while not stressing testing organisms. Within the testing chambers,more » the presence of resin resulted in statistically significant reductions in the overlying and interstitial water concentrations of five metals (cadmium, copper, nickel, lead, and zinc) generally by factors of 40 and 200. Toxicity to both the amphipod Ampelisca abdita and mysid Americamysis bahia (formerly Mysidopsis bahia) of sediments spiked with the five metals was decreased by approximately a factor of four when resin was present. While very effective at reducing the concentrations and toxicity of metals, the resin has only minor ameliorative effects on the toxicity of ammonia and a representative nonpolar toxicant (Endosulfan). Resin and accumulated metal were easily isolated from the testing system following exposures allowing for the initiation of phase II TIE (identification) procedures. This procedure using the addition of a chelating resin provides an approach for determining the importance of metals to the toxicity of marine sediments. Work is continuing to validate the method with environmentally contaminated sediments.« less
Potential toxicity of pesticides measured in midwestern streams to aquatic organisms
Battaglin, W.; Fairchild, J.
2002-01-01
Society is becoming increasingly aware of the value of healthy aquatic ecosystems as well as the effects that man’s activities have on those ecosystems. In recent years, many urban and industrial sources of contamination have been reduced or eliminated. The agricultural community also has worked towards reducing off-site movement of agricultural chemicals, but their use in farming is still growing. A small fraction, estimated at <1 to 2% of the pesticides applied to crops are lost from fields and enter nearby streams during rainfall events. In many cases aquatic organisms are exposed to mixtures of chemicals, which may lead to greater non-target risk than that predicted based on traditional risk assessments for single chemicals. We evaluated the potential toxicity of environmental mixtures of 5 classes of pesticides using concentrations from water samples collected from ∼50 sites on midwestern streams during late spring or early summer runoff events in 1989 and 1998. Toxicity index values are calculated as the concentration of the compound in the sample divided by the EC50 or LC50 of an aquatic organism. These index values are summed within a pesticide class and for all classes to determine additive pesticide class and total pesticide toxicity indices. Toxicity index values greater than 1.0 indicate probable toxicity of a class of pesticides measured in a water sample to aquatic organisms. Results indicate that some samples had probable toxicity to duckweed and green algae, but few are suspected of having significant toxicity to bluegill sunfish or chorus frogs.
NBOMe: new potent hallucinogens--pharmacology, analytical methods, toxicities, fatalities: a review.
Kyriakou, C; Marinelli, E; Frati, P; Santurro, A; Afxentiou, M; Zaami, S; Busardo, F P
2015-09-01
NBOMe is a class of emerging new psychoactive substances that has recently gained prominence in the drug abuse market. NBOMes are N-2-methoxy-benzyl substituted 2C class of hallucinogens, currently being marked online as "research chemicals" under various names: N-bomb, Smiles, Solaris, and Cimbi. This article reviews available literature on the pharmacology; the analytical methods currently used for the detection and quantification of NBOMe in biological matrices and blotters, together with intoxication cases and NBOMe-related fatalities. Relevant scientific articles were identified from Medline, Cochrane Central, Scopus, Web of Science, Science Direct, EMBASE and Google Scholar, through June 2015 using the following keywords: "NBOMe", "Nbomb", "Smiles", "intoxication", "toxicity" "fatalities", "death", "pharmacology", "5-HT2A receptor", "analysis" and "analytical methods". The main key word "NBOMe" was individually searched in association to each of the others. The review of the literature allowed us to identify 43 citations on pharmacology, analytical methods and NBOMe-related toxicities and fatalities. The high potency of NBOMes (potent agonists of 5-HT2A receptor) has led to several severe intoxications, overdose and traumatic fatalities; thus, their increase raises significant public health concerns. Moreover, due to the high potency and ease of synthesis, it is likely that their recreational use will become more widespread in the future. The publication of new data, case reports and evaluation of the NBOMes metabolites is necessary in order to improve knowledge and awareness within the forensic community.
Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix
Hill, E.F.; Camardese, M.B.
1986-01-01
Five-day subacute dietary toxicity tests of 193 potential environmental contaminants, pesticides, organic solvents, and various adjuvants are presented for young coturnix (Japanese quail, Coturnix japonica Temminck and Schlegel). The report provides the most comprehensive data base available for avian subacute dietary toxicity tests and is primarily intended for use in ranking toxicities by a standard method that has a reasonable degree of environmental relevance. Findings are presented in two parts: Part I is a critique of selected drugs that includes discussion of subacute toxicity in relation to chemical class and structure, pesticide formulation, and age of animals; Part II is a summary of toxicologic findings for each test substance and provides a statistically basis for comparing toxicities. Data presented include the median lethal concentration (LC50), slope of the probit regression curve (dose-response curve), response chronology, and food consumption. We observed that: 1) fewer than 15% of the compounds were classed 'very' or 'highly' toxic (i.e, LC50 < 200 ppm) and all of these were either chlorinated hydrocarbons, organophosphates, or organometallics; 2) subacute toxicity may vary widely among structurally similar chemicals and between different formulations of the same chemical; therefore, conclusions about lethal hazard must be made cautiously until the actual formulation of inset has been tested: 3) inclusion of a general standard in each battery of tests is useful for detection of atypical trials and monitoring population changes but should not be used indiscriminantly for adjusting LC50's for intertest differences unless the chemicals of concern and the standard elicit their toxicities through the same action; 4) although other species have been tested effectively under the subacute protocol, coturnix were ideal for the stated purpose of this research because they are inexpensive, well-adapted to the laboratory environment, and yield good intertest reproducibility of response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palazzi, Mauro; Tomatis, Stefano; Orlandi, Ester
2008-02-01
Purpose: To quantify the incidence and severity of acute local toxicity in head and neck cancer patients treated with radiotherapy (RT), with or without chemotherapy (CHT), using the Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE v3.0), scoring system. Methods and Materials: Between 2004 and 2006, 149 patients with head and neck cancer treated with RT at our center were prospectively evaluated for local toxicity during treatment. On a weekly basis, patients were monitored and eight toxicity items were recorded according to the CTCAE v3.0 scoring system. Of the 149 patients, 48 (32%) were treated with RT alone (conventionalmore » fractionation), 82 (55%) with concomitant CHT and conventional fractionation RT, and 20 (13%) with accelerated-fractionation RT and CHT. Results: Severe (Grade 3-4) adverse events were recorded in 28% (mucositis), 33% (dysphagia), 40% (pain), and 12% (skin) of patients. Multivariate analysis showed CHT to be the most relevant factor independently predicting for worse toxicity (mucositis, dysphagia, weight loss, salivary changes). In contrast, previous surgery, RT acceleration and older age, female gender, and younger age, respectively, predicted for a worse outcome of mucositis, weight loss, pain, and dermatitis. The T-score method confirmed that conventional RT alone is in the 'low-burden' class (T-score = 0.6) and suggests that concurrent CHT and conventional fractionation RT is in the 'high-burden' class (T-score = 1.15). Combined CHT and accelerated-fractionation RT had the highest T-score at 1.9. Conclusions: The CTCAE v3.0 proved to be a reliable tool to quantify acute toxicity in head and neck cancer patients treated with various treatment intensities. The effect of CHT and RT acceleration on the acute toxicity burden was clinically relevant.« less
Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models.
Seremet, Oana Cristina; Olaru, Octavian Tudorel; Gutu, Claudia Maria; Nitulescu, George Mihai; Ilie, Mihaela; Negres, Simona; Zbarcea, Cristina Elena; Purdel, Carmen Nicoleta; Spandidos, Demetrios A; Tsatsakis, Aristides M; Coleman, Michael D; Margina, Denisa Marilena
2018-06-01
Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC‑MS method, using a retention time (TR)‑5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson 's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC‑MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans.
Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models
Seremet, Oana Cristina; Olaru, Octavian Tudorel; Gutu, Claudia Maria; Nitulescu, George Mihai; Ilie, Mihaela; Negres, Simona; Zbarcea, Cristina Elena; Purdel, Carmen Nicoleta; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Coleman, Michael D.; Margina, Denisa Marilena
2018-01-01
Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC-MS method, using a retention time (TR)-5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC-MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans. PMID:29620235
Donaghy, Heather
2016-01-01
ABSTRACT Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ∼20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future. PMID:27045800
A SHORT-TERM REPRODUCTION TEST WITH THE FATHEAD MINNOW (PIMEPHALES PROMELAS): L METHODS DESCRIPTION
Due to the time and expense associated with full life-cycle testing, most current toxicity tests with fish do not explicity consider reproductive output as an endpoint but, rather, focus on early life-stage survival and development. However, there are classes of chemicals that co...
A short-term (21-d) reproductive toxicity test with the fatheadt minnow (Pimephales promelas) has been proposed as a standard method for identifying certain classes of endocrine-disrupting chemicals (EDCs). A potentially useful route of chemical exposure for the test is intraperi...
The toxicity of Poison Dart Frog alkaloids against the Fire Ant (Solenopsis invicta)
USDA-ARS?s Scientific Manuscript database
Hundreds of alkaloids, representing over 20 structural classes, have been identified from the skin of neotropical poison frogs (Dendrobatidae). These alkaloids are derived from arthropod prey of the frogs, and are generally are believed to deter vertebrate predators. We developed a method to put ind...
1982-01-01
bromide is listed as a positive interference. Nitric oxide and nitrogen dioxide can be detected by using the Draeger nitrous fumes detector tube. A... fumes exhibit a delay from the time of exposure to the onset of symptoms. This time delay would not be conducive for a rapid field screening test. It...Dangerous when strongly heated, emits highly toxic fumes . THRESHOLD LIMIT VALUE: No information available PHYSIOLOGICAL EFFECTS: A. Intensely irritating to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salizzato, M.; Bertato, V.; Pavoni, B.
1998-04-01
Chemical analyses and bioassays were used in conjunction to assess the quality of sediments of the Venice lagoon. Organic micropollutants (polycyclic aromatic hydrocarbons [PAHs] polychlorinated biphenyls [PCBs], and chlorinated pesticides) were extracted from sediment samples and analyzed by gas chromatography after fractionation into classes of compounds. The Vibrio fischeri test was used to assess the acute toxicity of sediment extracts. The test was applied to organic extracts before cleanup and to extracts purified from sulfur and fractionated into single classes of compounds. Extracts before purification were much more toxic than single fractions. In particular, sulfur was toxic to V. fischeri.more » For PAHs and PCBs the 50% effective concentration (EC50) and EC20 values were determined using natural and spiked extracts. Sensitivity limits of the method for these compounds were also estimated as was in EC50 value of elemental sulfur dissolved in ethanol. A mathematical model was used to fit the concentration-response data to a sigmoid curve.« less
Adams, Julie; Bornstein, Jason M; Munno, Keenan; Hollebone, Bruce; King, Thomas; Brown, R Stephen; Hodson, Peter V
2014-04-01
The present study isolated and identified compounds in heavy fuel oil 7102 (HFO 7102) that are bioavailable and chronically toxic to rainbow trout embryos (Oncorhynchus mykiss). An effects-driven chemical fractionation combined the chemical separation of oil with toxicity testing and chemical analyses of each fraction to identify the major classes of compounds associated with embryo toxicity. Toxicity was assessed with 2 exposure methods, a high-energy chemical dispersion of oil in water, which included oil droplets in test solutions, and water accommodated fractions which were produced by oiled gravel desorption columns, and which did not contain visible oil droplets. Fractions of HFO with high concentrations of naphthalenes, alkanes, asphaltenes, and resins were nontoxic to embryos over the range of concentrations tested. In contrast, fractions enriched with 3- to 4-ringed alkyl polycyclic aromatic hydrocarbons (PAHs) were embryotoxic, consistent with published studies of crude oils and individual alkyl PAHs. The rank order of fraction toxicity did not vary between the exposure methods and was consistent with their PAH content; fractions with higher-molecular weight alkyl PAHs were the most toxic. Exposure of juvenile trout to most fractions of HFO induced higher activities of cytochrome P450 enzymes, with a rank order of potency that varied with exposure method and differed somewhat from that of embryotoxicity. Induction reflected the bioavailability of PAHs but did not accurately predict embryotoxicity. © 2013 SETAC.
Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.
Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P
2015-10-20
Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model
Jackson, George R.; Maione, Anna G.; Klausner, Mitchell
2018-01-01
Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.
Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J
2018-06-01
Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.
Beloti, V H; Alves, G R; Moral, R A; Demétrio, C G B; Yamamoto, P T
2018-06-01
One method for controlling the Asian citrus psyllid (ACP) Diaphorina citri Kuwayama, the vector of the putative causal agent of Huanglongbing, uses the parasitoid Tamarixia radiata (Waterston). However, the general intensive use of insecticides has reduced the numbers of this parasitoid. This study evaluated the effect of the residual action of 24 insecticides on T. radiata and also determined the differential toxicity of insecticides to D. citri and T. radiata, using three bioassays. In the first, when adults of the parasitoid were exposed to residues of the 24 insecticides, ten were considered short-life (class 1), six slightly persistent (class 2), five moderately persistent (class 3), and three insecticides were considered persistent (class 4), under the IOBC/WPRS classification system. The second bioassay evaluated the sublethal concentrations of the persistent insecticides (formetanate, dimethoate, spinosad). Increasing the concentrations of the insecticides increased the number that were classified as persistent. In the third bioassay, evaluation of the differential toxicity of eight insecticides to the ACP and the parasitoid showed that chlorpyrifos and bifenthrin were more harmful to T. radiata. Therefore, these two insecticides are not recommended for application at the time of parasitoid release. Cypermethrin, imidacloprid, and dimethoate caused higher mortality of D. citri and are most often recommended in IPM programs. The choice of an insecticide for the control of citrus pests must be made with care, aiming to preserve the natural enemies in the ecosystem, and thereby contribute to the success of biological control.
COMPENDIUM OF METHODS FOR THE DETERMINATION ...
This Second Edition of the Compendium has been prepared to provide regional, state and local environmental regulatory agencies with step-by-step sampling and analysis procedures for the determination of selected toxic organic pollutants in ambient air. It is designed to assist those persons responsible for sampling and analysis of toxic organic pollutants in complying with the requirements of Title III of the Clean Air Act. This revised Compendium presents a set of 17 methods in a standardized format with a variety of applicable sampling methods, as well as several analytical techniques, for specific classes of organic pollutants, as appropriate to the specific pollutant compound, its level, and potential interferences. Consequently, this treatment allows the user flexibility in selecting alternatives to complement his or her background and laboratory capability. Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benigni, R.; Andreoli, C.; Giuliani, A.
1989-01-01
The interrelationships among carcinogenicity, mutagenicity, acute toxicity (LD50), and a number of molecular descriptors were studied by computerized data analysis methods on the data base generated by the International Program for the Evaluation of Short-Term Test for Carcinogens (IPESTTC). With the use of statistical regression methods, three main associations were evidenced: (1) the well-known correlation between carcinogenicity and mutagenicity; (2) a correlation between mutagenicity and toxicity (LD50 ip in mice); and (3) a correlation between toxicity and a recently introduced estimator of the free energy of binding of the molecules to biological receptors. As expected on the basis of themore » large variety of chemical classes represented in the IPESTTC data base, no simple relationship between mutagenicity or carcinogenicity and chemical descriptors was found. To overcome this problem, a new pattern recognition method (REPAD), developed by us for structure-activity studies of noncongeneric chemicals, has been used. This allowed us to highlight a significant difference between the whole patterns of relationships among chemicophysical variables in the two groups to active (mutagenicity and/or carcinogenic) and inactive chemicals. This approach generated a classification rule able to correctly assign about 80% of carcinogens or mutagens.« less
Reduced Toxicity Fuel Satellite Propulsion System
NASA Technical Reports Server (NTRS)
Schneider, Steven J. (Inventor)
2001-01-01
A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.
Reduced Toxicity Fuel Satellite Propulsion System Including Plasmatron
NASA Technical Reports Server (NTRS)
Schneider, Steven J. (Inventor)
2003-01-01
A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster. whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.
USDA-ARS?s Scientific Manuscript database
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain developm...
Evolving Role of Passive Samplers in Whole Sediment Toxicity Identification Evaluations
In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In Phase II of the TIE, the specific toxicants causing observed toxicity are identified. For a...
ECOSAR model performance with a large test set of industrial chemicals.
Reuschenbach, Peter; Silvani, Maurizio; Dammann, Martina; Warnecke, Dietmar; Knacker, Thomas
2008-05-01
The widely used ECOSAR computer programme for QSAR prediction of chemical toxicity towards aquatic organisms was evaluated by using large data sets of industrial chemicals with varying molecular structures. Experimentally derived toxicity data covering acute effects on fish, Daphnia and green algae growth inhibition of in total more than 1,000 randomly selected substances were compared to the prediction results of the ECOSAR programme in order (1) to assess the capability of ECOSAR to correctly classify the chemicals into defined classes of aquatic toxicity according to rules of EU regulation and (2) to determine the number of correct predictions within tolerance factors from 2 to 1,000. Regarding ecotoxicity classification, 65% (fish), 52% (Daphnia) and 49% (algae) of the substances were correctly predicted into the classes "not harmful", "harmful", "toxic" and "very toxic". At all trophic levels about 20% of the chemicals were underestimated in their toxicity. The class of "not harmful" substances (experimental LC/EC(50)>100 mg l(-1)) represents nearly half of the whole data set. The percentages for correct predictions of toxic effects on fish, Daphnia and algae growth inhibition were 69%, 64% and 60%, respectively, when a tolerance factor of 10 was allowed. Focussing on those experimental results which were verified by analytically measured concentrations, the predictability for Daphnia and algae toxicity was improved by approximately three percentage points, whereas for fish no improvement was determined. The calculated correlation coefficients demonstrated poor correlation when the complete data set was taken, but showed good results for some of the ECOSAR chemical classes. The results are discussed in the context of literature data on the performance of ECOSAR and other QSAR models.
NASA Technical Reports Server (NTRS)
Schneider, Steven J. (Inventor)
2001-01-01
A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimelman, Aya; Levy, Asaf; Sberro, Hila
In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes our assays revealed novel toxins and restriction enzymes, and new classes of smallmore » non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator dnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.« less
Many toxicological processes may be studied using the same paradigms as used in this study. As a result, methods applied here may have a far reaching effect for evaluating the risk of this and other classes of chemicals and other macromolecular targets.
Chemical warfare agents. Classes and targets.
Schwenk, Michael
2018-09-01
Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action. Copyright © 2017 Elsevier B.V. All rights reserved.
Dutok, Carlos M S; Berenguer-Rivas, Clara Azalea; Rodríguez-Leblanch, Elizabeth; Pérez-Jackson, Liliana; Chil-Nuñez, Idelsy; Escalona-Arranz, Julio César; Reyes-Tur, Bernardo; Queiroz, Margareth M C
2015-01-01
The common use of Pouteria mammosa (L.) Cronquist, "Mamey or Zapote," in food and ethnobotanic medicine shows its low or absent toxicity as fruit extracts prepared from seeds. However, it is essential to conduct security trials to scientifically support their use in drug therapy. This study evaluated the aqueous and hydroalcoholic extract (25%) Acute Oral Toxicity, obtained from the seeds of P. mammosa, in Sprague Dawley rats and dermal and eye irritability in New Zealand rabbits. The 404 and 405 acute dermal and eye irritation/corrosion guidelines were used, as well as the 423 Acute Oral Toxicity guideline, Acute Toxic Class Method of the Organization for Economic Cooperation and Development (OECD). The aqueous extract was located in the following category: not classified as toxic (CTA 5), while hydroalcoholic extract at 25% was classified as dangerous (CTA 4). Both extracts can be used without side reaction that irritates the skin which permitted classification as potentially not irritant. P. mammosa in the two extracts caused mild and reversible eye irritation, and it was classified as slightly irritating.
ERIC Educational Resources Information Center
Ridgley, Susan M.
Four general product classes (pesticides, paint products, household cleaners, and automotive products) are reviewed in this document. Each product class is described, and several aspects of the problem associated with product use or disposal are examined, including estimates of volumes used and environmental impacts. Technical data on the specific…
Influence of pesticide regulation on acute poisoning deaths in Sri Lanka.
Roberts, Darren M.; Karunarathna, Ayanthi; Buckley, Nick A.; Manuweera, Gamini; Sheriff, M. H. Rezvi; Eddleston, Michael
2003-01-01
OBJECTIVES: To assess in a developing Asian country the impact of pesticide regulation on the number of deaths from poisoning. These regulations, which were implemented in Sri Lanka from the 1970s, aimed to reduce the number of deaths - the majority from self-poisoning - by limiting the availability and use of highly toxic pesticides. METHODS: Information on legislative changes was obtained from the Ministry of Agriculture, national and district hospital admission data were obtained from the Sri Lanka Health Statistics Unit, and individual details of deaths by pesticide poisoning were obtained from a manual review of patients' notes and intensive care unit records in Anuradhapura. FINDINGS: Between 1986 and 2000, the total national number of admissions due to poisoning doubled, and admissions due to pesticide poisoning increased by more than 50%. At the same time, the case fatality proportion (CFP) fell for total poisonings and for poisonings due to pesticides. In 1991_92, 72% of pesticide-induced deaths in Anuradhapura were caused by organophosphorus (OP) and carbamate pesticides - in particular, the WHO class I OPs monocrotophos and methamidophos. From 1991, the import of these pesticides was reduced gradually until they were banned for routine use in January 1995, with a corresponding fall in deaths. Unfortunately, their place in agricultural practice was taken by the WHO class II organochlorine endosulfan, which led to a rise in deaths from status epilepticus - from one in 1994 to 50 in 1998. Endosulfan was banned in 1998, and over the following three years the number of endosulfan deaths fell to three. However, at the end of the decade, the number of deaths from pesticides was at a similar level to that of 1991, with WHO class II OPs causing the most deaths. Although these drugs are less toxic than class I OPs, the management of class II OPs remains difficult because they are, nevertheless, still highly toxic, and their toxicity is exacerbated by the paucity of available facilities. CONCLUSION: The fall in CFP amidst a rising incidence of self-poisoning suggests that Sri Lanka's programmes of pesticide regulation were beneficial. However, a closer inspection of pesticide-induced deaths in one hospital revealed switching to other highly toxic pesticides, as one was banned and replaced in agricultural practice by another. Future regulation must predict this switching and bear in mind the ease of treatment of replacement pesticides. Furthermore, such regulations must be implemented alongside other strategies, such as integrated pest management, to reduce the overall pesticide availability for self-harm. PMID:14758405
[Research advances in eco-toxicological diagnosis of soil pollution].
Liu, Feng; Teng, Hong-Hui; Ren, Bai-Xiang; Shi, Shu-Yun
2014-09-01
Soil eco-toxicology provides a theoretical basis for ecological risk assessment of contaminated soils and soil pollution control. Research on eco-toxicological effects and molecular mechanisms of toxic substances in soil environment is the central content of the soil eco-toxicology. Eco-toxicological diagnosis not only gathers all the information of soil pollution, but also provides the overall toxic effects of soil. Therefore, research on the eco-toxicological diagnosis of soil pollution has important theoretical and practical significance. Based on the research of eco-toxicological diagnosis of soil pollution, this paper introduced some common toxicological methods and indicators, with the advantages and disadvantages of various methods discussed. However, conventional biomarkers can only indicate the class of stress, but fail to explain the molecular mechanism of damage or response happened. Biomarkers and molecular diagnostic techniques, which are used to evaluate toxicity of contaminated soil, can explore deeply detoxification mechanisms of organisms under exogenous stress. In this paper, these biomarkers and techniques were introduced systematically, and the future research trends were prospected.
Weir, Scott M; Yu, Shuangying; Talent, Larry G; Maul, Jonathan D; Anderson, Todd A; Salice, Christopher J
2015-08-01
Reptiles have been understudied in ecotoxicology, which limits consideration in ecological risk assessments. The goals of the present study were 3-fold: to improve oral and dermal dosing methodologies for reptiles, to generate reptile toxicity data for pesticides, and to correlate reptile and avian toxicity. The authors first assessed the toxicity of different dosing vehicles: 100 μL of water, propylene glycol, and acetone were not toxic. The authors then assessed the oral and dermal toxicity of 4 pesticides following the up-and-down procedure. Neither brodifacoum nor chlorothalonil caused mortality at doses ≤ 1750 μg/g. Under the "neat pesticide" oral exposure, endosulfan (median lethal dose [LD50] = 9.8 μg/g) was more toxic than λ-cyhalothrin (LD50 = 916.5 μg/g). Neither chemical was toxic via dermal exposure. An acetone dosing vehicle increased λ-cyhalothrin toxicity (oral LD50 = 9.8 μg/g; dermal LD50 = 17.5 μg/g), but not endosulfan. Finally, changes in dosing method and husbandry significantly increased dermal λ-cyhalothrin LD50s, which highlights the importance of standardized methods. The authors combined data from the present study with other reptile LD50s to correlate with available avian data. When only definitive LD50s were used in the analysis, a strong correlation was found between avian and reptile toxicity. The results suggest it is possible to build predictive relationships between avian and reptile LD50s. More research is needed, however, to understand trends associated with chemical classes and modes of action. © 2015 SETAC.
The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...
tThe mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity andas an alternative to chemical class-based predictive toxicity modeling. However, the development ofquantitative structure activity relationship (QSAR) and other models has been limite...
Chemotherapy induced toxicity is highly heritable in Drosophila melanogaster
Kislukhin, Galina; Murphy, Maura L.; Jafari, Mahtab; Long, Anthony D.
2012-01-01
Objectives Identifying the genes responsible for chemotherapy toxicity in Drosophila melanogaster may allow for the identification of human orthologs that similarly mediate toxicity in humans. In order to develop Drosophila melanogaster as a model of dissecting chemotoxicity, we first need to develop standardized high throughput toxicity assays and prove that inter-individual variation in toxicity as measured by such assays is highly heritable. Methods We developed a method for the oral delivery of commonly used chemotherapy drugs to Drosophila. Post-treatment female fecundity displayed a dose dependent response to varying levels of the chemotherapy drug delivered. We fixed the dose for each drug at a level that resulted in a 50% reduction in fecundity and used a paternal half-sibling heritability design to calculate the heritability attributable to chemotherapy toxicity assayed via a decrease in female fecundity. Chemotherapy agents tested were carboplatin, floxuridine, gemcitabine hydrochloride, methotrexate, mitomycin C, and topotecan hydrochloride. Results We found that six currently widely prescribed chemotherapeutic agents lowered fecundity in D. melanogaster in both a dose dependent and highly heritable manner. The following heritability estimates were found: carboplatin – 0.72, floxuridine – 0.52, gemcitabine hydrochloride – 0.72, methotrexate – 0.99, mitomycin C – 0.64, and topotecan hydrochloride – 0.63. Conclusions The high heritability estimates observed in this study, irrespective of the particular class of drug examined, suggest that human toxicity may also have a sizable genetic component. PMID:22336958
Pharmacogenomics of antimicrobial agents
Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J
2015-01-01
Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use. PMID:25495412
USDA-ARS?s Scientific Manuscript database
Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...
During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and ...
During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and ...
USDA-ARS?s Scientific Manuscript database
Imidacloprid is the most widely used insecticide in agricultural. In this study, we used both feeding and spraying methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equa...
Katsnelson, Boris A; Panov, Vladimir G; Minigaliyeva, Ilzira A; Varaksin, Anatoly N; Privalova, Larisa I; Slyshkina, Tatyana V; Grebenkina, Svetlana V
2015-08-06
For characterizing the three-factorial toxicity, we proposed a new health risk-oriented approach, the gist of which is a classification of effects depending on whether a binary combined toxicity's type remains virtually the same or appears to be either more or less adverse when modeled against the background of a third toxic. To explore possibilities of this approach, we used results of an experiment in which rats had been injected ip 3 times a week (up to 20 injections) with a water solution of either one of the toxics (Mn, Ni or Cr-VI salts) in a dose equivalent to 0.05 LD50, or any two of them, or all the three in the same doses, the controls receiving injections of the same volume of distilled water (4mL per rat). Judging by more than 30 indices for the organism's status, all exposures caused subchronic intoxication of mild to moderate strength. For each two-factorial exposure, we found by mathematical modeling based on the isobolograms that the binary combined subchronic toxicity either was of additive type or departed from it (predominantly toward subadditivity) depending on the effect assessed, dose, and effect level. For the three-factorial combination, different classes of effects were observed rather consistently: class A - those regarding which the third toxic's addition made the binary toxicity type more unfavorable for the organism, class B - those regarding which the result was opposite, and class C - those regarding which the type of binary combined toxicity on the background of a third toxic virtually remained the same as in its absence. We found a complicated reciprocal influence of combined metals on their retention in kidneys, liver, spleen and brain which might presumably be one of the possible mechanisms of combined toxicity, but the lack of an explicit correspondence between the above influence and the influence on toxicity effects suggests that this mechanism is not always the most important one. The relevance of the proposed classification to health risk analysis and management is briefly discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthei, J.H.; Heitkamp, D.H.; Buettner, L.C.
1992-07-01
The acute percutaneous (bare skin) LD50 was determined for EA 2192 in the rabbit. Also established were the effective doses (ED50s) for the major toxic signs observed. Dermal, Department of Transportation (DOT), tests with rabbits indicated that VX/HTH decontaminated waste is a Class B poison after being aged only 24 hr following initiation of the decontamination procedure. The same reaction, when allowed to age through about 2 half-lives (28-30 days), was no longer a Class B poison and was nonhazardous by Code of Maryland Regulations (COMAR) toxicity criteria. The DOT tests with OXONE decontaminated/neutralized VX showed this solution to bemore » less than a Class B poison by all three routes of administration (rat oral, rat inhalation, and rabbit dermal) after only 24-hr aging and a nonhazardous material by COMAR toxicity criteria.... vx, Rat, Half-life, ED50, EA 2192, Rabbit, COMAR, Decontaminated/Neutralized, HTH, OXONE, LD50.« less
Synthetic Developments of Nontoxic Quantum Dots.
Das, Adita; Snee, Preston T
2016-03-03
Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SYNOPSIS OF DISCUSSION SESSION ON PHYSICOCHEMICAL FACTORS AFFECTING TOXICITY
This paper documents the workshop discussion regarding the role of these factors in altering toxicity. or each factor, the nature, magnitude, and uncertainty of its empirical relation to the toxicity of various chemicals or chemical classes is discussed. limitations in the empiri...
ASSESSING RISKS FROM PHOTOACTIVATED TOXICITY OF PAHS TO AQUATIC ORGANISMS
Polycyclic aromatic hydrocarbons (PAHs) are one of the most ubiquitous classes of environmental contaminants. Although most PAHs are toxic only at concentrations large enough to cause narcosis, the toxicity of some can be greatly enhanced through mechanisms that involve molecul...
EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING
A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic c...
Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of approaches
The mode of toxic action (MOA) is recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, MOA classification has never been standardized in ecotoxicology, and a comprehensive comparison of classific...
Analytical methods in environmental effects-directed investigations of effluents.
Hewitt, L Mark; Marvin, Chris H
2005-05-01
Effluent discharges are released into aquatic environments as complex mixtures for which there is commonly either no knowledge of the toxic components or a lack of understanding of how known toxicants interact with other effluent components. Effects-directed investigations consist of chemical extraction and iterative fractionation steps directed by a biological endpoint that is designed to permit the identification or characterization of the chemical classes or compounds in a complex mixture responsible for the observed biological activity. Our review of the literature on effects-directed analyses of effluents for non-mutagenic as well as mutagenic endpoints showed that common extraction and concentration methods have been used. Since the mid-1980s, the methods have evolved from the use of XAD resins to C18 solid-phase extraction (SPE). Blue cotton, blue rayon, and blue chitin have been used specifically for investigations of mutagenic activity where polycyclic compounds were involved or suspected. After isolation, subsequent fractionations have been accomplished using SPE or a high-pressure liquid chromatography (HPLC) system commonly fitted with a C18 reverse-phase column. Substances in active fractions are characterized by gas chromatography/mass spectrometry (GC-MS) and/or other spectrometric techniques for identification. LC-MS methods have been developed for difficult-to-analyze polar substances identified from effects-directed studies, but the potential for LC-MS to identify unknown polar compounds has yet to be fully realized. Salmonella-based assays (some miniaturized) have been coupled with fractionation methods for most studies aimed at identifying mutagenic fractions and chemical classes in mixtures. Effects-directed investigations of mutagens have focused mostly on drinking water and sewage, whereas extensive investigations of non-mutagenic effects have also included runoff, pesticides, and pulp mill effluents. The success of effects-directed investigations should be based on a realistic initial objective of each project. Identification of chemical classes associated with the measured biological endpoint is frequently achievable; however, confirmation of individual compounds is much more difficult and not always a necessary goal of effects-directed chemical analysis.
NASA Astrophysics Data System (ADS)
Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.
2005-05-01
A reactive chromophore developed at MIT exhibits sensitive and selective detection of surrogates for G-class nerve agents. This reporter acts by reacting with the agent to form an intermediate that goes through an internal cyclization reaction. The reaction locks the molecule into a form that provides a strong fluorescent signal. Using a fluorescent sensor platform, Nomadics has demonstrated rapid and sensitive detection of reactive simulants such as diethyl chloro-phosphate (simulant for sarin, soman, and related agents) and diethyl cyanophosphate (simulant for tabun). Since the unreacted chromophore does not fluoresce at the excitation wavelength used for the cyclized reporter, the onset of fluo-rescence can be easily detected. This fluorescence-based detection method provides very high sensitivity and could enable rapid detection at permissible exposure levels. Tests with potential interferents show that the reporter is very selective, with responses from only a few highly toxic, electrophilic chemicals such as phosgene, thionyl chloride, and strong acids such as HF, HCl, and nitric acid. Dimethyl methyl phosphonate (DMMP), a common and inactive simu-lant for other CW detectors, is not reactive enough to generate a signal. The unique selectivity to chemical reactivity means that a highly toxic and hazardous chemical is present when the reporter responds and illustrates that this sensor can provide very low false alarm rates. Current efforts focus on demonstrating the sensitivity and range of agents and toxic industrial chemicals detected with this reporter as well as developing additional fluorescent reporters for a range of chemical reactivity classes. The goal is to produce a hand-held sensor that can sensitively detect a broad range of chemical warfare agent and toxic industrial chemical threats.
Toxic Wastes: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
It is common to think of toxic wastes as chemical poisons like lead, mercury, or radioactive waste. Poisonous as these substances may be, there is another class of toxic wastes that are far more poisonous. These are the wastes produced by living bacteria and viruses. This booklet considers three aspects of toxic wastes: time, space, and spirit.…
NASA Astrophysics Data System (ADS)
Jain, Sankalp; Kotsampasakou, Eleni; Ecker, Gerhard F.
2018-05-01
Cheminformatics datasets used in classification problems, especially those related to biological or physicochemical properties, are often imbalanced. This presents a major challenge in development of in silico prediction models, as the traditional machine learning algorithms are known to work best on balanced datasets. The class imbalance introduces a bias in the performance of these algorithms due to their preference towards the majority class. Here, we present a comparison of the performance of seven different meta-classifiers for their ability to handle imbalanced datasets, whereby Random Forest is used as base-classifier. Four different datasets that are directly (cholestasis) or indirectly (via inhibition of organic anion transporting polypeptide 1B1 and 1B3) related to liver toxicity were chosen for this purpose. The imbalance ratio in these datasets ranges between 4:1 and 20:1 for negative and positive classes, respectively. Three different sets of molecular descriptors for model development were used, and their performance was assessed in 10-fold cross-validation and on an independent validation set. Stratified bagging, MetaCost and CostSensitiveClassifier were found to be the best performing among all the methods. While MetaCost and CostSensitiveClassifier provided better sensitivity values, Stratified Bagging resulted in high balanced accuracies.
NASA Astrophysics Data System (ADS)
Jain, Sankalp; Kotsampasakou, Eleni; Ecker, Gerhard F.
2018-04-01
Cheminformatics datasets used in classification problems, especially those related to biological or physicochemical properties, are often imbalanced. This presents a major challenge in development of in silico prediction models, as the traditional machine learning algorithms are known to work best on balanced datasets. The class imbalance introduces a bias in the performance of these algorithms due to their preference towards the majority class. Here, we present a comparison of the performance of seven different meta-classifiers for their ability to handle imbalanced datasets, whereby Random Forest is used as base-classifier. Four different datasets that are directly (cholestasis) or indirectly (via inhibition of organic anion transporting polypeptide 1B1 and 1B3) related to liver toxicity were chosen for this purpose. The imbalance ratio in these datasets ranges between 4:1 and 20:1 for negative and positive classes, respectively. Three different sets of molecular descriptors for model development were used, and their performance was assessed in 10-fold cross-validation and on an independent validation set. Stratified bagging, MetaCost and CostSensitiveClassifier were found to be the best performing among all the methods. While MetaCost and CostSensitiveClassifier provided better sensitivity values, Stratified Bagging resulted in high balanced accuracies.
Grant, Sharon; Schacht, Veronika J; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline
2016-03-15
Freely dissolved aqueous concentration and chemical activity are important determinants of contaminant transport, fate, and toxic potential. Both parameters are commonly quantified using Solid Phase Micro-Extraction (SPME) based on a sorptive polymer such as polydimethylsiloxane (PDMS). This method requires the PDMS-water partition constants, KPDMSw, or activity coefficient to be known. For superhydrophobic contaminants (log KOW >6), application of existing methods to measure these parameters is challenging, and independent measures to validate KPDMSw values would be beneficial. We developed a simple, rapid method to directly measure PDMS solubilities of solid contaminants, SPDMS(S), which together with literature thermodynamic properties was then used to estimate KPDMSw and activity coefficients in PDMS. PDMS solubility for the test compounds (log KOW 7.2-8.3) ranged over 3 orders of magnitude (4.1-5700 μM), and was dependent on compound class. For polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), solubility-derived KPDMSw increased linearly with hydrophobicity, consistent with trends previously reported for less chlorinated congeners. In contrast, subcooled liquid PDMS solubilities, SPDMS(L), were approximately constant within a compound class. SPDMS(S) and KPDMSw can therefore be predicted for a compound class with reasonable robustness based solely on the class-specific SPDMS(L) and a particular congener's entropy of fusion, melting point, and aqueous solubility.
EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING: A COMPREHENSIVE REVIEW
A detailed literature search was performed to collect and collate available data reporting emissions of organic air toxics from open burning sources. Availability of data varied according to the source and the class of air toxics of interest, and there were several sources for wh...
In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In the whole sediment Phase I TIEs performed so far, organic chemicals have been shown to be t...
Chinese hamster ovary cells were exposed to 29 toxic chemical substances which were representative of several classes of compounds listed by the Natural Resources Defense Council Consent Decree as priority toxic pollutants. After cell cultures were exposed to the test substance, ...
Biodegradation of Phenolic Contaminants: Current Status and Perspectives
NASA Astrophysics Data System (ADS)
Zhao, Lin; Wu, Qi; Ma, Aijin
2018-01-01
Phenolic compounds, a class of toxic pollutants in water, come mainly from a variety of industrial processes. The industrial application for biodegradation has become an important topic in recent years. In this review, we discuss the present situation, properties, and pollution characteristics of phenolic contaminants, factors affecting the degradation of phenols, microbial species and biodegradation methods. The challenges and opportunities in developing biodegradation processes of phenolic contaminants are also discussed.
Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna
2009-06-01
The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (< or =10%, class-I) and moderately (10< d < or =30 %, class-II), highly (30< d < or =50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.
Analysis, Occurrence and Toxicity of Haloacetaldehydes in ...
Chlorinated and brominated haloacetaldehydes (HALs) are consideredthe 3rd largest class of disinfection by-products (DBPs) by weight. The iodinatedHAL, iodoacetaldehyde, has been recently reported as an emerging DBP infinished drinking waters. Overall, iodinated DBPs, e.g., iodoacetic acids,iodoacetamides, and iodonitriles, are among the most genotoxic of all DBPsidentified. In this context, this chapter reviews the analytical methods available todate to determine HALs in water, and the concentrations at which they are presentin finished drinking waters. Since systematic toxicological effects have been onlyinvestigated for selected chloro- and bromo- HALs, a comparative study of thegenotoxicity and cytotoxicity of this DBP class to mammalian ce11s is alsopresented. This research is part of the Safe and Sustainable Water Research (SSWR) Program, specifically SSWR 2.2.D, which focuses on water contaminants. Haloacetaldehydes are an important class of emerging (non-regulated), disinfection byproducts. Haloacetaldehydes were the third largest disinfection byproduct class by weight in a U.S. Nationwide DBP Occurrence Study. Why was this study done? This study was done because a) improved analytical methods are needed for the haloacetaldehyde disinfection byproducts; b) occurrence data in drinking water are needed; and c) in vitro toxicology data on the class (iodo-, bromo, chloro-) of the haloacetaldehydes are lacking. What is the impact to the scientific field in ge
Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
Nendza, Monika; Wenzel, Andrea
2006-05-01
Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in-vitro data). Functional similarity of chemical substances is defined in terms of their (eco)toxicity profiles. Within each MOA class, the compounds share some properties related to the rate-limiting interactions, e.g., steric fit to the target site and/or reactivity with target biomolecules, revealing a specific pattern (fingerprint) of characteristic effects. The successful discrimination of toxicant classes by MOA is based on comprehensive characterization of test chemicals' properties related to interactions with target sites. The suite of aquatic in-vivo tests using fish, daphnids, algae and bacteria covers most acute effects, whilst long-term (latent) impacts are generally neglected. With the MOA-specific in-vitro test battery such distinctions are futile, because it focuses on isolated targets, i.e. it indicates the possible targets of a chemical regardless of the timescale of effects. The data analysis indicates that the in-vitro battery covers most effects in vivo and moreover provides additional aspects of the compounds' MOA. Translating in-vitro effects to in-vivo toxicity requires combining physiological and chemical knowledge about underlying processes. Comparison of the specific in-vitro effects of a compound with the respective sensitivities of aquatic organisms indicates particularly sensitive species. Classifications of toxicants by MOA based on physicochemical descriptors provides insight to interactions and directs to mechanistic QSARs.
Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans.
Parrella, Alfredo; Lavorgna, Margherita; Criscuolo, Emma; Russo, Chiara; Fiumano, Vittorio; Isidori, Marina
2014-11-01
The growing use of cytostatic drugs is gaining relevance as an environmental concern. Environmental and distribution studies are increasing due to the development of accurate analytical methods, whereas ecotoxicological studies are still lacking. The aim of the present study was to investigate the acute and chronic toxicity of six cytostatics (5-fluorouracil, capecitabine, cisplatin, doxorubicin, etoposide, and imatinib) belonging to five classes of Anatomical Therapeutic Classification (ATC) on primary consumers of the aquatic chain (Daphnia magna, Ceriodaphnia dubia, Brachionus calyciflorus, and Thamnocephalus platyurus). Acute ecotoxicological effects occurred at concentrations in the order of mgL(-)(1), higher than those predicted in the environment, and the most acutely toxic drugs among those tested were cisplatin and doxorubicin for most aquatic organisms. For chronic toxicity, cisplatin and 5-fluorouracil showed the highest toxic potential in all test organisms, inducing 50% reproduction inhibition in crustaceans at concentrations on the order of μgL(-)(1). Rotifers were less susceptible to these pharmaceuticals. On the basis of chronic results, the low effective concentrations suggest a potential environmental risk of cytostatics. Thus, this study could be an important starting point for establishing the real environmental impact of these substances. Copyright © 2014 Elsevier Ltd. All rights reserved.
Best practices for developmental toxicity assessment for classification and labeling.
Daston, George; Piersma, Aldert; Attias, Leonello; Beekhuijzen, Manon; Chen, Connie; Foreman, Jennifer; Hallmark, Nina; Leconte, Isabelle
2018-05-14
Many chemicals are going through a hazard-based classification and labeling process in Europe. Because of the significant public health implications, the best science must be applied in assessing developmental toxicity data. The European Teratology Society and Health and Environmental Sciences Institute co-organized a workshop to consider best practices, including data quality and consistency, interpretation of developmental effects in the presence of maternal toxicity, human relevance of animal data, and limits of chemical classes. Recommendations included larger historical control databases, more pharmacokinetic studies in pregnant animals for dose setting and study interpretation, generation of mechanistic data to resolve questions about whether maternal toxicity is causative of developmental toxicity, and more rigorous specifications for what constitutes a chemical class. It is our hope that these recommendations will form the basis for subsequent consensus workshops and other scientific activities designed to improve the scientific robustness of data interpretation for classification and labeling. Copyright © 2018 Elsevier Inc. All rights reserved.
Gutreuter, S.; Boogaard, M.A.
2007-01-01
Predictors of the percentile lethal/effective concentration/dose are commonly used measures of efficacy and toxicity. Typically such quantal-response predictors (e.g., the exposure required to kill 50% of some population) are estimated from simple bioassays wherein organisms are exposed to a gradient of several concentrations of a single agent. The toxicity of an agent may be influenced by auxiliary covariates, however, and more complicated experimental designs may introduce multiple variance components. Prediction methods lag examples of those cases. A conventional two-stage approach consists of multiple bivariate predictions of, say, medial lethal concentration followed by regression of those predictions on the auxiliary covariates. We propose a more effective and parsimonious class of generalized nonlinear mixed-effects models for prediction of lethal/effective dose/concentration from auxiliary covariates. We demonstrate examples using data from a study regarding the effects of pH and additions of variable quantities 2???,5???-dichloro-4???- nitrosalicylanilide (niclosamide) on the toxicity of 3-trifluoromethyl-4- nitrophenol to larval sea lamprey (Petromyzon marinus). The new models yielded unbiased predictions and root-mean-squared errors (RMSEs) of prediction for the exposure required to kill 50 and 99.9% of some population that were 29 to 82% smaller, respectively, than those from the conventional two-stage procedure. The model class is flexible and easily implemented using commonly available software. ?? 2007 SETAC.
A mortality index for postmarketing surveillance of new medications.
Rose, J C; Unis, A S
2000-03-01
The rate of introduction of new pharmaceuticals is growing as a result of advances in molecular pharmacology and targeted drug development. The Fatal Toxicity Index (FTI) has been proposed as a means for monitoring drug toxicity through post-marketing surveillance. The FTI requires data regarding the general availability of a particular agent in the community which, in the US, is proprietary. The authors propose a Mortality Index as an alternative method for calculating relative lethality that does not rely on proprietary information for postmarketing surveillance. Using data from the Toxic Exposure Surveillance System (TESS) a Mortality Index was calculated from the proportion of deaths occurring among all patients who present to a health care facility with an overdose on the same agent or class of agents. The average Mortality Index for various drugs or drug classes for the years 1989 to 1997 is reported. Because the Mortality Index for desipramine appeared much greater than that for the other tricyclics, a chi-squared analysis was performed. The authors conclude, based on this analysis, that desipramine is significantly more likely to lead to death after overdosage than any other tricyclic antidepressant in the study. Also, the Mortality Index appeared to identify the impact of pediatric formulations on overdose lethality. We conclude that the Mortality Index may be a useful tool for determining the safety of agents during the postmarketing surveillance phase.
White, Jonah
2011-01-01
Objectives. Few studies have considered the sociohistorical intersection of environmental injustice and gentrification; a gap addressed by this case study of Seattle, Washington. This study explored the advantages of integrating air toxic risk screening with gentrification research to enhance proximity and health equity analysis methodologies. It was hypothesized that Seattle's industrial air toxic exposure risk was unevenly dispersed, that gentrification stratified the city's neighborhoods, and that the inequities of both converged. Methods. Spatial characterizations of air toxic pollution risk exposures from 1990 to 2007 were combined with longitudinal cluster analysis of census block groups in Seattle, Washington, from 1990 to 2000. Results. A cluster of air toxic exposure inequality and socioeconomic inequity converged in 1 area of south central Seattle. Minority and working class residents were more concentrated in the same neighborhoods near Seattle's worst industrial pollution risks. Conclusions. Not all pollution was distributed equally in a dynamic urban landscape. Using techniques to examine skewed riskscapes and socioeconomic urban geographies provided a foundation for future research on the connections among environmental health hazard sources, socially vulnerable neighborhoods, and health inequity. PMID:21836115
Chedik, Lisa; Mias-Lucquin, Dominique; Bruyere, Arnaud; Fardel, Olivier
2017-06-30
Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides ( n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines ( n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds ( n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects.
Chedik, Lisa; Mias-Lucquin, Dominique; Bruyere, Arnaud; Fardel, Olivier
2017-01-01
Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides (n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines (n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds (n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects. PMID:28665355
Collins, Timothy W; Grineski, Sara E; Chakraborty, Jayajit; McDonald, Yolanda J
2011-01-01
This paper contributes to the environmental justice literature by analyzing contextually relevant and racial/ethnic group-specific variables in relation to air toxics cancer risks in a US-Mexico border metropolis at the census block group-level. Results indicate that Hispanics' ethnic status interacts with class, gender and age status to amplify disproportionate risk. In contrast, results indicate that non-Hispanic whiteness attenuates cancer risk disparities associated with class, gender and age status. Findings suggest that a system of white-Anglo privilege shapes the way in which race/ethnicity articulates with other dimensions of inequality to create unequal cancer risks from air toxics. Copyright © 2010 Elsevier Ltd. All rights reserved.
PERSISTENT, BIOACCUMULATIVE, AND TOXIC POLLUTANTS (PBTS)
Article describes the class of compounds known as persistent, bioaccumulative, and toxic pollutants (known as PBTs), including the mechanisms responsible for ability to build up the food chain and for causing adverse health effects and ecosystem damage. Exposure to numerous PBTs ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velec, Michael; Haddad, Carol R.; Craig, Tim
Purpose: To identify risk factors associated with a decline in liver function after stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma. Methods and Materials: Data were analyzed from patients with hepatocellular carcinoma treated on clinical trials of 6-fraction SBRT. Liver toxicity was defined as an increase in Child-Pugh (CP) score ≥2 three months after SBRT. Clinical factors, SBRT details, and liver dose-volume histogram (DVH) parameters were tested for association with toxicity using logistic regression. CP class B patients were analyzed separately. Results: Among CP class A patients, 101 were evaluable, with a baseline score of A5 (72%) or A6 (28%).more » Fifty-three percent had portal vein thrombus. The median liver volume was 1286 cc (range, 766-3967 cc), and the median prescribed dose was 36 Gy (range, 27-54 Gy). Toxicity was seen in 26 patients (26%). Thrombus, baseline CP of A6, and lower platelet count were associated with toxicity on univariate analysis, as were several liver DVH-based parameters. Absolute and spared liver volumes were not significant. On multivariate analysis for CP class A patients, significant associations were found for baseline CP score of A6 (odds ratio [OR], 4.85), lower platelet count (OR, 0.90; median, 108 × 10{sup 9}/L vs 150 × 10{sup 9}/L), higher mean liver dose (OR, 1.33; median, 16.9 Gy vs 14.7 Gy), and higher dose to 800 cc of liver (OR, 1.11; median, 14.3 Gy vs 6.0 Gy). With 13 CP-B7 patients included or when dose to 800 cc of liver was replaced with other DVH parameters (eg, dose to 700 or 900 cc of liver) in the multivariate analysis, effective volume and portal vein thrombus were associated with an increased risk. Conclusions: Baseline CP scores and higher liver doses (eg, mean dose, effective volume, doses to 700-900 cc) were strongly associated with liver function decline 3 months after SBRT. A lower baseline platelet count and portal vein thrombus were also associated with an increased risk.« less
Identifying Marine Copper-Binding Ligands in Seawater
NASA Astrophysics Data System (ADS)
Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.
2016-02-01
Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.
Meshref, Mohamed N A; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed
2017-11-15
The toxicological effects from all components in oil sands process-affected water (OSPW) are not known. Alternatively, monitoring the variations and abundance of different classes and compounds after treatments might be a useful approach in OSPW remediation. In this study, the variations in the compositions of classical and heteroatomic naphthenic acids (NAs) after treatment using advanced oxidation processes (AOPs), mainly ozone and peroxone, and two different mass spectrometry methods; ultra-performance liquid chromatography time-of-flight (UPLC-TOFMS) and Fourier transform ion cyclotron resonance (FTICR-MS), were examined. Two markers (O 2 S:O 3 S:O 4 S and O 2 :O 4 ratios) were used to reveal changes and similarities of the treated water characteristics with those in natural waters. Both ratios decreased after all treatments, from 2.7:4.8:2.1 and 3.59 in raw OSPW to 0:1.4:0.5 and 0.7, respectively, in peroxone (1:2), becoming close to the reported ratios in natural waters. Toxicity toward Vibrio fischeri showed residual toxic effects after AOPs, suggesting that part of OSPW toxicity may be caused by specific compounds of NAs (i.e., similar reduction (50%) was achieved in both toxicity and abundance in O 2 species with carbon 15-26) and/or generated by-products (e.g., O 3 S classes at double bond equivalent (DBE) = 4 and C 9 H 12 O 2 at DBE = 4). Although by-products were generated, the best biodegradability enhancement and chemical oxygen demand reduction were achieved in peroxone (1:2) compared to ozone, suggesting the possibility of using combined OSPW remediation approaches (i.e., peroxone coupled with biological process). The recommended indicators can assist in evaluating the treatments' performance and in examining the best removal levels to accomplish significant toxicity reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Han, Wenchao; Tian, Ying; Shen, Xiaoming
2018-02-01
Neonicotinoid insecticides have become the fastest growing class of insecticides over the past few decades. The insecticidal activity of neonicotinoids is attributed to their agonist action on nicotinic acetylcholine receptors (nAChRs). Because of the special selective action on nAChRs in central nervous system of insects, and versatility in application methods, neonicotinoids are used to protect crops and pets from insect attacks globally. Although neonicotinoids are considered low toxicity to mammals and humans in comparison with traditional insecticides, more and more studies show exposure to neonicotinoids pose potential risk to mammals and even humans. In recent years, neonicotinoids and their metabolites have been successfully detected in various human biological samples. Meanwhile, many studies have focused on the health effects of neonicotinoids on humans. Our aims here are to review studies on human neonicotinoid exposure levels, health effect, evaluation of potential toxicity and to suggest possible directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burotto, Mauricio; Ali, Syed Abbas; O'Sullivan Coyne, Geraldine
2015-01-01
The past decade has seen the development and widespread use of tyrosine kinase inhibitors (TKIs) targeting a mutated EGFR (mEGFR) for the treatment of metastatic NSCLC. We discuss the main properties of the TKIs currently recommended for the treatment of mEGFR NSCLC: gefitinib, erlotinib and afatinib. The mechanism of action, pharmacodynamics and pharmacokinetics of these drugs, with emphasis on the historical context of their preclinical and clinical development, will be covered, including potential resistance mechanisms to these first-generation TKIs that has driven the trial design for second and third generations of EGFR inhibitors. Six Phase III clinical trials comparing these three TKIs with cisplatin-based chemotherapy upfront for mEGFR NSCLC provide the basis for the comparative safety and toxicity analysis between these agents. Class-related toxicity of these EGFR inhibitors, including life-threatening effects, will be discussed. Toxicity and safety analysis from the Phase III trials of these agents in mEGFR populations suggests that afatinib has more frequent and severe side effects. Given that an efficacy advantage has not yet been demonstrated for afatinib over erlotinib and gefitinib, the consistent class toxicity profile of these agents means that gefitinib and erlotinib are a safer first-line treatment recommendation.
Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects.
Harik, Vasyl Michael
2017-05-05
A review of in vivo and in vitro toxicological studies of the potential toxic effects of carbon nanotubes is presented along with the analysis of experimental data and a hypothesis about the nanotube-asbestos similarity. Developments of the structure-activity paradigm have been reviewed along with the size effects and the classification of carbon nanotubes into eleven distinct classes (e.g., the high aspect ratio nanotubes, thick multi-wall nanotubes and short nanotubes). Scaling analysis of similarities between different classes of carbon nanotubes and asbestos fibers in the context of their potential toxicity and the efficiency of phagocytosis has been reviewed. The potential toxic effects of carbon nanotubes have been characterized by their normalized length, their aspect ratio and other parameters related to their inhalability, engulfment by macrophages and the effectiveness of phagocytosis. Geometric scaling parameters and the classification of carbon nanotubes are used to develop an updated parametric map for the extrapolation of the potential toxic effects resulting from the inhalation of long and short carbon nanotubes. An updated parametric map has been applied to the evaluation of the efficiency of phagocytosis involving distinct classes of carbon nanotubes. A critical value of an important nondimensional parameter characterizing the efficiency of phagocytosis for different nanotubes is presented along with its macrophage-based normalization. The present evaluation of the potential toxicological effects of the high aspect ratio carbon nanotubes is found to be in the agreement with other available studies and earlier scaling analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Macomber, Lee; Elsey, Scott P; Hausinger, Robert P
2011-12-01
Nickel is toxic to all forms of life, but the mechanisms of cell damage are unknown. Indeed, environmentally relevant nickel levels (8 µM) inhibit wild-type Escherichia coli growth on glucose minimal medium. The same concentration of nickel also inhibits growth on fructose, but not succinate, lactate or glycerol; these results suggest that fructose-1,6-bisphosphate aldolase (FbaA) is a target of nickel toxicity. Cells stressed by 8 µM Ni(II) for 20 min lost 75% of their FbaA activity, demonstrating that FbaA is inactivated during nickel stress. Furthermore, overexpression of fbaA restored growth of an rcnA mutant in glucose minimal medium supplemented with 4 µM Ni(II), thus confirming that FbaA is a primary target of nickel toxicity. This class II aldolase has an active site zinc and a non-catalytic zinc nearby. Purified FbaA lost 80 % of its activity within 2 min when challenged with 8 µM Ni(II). Nickel-challenged FbaA lost 0.8 zinc and gained 0.8 nickel per inactivated monomer. FbaA mutants (D144A and E174A) affecting the non-catalytic zinc were resistant to nickel inhibition. These results define the primary site of nickel toxicity in E. coli as the class II aldolase FbaA through binding to the non-catalytic zinc site. © 2011 Blackwell Publishing Ltd.
Loken, Barbara; Williams, Allison L.; Vitriol, Joseph; Stepanov, Irina; Hatsukami, Dorothy
2015-01-01
Introduction: Providing accurate information about the constituents in nicotine-containing products may help tobacco users make informed decisions about product choices. An experimental study examined a novel approach for presenting accurate constituent information about brands and types of smokeless tobacco (SLT) that could be understood by the general public. Methods: Participants were recruited through Amazon’s Mechanical Turk and presented information online about 2 constituent dimensions of SLT products—nicotine and/or toxicity (for simplicity, “toxicity” in this study refers to carcinogenic constituents) Participants completed measures of knowledge and tobacco health risks at 2 time points: before and after exposure to constituent information. Results: Participants were found to increase their knowledge that toxicity contributes to disease risk and nicotine contributes to addiction, that SLT products vary in their levels of nicotine and toxicity, and that both SLT and cigarette products have higher toxicity than medicinal nicotine replacement therapies (e.g., nicotine lozenges). Study results showed no differences when presenting toxicity information alone versus presenting it in conjunction with nicotine information, and found no misperceptions or confusions about the relative harmfulness of cigarettes, SLT, or nicotine replacement therapy. Conclusions: Providing tobacco constituent information to smokers and nonsmokers will improve their knowledge about the relative toxicity across products and variations within a class of tobacco products without compromising the health risks associated with tobacco use. PMID:25634934
Cadmium-containing quantum dots: properties, applications, and toxicity.
Mo, Dan; Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Yu, Zhigang; Huang, Zhenzhen; He, Kai; Zhang, Chen; Cheng, Min
2017-04-01
The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.
SURVEY OF HALONITROMETHANES AND IODOMETHANES: DISINFECTION BY-PRODUCTS IN DRINKING WATER
This project involves the study of two classes of chemicals, halonitromethanes and iodomethanes, which have been found to be drinking water disinfection by-products (DBPs). Both have been predicted to have toxicity. In toxicity screening tests, bromonitromethanes have been shown ...
Wang, Ying; Wang, Juying; Mu, Jingli; Wang, Zhen; Cong, Yi; Yao, Ziwei; Lin, Zhongsheng
2016-06-01
Polycyclic aromatic hydrocarbons (PAHs), a class of ubiquitous pollutants in marine environments, exhibit moderate to high adverse effects on aquatic organisms and humans. However, the lack of PAH toxicity data for aquatic organism has limited evaluation of their ecological risks. In the present study, aquatic predicted no-effect concentrations (PNECs) of 16 priority PAHs were derived based on species sensitivity distribution models, and their probabilistic ecological risks in seawater of Liaodong Bay, Bohai Sea, China, were assessed. A quantitative structure-activity relationship method was adopted to achieve the predicted chronic toxicity data for the PNEC derivation. Good agreement for aquatic PNECs of 8 PAHs based on predicted and experimental chronic toxicity data was observed (R(2) = 0.746), and the calculated PNECs ranged from 0.011 µg/L to 205.3 µg/L. A significant log-linear relationship also existed between the octanol-water partition coefficient and PNECs derived from experimental toxicity data (R(2) = 0.757). A similar order of ecological risks for the 16 PAH species in seawater of Liaodong Bay was found by probabilistic risk quotient and joint probability curve methods. The individual high ecological risk of benzo[a]pyrene, benzo[b]fluoranthene, and benz[a]anthracene needs to be determined. The combined ecological risk of PAHs in seawater of Liaodong Bay calculated by the joint probability curve method was 13.9%, indicating a high risk as a result of co-exposure to PAHs. Environ Toxicol Chem 2016;35:1587-1593. © 2015 SETAC. © 2015 SETAC.
Suzuki, Joji; Dekker, Michael A.; Valenti, Erin S.; Arbelo Cruz, Fabiola A.; Correa, Ady M.; Poklis, Justin L.; Poklis, Alphonse
2014-01-01
Objective A new class of synthetic hallucinogens called NBOMe has emerged as drugs of abuse. Our aim was to conduct a systematic review of published reports of toxicities associated with NBOMe ingestion. Methods We searched the PubMed for relevant English language citations that described adverse effects from analytically confirmed human NBOMe ingestion. Demographic and clinical data were extracted. Results Ten citations met criteria for inclusion, representing 20 individual patients. 25I-NBOMe was the most common analog identified, followed by 25B-NBOMe and 25C-NBOMe. Fatalities were reported in 3 (15%) cases. Seven (35%) were discharged after a period of observation, while 8 (40.0%) required admission to an intensive care unit. The most common adverse effects were agitation (85.0%), tachycardia (85.0%), and hypertension (65.0%). Seizures were reported in 8 (40.0%) patients. The most common laboratory abnormalities were elevated creatine kinase (45.0%), leukocytosis (25.0%), and hyperglycemia (20.0%). Conclusion NBOMe ingestion is associated with severe adverse effects. Clinicians need to have a high index of suspicion for NBOMe ingestion in patients reporting the recent use of hallucinogens. PMID:25659919
ASSESSING CONTAMINANT SENSITIVITY OF ENDANGERED AND THREATENED SPECIES: TOXICANT CLASSES
Under the Federal Insecticide, Fungicide and Rodenticide Act, the Toxic Substances Control Act and the Clean Water Act, the U.S. Environmental Protection Agency (EPA) is charged with determining if the manufacture, use, or disposal of a chemical will present an unreasonable risk ...
Mixed Phylogenetic Signal in Fish Toxicity Data across Chemical Classes
Chemical use in society is growing rapidly and is one of the five major pressures on biodiversity worldwide. Since empirical toxicity studies of pollutants generally focus on a handful of model organisms, reliable approaches are needed to assess sensitivity to chemicals across th...
Quantitative trait loci (QTL) analysis of PCB126 induced developmental toxicity in zebrafish
Polychlorinated dioxins and biphenyls are potent developmental toxicants which persist in the environment and pose risk to ecological and human health. Variation in susceptibility to this class of compounds has been demonstrated within and among several piscine, avian and mammali...
Endosulfan poisoning: An overview.
Menezes, Ritesh G; Qadir, Tooba Fatima; Moin, Ariba; Fatima, Huda; Hussain, Syed Ather; Madadin, Mohammed; Pasha, Syed Bilal; Al Rubaish, Fatima A; Senthilkumaran, S
2017-10-01
Endosulfan, an organochlorine (OC) insecticide, is a widely used agricultural pesticide, despite its life threatening toxic effects. In this review, the pharmacokinetics of endosulfan, mechanism of endosulfan toxicity, clinical presentations and management, histopathological findings, and toxicological analysis are described, in addition to its environmental toxicity. The toxic effects of endosulfan can affect many organs and systems presenting in a wide array of signs and symptoms. Although termed a restricted OC-classed pesticide, it continues to be used, especially in the developing world, owing to its beneficial effects on agriculture. Several cases of endosulfan poisoning have been reported from different regions of the world. Whether accidental or intentional, endosulfan ingestion proves to be fatal unless immediate, aggressive treatment is initiated. Management is mainly supportive as no antidote exists for endosulfan poisoning as yet. The use of endosulfan needs to be strictly regulated and eventually banned worldwide altogether to lower the current morbidity and mortality resulting from this pesticide. Additionally, monitoring biological samples, using non-invasive techniques such as breast milk sampling, can provide an effective method of observing the elimination of this environmentally persistent organic pollutant from the general population. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
An analysis of the use of dogs in predicting human toxicology and drug safety.
Bailey, Jarrod; Thew, Michelle; Balls, Michael
2013-11-01
Dogs remain the main non-rodent species in preclinical drug development. Despite the current dearth of new drug approvals and meagre pipelines, this continues, with little supportive evidence of its value or necessity. To estimate the evidential weight provided by canine data to the probability that a new drug may be toxic to humans, we have calculated Likelihood Ratios (LRs) for an extensive dataset of 2,366 drugs with both animal and human data, including tissue-level effects and Medical Dictionary for Regulatory Activities (MedDRA) Level 1-4 biomedical observations. The resulting LRs show that the absence of toxicity in dogs provides virtually no evidence that adverse drug reactions (ADRs) will also be absent in humans. While the LRs suggest that the presence of toxic effects in dogs can provide considerable evidential weight for a risk of potential ADRs in humans, this is highly inconsistent, varying by over two orders of magnitude for different classes of compounds and their effects. Our results therefore have important implications for the value of the dog in predicting human toxicity, and suggest that alternative methods are urgently required. 2013 FRAME.
Toxic Waste in Grand Banks. Lesson Plan.
ERIC Educational Resources Information Center
Litchka, Peter
"Toxic Waste in Grand Banks" is an assessment task in which students from a high school economics class investigate the issues of economic prosperity, environmental concerns, government intervention in the market economy, and responsible civic participation in solving community problems. Students will demonstrate an ability--both individually and…
NIH study uncovers new mechanism of action for class of chemotherapy drugs
NIH researchers have discovered a significant new mechanism of action for a class of chemotherapy drugs known as poly (ADP-ribose) polymerase inhibitors, or PARP inhibitors. They have also identified differences in the toxic capabilities of three drugs in
NASA Astrophysics Data System (ADS)
Castiglione, Steven Louis
As scientific research trends towards trace levels and smaller architectures, the analytical chemist is often faced with the challenge of quantitating said species in a variety of matricies. The challenge is heightened when the analytes prove to be potentially toxic or possess physical or chemical properties that make traditional analytical methods problematic. In such cases, the successful development of an acceptable quantitative method plays a critical role in the ability to further develop the species under study. This is particularly true for pharmaceutical impurities and nanoparticles (NP). The first portion of the research focuses on the development of a part-per-billion level HPLC method for a substituted phenazine-class pharmaceutical impurity. The development of this method was required due to the need for a rapid methodology to quantitatively determine levels of a potentially toxic phenazine moiety in order to ensure patient safety. As the synthetic pathway for the active ingredient was continuously refined to produce progressively lower amounts of the phenazine impurity, the approach for increasingly sensitive quantitative methods was required. The approaches evolved across four discrete methods, each employing a unique scheme for analyte detection. All developed methods were evaluated with regards to accuracy, precision and linear adherence as well as ancillary benefits and detriments -- e.g., one method in this evolution demonstrated the ability to resolve and detect other species from the phenazine class. The second portion of the research focuses on the development of an HPLC method for the quantitative determination of NP size distributions. The current methodology for the determination of NP sizes employs tunneling electron microscopy (TEM), which requires sample drying without particle size alteration and which, in many cases, may prove infeasible due to cost or availability. The feasibility of an HPLC method for NP size characterizations evolved across three methods, each employing a different approach for size resolution. These methods were evaluated primarily for sensitivity, which proved to be a substantial hurdle to further development, but does not appear to deter future research efforts.
Antibiotic-containing polymers for localized, sustained drug delivery
Stebbins, Nicholas D.; Ouimet, Michelle A.; Uhrich, Kathryn E.
2014-01-01
Many currently used antibiotics suffer from issues such as systemic toxicity, short half-life, and increased susceptibility to bacterial resistance. Although most antibiotic classes are administered systemically through oral or intravenous routes, a more efficient delivery system is needed. This review discusses the chemical conjugation of antibiotics to polymers, achieved by forming covalent bonds between antibiotics and a pre-existing polymer or by developing novel antibiotic-containing polymers. Through conjugating antibiotics to polymers, unique polymer properties can be taken advantage of. These polymeric antibiotics display controlled, sustained drug release and vary in antibiotic class type, synthetic method, polymer composition, bond lability, and antibacterial activity. The polymer synthesis, characterization, drug release, and antibacterial activities, if applicable, will be presented to offer a detailed overview of each system. PMID:24751888
In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...
Aromatic amines comprise an important class of environmental contaminants. Concern over their environmental fate arises from the toxic effects that certain aromatic amines exhibit toward microbial populations and reports that they can be toxic or carcinogenic to animals. Aromatic...
Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...
Synopsis of discussion session on physicochemical factors affecting toxicity
Erickson, R.J.; Bills, T.D.; Clark, J.R.; Hansen, D.J.; Knezovich, J.; Hamelink, J.L.; Landrum, P.F.; Bergman, H.L.; Benson, W.H.
1994-01-01
The paper documents the workshop discussion regarding the role of these factors in altering toxicity. For each factor, the nature, magnitude, and uncertainty of its empirical relation to the toxicity of various chemicals or chemical classes is discussed. Limitations in the empirical database regarding the variety of species and endpoints tested were addressed. Possible mechanisms underlying the empirical relations are identified. Finally, research needed to better understand these effects is identified.
NASA Astrophysics Data System (ADS)
Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun
2017-11-01
Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun
2017-10-12
Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc , and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
Moran, Patrick W.; Calhoun, Dan L.; Nowell, Lisa H.; Kemble, Nile E.; Ingersoll, Chris G.; Hladik, Michelle; Kuivila, Kathryn; Falcone, James A.; Gilliom, Robert J.
2012-01-01
This report presents data collected as a part of a synoptic survey of stream sediment contaminants, associated watershed characteristics and invertebrate responses in laboratory sediment toxicity tests from 98 streams (sites) in seven metropolitan study areas across the continental United States. The report presents methods, data, and sediment-quality guidelines, including the derivation of a new sediment pyrethroid probable effects concentration, for the purposes of relating measured contaminants to land use and toxicity evaluation. The study evaluated sites that ranged in their degree of relative urbanization within the study areas of Atlanta, Boston, Dallas-Fort Worth, Denver, Milwaukee-Green Bay, Salt Lake City, and Seattle-Tacoma. In all, 108 chemical analytes quantified in the study are presented, by class and number of individual compounds, as follows: polyaromatic hydrocarbons (PAHs) (28), organochlorine pesticides (OCs) (18), polychlorinated biphenyls (Aroclors) (3), pyrethroid insecticides (14), fipronil compounds (4), priority trace and other major elements (41). The potential of these sediments to cause toxicity to sediment-dwelling invertebrates was evaluated using two standard sediment toxicity tests: a 28-day growth and survival toxicity test with the amphipod Hyalella azteca, and a 10-day growth and survival toxicity test with the midge Chironomus dilutus. Further, approximately 95 relevant watershed and reach-level characteristics were generated and are presented to aid in interpretation and explanation of contaminant and toxicity patterns. Interpretation of the findings of this study, including the relationships with urbanization and other factors, the relationship between sediment toxicity and sediment chemistry in the seven study areas, and the sources and occurrence of pyrethroid insecticides, are discussed in detail in a forthcoming series of journal articles.
Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules.
Scholl, P; Diez, A; Mourad, W; Parsonnet, J; Geha, R S; Chatila, T
1989-01-01
Toxic shock syndrome toxin 1 (TSST-1) is a 22-kDa exotoxin produced by strains of Staphylococcus aureus and implicated in the pathogenesis of toxic shock syndrome. In common with other staphylococcal exotoxins, TSST-1 has diverse immunological effects. These include the induction of interleukin 2 receptor expression, interleukin 2 synthesis, proliferation of human T lymphocytes, and stimulation of interleukin 1 synthesis by human monocytes. In the present study, we demonstrate that TSST-1 binds with saturation kinetics and with a dissociation constant of 17-43 nM to a single class of binding sites on human mononuclear cells. There was a strong correlation between the number of TSST-1 binding sites and the expression of major histocompatibility complex class II molecules, and interferon-gamma induced the expression of class II molecules as well as TSST-1 binding sites on human skin-derived fibroblasts. Monoclonal antibodies to HLA-DR, but not to HLA-DP or HLA-DQ, strongly inhibited TSST-1 binding. Affinity chromatography of 125I-labeled cell membranes over TSST-1-agarose resulted in the recovery of two bands of 35 kDa and 31 kDa that comigrated, respectively, with the alpha and beta chains of HLA-DR and that could be immunoprecipitated with anti-HLA-DR monoclonal antibodies. Binding of TSST-1 was demonstrated to HLA-DR and HLA-DQ L-cell transfectants. These results indicate that major histocompatibility complex class II molecules represent the major binding site for TSST-1 on human cells. Images PMID:2542966
Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing
2017-02-15
Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Prabhakar, V.; Jayakrishnan, G.; Nair, S. V.; Ranganathan, B.
2013-01-01
The characterization and classification of smokeless tobacco products has been a continuously evolving process. This is based on a number of different parameters like nicotine content, moisture content, amount of heavy metals, pH, and in vitro cytotoxicity assays. Their contexts often vary between countries, research institutions, and legal requirements. The categorisation of these products is quite challenging due to the diffused sample sizes, diverse array of branded products on offer, and the absence of a centralized manufacturing facility. This study aims at a systematic classification of 10 smokeless tobacco product samples from the retail market based on their potential toxicity upon long-term use. The estimation of potential toxicity follows a well-established method that employs the concentration of toxic metals in the different samples. The potential toxicity as well as heavy metal concentrations of the smokeless tobacco products analysed was found to be much higher than acceptable limits. For instance, the levels of lead, cadmium, copper and zinc of 2.5, 1, 4 and 23 ppm, respectively, are well above their recommended limits. The results from the study indicate that chronic use of smokeless tobacco products is a significant health risk, especially in the vulnerable population. Further studies of this nature will help establish a toxicological fingerprint on the diverse class of products that floods the market now. PMID:24082341
Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry
Gavin, Terrence
2012-01-01
Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388
Expanding Transition: Redefining School Readiness in Response to Toxic Stress
ERIC Educational Resources Information Center
Sigler, Maureen Kay
2016-01-01
Early childhood interventions such as home visiting and kindergarten preparation programs can mitigate the effects of toxic stress and equip children with the skills and support needed for a successful transition into school. In this article, the author discusses her interaction with a student in her third-grade class who was not successfully…
Fiorenzano, Jodi M.; Koehler, Philip G.; Xue, Rui-De
2017-01-01
Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB. PMID:28394284
Fiorenzano, Jodi M; Koehler, Philip G; Xue, Rui-De
2017-04-10
Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB.
Decaleside: a new class of natural insecticide targeting tarsal gustatory sites
NASA Astrophysics Data System (ADS)
Rajashekar, Yallappa; Rao, Lingamallu J. M.; Shivanandappa, Thimmappa
2012-10-01
Natural sources for novel insecticide molecules hold promise in view of their eco-friendly nature, selectivity, and mammalian safety. Recent progress in understanding the biology of insect olfaction and taste offers new strategies for developing selective pest control agents. We have isolated two natural insecticidal molecules from edible roots of Decalepis hamiltonii named Decalesides I and II, which are novel trisaccharides, highly toxic to household insect pests and stored-product insects. We have experimentally shown that insecticidal activity requires contact with tarsi on the legs but is not toxic orally. The insecticidal activity of molecules is lost by hydrolysis, and various sugars modify toxic response, showing that the insecticidal activity is via gustatory sites on the tarsi. Selective toxicity to insects by virtue of their gustatory site of action and the mammalian safety of the new insecticides is inherent in their chemical structure with 1-4 or 1-1 α linkage that is easily hydrolyzed by digestive enzymes of mammals. Decalesides represent a new chemical class of natural insecticides with a unique mode of action targeting tarsal chemosensory/gustatory system of insects.
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs
2016-01-01
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages. PMID:27074285
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.
Wagner, Jeffrey R; Lee, Christopher T; Durrant, Jacob D; Malmstrom, Robert D; Feher, Victoria A; Amaro, Rommie E
2016-06-08
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.
Undergraduate Organic Chemistry Laboratory Safety
NASA Astrophysics Data System (ADS)
Luckenbaugh, Raymond W.
1996-11-01
Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.
Suicide by pesticide poisoning: findings from the island of Crete, Greece.
Kastanaki, Anastasia E; Kraniotis, Christos F; Kranioti, Elena F; Nathena, Despoina; Theodorakis, Pavlos N; Michalodimitrakis, Manolis
2010-01-01
The role of pesticides in suicidal acts has not yet received adequate attention in Greece despite an evident rise of 39% in pesticide use over the period 1990-1992 to 2002-2004. To investigate the epidemiology of pesticide suicide on the Greek island of Crete, a largely rural agricultural area, and by further exploring the victim profiles, as well as patterns and trends of pesticide ingestion, to suggest probable preventive measures. Self-poisoning suicides between 1999 and 2007 were reviewed and information gathered was entered into a computerized database. The overall incidence of intentional pesticide poisoning was 1.7 per 100,000, representing the second most frequently used suicide method after hanging. The victim profile was composed of the following features: middle aged male, rural habitant, who carried out a suicidal act by consuming primarily methomyl or paraquat (WHO toxicity class Ib and class II, respectively). As to the place of death, the vast majority was found dead in the place of intoxication. Pesticide self-poisoning accounts for a quarter of the suicides in Crete. More detailed research is required to identify aspects of these deaths amenable to prevention, but measures such as bans on the most toxic pesticides and changes in storage practice would appear to be sensible initial approaches.
A Critical Review of Mode of Action (MOA) Assignment ...
There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human health toxicology. With increasing calls to assess thousands of chemicals, some of which have little available information other than structure, clear understanding how each of these MOA schemes was devised, what information they are based on, and the limitations of each approach is critical. Several groups are developing low-tier methods to more easily classify or assess chemicals, using approaches such as the ecological threshold of concern (eco-TTC) and chemical-activity. Evaluation of these approaches and determination of their domain of applicability is partly dependent on the MOA classification that is used. The most commonly used MOA classification schemes for ecotoxicology include Verhaar and Russom (included in ASTER), both of which are used to predict acute aquatic toxicity MOA. Verhaar is a QSAR-based system that classifies chemicals into one of 4 classes, with a 5th class specified for those chemicals that are not classified in the other 4. ASTER/Russom includes 8 classifications: narcotics (3 groups), oxidative phosphorylation uncouplers, respiratory inhibitors, electrophiles/proelectrophiles, AChE inhibitors, or CNS seizure agents. Other methodologies include TEST (Toxicity Estimation Software Tool), a computational chemistry-based application that allows prediction to one of 5 broad MOA
Addressing the selectivity and toxicity of antiviral nucleosides.
Feng, Joy Y
2018-01-01
Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV, HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations for assessing toxicity liability before entering animal toxicity studies.
Pryor, Joseph B; Harper, Bryan J; Harper, Stacey L
2014-01-01
Dendrimers are well-defined, polymeric nanomaterials currently being investigated for biomedical applications such as medical imaging, gene therapy, and tissue targeted therapy. Initially, higher generation (size) dendrimers were of interest because of their drug carrying capacity. However, increased generation was associated with increased toxicity. The majority of studies exploring dendrimer toxicity have focused on a small range of materials using cell culture methods, with few studies investigating the toxicity across a wide range of materials in vivo. The objective of the present study was to investigate the role of surface charge and generation in dendrimer toxicity using embryonic zebrafish (Danio rerio) as a model vertebrate. Due to the generational and charge effects observed at the cellular level, higher generation cationic dendrimers were hypothesized to be more toxic than lower generation anionic or neutral dendrimers with the same core composition. Polyamidoamine (PAMAM) dendrimers elicited significant morbidity and mortality as generation was decreased. No significant adverse effects were observed from the suite of thiophosphoryl dendrimers studied. Exposure to ≥50 ppm cationic PAMAM dendrimers G3-amine, G4-amine, G5-amine, and G6-amine caused 100% mortality by 24 hours post-fertilization. Cationic PAMAM G6-amine at 250 ppm was found to be statistically more toxic than both neutral PAMAM G6-amidoethanol and anionic PAMAM G6-succinamic acid at the same concentration. The toxicity observed within the suite of varying dendrimers provides evidence that surface charge may be the best indicator of dendrimer toxicity. Dendrimer class and generation are other potential contributors to the toxicity of dendrimers. Further studies are required to better understand the relative role each plays in driving the toxicity of dendrimers. To the best of our knowledge, this is the first in vivo study to address such a broad range of dendrimers. PMID:24790436
Weber, Gero; Christmann, Nicole; Thiery, Ann-Cathrin; Martens, Dieter; Kubiniok, Jochen
2018-04-01
Pesticides are a major burden for stream ecosystems in the central European cultivated landscape. The objective of the present study was to investigate the applicability of ecological indicator methods in relation to toxicity of pesticides under the specific hydro-morphological conditions in small water bodies. Thus, an association of toxicity evaluating methods with different ecological indicators was to be attempted. Based on three random samples taken within the 2016 vegetation period, 23 headwater areas in the Saarland were investigated to test for pesticides and their metabolites. The macroinvertebrate population was also surveyed in 16 of these streams. Evidence was found of 41 substances in total. Most dominant substances include atrazine, isoproturone, quinmerac and tebuconazol as well as metabolites of dimethenamid, chloridazon and metazachlor. At 9 of the 23 sampling points, over 10 plant protection products and metabolites were found. Only 17% of the water bodies investigated contained fewer than 5 substances. Around half of the bodies of water investigated show noticeably high concentrations of metabolites of plant protection products. Maximum concentrations exceeding environmental quality standards or the Health-oriented Guideline Values were measured for 13 substances at individual sampling points. Analysis of the biological data for only 4 of the water bodies investigated resulted in the Ecological Status Class (ESC) "good". All others fell short of the quality target, although they were classified as "good" or "very good" according to the Saprobic index. SPEAR pesticides as a measurement of the sensitivity of the biocoenosis to pesticides shows their influence in a few water bodies. Likewise, high toxic unit values have also been calculated, indicating the presence of toxic substances at relevant concentrations. However, an actual correlation between SPEAR pesticides and toxic unit could not be derived. Clearly in these very headwater streams other habitat-determining hydromorphological factors overlay the toxic impact of pesticides. Copyright © 2017 Elsevier B.V. All rights reserved.
Aguiar, G F M; Batista, B L; Rodrigues, J L; Silva, L R S; Campiglia, A D; Barbosa, R M; Barbosa, F
2012-12-01
The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[Pesticides use by flower companies associated with the Colombian Association of Flower Exporters].
Varona, Marcela E; Tolosa, Jorge E; Cárdenas, Omayda; Torres, Carlos H; Pardo, Darío; Carrasquilla, Gabriel; Frumkin, Howard
2005-09-01
In Colombia, pesticide exposure has became a public health problem, as the use of these substances continues to increase. The current study accumulated information concerning pesticides used by flower companies in Bogotá and Rionegro (Antioquia) that were associated with Asociación Colombiana de Exportadores de Flores (Asocolflores) in Colombia. Eighty-four companies were stratified by geographic location and size. Company and worker information was collected, and for each company, the process of pesticide application and maintenance of the cultivated flowers was carefully observed. Univariate and bivariate, and correlation analyses were applied for data analysis. Sex of workers was 39.4% male and 60.6% female. Pesticides were grouped into 4 toxicity classes: 14.3% were class I, 14.4% class II, 52.0% class III, and 19.2% class IV. Dithiocarbamates was the group of pesticides more commonly used (11.7%). The equipment most frequently used for pesticide application was the "bomba móvil" (92.8%), and the "lanza" (92.9%). Cholinesterase activity measured by the Michel-Aldrige method was the biological marker for exposure to pesticides used in 85.9% of the companies. Recommendations for improvements in their use and for measures to further reduce exposure of workers are made.
Novey, L B
1988-01-01
Viewing the Agent Orange litigation as a case study, this article explores the feasibility and desirability of strengthening the powers of the courts to manage toxic tort controversies en masse. The Agent Orange lawsuit, brought on behalf of potentially millions of Vietnam War veterans and family members, charged that herbicides used for military purposes during the war caused a wide range of health problems. This article first reviews the current national debate over how mass toxic tort controversies should be handled, including key legislative reform options, and describes how attention is increasingly focused on ways that the court system might better cope with mass toxic torts. The principal events of the Agent Orange litigation are then summarized, by which the litigation was consolidated into a massive class action, the class action was settled, and a streamlined plan for distributing the settlement fund was adopted. The article evaluates the outcome of the litigation, and discusses whether the solution there can and should be broadly applied to other mass toxic tort cases. This question depends, in part, on a series of complex legal and practical issues, but the author suggests that the question will also depend on what institutional role we expect the judiciary to play within society.
Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera
2016-04-15
Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1-7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.
Oesterlund, Anna H; Thomsen, Jane F; Sekimpi, Deogratias K; Maziina, James; Racheal, Apio; Jørs, Erik
2014-06-01
Over the past years there has been an increase in the use of pesticides in developing countries. This study describes pesticide use among small-scale farmers in Uganda and analyses predictors of pesticide poisoning (intoxication) symptoms. A cross-sectional study was conducted using a standardized questionnaire. Some 317 small-scale farmers in two districts in Uganda were interviewed about pesticide use, knowledge and attitude, symptoms of intoxication, personal protective equipment (PPE) and hygiene. The risk of reporting symptoms was analysed using logistic regression analysis. The most frequently used pesticides belonged to WHO class II. The farmers had poor knowledge about pesticide toxicity, and the majority did not use appropriate PPE nor good hygiene when handling pesticides. There was no significant association between the number of times of spraying with pesticides and self-reported symptoms of pesticide poisoning. The only significant association was between blowing and sucking the nozzle of the knapsack sprayer and self-reported symptoms of pesticide intoxication (OR: 2.13. 95% CI: 1.09 - 4.18). Unlike the practice in several other developing countries, small-scale farmers in Uganda do not use the most hazardous pesticides (WHO class 1a and 1b). However use of WHO class II pesticides and those of lower toxicity is seen in combination with inadequate knowledge and practice among the farmers. This poses a danger of acute intoxications, chronic health problems and environmental pollution. Training of farmers in Integrated Pest Management (IPM) methods, use of proper hygiene and personal protective equipment when handling pesticides should be promoted.
Growth of Pure Cultures of Marine Phytoplankton in the Presence of Toxicants
Ukeles, Ravenna
1962-01-01
The effects of 17 toxicants on the growth of five species of algae in pure culture were studied. The two species displaying the greatest sensitivity to the action of each of the compounds tested were Monochrysis lutheri and Phaeodactylum tricornutum, and the most resistant species was Protococcus. Of eight different classes of toxicants tested, substituted urea compounds and a mercuric compound were most effective in inhibiting growth of all algal species at the lowest concentrations. PMID:13995259
Fenbendazole as a Potential Anticancer Drug
DUAN, QIWEN; LIU, YANFENG; ROCKWELL, SARA
2013-01-01
Background/Aims To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. Materials and Methods We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Results Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. Conclusion These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation. PMID:23393324
Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming
2018-05-01
Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Predictive toxicity models (in vitro to in vivo, QSAR, read-across) rely on large amounts of accurate in vivo data. Here, we analyze the quality of in vivo data from the Toxicity Reference Database (ToxRefDB), using chemical-induced anemia as an example. Considerations include v...
Fournier, Q; Serra, J-C; Handel, I; Lawrence, J
2018-01-01
Prechemotherapy absolute neutrophil count (ANC) cutoffs are arbitrary and vary across institutions and clinicians. Similarly, subjective guidelines are utilized for the administration of prophylactic antibiotics in neutropenic dogs. To evaluate the impact of various ANC cutoffs on chemotherapy administration in dogs with lymphoma treated with CHOP chemotherapy and to determine whether an association between prechemotherapy ANC and subsequent toxicity exists. The secondary objective was to evaluate a currently used ANC cutoff to indicate prescription of prophylactic antibiotics. Dogs diagnosed with lymphoma treated with CHOP chemotherapy (n = 64). Six hundred and fifteen ANCs were stratified into 6 classes. The 3 ANC cutoffs 1.5 × 10 3 /μL, 2.0 × 10 3 /μL, and 2.5 × 10 3 /μL were assessed. The presence of an association between prechemotherapy ANC class and toxicity was determined. Afebrile neutropenic dogs with ANC <1.5 × 10 3 /μL but above the criteria for prophylactic antibiotics were evaluated. Chemotherapy was not administered in 7% of visits with an ANC cutoff of 1.5 × 10 3 /μL; chemotherapy would not have been administered in 10% and 16% of visits with an ANC cutoff of 2.0 × 10 3 /μL or 2.5 × 10 3 /μL, respectively. There was no association among the 3 lower prechemotherapy ANC classes and toxicity. All dogs with ANC 0.75-1.5 × 10 3 /μL recovered spontaneously without medical intervention. The number of dose delays was minimized with a prechemotherapy ANC cutoff of 1.5 × 10 3 /μL, and the prechemotherapy ANC class 1.5-1.99 × 10 3 /μL was not associated with an increased toxicity. Further investigation of an ANC cutoff near 0.75 × 10 3 /μL in which to prescribe prophylactic antibiotics is indicated. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
NASA Astrophysics Data System (ADS)
Fu, Tingting; Chen, Yuyan; Hao, Jiali; Wang, Xiaoyong; Liu, Gang; Li, Yonggang; Liu, Zhuang; Cheng, Liang
2015-12-01
Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe2) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe2 nanoparticles were synthesized by a simple solution-phase method. After modification with polyethylene glycol (PEG), the obtained FeSe2-PEG nanoparticles showed high stability under various physiological conditions. FeSe2-PEG could serve as a T2-weighted magnetic resonance (MR) imaging contrast agent because of its strong superparamagnetic properties, with its r2 relaxivity determined to be 133.38 mM-1 S-1, a value higher than that of the clinically used Feridex. On the other hand, with high absorbance in the near-infrared (NIR) region, FeSe2-PEG also appeared to be a useful contrast agent for photoacoustic imaging (PA) as well as an effective photothermal agent for PTT cancer treatment, as demonstrated in our animal tumor model experiments. Moreover, long-term toxicity tests have proven that FeSe2-PEG nanoparticles after systematic administration rendered no appreciable toxicity to the treated animals, and could be gradually excreted from the major organs of mice. Our work indicates that FeSe2-PEG nanoparticles would be a new class of theranostic agents promising for application in bioimaging and cancer therapy.Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe2) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe2 nanoparticles were synthesized by a simple solution-phase method. After modification with polyethylene glycol (PEG), the obtained FeSe2-PEG nanoparticles showed high stability under various physiological conditions. FeSe2-PEG could serve as a T2-weighted magnetic resonance (MR) imaging contrast agent because of its strong superparamagnetic properties, with its r2 relaxivity determined to be 133.38 mM-1 S-1, a value higher than that of the clinically used Feridex. On the other hand, with high absorbance in the near-infrared (NIR) region, FeSe2-PEG also appeared to be a useful contrast agent for photoacoustic imaging (PA) as well as an effective photothermal agent for PTT cancer treatment, as demonstrated in our animal tumor model experiments. Moreover, long-term toxicity tests have proven that FeSe2-PEG nanoparticles after systematic administration rendered no appreciable toxicity to the treated animals, and could be gradually excreted from the major organs of mice. Our work indicates that FeSe2-PEG nanoparticles would be a new class of theranostic agents promising for application in bioimaging and cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06840a
Janus nanoparticles for stable microemulsions with ultra-low IFT values
NASA Astrophysics Data System (ADS)
Nava, Ilse; Diaz, Agustin; Yu, Yi-Hsien; Cheng, Zhengdong
2015-03-01
Janus particles are an influential type of materials used in foams, detergents, surfactants and cosmetics. Due to their demonstrated flexibility and non-toxicity, they have the potential to replace molecular surfactants, and thanks to their amphiphilicity, they can stabilize immiscible biphasic systems. Disk-based Janus particles best perform this stabilization. Graphene has been used to manufacture this class of particles; however, their fabrication in high yield by short and atomically economic syntheses remains a challenge. In this project we report the first synthesis of monolayer disks by a one pot reaction under microwave energy. Using a scalable method, these disks were synthesized, emulsified (in an oil/water system), and chemically reacted to obtain the Janus nanodisks with an efficient method. Our nanosheets production technique is a promising approach for the fabrication of Janus nanodisks via emulsification as it produces IFT (interfacial tension) values in a lower range than that of the molecular surfactants. These ultra-low values, in conjunction with the sheets' salt resistance, temperature resistance, and non-toxicity position Janus particles as the next generation of nanosurfactants.
Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.
Lai, David Y
2012-01-01
A challenge-facing hazard identification and safety evaluation of engineered nanomaterials being introduced to market is the diversity and complexity of the types of materials with varying physicochemical properties, many of which can affect their toxicity by different mechanisms. In general, in vitro test systems have limited usefulness for hazard identification of nanoparticles due to various issues. Meanwhile, conducting chronic toxicity/carcinogenicity studies in rodents for every new nanomaterial introduced into the commerce is impractical if not impossible. New toxicity testing systems which rely on predictive, high-throughput technologies may be the ultimate goal of evaluating the potential hazard of nanomaterials. However, at present, this approach alone is unlikely to succeed in evaluating the toxicity of the wide array of nanomaterials and requires validation from in vivo studies. This article proposes a paradigm for toxicity testing and elucidation of the molecular mechanisms of reference materials for specific nanomaterial classes/subclasses using short-term in vivo animal studies in conjunction with high-throughput screenings and mechanism-based short-term in vitro assays. The hazard potential of a particular nanomaterial can be evaluated by conducting only in vitro high-throughput assays and mechanistic studies and comparing the data with those of the reference materials in the specific class/subclass-an approach in line with the vision for 'Toxicity Testing in the 21st Century' of chemicals. With well-designed experiments, testing nanomaterials of varying/selected physicochemical parameters may be able to identify the physicochemical parameters contributing to toxicity. The data so derived could be used for the development of computer model systems to predict the hazard potential of specific nanoparticles based on property-activity relationships. Copyright © 2011 John Wiley & Sons, Inc.
Residual Acute Toxicity of Some Modern Insecticides Toward Two Mirid Predators of Tomato Pests.
Wanumen, Andrea C; Carvalho, Geraldo A; Medina, Pilar; Viñuela, Elisa; Adán, Ángeles
2016-03-31
The successful integration of chemical and biological control strategies for crop pests depends on a thorough evaluation of the effects of pesticides on the natural enemies of pests. A case-by-case review is difficult to achieve because of the many combinations of pests, natural enemies, and crops that need to be tested. Within this framework, we tested and compared seven insecticides representative of four different modes of action (MoAs) groups on closely related predators (Miridae): flubendiamide, spirotetramat, metaflumizone, and sulfoxaflor onNesidiocoris tenuisReuter and flubendiamide, spiromesifen, indoxacarb, and imidacloprid onMacrolophus basicornis(Stal). We follow the standardized methodology of the International Organization for Biological Control, a sequential testing exposure scheme. The lethal effect of each insecticide was evaluated in adults after three days of contact with treated surfaces in the laboratory, extended laboratory, and semifield tests (inert substrate, tomato leaves, and tomato plant as the treated surface, respectively). Flubendiamide, spiromesifen, and spirotetramat were classified as harmless (class 1), metaflumizone was slightly harmful (class 2) but persistent, indoxacarb was harmless (class 1), and sulfoxaflor and imidacloprid were toxic (class 4) and exhibited a long residual activity. Our results suggest similarities in the acute toxicities of insecticides from the same MoA group on related species of natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kandarova, Helena; Letasiova, Silvia; Adriaens, Els; Guest, Robert; Willoughby, Jamin A; Drzewiecka, Agnieszka; Gruszka, Katarzyna; Alépée, Nathalie; Verstraelen, Sandra; Van Rompay, An R
2018-06-01
Assessment of acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was to develop tiered testing strategies for eye irritation assessment for all drivers of classification. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different alternative methods. Here, the results obtained with reconstructed human cornea-like epithelium (RhCE) EpiOcular™ in the EpiOcular time-to-toxicity Tests (Neat and Dilution ET-50 protocols) are presented. The primary aim of this study was to evaluate whether test methods can discriminate chemicals not requiring classification for serious eye damage/eye irritancy (No Category) from chemicals requiring classification and labelling for Category 1 and Category 2. In addition, the predictive capacity in terms of in vivo drivers of classification was investigated. The chemicals were tested in two independent runs by MatTek In Vitro Life Science Laboratories. Results of this study demonstrate very high specificity of both test protocols. With the existing prediction models described in the SOPs, the specificity of the Neat and Dilution method was 87% and 100%, respectively. The Dilution method was able to correctly predicting 66% of GHS Cat 2 chemicals, however, prediction of GHS Cat 1 chemicals was only 47%-55% using the current protocols. In order to achieve optimal prediction for all three classes, a testing strategy was developed which combines the most predictive time-points of both protocols and for tests liquids and solids separately. Using this new testing strategy, the sensitivity for predicting GHS Cat 1 and GHS Cat 2 chemicals was 73% and 64%, respectively and the very high specificity of 97% was maintained. None of the Cat 1 chemicals was underpredicted as GHS No Category. Further combination of the EpiOcular time-to-toxicity protocols with other validated in vitro systems evaluated in this project, should enable significant reduction and even possible replacement of the animal tests for the final assessment of the irritation potential in all of the GHS classes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepa...
Mahoney, Sharlee; Najera, Michelle; Bai, Qing; Burton, Edward A.; Veser, Götz
2016-01-01
Complex engineered nanomaterials (CENs) are a rapidly developing class of structurally and compositionally complex materials that are expected to dominate the next generation of functional nanomaterials. The development of methods enabling rapid assessment of the toxicity risk associated with this type of nanomaterial is therefore critically important. We evaluated the toxicity of three differently structured nickel-silica nanomaterials as prototypical CENs: simple, surface-deposited Ni-SiO2 and hollow and non-hollow core-shell Ni@SiO2 materials (i.e., ~1–2 nm Ni nanoparticles embedded into porous silica shells with and without a central cavity, respectively). Zebrafish embryos were exposed to these CENs, and morphological (survival and malformations) and physiological (larval motility) endpoints were coupled with thorough characterization of physiochemical characteristics (including agglomeration, settling and nickel ion dissolution) to determine how toxicity differed between these CENs and equivalent quantities of Ni2+ salt (based on total Ni). Exposure to Ni2+ ions strongly compromised zebrafish larva viability, and surviving larvae showed severe malformations. In contrast, exposure to the equivalent amount of Ni CEN did not result in these abnormalities. Interestingly, exposure to Ni-SiO2 and hollow Ni@SiO2 provoked abnormalities of zebrafish larval motor function, indicating developmental toxicity, while non-hollow Ni@SiO2 showed no toxicity. Correlating these observations with physicochemical characterization of the CENs suggests that the toxicity of the Ni-SiO2 and hollow Ni@SiO2 material may result partly from an increased effective exposure at the bottom of the well due to rapid settling. Overall, our data suggest that embedding nickel NPs in a porous silica matrix may be a straightforward way to mitigate their toxicity without compromising their functional properties. At the same time, our results also indicate that it is critical to consider modification of the effective exposure when comparing different nanomaterial configurations, because effective exposure might influence NP toxicity more than specific “nano-chemistry” effects. PMID:27031643
Liu, Yi; Junaid, Muhammad; Wang, Yan; Tang, Yu-Mei; Bian, Wan-Ping; Xiong, Wen-Xu; Huang, Hai-Yang; Chen, Chun-Di; Pei, De-Sheng
2018-06-09
Tetracycline hydrochloride (TH), indomethacin (IM), and bezafibrate (BF) belong to the three different important classes of pharmaceuticals, which are well known for their toxicity and environmental concerns. However, studies are still elusive to highlight the mechanistic toxicity of these pharmaceuticals and rank them using both, the toxicity prediction and confirmation approaches. Therefore, we employed the next generation toxicity testing in 21st century (TOX21) tools and estimated the in vitro/vivo toxic endpoints of mentioned pharmaceuticals, and then confirmed them using in vitro/vivo assays. We found significant resemblance in the results obtained via both approaches, especially in terms of in vivo LC50 s and developmental toxicity that ranked IM as most toxic among the studied pharmaceuticals. However, TH appeared most toxic with the lowest estimated AC50s, the highest experimental IC50s, and DNA damages in vitro. Contrarily, IM was found as congener with priority concern to activate the Pi3k-Akt-mTOR pathway in vitro at concentrations substantially lower than that of TH and BF. Further, IM exposure at lower doses (2.79-13.97 μM) depressed the pharmaceuticals detoxification phase I (CYP450 s), phase II (UGTs, SULTs), and phase III (TPs) pathways in zebrafish, whereas, at relatively higher doses, TH (2.08-33.27 μM) and BF (55.28-884.41 μM) partially activated these pathways, which ultimately caused the developmental toxicity in the following order: IM > TH > BF. In addition, we also ranked these pharmaceuticals in terms of their particular toxicity to myogenesis, hematopoiesis, and hepatogenesis in zebrafish embryos. Our results revealed that IM significantly affected myogenesis, hematopoiesis, and hepatogenesis, while TH and BF induced prominent effects on hematopoiesis via significant downregulation of associated genetic markers, such as drl, mpx, and gata2a. Overall, our findings confirmed that IM has higher toxicity than that of TH and BF, therefore, the consumption of these pharmaceuticals should be regulated in the same manner to ensure human and environmental safety. Copyright © 2018 Elsevier B.V. All rights reserved.
1986-09-30
AD-A174 758 A STUDY OF THE TOXICITY OF THE NETABOLITES OF THE t/1 CRUISE MISSILE FUEL JP- (U) WRIGHT STATE UNIV DAYTON OHIO M P SERVE 38 SEP 86 WSU...rri P.-d n- i approved po’ i.’ ! v I,,AF:R 19 ,)-12. KA TTHEW J. Chief, Techl-icl Informt ion Division A STUDY OF THE TOXICITY OF TH4E METABOLITES OF...Security Class, fcation)IrC A study of the toxicity of the --tim..... f 0.01. metabolites of the cruise missle fuel JP-10 on several animal species. 12
The connection Between Plasma Protein Binding and Acute Toxicity as Determined by the LD50 Value.
Svennebring, Andreas
2016-02-01
Preclinical Research A dataset of three drug classes (acids, bases, and neutrals) with LD50 values in mice was analysed to investigate a possible connection between high plasma protein binding and acute toxicity. Initially, it was found that high plasma protein binding was associated with toxicity for acids and neutrals, but after compensating for differences in lipophilicity, plasma protein binding was found not to be associated with toxicity. The therapeutic index established by the quotient between mouse LD50 and the defined daily dose was unaffected by both lipophilicity and plasma protein binding. © 2015 Wiley Periodicals, Inc.
RIFM fragrance ingredient safety assessment, isobornyl isovalerate, CAS registry number 7779-73-9.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lapczynski, A; Liebler, D C; O'Brien, D; Parakhia, R; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2017-12-01
This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization potential, as well as, environmental safety. Data from the suitable read across analog isobornyl acetate (CAS # 125-12-2) show that this material is not genotoxic, provided a MOE > 100 for the repeated dose, developmental and reproductive endpoints, and does not have skin sensitization potential. The local respiratory toxicity endpoint was completed using the TTC (threshold of Toxicological Concern) for a Cramer Class II material (0.47 mg/day). The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
Replacement Non-Toxic Sealants for Standard Chromated Sealants
2005-02-01
material’s mechanical or physical properties and resistance to degradation. As sealant formulations for the Class B-2 worklife were developed by PRC...results ofthis testing, Class B-1I2 and C-12 worklife materials were formulated and are being tested. In addition to the testing that UDRI conducted, two...successfully accomplished in this program. An optimized Class B-2 worklife of the sealant compound designated RW3758-71, Lot no. RT0946, completed
Pharmacology and Toxicology of N-Benzylphenethylamine ("NBOMe") Hallucinogens.
Halberstadt, Adam L
2017-01-01
Serotonergic hallucinogens induce profound changes in perception and cognition. The characteristic effects of hallucinogens are mediated by 5-HT 2A receptor activation. One class of hallucinogens are 2,5-dimethoxy-substituted phenethylamines, such as the so-called 2C-X compounds 2,5-dimethoxy-4-bromophenethylamine (2C-B) and 2,5-dimethoxy-4-iodophenethylamine (2C-I). Addition of an N-benzyl group to phenethylamine hallucinogens produces a marked increase in 5-HT 2A -binding affinity and hallucinogenic potency. N-benzylphenethylamines ("NBOMes") such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) show subnanomolar affinity for the 5-HT 2A receptor and are reportedly highly potent in humans. Several NBOMEs have been available from online vendors since 2010, resulting in numerous cases of toxicity and multiple fatalities. This chapter reviews the structure-activity relationships, behavioral pharmacology, metabolism, and toxicity of members of the NBOMe hallucinogen class. Based on a review of 51 cases of NBOMe toxicity reported in the literature, it appears that rhabdomyolysis is a relatively common complication of severe NBOMe toxicity, an effect that may be linked to NBOMe-induced seizures, hyperthermia, and vasoconstriction.
Karci, Akin
2014-03-01
Advanced oxidation processes based on the generation of reactive species including hydroxyl radicals are viable options in eliminating a wide array of refractory organic contaminants in industrial effluents. The assessment of transformation products and toxicity should be, however, the critical point that would allow the overall efficiency of advanced oxidation processes to be better understood and evaluated since some transformation products could have an inhibitory effect on certain organisms. This article reviews the most recent studies on transformation products and toxicity for evaluating advanced oxidation processes in eliminating classes of compounds described as "textile chemicals" from aqueous matrices and poses questions in need of further investigation. The scope of this paper is limited to the scientific studies with two classes of textile chemicals, namely chlorophenols and alkylphenol ethoxylates, whose use in textile industry is a matter of debate due to health risks to humans and harm to the environment. The article also raises the critical question: What is the state of the art knowledge on relationships between transformation products and toxicity? Copyright © 2013 Elsevier Ltd. All rights reserved.
2012-01-01
Background. Pesticide self-poisoning causes one third of global suicides. Sri Lanka halved its suicide rate by banning WHO Class I organophosphorus (OP) insecticides and then endosulfan. However, poisoning with Class II toxicity OPs, particularly dimethoate and fenthion, remains a problem. We aimed to determine the effect and feasibility of a ban of the two insecticides in one Sri Lankan district. Methods. Sale was banned in June 2003 in most of Polonnaruwa District, but not Anuradhapura District. Admissions with pesticide poisoning to the district general hospitals was prospectively recorded from 2002. Results. Hospital admissions for dimethoate and fenthion poisoning fell by 43% after the ban in Polonnaruwa, while increasing by 23% in Anuradhapura. The pesticide case fatality fell from 14.4% to 9.0% in Polonnaruwa (odds ratio [OR] 0.59, 95% confidence interval [CI] 0.41–0.84) and 11.3% to 10.6% in Anuradhapura (OR 0.93, 95%CI 0.70–1.25; p = 0.051). This reduction was not sustained, with case fatality in Polonnaruwa rising to 12.1% in 2006–2007. Further data analysis indicated that the fall in case fatality had actually been due to a coincidental reduction in case fatality for pesticide poisoning overall, in particular for paraquat poisoning. Conclusions. We found that the insecticides could be effectively banned from agricultural practice, as shown by the fall in hospital admissions, with few negative consequences. However, the ban had only a minor effect on pesticide poisoning deaths because it was too narrow. A study assessing the agricultural and health effects of a more comprehensive ban of highly toxic pesticides is necessary to determine the balance between increased costs of agriculture and reduced health care costs and fewer deaths. PMID:22372788
Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish
Passino, Dora R. May; Smith, Stephen B.
1987-01-01
We have provided a hazard ranking for 19 classes of compounds representing many of the nearly 500 organic compounds identified by gas chromatography-mass spectrometry in lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) from the Great Lakes and Lake St. Clair. We initially made a provisional hazard ranking based on available published and unpublished information on aquatic toxicity, bioaccumulation, occurrence and sources. Acute toxicity tests with Daphnia pulex at 17A°C in reconstituted hard water were performed with 30 compounds representative of the 19 classes that were highest in the provisional ranking. The resulting toxicity data, along with information on the compounds' occurrence in Great Lakes fish and their sources, were ranked and weighted and then used in calculating the revised hazard ranking. The 10 most hazardous classes, in descending order, are as follows (values shown are mean 48-h EC50s, in μ/ml): arene halides (e.g., polychlorinated biphenyls, DDT), 0.0011; phthalate esters, 0.133; chlorinated camphenes (toxaphene), 0.0082; polyaromatic hydrocarbons (PAHs; e.g., dimethylnaphthalene) and reduced derivatives, 1.01; chlorinated fused polycyclics (e.g., trans-nonachlor), 0.022; nitrogen-containing compounds (e.g., O-methylhydroxyl-amine), 1.35; alkyl halides (e.g., (bromomethyl)cyclohexene), 10.1; cyclic alkanes (e.g., cyclododecane), 20.9; silicon-containing compounds (e.g., dimethyldiethoxy silane), 1.25; and heterocyclic nitrogen compounds (e.g., nicotine), 2.48. We recommend that chronic bioassays be conducted with fish and invertebrates to determine the sublethal effects of the following classes of compounds, for which few toxicity data are available: PAHs, heterocyclic nitrogen compounds, other nitrogen-containing compounds, alkyl halides, cyclic alkanes and silicon-containing compounds. Information from these types of studies will aid researchers in determining the possible causal role these contaminants play in the decline and reproductive impairment of Great Lakes fish.
Krogman, A; Tilahun, A; David, C S; Chowdhary, V R; Alexander, M P; Rajagopalan, G
2017-01-01
Toxic shock syndrome toxin-1 (TSST-1) is a potent superantigen produced by Staphylococcus aureus. In addition to menstrual and nonmenstrual toxic shock syndromes, TSST-1 is also implicated in the immunopathogenesis of pneumonia, infective endocarditis, neonatal exanthematous disease, and atopic dermatitis among others. Superantigens first bind to major histocompatibility complex (MHC) class II molecules and then activate a large proportion of T cells by cross-linking their T cell receptor. As binding to MHC class II molecules is a critical step in the robust activation of the immune system by TSST-1 and other superantigens, polymorphic variations between different HLA-DR alleles could potentially influence the magnitude of immune activation and immunopathology caused by TSST-1. As TSST-1 is highly toxic to humans and given that multiple variations of alleles of HLA-DR and HLA-DQ are expressed in each individual, it is difficult to determine how HLA-DR polymorphisms quantitatively and qualitatively impact immune activation caused by TSST-1 in humans. However, such investigations can be conducted on transgenic mice lacking all endogenous MHC class II molecules and expressing specific HLA class II alleles. Therefore, transgenic mice expressing different HLA-DRB1 alleles (HLA-DRB1*15:01, HLA-DRB1*15:02, HLA-DRB1*03:01, HLA-DRB1*04:01), and sharing HLA-A1*01:01 chain, were systemically challenged with purified TSST-1 and multiple immune parameters were assessed. Among the HLA-DR alleles, mice expressing HLA-DRB1*15:01 allele elicited a significantly higher serum cytokine/chemokine response; greater splenic T cell expansion and most severe organ pathology. Our study highlights the potential utility of human leukocyte antigen (HLA) transgenic mice in understanding the impact of HLA polymorphisms on the outcomes of diseases caused by TSST-1 and other superantigens. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Developmental neurotoxicity of succeeding generations of insecticides
Abreu-Villaça, Yael; Levin, Edward D.
2016-01-01
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. PMID:27908457
The present report describes a strategy to refine the current Cramer classification of the TTC concept using a broad database (DB) termed TTC RepDose. Cramer classes 1-3 overlap to some extent, indicating a need for a better separation of structural classes likely to be toxic, mo...
Halogenated fatty amides - A brand new class of disinfection by-products.
Kosyakov, Dmitry S; Ul'yanovskii, Nikolay V; Popov, Mark S; Latkin, Tomas B; Lebedev, Albert T
2017-12-15
An array of similar halogenated nitrogen-containing compounds with elemental composition C n H 2n NO 2 X, C n H 2n-2 NO 2 X and C n H 2n-1 NOX 2 (X = Cl, Br; n = 16, 18, 22) was detected in drinking water with high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS) method. Compounds of this type were never mentioned among disinfection by-products. Tandem mass spectrometry allowed referring them to halohydrines or dihalogenated fatty amides, the products of conjugated electrophilic addition of halogens to the double bonds of unsaturated fatty amides. The proposed structures were confirmed by conducting aqueous chlorination with standard solution of oleamide. These compounds may be considered as a brand new class of disinfection by products, while their toxicities require special study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ocular toxicity of fludarabine
Ding, Xiaoyan; Herzlich, Alexandra A; Bishop, Rachel; Tuo, Jingsheng; Chan, Chi-Chao
2008-01-01
The purine analogs, fludarabine and cladribine represent an important class of chemotherapy agents used to treat a broad spectrum of lymphoid malignancies. Their toxicity profiles include dose-limiting myelosuppression, immunosuppression, opportunistic infection and severe neurotoxicity. This review summarizes the neurotoxicity of high- and standard-dose fludarabine, focusing on the clinical and pathological manifestations in the eye. The mechanisms of ocular toxicity are probably multifactorial. With increasing clinical use, an awareness of the neurological and ocular vulnerability, particularly to fludarabine, is important owing to the potential for life- and sight-threatening consequences. PMID:18461151
Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera
2016-01-01
Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1–7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries. PMID:27092527
Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia
Kumar, Vijender; Bhat, Zulfiqar Ali; Kumar, Dinesh; Khan, NA; Chashoo, IA
2012-01-01
Objective To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1% w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmia anquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method. Results The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40% and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions The present investigation has confirmed the anti-inflammatory activity of Skimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti- inflammatory agent. PMID:23569983
Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing
2014-09-01
Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.
SNRB{trademark} air toxics monitoring. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less
Stehly, G.R.; Gingerich, W.H.
1999-01-01
A preliminary evaluation of efficacy and minimum toxic concentration of AQUI-S(TM), a fish anaesthetic/sedative, was determined in two size classes of six species of fish important to US public aquaculture (bluegill, channel catfish, lake trout, rainbow trout, walleye and yellow perch). In addition, efficacy and minimum toxic concentration were determined in juvenile-young adult (fish aged 1 year or older) rainbow trout acclimated to water at 7 ??C, 12 ??C and 17 ??C. Testing concentrations were based on determinations made with range-finding studies for both efficacy and minimum toxic concentration. Most of the tested juvenile-young adult fish species were induced in 3 min or less at a nominal AQUI-S(TM) concentration of 20 mg L-1. In juvenile-young adult fish, the minimum toxic concentration was at least 2.5 times the selected efficacious concentration. Three out of five species of fry-fingerlings (1.25-12.5 cm in length and < 1 year old) were induced in ??? 4.1 min at a nominal concentration of 20 mg L-1 AQUI-S(TM), with the other two species requiring nominal concentrations of 25 and 35 mg L-1 for similar times of induction. Recovery times were ??? 7.3 rain for all species in the two size classes. In fry-fingerlings, the minimum toxic concentration was at least 1.4 times the selected efficacious concentration. There appeared to be little relationship between size of fish and concentrations or times to induction, recovery times and minimum toxic concentration. The times required for induction and for recovery were increased in rainbow trout as the acclimation temperature was reduced.
Sajid, Muhammad; Ilyas, Muhammad; Basheer, Chanbasha; Tariq, Madiha; Daud, Muhammad; Baig, Nadeem; Shehzad, Farrukh
2015-03-01
Nanotechnology has revolutionized the world through introduction of a unique class of materials and consumer products in many arenas. It has led to production of innovative materials and devices. Despite of their unique advantages and applications in domestic and industrial sectors, use of materials with dimensions in nanometers has raised the issue of safety for workers, consumers, and human environment. Because of their small size and other unique characteristics, nanoparticles have ability to harm human and wildlife by interacting through various mechanisms. We have reviewed the characteristics of nanoparticles which form the basis of their toxicity. This paper also reviews possible routes of exposure of nanoparticles to human body. Dermal contact, inhalation, and ingestion have been discussed in detail. As very limited data is available for long-term human exposures, there is a pressing need to develop the methods which can determine short and long-term effects of nanoparticles on human and environment. We also discuss in brief the strategies which can help to control human exposures to toxic nanoparticles. We have outlined the current status of toxicological studies dealing with nanoparticles, accomplishments, weaknesses, and future challenges.
Metals detected by ICP/MS in wound tissue of war injuries without fragments in Gaza
2010-01-01
Background The amount and identity of metals incorporated into "weapons without fragments" remain undisclosed to health personnel. This poses a long-term risk of assumption and contributes to additional hazards for victims because of increased difficulties with clinical management. We assessed if there was evidence that metals are embedded in "wounds without fragments" of victims of the Israeli military operations in Gaza in 2006 and 2009. Methods Biopsies of "wounds without fragments" from clinically classified injuries, amputation (A), charred (C), burns (B), multiple piercing wounds by White Phosphorus (WP) (M), were analyzed by ICP/MS for content in 32 metals. Results Toxic and carcinogenic metals were detected in folds over control tissues in wound tissues from all injuries: in A and C wounds (Al, Ti, Cu, Sr, Ba, Co, Hg, V, Cs and Sn), in M wounds (Al, Ti, Cu, Sr, Ba, Co and Hg) and in B wounds (Co, Hg, Cs, and Sn); Pb and U in wounds of all classes; B, As, Mn, Rb, Cd, Cr, Zn in wounds of all classes, but M; Ni was in wounds of class A. Kind and amounts of metals correlate with clinical classification of injuries, exposing a specific metal signature, similar for 2006 and 2009 samples. Conclusions The presence of toxic and carcinogenic metals in wound tissue is indicative of the presence in weapon inducing the injury. Metal contamination of wounds carries unknown long term risks for survivors, and can imply effects on populations from environmental contamination. We discuss remediation strategies, and believe that these data suggest the need for epidemiological and environmental surveys. PMID:20579349
Rico, Andreu; Van den Brink, Paul J
2015-08-01
In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus, family, and order levels using the acute toxicity data available in the US Environmental Protection Agency ECOTOX database. Biological trait information was linked to the calculated relative sensitivity to evaluate correlations between traits and sensitivity and to calculate a vulnerability index, which combines intrinsic sensitivity and traits describing the recovery potential of populations partially exposed to insecticides (e.g., voltinism, flying strength, occurrence in drift). The analysis shows that the relative sensitivity of arthropods depends on the insecticide mode of action. Traits such as degree of sclerotization, size, and respiration type showed good correlation to sensitivity and can be used to make predictions for invertebrate taxa without a priori sensitivity knowledge. The vulnerability analysis revealed that some of the Ephemeroptera, Plecoptera, and Trichoptera taxa were vulnerable to all insecticide classes and indicated that particular gastropod and bivalve species were potentially vulnerable. Microcrustaceans (e.g., daphnids, copepods) showed low potential vulnerability, particularly in lentic ecosystems. The methods described in the present study can be used for the selection of focal species to be included as part of ecological scenarios and higher tier risk assessments. © 2015 SETAC.
2010-01-01
flavonoids , sesquiterpenoids, and triterpenoids, among others, were CHEMISTRY & BIODIVERSITY – Vol. 7 (2010)1682 Table 1. Larvicidal Activities of Various...Gainesville, FL 32608, USA c) Department of Chemistry , Louisiana State University, Baton Rouge, Louisiana 70803, USA AnAedes aegypti larval toxicity...bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids
Safe, S
1993-01-01
Polychlorinated biphenyls (PCBs) are industrial compounds that have been detected as contaminants in almost every component of the global ecosystem including the air, water, sediments, fish, and wildlife and human adipose tissue, milk, and serum. PCBs in commercial products and environmental extracts are complex mixtures of isomers and congeners that can now be analyzed on a congener-specific basis using high-resolution gas chromatographic analysis. PCBs are metabolized primarily via mixed-function oxidases into a broad spectrum of metabolites. The results indicate that metabolic activation is not required for PCB toxicity, and the parent hydrocarbons are responsible for most of the biochemical and toxic responses elicited by these compounds. Some of these responses include developmental and reproductive toxicity, dermal toxicity, endocrine effects, hepatotoxicity, carcinogenesis, and the induction of diverse phase I and phase II drug-metabolizing enzymes. Many of the effects observed for the commercial PCBs are similar to those reported for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Structure-function relationships for PCB congeners have identified two major structural classes of PCBs that elicit "TCDD-like" responses, namely, the coplanar PCBs (e.g., 3,3',4,4'-tetraCB, 3,3'4,4',5-pentaCB and 3,3',4,4',5,5'-hexaCB) and their mono-ortho coplanar derivatives. These compounds competitively bind to the TCDD or aryl hydrocarbon (Ah) receptor and exhibit Ah receptor agonist activity. In addition, other structural classes of PCBs elicit biochemical and toxic responses that are not mediated through the Ah receptor. The shor-term effects of PCBs on occupationally exposed humans appear to be reversible, and no consistent changes in overall mortality and cancer mortality have been reported. Recent studies have demonstrated that some developmental deficits in infants and children correlated with in utero exposure to PCBs; however, the etiologic agent(s) or structural class of PCBs responsible for these effects have not been delineated. In contrast, based on a toxic equivalency factor approach, the reproductive and developmental problems in certain wildlife populations appear to be related to the TCDD-like PCB congeners. PMID:8354174
Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Spencer, Kevin M.; Sylvia, James M.; Spencer, Sarah A.; Clauson, Susan L.
2010-04-01
An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in <5 minutes from the time the instrument is turned on until analysis is complete. The ability of SERS to detect several chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.
The impact of pesticide regulations on suicide in Sri Lanka
Gunnell, D; Fernando, R; Hewagama, M; Priyangika, WDD; Konradsen, F; Eddleston, M
2010-01-01
Summary Background Between 1950 and 1995 suicide rates in Sri Lanka increased eight fold to a peak of 47 per 100,000 in 1995. By 2005 rates had halved. Our aim was to evaluate whether Sri Lanka’s regulatory controls on the import and sale of pesticides that are particularly toxic to humans were responsible for these changes in suicide. Methods Ecological analysis using graphical and descriptive approaches to identify times trends in suicide and risk factors for suicide in Sri Lanka, 1975-2005. Results Restrictions on the import and sales of WHO Class I toxicity pesticides in 1995 and endosulfan in 1998, coincided with reductions in suicide in both men and women of all ages. 19,800 fewer suicides occurred in 1996-2005 compared to 1986 – 1995. Secular trends in unemployment, alcohol misuse, divorce, pesticide use and the years associated with Sri Lanka’s Civil war did not appear to be associated with these declines. Conclusion These data indicate that in countries where pesticides are commonly used in acts of self-poisoning, import controls on the most toxic pesticides may have a favourable impact on suicide. In Asia there are an estimated 300,000 deaths from pesticide self-poisoning annually. National and international policies restricting the sales of pesticides that are most toxic to humans may have a major impact on suicides in the region. PMID:17726039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolley, C.L.; Mani, V.; Shirey, R.E.
1995-12-31
The persistence and widespread environmental occurrence of polychlorinated biphenyls (PCBs) in the air, waterways and industrial facilities has created a need for quantitative and qualitative analysis of Aroclor-like mixtures. Although there are 209 possible PCB concerns, only a limited number have shown toxic activity similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The World Health Organization recently released a list of the 13 most toxic PCB congeners. Each was rated by its Toxic Equivalency Factor relative to TCDD. These 13 PCB congeners belong to the class of toxic coplanar compounds. These congeners commonly contain chlorosubstitutions in the 3,3{prime},4,4{prime} or 3,4,4{prime} or 3{prime},4,4{prime} positions andmore » either 0, 1, or 2 chloro-substituents in the ortho positions. A new capillary column containing a bonded octylmethyl polysiloxane stationary phase (SPB-Octyl) was evaluated for its propensity to separate coplanar PCB congeners. Solid phase microextraction (SPME), a solvent-free method for extracting volatiles and semi-volatiles from drinking water, waste water, soil and sludge was used to extract PCBs from soil. GC-ECD and GC-MS separations of PCB ladened soils were examined via SPME on the SPB-Octyl column. An approach for selective extraction of coplanar PCB congeners by SPME will be described.« less
Li, Xing-Fang; Mitch, William A
2018-02-20
While drinking water disinfection has effectively prevented waterborne diseases, an unintended consequence is the generation of disinfection byproducts (DBPs). Epidemiological studies have consistently observed an association between consumption of chlorinated drinking water with an increased risk of bladder cancer. Out of the >600 DBPs identified, regulations focus on a few classes, such as trihalomethanes (THMs), whose concentrations were hypothesized to correlate with the DBPs driving the toxicity of disinfected waters. However, the DBPs responsible for the bladder cancer association remain unclear. Utilities are switching away from a reliance on chlorination of pristine drinking water supplies to the application of new disinfectant combinations to waters impaired by wastewater effluents and algal blooms. In light of these changes in disinfection practice, this article discusses new approaches being taken by analytical chemists, engineers, toxicologists and epidemiologists to characterize the DBP classes driving disinfected water toxicity, and suggests that DBP exposure should be measured using other DBP classes in addition to THMs.
RIFM fragrance ingredient safety assessment, Isopulegol, CAS Registry Number 89-79-2.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic nor does it have skin sensitization potential. The repeated dose, developmental and reproductive, and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03, 0.03 mg/kg/day and 1.4 mg/day, respectively). The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khan, Hafiz Azhar Ali; Akram, Waseem
2014-01-01
Diarrhea is an important cause of childhood mortality in developing countries like Pakistan because of unhygienic conditions, lack of awareness, and unwise use of preventive measures. Mechanical transmission of diarrheal pathogens by house flies, Musca domestica, is believed as the most effective route of diarrhea transmission. Although the use of insecticides as a preventive measure is common worldwide for the management of house flies, success of the measure could be compromised by the prevailing environmental temperature since it significantly affects toxicity of insecticides and thus their efficacy. Peaks of the house fly density and diarrheal cases are usually coincided and season specific, yet little is known about the season specific use of insecticides. To determine the temperature-toxicity relationship in house flies, the effect of post-bioassays temperature (range, 20-34°C) on the toxicity of seven insecticides from organophosphate (chlorpyrifos, profenofos), pyrethroid (cypermethrin, deltamethrin) and new chemical (emamectin benzoate, fipronil, spinosad) classes was evaluated by using a feeding bioassay method. From 20-34°C, the toxicities of chlorpyrifos, profenofos, emamectin and fipronil increased 2.10, 2.93, 2.40 and 3.82 fold (i.e. positive temperature coefficient), respectively. Whereas, the toxicities of cypermethrin, deltamethrin and spinosad decreased 2.21, 2.42 and 3.16 fold (i.e. negative temperature coefficient), respectively. These findings suggest that for the reduction in diarrheal cases, house flies should be controlled with insecticides according to the prevailing environmental temperature. Insecticides with a positive temperature coefficient may serve as potential candidates in controlling house flies and diarrhea epidemics in hot season and vice versa.
Phthalate esters (PEs) constitute a large class of plasticizer compounds that are widely used for many consumer product applications. Ten or more members of the PE class of compounds have been shown to induce male fetal endocrine toxicity and postnatal reproductive malformations ...
Assessment of the Treatability of Toxic Organics by Overland Flow,
1983-01-01
Tab’ I . Occunrence of organic chemsicals in household products . (After Hathaway 1980.1 Product Classter of organ iCs Product Classe of organirs...volatilization. the various classes of organics and their presence in Another important property of organic chemicals household products are given in Table 1...23 iv TABLES Table Page I. Occurrence of organic chemicals in household
Benzi, Verónica S; Murrayb, Ana P; Ferrero, Adriana A
2009-09-01
Essential oils extracted from leaves of Aloysia polystachya and A. citriodora (Verbenaceae) and from leaves and fruits of Schinus molle var. areira (Anacardiaceae) were tested for their repellent and toxic activities against adults of Rhizopertha dominica (Coleoptera: Bostrichidae). Topical application and filter paper assays were employed for contact toxicity studies; filter paper impregnation was also used for fumigant and repellent assays. In topical tests A. polystachya was as effective as S. molle leaves. In the case of repellent assays, A. citriodora was the most effective oil based on the class scale. A. polystachya was the most toxic plant on contact toxicity by filter paper assay (LC50 26.6 mg/cm2). Fumigant toxicity was only evaluated with fruits and leaves of S. molle, and no significant differences were found between them. Published data are included to compare the fumigant toxicity of S. molle with that of A. citridora and A. polystachya.
RIFM fragrance ingredient safety assessment, 2-ethyl-1-hexanol, CAS registry number 104-76-7.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic. Data from the suitable read across analog 2-butyloctan-1-ol (CAS # 3913-02-8) show that this material does not have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The developmental and repeat dose toxicity endpoints were completed data on the target material which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental Safety of the Use of Major Surfactant Classes in North America
Cowan-Ellsberry, Christina; Belanger, Scott; Dorn, Philip; Dyer, Scott; McAvoy, Drew; Sanderson, Hans; Versteeg, Donald; Ferrer, Darci
2014-01-01
This paper brings together over 250 published and unpublished studies on the environmental properties, fate, and toxicity of the four major, high-volume surfactant classes and relevant feedstocks. The surfactants and feedstocks covered include alcohol sulfate or alcohol sulfate (AS), alcohol ethoxysulfate (AES), linear alkylbenzene sulfonate (LAS), alcohol ethoxylate (AE), and long-chain alcohol (LCOH). These chemicals are used in a wide range of personal care and cleaning products. To date, this is the most comprehensive report on these substance's chemical structures, use, and volume information, physical/chemical properties, environmental fate properties such as biodegradation and sorption, monitoring studies through sewers, wastewater treatment plants and eventual release to the environment, aquatic and sediment toxicity, and bioaccumulation information. These data are used to illustrate the process for conducting both prospective and retrospective risk assessments for large-volume chemicals and categories of chemicals with wide dispersive use. Prospective risk assessments of AS, AES, AE, LAS, and LCOH demonstrate that these substances, although used in very high volume and widely released to the aquatic environment, have no adverse impact on the aquatic or sediment environments at current levels of use. The retrospective risk assessments of these same substances have clearly demonstrated that the conclusions of the prospective risk assessments are valid and confirm that these substances do not pose a risk to the aquatic or sediment environments. This paper also highlights the many years of research that the surfactant and cleaning products industry has supported, as part of their environmental sustainability commitment, to improve environmental tools, approaches, and develop innovative methods appropriate to address environmental properties of personal care and cleaning product chemicals, many of which have become approved international standard methods. PMID:25170243
Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)
Hoffman, D.J.
1979-01-01
Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.
Abuse Liability Assessment of Tobacco Products Including Potential Reduced Exposure Products (PREPs)
Carter, Lawrence P.; Stitzer, Maxine L.; Henningfield, Jack E.; O'Connor, Rich J.; Cummings, K. Michael; Hatsukami, Dorothy K.
2009-01-01
The harm produced by tobacco products is a result of frequent use of a highly toxic product. Reducing the adverse public health impact of tobacco products might be most effectively achieved by reducing the likelihood of their use and the toxicity of the products. Products that retain some characteristics of cigarettes, but have been altered with the intention of reducing toxicity have been referred to as modified risk tobacco products or potential reduced exposure products (MRTP/PREPS). Evaluation of their content, emission, and toxicity is discussed in other articles in this special issue. Here, we discuss the methodology that has been used to examine the likelihood of abuse or addiction. Abuse liability assessment (ALA) methodology has been used by the Food and Drug Administration (FDA) and other drug regulatory agencies world-wide for decades to assess the risks posed by a wide variety of pharmacologically active substances. ALA is routinely required among other evaluations of safety during the premarket assessment of new drugs, and is continually adapted to meet the challenges posed by new drug classes and drug formulations. In the 2009 law giving FDA regulation over tobacco products, FDA is now required to evaluate new tobacco products including MRTP/PREPs to determine their risk for abuse and toxicity at the population level. This paper describes the traditional tools and methods of ALA that can be used to evaluate new tobacco and nicotine products including MRTP/PREPs. Such ALA data could contribute to the scientific foundation on which future public policy decisions are based. PMID:19959676
Abuse liability assessment of tobacco products including potential reduced exposure products.
Carter, Lawrence P; Stitzer, Maxine L; Henningfield, Jack E; O'Connor, Rich J; Cummings, K Michael; Hatsukami, Dorothy K
2009-12-01
The harm produced by tobacco products is a result of frequent use of a highly toxic product. Reducing the adverse public health impact of tobacco products might be most effectively achieved by reducing the likelihood of their use and the toxicity of the products. Products that retain some characteristics of cigarettes but have been altered with the intention of reducing toxicity have been referred to as modified risk tobacco products or potential reduced exposure products (MRTP/PREP). Evaluation of their content, emission, and toxicity is discussed in other articles in this special issue. Here, we discuss the methodology that has been used to examine the likelihood of abuse or addiction. Abuse liability assessment (ALA) methodology has been used by the Food and Drug Administration (FDA) and other drug regulatory agencies world-wide for decades to assess the risks posed by a wide variety of pharmacologically active substances. ALA is routinely required among other evaluations of safety during the pre-market assessment of new drugs, and is continually adapted to meet the challenges posed by new drug classes and drug formulations. In the 2009 law giving FDA regulation over tobacco products, FDA is now required to evaluate new tobacco products including MRTP/PREPs to determine their risk for abuse and toxicity at the population level. This article describes the traditional tools and methods of ALA that can be used to evaluate new tobacco and nicotine products including MRTP/PREPs. Such ALA data could contribute to the scientific foundation on which future public policy decisions are based.
Shihadeh, Alan; Schubert, Jens; Klaiany, Joanne; El Sabban, Marwan; Luch, Andreas; Saliba, Najat A
2015-01-01
Objectives Waterpipe smoking using sweetened, flavoured tobacco products has become a widespread global phenomenon. In this paper, we review chemical, physical and biological properties of waterpipe smoke. Data sources Peer-reviewed publications indexed in major databases between 1991 and 2014. Search keywords included a combination of: waterpipe, narghile, hookah, shisha along with names of chemical compounds and classes of compounds, in addition to terms commonly used in cellular biology and aerosol sizing. Study selection The search was limited to articles published in English which reported novel data on waterpipe tobacco smoke (WTS) toxicant content, biological activity or particle size and which met various criteria for analytical rigour including: method specificity and selectivity, precision, accuracy and recovery, linearity, range, and stability. Data extraction Multiple researchers reviewed the reports and collectively agreed on which data were pertinent for inclusion. Data synthesis Waterpipe smoke contains significant concentrations of toxicants thought to cause dependence, heart disease, lung disease and cancer in cigarette smokers, and includes 27 known or suspected carcinogens. Waterpipe smoke is a respirable aerosol that induces cellular responses associated with pulmonary and arterial diseases. Except nicotine, smoke generated using tobacco-free preparations marketed for ‘health conscious’ users contains the same or greater doses of toxicants, with the same cellular effects as conventional products. Toxicant yield data from the analytical laboratory are consistent with studies of exposure biomarkers in waterpipe users. Conclusions A sufficient evidence base exists to support public health interventions that highlight the fact that WTS presents a serious inhalation hazard. PMID:25666550
Repression of class I transcription by cadmium is mediated by the protein phosphatase 2A
Zhou, Lei; Le Roux, Gwenaëlle; Ducrot, Cécile; Chédin, Stéphane; Labarre, Jean; Riva, Michel; Carles, Christophe
2013-01-01
Toxic metals are part of our environment, and undue exposure to them leads to a variety of pathologies. In response, most organisms adapt their metabolism and have evolved systems to limit this toxicity and to acquire tolerance. Ribosome biosynthesis being central for protein synthesis, we analyzed in yeast the effects of a moderate concentration of cadmium (Cd2+) on Pol I transcription that represents >60% of the transcriptional activity of the cells. We show that Cd2+ rapidly and drastically shuts down the expression of the 35S rRNA. Repression does not result from a poisoning of any of the components of the class I transcriptional machinery by Cd2+, but rather involves a protein phosphatase 2A (PP2A)-dependent cellular signaling pathway that targets the formation/dissociation of the Pol I–Rrn3 complex. We also show that Pol I transcription is repressed by other toxic metals, such as Ag+ and Hg2+, which likewise perturb the Pol I–Rrn3 complex, but through PP2A-independent mechanisms. Taken together, our results point to a central role for the Pol I–Rrn3 complex as molecular switch for regulating Pol I transcription in response to toxic metals. PMID:23640330
Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H
2015-07-01
Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Jadiya, Pooja; Nazir, Aamir
2012-12-01
Various human diseases are known to occur as a result of gene-environment interactions. Amongst such diseases, neurodegenerative Parkinson's disease (PD) is a complex disorder in which genetics and exposure to toxins constitute the main determinants in the onset of the disease. Many studies have reported on a link between pesticide exposure and increased risk of PD, however the role of different classes of pesticides vis-à-vis Parkinsonism has not been well elucidated. We carried out the present study to explore the role of six groups of pesticides viz botanicals, herbicides, fungicides, organophosphates, carbamates and pyrethroids on PD and and associated neurotoxic effects. These pesticides were studied using transgenic Caenorhabditis elegans model expressing human alpha synuclein protein tagged with yellow fluorescent protein [NL5901; (Punc-54::alphasynuclein::YFP+unc-119)] in the body wall muscle. Amongst all the classes of pesticides examined, botanical rotenone showed severe effects on PD pathogenesis. It significantly increased alpha synuclein aggregation and oxidative stress. Furthermore, it reduced mitochondrial and lipid content in the worms. Pesticides from other classes were observed to exert marginal effects as compared to rotenone thus suggesting that there is a class or structure specific effect of environmental chemicals vis-à-vis Parkinsonism. Hence it may be deduced that all classes of toxicants do not induce similar effects on neurodegeneration and associated events.
Reducing radiation-induced gastrointestinal toxicity — the role of the PHD/HIF axis
Olcina, Monica M.; Giaccia, Amato J.
2016-01-01
Radiotherapy is an effective treatment strategy for cancer, but a significant proportion of patients experience radiation-induced toxicity due to damage to normal tissue in the irradiation field. The use of chemical or biological approaches aimed at reducing or preventing normal tissue toxicity induced by radiotherapy is a long-held goal. Hypoxia-inducible factors (HIFs) regulate the production of factors that may protect several cellular compartments affected by radiation-induced toxicity. Pharmacological inhibitors of prolyl hydroxylase domain–containing enzymes (PHDs), which result in stabilization of HIFs, have recently been proposed as a new class of radioprotectors. In this review, radiation-induced toxicity in the gastrointestinal (GI) tract and the main cellular compartments studied in this context will be discussed. The effects of PHD inhibition on GI radioprotection will be described in detail. PMID:27548524
... might be taken from the joint for a culture (a lab test to detect bacteria). The doctor ... However, participation in activities like gym class or sports will have to wait until your child fully ...
Linking ‘toxic outliers’ to environmental justice communities
NASA Astrophysics Data System (ADS)
Collins, Mary B.; Munoz, Ian; JaJa, Joseph
2016-01-01
Several key studies have found that a small minority of producers, polluting at levels far exceeding group averages, generate the majority of overall exposure to industrial toxics. Frequently, such patterns go unnoticed and are understudied outside of the academic community. To our knowledge, no research to date has systematically described the scope and extent of extreme variations in industrially based exposure estimates and sought to link inequities in harm produced to inequities in exposure. In an analysis of all permitted industrial facilities across the United States, we show that there exists a class of hyper-polluters—the worst-of-the-worst—that disproportionately expose communities of color and low income populations to chemical releases. This study hopes to move beyond a traditional environmental justice research frame, bringing new computational methods and perspectives aimed at the empirical study of societal power dynamics. Our findings suggest the possibility that substantial environmental gains may be made through selective environmental enforcement, rather than sweeping initiatives.
Sosnovsky, G; Li, S W
1985-04-15
The spin labeled nitrosourea 1-(2-chloroethyl)-3-(1-oxyl-2,2,6,6- tetramethyl-piperidinyl)-1-nitrosourea (SLCNU, 4) and its analogues 5-7 were synthesized either by a regio-selective method or by a conventional route via the nitrosation of the spin labeled intermediates (11a-e). Nitrosation of the ureas 11a-e with dinitrogen tetraoxide resulted in better yields than those obtained with sodium nitrite. The nitrosoureas 4-8 were tested for their anticancer activity against the lymphocytic leukemia P388 in mice. Thus, either at the equal molar dose or at the dose of equal toxicity level, the SLCNU (4) was found to be more active than the clinically used CCNU (1). Unlike CCNU (1) whose LD50 is 56 mg/kg, the SLCNU (4) possesses a low toxicity (LD50 123 mg/kg). Therefore, SLCNU (4) is a promising new entry into the nitrosourea class of anticancer drugs.
Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications
NASA Astrophysics Data System (ADS)
Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.
2017-12-01
Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.
Endocrine disruptors: Revisiting concepts and dogma in toxicology.
Barouki, Robert
During the last decades, a large number of observations have shown that some exogenous substances could interfere with hormone levels or hormone action and could induce toxic effects. This has led to the identification of endocrine disruptors more than 25 years ago as a new class of toxic agents (Zoeller et al., 2014). Those widely used agents correspond to a variety of chemical classes, are not identified by their chemical structure or by a specific type of usage, but rather by their mechanisms of action; this is not unprecedented in toxicology since genotoxicants have also been identified by their mechanism of action, i.e. their ability to alter DNA structure and function. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations
Thiel, Christoph; Cordes, Henrik; Fabbri, Lorenzo; Aschmann, Hélène Eloise; Baier, Vanessa; Atkinson, Francis; Blank, Lars Mathias; Kuepfer, Lars
2017-01-01
Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general understanding of the molecular mechanisms accompanying the transition from desired drug effects to adverse events following administration of either therapeutic or toxic doses, in particular within a patient context. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes. The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events in clinical application. PMID:28151932
Lee, Sundong; Cho, Myung-Haing
2014-01-01
Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011
Liu, ZongLin Lewis
2018-07-01
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.
Solomon, K R; Giddings, J M; Maund, S J
2001-03-01
This is the first in a series of five papers that assess the risk of the cotton pyrethroids in aquatic ecosystems in a series of steps ranging from the analysis of effects data through modeling exposures in the landscape. Pyrethroid insecticides used on cotton have the potential to contaminate aquatic systems. The objectives of this study were to develop probabilistic estimates of toxicity distributions, to compare these among the pyrethroids, and to evaluate cypermethrin as a representative pyrethroid for the purposes of a class risk assessment of the pyrethroids. The distribution of cypermethrin acute toxicity data gave 10th centile values of 10 ng/L for all organisms, 6.4 ng/L for arthropods, and 380 ng/L for vertebrates. For bifenthrin, cyfluthrin, lambda-cyhalothrin, and deltamethrin, the 10th centile values for all organisms were 15, 12, 10, and 9 ng/L, respectively, indicating similar or somewhat lower toxicity than cypermethrin. For tralomethrin and fenpropathrin, the 10th centiles were <310 and 240 ng/L, respectively. The distribution of permethrin toxicity to all organisms, arthropods, and vertebrates gave 10th centiles of 180, 76, and 1600 ng/L, respectively, whereas those for fenvalerate were 37, 8, and 150 ng/L. With the exception of tralomethrin, the distributions of acute toxicity values had similar slopes, suggesting that the variation of sensitivity in a range of aquatic nontarget species is similar. The pyrethroids have different recommended field rates of application that are related to their efficacy, and the relationship between field rate and 10th centiles showed a trend. These results support the use of cypermethrin as a reasonable worst-case surrogate for the other pyrethroids for the purposes of risk assessment of pyrethroids as a class.
Ciguatera fish poisoning in Hong Kong--a 10-year perspective on the class of ciguatoxins.
Wong, Chun-Kwan; Hung, Patricia; Lo, Janice Y C
2014-08-01
The present study used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate retrospectively ciguatoxin (CTX)-positive samples as determined by mouse bioassay (MBA) in the past 10 years in Hong Kong. The results showed that Pacific CTXs (P-CTX-1, -2 and -3) were the most commonly observed toxins found in the samples, indicating Pacific Ocean areas as the most important origin of ciguatera fish poisoning. Clinical diagnosis from ciguatera patients also revealed the predominance of neurological illnesses in most cases, supporting intoxication of Pacific origin. This study demonstrated the ability of laboratory analysis to identify and quantify Pacific CTXs in suspected fish samples, so as to support the clinical diagnosis of ciguatera. Comparative analysis (Student's t-test and Spearman's rank correlation analysis) on the two CTX detection methods showed approximate linearity for overall P-CTXs (P-CTX-1, -2 and -3)/P-CTX-1 alone as derived by LC-MS/MS and total toxicity levels (P-CTX-1 equivalent) as determined by MBA. The LC-MS/MS method coupled with the rapid extraction method could allow the detection of trace amount of CTXs at levels below the clinically relevant limit, 0.1 ppb P-CTX-1 in fish flesh. For practical application, the adoption of a two-tiered approach for testing, chemical analysis by LC-MS/MS for toxic fish screening, coupled with biological assay by MBA for final toxicity confirmation, was proposed for first-line screening of CTX in potentially contaminated fish samples in the market, with an aim to minimizing the use of laboratory mice and at the same time providing reasonably effective means for routine analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.
1988-01-01
In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies chemical structures, estimates the LSER parameters, and predicts toxicity. The LSER models promise to be effective in differentiating between reactive and nonreactive toxicity behavior where other models have failed. Contaminants with reactive behavior are generally the most toxic and rank highest in hazard assessment of environmental chemicals.
NASA Astrophysics Data System (ADS)
Vershinin, N. O.; Sokolova, I. V.; Tchaikovskaya, O. N.
2013-09-01
We present the results of tests of a compact flow-through reactor for neutralization of a broad class of persistent toxic compounds. As the toxicant we used the herbicide 2,4-dichlorophenoxyacetic acid, and we used exciplex lamps with different emission wave lengths (λ ~ 222 nm and 172 nm). We show the experimental decrease in the amount of organic compounds vs. irradiation time as obtained from the absorption spectra.
Losso, Chiara; Novelli, Alessandra Arizzi; De Salvador, Davide; Ghetti, Pier Francesco; Ghirardini, Annamaria Volpi
2010-12-01
Marine and coastal quality assessment, based on test batteries involving a wide array of endpoints, organisms and test matrices, needs for setting up toxicity indices that integrate multiple toxicological measures for decision-making processes and that classify the continuous toxicity response into discrete categories according to the European Water Framework Directive. Two toxicity indices were developed for the lagoon environment such as the Venice Lagoon. Stepwise procedure included: the construction of a database that identified test-matrix pairs (indicators); the selection of a minimum number of ecotoxicological indicators, called toxicological core metrics (CMs-tox) on the basis of specific criteria; the development of toxicity scores for each CM-tox; the integration of the CMs-tox into two indices, the Toxicity Effect Index (TEI), based on the transformation of Toxic Unit (TU) data that were integrated as logarithmic sum, and the Weighted Average Toxicity Index (WATI), starting from toxicity classes integrated as weighted mean. Results from the indices are compared; advantages and drawbacks of both approaches are discussed. Copyright © 2010. Published by Elsevier Ltd.
49 CFR 173.167 - Consumer commodities.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-toxic aerosols only), Class 3 (Packing Group II and III only), Division 6.1 (Packing Group III only... packagings intended to contain liquids must be capable of meeting the pressure differential requirements (75...
Epidemiologic evidence for a new class of compounds associated with toxic oil syndrome.
Posada de la Paz, M; Philen, R M; Schurz, H; Hill, R H; Giménez Ribota, O; Gómez de la Camara, A; Kilbourne, E M; Abaitua, I
1999-03-01
Toxic oil syndrome appeared in epidemic form in Spain in 1981. Epidemiologic studies have demonstrated that illness was caused by consumption of rapeseed oil that had been denatured with aniline. Chemical analyses of oil specimens conducted in conjunction with epidemiologic studies have established that consumption of specific oils containing fatty acid anilide contaminants was associated with increased risk for disease. New chemical analytic methods identified a family of compounds, the di-fatty acid esters of phenylamino propane-diol, and one of these compounds, the 1,2-di-oleyl ester of 3-(N-phenylamino)-1,2-propanediol (DPAP), has been found to be more strongly associated with disease status than the fatty acid anilides. We found the odds ratio for exposure to DPAP (OR = 26.4, 95% CI = 6.4-76.3) is much higher than the odds ratio for exposure to oleyl anilide (OR = 4.1, 95% CI = 2.2-7.8), implying that exposure to DPAP was a more relevant risk factor for development of toxic oil syndrome than exposure to oleyl anilide. In this paper, we review and present analyses of data from multiple studies of the possible etiologic role of DPAP in toxic oil syndrome. The presence of DPAP in oil collected from affected and unaffected households was a more specific correlate of case relatedness than was the presence of fatty acid anilides, and it was equally sensitive. Moreover, DPAP was found in oil from the only refinery whose oil was clearly associated with illness.
Cytotoxicity and phytotoxicity of trichothecene mycotoxins produced by Fusarium spp.
Abbas, Hamed K; Yoshizawa, Takumi; Shier, W Thomas
2013-11-01
Trichothecenes, a major class of mycotoxins produced by Fusarium, Myrothecium, and Stachybotrys species, are toxic to both plants and mammals. Simple trichothecenes, including type A (e.g., T-2 toxin) and type B (e.g., deoxynivalenol), are generally less toxic than macrocyclic trichothecenes. We sought to determine if simple trichothecenes are a potential source of candidates for development as bioherbicides, which require high phytotoxicity and low mammalian toxicity. We examined 28 simple trichothecenes in vitro for phytotoxicity using a small aquatic plant, Lemna pausicostata, and for mammalian toxicity using four cultured mammalian cell lines. Several structure-activity relationships were identified, including the following two, which may be relevant to bioherbicide development: peracetylation of type B trichothecenes and de-epoxidation of type A trichothecenes both substantially reduced mammalian toxicity with little effect on phytotoxicity. It was concluded that simple trichothecenes possessing strong phytotoxicity and minimal mammalian toxicity in vitro can be identified. Copyright © 2013 Elsevier Ltd. All rights reserved.
RIFM fragrance ingredient safety assessment, linalyl cinnamate, CAS Registry Number 78-37-5.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic nor does it have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The developmental toxicity endpoint was completed using linalool (CAS # 78-70-6), dehydrolinalool (CAS # 29171-20-8) and cinnamic acid (CAS # 621-82-9) as suitable read across analogs, which provided a MOE > 100. The repeated dose toxicity endpoint was completed using data on the target material which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chedik, Lisa; Bruyere, Arnaud; Bacle, Astrid; Potin, Sophie; Le Vée, Marc; Fardel, Olivier
2018-06-10
Drug transporters are now recognized as major actors of pharmacokinetics. They are also likely implicated in toxicokinetics and toxicology of environmental pollutants, notably pesticides, to which humans are widely exposed and which are known to exert various deleterious effects towards health. Interactions of pesticides with drug transporters are therefore important to consider. Areas covered: This review provides an overview of the interactions of pesticides with membrane drug transporters, i.e., inhibition of their activity, regulation of their expression and handling of pesticides. Consequences for toxicokinetics and toxicity of pesticides are additionally summarized and discussed. Expert opinion: Some pesticides belonging to several chemical classes, such as organochlorine, pyrethroid and organophosphorus pesticides, have been demonstrated to interact with various uptake and efflux drug transporters, including the efflux pump P-glycoprotein and the uptake organic cation transporters (OCTs). This provides the proof of the concept that pesticide-transporter relationships merit attention. More extensive and systematic characterization of pesticide-transporter relationships, possibly through the use of in silico methods, is however likely required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and realistic pesticide concentrations reached in humans, may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, B.D.; Toole, A.P.; Callahan, B.G.
1991-12-01
Alkylphenols are a class of environmentally pervasive compounds, found both in natural (e.g., crude oils) and in anthropogenic (e.g., wood tar, coal gasification waste) materials. Despite the frequent environmental occurrence of these chemicals, there is a limited toxicity database on alkylphenols. The authors have therefore developed a 'toxicity equivalence approach' for alkylphenols which is based on their ability to inhibit, in a specific manner, the enzyme cyclooxygenase. Enzyme-inhibiting ability for individual alkylphenols can be estimated based on the quantitative structure-activity relationship developed by Dewhirst (1980) and is a function of the free hydroxyl group, electron-donating ring substituents, and hydrophobic aromaticmore » ring substituents. The authors evaluated the toxicological significance of cyclooxygenase inhibition by comparison of the inhibitory capacity of alkylphenols with the inhibitory capacity of acetylsalicylic acid, or aspirin, a compound whose low-level effects are due to cyclooxygenase inhibition. Since nearly complete absorption for alkylphenols and aspirin is predicted, based on estimates of hydrophobicity and fraction of charged molecules at gastrointestinal pHs, risks from alkylphenols can be expressed directly in terms of 'milligram aspirin equivalence,' without correction for absorption differences. They recommend this method for assessing risks of mixtures of alkylphenols, especially for those compounds with no chronic toxicity data.38 references.« less
Chemistry and Pharmacology of Thioflavones.
Dong, Jinyun; Zhang, Qijing; Meng, Qingqing; Wang, Zengtao; Li, Shaoshun; Cui, Jiahua
2018-05-15
Thioflavone derivatives are the thio analogs of the core constituent of the natural product class of flavones. Based on the position and oxidation level of sulfur, they can be divided into three major categories: 4-thioflavones, 1-thioflavones and 1-thioflavones 1,1-dioxide. In recent years, great efforts have been made to develop an approach to thioflavones, especially 1-thioflavones with high functional group compatibility, high yields, low toxicity as well as proceeding under a mild condition, and a variety of synthetic protocols have been developed, the method of choice being dependent on the nature of substrates. As isosteric analogs of biologically active flavones, likewise thioflavones exhibit various pharmaceutical properties, such as antimicrobial, anticancer and neuroprotective activities. Replacement of the oxygen atom on flavone skeleton by a sulfur atom resulted in modified biological effects due in most part to the change of structural properties. However, these varying effects depend on the substituents present and the test species. To provide a comprehensive vision of this class of compounds, this review primarily focuses on the structure, synthetic methods, biological properties as well as structure-activity relationships of thioflavones. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach.
de Marco, Bianca Aparecida; Natori, Jéssica Sayuri Hisano; Fanelli, Stefany; Tótoli, Eliane Gandolpho; Salgado, Hérida Regina Nunes
2017-05-04
Bacterial infections are the second leading cause of global mortality. Considering this fact, it is extremely important studying the antimicrobial agents. Amoxicillin is an antimicrobial agent that belongs to the class of penicillins; it has bactericidal activity and is widely used in the Brazilian health system. In literature, some analytical methods are found for the identification and quantification of this penicillin, which are essential for its quality control, which ensures maintaining the product characteristics, therapeutic efficacy and patient's safety. Thus, this study presents a brief literature review on amoxicillin and the analytical methods developed for the analysis of this drug in official and scientific papers. The major analytical methods found were high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (U-HPLC), capillary electrophoresis and iodometry and diffuse reflectance infrared Fourier transform. It is essential to note that most of the developed methods used toxic and hazardous solvents, which makes necessary industries and researchers choose to develop environmental-friendly techniques to provide enhanced benefits to environment and staff.
[WORKING CONDITIONS AND STATE OF HEALTH OF TBILISI SUBWAY EMPLOYEES].
Khunashvili, N; Tsimakuridze, Mar; Bakradze, L; Khachapuridze, N; Tsimakuridze, Maya
2017-03-01
For the purpose of preventive events complex hygienic, clinical-functional, laboratory and biostatic researches are implemented on the basis of Tbilisi Subway. Conditions of work are characterized by complex of unfavorable factors of the working environment and the labor process. Working environment is characterized by combination of unfavorable state of physical factors and air pollution with dust and toxic substances. The levels of noise and vibration refer to the 3.4 class of harmfulness. The content of dust and toxic substances corresponds to 3.1-3.2 classes of working conditions harmfulness. In the indexes of health status, the leading diseases are pathology of cardiovascular, nervous and digestive systems. Cause-effect relationships between working conditions and individual health indicators have been already established, which served as the basis for the development of comprehensive preventive health measures.
Proposal of an in silico profiler for categorisation of repeat dose toxicity data of hair dyes.
Nelms, M D; Ates, G; Madden, J C; Vinken, M; Cronin, M T D; Rogiers, V; Enoch, S J
2015-05-01
This study outlines the analysis of 94 chemicals with repeat dose toxicity data taken from Scientific Committee on Consumer Safety opinions for commonly used hair dyes in the European Union. Structural similarity was applied to group these chemicals into categories. Subsequent mechanistic analysis suggested that toxicity to mitochondria is potentially a key driver of repeat dose toxicity for chemicals within each of the categories. The mechanistic hypothesis allowed for an in silico profiler consisting of four mechanism-based structural alerts to be proposed. These structural alerts related to a number of important chemical classes such as quinones, anthraquinones, substituted nitrobenzenes and aromatic azos. This in silico profiler is intended for grouping chemicals into mechanism-based categories within the adverse outcome pathway paradigm.
SEDIMENT TOXICITY ASSESSMENT: COMPARISON OF STANDARD AND NEW TESTING DESIGNS
Standard methods of sediment toxicity testing are fairly well accepted; however, as with all else, evolution of these methods is inevitable. We compared a standard ASTM 10-day amphipod toxicity testing method with smaller, 48- and 96-h test methods using very toxic and reference ...
Immunostimulatory Properties of Lipid Modified CpG Oligonucleotides.
Yu, Chunsong; An, Myunggi; Li, Meng; Liu, Haipeng
2017-08-07
Innate immune responses recognizing pathogen associated molecular patterns play important roles in adaptive immunity. As such, ligands which mimic the conserved products of microbial and activate innate immunity are widely used as adjuvants for vaccines. Synthetic single strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-guanine (CpG) motifs which bind Toll-like receptor 9 (TLR9) are powerful molecular adjuvants, potentiating both humoral and cellular responses. However, CpG ODN's in vitro potency has not been translated to in vivo settings primarily due to issues associated with delivery and toxicity. A major challenge in clinical application of CpG ODN is the efficient delivery to lymph nodes, the anatomic sites where all the immune responses are initiated. Targeting CpG to the key antigen presenting cells (APC) is essential for its application as a vaccine adjuvant, as it not only enhances CpG's efficacy, but also greatly reduces the systemic toxicity. We recently discovered an "albumin-hitchhiking" approach by which CpG ODNs were conjugated to a lipophilic lipid tail and follow subcutaneous injection, accumulated in lymph nodes by binding and transporting with endogenous albumin. This molecular approach targets CpG to antigen presenting cells in the draining lymph nodes via an endogenous albumin-mediated mechanism and simultaneously improves both the efficacy and safety of CpG as a vaccine adjuvant. Since CpG ODNs can be divided into structurally distinct classes, and each class of CpG ODN activates different types of immune cells and triggers different types of immunostimulatory activities, it is important to thoroughly evaluate the efficacy of this "albumin-hitchhiking" strategy in each class of CpG. Here we compare the immunostimulatory activities of three classes of lipid conjugated CpG ODNs in vitro and in vivo. Three representative sequences of lipid modified CpG ODNs were synthesized and their stimulatory effects as a vaccine adjuvant were evaluated. Our results showed that in vitro, lipid modified class A CpG exhibited enhanced stimulatory activities toward TLR transfected reporter cells or bone-marrow derived dendritic cells, whereas lipid-modification of class B or C CpG reduces the activation of TLR9 by 2-3 fold, as compared with unmodified class B and class C CpG, respectively. However, in vivo coadministration of ovalbumin (OVA) protein antigen mixed with lipid-conjugated class B or C CpG ODNs, but not class A CpGs induced dramatically increased OVA-specific humoral and cytotoxic CD8 + T cells responses compared with OVA mixed with unmodified CpGs. Further, lipid-modification greatly reduces the toxicity associated with CpG by minimizing the systemic dissemination. Taken together, these results demonstrated that amphiphilic modification of three classes of CpG motifs differentially affected and modulated the immunostimulatory activities in vitro and in vivo. Our study highlights the importance of in vivo lymph node targeting of CpG ODNs in fulfilling their use as vaccine adjuvants, providing implications for the rational design of molecular adjuvant for subunit vaccines.
Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species.
Pillard, D A; Cornell, J S; Dufresne, D L; Hernandez, M T
2001-02-01
Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures such as coolants, deicers, surface coatings, cutting fluids, and hydraulic fluids. Recent studies have shown that benzotriazole derivatives are a major component of aircraft deicing fluids (ADFs) responsible for toxicity to bacteria (Microtox). Our current research compared the toxicity of benzotriazole (BT), two methylbenzotriazole (MeBT) isomers, and butylbenzotriazole (BBT). Acute toxicity assays were used to model the response of three common test organisms: Microtox bacteria (Vibrio fischeri), fathead minnow (Pimephales promelas) and water flea (Ceriodaphnia dubia). The response of all the three organisms varied over two orders of magnitude among all compounds. Vibrio fischeri was more sensitive than either C. dubia or P. promelas to all the test materials, while C. dubia was less sensitive than P. promelas. The response of test organisms to unmethylated benzotriazole and 4-methylbenzotriazole was similar, whereas 5-methylbenzotriazole was more toxic than either of these two compounds. BBT was the most toxic benzotriazole derivative tested, inducing acute toxicity at a concentration of < or = 3.3 mg/l to all organisms.
Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent.
Sousa, Fernanda; Sanavio, Barbara; Saccani, Alessandra; Tang, Yun; Zucca, Ileana; Carney, Tamara M; Mastropietro, Alfonso; Jacob Silva, Paulo H; Carney, Randy P; Schenk, Kurt; Omrani, Arash O; Huang, Ping; Yang, Lin; Rønnow, Henrik M; Stellacci, Francesco; Krol, Silke
2017-01-18
Nanoparticle-based magnetic resonance imaging T 2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r 2 /r 1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T 2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.
Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P
2017-11-01
Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Whole-cell luminescence biosensor-based lab-on-chip integrated system for water toxicity analysis
NASA Astrophysics Data System (ADS)
Rabner, Arthur; Belkin, Shimshon; Rozen, Rachel; Shacham, Yosi
2006-01-01
A novel water chemical toxin sensor has been successfully developed and evaluated as a working portable laboratory prototype. This sensor relies on a disposable plastic biochip prepared with a 4x4 micro-laboratory (μLab) chambers array of Escherichia coli reporter cells and micro-fluidic channels for liquids translocation. Each bacterial strain has been genetically modified into a bioluminescent reporter that responds to a pre-determined class of chemical agents. When challenged with a water sample containing a toxic chemical, the sensor responds with an increased bioluminescent signal from the biochip that is monitored over time. The signal is received by a motorized photomultiplier-based analyzer and interpreted by signal processing software. We have performed several levels of analysis: (i) the change in the bioluminescent signal from the sensor bacteria serves as a rapid indication for the presence of toxic chemicals in the water sample; (ii) the intensity of the change indicates the toxin concentration level; and (iii) the pattern of the responses for the different members of the bacterial panel on the biochip characterizes the biological origin of the toxin. The analyzer contains housing mechanics, electro-optics for signal acquisition, motorized readout calibration accessories, hydro-pneumatics modules for water sample translocation into biochip micro laboratories, electronics for overall control and communication with the host computer. This prototype has a demonstrated sensitivity for broad classes of water-borne toxic chemicals including naladixic acid (a model genotoxic agent), botulinum and acetylcholine esterase inhibitors. This work has initiated an investigation of a novel handheld field-deployable Water Toxicity Analysis (WTA) device.
Mass spectrometric characterization of naphthenic acids in environmental samples: a review.
Headley, John V; Peru, Kerry M; Barrow, Mark P
2009-01-01
There is a growing need to develop mass spectrometric methods for the characterization of oil sands naphthenic acids (structural formulae described by C(n)H(2n+z)O(2) where n is the number of carbon atoms and "z" is referred to as the "hydrogen deficiency" and is equal to zero, or is a negative, even integer) present in environmental samples. This interest stems from the need to better understand their contribution to the total acid number of oil sands acids; along with assessing their toxicity in aquatic environments. Negative-ion electrospray ionization has emerged as the analytical technique of choice. For infusion samples, matrix effects are particularly evident for quantification in the presence of salts and co-elutants. However, such effects can be minimized for methods that employ chromatographic separation prior to mass spectrometry (MS) detection. There have been several advances for accurate identification of classes of naphthenic acid components that employ a range of MS hyphenated techniques. General trends measured for degradation of the NAs in the environment appear to be similar to those obtained with either low- or high-resolution MS. Future MS research will likely focus on (i) development of more reliable quantitative methods that use chromatography and internal standards, (ii) the utility of representative model naphthenic acids as surrogates for the complex NA mixtures, and (iii) development of congener-specific analysis of the principal toxic components.
The evaluation of the abuse liability of drugs.
Johanson, C E
1990-01-01
In order to place appropriate restrictions upon the availability of certain therapeutic agents to limit their abuse, it is important to assess abuse liability, an important aspect of drug safety evaluation. However, the negative consequences of restriction must also be considered. Drugs most likely to be tested are psychoactive compounds with therapeutic indications similar to known drugs of abuse. Methods include assays of pharmacological profile, drug discrimination procedures, self-administration procedures, and measures of drug-induced toxicity including evaluations of tolerance and physical dependence. Furthermore, the evaluation of toxicity using behavioural end-points is an important component of the assessment, and it is generally believed that the most valid procedure in this evaluation is the measurement of drug self-administration. However, even this method rarely predicts the extent of abuse of a specific drug. Although methods are available which appear to measure relative abuse liability, these procedures are not validated for all drug classes. Thus, additional strategies, including abuse liability studies in humans, modelled after those used with animals, must be used in order to make a more informed prediction. Although there is pressure to place restrictions on new drugs at the time of marketing, in light of the difficulty of predicting relative abuse potential, a better strategy might be to market a drug without restrictions, but require postmarketing surveillance in order to obtain more accurate information on which to base a final decision.
Jovenaux, Ludovic; Cautela, Jennifer; Resseguier, Noemie; Pibarot, Michele; Taouqi, Myriam; Orabona, Morgane; Pinto, Johan; Peyrol, Michael; Barraud, Jeremie; Laine, Marc; Bonello, Laurent; Paganelli, Franck; Barlesi, Fabrice; Thuny, Franck
2017-08-15
Cardiovascular toxicity has become a challenging issue during cancer therapy. Nonetheless, there is a lack of consensual guidelines for their management. We aimed to determine the current practices of oncologists regarding cardiovascular toxicity related to anthracyclines, trastuzumab and angiogenic inhibitors and to gather their opinions on the development of cardio-oncology programs. A cross-sectional declarative study was submitted to French oncologists in the form of an individual, structured questionnaire. A total of 303 oncologists responded to the survey. Ninety-nine percent of oncologists prescribed cardiotoxic therapies, including anthracyclines (83%), trastuzumab (51%) and other angiogenic inhibitors (64%). The method adopted for managing cardiovascular toxicity was based on guidelines from expert oncology societies for only 35% of oncologists. None was aware of recommendations from expert cardiology societies. Prescription of pre-, peri- and post-therapy cardiovascular assessment was inconsistent and significantly less frequent for all classes of angiogenic inhibitors than for anthracyclines and trastuzumab (P<0.0001). Relative to pre-therapy assessment, post-therapy assessment was prescribed significantly less often for all cancer therapies (P<0.0001). Attitudes regarding the onset of left ventricular dysfunction were much more inconsistent when angiogenic inhibitors were involved. Additionally, the management of hypertension and QT prolongation was also inconsistent. Finally, 88% of oncologists supported projects of cardio-oncology programs development. Practices of oncologists are disparate in the field of cardiovascular toxicity. This finding underlines the complexity of managing many different situations and the need for distribution of formal guidelines from oncology and cardiology expert societies. The development of personalized cardio-oncology programs seems essential. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauze, Andra V.; Myrehaug, Sten D.; Chang, Michael G.
Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/daymore » over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.« less
Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants.
Manera, Maurizio; Giari, Luisa; De Pasquale, Joseph A; Sayyaf Dezfuli, Bahram
2016-06-01
An operator-neutral method was implemented to objectively assess European seabass, Dicentrarchus labrax (Linnaeus, 1758) gill pathology after experimental exposure to cadmium (Cd) and terbuthylazine (TBA) for 24 and 48h. An algorithm-derived local connected fractal dimension (LCFD) frequency measure was used in this comparative analysis. Canonical variates (CVA) and linear discriminant analysis (LDA) were used to evaluate the discrimination power of the method among exposure classes (unexposed, Cd exposed, TBA exposed). Misclassification, sensitivity and specificity, both with original and cross-validated cases, were determined. LCFDs frequencies enhanced the differences among classes which were visually selected after their means, respective variances and the differences between Cd and TBA exposed means, with respect to unexposed mean, were analyzed by scatter plots. Selected frequencies were then scanned by means of LDA, stepwise analysis, and Mahalanobis distance to detect the most discriminative frequencies out of ten originally selected. Discrimination resulted in 91.7% of cross-validated cases correctly classified (22 out of 24 total cases), with sensitivity and specificity, respectively, of 95.5% (1 false negative with respect to 21 really positive cases) and 75% (1 false positive with respect to 3 really negative cases). CVA with convex hull polygons ensured prompt, visually intuitive discrimination among exposure classes and graphically supported the false positive case. The combined use of semithin sections, which enhanced the visual evaluation of the overall lamellar structure; of LCFD analysis, which objectively detected local variation in complexity, without the possible bias connected to human personnel; and of CVA/LDA, could be an objective, sensitive and specific approach to study fish gill lamellar pathology. Furthermore this approach enabled discrimination with sufficient confidence between exposure classes or pathological states and avoided misdiagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Jacob, Raquel Sampaio; Santos, Lucilaine Valéria de Souza; de Souza, Ana Flávia Rodrigues; Lange, Liséte Celina
2016-11-01
Considerable quantities of different classes of drugs are consumed annually worldwide. These drugs, once disposed, often remain stable, even after conventional or advanced treatments. Although there have been a number of studies on the potential harm caused by drugs when released into the environment, few studies have investigated the toxicity of pharmaceutical excipients. In the present study, the acute toxicity of 30 drugs was tested to Aliivibrio fischeri. Ten different active ingredients were investigated, each in three distinct formulations: generic, similar and reference (brand drug). The aim of the study was to evaluate the harmful potential of drugs frequently sold in drugstores and to assess the contribution of excipients towards the observed acute toxicity. Within the 10 drugs evaluated, only one, dexchlorpheniramine maleate, was not toxic in any formulation. The toxicities of the three formulations were often different, even though the active ingredient has been the same. For some drugs, such as diazepam, glibenclamide, metformin, nimesulide, hydrochlorothiazide and simvastatin, only one or two of the three formulations tested were toxic to A. fischeri. These results highlight the toxicological potential of drug excipients, but not exclusively the toxicity of the active ingredients.
Booij, Petra; Sjollema, Sascha B; Leonards, Pim E G; de Voogt, Pim; Stroomberg, Gerard J; Vethaak, A Dick; Lamoree, Marja H
2013-09-01
The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study. The purpose of our study was to extract and identify compounds which are inhibitors of photosystem II activity in microalgae from estuarine and coastal waters. Field sampling was conducted in the Western Scheldt estuary (Hansweert, The Netherlands). We compared four different commonly used extraction methods: passive sampling with silicone rubber sheets, polar organic integrative samplers (POCIS) and spot water sampling using two different solid phase extraction (SPE) cartridges. Toxic effects of extracts prepared from spot water samples and passive samplers were determined in the Pulse Amplitude Modulation (PAM) fluorometry bioassay. With target chemical analysis using LC-MS and GC-MS, a set of PAHs, PCBs and pesticides was determined in field samples. These compound classes are listed as priority substances for the marine environment by the OSPAR convention. In addition, recovery experiments with both SPE cartridges were performed to evaluate the extraction suitability of these methods. Passive sampling using silicone rubber sheets and POCIS can be applied to determine compounds with different structures and polarities for further identification and determination of toxic pressure on primary producers. The added value of SPE lies in its suitability for quantitative analysis; calibration of passive samplers still needs further investigation for quantification of field concentrations of contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Erten-Unal, M; Gelderloos, A B; Hughes, J S
1998-07-30
A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.
Leshuk, Tim; Peru, Kerry M; de Oliveira Livera, Diogo; Tripp, Austin; Bardo, Patrick; Headley, John V; Gu, Frank
2018-05-10
The persistence of toxicity associated with the soluble naphthenic organic compounds (NOCs) of oil sands process-affected water (OSPW) implies that a treatment solution may be necessary to enable safe return of this water to the environment. Due to recent advances in high-resolution mass spectrometry (HRMS), the majority of the toxicity of OSPW is currently understood to derive from a subset of toxic classes, comprising only a minority of the total NOCs. Herein, oxidative treatment of OSPW with buoyant photocatalysts was evaluated under a petroleomics paradigm: chemical changes across acid-, base- and neutral-extractable organic fractions were tracked throughout the treatment with both positive and negative ion mode electrospray ionization (ESI) Orbitrap MS. Elimination of detected OS + and NO + classes of concern in the earliest stages of the treatment, along with preferential degradation of high carbon-numbered O 2 - acids, suggest that photocatalysis may detoxify OSPW with higher efficiency than previously thought. Application of petroleomic level analysis offers unprecedented insights into the treatment of petroleum impacted water, allowing reaction trends to be followed across multiple fractions and thousands of compounds simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sittaramane, Vinoth; Padgett, Jihan; Salter, Philip; Williams, Ashley; Luke, Shauntelle; McCall, Rebecca; Arambula, Jonathan F; Graves, Vincent B; Blocker, Mark; Van Leuven, David; Bowe, Keturah; Heimberger, Julia; Cade, Hannah C; Immaneni, Supriya; Shaikh, Abid
2015-11-01
In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp(3) -C-H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temporal pattern of toxicity in runoff from the Tijuana River Watershed.
Gersberg, Richard M; Daft, Daniel; Yorkey, Darryl
2004-02-01
Samples were collected from the Tijuana River under both dry weather (baseflow) conditions and during wet weather, and tested for toxicity using Ceriodaphnia dubia tests. Toxicity of waters in the Tijuana River was generally low under baseflow conditions, but increased markedly during high flow runoff events. In order to determine the temporal pattern of toxicity during individual rain events, sequential grab samples were collected using an autosampler at 5-7 h intervals after the start of the rain event, and tested for acute toxicity. In all cases, peak toxicity values (ranging from 2.8 to 5.8TU) for each storm occurred within the first 1-2 h of initiation of the rain event, and were statistically higher (using the 95% CL) for each of the pre-storm base flow values. However, there was no statistically significant correlation (p<0.05) between flow rate and toxicity when all storm data was pooled. Additionally, we used toxicity identification evaluation (TIE) procedures to attempt to identify the classes of chemicals that account for this early storm toxicity. Solid phase extraction was the only treatment that showed consistent and significant (P<0.05) removal of toxicity. These TIEs, conducted on the most toxic sample of the river's flow during runoff events, suggest that non-polar organics may be responsible for such toxicity. The temporal pattern of toxicity, both during a given storm event and seasonally, indicates that wash-off from the watershed by rainfall may deplete the supply of toxicity available for wash-off in subsequent events, so that a clearly consistent relationship between flow and toxicity was not evident.
The Continuing Saga of the Marine Polyether Biotoxins
Nicolaou, K. C.; Frederick, Michael O.; Aversa, Robert J.
2009-01-01
Lead-in Brevetoxin B emerged from the sea and into the laboratories of Nakanishi and Clardy who, in 1981, reported its magnificent and unprecedented structure. With its ladder-like fused polyether molecular architecture, potent toxicity, and fascinating voltage-sensitive sodium channel-based mechanism of action, it immediately captured the imagination of chemists around the world. Their synthetic escapades resulted in numerous new synthetic methods and strategies for the construction of cyclic ethers, and culminated in several impressive total syntheses of this imposing molecule and some of its equally challenging siblings that followed. Indeed, many more brevetoxin-type marine polyethers have been reported since 1981 with maitotoxin being not only the most complex and most toxic of the class, but also the largest non-polymeric natural product known to date. In this article, we begin with a brief history of these biotoxins and the phenomena that led to their isolation and highlight their biological properties and mechanism of action. We then review the chemical synthesis endeavors so far published in this long running saga, placing particular emphasis on the new synthetic methods and technologies discovered, developed and applied to their total syntheses over the last few decades. Finally, we conclude with a discussion of the, as yet unfinished, story of maitotoxin, and project into the future of this fascinating area of research. PMID:18763702
Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J
2006-04-01
The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods.
Quraishi, Khurrum Shehzad; Bustam, Mohamad Azmi; Krishnan, Sooridarsan; Aminuddin, Noor Fathanah; Azeezah, Noraisyah; Ghani, Noraini Abd; Uemura, Yoshimitsu; Lévêque, Jean Marc
2017-10-01
A promising method of Carbon dioxide (CO 2 ) valorization is to use green microalgae photosynthesis to process biofuel. Two Phase Partitioning Bioreactors (TPPBR) offer the possibility to use non-aqueous phase liquids (NAPL) to enhance CO 2 solubility; thus making CO 2 available to maximize algae growth. This requires relatively less toxic hydrophobic Ionic Liquids (ILs) that comprise a new class of ionic compounds with remarkable physicochemical properties and thus qualifies them as NAPL candidates. This paper concerns the synthesis of ILs with octyl and butyl chains as well as different cations containing aromatic (imidazolium, pyridinium) and non-aromatic (piperidinum, pyrrolidinium) rings for CO 2 absorption studies. The authors measured their respective toxicity levels on microalgae species, specifically, Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii. Results revealed that octyl-based ILs were more toxic than butyl-based analogues. Such was the case for bmim-PF6 at double saturation with an absorbance of 0.11, compared to Omim-PF6 at 0.17, bmim-NTf2 at 0.02, and Omim-NTf2 at 0.14, respectively. CO 2 uptake results for ILs bearing octyl-based chains compared to the butyl analog were 54% (nCO 2 /nIL) (i.e., moles of CO 2 moles of IL) and 38% (nCO 2 /nIL), respectively. Conclusively, 1-butyl-1-methylpiperidinium absorbed 13% (nCO 2 /nIL) and appeared the least toxic, having an absorbance of 0.25 at 688 nm (double saturation at 7 d) compared to 1-butyl-3-methylimidazolium, which showed the highest toxicity with zero absorbance. Accordingly, these findings suggest that 1-butyl-1-methylpiperidinium is capable of transporting CO 2 to a system containing green microalgae without causing significant harm; thus allowing its use in TPPBR technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atrazine - Background and Updates
Atrazine is a widely used herbicide that can be applied before and after planting to control broadleaf and grassy weeds. Atrazine is part of the triazine chemical class which includes simazine and propazine due to their common mechanism of toxicity.
Chemical Principles Exemplified
ERIC Educational Resources Information Center
Plumb, Robert C.
1974-01-01
Describes bonding properties that account for the difference in toxicity between hydrogen cyanide and carbon monoxide. Uses the concepts of intermolecular and intramolecular forces in explaining the operation of pressure sensitive adhesives. Gives a definition of a cubic crystal class. (GS)
ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS
Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...
Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity.
Good, James A D; Silver, Jim; Núñez-Otero, Carlos; Bahnan, Wael; Krishnan, K Syam; Salin, Olli; Engström, Patrik; Svensson, Richard; Artursson, Per; Gylfe, Åsa; Bergström, Sven; Almqvist, Fredrik
2016-03-10
The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 ≤ 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 μM. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.
Ghosh, Animesh; Mukherjee, Koushik; Jiang, Xinpeng; Zhou, Ying; McCarroll, Joshua; Qu, James; Swain, Pamela M.; Baigude, Huricha; Rana, Tariq M.
2010-01-01
RNA interference (RNAi), a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of non-viral gene delivery agents under safe and fast reaction conditions. PMID:20722369
Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment
Megha, Pankajshan; Sreedev, Puthur
2016-01-01
Organochlorine (OC) pesticides are synthetic pesticides widely used all over the world. They belong to the group of chlorinated hydrocarbon derivatives, which have vast application in the chemical industry and in agriculture. These compounds are known for their high toxicity, slow degradation and bioaccumulation. Even though many of the compounds which belong to OC were banned in developed countries, the use of these agents has been rising. This concerns particularly abuse of these chemicals which is in practice across the continents. Though pesticides have been developed with the concept of target organism toxicity, often non-target species are affected badly by their application. The purpose of this review is to list the major classes of pesticides, to understand organochlorine pesticides based on their activity and persistence, and also to understand their biochemical toxicity. PMID:28652852
Toxins produced in cyanobacterial water blooms – toxicity and risks
Bláha, Luděk; Babica, Pavel; Maršálek, Blahoslav
2009-01-01
Cyanobacterial blooms in freshwaters represent a major ecological and human health problem worldwide. This paper briefly summarizes information on major cyanobacterial toxins (hepatotoxins, neurotoxins etc.) with special attention to microcystins-cyclic heptapeptides with high acute and chronic toxicities. Besides discussion of human health risks, microcystin ecotoxicology and consequent ecological risks are also highlighted. Although significant research attention has been paid to microcystins, cyanobacteria produce a wide range of currently unknown toxins, which will require research attention. Further research should also address possible additive, synergistic or antagonistic effects among different classes of cyanobacterial metabolites, as well as interactions with other toxic stressors such as metals or persistent organic pollutants. PMID:21217843
The Educated Guess: Determining Drug Doses in Exotic Animals Using Evidence-Based Medicine.
Visser, Marike; Oster, Seth C
2018-05-01
Lack of species-specific pharmacokinetic and pharmacodynamic data is a challenge for pharmaceutical and dose selection. If available, dose extrapolation can be accomplished via basic equations. If unavailable, several methods have been described. Linear scaling uses an established milligrams per kilograms dose based on weight. This does not allow for differences in species drug metabolism, sometimes resulting in toxicity. Allometric scaling correlates body weight and metabolic rate but fails for drugs with significant hepatic metabolism and cannot be extrapolated to avians or reptiles. Evidence-based veterinary medicine for dose design based on species similarity is discussed, considering physiologic differences between classes. Copyright © 2018 Elsevier Inc. All rights reserved.
Chowdhury, Fazle Rabbi; Dewan, Gourab; Verma, Vasundhara R; Knipe, Duleeka W; Isha, Ishrat Tahsin; Faiz, M Abul; Gunnell, David J; Eddleston, Michael
2018-01-01
Abstract Background Pesticide self-poisoning is a major problem in Bangladesh. Over the past 20-years, the Bangladesh government has introduced pesticide legislation and banned highly hazardous pesticides (HHPs) from agricultural use. We aimed to assess the impacts of pesticide bans on suicide and on agricultural production. Methods We obtained data on unnatural deaths from the Statistics Division of Bangladesh Police, and used negative binomial regression to quantify changes in pesticide suicides and unnatural deaths following removal of WHO Class I toxicity HHPs from agriculture in 2000. We assessed contemporaneous trends in other risk factors, pesticide usage and agricultural production in Bangladesh from 1996 to 2014. Results Mortality in hospital from pesticide poisoning fell after the 2000 ban: 15.1% vs 9.5%, relative reduction 37.1% [95% confidence interval (CI) 35.4 to 38.8%]. The pesticide poisoning suicide rate fell from 6.3/100 000 in 1996 to 2.2/100 000 in 2014, a 65.1% (52.0 to 76.7%) decline. There was a modest simultaneous increase in hanging suicides [20.0% (8.4 to 36.9%) increase] but the overall incidence of unnatural deaths fell from 14.0/100 000 to 10.5/100 000 [25.0% (18.1 to 33.0%) decline]. There were 35 071 (95% CI 25 959 to 45 666) fewer pesticide suicides in 2001 to 2014 compared with the number predicted based on trends between 1996 to 2000. This reduction in rate of pesticide suicides occurred despite increased pesticide use and no change in admissions for pesticide poisoning, with no apparent influence on agricultural output. Conclusions Strengthening pesticide regulation and banning WHO Class I toxicity HHPs in Bangladesh were associated with major reductions in deaths and hospital mortality, without any apparent effect on agricultural output. Our data indicate that removing HHPs from agriculture can rapidly reduce suicides without imposing substantial agricultural costs. PMID:29024951
Comparative toxicities of organophosphate and pyrethroid insecticides to aquatic macroarthropods.
Halstead, Neal T; Civitello, David J; Rohr, Jason R
2015-09-01
As agricultural expansion and intensification increase to meet the growing global food demand, so too will insecticide use and thus the risk of non-target effects. Insecticide pollution poses a particular threat to aquatic macroarthropods, which play important functional roles in freshwater ecosystems. Thus, understanding the relative toxicities of insecticides to non-target functional groups is critical for predicting effects on ecosystem functions. We exposed two common macroarthropod predators, the crayfish Procambarus alleni and the water bug Belostoma flumineum, to three insecticides in each of two insecticide classes (three organophosphates: chlorpyrifos, malathion, and terbufos; and three pyrethroids: esfenvalerate, λ-cyhalothrin, and permethrin) to assess their toxicities. We generated 150 simulated environmental exposures using the US EPA Surface Water Contamination Calculator to determine the proportion of estimated peak environmental concentrations (EECs) that exceeded the US EPA level of concern (0.5×LC50) for non-endangered aquatic invertebrates. Organophosphate insecticides generated consistently low-risk exposure scenarios (EECs<0.5×LC50) for both P. alleni and B. flumineum. Pyrethroid exposure scenarios presented consistently high risk (EECs>0.5×LC50) to P. alleni, but not to B. flumineum, where only λ-cyhalothrin produced consistently high-risk exposures. Survival analyses demonstrated that insecticide class accounted for 55.7% and 91.1% of explained variance in P. alleni and B. flumineum survival, respectively. Thus, risk to non-target organisms is well predicted by pesticide class. Identifying insecticides that pose low risk to aquatic macroarthropods might help meet increased demands for food while mitigating against potential negative effects on ecosystem functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lupton, Sara J; O'Keefe, Margaret; Muñiz-Ortiz, Jorge G; Clinch, Nelson; Basu, Pat
2017-11-01
The US Department of Agriculture (USDA) conducts a statistically based survey of the domestic meat supply (beef, pork, chicken and turkey) to determine current levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and non-ortho-polychlorinated biphenyls (no-PCBs) every 5 years. Fat samples for each slaughter class were collected from US federally licensed slaughter facilities. The samples were processed and analysed for 17 PCDD/Fs and three no-PCBs. The sum of PCDD, PCDF and no-PCB toxic equivalencies (sum-TEQ) calculated using 2005 toxic-equivalency factors for all slaughter classes ranged from non-detect (n.d.) to 6.47 pg TEQ g -1 lipid. The median sum-TEQs, when n.d. = 0.5 LOD, for beef, pork, chicken and turkey were 0.66, 0.12, 0.13 and 0.34 pg TEQ g -1 lipid respectively. A comparison of the current survey with the previous three surveys shows a declining trend, with decreasing differences between medians; differences between the median sum-TEQs from 2007-08 and 2012-13 were -10%, -29%, -33% and -25% for beef, pork, chicken and turkey respectively. Several beef samples underwent further characterisation and congener patterns from these beef samples suggested pentachlorophenol treated wood as the likely exposure source. US consumer exposure to these compounds is relatively low and no slaughter class contributed more than 26% to the US Environmental Protection Agency (USEPA) chronic oral reference dose of 0.7 pg TEQ kg -1 bw day -1 .
NASA Astrophysics Data System (ADS)
Cota, Iuliana
2017-04-01
Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.
Machine learning algorithms for the prediction of hERG and CYP450 binding in drug development.
Klon, Anthony E
2010-07-01
The cost of developing new drugs is estimated at approximately $1 billion; the withdrawal of a marketed compound due to toxicity can result in serious financial loss for a pharmaceutical company. There has been a greater interest in the development of in silico tools that can identify compounds with metabolic liabilities before they are brought to market. The two largest classes of machine learning (ML) models, which will be discussed in this review, have been developed to predict binding to the human ether-a-go-go related gene (hERG) ion channel protein and the various CYP isoforms. Being able to identify potentially toxic compounds before they are made would greatly reduce the number of compound failures and the costs associated with drug development. This review summarizes the state of modeling hERG and CYP binding towards this goal since 2003 using ML algorithms. A wide variety of ML algorithms that are comparable in their overall performance are available. These ML methods may be applied regularly in discovery projects to flag compounds with potential metabolic liabilities.
Pesticides: an update of human exposure and toxicity.
Mostafalou, Sara; Abdollahi, Mohammad
2017-02-01
Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.
Sears, Margaret E.; Genuis, Stephen J.
2012-01-01
The World Health Organization warns that chronic, noncommunicable diseases are rapidly becoming epidemic worldwide. Escalating rates of neurocognitive, metabolic, autoimmune and cardiovascular diseases cannot be ascribed only to genetics, lifestyle, and nutrition; early life and ongoing exposures, and bioaccumulated toxicants may also cause chronic disease. Contributors to ill health are summarized from multiple perspectives—biological effects of classes of toxicants, mechanisms of toxicity, and a synthesis of toxic contributors to major diseases. Healthcare practitioners have wide-ranging roles in addressing environmental factors in policy and public health and clinical practice. Public health initiatives include risk recognition and chemical assessment then exposure reduction, remediation, monitoring, and avoidance. The complex web of disease and environmental contributors is amenable to some straightforward clinical approaches addressing multiple toxicants. Widely applicable strategies include nutrition and supplements to counter toxic effects and to support metabolism; as well as exercise and sweating, and possibly medication to enhance excretion. Addressing environmental health and contributors to chronic disease has broad implications for society, with large potential benefits from improved health and productivity. PMID:22315626
RIFM fragrance ingredient safety assessment, 2-methylundecanol, CAS Registry Number 10522-26-6.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
This material was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the suitable read across analogs 2-butyloctan-1-ol (CAS # 3913-02-8) and 2-ethyl-1-hexanol (CAS # 104-76-7) show that this material is not genotoxic nor does it have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The repeated dose toxicity endpoint was completed using 2-ethyl-1-hexanol (CAS # 104-76-7) and 1-heptanol, 2-propyl (CAS # 10042-59-8) as suitable read across analogs, which provided a MOE > 100. The developmental toxicity endpoint was completed using 2-ethyl-1-hexanol (CAS # 104-76-7) as a suitable read across analog, which provided a MOE > 100 The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monitoring late-onset toxicities in phase I trials using predicted risks
Bekele, B. Nebiyou; Ji, Yuan; Shen, Yu; Thall, Peter F.
2008-01-01
Late-onset (LO) toxicities are a serious concern in many phase I trials. Since most dose-limiting toxicities occur soon after therapy begins, most dose-finding methods use a binary indicator of toxicity occurring within a short initial time period. If an agent causes LO toxicities, however, an undesirably large number of patients may be treated at toxic doses before any toxicities are observed. A method addressing this problem is the time-to-event continual reassessment method (TITE-CRM, Cheung and Chappell, 2000). We propose a Bayesian dose-finding method similar to the TITE-CRM in which doses are chosen using time-to-toxicity data. The new aspect of our method is a set of rules, based on predictive probabilities, that temporarily suspend accrual if the risk of toxicity at prospective doses for future patients is unacceptably high. If additional follow-up data reduce the predicted risk of toxicity to an acceptable level, then accrual is restarted, and this process may be repeated several times during the trial. A simulation study shows that the proposed method provides a greater degree of safety than the TITE-CRM, while still reliably choosing the preferred dose. This advantage increases with accrual rate, but the price of this additional safety is that the trial takes longer to complete on average. PMID:18084008
The Next Generation of Targeted Molecules for the Treatment of Chronic Lymphocytic Leukemia.
Jeyakumar, Deepa; O'Brien, Susan
2016-11-15
With the recent approval of several new targeted therapies for chronic lymphocytic leukemia (CLL), there are now multiple options for its treatment. Inhibitors of Bruton tyrosine kinase (with ibrutinib being the first-in-class US Food and Drug Administration-approved agent) and phosphoinositide 3-kinase (with idelalisib as the first-in-class approved agent) are promising because they are generally well tolerated and highly effective against this malignancy. These agents may be particularly important in the treatment of older patients who are less able to tolerate the myelosuppression (and subsequent infections) associated with chemoimmunotherapy. As a class of medications, B-cell receptor inhibitors have some unique side effects, including redistribution lymphocytosis. Toxicities associated specifically with ibrutinib include increased risk for bleeding and atrial fibrillation. Idelalisib also has some unique toxicities: transaminitis, colitis, and pneumonitis. Targeted therapies recently approved for use in CLL include the novel anti-CD20 monoclonal antibodies obinutuzumab and ofatumumab, and the B-cell lymphoma 2 inhibitor venetoclax. This article describes the clinical data that led to approval of these B-cell receptor inhibitors for the treatment of CLL, and highlights newer agents in clinical development that target the same kinases as the currently available therapies.
The molecular diversity of α-gliadin genes in the tribe Triticeae.
Qi, Peng-Fei; Chen, Qing; Ouellet, Thérèse; Wang, Zhao; Le, Cheng-Xing; Wei, Yu-Ming; Lan, Xiu-Jin; Zheng, You-Liang
2013-09-01
Many of the unique properties of wheat flour are derived from seed storage proteins such as the α-gliadins. In this study these α-gliadin genes from diploid Triticeae species were systemically characterized, and divided into 3 classes according to the distinct organization of their protein domains. Our analyses indicated that these α-gliadins varied in the number of cysteine residues they contained. Most of the α-gliadin genes were grouped according to their genomic origins within the phylogenetic tree. As expected, sequence alignments suggested that the repetitive domain and the two polyglutamine regions were responsible for length variations of α-gliadins as were the insertion/deletion of structural domains within the three different classes (I, II, and III) of α-gliadins. A screening of celiac disease toxic epitopes indicated that the α-gliadins of the class II, derived from the Ns genome, contain no epitope, and that some other genomes contain much fewer epitopes than the A, S(B) and D genomes of wheat. Our results suggest that the observed genetic differences in α-gliadins of Triticeae might indicate their use as a fertile ground for the breeding of less CD-toxic wheat varieties.
Physiological IgM Class Catalytic Antibodies Selective for Transthyretin Amyloid*
Planque, Stephanie A.; Nishiyama, Yasuhiro; Hara, Mariko; Sonoda, Sari; Murphy, Sarah K.; Watanabe, Kenji; Mitsuda, Yukie; Brown, Eric L.; Massey, Richard J.; Primmer, Stanley R.; O'Nuallain, Brian; Paul, Sudhir
2014-01-01
Peptide bond-hydrolyzing catalytic antibodies (catabodies) could degrade toxic proteins, but acquired immunity principles have not provided evidence for beneficial catabodies. Transthyretin (TTR) forms misfolded β-sheet aggregates responsible for age-associated amyloidosis. We describe nucleophilic catabodies from healthy humans without amyloidosis that degraded misfolded TTR (misTTR) without reactivity to the physiological tetrameric TTR (phyTTR). IgM class B cell receptors specifically recognized the electrophilic analog of misTTR but not phyTTR. IgM but not IgG class antibodies hydrolyzed the particulate and soluble misTTR species. No misTTR-IgM binding was detected. The IgMs accounted for essentially all of the misTTR hydrolytic activity of unfractionated human serum. The IgMs did not degrade non-amyloidogenic, non-superantigenic proteins. Individual monoclonal IgMs (mIgMs) expressed variable misTTR hydrolytic rates and differing oligoreactivity directed to amyloid β peptide and microbial superantigen proteins. A subset of the mIgMs was monoreactive for misTTR. Excess misTTR was dissolved by a hydrolytic mIgM. The studies reveal a novel antibody property, the innate ability of IgMs to selectively degrade and dissolve toxic misTTR species as a first line immune function. PMID:24648510
Ohtakara, Kazuhiro; Hoshi, Hiroaki
2014-06-01
To determine the preliminary clinical outcomes of image-guided 3-dimensional conformal radiotherapy (IG-3DCRT) for limited but variably-sized brain metastases (BM). Sixty-two lesions in 24 patients were retrospectively evaluated; out of these patients 75% were ≥ 65 years of age, and 37.5% were categorized into recursive partitioning analysis (RPA) class 3. The median value for the maximum diameter of the lesions was 19 mm (range=4-72 mm). The median sole treatment dose was 36 Gy in 10 fractions. The median survival durations after IG-3DCRT were 12.0 months and 3.2 months for patients categorized into RPA classes ≤ 2 and 3, respectively. Local recurrences occurred in two lesions with a 6-month local control probability of 93.0%. Major toxicities included radiation necrosis in two patients. IG-3DCRT is feasible even for patients with limited BM who are categorized into RPA class 3, and confers clinical outcomes comparable to those of stereotactic radiosurgery, including excellent local control and minimal toxicity even for large tumors. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Huang, Ruili; Lin, Ja-An; Sedykh, Alexander; Zhao, Jinghua; Tice, Raymond R.; Paules, Richard S.; Xia, Menghang; Auerbach, Scott S.
2017-01-01
Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our analysis, it is possible to formulate mechanism-based hypotheses on the cytotoxic properties of the tested chemicals. PMID:28531190
Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells.
Mendez, Natalie; Liberman, Alexander; Corbeil, Jacqueline; Barback, Christopher; Viveros, Robert; Wang, James; Wang-Rodriguez, Jessica; Blair, Sarah L; Mattrey, Robert; Vera, David; Trogler, William; Kummel, Andrew C
2017-04-01
Silica nanoparticles are an emerging class of biomaterials which may be used as diagnostic and therapeutic tools for biomedical applications. In particular, hollow silica nanoshells are attractive due to their hollow core. Approximately 70% of a 500 nm nanoshell is hollow, therefore more particles can be administered on a mg/kg basis compared to solid nanoparticles. Additionally, their nanoporous shell permits influx/efflux of gases and small molecules. Since the size, shape, and composition of a nanoparticle can dramatically alter its toxicity and biodistribution, the toxicology of these nanomaterials was assessed. A single dose toxicity study was performed in vivo to assess the toxicity of 500 nm iron-doped silica nanoshells at clinically relevant doses of 10-20 mg/kg. This study showed that only a trace amount of silica was detected in the body 10 weeks post-administration. The hematology, biochemistry and pathological results show that the nanoshells exhibit no acute or chronic toxicity in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
CUMULATIVE DEVELOPMENTAL EFFECTS OF ENDOCRINE DISRUPTERS: SYNERGY OR ADDITIVITY?
Exposure to chemicals with hormonal activity during critical developmental periods can disrupt reproductive function and development. Within the last decade, several classes of pesticides and toxic substances have been shown to disrupt differentiation of the male rat reproductive...
49 CFR 173.197 - Regulated medical waste.
Code of Federal Regulations, 2013 CFR
2013-10-01
... transported in a Cart or BOP. (v) Division 6.1 toxic waste or Class 7 radioactive waste, with the exception of... construction and a rigid, weatherproof top to prevent the intrusion of water (e.g., rain or snow). (iii) Each...
49 CFR 173.197 - Regulated medical waste.
Code of Federal Regulations, 2012 CFR
2012-10-01
... transported in a Cart or BOP. (v) Division 6.1 toxic waste or Class 7 radioactive waste, with the exception of... construction and a rigid, weatherproof top to prevent the intrusion of water (e.g., rain or snow). (iii) Each...
49 CFR 173.197 - Regulated medical waste.
Code of Federal Regulations, 2014 CFR
2014-10-01
... transported in a Cart or BOP. (v) Division 6.1 toxic waste or Class 7 radioactive waste, with the exception of... construction and a rigid, weatherproof top to prevent the intrusion of water (e.g., rain or snow). (iii) Each...
Hockenberry, Marilyn J; Hooke, Mary C; Rodgers, Cheryl; Taylor, Olga; Koerner, Kari M; Mitby, Pauline; Moore, Ida; Scheurer, Michael E; Pan, Wei
2017-07-01
Cancer treatment symptoms play a major role in determining the health of children with cancer. Symptom toxicity often results in complications, treatment delays, and therapy dose reductions that can compromise leukemia therapy and jeopardize chances for long-term survival. Critical to understanding symptom experiences during treatment is the need for exploration of "why" inter-individual symptom differences occur; this will determine who may be most susceptible to treatment toxicities. This study examined specific symptom trajectories during the first 18 months of childhood leukemia treatment. Symptom measures included fatigue, sleep disturbances, pain, nausea, and depression. Symptom trajectories of 236 children with leukemia three to 18 years old were explored prospectively over four periods: initiation of post-induction therapy, four and eight post-induction therapy, and the last time point was at the beginning of maintenance/continuation therapy. Latent class growth analysis was used to classify patients into distinctive groups with similar symptom trajectories based on patients' response patterns on the symptom measures over time. Three latent classes of symptom trajectories were identified and classified into mild, moderate, and severe symptom trajectories. The only demographic characteristic with a significant relationship to membership in the latent class symptom trajectories was race/ethnicity. All other demographic characteristics including leukemia risk levels showed no significant relationships. This study is unique in that groups of patients with similar symptoms were identified rather than groups of symptoms. Further research using latent class growth analysis is needed. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W
2014-08-01
Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.
To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs)more » as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berk, Lawrence; Berkey, Brian; Rich, Tyvin
Purpose: To determine if high-dose melatonin for Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) Class 2 patients with brain metastases improved survival over historical controls, and to determine if the time of day melatonin was given affected its toxicity or efficacy. RTOG 0119 was a phase II randomized trial for this group of patients. Methods and Materials: RTOG RPA Class 2 patients with brain metastases were randomized to 20 mg of melatonin, given either in the morning (8-9 AM) or in the evening (8-9 PM). All patients received radiation therapy (30 Gy in 10 fractions) in the afternoon.more » Melatonin was continued until neurologic deterioration or death. The primary endpoint was overall survival time. Neurologic deterioration, as reflected by the Mini-Mental Status Examination, was also measured. Results: Neither of the randomized groups had survival distributions that differed significantly from the historic controls of patients treated with whole-brain radiotherapy. The median survivals of the morning and evening melatonin treatments were 3.4 and 2.8 months, while the RTOG historical control survival was 4.1 months. Conclusions: High-dose melatonin did not show any beneficial effect in this group of patients.« less
Bird, Lisa J
2015-02-01
Baseline susceptibility of Helicoverpa armigera (Hübner) to emamectin benzoate, chlorantraniliprole, and indoxacarb was determined in feeding assays on insecticide-incorporated artificial diet in the laboratory. The intraspecific variation of H. armigera was established from field populations collected between September 2012 and March 2013, primarily from commercial farms across eastern Australia. Emamectin benzoate had the highest toxicity with a median lethal concentration (LC50) of 0.01 µg/ml diet (n=20 strains). The LC50 for chlorantraniliprole was 0.03 µg/ml diet (n=21 strains), while indoxacarb had the lowest relative toxicity with an average LC50 of 0.3 µg/ml diet (n=22 strains). Variation in susceptibility amongst field strains was 2.3-fold for emamectin benzoate and 2.9-fold for chlorantraniliprole and indoxacarb. Discriminating concentrations of 0.2, 1, and 12 µg of insecticide per milliliter of diet for emamectin benzoate, chlorantraniliprole, and indoxacarb, respectively, were calculated from toxicological data from field H. armigera strains as a first step in resistance management of these classes of insecticide in Australia. The low intraspecific tolerance, high slope values, and goodness-of-fit to a probit binomial model obtained in this study suggest that a feeding assay using diet incorporated insecticide is an effective laboratory method for measuring the dose-responses of these classes of insecticides in H. armigera. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
16 CFR 1500.40 - Method of testing toxic substances.
Code of Federal Regulations, 2010 CFR
2010-01-01
... bleeding. (c) Procedures for testing. The sleeve is slipped onto the animal which is then placed in a... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method of testing toxic substances. 1500.40... testing toxic substances. The method of testing the toxic substances referred to in § 1500.3(c) (1)(ii)(C...
16 CFR 1500.40 - Method of testing toxic substances.
Code of Federal Regulations, 2012 CFR
2012-01-01
... bleeding. (c) Procedures for testing. The sleeve is slipped onto the animal which is then placed in a... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Method of testing toxic substances. 1500.40... testing toxic substances. The method of testing the toxic substances referred to in § 1500.3(c) (1)(ii)(C...
16 CFR 1500.40 - Method of testing toxic substances.
Code of Federal Regulations, 2011 CFR
2011-01-01
... bleeding. (c) Procedures for testing. The sleeve is slipped onto the animal which is then placed in a... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Method of testing toxic substances. 1500.40... testing toxic substances. The method of testing the toxic substances referred to in § 1500.3(c) (1)(ii)(C...
Endocrine Disruptor Induction of Epigenetic Transgenerational Inheritance of Disease
Skinner, Michael K.
2014-01-01
Environmental exposures such as toxicants, nutrition and stress have been shown to promote the epigenetic transgenerational inheritance of disease susceptibility. Endocrine disruptors are one of the largest groups of specific toxicants shown to promote this form of epigenetic inheritance. These environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to on a daily level. The ability of ancestral exposures to promote disease susceptibility significantly increases the potential biohazards of these toxicants. Therefore, what your great-grandmother was exposed to during pregnancy may influence your disease development, even in the absence of any exposure, and you are going to pass this on to your grandchildren. This non-genetic form of inheritance significantly impacts our understanding of biology from the origins of disease to evolutionary biology. The current review will describe the previous studies and endocrine disruptors shown to promote the epigenetic transgenerational inheritance of disease. PMID:25088466
ERIC Educational Resources Information Center
Whitlatch, Jo Bell
1977-01-01
This essay lists resources on drug information. Topics include classes of drugs, drugs which are abused, identification of drug abusers, drug education, national patterns of abuse and treatment, drug toxicity and poisoning, federal regulations, federal enforcement efforts and strategies, and the relationship of drugs and crime. (JAB)
IN VITRO METABOLISM OF TRIADIMEFON BY RAT LIVER MICROSOMES
Triadimefon (TDF) is an azole used as an agricultural pesticide. TDF exposures in laboratory studies have resulted in neurological, developmental and reproductive toxicities as well as tumors. Other classes of conazoles serve as effective pharmaceutical agents in controlling lo...
PREDICTIVE PHYSIOLOGICALLY BASED PHARMACOKINETICS MODELING (PBPK) OF PYRETHROID PESTICIDES
Pyrethroids are a class of neurotoxic pesticides that have many different applications in agriculture, horticulture, and homes, and medicinal uses for animals and humans. Differences in the toxicity of pyrethroids are the result of their pharmacokinetic and/or pharmacodynamic pr...
Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs
In order to generate a quantitative, direct comparison amongst classes of drinking water disinfection by-products (DBPs), we developed and calibrated in vitro mammalian cell cytotoxicity and genotoxicity assays to integrate the analytical biology with the analytical chemistry of ...
Effects of Environmental Toxicants on Metabolic Activity of Natural Microbial Communities
Barnhart, Carole L. H.; Vestal, J. Robie
1983-01-01
Two methods of measuring microbial activity were used to study the effects of toxicants on natural microbial communities. The methods were compared for suitability for toxicity testing, sensitivity, and adaptability to field applications. This study included measurements of the incorporation of 14C-labeled acetate into microbial lipids and microbial glucosidase activity. Activities were measured per unit biomass, determined as lipid phosphate. The effects of various organic and inorganic toxicants on various natural microbial communities were studied. Both methods were useful in detecting toxicity, and their comparative sensitivities varied with the system studied. In one system, the methods showed approximately the same sensitivities in testing the effects of metals, but the acetate incorporation method was more sensitive in detecting the toxicity of organic compounds. The incorporation method was used to study the effects of a point source of pollution on the microbiota of a receiving stream. Toxic doses were found to be two orders of magnitude higher in sediments than in water taken from the same site, indicating chelation or adsorption of the toxicant by the sediment. The microbiota taken from below a point source outfall was 2 to 100 times more resistant to the toxicants tested than was that taken from above the outfall. Downstream filtrates in most cases had an inhibitory effect on the natural microbiota taken from above the pollution source. The microbial methods were compared with commonly used bioassay methods, using higher organisms, and were found to be similar in ability to detect comparative toxicities of compounds, but were less sensitive than methods which use standard media because of the influences of environmental factors. PMID:16346432
Corsi, Steven R; Geis, Steven W; Loyo-Rosales, Jorge E; Rice, Clifford P
2006-12-01
Characterization of the effects of aircraft deicer and anti-icer fluid (ADAF) runoff on aquatic organisms in receiving streams is a complex issue because the identities of numerous toxic additives are proprietary and not publicly available. Most potentially toxic and endocrine disrupting effects caused by ADAF are due to the numerous additive package ingredients which vary among manufacturers and types of ADAF formulation. Toxicity investigations of nine ADAF formulations indicate that endpoint concentrations for formulations of different manufacturers are widely variable. Type IV ADAF (anti-icers) are more toxic than Type I (deicers) for the four organisms tested (Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Selenastrum capricornutum). Acute toxicity endpoint concentrations ranged from 347 to 7700 mg/L as ADAF for Type IV and from 1550 to 45,100 mg/L for Type I formulations. Chronic endpoint concentrations ranged from 70 to 1300 mg/L for Type IV and from 37 to 18,400 mg/L for Type I formulations. Alkylphenol ethoxylates and tolyltriazoles are two known classes of additives. Nonylphenol, nonylphenol ethoxylates, octylphenol, octylphenol ethoxylates, and 4,5-methyl-1H-benzotriazoles were quantified in the nine ADAF formulations, and toxicity tests were conducted with nonylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles. Toxicity units computed for glycol and these additives, with respect to toxicity of the ADAF formulations, indicate that a portion of ADAF toxicity can be explained by the known additives and glycols, but much of the toxicity is due to unidentified additives.
Zmolek, Wesley; Bañas, Stefanie; Barfield, Robyn M; Rabuka, David; Drake, Penelope M
2016-10-01
Antibody-drug conjugates represent a growing class of biologic drugs that use the targeted specificity of an antibody to direct the localization of a small molecule drug, often a cytotoxic payload. After conjugation, antibody-drug conjugate preparations typically retain a residual amount of free (unconjugated) linker-payload. Monitoring this free small molecule drug component is important due to the potential for free payload to mediate unintended (off-target) toxicity. We developed a simple RP-HPLC/MRM-MS-based assay that can be rapidly employed to quantify free linker-payload. The method uses low sample volumes and offers an LLOQ of 10nM with 370pg on column. This analytical approach was used to monitor free linker-payload removal during optimization of the tangential flow filtration manufacturing step. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Douglas; Sillerud, Colin Halliday
The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; andmore » the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.« less
Development of whole sediment toxicity identification and evaluation (TIEs) methods has been under way for approximately four years. These methods are necessary to define cause and effect relationships in toxic sediments during ecological risk assessments, remediation and disposa...
Chiaraviglio, Lucius
2014-01-01
Abstract Interpretation of high throughput screening (HTS) data in cell-based assays may be confounded by cytotoxic properties of screening compounds. Therefore, assessing cell toxicity in real time during the HTS process itself would be highly advantageous. Here, we investigate the potential of putatively impermeant, fluorescent, DNA-binding dyes to give cell toxicity readout during HTS. Amongst 19 DNA-binding dyes examined, three classes were identified that were (1) permeant, (2) cytotoxic, or (3) neither permeant nor cytotoxic during 3-day incubation with a macrophage cell line. In the last class, four dyes (SYTOX Green, CellTox Green, GelGreen, and EvaGreen) gave highly robust cytotoxicity data in 384-well screening plates. As proof of principle, successful combination with a luminescence-based assay in HTS format was demonstrated. Here, both intracellular growth of Legionella pneumophila (luminescence) and host cell viability (SYTOX Green exclusion) were assayed in the same screening well. Incorporation of membrane-impermeant, DNA-binding, fluorescent dyes in HTS assays should prove useful by allowing evaluation of cytotoxicity in real time, eliminating reagent addition steps and effort associated with endpoint cell viability analysis, and reducing the need for follow-up cytotoxicity screening. PMID:24831788
Sadighara, Melina; Amirsheardost, Zahra; Minaiyan, Mohsen; Hajhashemi, Valiollah; Naserzadeh, Parvaneh; Salimi, Ahmad; Seydi, Enayatollah; Pourahmad, Jalal
2017-02-01
Statins (including atorvastatin) are a widely used class of drugs, and like all medications, they have a potential for adverse effects. Recently, it has been shown that statins also exert side effects on the pancreas. In vitro studies have suggested that this class of drugs induced a reduction in insulin secretion. Also, the use of statins is associated with a raised risk of diabetes mellitus (DM), but the mechanisms underlying statin-induced diabetes are poorly known. Literature data indicate that several statins are able to induce apoptosis signalling. This study was designed to examine the mechanism of atorvastatin on mitochondria obtained from rat pancreas. In our study, mitochondria were obtained from the pancreas and then exposed to atorvastatin and vehicle to investigate probable toxic effects. The results showed that atorvastatin (25, 50, 75, 100 and 125 μM) increased reactive oxygen species (ROS) production, mitochondrial swelling, collapse of mitochondrial membrane potential and cytochrome c release, the orchestrating factor for mitochondria-mediated apoptosis signalling. Atorvastatin also reduced the ATP levels. These results propose that the toxicity of atorvastatin on pancreas mitochondria is a key point for drug-induced apoptotic cell loss in the pancreas and therefore a justification for increased risk of DM. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Analytical methods for toxic gases from thermal degradation of polymers
NASA Technical Reports Server (NTRS)
Hsu, M.-T. S.
1977-01-01
Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.
RISK CHARACTERIZATION OF DIOXINS FOR EUROTOX 2005
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or Dioxin) is the most toxic member of a family of structurally related compounds which are ubiquitous environmental pollutants. The most potent of these classes, the polyhalogenated dibenzo-p-dioxins and furans, were never produced in...
ENALAPRIL: PHARMACOKINETIC/DYNAMIC INFERENCES FOR COMPARATIVE DEVELOPMENTAL TOXICITY
Enalapril is an antihypertensive drug of the class of angiotensin-converting enzyme inhibitors (ACEI) used in pregnancy for treatment of pre-existing or pregnancy-induced hypertension. The use of ACE inhibitors (drugs that act directly on the renin-angiotensin system) during the ...
Tolerant yeast in situ detoxifies major class of toxic chemicals while producing ethanol
USDA-ARS?s Scientific Manuscript database
Renewable lignocellulosic materials contain abundant sugar source and biofuels conversion including cellulosic ethanol production from lignocellulosic biomass provides a sustainable alternative energy resource for a cleaner environment. In order to release the biomass sugars from the complex cellulo...
PIGE as a screening tool for Per- and polyfluorinated substances in papers and textiles
NASA Astrophysics Data System (ADS)
Ritter, Evelyn E.; Dickinson, Margaret E.; Harron, John P.; Lunderberg, David M.; DeYoung, Paul A.; Robel, Alix E.; Field, Jennifer A.; Peaslee, Graham F.
2017-09-01
Per- and polyfluoroalkyl substances (PFASs) comprise a large array of man-made fluorinated chemicals. It is an emerging chemical class of concern because many PFASs are environmentally persistent and some have known ecological and human toxicity. Consumer products treated with PFASs result in human exposure to PFASs through inhalation, ingestion, and environmental exposure to emissions from wastewater or from landfills. A rapid screening method based on total fluorine was developed and applied to quantify PFASs on consumer papers and textiles. Particle-Induced Gamma Ray Emission (PIGE) spectroscopy provides a non-destructive and quantitative measurement of total fluorine on papers and textiles. This technique is both rapid and sensitive, with a limit of detection (LOD) of 13 nmol F/cm2 for papers and 24-45 nmol F/cm2 for textiles, with reproducibility of ±12% RSD for both. PIGE is a high throughput (>20 samples/hr typically) method that was applied to 50 papers and 50 textiles in commerce to demonstrate the method.
Differences in evaporation between a floating pan and class a pan on land
Masoner, J.R.; Stannard, D.I.; Christenson, S.C.
2008-01-01
Research was conducted to develop a method for obtaining floating pan evaporation rates in a small (less than 10,000 m2) wetland, lagoon, or pond. Floating pan and land pan evaporation data were collected from March 1 to August 31, 2005, at a small natural wetland located in the alluvium of the Canadian River near Norman, Oklahoma, at the U.S. Geological Survey Norman Landfill Toxic Substances Hydrology Research Site. Floating pan evaporation rates were compared with evaporation rates from a nearby standard Class A evaporation pan on land. Floating pan evaporation rates were significantly less than land pan evaporation rates for the entire period and on a monthly basis. Results indicated that the use of a floating evaporation pan in a small free-water surface better simulates actual physical conditions on the water surface that control evaporation. Floating pan to land pan ratios were 0.82 for March, 0.87 for April, 0.85 for May, 0.85 for June, 0.79 for July, and 0.69 for August. ?? 2008 American Water Resources Association.
Firake, D M; Thubru, D P; Behere, G T
2017-02-01
Eco-toxicological risk and impact of pesticides was estimated on three important parasitoids of butterflies viz., Hyposoter ebeninus, Cotesia glomerata and Pteromalus puparum. Four commonly used pesticides were evaluated using standard protocol (of IOBC/WPRS-group). In laboratory tests, the survival of the female wasps decreased significantly on fresh contact and ingestion of deltamethrin, spinosad and azadirachtin; whereas Bacillus thuringiensis var kurstaki (Btk) was found harmless pesticide. Under semi-field conditions, parasitoid mortality decreased significantly on fresh contact with the pesticides. Although, at 72 h after treatment, spinosad and deltamethrin were found harmful (Class-IV) and azadirachtin was moderately harmful (Class-III), whereas Btk was harmless (Class-I). Furthermore, 15-day-old residues of pesticides (except deltamethrin) were harmless to all parasitoid species under semi-field conditions. Notably, adult emergence and pupal duration in pesticide-treated cocoons were not significantly affected; however, their survival decreased after emergence except in Btk. The contact and oral toxicity trends of the pesticides were almost similar for three species of parasitoid females and pupae; however little variability was observed in toxicity to the host caterpillars parasitized by H. ebeninus (HCPHE) and C. glomerata (HCPCG). In semi-field tests, fresh residues of all the pesticides were harmful to HCPHE and HCPCG. However, action of Btk was slightly delayed and toxicity was rather low for HCPCG. In 15-day-old residues, deltamethrin and azadirachtin were slightly harmful to the parasitized caterpillars, whereas those of Btk and spinosad were harmless. Since, Btk appeared to be safe for parasitoids; it could be used for managing cabbage butterflies in brassicaceous crops. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quesnel, Dean M; Oldenburg, Thomas B P; Larter, Stephen R; Gieg, Lisa M; Chua, Gordon
2015-11-03
The ability to mitigate toxicity of oil sands process-affected water (OSPW) for return into the environment is an important issue for effective tailings management in Alberta, Canada. OSPW toxicity has been linked to classical naphthenic acids (NAs), but the toxic contribution of other acid-extractable organics (AEOs) remains unknown. Here, we examine the potential for in situ bioremediation of OSPW AEOs by indigenous algae. Phosphate biostimulation was performed in OSPW to promote the growth of indigenous photosynthetic microorganisms and subsequent toxicity and chemical changes were determined. After 12 weeks, the AEO fraction of phosphate-biostimulated OSPW was significantly less toxic to the fission yeast Schizosaccharomyces pombe than unstimulated OSPW. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis of the AEO fraction in phosphate-biostimulated OSPW showed decreased levels of SO3 class compounds, including a subset that may represent linear arylsulfonates. A screen with S. pombe transcription factor mutant strains for growth sensitivity to the AEO fraction or sodium dodecylbenzenesulfonate revealed a mode of toxic action consistent with oxidative stress and detrimental effects on cellular membranes. These findings demonstrate a potential algal-based in situ bioremediation strategy for OSPW AEOs and uncover a link between toxicity and AEOs other than classical NAs.
RIFM fragrance ingredient safety assessment, ethylene brassylate, CAS Registry Number 105-95-3.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
: The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic nor does it have skin sensitization potential. The local respiratory toxicity endpoint was completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (1.4 mg/day). The repeated dose toxicity endpoint was completed using ethylene dodecanedioate (CAS # 54982-83-1) as a suitable read across analog, which provided a MOE > 100. The developmental and reproductive toxicity endpoint was completed using oxacyclohexadec-12-en-2-one, (12E)- (CAS # 111879-80-2) as a suitable read across analog, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra along with data on the target material. The environmental endpoint was completed as described in the RIFM Framework along with data on the suitable read across analog oxacyclohexadec-12-en-2-one, (12E)- (CAS # 111879-80-2). Copyright © 2016 Elsevier Ltd. All rights reserved.
Establishment of a bioassay for the toxicity evaluation and quality control of Aconitum herbs.
Qin, Yi; Wang, Jia-bo; Zhao, Yan-ling; Shan, Li-mei; Li, Bao-cai; Fang, Fang; Jin, Cheng; Xiao, Xiao-he
2012-01-15
Currently, no bioassay is available for evaluating the toxicity of Aconitum herbs, which are well known for their lethal cardiotoxicity and neurotoxicity. In this study, we established a bioassay to evaluate the toxicity of Aconitum herbs. Test sample and standard solutions were administered to rats by intravenous infusion to determine their minimum lethal doses (MLD). Toxic potency was calculated by comparing the MLD. The experimental conditions of the method were optimized and standardized to ensure the precision and reliability of the bioassay. The application of the standardized bioassay was then tested by analyzing 18 samples of Aconitum herbs. Additionally, three major toxic alkaloids (aconitine, mesaconitine, and hypaconitine) in Aconitum herbs were analyzed using a liquid chromatographic method, which is the current method of choice for evaluating the toxicity of Aconitum herbs. We found that for all Aconitum herbs, the total toxicity of the extract was greater than the toxicity of the three alkaloids. Therefore, these three alkaloids failed to account for the total toxicity of Aconitum herbs. Compared with individual chemical analysis methods, the chief advantage of the bioassay is that it characterizes the total toxicity of Aconitum herbs. An incorrect toxicity evaluation caused by quantitative analysis of the three alkaloids might be effectively avoided by performing this bioassay. This study revealed that the bioassay is a powerful method for the safety assessment of Aconitum herbs. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.
1995-01-01
Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.
The role of in vitro methods as alternatives to animals in toxicity testing.
Anadón, Arturo; Martínez, María Aranzazu; Castellano, Victor; Martínez-Larrañaga, María Rosa
2014-01-01
It is accepted that animal testing should be reduced, refined or replaced as far as it is practicably possible. There are also a wide variety of in vitro models, which are used as screening studies and mechanistic investigations. The ability of an in vitro assay to be reliable, biomedically, is essential in pharmaceutical development. Furthermore, it is necessary that cells used in in vitro testing mimic the phenotype of cells within the human target tissue. The focus of this review article is to identify the key points of in vitro assays. In doing so, the authors take into account the chemical agents that are assessed and the integrated in vitro testing strategies. There is a transfer of toxicological data from primary in vivo animal studies to in vitro assays. The key element for designing an integrated in vitro testing strategy is summarized as follows: exposure modeling of chemical agents for in vitro testing; data gathering, sharing and read-across for testing a class of chemical; a battery of tests to assemble a broad spectrum of data on different mechanisms of action to predict toxic effects; and applicability of the test and the integrated in vitro testing strategies and flexibility to adjust the integrated in vitro testing strategies to test substance. While these methods will be invaluable if effective, more studies must be done to ensure reliability and suitability of these tests for humans.
An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals
Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie
2009-01-01
Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981
TIE METHODS FOR TOXICITY EVALUATION OF FRESHWATER SEDIMENTS
Three toxicity identification evaluation (TIE) methods, AVS spiking, zero-valent metal and cation exchange resin, have been used with metal contaminated and enriched sediments to remove the toxicity...
ERIC Educational Resources Information Center
Sain, Tony
2002-01-01
Attempts to dispel four "myths" about sheet vinyl flooring: it emits toxic fumes and poses a health/safety risk; it is a low-class, unstylish flooring option; it is less friendly to the environment; and there are many kinds of flooring that match its durability and cost effectiveness. (EV)
PREFERENTIAL PARTITIONING OF PAHS AND PCBS TO COAL FLY ASH
It has long been known that fly ash has a significant capacity for the adsorption of several classes of anthropogenic pollutants, including toxic metals, nutrients and organic compounds. This adsorption capacity has been utilized by wastewater treatment plants for the removal of ...
Comparing Single and Repeated Dosimetry Data for Perfluorooctane Suflonate in Rats
Perfluorooctane sulfonate (PFOS) is a member of a class of perfluorinated chemicals used in a variety of consumer and industrial applications because of their oleophobic and hydrophobic properties. It has been shown to cause toxicity in adult and developing laboratory animals. Be...
BEHAVIORAL ASSESSMENTS OF ADULTS RATS EXPOSED PERINATALLY TO PCB153.
Ortho-substituted polychlorinated biphenyl (PCB) congeners are more neurotoxic in vitro than are non-ortho-substituted PCB congeners. We selected PCB153, a common ortho-substituted PCB congener, to evaluate the neurobehavioral toxicity of this class of PCBs in vivo. Pregnant fema...
Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes
Kimura, Richard H.; Choudary, Prabhakara V.; Stone, Koni K.; Schmid, Carl W.
2001-01-01
This study surveys the induction of RNA polymerase III (Pol III)–directed expression of short interspersed element (SINE) transcripts by various stresses in an animal model, silkworm larvae. Sublethal heat shock and exposure to several toxic compounds increase the level of Bm1 RNA, the silkworm SINE transcript, while also transiently increasing expression of a well-characterized stress-induced transcript, Hsp70 messenger RNA (mRNA). In certain cases, the Bm1 RNA response coincides with that of Hsp70 mRNA, but more often Bm1 RNA responds later in recovery. Baculovirus infection and exposure to certain toxic compounds increase Bm1 RNA but not Hsp70 mRNA, showing that SINE induction is not necessarily coupled to transcription of this particular heat shock gene. SINEs behave as an additional class of stress-inducible genes in living animals but are unusual as stress genes because of their high copy number, genomic dispersion, and Pol III–directed transcription. PMID:11599568
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templin-Branner, Wilma
The purpose of this training is to familiarize participants with reliable online environmental health and toxicology information, from the National Library of Medicine and other reliable sources. Skills and knowledge acquired in this training class will enable participants to access, utilize, and refer others to environmental health and toxicology information. After completing this course, participants will be able to: (1) Identify quality, accurate, and authoritative online resources pertaining to environmental health, toxicology, and related medical information; (2) Demonstrate the ability to perform strategic search techniques to find relevant online information; and (3) Apply the skills and knowledge obtained in thismore » class to their organization's health information needs. NLMs TOXNET (Toxicology Data Network) is a free, Web-based system of databases on toxicology, environmental health, hazardous chemicals, toxic releases, chemical nomenclatures, and specialty areas such as occupational health and consumer products. Types of information in the TOXNET databases include: (1) Specific chemicals, mixtures, and products; (2) Unknown chemicals; and (3) Special toxic effects of chemicals in humans and/or animals.« less
Contact toxicities of anuran skin alkaloids against the fire ant ( Solenopsis invicta)
NASA Astrophysics Data System (ADS)
Weldon, Paul J.; Cardoza, Yasmin J.; Vander Meer, Robert K.; Hoffmann, W. Clint; Daly, John W.; Spande, Thomas F.
2013-02-01
Nearly 500 alkaloids, representing over 20 structural classes, have been identified from the skin of neotropical poison frogs (Dendrobatidae). These cutaneous compounds, which are derived from arthropod prey of the frogs, generally are believed to deter predators. We tested the red imported fire ant ( Solenopsis invicta) for toxicosis following contact with 20 alkaloids (12 structural classes) identified from dendrobatids or other anurans. Individual ants forced to contact the dried residues of 13 compounds exhibited convulsions and/or reduced ambulation. We estimated the cutaneous concentrations of several compounds based on their reported recoveries from skin extracts of free-ranging frogs and our measurements of the skin surface areas of museum specimens. Pumiliotoxin 251D exhibited contact toxicity below its estimated cutaneous concentration in the Ecuadorian frog, Epipedobates anthonyi, an observation consistent with the hypothesized role of this compound in anuran chemical defense. Our results and those of a previous study of mosquitoes indicate that some anuran skin compounds function defensively as contact toxins against arthropods, permeating their exoskeleton.
Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach
de Weerdt, Iris; Koopmans, Suzanne M.; Kater, Arnon P.; van Gelder, Michel
2017-01-01
The use of novel B-cell receptor signaling inhibitors results in high response rates and long progression-free survival in patients with indolent B-cell malignancies, such as chronic lymphocytic leukemia, follicular lymphoma, mantle cell lymphoma and Waldenström macroglobulinemia. Ibrutinib, the first-in-class inhibitor of Bruton tyrosine kinase, and idelalisib, the first-in-class inhibitor of phosphatidylinositol 3-kinase δ, have recently been approved for the treatment of several indolent B-cell malignancies. These drugs are especially being used for previously unmet needs, i.e., for patients with relapsed or refractory disease, high-risk cytogenetic or molecular abnormalities, or with comorbidities. Treatment with ibrutinib and idelalisib is generally well tolerated, even by elderly patients. However, the use of these drugs may come with toxicities that are distinct from the side effects of immunochemotherapy. In this review we discuss the most commonly reported and/or most clinically relevant adverse events associated with these B-cell receptor inhibitors, with special emphasis on recommendations for their management. PMID:28775119
Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods
2008-04-01
Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Research Program ERDC/EL TR-08-16 April 2008 Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity Methods Jeffery...potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of dredged material
Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits.
Ippolito, A; Todeschini, R; Vighi, M
2012-03-01
Assessing the sensitivity of different species to chemicals is one of the key points in predicting the effects of toxic compounds in the environment. Trait-based predicting methods have proved to be extremely efficient for assessing the sensitivity of macroinvertebrates toward compounds with non specific toxicity (narcotics). Nevertheless, predicting the sensitivity of organisms toward compounds with specific toxicity is much more complex, since it depends on the mode of action of the chemical. The aim of this work was to predict the sensitivity of several freshwater macroinvertebrates toward three classes of plant protection products: organophosphates, carbamates and pyrethroids. Two databases were built: one with sensitivity data (retrieved, evaluated and selected from the U.S. Environmental Protection Agency ECOTOX database) and the other with biological traits. Aside from the "traditional" traits usually considered in ecological analysis (i.e. body size, respiration technique, feeding habits, etc.), multivariate analysis was used to relate the sensitivity of organisms to some other characteristics which may be involved in the process of intoxication. Results confirmed that, besides traditional biological traits, related to uptake capability (e.g. body size and body shape) some traits more related to particular metabolic characteristics or patterns have a good predictive capacity on the sensitivity to these kinds of toxic substances. For example, behavioral complexity, assumed as an indicator of nervous system complexity, proved to be an important predictor of sensitivity towards these compounds. These results confirm the need for more complex traits to predict effects of highly specific substances. One key point for achieving a complete mechanistic understanding of the process is the choice of traits, whose role in the discrimination of sensitivity should be clearly interpretable, and not only statistically significant.
Campos-Garcia, Janaína; Martinez, Diego Stéfani T; Alves, Oswaldo L; Leonardo, Antônio Fernando Gervásio; Barbieri, Edison
2015-01-01
The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour. Copyright © 2014 Elsevier Inc. All rights reserved.
Nascimento, Dayane K D; Souza, Ivone A DE; Oliveira, Antônio F M DE; Barbosa, Mariana O; Santana, Marllon A N; Pereira, Daniel F; Lira, Eduardo C; Vieira, Jeymesson R C
2016-09-01
Mangroves represent areas of high biological productivity and it is a region rich in bioactive substances used in medicine production. Conocarpus erectus (Combretaceae) known as button mangrove is one of the species found in mangroves and it is used in folk medicine in the treatment of anemia, catarrh, conjunctivitis, diabetes, diarrhea, fever, gonorrhea, headache, hemorrhage, orchitis, rash, bumps and syphilis. The present study aimed to investigate the acute toxicity of aqueous extract of leaves of C. erectus in Swiss albino mice. The plant material was collected in Vila Velha mangroves, located in Itamaracá (PE). The material was subjected to a phytochemical screening where extractive protocols to identify majority molecules present in leaves were used. The evaluation of acute toxicity of aqueous extract of C. erectus followed the model of Acute Toxicity Class based on OECD 423 Guideline, 2001. The majority molecules were identified: flavonoids, tannins and saponins. The LD50 was estimated at 2,000 mg/kg bw. Therefore, the aqueous extract showed low acute toxicity classified in category 5.
Quantum descriptors for predictive toxicology of halogenated aliphatic hydrocarbons.
Trohalaki, S; Pachter, R
2003-04-01
In order to improve Quantitative Structure-Activity Relationships (QSARs) for halogenated aliphatics (HA) and to better understand the biophysical mechanism of toxic response to these ubiquitous chemicals, we employ improved quantum-mechanical descriptors to account for HA electrophilicity. We demonstrate that, unlike the lowest unoccupied molecular orbital energy, ELUMO, which was previously used as a descriptor, the electron affinity can be systematically improved by application of higher levels of theory. We also show that employing the reciprocal of ELUMO, which is more consistent with frontier molecular orbital (FMO) theory, improves the correlations with in vitro toxicity data. We offer explanations based on FMO theory for a result from our previous work, in which the LUMO energies of HA anions correlated surprisingly well with in vitro toxicity data. Additional descriptors are also suggested and interpreted in terms of the accepted biophysical mechanism of toxic response to HAs and new QSARs are derived for various chemical categories that compose the data set employed. These alternate descriptors provide important insight and could benefit other classes of compounds where the biophysical mechanism of toxic response involves dissociative attachment.
NASA Technical Reports Server (NTRS)
Lam, Chiu-Wing; James, John T.; McCluskey, Richard; Hunter, Robert L.
2004-01-01
Nanomaterials are part of an industrial revolution to develop lightweight but strong materials for a variety of purposes. Single-wall carbon nanotubes are an important member of this class of materials. They structurally resemble rolled-up graphite sheets, usually with one end capped; individually they are about 1 nm in diameter and several microns long, but they often pack tightly together to form rods or ropes of microscopic sizes. Carbon nanotubes possess unique electrical, mechanical, and thermal properties and have many potential applications in the electronics, computer, and aerospace industries. Unprocessed nanotubes are very light and could become airborne and potentially reach the lungs. Because the toxicity of nanotubes in the lung is not known, their pulmonary toxicity was investigated. The three products studied were made by different methods and contained different types and amounts of residual catalytic metals. Mice were intratracheally instilled with 0, 0.1, or 0.5 mg of carbon nanotubes, a carbon black negative control, or a quartz positive control and euthanized 7 d or 90 d after the single treatment for histopathological study of the lungs. All nanotube products induced dose-dependent epithelioid granulomas and, in some cases, interstitial inflammation in the animals of the 7-d groups. These lesions persisted and were more pronounced in the 90-d groups; the lungs of some animals also revealed peribronchial inflammation and necrosis that had extended into the alveolar septa. The lungs of mice treated with carbon black were normal, whereas those treated with high-dose quartz revealed mild to moderate inflammation. These results show that, for the test conditions described here and on an equal-weight basis, if carbon nanotubes reach the lungs, they are much more toxic than carbon black and can be more toxic than quartz, which is considered a serious occupational health hazard in chronic inhalation exposures.
Khazaeel, Kaveh; Mazaheri, Yazdan; Hashemi Tabar, Mahmood; Najafzadeh, Hossein; Morovvati, Hassan; Ghadrdan, Alireza
2015-01-01
Enrofloxacin is a synthetic chemotherapeutic agent from the class of the fluoroquinolones that is widely used to treat bacterial infections. It is metabolized to ciprofloxacin in the body as active metabolite. Fluoroquinolones change in the articular cartilage, especially with high doses and more than two weeks use. So, due to relatively excessive use of enrofloxacin in mammals and similarity of lambs to human subjects with respect to skeletal activity cycles, this study was done to investigate the effects of enrofloxacin on some cellular and molecular changes in growing lamb articular cartilage to evaluate some possible mechanisms involved these changes. Twelve, 2-month-old male lambs divided into three groups: control group received only normal saline; therapeutic group received 5mg/kg enrofloxacin subcutaneously, daily, for 15 days and toxic group received 35 mg/kg enrofloxacin in the same manner as therapeutic group. Twenty four hours after the last dose, the animals were sacrificed, and their stifle joints were dissected. Sampling from distal femoral and proximal tibial extremities was done quickly for further histological and molecular studies. Collagen-п content was studied with avidin-biotin immunohistochemistry method in different groups. Expression of Sox9 and caspase-3 was evaluated by Real-time PCR. Immunohistochemical changes were included decreases of matrix proteoglycans, carbohydrates, and Collagen-п in the toxic group. Some of these changes were observed in the therapeutic group with less intensity in comparison to the toxic group. Enrofloxacin were significantly decreased (P≤0.05). Sox9 expression in therapeutic and toxic groups compared to control group. But caspase -3 expressions in the toxic group significantly increased (P≤0.0001) with a comparison to other groups, while, between control and therapeutic groups, there were no significant differences. So, it can be concluded that enrofloxacin increases apoptosis in chondrocytes and decreases their numbers. Enrofloxacin use in growing lambs even at recommended therapeutic dose is not completely safe on articular cartilage. Moreover, higher doses of enrofloxacin induce severe changes in lamb articular cartilage.
Bioswales reduce contaminants associated with toxicity in urban storm water.
Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Siegler, Katie; Tjeerdema, Ronald
2016-12-01
Contamination and toxicity associated with urban storm water runoff are a growing concern because of the potential impacts on receiving systems. California water regulators are mandating implementation of green infrastructure as part of new urban development projects to treat storm water and increase infiltration. Parking lot bioswales are low impact development practices that promote filtering of runoff through plants and soil. Studies have demonstrated that bioswales reduce concentrations of suspended sediments, metals, and hydrocarbons. There have been no published studies evaluating how well these structures treat current-use pesticides, and studies have largely ignored whether bioswales reduce toxicity in surface water. Three storms were monitored at 3 commercial and residential sites, and reductions of contaminants and associated toxicity were quantified. Toxicity testing showed that the majority of untreated storm water samples were toxic to amphipods (Hyalella azteca) and midges (Chironomus dilutus), and toxicity was reduced by the bioswales. No samples were toxic to daphnids (Ceriodaphnia dubia) or fish (Pimephales promelas). Contaminants were significantly reduced by the bioswales, including suspended solids (81% reduction), metals (81% reduction), hydrocarbons (82% reduction), and pyrethroid pesticides (74% reduction). The single exception was the phenypyrazole pesticide fipronil, which showed inconsistent treatment. The results demonstrate these systems effectively treat contaminated storm water associated with surface water toxicity but suggest that modifications of their construction may be required to treat some contaminant classes. Environ Toxicol Chem 2016;35:3124-3134. © 2016 SETAC. © 2016 SETAC.
The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study
NASA Astrophysics Data System (ADS)
Kuz'min, Victor E.; Muratov, Eugene N.; Artemenko, Anatoly G.; Gorb, Leonid; Qasim, Mohammad; Leszczynski, Jerzy
2008-10-01
The present study applies the Hierarchical Technology for Quantitative Structure-Activity Relationships (HiT QSAR) for (i) evaluation of the influence of the characteristics of 28 nitroaromatic compounds (some of which belong to a widely known class of explosives) as to their toxicity; (ii) prediction of toxicity for new nitroaromatic derivatives; (iii) analysis of the effects of substituents in nitroaromatic compounds on their toxicity in vivo. The 50% lethal dose concentration for rats (LD50) was used to develop the QSAR models based on simplex representation of molecular structure. The preliminary 1D QSAR results show that even the information on the composition of molecules reveals the main tendencies of changes in toxicity. The statistic characteristics for partial least squares 2D QSAR models are quite satisfactory ( R 2 = 0.96-0.98; Q 2 = 0.91-0.93; R 2 test = 0.89-0.92), which allows us to carry out the prediction of activity for 41 novel compounds designed by the application of new combinations of substituents represented in the training set. The comprehensive analysis of toxicity changes as a function of substituent position and nature was carried out. Molecular fragments that promote and interfere with toxicity were defined on the basis of the obtained models. It was shown that the mutual influence of substituents in the benzene ring plays a crucial role regarding toxicity. The influence of different substituents on toxicity can be mediated via different C-H fragments of the aromatic ring.
Emergency management of chemical weapons injuries.
Anderson, Peter D
2012-02-01
The potential for chemical weapons to be used in terrorism is a real possibility. Classes of chemical weapons include nerve agents, vesicants (blister agents), choking agents, incapacitating agents, riot control agents, blood agents, and toxic industrial chemicals. The nerve agents work by blocking the actions of acetylcholinesterase leading to a cholinergic syndrome. Nerve agents include sarin, tabun, VX, cyclosarin, and soman. The vesicants include sulfur mustard and lewisite. The vesicants produce blisters and also damage the upper airways. Choking agents include phosgene and chlorine gas. Choking agents cause pulmonary edema. Incapacitating agents include fentanyl and its derivatives and adamsite. Riot control agents include Mace and pepper spray. Blood agents include cyanide. The mechanism of toxicity for cyanide is blocking oxidative phosphorylation. Toxic industrial chemicals include agents such as formaldehyde, hydrofluoric acid, and ammonia.
Reactive Metabolites in the Biotransformation of Molecules Containing a Furan Ring
Peterson, Lisa A.
2012-01-01
Many xenobiotics containing a furan ring are toxic and/or carcinogenic. The harmful effects of these compounds require furan ring oxidation. This reaction generates an electrophilic intermediate. Depending on the furan ring substituents, the intermediate is either an epoxide or a cis-enedione with more ring substitution favoring epoxide formation. Either intermediate reacts with cellular nucleophiles such as protein or DNA to trigger toxicities. The reactivity of the metabolite determines which cellular nucleophiles are targeted. The toxicity of a particular furan is also influenced by the presence of competing metabolic pathways or efficient detoxification routes. GSH plays an important role in modulating the harmful effects of this class of compound by reacting with the reactive metabolite. However, this may not represent a detoxification step in all cases. PMID:23061605
Lamb, Thomas; Selvarajah, Liza R.; Mohamed, Fahim; Jayamanne, Shaluka; Gawarammana, Indika; Mostafa, Ahmed; Buckley, Nicholas A.; Roberts, Michael S.; Eddleston, Michael
2016-01-01
Abstract Background: Highly hazardous organophosphorus (OP) insecticides are responsible for most pesticide poisoning deaths. As they are removed from agricultural practice, they are often replaced by carbamate insecticides of perceived lower toxicity. However, relatively little is known about poisoning with these insecticides. Methods: We prospectively studied 1288 patients self-poisoned with carbamate insecticides admitted to six Sri Lankan hospitals. Clinical outcomes were recorded for each patient and plasma carbamate concentration measured in a sample to confirm the carbamate ingested. Findings: Patients had ingested 3% carbofuran powder (719), carbosulfan EC25 liquid (25% w/v, 389), or fenobucarb EC50 liquid (50% w/v, 127) formulations, carbamate insecticides of WHO Toxicity Classes Ib, II, and II, respectively. Intubation and ventilation was required for 183 (14.2%) patients while 71 (5.5%) died. Compared with carbofuran, poisoning with carbosulfan or fenobucarb was associated with significantly higher risk of death [carbofuran 2.2%; carbosulfan 11.1%, OR 5.5 (95% CI 3.0–9.8); fenobucarb 6.3%, OR 3.0 (1.2–7.1)] and intubation [carbofuran 6.1%; carbosulfan 27.0%, OR 5.7 (3.9–8.3); fenobucarb 18.9%, OR 3.6 (2.1–6.1)]. The clinical presentation and cause of death did not differ markedly between carbamates. Median time to death was similar: carbofuran 42.3 h (IQR 5.5–67.3), carbosulfan 21.3 h (11.5–71.3), and fenobucarb 25.3 h (17.3–72.1) (p = 0.99); no patients showed delayed onset of toxicity akin to the intermediate syndrome seen after OP insecticide poisoning. For survivors, median duration of intubation was 67.8 h (IQR 27.5–118.8) with no difference in duration between carbamates. Reduced GCS at presentation was associated with worse outcome although some patients with carbosulfan died after presentation with normal GCS. Conclusions: We did not find carbamate insecticide self-poisoning to vary markedly according to the carbamate ingested although the case fatality varied according to the concentration and formulation of the insecticide. Carbamate poisoning did not appear to be much less toxic than poisoning with some liquid OP insecticide formulations, e.g., chlorpyrifos EC40, that we have previously noted in these same hospitals (Lancet 2005, 366:1452–1459; QJM 2006, 99:513–522). Replacement of WHO Class II Toxicity OP insecticides in agriculture with high-strength liquid carbamate formulations may not substantially reduce case fatality after pesticide poisoning and, therefore, global suicide rates. PMID:27252029
Paradoxical Roles of Nanoparticles in Cancer Therapeutics and Carcinogenesis
NASA Astrophysics Data System (ADS)
Despeaux, Emily
Nanoparticles (NPs) are becoming increasingly common in consumer goods and are under investigation for a variety of industrial and biomedical applications. However, challenges in determining NP toxicity may prevent them from reaching their full potential. NPs cannot be treated as single class for toxicity evaluations. Even among particles made from the same material, particle-specific physical properties, including size, shape, surface charge, agglomeration state, and surface modifications have a strong effect on the toxicity. Even so, the obstacles to conclusively and reproducibly evaluating toxicity span all NP classes. NP literature is riddled with confusing and often contradictory reports regarding the biocompatibility of both engineered NPs, designed with biocompatibility as a priority, and NPs from occupational or environmental exposures. Incomplete NP characterization and sample inhomogeneity represent major confounding factors in disparate results from seemingly comparable study setups. Additionally, NPs can interfere with many conventional toxicity screening methods. Inappropriate doses, exposure routes, and toxicity endpoints further diminish the utility of many published studies. Given the burgeoning interest in NP-based therapeutic agents, consistent, reliable standards are needed to ensure the biocompatibility of new formulations. To those ends, the synthesis, characterization, and in vitro toxicity of a multi-functional NP therapeutic were investigated (Chapter 2). Specifically, superparamagnetic iron oxide nanoparticles (SPIONs) were coated with amphiphilic polymer and functionalized with antisense oligonucleotides targeting survivin, an anti-apoptotic protein that is highly overexpressed in cancer. SPION physical properties, including particle size and composition, were characterized at each step of synthesis. Our results showed that the SPION platform is biocompatible and capable of delivering functional antisense oligonucleotides to regulate survivin expression; however, significant refinement of the DNA-to-SPION coupling step is needed. Applied clinically, antisense survivin coupled SPIONs can reduce the required dose of, adverse effects from, and resistance to, current cancer chemotherapy regimens. In contrast to engineered NPs for biomedical applications, where real-world exposures would involve careful control of both exposure time- and dose, occupational NP exposures are variable, chronic, and difficult to model in laboratory settings. Chapter 3 focuses on identifying the mechanisms behind carbon nanotube (CNT)-induced malignant transformation of bronchial epithelial cells using a chronic in vitro exposure model. We specifically investigated the role of mesothelin (MSLN), a cell-surface protein that is highly overexpressed in many cancers, in the aggressive phenotype noted following chronic, low-dose CNT exposure. MSLN knockdown resulted in significantly decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, MSLN knockdown cells formed smaller primary tumors and less metastases. The mechanism by which MSLN contributes to these more aggressive behaviors was investigated using Ingenuity Pathway Analysis, which predicted that increased MSLN could induce cyclin E, a cell cycle regulator known to be associated with human cancer. We found that MSLN knockdown cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. Cell cycle analysis results were consistent with the decreased rate of proliferation. Together, our results indicate a novel role of MSLN in the malignant transformation of bronchial epithelial cells following CNT exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced malignancies. As demonstrated by the two studies presented here, NPs have the potential to function as both cancer therapeutics and carcinogens. Careful evaluation of toxicity, ensuring that appropriate doses, assays, exposure routes, and endpoints are used, is imperative. Elucidating the physical properties and functionalization that contribute to toxicity, and the mechanisms of that toxicity, will allow NP benefits to be fully exploited while minimizing the risk of widespread, detrimental public health effects.
Bastos, Maria Lysete A; Lima, Maria Raquel F; Conserva, Lucia M; Andrade, Vânia S; Rocha, Eliana MM; Lemos, Rosangela PL
2009-01-01
Background Due to the indiscriminate use of antimicrobial drugs, the emergence of human pathogenic microorganisms resistant to major classes of antibiotics has been increased and has caused many clinical problems in the treatment of infectious diseases. Thus, the aim of this study was to evaluate for the first time the in vitro antimicrobial activity and brine shrimp lethality of extracts and isolated compounds from Zeyheria tuberculosa (Vell.) Bur., a species used in Brazilian folk medicine for treatment of cancer and skin diseases. Methods Using the disc diffusion method, bioautography assay and brine shrimp toxicity test (Artemia salina Leach), we studied the antimicrobial activity and lethality of extracts and isolated compounds against three microorganisms strains, including Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria and yeasts (Candida albicans). Results In this study, the extracts inhibited S. aureus (8.0 ± 0.0 to 14.0 ± 0.0 mm) and C. albicans (15.3 ± 0.68 to 25.6 ± 0.4 mm) growth. In the brine shrimp test, only two of them showed toxic effects (LC50 29.55 to 398.05 μg/mL) and some extracts were non-toxic or showed weak lethality (LC50 705.02 to > 1000 μg/mL). From these extracts, four flavones [5,6,7,8-tetramethoxyflavone (1), 5,6,7-trimethoxyflavone (2), 4'-hydroxy-5,6,7,8-tetramethoxyflavone (3), and 4'-hydroxy-5,6,7-trimethoxyflavone (4)] were isolated through bioassay-guided fractionation and identified based on the 1D and 2D NMR spectral data. By bioautography assays, compounds 1 [S. aureus (16.0 ± 0.0 mm) and C. albicans (20.0 ± 0.0 mm)] and 3 [S. aureus (10.3 ± 0.6 mm) and C. albicans (19.7 ± 0.6 mm)] inhibited both microorganisms while 2 inhibited only S. aureus (11.7 ± 0.6 mm). Compound 4 did not restrain the growth of any tested microorganism. Conclusion Our results showed that extracts and isolated flavones from Z. tuberculosa may be particularly useful against two pathogenic microorganisms, S. aureus and C. albicans. These results may justify the popular use this species since some fractions tested had antimicrobial activity and others showed significant toxic effects on brine shrimps. However, in order to evaluate possible clinical application in therapy of infectious diseases, further studies about the safety and toxicity of isolated compounds are needed. PMID:19450272
Bakand, S; Winder, C; Khalil, C; Hayes, A
2005-12-01
Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.
Rice, Glenn E; Teuschler, Linda K; Bull, Richard J; Simmons, Jane E; Feder, Paul I
2009-01-01
Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon; concentrations and proportions of individual DBPs with known toxicity data on the same endpoint; magnitude of the unidentified fraction of total organic halides; similar toxicity outcomes for whole mixture testing (e.g., mutagenicity); and summary chemical measures such as total trihalomethanes, total haloacetic acids, total haloacetonitriles, and the levels of bromide incorporation in the DBP classes.
Chlorinated and brominated haloacetaldehydes (HALs) are consideredthe 3rd largest class of disinfection by-products (DBPs) by weight. The iodinatedHAL, iodoacetaldehyde, has been recently reported as an emerging DBP infinished drinking waters. Overall, iodinated DBPs, e.g., iodoa...
Toxic Rain in Class: Classroom Interpersonal Microaggressions
ERIC Educational Resources Information Center
Suárez-Orozco, Carola; Casanova, Saskias; Martin, Margary; Katsiaficas, Dalal; Cuellar, Veronica; Smith, Naila Antonia; Dias, Sandra Isabel
2015-01-01
In this article we share exploratory findings from a study that captures microaggressions (MAs) in vivo to shed light on how they occur in classrooms. These brief and commonplace indignities communicate derogatory slights and insults toward individuals of underrepresented status contributing to invalidating and hostile learning experiences. Our…
Pyrethroids have emerged as a major class of insecticide due to their selective potency in insects and their relatively low potency in mammalian studies. Pyrethroids exert toxicity by binding to voltage-gated sodium channels, thereby eliciting excitatory neurotoxicity. The Food...
Pyrethroids have emerged as a major class of insecticide due to their selective potency in insects and their relatively low potency in mammalian studies. Pyrethroids exert toxicity by binding to voltage-gated sodium channels, thereby eliciting excitatory neurotoxicity. The Fo...
USDA-ARS?s Scientific Manuscript database
Numerous toxic chemical compounds liberated from lignocellulosic biomass pretreatment inhibit subsequent microbial fermentation that pose a significant challenge to a sustainable and renewable bio-based fermentation industry. Toxin removal procedures by physical or chemical means are essentially imp...
METABOLISM OF PYRETHROID PESTICIDES BY RAT AND HUMAN CYP450'S AND SERUM.
Pyrethroids are a class of neurotoxic pesticides in which the parent chemical acts via the modulation of nerve axon ion channels. Both the pharmacokinetic and pharmacodynamic behavior of pyrethroids play a role in their toxicity. The phase one biotransformation of pyrethroids ca...
Conazoles comprise a class of fungicides used in agriculture and as pharmaceutical products. The fungicidal properties of conazoles are due to their inhibition of ergosterol biosynthesis. Certain conazoles are tumorigenic in rodents; both propiconazole and triadimefon are hepatot...
Changes in the metabolome may serve as peripheral biomarkers of CNS toxicity.
Since our observation that an acute exposure to different classes of pesticides resulted in different changes in plasma metabolomics markers, a study of the metabolome has become of high interest for identifying markers of neurotoxicity. A Biocrates AbsoluteIDQTM p180 platform wa...
Triazoles are a class of fungicides widely used in both pharmaceutical and agricultural applications. These compounds elicit a variety of toxic effects including disruption of normal metabolic processes such as steroidogenesis. Metabolomics is used to measure dynamic changes in e...
Synthetic materials to reduce exposure to mycotoxins in fermented foods and beverages
USDA-ARS?s Scientific Manuscript database
Mycotoxins are a broad class of toxic fungal metabolites that occasionally contaminate agricultural commodities. Mycotoxin contamination reduces the value of affected commodities and negatively impacts the health of consumers. A popular approach to reduce the effects of exposure to mycotoxins is the...
INNOVATIVE SCREENING TECHNOLOGIES FOR DIOXINS IN SOIL
Dioxins are recognized as one of the most pervasive and toxic class of chemicals in the environment. They have been the focus of various human exposure studies and have been found at numerous Superfund and other hazardous waste sites. The cost of dioxin analysis represents a s...
Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition.
Sørli, Jorid B; Huang, Yishi; Da Silva, Emilie; Hansen, Jitka S; Zuo, Yi Y; Frederiksen, Marie; Nørgaard, Asger W; Ebbehøj, Niels E; Larsen, Søren T; Hougaard, Karin S
2018-01-01
Private consumers and professionals may experience acute inhalation toxicity after inhaling aerosolized impregnation products. The distinction between toxic and non-toxic products is difficult to make for producers and product users alike, as there is no clearly described relationship between the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21 impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if the products inhibited surfactant function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e., the in vitro method predicted all the products that were toxic for mice to inhale. The specificity of the in vitro test was 63%, i.e., the in vitro method found three false positives in the 21 tested products. Six of the products had been involved in accidental human inhalation where they caused acute inhalation toxicity. All of these six products inhibited lung surfactant function in vitro and were toxic to mice.
Development of structure-activity relationship for metal oxide nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram
2013-05-01
Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01533e
Lemna minor (Duckweed) is commonly used in aquatic toxicity investigations. Methods for culturing and testing with reference toxicants, such as atrazine, are somewhat variable among researchers. Our goal was to develop standardized methods of culturing and testing for use with L....
McCourt, Carolyn K.; Deng, Wei; Dizon, Don S.; Lankes, Heather A.; Birrer, Michael J.; Lomme, Michele M.; Powell, Matthew A.; Kendrick, James E.; Saltzman, Joel N.; Warshal, David; Tenney, Meaghan E.; Kushner, David M.; Aghajanian, Carol
2017-01-01
Background The primary objectives were to determine the objective response rate (ORR) and safety profile of ixabepilone in women with recurrent or persistent uterine carcinosarcoma (UCS). Secondary objectives included progression-free survival (PFS) and overall survival (OS). Exploratory translational objectives included characterization of class III beta tubulin expression and its association with response, PFS, and OS. Methods Patients had measurable disease; up to two prior chemotherapeutic regimens were allowed, but must have included a taxane. Women received ixabepilone 40 mg/m2 as a 3 hour IV infusion on day 1 of a 21 day cycle. Treatment was continued until disease progression or unacceptable toxicity occurred. Results Forty-two women were enrolled, with 34 eligible and evaluable. Median age was 68 years. ECOGperformance status was 0 in 56% of women, 38% had received radiation, and 15% had received 2 lines of chemotherapy. Overall ORR was 11.8%(4/34, 90%CI 4.2–25.1%); all were partial responses. Stable disease for at least 8 weeks was achieved in 8 patients (23.5%). Median PFS and OS were 1.7 mo and 7.7 mo, respectively, with a median follow-up of 37 mo. Six month PFS was 20.6%. Major grade ≥ 3 toxicities were neutropenia (47%), fatigue (15%), dehydration (15%), hypertension (15%), and hyponatremia (15%); grade 2 peripheral neuropathy was reported in 18%. In this small sample size, class III beta tubulin expression in the primary tumor was not associated with the response to ixabepilone, PFS, or OS. Conclusion In this cohort of women, single agent ixabepilone showed modest but insufficient clinical activity. PMID:28029447
da Silva, Iberê Ferreira; de Oliveira, Ruberlei Godinho; Mendes Soares, Ilsamar; da Costa Alvim, Tarso; Donizeti Ascêncio, Sérgio; de Oliveira Martins, Domingos Tabajara
2014-01-01
Piper umbellatum L., Piperaceae, is a shrub that grows up to 3m high. It is commonly known as "capeba" or "pariparoba" in Brazil. Tea prepared using the leaves of this plant is employed in the treatment of infections and inflammatory processes in different countries. Approximately 50 compounds, notably from the flavonoid, alkaloid, terpene, and sterol classes, have been isolated from the leaves of Piper umbellatum. To evaluate the acute toxicity, antibacterial activity, and mode of action of the hydroethanolic extract of Piper umbellatum leaves (HEPu). Acute toxicity of HEPu against CHO-K1 cells was evaluated using a cytotoxicity assay with Alamar Blue and that against mice was assessed by the Hippocratic test. Antibacterial activity of HEPu was tested using the broth microdilution method using a panel of clinically relevant bacteria, and the effects of HEPu on the bacterial membrane were analyzed in detail. A preliminary phytochemical analysis based on coloration/precipitation was performed according to procedure described in the literature. Secondary metabolites detected were analyzed and confirmed by thin layer chromatography (TLC), spectrophotometry, and high performance liquid chromatography (HPLC). Piper umbellatum did not appear to be toxic in the in vitro (IC50>200 µg/mL) cytotoxicity test. When administered in vivo at doses up to 2000 mg/kg p.o., HEPu did not cause any signs or symptoms of toxicity in mice. It demonstrated a good spectrum of antibacterial activity and its mode of action appeared to be associated with changes in the permeability of bacterial membranes; it led to increased entry of hydrophobic antibiotics, efflux of K(+), and nucleotide leakage. Preliminary phytochemical analysis revealed the presence of flavonoids, alkaloids, terpenes, and sterols in the extract. Spectrophotometric and HPLC analysis revealed the presence of the flavonoids rutin and quercetin. In summary, HEPu has antibacterial activity and low acute toxicity in vitro and in vivo. Its mode of action appears to be associated with changes in the permeability of the bacterial cell wall and cytoplasmic membrane, which can at least be partly attributed to the flavonoids present in the extract. © 2013 Elsevier Ireland Ltd. All rights reserved.
Johnson, Ian; Hutchings, Matt; Benstead, Rachel; Thain, John; Whitehouse, Paul
2004-07-01
In the UK Direct Toxicity Assessment Programme, carried out in 1998-2000, a series of internationally recognised short-term toxicity test methods for algae, invertebrates and fishes, and rapid methods (ECLOX and Microtox) were used extensively. Abbreviated versions of conventional tests (algal growth inhibition tests, Daphnia magna immobilisation test and the oyster embryo-larval development test) were valuable for toxicity screening of effluent discharges and the identification of causes and sources of toxicity. Rapid methods based on chemiluminescence and bioluminescence were not generally useful in this programme, but may have a role where the rapid test has been shown to be an acceptable surrogate for a standardised test method. A range of quality assurance and control measures were identified. Requirements for quality control/assurance are most stringent when deriving data for characterising the toxic hazards of effluents and monitoring compliance against a toxicity reduction target. Lower quality control/assurance requirements can be applied to discharge screening and the identification of causes and sources of toxicity.
Clinical review: Aggressive management and extracorporeal support for drug-induced cardiotoxicity
Baud, Frédéric J; Megarbane, Bruno; Deye, Nicolas; Leprince, Pascal
2007-01-01
Poisoning may induce failure in multiple organs, leading to death. Supportive treatments and supplementation of failing organs are usually efficient. In contrast, the usefulness of cardiopulmonary bypass in drug-induced shock remains a matter of debate. The majority of deaths results from poisoning with membrane stabilising agents and calcium channel blockers. There is a need for more aggressive treatment in patients not responding to conventional treatments. The development of new antidotes is limited. In contrast, experimental studies support the hypothesis that cardiopulmonary bypass is life-saving. A review of the literature shows that cardiopulmonary bypass of the poisoned heart is feasible. The largest experience has resulted from the use of peripheral cardiopulmonary bypass. However, a literature review does not allow any conclusions regarding the efficiency and indications for this invasive method. Indeed, the majority of reports are single cases, with only one series of seven patients. Appealing results suggest that further studies are needed. Determination of prognostic factors predictive of refractoriness to conventional treatment for cardiotoxic poisonings is mandatory. These prognostic factors are specific for a toxicant or a class of toxicants. Knowledge of them will result in clarification of the indications for cardiopulmonary bypass in poisonings. PMID:17367544
Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita
2017-05-01
Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.
Molecular controls of the oxygenation and redox reactions of hemoglobin.
Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L
2013-06-10
The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.
Modeling for the optimal biodegradation of toxic wastewater in a discontinuous reactor.
Betancur, Manuel J; Moreno-Andrade, Iván; Moreno, Jaime A; Buitrón, Germán; Dochain, Denis
2008-06-01
The degradation of toxic compounds in Sequencing Batch Reactors (SBRs) poses inhibition problems. Time Optimal Control (TOC) methods may be used to avoid such inhibition thus exploiting the maximum capabilities of this class of reactors. Biomass and substrate online measurements, however, are usually unavailable for wastewater applications, so TOC must use only related variables as dissolved oxygen and volume. Although the standard mathematical model to describe the reaction phase of SBRs is good enough for explaining its general behavior in uncontrolled batch mode, better details are needed to model its dynamics when the reactor operates near the maximum degradation rate zone, as when TOC is used. In this paper two improvements to the model are suggested: to include the sensor delay effects and to modify the classical Haldane curve in a piecewise manner. These modifications offer a good solution for a reasonable complexification tradeoff. Additionally, a new way to look at the Haldane K-parameters (micro(o),K(I),K(S)) is described, the S-parameters (micro*,S*,S(m)). These parameters do have a clear physical meaning and, unlike the K-parameters, allow for the statistical treatment to find a single model to fit data from multiple experiments.
Initial clinical outcomes of proton beam radiotherapy for hepatocellular carcinoma
Yu, Jeong Il; Yoo, Gyu Sang; Cho, Sungkoo; Jung, Sang Hoon; Han, Youngyih; Park, Seyjoon; Lee, Boram; Kang, Wonseok; Sinn, Dong Hyun; Paik, Yong-Han; Gwak, Geum-Youn; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon; Park, Hee Chul
2018-01-01
Purpose This study aimed to evaluate the initial outcomes of proton beam therapy (PBT) for hepatocellular carcinoma (HCC) in terms of tumor response and safety. Materials and Methods HCC patients who were not indicated for standard curative local modalities and who were treated with PBT at Samsung Medical Center from January 2016 to February 2017 were enrolled. Toxicity was scored using the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Tumor response was evaluated using modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results A total of 101 HCC patients treated with PBT were included. Patients were treated with an equivalent dose of 62–92 GyE10. Liver function status was not significantly affected after PBT. Greater than 80% of patients had Child-Pugh class A and albumin-bilirubin (ALBI) grade 1 up to 3-months after PBT. Of 78 patients followed for three months after PBT, infield complete and partial responses were achieved in 54 (69.2%) and 14 (17.9%) patients, respectively. Conclusion PBT treatment of HCC patients showed a favorable infield complete response rate of 69.2% with acceptable acute toxicity. An additional follow-up study of these patients will be conducted. PMID:29580046
Doe, John E.; Lander, Deborah R.; Doerrer, Nancy G.; Heard, Nina; Hines, Ronald N.; Lowit, Anna B.; Pastoor, Timothy; Phillips, Richard D.; Sargent, Dana; Sherman, James H.; Young Tanir, Jennifer; Embry, Michelle R.
2016-01-01
Abstract The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, “pseudomethrin,” in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use. PMID:26517449
A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae
NASA Astrophysics Data System (ADS)
Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.
2016-12-01
Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7 614002). 1. Faber, S. Saxitoxin and the Induction of Paralytic Shellfish Poisoning. J. Young Investig. 23,7 (2012). 2. Bláha, L., Babica, P. & Maršálek, B. Toxins produced in cyanobacterial water blooms - toxicity and risks. Interdiscip. Toxicol. 2, (2009).
Saito, Kenji; Hasegawa-Baba, Yasuko; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Okamura, Hiroyuki; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio
2017-09-01
We performed a safety evaluation using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) of the following four flavouring substances that belong to the class of 'aliphatic primary alcohols, aldehydes, carboxylic acids, acetals, and esters containing additional oxygenated functional groups' and are uniquely used in Japan: butyl butyrylacetate, ethyl 2-hydroxy-4-methylpentanoate, 3-hydroxyhexanoic acid and methyl hydroxyacetate. Although no genotoxicity study data were found in the published literature, none of the four substances had chemical structural alerts predicting genotoxicity. All four substances were categorised as class I by using Cramer's classification. The estimated daily intake of each of the four substances was determined to be 0.007-2.9 μg/person/day by using the maximised survey-derived intake method and based on the annual production data in Japan in 2001, 2005 and 2010, and was determined to be 0.250-600.0 μg/person/day by using the single-portion exposure technique and based on average-use levels in standard portion sizes of flavoured foods. Both of these estimated daily intake ranges were below the threshold of toxicological concern for class I substances, which is 1800 μg/person/day. Although no information from in vitro and in vivo toxicity studies for the four substances was available, these substances were judged to raise no safety concerns at the current levels of intake.
Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran
2012-06-01
The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.
Lü, Jianhua; Ma, Dan
2015-01-01
The repellent and contact toxicities of Alpinia officinarum rhizome extract on Lasioderma serricorne adults, and its ability to protect stored wheat flour from L. serricorne adults infestation were investigated. The A. officinarum extract exhibited strong repellent and contact toxicities against L. serricorne adults. The toxicities enhanced significantly with the increasing treatment time and treatment dose. The mean percentage repellency value reached 91.3% at class V at the dose of 0.20 μL/cm2 after 48 h of exposure. The corrected mortality reached over 80.0% at the dose of 0.16 μL/cm2 after 48 h of exposure. The A. officinarum extract could significantly reduce L. serricorne infestation level against stored wheat flour. Particularly, the insect infestation was nil in wheat flour packaged with kraft paper bags coated with the A. officinarum extract at the dose of above 0.05 μL/cm2. The naturally occurring A. officinarum extract could be useful for integrated management of L. serricorne.
Toxicities of Immunosuppressive Treatment of Autoimmune Neurologic Diseases
Lallana, Enrico C; Fadul, Camilo E
2011-01-01
In parallel to our better understanding of the role of the immune system in neurologic diseases, there has been an increased availability in therapeutic options for autoimmune neurologic diseases such as multiple sclerosis, myasthenia gravis, polyneuropathies, central nervous system vasculitides and neurosarcoidosis. In many cases, the purported benefits of this class of therapy are anecdotal and not the result of good controlled clinical trials. Nonetheless, their potential efficacy is better known than their adverse event profile. A rationale therapeutic decision by the clinician will depend on a comprehensive understanding of the ratio between efficacy and toxicity. In this review, we outline the most commonly used immune suppressive medications in neurologic disease: cytotoxic chemotherapy, nucleoside analogues, calcineurin inhibitors, monoclonal antibodies and miscellaneous immune suppressants. A discussion of their mechanisms of action and related toxicity is highlighted, with the goal that the reader will be able to recognize the most commonly associated toxicities and identify strategies to prevent and manage problems that are expected to arise with their use. PMID:22379461
Lü, Jianhua; Ma, Dan
2015-01-01
The repellent and contact toxicities of Alpinia officinarum rhizome extract on Lasioderma serricorne adults, and its ability to protect stored wheat flour from L. serricorne adults infestation were investigated. The A. officinarum extract exhibited strong repellent and contact toxicities against L. serricorne adults. The toxicities enhanced significantly with the increasing treatment time and treatment dose. The mean percentage repellency value reached 91.3% at class V at the dose of 0.20 μL/cm2 after 48 h of exposure. The corrected mortality reached over 80.0% at the dose of 0.16 μL/cm2 after 48 h of exposure. The A. officinarum extract could significantly reduce L. serricorne infestation level against stored wheat flour. Particularly, the insect infestation was nil in wheat flour packaged with kraft paper bags coated with the A. officinarum extract at the dose of above 0.05 μL/cm2. The naturally occurring A. officinarum extract could be useful for integrated management of L. serricorne. PMID:26292097
Endocrine disruptor induction of epigenetic transgenerational inheritance of disease.
Skinner, Michael K
2014-12-01
Environmental exposures such as toxicants, nutrition and stress have been shown to promote the epigenetic transgenerational inheritance of disease susceptibility. Endocrine disruptors are one of the largest groups of specific toxicants shown to promote this form of epigenetic inheritance. These environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to on a daily level. The ability of ancestral exposures to promote disease susceptibility significantly increases the potential biohazards of these toxicants. Therefore, what your great-grandmother was exposed to during pregnancy may influence your disease development, even in the absence of any exposure, and you are going to pass this on to your grandchildren. This non-genetic form of inheritance significantly impacts our understanding of biology from the origins of disease to evolutionary biology. The current review will describe the previous studies and endocrine disruptors shown to promote the epigenetic transgenerational inheritance of disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Api, A M; Belsito, D; Botelho, D; Browne, D; Bruze, M; Burton, G A; Buschmann, J; Calow, P; Dagli, M L; Date, M; Dekant, W; Deodhar, C; Fryer, A D; Joshi, K; La Cava, S; Lapczynski, A; Liebler, D C; O'Brien, D; Parakhia, R; Patel, A; Penning, T M; Ritacco, G; Romine, J; Salvito, D; Schultz, T W; Sipes, I G; Thakkar, Y; Tsang, S; Wahler, J
2017-12-01
The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic. Data from the suitable read across analog isoamyl acetate (CAS# 123-92-2) show that this material does not have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 mg/kg/day and 1.4 mg/day, respectively). The repeated dose and developmental endpoint was completed using data on the target material, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals.
Belanger, Scott E; Rawlings, Jane M; Carr, Gregory J
2013-08-01
The fish embryo test (FET) is a potential animal alternative for the acute fish toxicity (AFT) test. A comprehensive validation program assessed 20 different chemicals to understand intra- and interlaboratory variability for the FET. The FET had sufficient reproducibility across a range of potencies and modes of action. In the present study, the suitability of the FET as an alternative model is reviewed by relating FET and AFT. In total, 985 FET studies and 1531 AFT studies were summarized. The authors performed FET-AFT regressions to understand potential relationships based on physical-chemical properties, species choices, duration of exposure, chemical classes, chemical functional uses, and modes of action. The FET-AFT relationships are very robust (slopes near 1.0, intercepts near 0) across 9 orders of magnitude in potency. A recommendation for the predictive regression relationship is based on 96-h FET and AFT data: log FET median lethal concentration (LC50) = (0.989 × log fish LC50) - 0.195; n = 72 chemicals, r = 0.95, p < 0.001, LC50 in mg/L. A similar, not statistically different regression was developed for the entire data set (n = 144 chemicals, unreliable studies deleted). The FET-AFT regressions were robust for major chemical classes with suitably large data sets. Furthermore, regressions were similar to those for large groups of functional chemical categories such as pesticides, surfactants, and industrial organics. Pharmaceutical regressions (n = 8 studies only) were directionally correct. The FET-AFT relationships were not quantitatively different from acute fish-acute fish toxicity relationships with the following species: fathead minnow, rainbow trout, bluegill sunfish, Japanese medaka, and zebrafish. The FET is scientifically supportable as a rational animal alternative model for ecotoxicological testing of acute toxicity of chemicals to fish. Copyright © 2013 SETAC.
Henry, Barbara J; Carlin, Joseph P; Hammerschmidt, Jon A; Buck, Robert C; Buxton, L William; Fiedler, Heidelore; Seed, Jennifer; Hernandez, Oscar
2018-05-01
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated substances that are in the focus of researchers and regulators due to widespread presence in the environment and biota, including humans, of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Fluoropolymers, high molecular weight polymers, have unique properties that constitute a distinct class within the PFAS group. Fluoropolymers have thermal, chemical, photochemical, hydrolytic, oxidative, and biological stability. They have negligible residual monomer and oligomer content and low to no leachables. Fluoropolymers are practically insoluble in water and not subject to long-range transport. With a molecular weight well over 100 000 Da, fluoropolymers cannot cross the cell membrane. Fluoropolymers are not bioavailable or bioaccumulative, as evidenced by toxicology studies on polytetrafluoroethylene (PTFE): acute and subchronic systemic toxicity, irritation, sensitization, local toxicity on implantation, cytotoxicity, in vitro and in vivo genotoxicity, hemolysis, complement activation, and thrombogenicity. Clinical studies of patients receiving permanently implanted PTFE cardiovascular medical devices demonstrate no chronic toxicity or carcinogenicity and no reproductive, developmental, or endocrine toxicity. This paper brings together fluoropolymer toxicity data, human clinical data, and physical, chemical, thermal, and biological data for review and assessment to show that fluoropolymers satisfy widely accepted assessment criteria to be considered as "polymers of low concern" (PLC). This review concludes that fluoropolymers are distinctly different from other polymeric and nonpolymeric PFAS and should be separated from them for hazard assessment or regulatory purposes. Grouping fluoropolymers with all classes of PFAS for "read across" or structure-activity relationship assessment is not scientifically appropriate. Integr Environ Assess Manag 2018;14:316-334. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
NASA Astrophysics Data System (ADS)
Farzin, Leila; Shamsipur, Mojtaba
2017-09-01
The exploration of novel adsorption properties of conductive polymers based on hybridization with biocompatible nanomaterials receives an increasing interest. In this regard, hydroxyapatite (HA) bioceramic is of critical importance mainly owing to its facile synthesis, high surface area, economic and low toxicity in biological environments. In this work, we first prepared and characterized a magnetite/hydroxyapatite (Fe3O4/HA) nanocomposite using the bio-waste chicken eggshell via an attractive green way that involved low cost and irrespective of toxicity. Then, polythionine as a novel class of conductive polymers was in situ coated on the synthesized magnetic bioceramic for the separation and preconcentration of riboflavin (vitamin B2) in human plasma before its fluorimetric determination. Considering the putative role of riboflavin in protecting against cancer and cardiovascular diseases, it is essential to evaluate this vitamin in biological fluids. The described method possesses a linear range of 0.75-262.5 μg L- 1 (R2 = 0.9985) and a detection limit of 0.20 μg L- 1 (signal-to-noise ratio of 3). The relative standard deviations (RSDs) for single-sorbent repeatability and sorbent-to-sorbent reproducibility were less than 4.0% and 7.6% (n = 5), respectively. The respective enrichment factor and extraction recovery of the method found to be 35.7 and 98.4%. The analytical performance of method for riboflavin was characterized by good consistency of the results with those obtained by the enzyme-linked immunosorbent assay (ELISA) conventional method (p-value of < 0.05). The optimized protocol intended for control determinations of riboflavin in human subjects and is addressed to clinical laboratories.
Are we in the dark ages of environmental toxicology?
McCarty, L S
2013-12-01
Environmental toxicity is judged to be in a "dark ages" period due to longstanding limitations in the implementation of the simple conceptual model that is the basis of current aquatic toxicity testing protocols. Fortunately, the environmental regulatory revolution of the last half-century is not substantially compromised as development of past regulatory guidance was designed to deal with limited amounts of relatively poor quality toxicity data. However, as regulatory objectives have substantially increased in breadth and depth, aquatic toxicity data derived with old testing methods are no longer adequate. In the near-term explicit model description and routine assumption validation should be mandatory. Updated testing methods could provide some improvements in toxicological data quality. A thorough reevaluation of toxicity testing objectives and methods resulting in substantially revised standard testing methods, plus a comprehensive scheme for classification of modes/mechanisms of toxic action, should be the long-term objective. Copyright © 2013 Elsevier Inc. All rights reserved.
Electron transfer from alpha-keggin anions to dioxygen
Yurii V. Geletii; Rajai H. Atalla; Craig L. Hill; Ira A. Weinstock
2004-01-01
Polyoxometalates (POMs), of which alpha-Keggin anions are representative, are a diverse and rapidly growing class of water-soluble cluster-anion structures with applications ranging from molecular catalysis to materials. [1] POMs are inexpensive, minimally or non-toxic, negatively charged clusters comprised of early transition-metals, usually in their do electronic...
What Every Chemist Should Know About Teratogens--Chemicals that Cause Birth Defects.
ERIC Educational Resources Information Center
Beyler, Roger E.; Meyers, Vera Kolb
1982-01-01
Teratogens are agents which act during pregnancy producing physical/functional defects in the embryo, fetus, or offspring. Discusses teratogenic hazards in the workplace and academic environment, classes of teratogenic compounds, precautions for interpreting Teratogen List from Registry of Toxic Effects of Chemical Substances (RTECS), and how…
Early developmental stages of fish are extremely sensitive to a class of toxic and persistent environmental contaminants known as dioxin-like compounds (DLCs). Most of the toxicological actions of DLCs are mediated via the Aryl hydrocarbon Receptor (AhR) that regulates transcript...
Previous modelling of the median lethal dose (oral rat LD50) has indicated that local class-based models yield better correlations than global models. We evaluated the hypothesis that dividing the dataset by pesticidal mechanisms would improve prediction accuracy. A linear discri...
Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...
USDA-ARS?s Scientific Manuscript database
In our continuing search for natural algicides with selective toxicity towards the 2-methyl- isoborneol (MIB) -producing blue-green alga Oscillatoria perornata , the ethyl acetate extract from Amyris texana leaves was investigated by bioassay-guided fractionation. A chromene amide was isolated and i...
Although the disinfection of water for human usage is necessary, the formation of toxic disinfection by-products (DBPs) does occur. Recent discovery of a novel class of mutagenic DBPs, PBTA (2-phenylbenzotriazole) derivatives, demonstrates that textile effluents have the potentia...
USDA-ARS?s Scientific Manuscript database
Navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is a highly polyphagous economic pest of almond, pistachio, and walnut crops in California orchards. Although management of this pest has typically been through a combination of cultural control and insecticide sprays, increas...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
1989-12-14
induces injection-site sarcomas (mainly fibrosarcomas and rhabdomyosarcomas) as well as reproductive toxicity and neoplasms in males (Haddow et al...G., and Ward, J.M., 1981. Characteristics of proliferative lesions in the nasal cavities of mice following chronic inhalation of EDB. Cancer Lett., 12
DESTRUCTION OF PCBS USING SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES
Polychlorinated biphenyls (PCBs) are a class of 209 congeners that were extensively used in industrial applications during 1929 to early 1970s, The presence of PCBs in the environment poses long-term risk to public health and wildlife due to their persistent and toxic nature. Adv...
Class content will include examples of how the Tool maybe applied to calculate the impacts of various air pollution control regulations (for example, the Mercury and Air Toxics Rule) on future year activity as well as NOx, SO2, and CO2 emissions.
The samples collected in the CTEPP North Carolina and Ohio field campaigns were analyzed for a suite of organic chemicals in various compound classes, chosen because of their possible carcinogenicity, acute or chronic toxicity, or potential for endocrine system disruption. The...
Characterization of stuA mutants in the mycotoxigenic maize pathogen Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a major pathogen of maize, causing root, stalk and ear rots and seedling blight. It also produces fumonisin mycotoxins. Ingestion of fumonisin-contaminated corn causes acute toxicity in livestock and is a potential carcinogen to humans. StuA, an APSES protein class transc...
A SHORT-TERM REPRODUCTIVE TEST WITH THE FATHEAD MINNOW (PIMEPHALES PROMELAS)
Due to the time and expense associated with full life-cycle testing, most current toxicity tests with fish do not explicity consider reproductive output as an endpoint but, rather, focus on early life-stage survival and development. However, there are classes of chemicals that co...
49 CFR 173.167 - Consumer commodities.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-toxic aerosols only), Class 3 (Packing Group II and III only), Division 6.1 (Packing Group III only.... Additionally, except for the pressure differential requirements in § 173.27(c), the requirements of § 173.27 do... appropriate, in accordance with subpart E of part 172 of this subchapter; and (2) Pressure differential...
U-SHAPED DOSE-RESPONSE CURVES: THEIR OCCURRENCE AND IMPLICATIONS FOR RISK ASSESSMENT
A class of curvilinear dose-response relationships in toxicological and epidemiological studies may be roughly described by "U-shaped curves. uch curves reflect an apparent reversal or inversion in the effect of an otherwise toxic agent at a low or intermediate region of the dose...
USDA-ARS?s Scientific Manuscript database
Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment have been identified as a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuel production. Development of robust next-generation biocatalyst is a key for a ...
The Peroxisome Proliferator Activated Receptors (PPARs), a class of nuclear receptors that modulate both transcription and metabolic processes, are implicated in a variety of metabolic disorders linked to lipidogenesis, adipose tissue accumulation, fatty-acid oxidation pathways, ...
Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien
2013-08-01
Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.
Scenario of organophosphate pollution and toxicity in India: A review.
Kumar, Shardendu; Kaushik, Garima; Villarreal-Chiu, Juan Francisco
2016-05-01
The present study on organophosphate deals with the reports on pollution and toxicity cases throughout India. The use of pesticides was introduced in India during the 1960s which are now being used on a large scale and represents the common feature of Indian agriculture. Use of organophosphates as a pesticide came as an alternative to chlorinated hydrocarbons due to their easy degradability. Although these xenobiotics degrade under natural condition, their residues have been detected in soil, sediments, and water due to their non-regulated usage practice. The over-reliance on pesticides has not only threatened our environment but contaminations of organophosphate residues have been also detected in certain agricultural products like tea, sugars, vegetables, and fruits throughout India. This paper highlights many of the cases where different organophosphates have been detected exceeding their respective MRL values. Some organophosphates detected are so hazardous that even WHO has listed them in class 1a and class 1b hazardous group. Presence of their residues in blood, milk, honey, and tissues of human and animals revealed their excessive use and bioaccumulating capabilities. Their intentional or unintentional uptake is causing thousands of deaths and severity each year. Most of the toxicity cases presented here are due to their uptake during a suicidal attempt. This shows how easily these harmful substances are available in the market.
Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando
2013-01-01
Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil. PMID:23728813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Douglas B., E-mail: douglas.einstein@khnetwork.org; Wessels, Barry; Bangert, Barbara
2012-11-01
Purpose: To determine the efficacy of a Gamma Knife stereotactic radiosurgery (SRS) boost to areas of high risk determined by magnetic resonance spectroscopy (MRS) functional imaging in addition to standard radiotherapy for patients with glioblastoma (GBM). Methods and Materials: Thirty-five patients in this prospective Phase II trial underwent surgical resection or biopsy for a GBM followed by SRS directed toward areas of MRS-determined high biological activity within 2 cm of the postoperative enhancing surgical bed. The MRS regions were determined by identifying those voxels within the postoperative T2 magnetic resonance imaging volume that contained an elevated choline/N-acetylaspartate ratio in excessmore » of 2:1. These voxels were marked, digitally fused with the SRS planning magnetic resonance image, targeted with an 8-mm isocenter per voxel, and treated using Radiation Therapy Oncology Group SRS dose guidelines. All patients then received conformal radiotherapy to a total dose of 60 Gy in 2-Gy daily fractions. The primary endpoint was overall survival. Results: The median survival for the entire cohort was 15.8 months. With 75% of recursive partitioning analysis (RPA) Class 3 patients still alive 18 months after treatment, the median survival for RPA Class 3 has not yet been reached. The median survivals for RPA Class 4, 5, and 6 patients were 18.7, 12.5, and 3.9 months, respectively, compared with Radiation Therapy Oncology Group radiotherapy-alone historical control survivals of 11.1, 8.9, and 4.6 months. For the 16 of 35 patients who received concurrent temozolomide in addition to protocol radiotherapeutic treatment, the median survival was 20.8 months, compared with European Organization for Research and Treatment of Cancer historical controls of 14.6 months using radiotherapy and temozolomide. Grade 3/4 toxicities possibly attributable to treatment were 11%. Conclusions: This represents the first prospective trial using selective MRS-targeted functional SRS combined with radiotherapy for patients with GBM. This treatment is feasible, with acceptable toxicity and patient survivals higher than in historical controls. This study can form the basis for a multicenter, randomized trial.« less
Reeve, Peter J; Fallowfield, Howard J
2017-10-05
Surfactant Modified Zeolite (SMZ) represents a versatile, cost-effective permeable reactive material, capable of treating multiple classes of contaminants. The potential for HDTMA-Br, a cationic surfactant commonly used to modify zeolite, to desorb from the zeolite surface has been identified as a potential issue for the ongoing use of SMZ in water remediation contexts. This paper investigates the toxicity of HDTMA-Br towards enteric virus surrogates, F-RNA bacteriophage MS2 and E. coli, Bacillus subtilis, and soil microflora. The concentration of surfactant desorbing from SMZ was quantified through a bioassay using E. coli. Results showed HDTMA-Br concentrations of ≥10 -5 M were toxic to MS2, ≥10 -4 M were toxic to E. coli and ≥10 -6 M were toxic to B. subtilis. No toxic relationship was established between HDTMA-Br and soil microflora. Desorption of ≥10 -4 M of HDTMA-Br was shown for the two SMZ samples under the mixing conditions used. Effects of this surfactant on total soil microflora were ambiguous since no toxic relationship could be established, however, HDTMA-Br, at concentrations desorbing from SMZ, were shown to impact the soil bacterium B. subtilis. Further research is required to determine the effect of this surfactant on microbial populations and species diversity in soils. Copyright © 2017 Elsevier B.V. All rights reserved.
Carr, R.S.; Chapman, D.C.
1995-01-01
A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.
The user's guide describes the methods used by TEST to predict toxicity and physical properties (including the new mode of action based method used to predict acute aquatic toxicity). It describes all of the experimental data sets included in the tool. It gives the prediction res...
NASA Astrophysics Data System (ADS)
Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Şen Karaman, Didem; Burikov, Sergey A.; Dolenko, Tatiana A.; Deguchi, Takahiro; Mamaeva, Veronika; Hänninen, Pekka E.; Vlasov, Igor I.; Shenderova, Olga A.; Rosenholm, Jessica M.
2015-06-01
Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are attractive for biomedical imaging such as low toxicity and stable photoluminescence. In this study, the nGOs were organically surface-modified with poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) copolymers tagged with folic acid as the affinity ligand for cancer cells expressing folate receptors. The functionalization enhanced both the cellular uptake and quantum efficiency of the photoluminescence as compared to non-modified nGOs. The nGOs exhibited an excitation dependent photoluminescence that facilitated their detection with a wide range of microscope configurations. The functionalized nGOs were non-toxic, they were retained in the stained cell population over a period of 8 days and they were distributed equally between daughter cells. We have evaluated their applicability in in vitro and in vivo (chicken embryo CAM) models to visualize and track migratory cancer cells. The good biocompatibility and easy detection of the functionalized nGOs suggest that they could address the limitations faced with quantum dots and organic fluorophores in long-term in vivo biomedical imaging.Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are attractive for biomedical imaging such as low toxicity and stable photoluminescence. In this study, the nGOs were organically surface-modified with poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) copolymers tagged with folic acid as the affinity ligand for cancer cells expressing folate receptors. The functionalization enhanced both the cellular uptake and quantum efficiency of the photoluminescence as compared to non-modified nGOs. The nGOs exhibited an excitation dependent photoluminescence that facilitated their detection with a wide range of microscope configurations. The functionalized nGOs were non-toxic, they were retained in the stained cell population over a period of 8 days and they were distributed equally between daughter cells. We have evaluated their applicability in in vitro and in vivo (chicken embryo CAM) models to visualize and track migratory cancer cells. The good biocompatibility and easy detection of the functionalized nGOs suggest that they could address the limitations faced with quantum dots and organic fluorophores in long-term in vivo biomedical imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01403d
Management of metastatic renal cell carcinoma in the era of targeted therapies.
Webber, K; Cooper, A; Kleiven, H; Yip, D; Goldstein, D
2011-08-01
Metastatic renal cell cancer is associated with poor prognosis and survival and is resistant to conventional chemotherapy. Therapeutic targeting of molecular pathways for tumour angiogenesis and other specific activation mechanisms offers improved tumour response and prolonged survival. To conduct a retrospective audit of metastatic renal cell carcinoma patients treated with targeted therapies. Data were extracted from clinical records of patients undergoing targeted treatment between 2005 and 2009 at two hospital sites. Data collected included pathology, systemic therapy class, toxicity and survival. Univariate and multivariate survival analyses were performed. Sixty-one patients were treated with 102 lines of therapy with a median overall survival (OS) of 23 months, median time to failure of first-line treatment (TTF1) of 10 months and median time to failure of second-line treatment (TTF2) of 5.2 months. Time from first diagnosis to treatment >12 months was significantly associated with improved OS, longer TTF1, TTF2 and response to first-line anti-vascular endothelial growth factor receptor tyrosine kinase inhibitors (anti-VEGF TKI) therapy. Variables associated with tumour biology, natural history and the systemic inflammatory response were associated with improved OS and TTF1. Development of hypertension was predictive of anti-VEGF TKI outcome. Toxicities were as expected for each drug class. Survival and toxicity outcomes from two Australian sites are comparable to published data. The adverse event profile differs to conventional chemotherapy. Clinicians caring for patients with metastatic renal cancer will need to become familiar with these toxicities and their management as these agents enter widespread use. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.
Demkovich, Mark; Dana, Catherine E; Siegel, Joel P; Berenbaum, May R
2015-12-01
Amyelois transitella (Walker) (Lepidoptera: Pyralidae), the navel orangeworm, is a highly polyphagous economic pest of almond, pistachio, and walnut crops in California. Increasing demand for these crops and their rising economic value has resulted in substantial increases of insecticide applications to reduce damage to acceptable levels. The effects of piperonyl butoxide (PBO), a methylenedioxyphenyl compound that can act as a synergist by inhibiting cytochrome P450-mediated detoxification on insecticide metabolism by A. transitella, were examined in a series of feeding bioassays with first-instar A. transitella larvae from a laboratory strain. PBO, however, can have a variety of effects on metabolism, including inhibition of glutathione-S-transferases and esterases and induction of P450s. In our study, PBO synergized the toxicity of acetamiprid, λ-cyhalothrin, and spinosad, suggesting possible involvement of P450s in their detoxification. In contrast, PBO interacted antagonistically with the organophosphate insecticide chlorpyrifos, reducing its toxicity, an effect consistent with inhibition of P450-mediated bioactivation of this pesticide. The toxicity of the anthranilic diamide insecticide chlorantraniliprole was not altered by PBO, suggestive of little or no involvement of P450-mediated metabolism in its detoxification. Because a population of navel orangeworm in Kern County, CA, has already acquired resistance to the pyrethroid insecticide bifenthrin through enhanced P450 activity, determining the effect of adding a synergist such as PBO on detoxification of all insecticide classes registered for use in navel orangeworm management can help to develop rotation practices that may delay resistance acquisition or to implement alternative management practices where resistance is likely to evolve. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
RIFM fragrance ingredient safety assessment, 2-ethyl-1-butanol, CAS Registry Number 97-95-0.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the suitable read across analog 2-ethylhexanol (CAS # 104-76-7) show that this material is not genotoxic. Data from the suitable read across analog isopropyl alcohol (CAS # 67-63-0) show that this material does not have skin sensitization potential. The local respiratory toxicity endpoint was completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (1.4 mg/day). The repeated dose toxicity endpoint was completed using 2-ethylhexanol (CAS # 104-76-7) and 1-heptanol, 2-propyl (CAS # 10042-59-8) as suitable read across analogs, which provided a MOE > 100. The developmental and reproductive toxicity endpoint was completed using 2-ethyl-hexanol (CAS # 104-76-7) and isobutyl alcohol (CAS # 78-83-1) as suitable read across analogs, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity
Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie
2014-01-01
The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236
Cowan, Christopher B.; Patel, Dhara A.; Good, Theresa A.
2009-01-01
β-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer’s disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a role in the mechanism of Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have used a number of different sialic acid compounds of different valency or number of sialic acid moieties per molecule to attenuate Aβ toxicity in a cell culture model. In this work, we proposed various mathematical models of Aβ interaction with both the cell membrane and with the multivalent sialic acid compounds, designed to act as membrane mimics. These models allow us to explore the mechanism of action of this class of sialic acid membrane mimics in attenuating the toxicity of Aβ. The mathematical models, when compared with experimental data, facilitate the discrimination between different modes of action of these materials. Understanding the mechanism of action of Aβ toxicity inhibitors should provide insight into the design of the next generation of molecules that could be used to prevent Aβ toxicity associated with Alzheimer’s disease. PMID:19217912
The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.
Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R
2014-01-01
Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.
Comparison of bulk sediment and sediment elutriate toxicity testing methods
Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...
Identification of Chemical Toxicity Using Ontology Information of Chemicals.
Jiang, Zhanpeng; Xu, Rui; Dong, Changchun
2015-01-01
With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method, our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other attributes of chemicals.
Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests.
Prabhaker, Nilima; Morse, J G; Castle, S J; Naranjo, S E; Henneberry, T J; Toscano, N C
2007-08-01
Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.
In silico methods for design of biological therapeutics.
Roy, Ankit; Nair, Sanjana; Sen, Neeladri; Soni, Neelesh; Madhusudhan, M S
2017-12-01
It has been twenty years since the first rationally designed small molecule drug was introduced into the market. Since then, we have progressed from designing small molecules to designing biotherapeutics. This class of therapeutics includes designed proteins, peptides and nucleic acids that could more effectively combat drug resistance and even act in cases where the disease is caused because of a molecular deficiency. Computational methods are crucial in this design exercise and this review discusses the various elements of designing biotherapeutic proteins and peptides. Many of the techniques discussed here, such as the deterministic and stochastic design methods, are generally used in protein design. We have devoted special attention to the design of antibodies and vaccines. In addition to the methods for designing these molecules, we have included a comprehensive list of all biotherapeutics approved for clinical use. Also included is an overview of methods that predict the binding affinity, cell penetration ability, half-life, solubility, immunogenicity and toxicity of the designed therapeutics. Biotherapeutics are only going to grow in clinical importance and are set to herald a new generation of disease management and cure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
An interlaboratory comparison of sediment elutriate preparation and toxicity test methods
Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...
Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines.
Yang, Yang; Komaki, Yukako; Kimura, Susana Y; Hu, Hong-Ying; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J
2014-10-21
Disinfectants inactivate pathogens in source water; however, they also react with organic matter and bromide/iodide to form disinfection byproducts (DBPs). Although only a few DBP classes have been systematically analyzed for toxicity, iodinated and brominated DBPs tend to be the most toxic. The objectives of this research were (1) to determine if monochloramine (NH2Cl) disinfection generated drinking water with less toxicity than water disinfected with free chlorine (HOCl) and (2) to determine the impact of added bromide and iodide in conjunction with HOCl or NH2Cl disinfection on mammalian cell cytotoxicity and genomic DNA damage induction. Water disinfected with chlorine was less cytotoxic but more genotoxic than water disinfected with chloramine. For both disinfectants, the addition of Br(-) and I(-) increased cytotoxicity and genotoxicity with a greater response observed with NH2Cl disinfection. Both cytotoxicity and genotoxicity were highly correlated with TOBr and TOI. However, toxicity was weakly and inversely correlated with TOCl. Thus, the forcing agents for cytotoxicity and genotoxicity were the generation of brominated and iodinated DBPs rather than the formation of chlorinated DBPs. Disinfection practices need careful consideration especially when using source waters containing elevated bromide and iodide.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the target material and the suitable read across analog 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (CAS # 21145-77-7) show that this material is not genotoxic. Data from the suitable read across analog 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (CAS # 21145-77-7) provided a MOE > 100 for the repeat dose and developmental toxicity endpoints. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class II material (0.009 mg/kg/day and 0.47 mg/day, respectively). Data on the target material showed that this material is below the non-reactive DST for skin sensitization and did not have the potential for phototoxicity or photoallergenicity. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
[The actual incidence of the population in the RF subject: assessment of economic effect (losses)].
Ushakov, A A; Saldan, I P; Goleva, O I; Karpova, T N
2013-01-01
In the paper there is presented an analysis and evaluation of the economic losses associated with the actual incidence of the population of the Altai Region on disease classes "Poisoning by drugs, medicaments and biological substances" (T36-T50) and "Toxic effect of substances, mainly non-medical purpose" (T51-T65), including the assessment of the underproduced product in economy of the region in monetary terms, assessment changes in cash flows on the budgets of the Russian Federation (tax receipts). The time period of analysis on disease classes is 5 years (2007-2011).
16 CFR 1500.40 - Method of testing toxic substances.
Code of Federal Regulations, 2014 CFR
2014-01-01
... not require animals, are presented in the CPSC's animal testing policy set forth in 16 CFR 1500.232. A... test animals. The method of testing the toxic substances referred to in § 1500.3(c)(1)(ii)(C) and (c)(2... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Method of testing toxic substances. 1500.40...
Kristiana, Ina; Joll, Cynthia; Heitz, Anna
2012-02-17
Halonitriles are a class of nitrogen-containing disinfection by-products (DBPs) that have been reported to be more toxic and carcinogenic than the regulated DBPs. While haloacetonitriles (HANs) are often measured in drinking waters, there is little information on the formation, characteristics, and occurrence of other, higher molecular weight halonitriles. Halopropionitriles and halobutyronitriles have been predicted to be highly toxic and carcinogenic, and may have sufficient potency and selectivity to account for epidemiological associations of chlorinated and chloraminated water with adverse health effects. This paper reports on the development, optimisation, and validation of a simple, robust, and sensitive analytical method for the determination of halonitriles in waters, as well as the application of the method to study the formation and characteristics of halonitriles. This is the first reported method development for analysis halopropionitriles and halobutyronitriles, and the first study on their formation and occurrence as DBPs in drinking waters. The new method uses headspace solid-phase microextraction to extract the halonitriles from water, which are then analysed using gas chromatography-mass spectrometry (HS SPME/GC-S). The method demonstrated good sensitivity (detection limits: 0.9-80 ng L⁻¹) and good precision (repeatability: 3.8-12%), and is linear over three orders of magnitude. Matrix effects from raw drinking water containing organic carbon (4.1 mg L⁻¹) were shown to be negligible in the analysis of halonitriles. The optimised method was used to study the stability and persistence of halonitriles in aqueous samples, and the formation and occurrence of halonitriles in waters. Results from laboratory-scale disinfection experiments showed that haloacetonitriles were formed in chlorinated and chloraminated samples, but 2,2-dichloropropionitrile was only measured in chloraminated samples. Results from surveys of several drinking water distribution systems confirmed the laboratory findings. Copyright © 2012 Elsevier B.V. All rights reserved.
This work addresses several issues associated with the toxicity of a complex petroleum mixture (combined kerosene/diesel and crude oil), including developmental effects and early lifestage mortality, method of solubilization, and potential photo-activated and photo-modified toxic...
Goldoni, Matteo; Caglieri, Andrea; Poli, Diana; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio
2006-03-15
Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers.Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively.The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)-DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)-DPC) in EBC.Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI).
Effect of copper sulphate treatment on natural phytoplanktonic communities.
Le Jeune, Anne-Hélène; Charpin, Marie; Deluchat, Véronique; Briand, Jean-François; Lenain, Jean-François; Baudu, Michel; Amblard, Christian
2006-12-01
Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.
Molecular docking of superantigens with class II major histocompatibility complex proteins.
Olson, M A; Cuff, L
1997-01-01
The molecular recognition of two superantigens with class II major histocompatibility complex molecules was simulated by using protein-protein docking. Superantigens studied were staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) in their crystallographic assemblies with HLA-DR1. Rigid-body docking was performed sampling configurational space of the interfacial surfaces by employing a strategy of partitioning the contact regions on HLA-DR1 into separate molecular recognition units. Scoring of docked conformations was based on an electrostatic continuum model evaluated with the finite-difference Poisson-Boltzmann method. Estimates of nonpolar contributions were derived from the buried molecular surface areas. We found for both superantigens that docking the HLA-DR1 surface complementary with the SEB and TSST-1 contact regions containing a homologous hydrophobic surface loop provided sufficient recognition for the reconstitution of native-like conformers exhibiting the highest-scoring free energies. For the SEB complex, the calculations were successful in reproducing the total association free energy. A comparison of the free-energy determinants of the conserved hydrophobic contact residue indicates functional similarity between the two proteins for this interface. Though both superantigens share a common global association mode, differences in binding topology distinguish the conformational specificities underlying recognition.
Synergism between permethrin and propoxur against Culex quinquefasciatus mosquito larvae.
Corbel, V; Chandre, F; Darriet, F; Lardeux, F; Hougard, J-M
2003-06-01
To see if synergism occurs between carbamate and pyrethroid insecticides, we tested permethrin and propoxur as representatives of these two classes of compounds used for mosquito control. Larvicidal activity of both insecticides was assessed separately and together on a susceptible strain of the mosquito Culex quinquefasciatus (Diptera: Culicidae) by two methods. When mixed at a constant ratio (permethrin : propoxur 1 : 60 based on LC50) and tested at serial concentrations to plot dose/mortality regression, significant synergy occurred between them (co-toxicity coefficient = 2.2), not just an additive effect. For example, when the mixture gave 50% mortality, the same concentrations of permethrin and propoxur alone would have given merely 2 x 1% mortality. When a sublethal dose (LC0) of permethrin or propoxur was added to the other (range LC10-LC95), synergism occurred up to the LC80 level. Synergistic effects were attributed to the complementary modes of action by these two insecticide classes acting on different components of nerve impulse transmission. Apart from raising new possibilities for Culex control, it seems appropriate to consider using such mixtures or combinations for insecticide-treated mosquito nets in situations with insecticide-resistant Anopheles malaria vectors.
Zur, RM; Roy, LM; Ito, S; Beyene, J; Carew, C; Ungar, WJ
2016-01-01
Thiopurine S-methyltransferase (TPMT) deficiency increases the risk of serious adverse events in persons receiving thiopurines. The objective was to synthesize reported sensitivity and specificity of TPMT phenotyping and genotyping using a latent class hierarchical summary receiver operating characteristic meta-analysis. In 27 studies, pooled sensitivity and specificity of phenotyping for deficient individuals was 75.9% (95% credible interval (CrI), 58.3–87.0%) and 98.9% (96.3–100%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 90.4% (79.1–99.4%) and 100.0% (99.9–100%), respectively. For individuals with deficient or intermediate activity, phenotype sensitivity and specificity was 91.3% (86.4–95.5%) and 92.6% (86.5–96.6%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 88.9% (81.6–97.5%) and 99.2% (98.4–99.9%), respectively. Genotyping has higher sensitivity as long as TPMT*2 and TPMT*3 are tested. Both approaches display high specificity. Latent class meta-analysis is a useful method for synthesizing diagnostic test performance data for clinical practice guidelines. PMID:27217052
Klavarioti, Maria; Kostarelos, Konstantinos; Pourjabbar, Anahita; Ghandehari, Masoud
2014-05-01
There is an imperative need for a chemical sensor capable of remote, in situ, long-term monitoring of chemical species at sites containing toxic chemical spills, specifically at chemical waste dumps, landfills, and locations with underground storage tanks. In the current research, a series of experiments were conducted measuring the near-infrared optical absorption of alkanes, aromatics, and chlorinated hydrocarbons. A spectral library was then developed to characterize the optical spectra of liquid hydrocarbons. Near-infrared analysis was chosen due to compatibility with optical fibers. The goal was to differentiate between classes of hydrocarbons and to also discriminate between compounds within a class of similar molecular structures. It was observed that unique absorption spectra can be obtained for each hydrocarbon, and this uniqueness can be used to discriminate between hydrocarbons from different families. Statistical analyses, namely, principal component analysis (PCA) and correlation coefficient (Spearman and Pearson methods), were attempted to match absorption spectra from an unknown hydrocarbon with the database with limited success. An algorithm was subsequently written to identify the characteristic peaks of each hydrocarbon that could be used to match data from an unknown chemical species with the database.
The glatiramoid class of immunomodulator drugs.
Varkony, Haim; Weinstein, Vera; Klinger, Ety; Sterling, Jeffrey; Cooperman, Helena; Komlosh, Turi; Ladkani, David; Schwartz, Rivka
2009-03-01
Glatiramer acetate (GA) is a complex heterogenous mixture of polypeptides with immunomodulatory activity approved for treatment of relapsing-remitting multiple sclerosis. GA is the first, and was until recently, the only member of the glatiramoids, a family of synthetic copolymer mixtures comprising the four amino acids, L-glutamic acid, L-alanine, L-lysine and L-tyrosine, in a defined molar ratio. Another glatiramoid, protiramer, was recently evaluated in preclinical studies and in two small Phase II clinical trials with relapsing-remitting multiple sclerosis patients. Due to the complexity and heterogeneity of GA and other glatiramoids, the clinically active epitopes within the mixture cannot be identified and the consistency of polypeptide sequences within the mixture is dependent on a tightly controlled manufacturing process. Although no two glatiramoids can be proved identical, it is possible to differentiate among members of the glatiramoid class using analytical methods and immunological and biological markers. Even slight differences in the distribution of molecular masses or in the composition of antigenic polypeptide sequences among glatiramoids can significantly influence their efficacy, toxicity and immunogenicity profiles. Experience with GA may be instructive regarding important safety and efficacy considerations for new glatiramoid mixtures now in development.
Widespread genetic switches and toxicity resistance proteins for fluoride.
Baker, Jenny L; Sudarsan, Narasimhan; Weinberg, Zasha; Roth, Adam; Stockbridge, Randy B; Breaker, Ronald R
2012-01-13
Most riboswitches are metabolite-binding RNA structures located in bacterial messenger RNAs where they control gene expression. We have discovered a riboswitch class in many bacterial and archaeal species whose members are selectively triggered by fluoride but reject other small anions, including chloride. These fluoride riboswitches activate expression of genes that encode putative fluoride transporters, enzymes that are known to be inhibited by fluoride, and additional proteins of unknown function. Our findings indicate that most organisms are naturally exposed to toxic levels of fluoride and that many species use fluoride-sensing RNAs to control the expression of proteins that alleviate the deleterious effects of this anion.
Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride
Weinberg, Zasha; Roth, Adam; Stockbridge, Randy B.; Breaker, Ronald R.
2014-01-01
Most riboswitches are metabolite-binding RNA structures located in bacterial messenger RNAs where they control gene expression. We have discovered a riboswitch class in many bacterial and archaeal species whose members are selectively triggered by fluoride but reject other small anions, including chloride. These fluoride riboswitches activate expression of genes that encode putative fluoride transporters, enzymes that are known to be inhibited by fluoride, and additional proteins of unknown function. Our findings indicate that most organisms are naturally exposed to toxic levels of fluoride and that many species use fluoride-sensing RNAs to control the expression of proteins that alleviate the deleterious effects of this anion. PMID:22194412
Within United States waters, regular blooms of harmful dinoflagellates occur in the Gulf of Mexico and Chesapeake Bay regions. Although the causes of blooms are not fully understood, events in Gulf of Mexico waters have been recorded for over thirty years, and are almost exclusiv...
Dose-additivity modeling for acute and repeated exposure to a mixture of N-methycarbamate Pesticides
The toxicity of N-methylcarbamate pesticides is attributed to the reversible inhibition of cholinesterase (ChE) enzymes in the central and peripheral nervous system. The inhibition of ChE following a single exposure to this class of pesticides has been modeled using a dose-additi...
Recent Progress in Optical Chemical Sensors
Qazi, Hummad Habib; Mohammad, Abu Bakar bin; Akram, Muhammad
2012-01-01
Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described. PMID:23443392
From 1984 to 1996, an impounded segment of the Presumpscot River, downstream of a major point source, failed to attain Maine's Class C aquatic life standards based on benthic invertebrate assemblages. Eight candidate causes were hypothesized: 1) toxic chemicals; 2) floc resultin...
Responses of honey bees to lethal and sublethal doses of formulated clothianidin alone and mixtures
USDA-ARS?s Scientific Manuscript database
The widespread use of neonicotinoid insecticides has inevitably sparked concern over the toxicity risk to honey bees. In this study, feeding treatments with the clothianidin formulation Belay® at 2.6 ppb (residue concentration) or its binary mixtures with 5 representative pesticides (classes) did no...
From Teacher to Writer: How Does It Happen?
ERIC Educational Resources Information Center
Lewis, Barbara A.
1992-01-01
Discusses a sixth grade teacher's experience in turning a classroom project into a book. Offers advice for teachers on becoming writers. Explores obstacles, benefits, and suggestions on writing, editing, and publishing work. Describes a class project that resulted in the cleanup of a toxic waste site and the publication of "The Kid's Guide to…
The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...
AIR TOXICS EXPOSURE FROM VEHICLE EMISSIONS AT A U.S. BORDER CROSSING: BUFFALO PEACE BRIDGE STUDY
The investigators compiled a wealth of comparative data on several different classes of MSATs — VOCs and carbonyls, elements, PAHs, and NPAHs — and measurements from continuous sampling of particulate matter (PM) ≤ 10 μm and ≤ 2.5 μm in aerodynamic d...
Microbial Engineering for Aldehyde Synthesis
Kunjapur, Aditya M.
2015-01-01
Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610
The Bio Bay Game: Three-Dimensional Learning of Biomagnification
JASTI, CHANDANA; LAUREN, HILLARY; WALLON, ROBERT C.; HUG, BARBARA
2016-01-01
Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment. PMID:27990023
The Bio Bay Game: Three-Dimensional Learning of Biomagnification.
Jasti, Chandana; Lauren, Hillary; Wallon, Robert C; Hug, Barbara
2016-01-01
Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment.
Wu, Chien-Hou; Lin, Ming-Nan; Feng, Chien-Tai; Yang, Kuang-Ling; Lo, Yu-Shiu; Lo, Jiunn-Guang
2003-05-09
A method for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in the air of class-100 clean rooms at semiconductor fabrication facilities was developed. Air samples from two semiconductor factories were collected each hour on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve SIII) with a 24-h automatic active sampling system and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. Experimental parameters, including thermal desorption temperature, desorption time, and cryofocusing temperature, were optimized. The average recoveries and the method detection limits for the target compounds were in the range 94-101% and 0.31-0.89 ppb, respectively, under the conditions of a 1 L sampling volume and 80% relative humidity. VOCs such as acetone, isopropyl alcohol, 2-heptanone, and toluene, which are commonly used in the semiconductor and electronics industries, were detected and accurately quantified with the established method. Temporal variations of the analyte concentrations observed were attributed to the improper use of organic solvents during operation.
Jadiya, Pooja; Mir, Snober S; Nazir, Aamir
2012-12-01
Neurodegenerative diseases are known to be associated with genetic and environmental factors. The multifactorial Parkinson's disease (PD) is triggered and/or further worsened by exposure to certain pesticides. Existing literature suggests a link between pesticide exposure and increased incidence of PD. We carried out the present study to look into the stress gene expression pattern of transgenic Caenorhabditis elegans (C. elegans) model of PD after exposure to pesticides from different classes. Expression level of sod-1, sod-2, sod-3, hsp-70, hsp-60, and hsp-16.2 stress responsive genes was determined using qPCR. Our findings demonstrate that the expression of stress related genes does not follow a generalized pattern to different toxicants; rather each pesticide class has a specific expression signature.
Shekhar, Meena; Singh, Nirupma; Dutta, Ram; Kumar, Shrvan; Mahajan, Vinay
2017-01-01
An attempt was made to compare between easy and inexpensive qualitative method (ammonia vapour test) and analytical methods (thin layer chromatography and enzyme-linked immunosorbent assay) for identification of aflatoxigenic isolates of Aspergillus flavus in maize. In this comparative study the toxicity level of A. flavus isolates exhibited 100% agreement among ammonia vapour test, ELISA and TLC for highly toxigenic (>2000 ppb) and toxigenic (501-2000 ppb) isolates while 88.5% agreement observed for least toxic (<20 ppb) isolates. In ammonia vapour test 51% of A. flavus isolates showed creamish or no colour change corresponding to least toxic/atoxic (<20ppb) category estimated by ELISA. Similarly 22% highly toxic isolates exhibited plum red colour, 12% moderately toxic indicated pink colour and 10% toxic isolates showed red colour. However, 11.5% isolates were found to be false positive in cream colour category (least toxic) and 28.5% false negatives in pink colour (moderately toxic) category. The isolates from different agroclimatic zones of maize in India showed high variability for aflatoxin B1 (AFB1) production potential ranging from 0.214-8116.61 ppb. Toxigenic potential of Aspergillus flavus isolates in culture was further validated by inoculating maize grain sample with four different isolates with varied toxin producing ability. With good agreement percentage between cultural and analytical methods the study concludes the ammonia vapour test to be easy, inexpensive, reliable and time saving method that can be used for segregating or pre-screening of contaminated samples from bulk food/feed stock.
Toxicity of medicinal plants used in traditional medicine in Northern Peru
Bussmann, R.W.; Malca, G.; Glenn, A.; Sharon, D.; Nilsen, B.; Parris, B.; Dubose, D; Ruiz, D.; Saleda, J.; Martinez, M.; Carillo, L.; Walker, K.; Kuhlman, A.; Townesmith, A.
2011-01-01
Aim The plant species reported here are traditionally used in Northern Peru for a wide range of illnesses. Most remedies are prepared as ethanol or aqueous extracts and then ingested. The aim of this study was to evaluate the potential toxicity of these extracts. Materials and methods The toxicity of ethanolic and water extracts of 341 plant species was determined using a Brine-Shrimp assay. Results Overall 24% of the species in water extract and 76% of the species in alcoholic extract showed elevated toxicity levels to brine-shrimp. Although in most cases multiple extracts of the same species showed very similar toxicity values, in some cases the toxicity of different extracts of the same species varied from non-toxic to highly toxic. Conclusions Traditional preparation methods take different toxicity levels in aqueous and ethanol extracts into account when choosing the appropriate solvent for the preparation of a remedy. PMID:21575699
Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods
2008-07-01
Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Environmental Research Program ERDC/EL TR-08-16 July 2008 Revised Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity ...insight into the potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of
The classification and application of toxic Chinese materia medica.
Liu, Xinmin; Wang, Qiong; Song, Guangqing; Zhang, Guangping; Ye, Zuguang; Williamson, Elizabeth M
2014-03-01
Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China. Copyright © 2013 John Wiley & Sons, Ltd.
Zhang, Guang Lan; Keskin, Derin B.; Lin, Hsin-Nan; Lin, Hong Huang; DeLuca, David S.; Leppanen, Scott; Milford, Edgar L.; Reinherz, Ellis L.; Brusic, Vladimir
2014-01-01
Human leukocyte antigens (HLA) are important biomarkers because multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world’s populations, benefiting both global public health and personalized health care. PMID:25505899
Preparation of graphene oxide as biomaterials for drug adsorption
NASA Astrophysics Data System (ADS)
Usca, G. Tubón; Gómez, C. Vacacela; Fiallos, D. Coello; Tavolaro, P.; Martino, G.; Caputi, L. S.; Tavolaro, A.
2015-02-01
Doxorubicin hydrochloride (DOX), is a class I anthracycline antibiotic (FDA approved in the 1970s) widely used as an effective chemotherapeutic drug for the treatment of many human neoplasms. Like most anticancer drugs, DOX can provoke severe toxicity to the body when it is administered at high doses systemically. Here we report the results of an investigation of drug adsorption on graphene oxide (GO) materials prepared by the Improved Hummer's method. High-purity GO has been prepared, characterized by XPS, UV-vis, FTIR-ATR, FESEM, UV- vis analyses, Zero Point Charge determinations and applied in the immobilization of doxorubicin, via simple noncovalent method. The adsorption percentage of the drug at pH 7 on GO was observed to be higher (equal to 90 %) than that obtained at acidic pH 3 (equal to 85%). Experimental result of adsorption of DOX on GO, obtained by FTIR-ATR spectroscopy analysis indicate that the inorganic material and the drug form and adduct by π-π stacking interactions.
Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D
2017-05-01
Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.
Validation of Screening Assays for Developmental Toxicity: An Exposure-Based Approach
There continue to be widespread efforts to develop assay methods for developmental toxicity that are shorter than the traditional Segment 2 study and use fewer or no animals. As with any alternative test method, novel developmental toxicity assays must be validated by evaluating ...
Sediment toxicity tests are used for contaminated sediments, chemical registration, and water quality criteria evaluations and can be a core component of ecological risk assessments at contaminated sediments sites. Standard methods for conducting sediment toxicity tests have been...
1980-11-01
59 programmable calculator . Method 1 will most likely be used if there is a toxic corridor length table for the chemical; Method 2 if there is no table...experience of the forecaster in making this forecast, availability of a toxic corridor length table for the released chemical, and availability of a TI
NASA Astrophysics Data System (ADS)
Kambalapally, Swetha Reddy
The advancement of nanotechnology has paved the way for novel nanoscale materials for use in a wide range of applications. The use of these nanomaterials in biomedicine facilitates the improvement of existing technologies for disease prevention and treatment through diagnostics, tumor detection, drug delivery, medical imaging and vaccine development. Nanotechnology delivery systems for therapeutic uses includes the formulation of nanoparticles in emulsions. These novel delivery systems can improve drug efficacy by their ability to enhance bioavailability, minimize drug side effects, decrease drug toxicity, provide targeted site delivery and increase circulation of the drug in the blood. Additionally, these delivery systems also improve the drug stability and encapsulation efficiency. In the Introduction, this thesis will describe a novel technique for the preparation of nanoemulsions which was utilized in drug delivery and diagnostic applications. This novel Phase Inversion Temperature (PIT) method is a solvent and polymer-free and low energy requiring emulsification method, typically utilizing oils stabilized by nonionic surfactants to prepare water in oil (W/O) emulsions. The correlation between the particle size, zeta potential and the emulsion stability is described. The use of this nanoemulsion delivery system for pharmaceuticals and nutraceuticals by utilizing in vitro systems was investigated. Using the PIT method, a self assembling nanoemulsion (SANE) of gamma Tocotrienols (gammaT3), a component of Vitamin E family has been demonstrated to reduce cholesterol accumulation in HepG-2 cells. The nanoemulsion is stable and the particle size is around 20 nm with a polydispersity index (PDI) of 0.065. The effect of the nano gammaT3 on the metabolism of cholesterol, HMG-CoA activity and Apo-B levels were evaluated in an in vitro system utilizing HepG2 cells. A new class of nanoparticles, Quantum dots (QDs) has shown immense potential as novel nanomaterials used as fluorescent labels. They have been studied extensively due to their interesting optical and electrical properties. The study of their applications has led to their use as novel platforms for delivery into living systems for use in medical imaging. The second part of this thesis discusses the toxicity of the various semiconductor nanocrystals, CdSe and InP. The results show the toxicity of CdSe and InP QDs in in vitro cultures of whole skin biopsies exposed to similar concentrations. This forms the basis for further studies involving QDs and approaches to reduce the toxicity of these nanoparticles. Finally, ligand exchange mediated Solutol HS-15 modified CdSe QDs were prepared for the first time. The modified CdSe QDs demonstrated long term stability and reduced cytotoxicity. Such behavior is interpreted as arising from decreased aggregation of the QDs due to the incorporation of the surfactant.
Enhanced toxic cloud knockdown spray system for decontamination applications
Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM
2011-09-06
Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.
Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review
Obare, Sherine O.; De, Chandrima; Guo, Wen; Haywood, Tajay L.; Samuels, Tova A.; Adams, Clara P.; Masika, Noah O.; Murray, Desmond H.; Anderson, Ginger A.; Campbell, Keith; Fletcher, Kenneth
2010-01-01
Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction. PMID:22163587
Fluorescent chemosensors for toxic organophosphorus pesticides: a review.
Obare, Sherine O; De, Chandrima; Guo, Wen; Haywood, Tajay L; Samuels, Tova A; Adams, Clara P; Masika, Noah O; Murray, Desmond H; Anderson, Ginger A; Campbell, Keith; Fletcher, Kenneth
2010-01-01
Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction.
Venkatesan, Arjun K.; Halden, Rolf U.
2015-01-01
Traditionally, hazardous chemicals have been regulated in the U.S. on a one-by-one basis, an approach that is slow, expensive and can be inefficient, as illustrated by a decades-long succession of replacing one type of organohalogen flame retardants (OHFRs) with another one, without addressing the root cause of toxicity and associated public health threats posed. The present article expounds on the need for efficient monitoring strategies and pragmatic steps in reducing environmental pollution and adverse human health impacts. A promising approach is to combine specific bioassays with state-of-the-art chemical screening to identify chemicals and chemical mixtures sharing specific modes of action (MOAs) and pathways of toxicity (PoTs). This approach could be used to identify and regulate hazardous chemicals as classes or compound families, featuring similar biological end-points, such as endocrine disruption and mutagenicity. Opportunities and potential obstacles of implementing this approach are discussed. PMID:26343697
Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities.
Tehrani, Rouzbeh; Van Aken, Benoit
2014-05-01
Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence about the widespread dispersion of OH-PCBs in various compartments of the ecosystem has accumulated, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are, today, increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment.
Rainfastness of insecticides used to control Japanese beetle in blueberries.
Hulbert, Daniel; Reeb, Pablo; Isaacs, Rufus; Vandervoort, Christine; Erhardt, Susan; Wise, John C
2012-10-01
Field-based bioassays were used to determine the relative impact of rainfall on the relative toxicity of four insecticides, phosmet, carbaryl, zeta-cypermethrin, or imidacloprid, from different chemical classes on adult Japanese beetles, Popillia japonica Newman, in highbush blueberries, Vaccinium corymbosum L. Bioassays were set up 24 h after spraying occurred and Japanese beetle condition was scored as alive, knockdown or immobile 1, 24, and 48 h after bioassay setup. All insecticides were significantly more toxic than the untreated control and zeta-cypermethrin consistently had the greatest toxic effect against the Japanese beetles. All insecticides experienced a decrease in efficacy after simulated rainfall onto treated blueberry shoots, although the efficacy of zeta-cypermethrin was the least affected by rainfall. This study will help blueberry growers make informed decisions on when reapplications of insecticides are needed in the field with the aim of improving integrated pest management (IPM).
[Glyphosate--a non-toxic pesticide?].
Pieniazek, Danuta; Bukowska, Bozena; Duda, Wirgiliusz
2003-01-01
Glyphosate is currently the most commonly applied herbicide and its use is still growing. Nowadays, over 50 commercial preparations containing this compound are used, and these formulations are much more toxic than their active compound, glyphosate, owing to the presence of many surfactants and carrier compounds. Toxicological investigations provide evidence that glyphosate is an extremely "safe" herbicide for animals. This is why its use in agriculture is universal. In June 1991, the Environmental Protection Agency (EPA) categorized this compound into class E (according to EPA there are five categories of carcinogenicity), which means that it is probably not carcinogenic to humans. Unfortunately, the study carried out by Swedish oncologists in 2001 showed that glyphosate may induce cancer of the lymphatic system. The results of the Swedish study have changed our opinion about "safety" of this herbicide. Investigations concerning both its accumulation and toxic effect in animals and plants are now under way in many laboratories.
Industrial toxicants and Parkinson’s disease
Caudle, W. Michael; Guillot, Thomas S.; Lazo, Carlos R.; Miller, Gary W.
2012-01-01
The exposure of the human population to environmental contaminants is recognized as a significant contributing factor for the development of Parkinson’s disease (PD) and other forms of parkinsonism. While pesticides have repeatedly been identified as risk factors for PD, these compounds represent only a subset of environmental toxicants that we are exposed to on a regular basis. Thus, non-pesticide contaminants, such as metals, solvents, and other organohalogen compounds have also been implicated in the clinical and pathological manifestations of these movement disorders and it is these non-pesticide compounds that are the subject of this review. As toxic exposures to these classes of compounds can result in a spectrum of PD or PD-related disorders, it is imperative to appreciate shared clinico-pathological characteristics or mechanisms of action of these compounds in order to further delineate the resultant disorders as well as identify improved preventive strategies or therapeutic interventions. PMID:22309908
Pseudomonas fluorescens' view of the periodic table.
Workentine, Matthew L; Harrison, Joe J; Stenroos, Pernilla U; Ceri, Howard; Turner, Raymond J
2008-01-01
Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.
Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun
2011-03-01
There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.
Biologically-directed fractionation techniques are a fundamental tool for identifying the cause of toxicity in environmental samples, but few are available for studying mixtures of organic chemicals in aquatic sediments. This paper describes a method for extracting organic chemic...
Natural-product-based chromenes as a novel class of potential termiticides.
Meepagala, Kumudini M; Osbrink, Weste; Burandt, Charles; Lax, Alan; Duke, Stephen O
2011-11-01
Among the termite infestations in the United States, the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), is considered to be the most devastating termite pest. This pest most likely invaded North America as a result of the disembarkation of wooden military cargo at the port of New Orleans that arrived from Asia during and after World War II. It has now spread over other states, including Texas, Florida, South Carolina and California. Devastation caused by C. formosanus in North America has been estimated to cost $ US 1 billion a year. Over the past decades, organochlorines and organophosphates, the two prominent classes of termite control agents, have been banned owing to environmental and human health concerns. At the present time, phenylpyrazoles, pyrethroids, chloronicotinyls and pyrroles are being used as termite control agents. Mammalian toxicity and seeping of these compounds into groundwater are some of the drawbacks associated with these treatments. The instruction for the application of these termiticides indicate ground water advisory. Hence, with the increasing spread of termite infestation there is an increased need to discover effective, environmentally friendly and safe termite control agents with minimal mammalian toxicity. Chromene analogs derived from a natural-product-based chromene amide isolated from Amyris texana were tested in a collaborative discovery program for effective, environmentally friendly termite control agents. Several chromene derivatives were synthesized and characterized as a novel class of potential termiticides, followed by bioassays. These compounds exhibited significantly higher mortalities compared with untreated controls in laboratory bioassays. Chromene derivatives have been shown to be a potential novel class of termiticides against Formosan subterranean termites. Copyright © 2011 Society of Chemical Industry.
Compositions and methods for removal of toxic metals and radionuclides
NASA Technical Reports Server (NTRS)
McKay, David S. (Inventor); Cuero, Raul G. (Inventor)
2007-01-01
The present invention relates to compositions and methods for the removal of toxic metals or radionuclides from source materials. Toxic metals may be removed from source materials using a clay, such as attapulgite or highly cationic bentonite, and chitin or chitosan. Toxic metals may also be removed using volcanic ash alone or in combination with chitin or chitosan. Radionuclides may be removed using volcanic ash alone or in combination with chitin or chitosan.
A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...
Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water.
Jeong, Clara H; Postigo, Cristina; Richardson, Susan D; Simmons, Jane Ellen; Kimura, Susana Y; Mariñas, Benito J; Barcelo, Damia; Liang, Pei; Wagner, Elizabeth D; Plewa, Michael J
2015-12-01
The introduction of drinking water disinfection greatly reduced waterborne diseases. However, the reaction between disinfectants and natural organic matter in the source water leads to an unintended consequence, the formation of drinking water disinfection byproducts (DBPs). The haloacetaldehydes (HALs) are the third largest group by weight of identified DBPs in drinking water. The primary objective of this study was to analyze the occurrence and comparative toxicity of the emerging HAL DBPs. A new HAL DBP, iodoacetaldehyde (IAL) was identified. This study provided the first systematic, quantitative comparison of HAL toxicity in Chinese hamster ovary cells. The rank order of HAL cytotoxicity is tribromoacetaldehyde (TBAL) ≈ chloroacetaldehyde (CAL) > dibromoacetaldehyde (DBAL) ≈ bromochloroacetaldehyde (BCAL) ≈ dibromochloroacetaldehyde (DBCAL) > IAL > bromoacetaldehyde (BAL) ≈ bromodichloroacetaldehyde (BDCAL) > dichloroacetaldehyde (DCAL) > trichloroacetaldehyde (TCAL). The HALs were highly cytotoxic compared to other DBP chemical classes. The rank order of HAL genotoxicity is DBAL > CAL ≈ DBCAL > TBAL ≈ BAL > BDCAL>BCAL ≈ DCAL>IAL. TCAL was not genotoxic. Because of their toxicity and abundance, further research is needed to investigate their mode of action to protect the public health and the environment.
Api, A M; Belsito, D; Botelho, D; Browne, D; Bruze, M; Burton, G A; Buschmann, J; Dagli, M L; Date, M; Dekant, W; Deodhar, C; Francis, M; Fryer, A D; Joshi, K; La Cava, S; Lapczynski, A; Liebler, D C; O'Brien, D; Parakhia, R; Patel, A; Penning, T M; Ritacco, G; Romine, J; Salvito, D; Schultz, T W; Sipes, I G; Thakkar, Y; Theophilus, E H; Tiethof, A K; Tokura, Y; Tsang, S; Wahler, J
2018-05-01
The use of this material under current conditions is supported by existing information. The material (dihydro-β-terpinyl acetate) was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the read across analog menthyl acetate (1α,2β,5α) (CAS # 89-48-5) show that dihydro-β- terpinyl acetate is not genotoxic nor does it have skin sensitization potential. The repeated dose, reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03, 0.03 mg/kg/day and 1.4 mg/day, respectively). The phototoxicity/photoallergenicity endpoint was completed based on UV spectra. The environmental endpoints were evaluated, dihydro-β-terpinyl acetate was found not to be PBT as per the IFRA Environmental Standards and its risk quotients, based on its current volume of use in Europe and North America (i.e., PEC/PNEC) are <1. Copyright © 2018 Elsevier Ltd. All rights reserved.
Abel, Troy D; White, Jonah
2011-12-01
Few studies have considered the sociohistorical intersection of environmental injustice and gentrification; a gap addressed by this case study of Seattle, Washington. This study explored the advantages of integrating air toxic risk screening with gentrification research to enhance proximity and health equity analysis methodologies. It was hypothesized that Seattle's industrial air toxic exposure risk was unevenly dispersed, that gentrification stratified the city's neighborhoods, and that the inequities of both converged. Spatial characterizations of air toxic pollution risk exposures from 1990 to 2007 were combined with longitudinal cluster analysis of census block groups in Seattle, Washington, from 1990 to 2000. A cluster of air toxic exposure inequality and socioeconomic inequity converged in 1 area of south central Seattle. Minority and working class residents were more concentrated in the same neighborhoods near Seattle's worst industrial pollution risks. Not all pollution was distributed equally in a dynamic urban landscape. Using techniques to examine skewed riskscapes and socioeconomic urban geographies provided a foundation for future research on the connections among environmental health hazard sources, socially vulnerable neighborhoods, and health inequity.
Horton, Bethany Jablonski; Wages, Nolan A.; Conaway, Mark R.
2016-01-01
Toxicity probability interval designs have received increasing attention as a dose-finding method in recent years. In this study, we compared the two-stage, likelihood-based continual reassessment method (CRM), modified toxicity probability interval (mTPI), and the Bayesian optimal interval design (BOIN) in order to evaluate each method's performance in dose selection for Phase I trials. We use several summary measures to compare the performance of these methods, including percentage of correct selection (PCS) of the true maximum tolerable dose (MTD), allocation of patients to doses at and around the true MTD, and an accuracy index. This index is an efficiency measure that describes the entire distribution of MTD selection and patient allocation by taking into account the distance between the true probability of toxicity at each dose level and the target toxicity rate. The simulation study considered a broad range of toxicity curves and various sample sizes. When considering PCS, we found that CRM outperformed the two competing methods in most scenarios, followed by BOIN, then mTPI. We observed a similar trend when considering the accuracy index for dose allocation, where CRM most often outperformed both the mTPI and BOIN. These trends were more pronounced with increasing number of dose levels. PMID:27435150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrano, R.; Fernandez, M.A.; Hernandez, L.M.
1997-01-01
Polychlorinated biphenyls have been widely used by industry throughout the world since 1930. Although their use has been banned in many countries since the late 1970s, they still represent an important class of priority pollutants due to their persistence. Most open uses of these chemicals have been severely curtailed in industrialized nations, but a considerable fraction of past productions is probably still cycling in the ecosphere. In recent years, attention has been focused on the toxicity of PCBs, especially of those congeners showing similar toxicity as the polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDFs). It has been shown that PCB congeners`more » toxicity largely depends on the chlorine substitution pattern. The most toxic PCB cogeners are those with two para chlorines, at least two meta chlorines and 0-2 ortho chlorines. These so-called {open_quotes}coplanar{close_quotes} (non- mono- and di-ortho) PCB cogeners are able to obtain planar conformation. Recently, toxic equivalence factors have been assigned to coplanar PCBs. Thus determination of individual PCB cogeners is important for evaluating the toxic potentials of PCB residues in, for example, wildlife. This paper presents preliminary results of a study looking at levels of PCB congeners, including coplanar ones, in the liver of six shark species, collected in the North African Atlantic Ocean. 15 refs., 2 figs., 2 tabs.« less
Carrera, Pricivel M; Kantarjian, Hagop M; Blinder, Victoria S
2018-03-01
"Financial toxicity" has now become a familiar term used in the discussion of cancer drugs, and it is gaining traction in the literature given the high price of newer classes of therapies. However, as a phenomenon in the contemporary treatment and care of people with cancer, financial toxicity is not fully understood, with the discussion on mitigation mainly geared toward interventions at the health system level. Although important, health policy prescriptions take time before their intended results manifest, if they are implemented at all. They require corresponding strategies at the individual patient level. In this review, the authors discuss the nature of financial toxicity, defined as the objective financial burden and subjective financial distress of patients with cancer, as a result of treatments using innovative drugs and concomitant health services. They discuss coping with financial toxicity by patients and how maladaptive coping leads to poor health and nonhealth outcomes. They cover management strategies for oncologists, including having the difficult and urgent conversation about the cost and value of cancer treatment, availability of and access to resources, and assessment of financial toxicity as part of supportive care in the provision of comprehensive cancer care. CA Cancer J Clin 2018;68:153-165. © 2018 American Cancer Society. © 2018 American Cancer Society.
High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.
Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C
2007-10-09
High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.
Testing contamination risk assessment methods for toxic elements from mine waste sites
NASA Astrophysics Data System (ADS)
Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.
2012-04-01
Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance <500m to the nearest surface water bodies, and 33 sites are within distance <680m to the nearest settlements. Moreover 25 sites lie directly above the 'poor status' ground water bodies and 91 sites are located in the protected Natura2000 sites (distance =0). Analysis of the total score of all sites was performed, resulting in six risk classes, as follows: <21 (class I, 4 sites), 21-31 (class II, 16 sites), 31-42 (class III, 27 sites), 42-54 (class II, 38 sites), 54-66 (class V, 40 sites) and >66 (class VI, 20 sites). The total risk scores and key parameters are provided in separate tables and GIS maps, in order to facilitate interpretation and comparison. Results of the Pre-selection protocol are consistent with those of the screening PRAMS model. KEY WORDS contamination risk assessment, Mine Waste Directive, Pre-selection Protocol, PRA.MS, AIMSS, abandoned mine sites, GIS
A toxicity-based method for evaluating safety of reclaimed water for environmental reuses.
Xu, Jianying; Zhao, Chuntao; Wei, Dongbin; Du, Yuguo
2014-10-01
A large quantity of toxic chemical pollutants possibly remains in reclaimed water due to the limited removal efficiency in traditional reclamation processes. It is not enough to guarantee the safety of reclaimed water using conventional water quality criteria. An integrated assessment method based on toxicity test is necessary to vividly depict the safety of reclaimed water for reuse. A toxicity test battery consisting of lethality, genotoxicity and endocrine disrupting effect was designed to screen the multiple biological effects of residual toxic chemicals in reclaimed water. The toxicity results of reclaimed water were converted into the equivalent concentrations of the corresponding positive reference substances (EQC). Simultaneously, the predicted no-effect concentration (PNEC) of each positive reference substance was obtained by analyzing the species sensitivity distribution (SSD) of toxicity data. An index "toxicity score" was proposed and valued as 1, 2, 3, or 4 depending on the ratio of the corresponding EQC to PNEC. For vividly ranking the safety of reclaimed water, an integrated assessment index "toxicity rank" was proposed, which was classified into A, B, C, or D rank with A being the safest. The proposed method was proved to be effective in evaluating reclaimed water samples in case studies. Copyright © 2014. Published by Elsevier B.V.
Phthalate esters are a large class of plasticizer compounds widely used in many consumer product applications. Some phthalates induce male fetal endocrine toxicity and reproductive malformations through disruption of hormone production during sexual differentiation. Regulatory ag...
2008-01-01
FROM, OR REPRODUCTION OF ALL OR ANY PART OF THIS DOCUMENT IS PERMITTED PROVIDED PROPER ACKNOWLEDGEMENT IS MADE. 111 Table ofContents Page EXECUTIVE...to a threat of toxicity. Hypnotic and sedative medications12 are the final class of drugs to be considered. These decrease anxiety and agitation
The haloacetic acids (HAAs) are a class of chemicals produced by disinfection of drinking water. Many of the HAAs are developmental toxicants when administered to rodents producing a variety of developmental effects. We have previously shown that the HAAs can produce direct effec...
Protecting wilderness air quality in the United States
K. A. Tonnessen
2000-01-01
Federal land managers are responsible for protecting air quality-related values (AQRVs) in parks and wilderness areas from air pollution damage or impairment. Few, if any, class 1 areas are unaffected by regional and global pollutants, such as visibility-reducing particles, ozone and deposition of sulfur (S), nitrogen (N) and toxics. This paper lays out the basic...
Rowan, Christopher G.; Brunelli, Steven M.; Munson, Jeffrey; Flory, James; Reese, Peter P.; Hennessy, Sean; Lewis, James; Mines, Daniel; Barrett, Jeffrey S.; Bilker, Warren; Strom, Brian L.
2014-01-01
Objective To compare the relative hazard of muscle toxicity, renal dysfunction, and hepatic dysfunction associated with the drug interaction between statins and concomitant medications that inhibit the CYP3A4 isoenzyme. Background Although statins provide important clinical benefits related to mitigating the risk of cardiovascular events, this class of medications also has the potential for severe adverse reactions. The risk for adverse events may be potentiated by concomitant use of medications that interfere with statin metabolism. Methods Data from The Health Improvement Network (THIN) from 1990 to 2008 were used to conduct a retrospective cohort study. Cohorts were created to evaluate each outcome (muscle toxicity, renal dysfunction, and hepatic dysfunction) independently. Each cohort included new statin initiators and compared the relative hazard of the outcome. The interaction ratio (I*R) was the primary contrast of interest. The I*R represents the relative effect of each statin type (statin 3A4 substrate vs. statin non-3A4 substrate) with a CYP3A4 inhibitor, independent of the effect of the statin type without a CYP3A4 inhibitor. We adjusted for confounding variables using the multinomial propensity score. Results The median follow-up time per cohort was 1.5 years. There were 7889 muscle toxicity events among 362 809 patients and 792 665 person-years. The adjusted muscle toxicity I*R was 1.22 (95% confidence interval [CI] = 0.90–1.66). There were 1449 renal dysfunction events among 272,099 patients and 574 584 person-years. The adjusted renal dysfunction I*R was 0.91 (95%CI = 0.58–1.44). There were 1434 hepatic dysfunction events among 367 612 patients and 815 945 person-years. The adjusted hepatic dysfunction I*R was 0.78 (95%CI = 0.45–1.31). Conclusions Overall, this study found no difference in the relative hazard of muscle toxicity, renal dysfunction, or hepatic dysfunction for patients prescribed a statin 3A4 substrate versus a statin non-3A4 substrate with CYP3A4 inhibitor concomitancy. PMID:22422642
Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall
2017-01-01
Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures of Advise (58.6 mg a.i./L imidacloprid)+Domark (512.5 mg a.i. /L tetraconazole), Advise+Transform (58.5 mg a.i./L sulfoxaflor), and Advise+Vydate (68 mg a.i./L oxamyl), and mortality was significantly increased by 20%, 15%, and 26% respectively. The mixtures of Advise+Bracket (88.3 mg a.i./L acephate) and Advise+Karate (62.2 mg a.i./L L-cyhalothrin) showed additive interaction, while Advise+Belay (9.4 mg a.i./L clothianidin) and Advise+Roundup (1217.5 mg a.i./L glyphosate) had no additive/synergistic interaction. Spraying bees with the mixture of all eight pesticides increased mortality to 100%, significantly higher than all other treatments. Except Bracket which significantly suppressed esterase and acetylcholinesterase (AChE) activities, other treatments of Advise-only and mixtures with other pesticides did not suppress enzyme activities significantly, including invertase, glutathione S-transferase (GST), and esterase and AChE. Immunity-related phenoloxidase (PO) activities in survivors tended to be more variable among treatments, but mostly still statistically similar to the control. By using specific enzyme inhibitors, we demonstrated that honey bees mainly rely on cytochrome P450 monooxygenases (P450s) for detoxifying Advise, while esterases and GSTs play substantially less roles in the detoxification. This study provided valuable information for guiding pesticide selection in premixing and tank mixing in order to alleviate toxicity risk to honey bees. Our findings indicated mixtures of Advise with detoxification-enzyme-inducing pesticides may help bees to detoxify Advise, while toxicity synergists may pose further risk to bees, such as the Bracket which not only suppressed esterase and AChE activities, but also increased toxicity to bees. PMID:28467462
Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall
2017-01-01
Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures of Advise (58.6 mg a.i./L imidacloprid)+Domark (512.5 mg a.i. /L tetraconazole), Advise+Transform (58.5 mg a.i./L sulfoxaflor), and Advise+Vydate (68 mg a.i./L oxamyl), and mortality was significantly increased by 20%, 15%, and 26% respectively. The mixtures of Advise+Bracket (88.3 mg a.i./L acephate) and Advise+Karate (62.2 mg a.i./L L-cyhalothrin) showed additive interaction, while Advise+Belay (9.4 mg a.i./L clothianidin) and Advise+Roundup (1217.5 mg a.i./L glyphosate) had no additive/synergistic interaction. Spraying bees with the mixture of all eight pesticides increased mortality to 100%, significantly higher than all other treatments. Except Bracket which significantly suppressed esterase and acetylcholinesterase (AChE) activities, other treatments of Advise-only and mixtures with other pesticides did not suppress enzyme activities significantly, including invertase, glutathione S-transferase (GST), and esterase and AChE. Immunity-related phenoloxidase (PO) activities in survivors tended to be more variable among treatments, but mostly still statistically similar to the control. By using specific enzyme inhibitors, we demonstrated that honey bees mainly rely on cytochrome P450 monooxygenases (P450s) for detoxifying Advise, while esterases and GSTs play substantially less roles in the detoxification. This study provided valuable information for guiding pesticide selection in premixing and tank mixing in order to alleviate toxicity risk to honey bees. Our findings indicated mixtures of Advise with detoxification-enzyme-inducing pesticides may help bees to detoxify Advise, while toxicity synergists may pose further risk to bees, such as the Bracket which not only suppressed esterase and AChE activities, but also increased toxicity to bees.
Baldea, Ioana; Ion, Rodica-Mariana; Olteanu, Diana Elena; Nenu, Iuliana; Tudor, Diana; Filip, Adriana Gabriela
2015-01-01
Melanoma, a cancer that arises from melanocytes, is one of the most unresponsive cancers to known therapies and has a tendency to produce early metastases. Several studies showed encouraging results of the efficacy of photodynamic therapy (PDT) in melanoma, in different experimental settings in vitro and in vivo, as well as several clinical reports. Our study focuses on testing the antimelanoma efficacy of several new, synthetic photosensitisers (PS), from two different chemical classes, respectively four porphyrins and six phthalocyanines. These PS were tested in terms of cell toxicity and phototoxicity against a radial growth phase melanoma cell line (WM35), in vitro. Cells were exposed to different concentrations of the PS for 24h, washed, then irradiatied with red light (630 nm) 75 mJ/cm(2) for the porphyrins and 1 J/cm(2) for the phthalocyanines. Viability was measured using the MTS method. Two of the synthetic porphyrins, TTP and THNP, were active photosensitizers against WM35 melanoma in vitro. Phthalocyanines were effective in producing a dose dependent PDT-induced decrease in viability in a dose-dependent manner. The most efficient was Indium (III) Phthalocyanine chloride, a metal substituted phthalocyanine. The most efficient photosensitizers for PDT in melanoma cells were the phthalocyanines in terms of tumor cell photokilling and decreased dark toxicity.
TOXCAST, A TOOL FOR CATEGORIZATION AND ...
Across several EPA Program Offices (e.g., OPPTS, OW, OAR), there is a clear need to develop strategies and methods to screen large numbers of chemicals for potential toxicity, and to use the resulting information to prioritize the use of testing resources towards those entities and endpoints that present the greatest likelihood of risk to human health and the environment. This need could be addressed using the experience of the pharmaceutical industry in the use of advanced modern molecular biology and computational chemistry tools for the development of new drugs, with appropriate adjustment to the needs and desires of environmental toxicology. A conceptual approach named ToxCast has been developed to address the needs of EPA Program Offices in the area of prioritization and screening. Modern computational chemistry and molecular biology tools bring enabling technologies forward that can provide information about the physical and biological properties of large numbers of chemicals. The essence of the proposal is to conduct a demonstration project based upon a rich toxicological database (e.g., registered pesticides, or the chemicals tested in the NTP bioassay program), select a fairly large number (50-100 or more chemicals) representative of a number of differing structural classes and phenotypic outcomes (e.g., carcinogens, reproductive toxicants, neurotoxicants), and evaluate them across a broad spectrum of information domains that modern technology has pro
[Causality link in criminal law: role of epidemiology].
Zocchetti, C; Riboldi, L
2003-01-01
This paper focusses on the role of epidemiology in demonstrating causality in criminal trials of toxic tort litigation. First of all, consideration is given of the specificity of the criminal trial and of the role of the epidemiologist as expert witness. As a second step the concept of causality is examined separating general from specific (individual level) causality. As regards general causality, strategies based on some criteria (example: Bradford-Hill criteria) are contrasted with approaches that do not consider causality a matter of science but one of health policy; and specific methods frequently used (meta-analysis, risk assessment, International Boards evaluation,....) are discussed, with special reference to the adoption of high-level standards and to the context of cross-examination. As regards individual level causality the difficulties of the epidemiologic approach to such evaluation are stressed, with special reference to topics like expected value, attributable risk, and probability of causation. All examples are taken from Italian court trials. A general comment on the difficulties of using the criminal trial (dominated by the "but for" rule) for toxic tort litigation and on the opportunity to switch to trials (civil, administrative) with less stringent causal rules ("more probable than not") is offered, with a consideration also of what are called "class actions".
Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin
Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.
2013-01-01
Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874
Tufi, Sara; Stel, Jente M; de Boer, Jacob; Lamoree, Marja H; Leonards, Pim E G
2015-12-15
Modern toxicology is seeking new testing methods to better understand toxicological effects. One of the most concerning chemicals is the neonicotinoid pesticide imidacloprid. Although imidacloprid is designed to target insects, recent studies have shown adverse effects on nontarget species. Metabolomics was applied to investigate imidacloprid-induced sublethal toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. The snails (n = 10 snails) were exposed for 10 days to increasing imidacloprid concentrations (0.1, 1, 10, and 100 μg/L). The comparison between control and exposure groups highlighted the involvement and perturbation of many biological pathways. The levels of several metabolites belonging to different metabolite classes were significantly changed by imidacloprid exposure. A change in the amino acids and nucleotide metabolites like tryptophan, proline, phenylalanine, uridine, and guanosine was found. Many fatty acids were down-regulated, and the levels of the polyamines, spermidine and putrescine, were found to be increased which is an indication of neuron cell injury. A turnover increase between choline and acetylcholine led us to hypothesize an increase in cholinergic gene expression to overcome imidacloprid binding to the nicotinic acetylcholine receptors. Metabolomics revealed imidacloprid induced metabolic changes at low and environmentally relevant concentration in a nontarget species and generated a novel mechanistic hypothesis.
Fabrication methods and applications of microstructured gallium based liquid metal alloys
NASA Astrophysics Data System (ADS)
Khondoker, M. A. H.; Sameoto, D.
2016-09-01
This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.
APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS
Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation (TIE) methods for contaminated sediments and focusing on three toxicant groups (ammoni...
Modeling adverse event counts in phase I clinical trials of a cytotoxic agent.
Muenz, Daniel G; Braun, Thomas M; Taylor, Jeremy Mg
2018-05-01
Background/Aims The goal of phase I clinical trials for cytotoxic agents is to find the maximum dose with an acceptable risk of severe toxicity. The most common designs for these dose-finding trials use a binary outcome indicating whether a patient had a dose-limiting toxicity. However, a patient may experience multiple toxicities, with each toxicity assigned an ordinal severity score. The binary response is then obtained by dichotomizing a patient's richer set of data. We contribute to the growing literature on new models to exploit this richer toxicity data, with the goal of improving the efficiency in estimating the maximum tolerated dose. Methods We develop three new, related models that make use of the total number of dose-limiting and low-level toxicities a patient experiences. We use these models to estimate the probability of having at least one dose-limiting toxicity as a function of dose. In a simulation study, we evaluate how often our models select the true maximum tolerated dose, and we compare our models with the continual reassessment method, which uses binary data. Results Across a variety of simulation settings, we find that our models compare well against the continual reassessment method in terms of selecting the true optimal dose. In particular, one of our models which uses dose-limiting and low-level toxicity counts beats or ties the other models, including the continual reassessment method, in all scenarios except the one in which the true optimal dose is the highest dose available. We also find that our models, when not selecting the true optimal dose, tend to err by picking lower, safer doses, while the continual reassessment method errs more toward toxic doses. Conclusion Using dose-limiting and low-level toxicity counts, which are easily obtained from data already routinely collected, is a promising way to improve the efficiency in finding the true maximum tolerated dose in phase I trials.
[Problems of cardiovascular toxicity of coxibs and non-selective NSA].
Forejtová, S
2006-01-01
Non-steroidal antirheumatics (NSA) belong to the most often prescribed drugs. Certain observation studies indicate that they are used by 20 to 30% of population of developed countries. The most common NSA's adverse effects are gastrointestinal complications. Coxibs have been developed as an alternative to conventional non-selective NSA; with similar efficacy, they should reduce the risk of development of gastrointestinal complications. In the few last years, possible toxicity of coxibs and other non-steroidal antirheumatics has been widely discussed. The VIGOR study, which was performed 6 years ago, showed five times higher incidence of nonfatal myocardial infarction in patients with rofecoxib therapy as compared with naproxen. Afterwards, there was much debate about rofecoxib, and coxibs in general, whose cardiotoxicity was supported and confuted at the same time. Possible cardioprotective effect of naproxen was discussed too. Later on, results of the APPROVE study (Adenoma Polyp Prevention on Vioxx) made Merck & Co., Inc. withdraw rofecoxib from all markets voluntarily. In the end of 2004, three controversial studies on celecoxib were published. Although the first study (Adenoma Prevention with Celecoxib study, APC) showed higher cardiovascular risk of celecoxib, the second study (Prevention of Adenomatosus Polyps, PreSAP) did not verify these results. Surprisingly, the third study (Alzheimer Disease and Prevention Trial, ADAPT) proved 50% increase of the risk of cardiovascular (CV) toxicity of naproxen. In the last year, researchers have tried to decide whether CV toxicity is a class effect of coxib group or a class effect of all NSA. Many observation studies proved higher CV risk both of coxibs (particularly rofecoxib) and non-selective NSA including naproxen. These new findings moved the American FDA (Food and Drug Administration) to publish guidance concerning higher CV risk of all coxibs and NSA. For the time being, the EMEA (European Agency for Evaluation of Medicinal Products) does not change its attitude to NSA; coxibs are contraindicated in patients with ischemic heart disease, cerebrovascular disease and peripheral artery disease; they should be used with caution in high-risk patients. Final assessment of the problems of CV toxicity of NSA and coxibs will be a case of a long-term randomized study focused on the incidence of cardiovascular adverse effects.
Lapa, N; Santos, Oliveira J F; Camacho, S L; Circeo, L J
2002-01-01
Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.
Is the chronic Tier-1 effect assessment approach for insecticides protective for aquatic ecosystems?
Brock, Theo Cm; Bhatta, Ranjana; van Wijngaarden, René Pa; Rico, Andreu
2016-10-01
We investigated the appropriateness of several methods, including those recommended in the Aquatic Guidance Document of the European Food Safety Authority (EFSA), for the derivation of chronic Tier-1 regulatory acceptable concentrations (RACs) for insecticides and aquatic organisms. The insecticides represented different chemical classes (organophosphates, pyrethroids, benzoylureas, insect growth regulators, biopesticides, carbamates, neonicotinoids, and miscellaneous). Chronic Tier-1 RACs derived using toxicity data for the standard species Daphnia magna, Chironomus spp., and/or Americamysis bahia, were compared with Tier-3 RACs derived from micro- and mesocosm studies on basis of the ecological threshold option (ETO-RACs). ETO-RACs could be derived for 31 insecticides applied to micro- and mesocosms in single or multiple applications, yielding a total number of 36 cases for comparison. The chronic Tier-1 RACs calculated according to the EFSA approach resulted in a sufficient protection level, except for 1 neonicotinoid (slightly underprotective) and for several pyrethroids if toxicity data for A. bahia were not included. This latter observation can be explained by 1) the fact that A. bahia is the most sensitive standard test species for pyrethroids, 2) the hydrophobic properties of pyrethroids, and 3) the fact that long-term effects observed in (epi) benthic arthropods may be better explained by exposure via the sediment than via overlying water. Besides including toxicity data for A. bahia, the protection level for pyrethroids can be improved by selecting both D. magna and Chironomus spp. as standard test species for chronic Tier-1 derivation. Although protective in the majority of cases, the conservativeness of the recommended chronic Tier-1 RACs appears to be less than an order of magnitude for a relatively large proportion of insecticides when compared with their Tier-3 ETO-RACs. This may leave limited options for refinement of the chronic effect assessment using laboratory toxicity data for additional species. Integr Environ Assess Manag 2016;12:747-758. © 2015 SETAC. © 2015 SETAC.
We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...
Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.
Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun
2017-12-11
Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.
Synthesis, cytotoxicity and haemolytic activity of Pulsatilla saponin A, D derivatives.
Chen, Zhong; Duan, Huaqing; Wang, Minglei; Han, Li; Liu, Yanli; Zhu, Yongming; Yang, Shilin
2015-06-15
The strong haemolytic activity of Pulsatilla saponin A (PSA), D (PSD) hampered their clinical development of antitumor agents. In order to solve this problem, C-28 position modification derivatives of PSA/PSD were synthesized. The cytotoxicity and haemolytic activity of these compounds were evaluated. Structure-activity relationship and structure-toxicity relationship had been observed. The mice acute toxicity of compound 11 was reduced greatly than that of PSA. This study indicates that compound 11 may represent an interesting class of potent antitumor agents from triterpenoid saponins avoiding the haemolysis problem. The present study has important significance for the development of antitumor saponins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications
Hill, Stephen
2017-01-01
Fluorescent carbon dots (FCDs) are an emerging class of nanomaterials made from carbon sources that have been hailed as potential non-toxic replacements to traditional semiconductor quantum dots (QDs). Particularly in the areas of live imaging and drug delivery, due to their water solubility, low toxicity and photo- and chemical stability. Carbohydrates are readily available chiral biomolecules in nature which offer an attractive and cheap starting material from which to synthesise FCDs with distinct features and interesting applications. This mini-review article will cover the progress in the development of FCDs prepared from carbohydrate sources with an emphasis on their synthesis, functionalization and technical applications, including discussions on current challenges. PMID:28503203
Oxborough, Richard M; N'Guessan, Raphael; Jones, Rebecca; Kitau, Jovin; Ngufor, Corine; Malone, David; Mosha, Franklin W; Rowland, Mark W
2015-03-24
The rapid selection of pyrethroid resistance throughout sub-Saharan Africa is a serious threat to malaria vector control. Chlorfenapyr is a pyrrole insecticide which shows no cross resistance to insecticide classes normally used for vector control and is effective on mosquito nets under experimental hut conditions. Unlike neurotoxic insecticides, chlorfenapyr owes its toxicity to disruption of metabolic pathways in mitochondria that enable cellular respiration. A series of experiments explored whether standard World Health Organization (WHO) guidelines for evaluation of long-lasting insecticidal nets, developed through testing of pyrethroid insecticides, are suitable for evaluation of non-neurotoxic insecticides. The efficacy of WHO recommended cone, cylinder and tunnel tests was compared for pyrethroids and chlorfenapyr. To establish bioassay exposure times predictive of insecticide-treated net (ITN) efficacy in experimental hut trials, standard three-minute bioassays of pyrethroid and chlorfenapyr ITNs were compared with longer exposures. Mosquito behaviour and response to chlorfenapyr ITN in bioassays conducted at night were compared to day and across a range of temperatures representative of highland and lowland transmission. Standard three-minute bioassay of chlorfenapyr produced extremely low levels of mortality compared to pyrethroids. Thirty-minute day-time bioassay produced mortality closer to hut efficacy of chlorfenapyr ITN but still fell short of the WHO threshold. Overnight tunnel test with chlorfenapyr produced 100% mortality and exceeded the WHO threshold of 80%. The endogenous circadian activity rhythm of anophelines results in inactivity by day and raised metabolism and flight activity by night. A model which explains improved toxicity of chlorfenapyr ITN when tested at night, and during the day at higher ambient temperature, is that activation of chlorfenapyr and disruption of respiratory pathways is enhanced when the insect is more metabolically and behaviourally active. Testing according to current WHO guidelines is not suitable for certain types of non-neurotoxic insecticide which, although highly effective in field trials, would be overlooked at the screening stage of evaluation through bioassay. Testing methods must be tailored to the characteristics and mode of action of each insecticide class. The WHO tunnel test on night-active anophelines is the most reliable bioassay for identifying the toxicity of novel insecticides.
Targeting the interleukin-11 receptor α in metastatic prostate cancer: A first-in-man study
Pasqualini, Renata; Millikan, Randall E; Christianson, Dawn R; Cardó-Vila, Marina; Driessen, Wouter H P; Giordano, Ricardo J; Hajitou, Amin; Hoang, Anh G; Wen, Sijin; Barnhart, Kirstin F; Baze, Wallace B; Marcott, Valerie D; Hawke, David H; Do, Kim-Anh; Navone, Nora M; Efstathiou, Eleni; Troncoso, Patricia; Lobb, Roy R; Logothetis, Christopher J; Arap, Wadih
2015-01-01
BACKGROUND Receptors in tumor blood vessels are attractive targets for ligand-directed drug discovery and development. The authors have worked systematically to map human endothelial receptors (“vascular zip codes”) within tumors through direct peptide library selection in cancer patients. Previously, they selected a ligand-binding motif to the interleukin-11 receptor alpha (IL-11Rα) in the human vasculature. METHODS The authors generated a ligand-directed, peptidomimetic drug (bone metastasis-targeting peptidomimetic-11 [BMTP-11]) for IL-11Rα–based human tumor vascular targeting. Preclinical studies (efficacy/toxicity) included evaluating BMTP-11 in prostate cancer xenograft models, drug localization, targeted apoptotic effects, pharmacokinetic/pharmacodynamic analyses, and dose-range determination, including formal (good laboratory practice) toxicity across rodent and nonhuman primate species. The initial BMTP-11 clinical development also is reported based on a single-institution, open-label, first-in-class, first-in-man trial (National Clinical Trials number NCT00872157) in patients with metastatic, castrate-resistant prostate cancer. RESULTS BMTP-11 was preclinically promising and, thus, was chosen for clinical development in patients. Limited numbers of patients who had castrate-resistant prostate cancer with osteoblastic bone metastases were enrolled into a phase 0 trial with biology-driven endpoints. The authors demonstrated biopsy-verified localization of BMTP-11 to tumors in the bone marrow and drug-induced apoptosis in all patients. Moreover, the maximum tolerated dose was identified on a weekly schedule (20-30 mg/m2). Finally, a renal dose-limiting toxicity was determined, namely, dose-dependent, reversible nephrotoxicity with proteinuria and casts involving increased serum creatinine. CONCLUSIONS These biologic endpoints establish BMTP-11 as a targeted drug candidate in metastatic, castrate-resistant prostate cancer. Within a larger discovery context, the current findings indicate that functional tumor vascular ligand-receptor targeting systems may be identified through direct combinatorial selection of peptide libraries in cancer patients. Cancer 2015;121:2411–2421. © 2015 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. The authors report on the development of a new ligand-directed peptidomimetic (termed bone metastasis-targeting peptidomimetic-11) for interleukin-11 receptor-based human vascular targeting, including the translation from preclinical studies to a first-in-class, first-in-man clinical trial in patients with metastatic, castrate-resistant prostate cancer. PMID:25832466
Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)
Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.
RESULTS OF APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS
Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation TIE) methods for contaminated sediments and are focusing on three toxicant groups (amm...
Feng, Guo; Chen, Yun-Long; Li, Wei; Li, Lai-Lai; Wu, Zeng-Guang; Wu, Zi-Jun; Hai, Yue; Zhang, Si-Chao; Zheng, Chuan-Qi; Liu, Chang-Xiao; He, Xin
2018-06-01
Radix Wikstroemia indica (RWI), named "Liao Ge Wang" in Chinese, is a kind of toxic Chinese herbal medicine (CHM) commonly used in Miao nationality of South China. "Sweat soaking method" processed RWI could effectively decrease its toxicity and preserve therapeutic effect. However, the underlying mechanism of processing is still not clear, and the Q-markers database for processed RWI has not been established. Our study is to investigate and establish the quality evaluation system and potential Q-markers based on "effect-toxicity-chemicals" relationship of RWI for quality/safety assessment of "sweat soaking method" processing. The variation of RWI in efficacy and toxicity before and after processing was investigated by pharmacological and toxicological studies. Cytotoxicity test was used to screen the cytotoxicity of components in RWI. The material basis in ethanol extract of raw and processed RWI was studied by UPLC-Q-TOF/MS. And the potential Q-markers were analyzed and predicted according to "effect-toxicity-chemical" relationship. RWI was processed by "sweat soaking method", which could preserve efficacy and reduce toxicity. Raw RWI and processed RWI did not show significant difference on the antinociceptive and anti-inflammatory effect, however, the injury of liver and kidney by processed RWI was much weaker than that by raw RWI. The 20 compounds were identified from the ethanol extract of raw product and processed product of RWI using UPLC-Q-TOF/MS, including daphnoretin, emodin, triumbelletin, dibutyl phthalate, Methyl Paraben, YH-10 + OH and matairesinol, arctigenin, kaempferol and physcion. Furthermore, 3 diterpenoids (YH-10, YH-12 and YH-15) were proved to possess the high toxicity and decreased by 48%, 44% and 65%, respectively, which could be regarded as the potential Q-markers for quality/safety assessment of "sweat soaking method" processed RWI. A Q-marker database of processed RWI by "sweat soaking method" was established according to the results and relationship of "effect-toxicity-chemicals", which provided a scientific evidence for processing methods, mechanism and the clinical application of RWI, also provided experimental results to explore the application of Q-marker in CHM. Copyright © 2018 Elsevier GmbH. All rights reserved.
Ricco, Giuseppina; Tomei, M C M Concetta; Ramadori, Roberto; Laera, Giuseppe
2004-04-01
The toxicity of four xenobiotic compounds 3,5-dichlorophenol, formaldehyde, 4-nitrophenol and dichloromethane, representative of industrial wastewater contaminants was evaluated by a simple respirometric procedure set up on the basis of OECD Method 209 and by the Microtox bioassay. Very good reproducibility was observed for both methods, the variation coefficients being in the range of 2-10% for the respirometric procedure and 6-15% for Microtox, values that can be considered very good for a biological method. Comparison of EC(50) data obtained with the two methods shows that in both cases 3,5-dichlorophenol is more toxic than other compounds investigated and dichloromethane has a very low toxicity value. Intermediate EC(50) values were found for the two other chemicals, formaldehyde and 4-nitrophenol. Moreover, the Microtox EC(50) values are generally lower (except for dichloromethane) than the respirometric ones: these differences could be explained by the fact that the Microtox method uses a pure culture of marine species and, therefore, should not necessarily be expected to behave like a community of activated sludge bacteria. In conclusion, both methods can be usefully applied for toxicity detection in wastewater treatment plants but it is advisable to take into account that Microtox is more sensitive than respirometry in estimating the acute toxicity effect on the biomass operating in the plant.
Okamura, Hiroyuki; Abe, Hajime; Hasegawa-Baba, Yasuko; Saito, Kenji; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio
2015-01-01
Using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), we performed safety evaluations on five acetal flavouring substances uniquely used in Japan: acetaldehyde 2,3-butanediol acetal, acetoin dimethyl acetal, hexanal dibutyl acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal. As no genotoxicity study data were available in the literature, all five substances had no chemical structural alerts predicting genotoxicity. Using Cramer's classification, acetoin dimethyl acetal and hexanal dibutyl acetal were categorised as class I, and acetaldehyde 2,3-butanediol acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal as class III. The estimated daily intakes for all five substances were within the range of 1.45-6.53 µg/person/day using the method of maximised survey-derived intake based on the annual production data in Japan from 2001, 2005, 2008 and 2010, and 156-720 µg/person/day using the single-portion exposure technique (SPET), based on the average use levels in standard portion sizes of flavoured foods. The daily intakes of the two class I substances were below the threshold of toxicological concern (TTC) - 1800 μg/person/day. The daily intakes of the three class III substances exceeded the TTC (90 μg/person/day). Two of these, acetaldehyde 2,3-butanediol acetal and hexanal glyceryl acetal, were expected to be metabolised into endogenous products after ingestion. For 4-methyl-2-pentanone propyleneglycol acetal, one of its metabolites was not expected to be metabolised into endogenous products. However, its daily intake level, based on the estimated intake calculated by the SPET method, was about 1/15 000th of the no observed effect level. It was thus concluded that all five substances raised no safety concerns when used for flavouring foods at the currently estimated intake levels. While no information on in vitro and in vivo toxicity for all five substances was available, their metabolites were judged as raising no safety concerns at the current levels of intake.
Maloney, Erin M; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten
2017-11-01
Extensive agricultural use of neonicotinoid insecticide products has resulted in the presence of neonicotinoid mixtures in surface waters worldwide. Although many aquatic insect species are known to be sensitive to neonicotinoids, the impact of neonicotinoid mixtures is poorly understood. In the present study, the cumulative toxicities of binary and ternary mixtures of select neonicotinoids (imidacloprid, clothianidin, and thiamethoxam) were characterized under acute (96-h) exposure scenarios using the larval midge Chironomus dilutus as a representative aquatic insect species. Using the MIXTOX approach, predictive parametric models were fitted and statistically compared with observed toxicity in subsequent mixture tests. Single-compound toxicity tests yielded median lethal concentration (LC50) values of 4.63, 5.93, and 55.34 μg/L for imidacloprid, clothianidin, and thiamethoxam, respectively. Because of the similar modes of action of neonicotinoids, concentration-additive cumulative mixture toxicity was the predicted model. However, we found that imidacloprid-clothianidin mixtures demonstrated response-additive dose-level-dependent synergism, clothianidin-thiamethoxam mixtures demonstrated concentration-additive synergism, and imidacloprid-thiamethoxam mixtures demonstrated response-additive dose-ratio-dependent synergism, with toxicity shifting from antagonism to synergism as the relative concentration of thiamethoxam increased. Imidacloprid-clothianidin-thiamethoxam ternary mixtures demonstrated response-additive synergism. These results indicate that, under acute exposure scenarios, the toxicity of neonicotinoid mixtures to C. dilutus cannot be predicted using the common assumption of additive joint activity. Indeed, the overarching trend of synergistic deviation emphasizes the need for further research into the ecotoxicological effects of neonicotinoid insecticide mixtures in field settings, the development of better toxicity models for neonicotinoid mixture exposures, and the consideration of mixture effects when setting water quality guidelines for this class of pesticides. Environ Toxicol Chem 2017;36:3091-3101. © 2017 SETAC. © 2017 SETAC.
Evaluation of toxicity of ‘Vatsanabha’ (Aconitum ferox, Ranunculaceae) Before and After Shodhana
Deore, S.L.; Moon, K.V.; Khadabadi, S.S.; Deokate, U.A.; Baviskar, B.A.
2013-01-01
Ayurvedic preparations contain toxic elements like heavy metals and other chemicals exceeding their permissible limits. Ayurvedic method of detoxification of such products involves Shodhana. Hence, in present paper it has been decided to replace Ayurvedic Shodhana process by chemical purification method and to study the benefits and/or drawbacks of the traditional Ayurvedic Shodhana process. Crude aconite root, Ayurvedic Shodhana treated aconite root and chemical Shodhana treated aconite root samples were evaluated for toxicity and changes by animal studies and thin layer chromatography (TLC) respectively. The results of the toxicity study suggest that the modified method of Shodhana is less efficient as compared to the traditional Ayurvedic Shodhana process. TLC studies have shown that pseudoaconitine and aconitine were converted into far less toxic substances like veratroyl pseudoaconine and benzoylaconine respectively only in traditional Ayurvedic Shodhana. PMID:24023444
Bodewein, Lambert; Schmelter, Frank; Di Fiore, Stefano; Hollert, Henner; Fischer, Rainer; Fenske, Martina
2016-08-15
Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96h and human cancer cell lines for 24h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, with EC50 values ranging from 0.16 to just below 1.7μM at 24 and 48hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values≥402μM (PAMAMs) and ≤240μM (PPIs) for HepG2 and ≤13.24μM (PAMAMs) and ≤12.84μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.