Sample records for toxic metabolites produced

  1. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication.

    PubMed

    Martín, Juan F; Casqueiro, Javier; Liras, Paloma

    2005-06-01

    Many secondary metabolites (e.g. antibiotics and mycotoxins) are toxic to the microorganisms that produce them. The clusters of genes that are responsible for the biosynthesis of secondary metabolites frequently contain genes for resistance to these toxic metabolites, such as different types of multiple drug resistance systems, to avoid suicide of the producer strains. Recently there has been research into the efflux systems of secondary metabolites in bacteria and in filamentous fungi, such as the large number of ATP-binding cassette transporters found in antibiotic-producing Streptomyces species and that are involved in penicillin secretion in Penicillium chrysogenum. A different group of efflux systems, the major facilitator superfamily exporters, occur very frequently in a variety of bacteria that produce pigments or antibiotics (e.g. the cephamycin and thienamycin producers) and in filamentous fungi that produce mycotoxins. Such efflux systems include the CefT exporters that mediate cephalosporin secretion in Acremonium chrysogenum. The evolutionary origin of these efflux systems and their relationship with current resistance determinants in pathogenic bacteria has been analyzed. Genetic improvement of the secretion systems of secondary metabolites in the producer strain has important industrial applications.

  2. Aspergillus flavus secondary metabolites: more than just aflatoxins

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  3. In Vivo and In Vitro Metabolites from the Main Diester and Monoester Diterpenoid Alkaloids in a Traditional Chinese Herb, the Aconitum Species

    PubMed Central

    Zhang, Min; Peng, Chong-sheng; Li, Xiao-bo

    2015-01-01

    Diester diterpenoid alkaloids (DDAs), such as aconitine (AC), mesaconitine (MA), and hypaconitine (HA), are both pharmacologically active compounds and toxic ingredients in a traditional Chinese herb, the Aconitum species. Many DDA metabolism studies have been performed to explore mechanisms for reducing toxicity in these compounds and in Aconitum species extracts for safe clinical administration. In this review, we summarize recent progress on the metabolism of toxic AC, MA, and HA and corresponding monoester diterpenoid alkaloids (MDAs) in the gastrointestinal tract and liver in different animal species and humans in vivo and/or in vitro, where these alkaloids are primarily metabolized by cytochrome P450 enzymes, carboxylesterases, and intestinal bacteria, which produces phase I metabolites, ester hydrolysed products, and lipoalkaloids. Furthermore, we classify metabolites detected in the blood and urine, where the aforementioned metabolites are absorbed and excreted. Less toxic MDAs and nontoxic alcohol amines are the primary DDA metabolites detected in the blood. Most other DDAs metabolites produced in the intestine and liver detected in the urine have not been reported in the blood. We propose an explanation for this nonconformity. Finally, taking AC, for instance, we generalize a process of toxicity reduction in the body after oral AC administration for the first time. PMID:25705235

  4. Thermo-stability, dose effects and shelf-life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmai

    USDA-ARS?s Scientific Manuscript database

    Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. In previous work, the concentrated, or cell-free metabolites of X. szentirmaii exhibited high toxicity against various fungal plant pathogens and showed great potential ...

  5. Thermo-stability, dose effects and shelf-life of antifungal compounds produced by the symbiotic bacterium Xenorhabdus szentirmaii

    USDA-ARS?s Scientific Manuscript database

    Xenorhabdus spp bacteria are associated with Steinernematid nematodes and produce antifungal metabolites that protect nematode-infected cadavers from fungal colonization. Previous work demonstrated concentrated or cell-free metabolites of X. szentirmaii were toxic to fungal phytopathogens. We prepar...

  6. Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus can colonize important food staples and produces aflatoxins, toxic and carcinogenic secondary metabolites. In silico analysis of the A. flavus genome revealed 56 gene clusters encoding for secondary metabolites. How these many of these metabolites affect fungal development, surviv...

  7. Strain improvement of industrially important microorganisms based on resistance to toxic metabolites and abiotic stress.

    PubMed

    Fiedurek, Jan; Trytek, Mariusz; Szczodrak, Janusz

    2017-06-01

    Improvement of the biosynthetic capabilities of industrially relevant microbes to produce desired metabolites in higher quantities is one of the important topics of modern biotechnology. In this article, different strategies of improvement of mutated microbial strains are briefly described. This is followed by the first comprehensive review of the literature on obtaining high yielding microorganisms, that is, mutants exhibiting resistance to antimetabolites, nutritional repression, and abiotic stresses as well as tolerance to solvents and toxic substrates or products. Furthermore, the efficiency of the microbial metabolites produced by improved microbial strains, advantages, and limitations, as well as future prospects for strategies of strain development are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparative behavioral pharmacology and toxicology of cocaine and its ethanol-derived metabolite, cocaine ethyl-ester (cocaethylene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J.L.; Terry, P.; Witkin, J.M.

    The present study compared the behavioral and toxic effects of cocaine and its ethanol derived metabolite, cocaine ethyl-ester (cocaethylene). Both drugs produced qualitatively similar psychomoter stimulant effects. Cocaine and cocaethylene increased locomotor activity in mice, with cocaine approximately four times more potent than cocaethylene. The durations of action of ED{sub 75} doses of each of the drugs were comparable. Each of the drugs also produced stimulation of operant responding in rats. In rats and squirrel monkeys trained to discriminate cocaine injections from saline, cocaine was approximately three to five times more potent than cocaethylene in producing these cocaine-like interoceptive effects.more » In contrast to the behavioral effects, cocaine and cocaethylene were equipotent in producing convulsions, and cocaethylene was more potent than cocaine in producing lethality. These results suggest that the conversion of cocaine to cocaethylene with simultaneous cocaine and alcohol use may produce an increased risk of toxicity due to a decrease in the potency of cocaethylene in producing psychomotor stimulant effects, and its increased potency in producing toxicity.« less

  9. Toxin producing micromycetes on fruit, berries, and vegetables.

    PubMed

    Lugauskas, Albinas; Stakeniene, Jurgita

    2002-01-01

    In 1999-2001 the investigations on mycological state of stored and sold fruit, berries, and vegetables grown in Lithuania and imported from other countries were performed. The samples of foodstuff were taken from storehouses, various supermarkets, and market places. Such ecological conditions lead to a rapid spreading of micromycetes and contamination of other articles of food stored and sold nearby. On fresh fruit and berries the development of microorganisms is slow. However, microorganisms penetrate into internal tissues of berries and fruit, thus becoming difficult to notice visually. Some microorganisms, especially micromycetes of some species belonging to the Penicillium Link, Aspergillus Mich. ex Fr., and other genera, are able to produce secondary metabolites (mycotoxins) of various compositions that are toxic to plants, animals, and humans. Therefore, the ability of micromycetes to synthesise and excrete toxic secondary metabolites was examined. Considering this issue, 393 micromycete strains ascribed to 54 genera and 176 species were tested. 46 strains were identified as active producers of toxic substances and were selected for further examinations. Most of them belonged to the Penicillium, Aspergillus and Fusarium genera. Their detection frequency on the investigated berries, fruit, and vegetables was determined, and the impact upon warm-blooded animals (BALB/c mice) was tested. Significant changes of the internal organs and blood composition were found in mice infected with toxic micromycetes. In conclusion, it was evidenced that more than 10% of micromycete strains developing on incorrectly-preserved fruit, berries and vegetables, produce toxic secondary metabolites that pose a potential health hazard for people eating or handling the foodstuff.

  10. LIPOMICS, AN IMPORTANT COMPONENT OF METABOLOMICS, AND POSSIBLE USE IN TOXICOLOGY STUDIES

    EPA Science Inventory

    Metabolites of endogenous biochemical substances can be considered to represent the ultimate organ and cellular responses to toxicants or other changes in an organism's environment. An important fraction of these endogenously produced metabolites are lipids; the comprehensive stu...

  11. Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The fungus Aspergillus flavus is known for its ability to produce the toxic and carcinogenic aflatoxins in food and feed. While aflatoxins are of most concern, A. flavus is predicted to be capable of producing many more metabolites based on a study of its complete genome sequence. Some of these meta...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cave, D.A.; Foster, P.M.

    Previous work has shown that m-dinitrobenzene is a testicular toxicant in rats in vivo, and in vitro produces comparable morphological changes in rat testicular Sertoli-germ cell cocultures. m-Dinitrobenzene is metabolized both in vivo and in the in vitro system to m-nitroaniline m-nitroaniline and m-nitroacetanilide. These metabolites do not provoke testicular toxicity in vivo or in vitro. We have therefore proposed a pathway for the metabolism of m-dinitrobenzene to m-nitroaniline and m-nitroacetanilide, which involved the intermediate m-nitrosonitrobenzene (1-nitroso-3-nitrobenzene, NNB). When tested, m-nitrosonitrobenzene, at equimolar doses to m-dinitrobenzene, produced similar morphological changes in the culture system to those exhibited by m-dinitrobenzene. However,more » m-nitrosonitrobenzene produced a greater toxicity than did m-dinitrobenzene (as measured by germ cell detachment). When the intracellular thiol levels were reduced in the cocultures pretreated with diethyl maleate, the toxicity of both m-dinitrobenzene and m-nitrosonitrobenzene was enhanced. In contrast, pretreatment of cocultures with agents known to increase cellular thiol (cysteamine) or scavenge reactive intermediates (cysteamine or ascorbate) reduced the toxicity of m-dinitrobenzene and m-nitrosonitrobenzene. We propose that m-dinitrobenzene requires metabolic activation before it can exert its toxicity to Sertoli cells, and it appears that the toxic species is m-nitrosonitrobenzene or a further metabolite of m-nitrosonitrobenzene.« less

  13. Mining Genomes of Biological Control Strains of Pseudomonas spp.: Unexpected Gems and Tailings

    USDA-ARS?s Scientific Manuscript database

    The biocontrol bacterium Pseudomonas fluorescens Pf-5 suppresses numerous soilborne plant diseases and produces an array of structurally-characterized secondary metabolites that are toxic to plant pathogenic bacteria, fungi and Oomycetes. Biosynthetic gene clusters for these metabolites compose nea...

  14. A novel trapping system for the detection of reactive drug metabolites using the fungus Cunninghamella elegans and high resolution mass spectrometry.

    PubMed

    Rydevik, Axel; Hansson, Annelie; Hellqvist, Anna; Bondesson, Ulf; Hedeland, Mikael

    2015-07-01

    A new model is presented that can be used to screen for bioactivation of drugs. The evaluation of toxicity is an important step in the development of new drugs. One way to detect possible toxic metabolites is to use trapping agents such as glutathione. Often human liver microsomes are used as a metabolic model in initial studies. However, there is a need for alternatives that are easy to handle, cheap, and can produce large amounts of metabolites. In the presented study, paracetamol, mefenamic acid, and diclofenac, all known to form reactive metabolites in humans, were incubated with the fungus Cunninghamella elegans and the metabolites formed were characterized with ultra high performance liquid chromatography coupled to a quadrupole time of flight mass spectrometer. Interestingly, glutathione conjugates formed by the fungus were observed for all three drugs and their retention times and MS/MS spectra matched those obtained in a comparative experiment with human liver microsomes. These findings clearly demonstrated that the fungus is a suitable trapping model for toxic biotransformation products. Cysteine conjugates of all three test drugs were also observed with high signal intensities in the fungal incubates, giving the model a further indicator of drug bioactivation. To our knowledge, this is the first demonstration of the use of a fungal model for the formation and trapping of reactive drug metabolites. The investigated model is cheap, easy to handle, it does not involve experimental animals and it can be scaled up to produce large amounts of metabolites. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasiticus, which frequently contaminate poultry feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased bird performance and reduced egg production....

  16. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasicitus, which frequently contaminate chicken feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased chicken performance and reduced egg producti...

  17. Modulation of m-dinitrobenzene and m-nitrosonitrobenzene toxicity in rat Sertoli--germ cell cocultures.

    PubMed

    Cave, D A; Foster, P M

    1990-01-01

    Previous work has shown that m-dinitrobenzene is a testicular toxicant in rats in vivo, and in vitro produces comparable morphological changes in rat testicular Sertoli-germ cell cocultures. m-Dinitrobenzene is metabolized both in vivo and in the in vitro system to m-nitroaniline m-nitroaniline and m-nitroacetanilide. These metabolites do not provoke testicular toxicity in vivo or in vitro. We have therefore proposed a pathway for the metabolism of m-dinitrobenzene to m-nitroaniline and m-nitroacetanilide, which involved the intermediate m-nitrosonitrobenzene (1-nitroso-3-nitrobenzene, NNB). When tested, m-nitrosonitrobenzene, at equimolar doses to m-dinitrobenzene, produced similar morphological changes in the culture system to those exhibited by m-dinitrobenzene. However, m-nitrosonitrobenzene produced a greater toxicity than did m-dinitrobenzene (as measured by germ cell detachment). When the intracellular thiol levels were reduced in the cocultures pretreated with diethyl maleate, the toxicity of both m-dinitrobenzene and m-nitrosonitrobenzene was enhanced. In contrast, pretreatment of cocultures with agents known to increase cellular thiol (cysteamine) or scavenge reactive intermediates (cysteamine or ascorbate) reduced the toxicity of m-dinitrobenzene and m-nitrosonitrobenzene. We propose that m-dinitrobenzene requires metabolic activation before it can exert its toxicity to Sertoli cells, and it appears that the toxic species is m-nitrosonitrobenzene or a further metabolite of m-nitrosonitrobenzene.

  18. [Subchronic toxicity testing of mold-ripened cheese].

    PubMed

    Schoch, U; Lüthy, J; Schlatter, C

    1984-08-01

    The biological effects of known mycotoxins of Penicillium roqueforti or P. camemberti and other still unknown, but potentially toxic metabolites in mould ripened cheese (commercial samples of Blue- and Camembert cheese) were investigated. High amounts of mycelium (equivalents of 100 kg cheese/man and day) were fed to mice in a subchronic feeding trial. The following parameters were determined: development of body weight, organ weights, hematology, blood plasma enzymes. No signs of adverse effects produced by cheese mycotoxins could be detected after 28 days. No still unknown toxic metabolites could be demonstrated. From these results no health hazard from the consumption of mould ripened cheese, even in high amounts, appears to exist.

  19. The cardiovascular and cardiac actions of ecstasy and its metabolites.

    PubMed

    Shenouda, S K; Carvalho, F; Varner, K J

    2010-08-01

    The recreational use of 3, 4 methylenedioxymethamphetamine (ecstasy or MDMA) has increased dramatically over the past thirty years due to its ability to increase stamina and produce feelings of emotional closeness and wellbeing. In spite of the popular perception that MDMA is a safe drug, there is a large literature documenting that the drug can produce significant neurotoxicity, especially in serotonergic and catecholaminergic systems. There are also experimental and clinical data which document that MDMA can alter cardiovascular function and produce cardiac toxicity, including rhythm disturbances, infarction and sudden death. This manuscript will review the literature documenting the cardiovascular responses elicited by MDMA in humans and experimental animals and will examine the underlying mechanisms mediating these responses. We will also review the available clinical, autopsy and experimental data linking MDMA with cardiac toxicity. Most available data indicate that oxidative stress plays an important role in the cardiotoxic actions of MDMA. Moreover, new data indicates that redox active metabolites of MDMA may play especially important roles in MDMA induced toxicity.

  20. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    PubMed

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Endocidal Regulation of Secondary Metabolites in the Producing Organisms

    PubMed Central

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H.

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  2. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Treesearch

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  3. Genomic analysis of Ascochyta rabiei identifies dynamic genome environments of solanapyrone biosynthesis gene cluster and a novel type of pathway-specific regulator

    USDA-ARS?s Scientific Manuscript database

    Secondary metabolite genes are often clustered together and situated in particular genomic regions such as the subtelomere, which can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full genome sequencing of...

  4. Mycotoxins in Meat and Processed Meat Products

    NASA Astrophysics Data System (ADS)

    Bailly, Jean-Denis; Guerre, Philippe

    Mycotoxins are toxic substances elaborated by fungi. They constitute a heterogeneous group of secondary metabolites with diverse potent pharmacological and toxic effects in humans and animals. More than 300 secondary metabolites have been identified but around 30 are of real concern for human and animal health (for review, see Bennett & Klich, 2003). These molecules are produced during mould development on plants in the field or during storage period. They can be found as natural contaminants of many vegetal foods or feeds, mainly cereals, but also fruits, nuts, grains, forage as well as compound foods intended for human or animal consumption. Most important mycotoxins are produced by moulds belonging to Aspergillus, Penicillium and Fusarium genus (Bhatnagar, Yu, & Ehrlich, 2002; Conkova, Laciakova, Kovac, & Seidel, 2003; Pitt, 2002). These molecules are usually classified depending on the fungal species that produce them (Table 4.1)

  5. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I.

    PubMed

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with morphine, hydromorphone, and oxymorphone are reviewed in this column. Morphine is a naturally occurring opiate that is metabolized chiefly through glucuronidation by uridine diphosphate glucuronosyl transferase (UGT) enzymes in the liver. These enzymes produce an active analgesic metabolite and a potentially toxic metabolite. In vivo drug-drug interaction studies with morphine are few, but they do suggest that inhibition or induction of UGT enzymes could alter morphine and its metabolite levels. These interactions could change analgesic efficacy. Hydromorphone and oxymorphone, close synthetic derivatives of morphine, are also metabolized primarily by UGT enzymes. Hydromorphone may have a toxic metabolite similar to morphine. In vivo drug-drug interaction studies with hydromorphone and oxymorphone have not been done, so it is difficult to make conclusions with these drugs.

  6. Hyperspectral image classification and development of fluorescence index for single corn kernels infected with Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic secondary metabolites predominantly produced by the fungi Aspergillus flavus and A. parasiticus. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...

  7. Effects of acquisition, loss, and neofunctionalization of trichothecene biosynthetic genes on variation in trichothecene structure, pathway regulation, and self-protection mechanisms in the Hypocreales

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are secondary metabolites produced by multiple genera in the order Hypocreales, including Fusarium, Myrothecium, Stachybotrys, and Trichoderma. These metabolites are of concern because they are toxic to humans and animals, can contribute to pathogenicity in Fusarium, and are required ...

  8. Production of secondary metabolites by some terverticillate penicillia on carbohydrate-rich and meat substrates.

    PubMed

    Núñez, Félix; Westphal, Carmen D; Bermúdez, Elena; Asensio, Miguel A

    2007-12-01

    Most terverticillate penicillia isolated from dry-cured meat products are toxigenic, but their ability to produce hazardous metabolites on meat-based substrates is not well known. The production of extrolites by selected terverticillate penicillia isolated from dry-cured ham has been studied on carbohydrate-rich media (malt extract agar, Czapek yeast autolysate agar, rice extract agar, and rice), meat extract triolein salt agar, and ham slices. Chloroform extracts from the selected strains grown on malt extract agar were toxic for the brine shrimp (Artemia salina) larvae and VERO cells at a concentration of 2 mg/ml, but 0.02 mg/ml produced no toxic effect. Analysis by high-pressure liquid chromatography (HPLC) coupled with photodiode array detection (DAD) or with mass spectrometry (MS) and an atmospheric pressure chemical ionization (APCI) source revealed different biologically active metabolites: cyclopiazonic acid and rugulovasine A from Penicillium commune; verrucosidin, anacine, puberuline, verrucofortine, and viridicatols from Penicillium polonicum; arisugacin and viridicatols from Penicillium echinulatum; and compactin and viridicatols from Penicillium solitum. Most of these metabolites, including the amino acid-derived compounds, were produced in the media containing high levels of carbohydrates. High concentrations of nitrogen compounds in the medium does not imply a greater production of the metabolites studied, not even those derived from the amino acids. However, molds growing on dry-cured ham are able to synthesize limited amounts of some secondary metabolites, a fact not previously reported. The combination of HPLC coupled with DAD and MS-APCI was useful for identification of closely related terverticillate Penicillium species from dry-cured ham. These techniques could be used to characterize the risk associated with the potential production of secondary metabolites in cured meats.

  9. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  10. Metabolite toxicity determines the pace of molecular evolution within microbial populations.

    PubMed

    Lilja, Elin E; Johnson, David R

    2017-02-14

    The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.

  11. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants.

    PubMed

    Gandhi, Sumit G; Mahajan, Vidushi; Bedi, Yashbir S

    2015-02-01

    Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource. Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.

  12. Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers during microbial metabolism of technical nonylphenol.

    PubMed

    Gabriel, Frédéric L P; Mora, Mauricio Arrieta; Kolvenbach, Boris A; Corvini, Philippe F X; Kohler, Hans-Peter E

    2012-06-05

    In many environmental compartments, microbial degradation of α-quaternary nonylphenols proceeds along an ipso-substitution pathway. It has been reported that technical nonylphenol contains, besides α-quaternary nonylphenols, minor amounts of various α-H, α-methyl substituted tertiary isomers. Here, we show that potentially toxic metabolites of such minor components are formed during ipso-degradation of technical nonylphenol by Sphingobium xenophagum Bayram, a strain isolated from activated sewage sludge. Small but significant amounts of nonylphenols were converted to the corresponding nonylhydroquinones, which in the presence of air oxygen oxidized to the corresponding nonyl-p-benzoquinones-yielding a complex mixture of potentially toxic metabolites. Through reduction with ascorbic acid and subsequent analysis by gas chromatography-mass spectrometry, we were able to characterize this unique metabolic fingerprint and to show that its components originated for the most part from α-tertiary nonylphenol isomers. Furthermore, our results indicate that the metabolites mixture also contained several α, β-dehydrogenated derivatives of nonyl-p-benzoquinones that originated by hydroxylation induced rearrangement, and subsequent ring and side chain oxidation from α-tertiary nonylphenol isomers. We predict that in nonylphenol polluted natural systems, in which microbial ipso-degradation is prominent, 2-alkylquinone metabolites will be produced and will contribute to the overall toxicity of the remaining material.

  13. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    PubMed Central

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  14. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially accomplish this, by first filtering the water and finally by adding disinfection treatments adequate to remove or mitigate fungi or their toxic metabolites.

  15. A New Glutathione Conjugate of the Pyrrolizidine Alkaloids Produced by Human Cytosolic Enzyme Dependent Reactions in vitro.

    PubMed

    Muluneh, Fashe; Häkkinen, Merja R; El-Dairi, Rami; Pasanen, Markku; Juvonen, Risto O

    2018-05-22

    The toxic metabolites of pyrrolizidine alkaloids (PAs) are initially formed by cytochrome P450 mediated oxidation reactions and primarily eliminated as glutathione (GSH) conjugates. Although the reaction between the reactive metabolites and GSH can occur spontaneously, the role of the cytosolic enzymes in the process has not been studied. The toxic metabolites of selected PAs (retrorsine, monocrotaline, senecionine, lasiocarpine, heliotrine or senkirkine) were generated by incubating them in 100 mM phosphate buffer pH 7.4 containing liver microsomes of human, pig, rat or sheep, NADPH and reduced GSH in the absence or presence of human, pig, rat or sheep liver cytosolic fraction. The supernatants were analyzed by using liquid chromatography connected to Finnigan LTQ ion-trap, Agilent QTOF or Thermo Scientific Q Exactive Focus quadrupole-orbitrap mass spectrometers. Retrorsine, senecionine and lasiocarpine yielded three GSH conjugates producing [M-H] - ions at m/z 439 (7-GSH-DHP(CHO)), m/z 441 (7-GSH-DHP(OH)) and m/z 730 (7,9-diGSH-DHP) in the presence of human liver cytosolic fraction. 7-GSH-DHP(CHO) was a novel metabolite. Monocrotaline, heliotrine and senkirkine did not produce this novel 7-GSH-DHP(CHO) conjugate. 7-GSH-DHP(CHO) disappeared when incubated with hydroxylamine, and a new oxime derivative was formed. This metabolite was formed only by the human liver cytosolic enzymes but not in the presence of rat or sheep liver cytosolic fractions under otherwise identical reaction conditions. 7-GSH-DHP(CHO) has not been reported before and thus, it was considered as a novel metabolite of PAs. This may clarify the mechanisms involved in PA detoxification and widely observed but less understood species differences in response to PA exposure. This article is protected by copyright. All rights reserved.

  16. Effects Of Haloacetic Acids and their major metabolites in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    EPA Science Inventory

    The haloacetic acids (HAAs) are a class of chemicals produced by disinfection of drinking water. Many of the HAAs are developmental toxicants when administered to rodents producing a variety of developmental effects. We have previously shown that the HAAs can produce direct effec...

  17. Assessment of Efficacy of Activated Charcoal for Treatment of Acute T-2 Toxin Poisoning,

    DTIC Science & Technology

    1986-11-14

    toxic secondary metabolite produced by a variety of Fusarium fungi-i. This trichothecene mycotoxin is highly toxic and has produced illness and death...Kern, and H. Richter, eds.), Verlag Paul Parly, BerLin, 1978, p. 58-93. 7 4. M. Saito and T. Tatsuna, "Toxins of Fusarium nivale," in Microbial Toxin...mechanisms of diarrhea induced by fusarenon-X, a trichothecene mycotoxin from Fusarium species, Toxicol. %ppl.Pharmacol. 57, 293-301 (1981). 7. Y. Ueno

  18. Cytotoxicity of trichothecenes and fusarochromanone produced by Fusarium equiseti strains isolated from Norwegian cereals.

    PubMed

    Morrison, Ellen; Rundberget, Thomas; Kosiak, Barbara; Aastveit, Are H; Bernhoft, Aksel

    2002-01-01

    The cytotoxicity and secondary metabolites of 28 Norwegian strains of Fusarium equiseti have been characterized. Trichothecenes and fusarochromanone (FUCH) in rice culture extracts of the strains were analysed by gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). The following metabolites were found in all isolates: FUCH, nivalenol (NIV), scirpentriol (SCIRP), 4-acetylnivalenol (4-ac-NIV, also called fusarenon-X), 15-acetyl-nivalenol (15-ac-NIV), and diacetoxyscirpenol (DAS). 4,15-diacetyl-nivalenol (diacetyl-NIV) was found in 5 isolates. Porcine kidney epithelial cells (PK15. American Type Culture Collection) were exposed to rice culture extracts to study cytotoxicity. Descriptive statistics and factor analysis of the identified secondary metabolites show that their main metabolites were FUCH, NIV, SCIRP, DAS and 15-ac-NIV, consecutively. The individual trichothecenes were highly intercorrelated, whereas the production of acetylated NIV and DAS was slightly less. Stepwise multiple regression analysis of cytotoxicity and metabolite profiles of rice culture extracts ascribed the toxicity mainly to a combination of FUCH and 15-ac-NIV, though SCIRP or DAS are agents in the combined toxicity as well.

  19. Fumigation toxicity of volatile natural and synthetic cyanohydrins to stored-product pests and activity as soil fumigants

    Treesearch

    Dong-Sik Park; Chris Peterson; Shaohan Zhao; Joel R. Coats

    2004-01-01

    secondary plant metabolites are useful for defense against herbivores.1 Many food and feed plants have been shown to synthesize cyanogenic compounds which can decompose to produce hydrocyanic acid (HCN) as a main source of plant defense, which acts as a toxicant or feeding deterrent to herbivores. Cassava, lima beans, peas, almonds, white clover...

  20. Nursing protects honeybee larvae from secondary metabolites of pollen

    PubMed Central

    Lucchetti, Matteo A.; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe

    2018-01-01

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. PMID:29563265

  1. Nursing protects honeybee larvae from secondary metabolites of pollen.

    PubMed

    Lucchetti, Matteo A; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe; Kast, Christina

    2018-03-28

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. © 2018 The Authors.

  2. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats.

    PubMed

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats

    PubMed Central

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    BACKGROUND AND PURPOSE The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. EXPERIMENTAL APPROACH Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. KEY RESULTS MDMA (1–20 mg·kg−1) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1–10 mg·kg−1) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. PMID:24328722

  4. Diethylene glycol-induced toxicities show marked threshold dose response in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landry, Greg M., E-mail: Landry.Greg@mayo.edu; Dunning, Cody L., E-mail: cdunni@lsuhsc.edu; Abreo, Fleurette, E-mail: fabreo@lsuhsc.edu

    Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10 g/kg DEG and blood, kidney and liver tissues were collected at 48 h. Both rat strains treated with 10 g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUNmore » and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5 g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10 g/kg DEG, but no DGA was present at 2 or 5 g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments. - Highlights: • DEG produces a steep threshold dose response for kidney injury in rats. • Wistar and F-344 rats do not differ in response to DEG-induced renal injury. • The dose response for renal injury closely mirrors that for renal DGA accumulation. • Results demonstrate the importance of DGA accumulation in producing kidney injury.« less

  5. Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis.

    PubMed

    Wang, Jianfeng; Huang, Yaojian; Fang, Meijuan; Zhang, Yongjie; Zheng, Zhonghui; Zhao, Yufen; Su, Wenjin

    2002-09-06

    Paecilomyces sp. and Aspergillus clavatus, which were isolated from Taxus mairei and Torreya grandis from southeast China, produced toxic metabolites when grown in liquid culture. Nuclear magnetic resonance techniques, infrared spectrometry, electrospray ionization mass spectroscopy and X-ray analysis identified brefeldin A, a bioactive metabolite produced by a number of fungal species belonging to the genera Alternaria, Ascochyta, Penicillium, Curvularia, Cercospora and Phyllosticta. This is the first report of the isolation of the cytotoxin from Paecilomyces sp. and A. clavatus. The relevance of brefeldin A to the association between these fungi and their host plants is discussed. Copyright 2002 Federation of European Microbiological Societies

  6. Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review.

    PubMed

    Leong, Yin-Hui; Latiff, Aishah A; Ahmad, Nurul Izzah; Rosma, Ahmad

    2012-05-01

    Aflatoxins are highly toxic secondary fungal metabolites mainly produced by Aspergillus flavus and A. parasiticus. Human exposure to aflatoxins may result directly from ingestion of contaminated foods, or indirectly from consumption of foods from animals previously exposed to aflatoxins in feeds. This paper focuses on exposure measurement of aflatoxins and aflatoxin metabolites in various human body fluids. Research on different metabolites present in blood, urine, breast milk, and other human fluids or tissues including their detection techniques is reviewed. The association between dietary intake of aflatoxins and biomarker measurement is also highlighted. Finally, aspects related to the differences between aflatoxin determination in food versus the biomarker approach are discussed.

  7. Cytotoxicity of lapachol metabolites produced by probiotics.

    PubMed

    Oliveira Silva, E; Cruz de Carvalho, T; Parshikov, I A; Alves dos Santos, R; Silva Emery, F; Jacometti Cardoso Furtado, N A

    2014-07-01

    Probiotics are currently added to a variety of functional foods to provide health benefits to the host and are commonly used by patients with gastrointestinal complaints or diseases. The therapeutic effects of lapachol continue to inspire studies to obtain derivatives with improved bioactivity and lower unwanted effects. Therefore, the general goal of this study was to show that probiotics are able to convert lapachol and are important to assess the effects of bacterial metabolism on drug performance and toxicity. The microbial transformations of lapachol were carried out by Bifidobacterium sp. and Lactobacillus acidophilus and different metabolites were produced in mixed and isolated cultures. The cytotoxic activities against breast cancer and normal fibroblast cell lines of the isolated metabolites (4α-hydroxy-2,2-dimethyl-5-oxo-2,3,4,4α,5,9β-hexahydroindeno[1,2-β]pyran-9β-carboxilic acid, a new metabolite produced by mixed culture and dehydro-α-lapachone produced by isolated cultures) were assessed and compared with those of lapachol. The new metabolite displayed a lower activity against a breast cancer cell line (IC50 = 532.7 μmol l(-1) ) than lapachol (IC50 = 72.3 μmol l(-1) ), while dehydro-α-lapachone (IC50 = 10.4 μmol l(-1) ) displayed a higher activity than lapachol. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. Probiotics have been used in dairy products to promote human health and have the ability to metabolize drugs and other xenobiotics. Naphthoquinones, such as lapachol, are considered privileged scaffolds due to their high propensity to interact with biological targets. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. The developed approach highlights the importance of probiotics to assess the effects of bacterial metabolism on drug performance and toxicity. © 2014 The Society for Applied Microbiology.

  8. Toxins produced in cyanobacterial water blooms – toxicity and risks

    PubMed Central

    Bláha, Luděk; Babica, Pavel; Maršálek, Blahoslav

    2009-01-01

    Cyanobacterial blooms in freshwaters represent a major ecological and human health problem worldwide. This paper briefly summarizes information on major cyanobacterial toxins (hepatotoxins, neurotoxins etc.) with special attention to microcystins-cyclic heptapeptides with high acute and chronic toxicities. Besides discussion of human health risks, microcystin ecotoxicology and consequent ecological risks are also highlighted. Although significant research attention has been paid to microcystins, cyanobacteria produce a wide range of currently unknown toxins, which will require research attention. Further research should also address possible additive, synergistic or antagonistic effects among different classes of cyanobacterial metabolites, as well as interactions with other toxic stressors such as metals or persistent organic pollutants. PMID:21217843

  9. Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production.

    PubMed

    Andersen, Birgitte; Nielsen, Kristian F; Jarvis, Bruce B

    2002-01-01

    Stachybotrys was found to be associated with idiopathic pulmonary hemorrhage in infants in Cleveland, Ohio. Since that time, considerable effort has been put into finding the toxic components responsible for the disease. The name Stachybotrys chartarum has been applied to most of these isolates, but inconsistent toxicity results and taxonomic confusion prompted the present study. In this study, 122 Stachybotrys isolates, mainly from water-damaged buildings, were characterized and identified by combining three different approaches: morphology, colony characteristics, and metabolite production. Two different Stachybotrys taxa, S. chartarum and one undescribed species, were found in water-damaged buildings regardless of whether the buildings were in Denmark, Finland, or the USA. Furthermore, two chemotypes could be distinguished in S. chartarum. One chemotype produced atranones, whereas the other was a macrocyclic trichothecene-producer. The second undescribed taxon produced atranones and could be differentiated from S. chartarum by its growth characteristics and pigment production. Our results correlate with different inflammatory and toxicological properties reported for these same isolates and show that the three taxa/chemotypes should be treated separately. The co-occurrence of these three taxa/chemotypes in water-damaged buildings explains the inconsistent results in the literature concerning toxicity of Stachybotrys isolated from that environment.

  10. Target discovery and antifungal intervention via chemical biology approaches

    USDA-ARS?s Scientific Manuscript database

    Controlling infective fungi, especially pathogens that produce toxic secondary metabolites, is problematic as effective antimycotic agents are very limited. Moreover, the expansion of fungal resistance to commercial drugs is a global human health issue. Conventional antimycotic agents also cause ser...

  11. Impact of Violacein-Producing Bacteria on Survival and Feeding of Bacterivorous Nanoflagellates

    PubMed Central

    Matz, Carsten; Deines, Peter; Boenigk, Jens; Arndt, Hartmut; Eberl, Leo; Kjelleberg, Staffan; Jürgens, Klaus

    2004-01-01

    We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics. PMID:15006783

  12. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates.

    PubMed

    Matz, Carsten; Deines, Peter; Boenigk, Jens; Arndt, Hartmut; Eberl, Leo; Kjelleberg, Staffan; Jürgens, Klaus

    2004-03-01

    We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics.

  13. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food

    PubMed Central

    Alshannaq, Ahmad; Yu, Jae-Hyuk

    2017-01-01

    Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi (molds). These low molecular weight compounds (usually less than 1000 Daltons) are naturally occurring and practically unavoidable. They can enter our food chain either directly from plant-based food components contaminated with mycotoxins or by indirect contamination from the growth of toxigenic fungi on food. Mycotoxins can accumulate in maturing corn, cereals, soybeans, sorghum, peanuts, and other food and feed crops in the field and in grain during transportation. Consumption of mycotoxin-contaminated food or feed can cause acute or chronic toxicity in human and animals. In addition to concerns over adverse effects from direct consumption of mycotoxin-contaminated foods and feeds, there is also public health concern over the potential ingestion of animal-derived food products, such as meat, milk, or eggs, containing residues or metabolites of mycotoxins. Members of three fungal genera, Aspergillus, Fusarium, and Penicillium, are the major mycotoxin producers. While over 300 mycotoxins have been identified, six (aflatoxins, trichothecenes, zearalenone, fumonisins, ochratoxins, and patulin) are regularly found in food, posing unpredictable and ongoing food safety problems worldwide. This review summarizes the toxicity of the six mycotoxins, foods commonly contaminated by one or more of them, and the current methods for detection and analysis of these mycotoxins. PMID:28608841

  14. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    PubMed

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  15. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.

    2014-01-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201

  16. Investigation and molecular docking studies of Bassianolide from Lecanicillium lecanii against Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Ravindran, Keppanan; Sivaramakrishnan, Sivaperumal; Hussain, Mubasher; Dash, Chandra Kanta; Bamisile, Bamisope Steve; Qasim, Muhammad; Liande, Wang

    2018-04-01

    Entomopathogenic fungi are rich sources of bioactive secondary metabolites that possess insecticidal properties. The present study reported a novel approach for the identification of insecticidal compounds produced by Lecanicillium lecanii 09 and to assess their toxicity against the diamondback moth Plutella xylostella L. The cyclic peptides groups of toxic substances were separated from L. lecanii 09 through submerged liquid state fermentation. The most abundant toxic metabolite, Bassianolide was purified by high-performance liquid chromatography (HPLC) and its molecular weight and purity were determined by Liquid chromatography - mass spectroscopy (LC-MS), Fourier transformed infrared spectroscopy (FT-IR), and H 1 nuclear magnetic resonance (NMR) respectively. Subsequently, the toxicity of bassianolide was tested against third instar larvae of P. xylostella at three different concentrations (0.01, 0.1, 0.5 mg/ml). The results showed that higher concentration of 0.5 mg/ml had significant maximum mortality at 120 hour post inoculation. Furthermore, we investigated the ligand-target interaction of secondary metabolite binding with target insect immune receptor proteins and predicted the role of toxicity against insect host. This is the first study to report the infection process and the interaction of fungal mediated cyclicdepsipeptide compound (bassianolide) from L. lecanii 09 against the insect host P. xylostella. This novel approach provides a potential impact on biological control using natural toxic compound which acts as good inhibitor on pest insect and prevents toxicity hazards, pollution as well as ecocidal effects killing several beneficial insects. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Engineering dynamic pathway regulation using stress-response promoters.

    PubMed

    Dahl, Robert H; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S; Redding-Johanson, Alyssa M; Petzold, Christopher J; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D

    2013-11-01

    Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.

  18. A comparison of the toxicity and metabolism of phenol and chlorinated phenols by Lemna gibba, with special reference to 2,4,5-trichlorophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, H.A.; Barber, J.T.; Ensley, H.E.

    1997-02-01

    The toxicity of a series of chlorinated phenols, from phenol to pentachlorophenol, was determined using frond reproduction in aseptically grown Lemna gibba. The toxicities of the phenols tended to increase as the number of chlorine substituents on the phenol ring increased. The plants metabolized each of the phenols in the same manner producing metabolites that were more polar than their parent compounds. The metabolite for 2,4,5-trichlorophenol was isolated and identified by nuclear magnetic resonance spectroscopy and chemical ionization mass spectroscopy. The structural identity was confirmed by comparison with synthetic material as 2,4,5-trichlorophenyl-{beta}-D-glucopyranoside. These results, together with previously published results, suggestmore » that conjugation with D-glucose is a stereotypic response of duckweed to challenge by phenol and chlorinated phenols.« less

  19. [Application of chemical ecology in controlling marine fouling organisms].

    PubMed

    Fang, Fang; Yan, Tao; Liu, Qing

    2005-10-01

    Many marine organisms can produce secondary metabolites beneficial to the protection of marine environments against fouling, and thus, applying chemo-ecological methods to extract the natural antifoulants from marine organisms to resolve the problems relevant to marine fouling is a new thinking in resent years. Its aim is to search for high efficient and non-toxic antifoulants to replace the existing chemically synthetic ones which are unfortunately found to have widespread toxic effects on marine environment. Although we know few about the antifouling mechanisms of secondary metabolites, many natural products have been proved to have antifouling activity. Therefore, basic and applied researches on the ecological roles of these natural compounds, their action mechanisms, coating compatibility, controlled release, and field test are required in the future.

  20. Trehalose-related gene deletions in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk, and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioide...

  1. Trehalose-related Gene Deletions in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioides...

  2. Current status of genomics research on mycotoxigenic fungi

    USDA-ARS?s Scientific Manuscript database

    Mold-produced secondary metabolites that are toxic and carcinogenic are termed mycotoxins. They are biosynthesized in a number of fungi, mainly from species in the Aspergillus, Fusarium and Penicillium genera. Mycotoxins contaminate agricultural commodities such as grains, fruits and nuts. Due to th...

  3. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    NASA Astrophysics Data System (ADS)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  4. 12 WEEK EXPOSURE TO CARBONYL SULFIDE PRODUCES BRAIN LESIONS AND CHANGES IN BRAINSTEM AUDITORY (BAER) AND SOMATOSENAORY (SEP) EVOKED POTENTIALS IN FISCHER 344N RATS

    EPA Science Inventory

    Carbonyl sulfide (COS) is a chemical intermediate in the production of pesticides and herbicides, is a metabolite of carbon disulfide, is produced by the combustion of organic material, and is found occurring in nature. COS was included in a Toxic Substances Control Act request f...

  5. Fungal Phytotoxins in Sustainable Weed Management.

    PubMed

    Vurro, Maurizio; Boari, Angela; Casella, Francesca; Zonno, Maria Chiara

    2018-01-01

    Fungal phytotoxins are natural secondary metabolites produced by plant pathogenic fungi during host-pathogen interactions. They have received considerable particular attention for elucidating disease etiology, and consequently to design strategies for disease control. Due to wide differences in their chemical structures, these toxic metabolites have different ecological and environmental roles and mechanisms of action. This review aims at summarizing the studies on the possible use of these metabolites as tools in biological and integrated weed management, e.g. as: novel and environmentally friendly herbicides; lead for novel compounds; sources of novel mechanisms of action. Moreover, the limiting factors for utilizing those metabolites in practice will also be briefly discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    PubMed Central

    Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382

  7. Field ecology, fungal sex and food contamination involving Aspergillus species

    USDA-ARS?s Scientific Manuscript database

    Several species within the genus Aspergillus are capable of producing a myriad of toxic secondary metabolites, with aflatoxin being of most concern. These fungi happen to colonize important agricultural commodities, thereby having the potential to contaminate our food with carcinogenic aflatoxins. P...

  8. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral image analysis

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive....

  9. The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin.

    PubMed

    Lin, Ni-Ni; Chen, Jia; Xu, Bin; Wei, Xia; Guo, Lei; Xie, Jian-Wei

    2015-01-01

    T-2 toxin poses a great threat to human health because it has the highest toxicity of the currently known trichothecene mycotoxins. To understand the in vivo toxicity and transformation mechanism of T-2 toxin, we investigated the role of one kind of principal phase I drug-metabolizing enzymes (cytochrome P450 [CYP450] enzymes) on the metabolism of T-2 toxin, which are crucial to the metabolism of endogenous substances and xenobiotics. We also investigated carboxylesterase, which also plays an important role in the metabolism of toxic substances. A chemical inhibition method and a recombinant method were employed to investigate the metabolism of the T-2 toxin by the CYP450 enzymes, and a chemical inhibition method was used to study carboxylesterase metabolism. Samples incubated with human liver microsomes were analyzed by high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC- QqQ MS) after a simple pretreatment. In the presence of a carboxylesterase inhibitor, only 20 % T-2 toxin was metabolized. When CYP enzyme inhibitors and a carboxylesterase inhibitor were both present, only 3 % of the T-2 toxin was metabolized. The contributions of the CYP450 enzyme family to T-2 toxin metabolism followed the descending order CYP3A4, CYP2E1, CYP1A2, CYP2B6 or CYP2D6 or CYP2C19. Carboxylesterase and CYP450 enzymes are of great importance in T-2 toxin metabolism, in which carboxylesterase is predominant and CYP450 has a subordinate role. CYP3A4 is the principal member of the CYP450 enzyme family responsible for T-2 toxin metabolism. The primary metabolite produced by carboxylesterase is HT-2, and the main metabolite produced by CYP 3A4 is 3'-OH T-2. The different metabolites show different toxicities. Our results will provide useful data concerning the toxic mechanism, the safety evaluation, and the health risk assessment of T-2 toxin.

  10. Toxigenic strains of Fusarium moniliforme and Fusarium proliferatum isolated from dairy cattle feed produce fumonisins, moniliformin and a new C21H38N2O6 metabolite phytotoxic to Lemna minor L.

    PubMed

    Vesonder, R F; Wu, W; Weisleder, D; Gordon, S H; Krick, T; Xie, W; Abbas, H K; McAlpin, C E

    2000-05-01

    Corn samples suspected of causing refusal-to-eat syndrome in dairy cattle were examined mycologically. Fusarium moniliforme (14 isolates) and F. proliferatum (12 isolates) were the predominant fungi present. These isolates were tested for mycotoxin production on rice at 25 degrees C. Each strain of F. moniliforme produced fumonisin B1 (FB1: 378-15,600 ppm) and fumonisin B2 (FB2: 2-1050 ppm). Each strain of F. proliferatum produced moniliformin (45-16,000 ppm), FB1 (27-6140 ppm), and FB2 (5-1550 ppm). In addition, a new Fusarium metabolite of molecular composition C21H38N2O6 was produced by 10 of the F. moniliforme isolates and 7 of the F. proliferatum isolates. The metabolite's 1H- and 13C-NMR, HRFAB/MS and IR spectra indicate an alpha amino acid. It is toxic to Lemna minor L. duckweed (LD50 100 micrograms/mL).

  11. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  12. Species specificity of symbiosis and secondary metabolism in ascidians.

    PubMed

    Tianero, Ma Diarey B; Kwan, Jason C; Wyche, Thomas P; Presson, Angela P; Koch, Michael; Barrows, Louis R; Bugni, Tim S; Schmidt, Eric W

    2015-03-01

    Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these 'chemical symbioses'. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R=-0.037, P-value=0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. Location-specific metabolites consist largely of lipids, which may reflect differences in water temperature. By contrast, species-specific bacteria are mostly abundant sequenced components of the microbiomes and include secondary metabolite producers as major components. Species-specific chemicals are dominated by secondary metabolites. Together with previous analyses that focused on single ascidian species or symbiont type, these results reveal fundamental properties of secondary metabolic symbiosis. Different ascidian species have established associations with many different bacterial symbionts, including those known to produce toxic chemicals. This implies a strong selection for this property and the independent origin of secondary metabolite-based associations in different ascidian species. The analysis here streamlines the connection of secondary metabolite to producing bacterium, enabling further biological and biotechnological studies.

  13. NRPS4 is responsible for the biosynthesis of destruxins in Metarhizium robertsii ARSEF 2575

    USDA-ARS?s Scientific Manuscript database

    Destruxins (DTXs) are a family of cyclic depsipeptides that include > 35 members produced by Ascomycetous fungi belonging to several different taxa. These metabolites display a plethora of biological activities including toxicity against insects, depolarization of Ca2+ gradient across the plasma mem...

  14. Differentiation of volatile profiles of stockpiled almonds at varying relative humidity levels using benchtop and portable GC-MS

    USDA-ARS?s Scientific Manuscript database

    Contamination by aflatoxin, a toxic metabolite produced by Aspergillus fungi ubiquitous in California almond and pistachio orchards, results in millions of dollars of lost product annually. Current detection of aflatoxin relies on destructive, expensive and time-intensive laboratory-based methods. T...

  15. Mutagenic, cytotoxic, and teratogenic effects of 2-acetylaminofluorene and reactive metabolites in vitro.

    PubMed

    Faustman-Watts, E M; Yang, H Y; Namkung, M J; Greenaway, J C; Fantel, A G; Juchau, M R

    1984-01-01

    The embryotoxic, mutagenic, and cytotoxic properties of 2-acetylaminofluorene (AAF) and two of its reactive metabolites, N-acetoxy-2-acetylaminofluorene (AAAF) and 2-nitrosofluorene (NF) were assessed in vitro. A combined embryo culture/biotransformation system was used to determine the ability of these compounds to produce embryonic malformations, growth retardation, and/or embryolethality. Salmonella typhimurium auxotrophs (his-) were utilized to measure the mutagenic and cytotoxic potentials of these compounds. The parent compound, AAF, did not produce embryonic malformations or mutagenicity in the absence of an added cytochrome P-450-dependent monooxygenase system. Both metabolites produced each of the measured toxic effects without supplementation of a bioactivation system. However, the three chemicals each elicited a different spectrum of malformations. Bioactivated AAF produced neural tube abnormalities, whereas embryos treated with AAAF primarily exhibited prosencephalic malformations, and NF produced abnormalities of axial rotation or flexure. NF was approximately ten times more potent than AAAF as a direct-acting mutagen but only slightly more active in producing embryonic malformations in vitro. The results indicated that differential effects on the various measured parameters could be produced by these chemicals. The results indicated further that neither NF nor AAAF appeared to be individually responsible for the neural tube abnormalities generated by biotransformed AAF.

  16. Occurrence of Penicillium brocae and Penicillium citreonigrum, which Produce a Mutagenic Metabolite and a Mycotoxin Citreoviridin, Respectively, in Selected Commercially Available Rice Grains in Thailand.

    PubMed

    Shiratori, Nozomi; Kobayashi, Naoki; Tulayakul, Phitsanu; Sugiura, Yoshitsugu; Takino, Masahiko; Endo, Osamu; Sugita-Konishi, Yoshiko

    2017-06-15

    Commercially available rice grains in Thailand were examined to isolate the monoverticillate Penicillium species responsible for toxic yellowed rice. Penicillium species were obtained from seven out of 10 rice samples tested. Among them, one Penicillium citreonigrum isolate and six Penicillium brocae isolates were morphologically identified. The P. citreonigrum isolate produced the mycotoxin citreoviridin on a yeast extract sucrose broth medium. Mycotoxin surveys showed that citreoviridin was not detected in any samples, but one out of 10 rice samples tested was positive for aflatoxin B₁ at a level of 5.9 μg/kg. An Ames test revealed that methanol extracts from rice grains inoculated with selected P. brocae isolates were positive for strains TA100 and YG7108 of Salmonella typhimurium , suggesting the presence of base-pair substitution and DNA alkylation mutagens. Our data obtained here demonstrated that aflatoxin B₁ and toxic P. citreonigrum were present on domestic rice grains in Thailand, although limited samples were tested. Penicillium brocae , which may produce mutagenic metabolites, was isolated for the first time from the surface of Thai rice grains.

  17. Occurrence of Penicillium brocae and Penicillium citreonigrum, which Produce a Mutagenic Metabolite and a Mycotoxin Citreoviridin, Respectively, in Selected Commercially Available Rice Grains in Thailand

    PubMed Central

    Shiratori, Nozomi; Kobayashi, Naoki; Tulayakul, Phitsanu; Sugiura, Yoshitsugu; Takino, Masahiko; Endo, Osamu; Sugita-Konishi, Yoshiko

    2017-01-01

    Commercially available rice grains in Thailand were examined to isolate the monoverticillate Penicillium species responsible for toxic yellowed rice. Penicillium species were obtained from seven out of 10 rice samples tested. Among them, one Penicillium citreonigrum isolate and six Penicillium brocae isolates were morphologically identified. The P. citreonigrum isolate produced the mycotoxin citreoviridin on a yeast extract sucrose broth medium. Mycotoxin surveys showed that citreoviridin was not detected in any samples, but one out of 10 rice samples tested was positive for aflatoxin B1 at a level of 5.9 μg/kg. An Ames test revealed that methanol extracts from rice grains inoculated with selected P. brocae isolates were positive for strains TA100 and YG7108 of Salmonella typhimurium, suggesting the presence of base-pair substitution and DNA alkylation mutagens. Our data obtained here demonstrated that aflatoxin B1 and toxic P. citreonigrum were present on domestic rice grains in Thailand, although limited samples were tested. Penicillium brocae, which may produce mutagenic metabolites, was isolated for the first time from the surface of Thai rice grains. PMID:28617318

  18. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 2): Identification of nephrotoxic metabolites.

    PubMed

    Kharasch, Evan D; Schroeder, Jesara L; Liggitt, H Denny; Ensign, Dustin; Whittington, Dale

    2006-10-01

    Methoxyflurane nephrotoxicity results from its metabolism, which occurs by both dechlorination (to methoxydifluoroacetic acid [MDFA]) and O-demethylation (to fluoride and dichloroacetic acid [DCAA]). Inorganic fluoride can be toxic, but it remains unknown why other anesthetics, commensurately increasing systemic fluoride concentrations, are not toxic. Fluoride is one of many methoxyflurane metabolites and may itself cause toxicity and/or reflect formation of other toxic metabolite(s). This investigation evaluated the disposition and renal effects of known methoxyflurane metabolites. Rats were given by intraperitoneal injection the methoxyflurane metabolites MDFA, DCAA, or sodium fluoride (0.22, 0.45, 0.9, or 1.8 mmol/kg followed by 0.11, 0.22, 0.45, or 0.9 mmol/kg on the next 3 days) at doses relevant to metabolite exposure after methoxyflurane anesthesia, or DCAA and fluoride in combination. Renal histology and function (blood urea nitrogen, urine volume, urine osmolality) and metabolite excretion in urine were assessed. Methoxyflurane metabolite excretion in urine after injection approximated that after methoxyflurane anesthesia, confirming the appropriateness of metabolite doses. Neither MDFA nor DCAA alone had any effects on renal function parameters or necrosis. Fluoride at low doses (0.22, then 0.11 mmol/kg) decreased osmolality, whereas higher doses (0.45, then 0.22 mmol/kg) also caused diuresis but not significant necrosis. Fluoride and DCAA together caused significantly greater tubular cell necrosis than fluoride alone. Methoxyflurane nephrotoxicity seems to result from O-demethylation, which forms both fluoride and DCAA. Because their co-formation is unique to methoxyflurane compared with other volatile anesthetics and they are more toxic than fluoride alone, this suggests a new hypothesis of methoxyflurane nephrotoxicity. This may explain why increased fluoride formation from methoxyflurane, but not other anesthetics, is associated with toxicity. These results may have implications for the interpretation of clinical anesthetic defluorination, use of volatile anesthetics, and the laboratory methods used to evaluate potential anesthetic toxicity.

  19. Nephron Toxicity Profiling via Untargeted Metabolome Analysis Employing a High Performance Liquid Chromatography-Mass Spectrometry-based Experimental and Computational Pipeline*

    PubMed Central

    Ranninger, Christina; Rurik, Marc; Limonciel, Alice; Ruzek, Silke; Reischl, Roland; Wilmes, Anja; Jennings, Paul; Hewitt, Philip; Dekant, Wolfgang; Kohlbacher, Oliver; Huber, Christian G.

    2015-01-01

    Untargeted metabolomics has the potential to improve the predictivity of in vitro toxicity models and therefore may aid the replacement of expensive and laborious animal models. Here we describe a long term repeat dose nephrotoxicity study conducted on the human renal proximal tubular epithelial cell line, RPTEC/TERT1, treated with 10 and 35 μmol·liter−1 of chloroacetaldehyde, a metabolite of the anti-cancer drug ifosfamide. Our study outlines the establishment of an automated and easy to use untargeted metabolomics workflow for HPLC-high resolution mass spectrometry data. Automated data analysis workflows based on open source software (OpenMS, KNIME) enabled a comprehensive and reproducible analysis of the complex and voluminous metabolomics data produced by the profiling approach. Time- and concentration-dependent responses were clearly evident in the metabolomic profiles. To obtain a more comprehensive picture of the mode of action, transcriptomics and proteomics data were also integrated. For toxicity profiling of chloroacetaldehyde, 428 and 317 metabolite features were detectable in positive and negative modes, respectively, after stringent removal of chemical noise and unstable signals. Changes upon treatment were explored using principal component analysis, and statistically significant differences were identified using linear models for microarray assays. The analysis revealed toxic effects only for the treatment with 35 μmol·liter−1 for 3 and 14 days. The most regulated metabolites were glutathione and metabolites related to the oxidative stress response of the cells. These findings are corroborated by proteomics and transcriptomics data, which show, among other things, an activation of the Nrf2 and ATF4 pathways. PMID:26055719

  20. Antifungal activity of microbial secondary metabolites.

    PubMed

    Coleman, Jeffrey J; Ghosh, Suman; Okoli, Ikechukwu; Mylonakis, Eleftherios

    2011-01-01

    Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi.

  1. Antifungal Activity of Microbial Secondary Metabolites

    PubMed Central

    Okoli, Ikechukwu; Mylonakis, Eleftherios

    2011-01-01

    Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi. PMID:21966496

  2. Mycotoxins: toxicity, carcinogenicity, and the influence of various nutritional conditions*

    PubMed Central

    Newberne, Paul M.

    1974-01-01

    Toxicologic diseases of man and animals, associated with molds growing on foods, have been recognized for centuries. Only in recent years, however, have these mycotoxicoses received the attention of many laboratories and skilled scientists around the world in a broad inter-disciplinary effort. This review covers the literature on mycotoxicoses but centers on those about which most is known, particularly the diseases associated with metabolites elaborated by some strains of Aspergilli, Penicillia, Fusaria, Stachybotrys, and Claviceps. The ubiquitous nature of the aflatoxins, toxic metabolites produced by Aspergillus flavus, make them important to public health, especially since it is now known that certain areas of endemic liver disease coincide with consumption of aflatoxins and, often, malnutrition. The older disease of ergotism, the scourge of Europe for centuries, is considered in detail. Alimentary toxic aleukia, which has caused enormous suffering in Russian human and animal populations, is better understood as a result of relatively recent experimental investigations. Stachybotryotoxicosis, a disease previously considered to be of significance only to man has now been identified in domestic animals. Finally, Japanese studies have clearly revealed the hepatotoxicity of certain metabolites of Penicillium molds. Factors that influence susceptibility to mycotoxins and the hazards they present to man are also reviewed. ImagesFIGURE 2. PMID:4620330

  3. Investigating Bacterial Sources of Toxicity as an Environmental Contributor to Dopaminergic Neurodegeneration

    PubMed Central

    Caldwell, Kim A.; Tucci, Michelle L.; Armagost, Jafa; Hodges, Tyler W.; Chen, Jue; Memon, Shermeen B.; Blalock, Jeana E.; DeLeon, Susan M.; Findlay, Robert H.; Ruan, Qingmin; Webber, Philip J.; Standaert, David G.; Olson, Julie B.; Caldwell, Guy A.

    2009-01-01

    Parkinson disease (PD) involves progressive neurodegeneration, including loss of dopamine (DA) neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS), involved in protein degradation. The misfolding and accumulation of proteins, such as α-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH), the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent with the etiology of age-associated neurodegenerative diseases. Collectively, these data suggest the potential for exposures to the metabolites of specific common soil bacteria to possibly represent a contributory environmental component to PD. PMID:19806188

  4. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    PubMed

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  5. Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp.

    PubMed

    Schroer, Hunter W; Langenfeld, Kathryn L; Li, Xueshu; Lehmler, Hans-Joachim; Just, Craig L

    2017-02-01

    Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitrotoluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover 13 novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus.

  6. Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp

    PubMed Central

    Schroer, Hunter W.; Langenfeld, Kathryn; Li, Xueshu; Lehmler, Hans-Joachim; Just, Craig L.

    2018-01-01

    Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitroluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover thirteen novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus. PMID:27913891

  7. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins.

    PubMed

    Harrer, Henning; Laviad, Elad L; Humpf, Hans Ulrich; Futerman, Anthony H

    2013-03-01

    Fumonisins are mycotoxins produced by Fusarium species. The predominant derivative, fumonisin B1 (FB1), occurs in food and feed and is of health concern due to its hepatotoxic and carcinogenic effects. However, the role of FB1 metabolites on the mechanism of the toxicity, the inhibition of the ceramide synthesis, is unknown. The aim of this study was to identify new fumonisin metabolites and to evaluate their cytotoxic potential. MS, molecular biology, and in vitro enzyme assays were used to investigate fumonisin metabolism in mammalian cells overexpressing human ceramide synthase (CerS) genes. N-acyl-FB1 derivatives were detected as new metabolites in cultured cells at levels of up to 10 pmol/mg of protein. The N-acylation of FB1 and hydrolyzed FB1 was analyzed in several cell lines, including cells overexpressing CerS. The acyl-chain length of the N-acyl fumonisins depends on the CerS isoform acylating them. The N-acyl fumonisins are more cytotoxic than the parent fumonisin B1. The identification of N-acyl fumonisins with various acyl chain lengths together with the observed cytotoxicity of these compounds is a new aspect of fumonisin-related toxicity. Therefore, these new metabolites might play an important role in the mode of action of fumonisins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. FUM and BIK gene expression contribute to describe fumonisin and bikaverin synthesis in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a maize-pathogen that causes ear and stalk rot and produces toxic secondary metabolites including fumonisins and bikaverin. Fumonisins are known to cause disease in animals and humans; bikaverin is a pigment associated with self-defense. Water activity (aw) is one of the ...

  9. The master transcription factor mtfA governs aflatoxin production, morphological development, and pathogenicity in the fungus Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus produces a variety of toxic secondary metabolites, among them the aflatoxins (AFs) are the most well-known. These compounds are highly mutagenic and carcinogenic, particularly AFB1. A. flavus is capable of colonizing economically important crops contaminating them with AFs. Molecu...

  10. Recent development of optical methods in rapid and non-destructive detection of aflatoxin and fungal contamination in agricultural products

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are a group of highly toxic secondary metabolites produced predominantly by Aspergillus fungi. Aflatoxin and aflatoxigenic contamination can occur in a wide variety of agricultural products during both pre- and post-harvest conditions, posing potential severe hazards to human health. Howe...

  11. Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action

    USDA-ARS?s Scientific Manuscript database

    Penicillium expansum is a widely spread fungal pathogen that causes blue mold rot in a variety of fruits. This pathogen not only induces blue mold rot but also produces patulin in affected apple fruit, a secondary metabolite that is toxic to humans and animals. Currently, diseases caused by P. expan...

  12. First Report of an Atypical New Aspergillus parasiticus Isolates with Nucleotides Insertion in aflR Gene Identical to Aspergillus sojae

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus favus and Aspergillus parasitic and cause toxin contamination in food chain worldwide. Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional prep...

  13. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): Identification of the nephrotoxic metabolic pathway.

    PubMed

    Kharasch, Evan D; Schroeder, Jesara L; Liggitt, H Denny; Park, Sang B; Whittington, Dale; Sheffels, Pamela

    2006-10-01

    Methoxyflurane nephrotoxicity results from biotransformation; inorganic fluoride is a toxic metabolite. Concern exists about potential renal toxicity from volatile anesthetic defluorination, but many anesthetics increase fluoride concentrations without consequence. Methoxyflurane is metabolized by both dechlorination to methoxydifluoroacetic acid (MDFA, which may degrade to fluoride) and O-demethylation to fluoride and dichloroacetatic acid. The metabolic pathway responsible for methoxyflurane nephrotoxicity has not, however, been identified, which was the aim of this investigation. Experiments evaluated methoxyflurane metabolite formation and effects of enzyme induction or inhibition on methoxyflurane metabolism and toxicity. Rats pretreated with phenobarbital, barium sulfate, or nothing were anesthetized with methoxyflurane, and renal function and urine methoxyflurane metabolite excretion were assessed. Phenobarbital effects on MDFA metabolism and toxicity in vivo were also assessed. Metabolism of methoxyflurane and MDFA in microsomes from livers of pretreated rats was determined in vitro. Phenobarbital pretreatment increased methoxyflurane nephrotoxicity in vivo (increased diuresis and blood urea nitrogen and decreased urine osmolality) and induced in vitro hepatic microsomal methoxyflurane metabolism to inorganic fluoride (2-fold), dichloroacetatic acid (1.5-fold), and MDFA (5-fold). In contrast, phenobarbital had no influence on MDFA renal effects in vivo or MDFA metabolism in vitro or in vivo. MDFA was neither metabolized to fluoride nor nephrotoxic. Barium sulfate diminished methoxyflurane metabolism and nephrotoxicity in vivo. Fluoride from methoxyflurane anesthesia derives from O-demethylation. Phenobarbital increases in methoxyflurane toxicity do not seem attributable to methoxyflurane dechlorination, MDFA toxicity, or MDFA metabolism to another toxic metabolite, suggesting that nephrotoxicity is attributable to methoxyflurane O-demethylation. Fluoride, one of many metabolites from O-demethylation, may be toxic and/or reflect formation of a different toxic metabolite. These results may have implications for interpreting anesthetic defluorination, volatile anesthetic use, and methods to evaluate anesthetic toxicity.

  14. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine.

    PubMed

    Pybus, Brandon S; Sousa, Jason C; Jin, Xiannu; Ferguson, James A; Christian, Robert E; Barnhart, Rebecca; Vuong, Chau; Sciotti, Richard J; Reichard, Gregory A; Kozar, Michael P; Walker, Larry A; Ohrt, Colin; Melendez, Victor

    2012-08-02

    The 8-aminoquinoline (8AQ) drug primaquine (PQ) is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ's haemotoxic and anti-malarial properties are not fully understood. In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP) and mono-amine oxidase (MAO) families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements. Relative activity factor (RAF)-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species. As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.

  15. The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.

    PubMed Central

    Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.

    2016-01-01

    Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423

  16. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines.

    PubMed

    Dopstadt, Julian; Neubauer, Lisa; Tudzynski, Paul; Humpf, Hans-Ulrich

    2016-01-01

    Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster.

  17. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines

    PubMed Central

    Tudzynski, Paul; Humpf, Hans-Ulrich

    2016-01-01

    Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster. PMID:27390873

  18. Toxicity evaluation of prodigiosin from Serratia marcescens in a Caenorhabditis elegans model

    NASA Astrophysics Data System (ADS)

    Seah, Siew-Wei; Nathan, Sheila; Wan, Kiew-Lian

    2016-11-01

    Serratia marcescens produces several secondary metabolites, including a red antimicrobial pigment, prodigiosin. There is considerable interest in prodigiosin and its derivatives due to their anticancer and immunosuppressive properties. Prodigiosin has also become the main choice of red dye in textiles. As prodigiosin has potentially high commercial value, there is a demand to develop high-throughput and cost-effective bioprocesses for prodigiosin production. However little is still known about its toxicity. This study was carried out to investigate the toxicity effect of prodigiosin. To determine if prodigiosin was potentially toxic to eukaryotic systems, the S. marcescens ATCC 274 wild type (Sma 274) and the non-prodigiosin producer S. marcescens Bizio WF mutant ATCC 29635 (WF mutant) were grown under the optimised conditions for prodigiosin production and fed to the nematode Caenorhabditis elegans. The mean time to death (TDmean) for Sma 274-infected worms assayed on agar was 112.6 hours while the WF mutant culture had a TDmean of 104.4 hours. However, the nematode killing kinetics were not significantly different between the prodigiosin-producing and non-producing S. marcescens strains (p>0.05). In lieu of its non-toxic property, prodigiosin has the potential to be developed for safe therapeutic applications and as a safe environmental friendly bio-dye.

  19. Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations.

    PubMed

    da Silva, Diana Dias; Silva, Elisabete; Carvalho, Félix; Carmo, Helena

    2014-06-01

    Hepatic injury after 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) intoxications is highly unpredictable and does not seem to correlate with either dosage or frequency of use. The mechanisms involved include the drug metabolic bioactivation and the hyperthermic state of the liver triggered by its thermogenic action and exacerbated by the environmental circumstances of abuse at hot and crowded venues. We became interested in understanding the interaction between ecstasy and its metabolites generated in vivo as users are always exposed to mixtures of parent drug and metabolites. With this purpose, Hep G2 cells were incubated with MDMA and its main human metabolites methylenedioxyamphetamine (MDA), α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA), individually and in mixture (drugs combined in proportion to their individual EC01 ), at normal (37 °C) and hyperthermic (40.5 °C) conditions. After 48 h, viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extensive concentration-response analysis was performed with single drugs and the parameters of the individual non-linear logit fits were used to predict joint effects using the well-founded models of concentration addition (CA) and independent action (IA). Experimental testing revealed that mixture effects on cell viability conformed to CA, for both temperature settings. Additionally, substantial combination effects were attained even when each substance was present at concentrations that individually produced unnoticeable effects. Hyperthermic incubations dramatically increased the toxicity of the tested drug and metabolites, both individually and combined. These outcomes suggest that MDMA metabolism has hazard implications to liver cells even when metabolites are found in low concentrations, as they contribute additively to the overall toxic effect of MDMA. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Presence of Multiple Mycotoxins and Other Fungal Metabolites in Native Grasses from a Wetland Ecosystem in Argentina Intended for Grazing Cattle

    PubMed Central

    Nichea, María J.; Palacios, Sofia A.; Chiacchiera, Stella M.; Sulyok, Michael; Krska, Rudolf; Chulze, Sofia N.; Torres, Adriana M.; Ramirez, María L.

    2015-01-01

    The aim of this study was to evaluate the occurrence of several fungal metabolites, including mycotoxins in natural grasses (Poaceae) intended for grazing cattle. A total number of 72 and 77 different metabolites were detected on 106 and 69 grass samples collected during 2011 and 2014, respectively. A total of 60 metabolites were found across both years. Among the few mycotoxins considered toxic for ruminants, no samples of natural grasses were contaminated with aflatoxins, ochratoxin A, ergot alkaloids, and gliotoxin, among others. However, we were able to detect important metabolites (toxic to ruminants) such as type A trichothecenes, mainly T-2 toxin and HT-2 toxin (up to 5000 µg/kg each), and zearalenone (up to 2000 µg/kg), all at very high frequencies and levels. Other fungal metabolites that were found to be prevalent were other Fusarium metabolites like beauvericin, equisetin and aurofusarin, metabolites produced by Alternaria spp., sterigmatocystin and its precursors and anthrachinone derivatives. It is important to point out that the profile of common metabolites was shared during both years of sampling, and also that the occurrence of important metabolites is not a sporadic event. Considering that this area of temperate grassland is used for grazing cattle all year long due to the richness in palatable grasses (Poaceae), the present work represents a starting point for further studies on the occurrence of multi-mycotoxins in natural grasses in order to have a complete picture of the extent of cattle exposure. Also, the present study shows that the presence of zeranol in urine of beef cattle may not be a consequence of illegal use of this banned substance, but the product of the natural occurrence of zearalenone and α-zearalenol in natural grasses intended for cattle feeding. PMID:26308052

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldridge, Sandy R.; Covey, Joseph; Morris, Joel

    NSC-743380 (1-[(3-chlorophenyl)-methyl]-1H-indole-3-carbinol) is in early stages of development as an anticancer agent. Two metabolites reflect sequential conversion of the carbinol functionality to a carboxaldehyde and the major metabolite, 1-[(3-chlorophenyl)-methyl]-1H-indole-3-carboxylic acid. In an exploratory toxicity study in rats, NSC-743380 induced elevations in liver-associated serum enzymes and biliary hyperplasia. Biliary hyperplasia was observed 2 days after dosing orally for 2 consecutive days at 100 mg/kg/day. Notably, hepatotoxicity and biliary hyperplasia were observed after oral administration of the parent compound, but not when major metabolites were administered. The toxicities of a structurally similar but pharmacologically inactive molecule and a structurally diverse molecule withmore » a similar efficacy profile in killing cancer cells in vitro were compared to NSC-743380 to explore scaffold versus target-mediated toxicity. Following two oral doses of 100 mg/kg/day given once daily on two consecutive days, the structurally unrelated active compound produced hepatic toxicity similar to NSC-743380. The structurally similar inactive compound did not, but, lower exposures were achieved. The weight of evidence implies that the hepatotoxicity associated with NSC-743380 is related to the anticancer activity of the parent molecule. Furthermore, because biliary hyperplasia represents an unmanageable and non-monitorable adverse effect in clinical settings, this model may provide an opportunity for investigators to use a short-duration study design to explore biomarkers of biliary hyperplasia. - Highlights: • NSC-743380 induced biliary hyperplasia in rats. • Toxicity of NSC-743380 appears to be related to its anticancer activity. • The model provides an opportunity to explore biomarkers of biliary hyperplasia.« less

  2. Enhancement of Fusarium Head Blight Detection in Free-Falling Wheat Kernels Using a Bichromatic Pulsed LED Design

    USDA-ARS?s Scientific Manuscript database

    Fusarium Head Blight is a worldwide disease of small cereals grains such as wheat. The disease is food safety concern because it produces the metabolite, deoxynivalenol (DON), which is moderately toxic to humans and non-ruminant animals. The current study was implemented to develop more efficient me...

  3. TEN DAY EXPOSURES TO CARBONYL SULFIDE PRODUCE BRAINSTEM LESIONS AND CHANGES IN BRAINSTEM AUDITORY EVOKED RESPONSES IN FISCHER 344N RATS.

    EPA Science Inventory

    Carbonyl sulfide (COS) is a chemical intermediate in the production of pesticides and herbicides, a metabolite of carbon disulfide, a byproduct of the combustion of organic material, and a naturally occurring compound. COS was included in a Toxic Substances Control Act request fo...

  4. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus (A. flavus) is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. Contamination of maize with aflatoxin poses a serious threat to human health in addit...

  5. Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: Role of trehalose-6-phosphate synthase

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogen of maize that causes root, stalk, and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Environmental stresses such as heat and drought influence disease severity and toxin production, but the effects ...

  6. The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is an opportunistic plant pathogen that colonizes and produces the toxic and carcinogenic secondary metabolites, aflatoxins, in oil-rich crops such as maize (Zea mays ssp. mays L.). Pathogenesis-related proteins serve as a first line of defense against invading pathogens by confer...

  7. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna.

    PubMed

    Li, Shih-Wei; Wang, Yu-Hsiang; Lin, Angela Yu-Chen

    2017-09-01

    Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC 50 ) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p < 0.05). The toxicity results indicate that the environmental hazardous risks of the relevant ketamine concentration cannot be ignored and warrant further examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mycotoxin production by Fusarium avenaceum strains isolated from Norwegian grain and the cytotoxicity of rice culture extracts to porcine kidney epithelial cells.

    PubMed

    Morrison, Ellen; Kosiak, Barbara; Ritieni, Alberto; Aastveit, Are H; Uhlig, Silvio; Bernhoft, Aksel

    2002-05-08

    The secondary metabolites of 24 isolates of Fusarium avenaceum from Norwegian cereals and grown on rice have been characterized. Moniliformin (MON), enniatins (ENNs), and beauvericin (BEA) were analyzed by high-performance liquid chromatography. Porcine kidney epithelial cells (PK15, American Type Culture Collection) were used to study the cytotoxicity of MON in the extracts. The following metabolites were produced by all isolates, ranked by concentration in rice cultures: ENN-B, MON, ENN-B1, and ENN-A. BEA was produced by eight isolates. The productions of BEA and ENN-A were significantly correlated, as was the case with ENN-B and ENN-B1. MON production was correlated neither to any of the other toxins nor to toxicity.

  9. Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole - time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kosjek, Tina; Heath, Ester; Pérez, Sandra; Petrović, Mira; Barceló, Damia

    2009-06-01

    SummaryTwo environmentally relevant pharmaceuticals, the non-steroidal antiinflammatory drug, diclofenac and the pharmacologically active metabolite of several serum triglyceride-lowering pharmaceuticals, clofibric acid, were subjected to microbiological transformation in activated sludge bioreactors, and the production of breakdown products was studied. For separation, detection and identification of diclofenac's metabolites a UPLC-(+)ESI-QqToF-MS was employed, which enabled the detection of seven transformation products of diclofenac, all including the diagnostic fragment ion at m/z 214. The chemical structure of one metabolite was proposed, which was produced by dehydratation and lactame formation. Further investigations revealed additional two metabolites, which were isomeric structures with an elemental composition C 13H 10NCl 2; however, their chemical structures were not completely resolved. In addition, another biodegradation product showed an abundant fragment ion at m/z 295, the elemental composition of which was confirmed with a high degree of certainty as C 14H 11NO 2Cl 2. The biodegradation of clofibric acid revealed one metabolite in the (-)ESI-QqToF chromatogram, 4-chlorophenol, which is known to exhibit a higher toxicity than the parent compound. This study confirms that further research is needed on the formation of stable metabolites both during wastewater treatment and in the environment. It also highlights the need for parallel toxicity testing. In addition, this study suggests that more needs to be known about the environmental fate of pharmaceuticals so that we are able to provide a comprehensive risk assessment.

  10. Effect of different in vitro culture extracts of black pepper (Piper nigrum L.) on toxic metabolites-producing strains.

    PubMed

    Ahmad, Nisar; Abbasi, Bilal Haider; Fazal, Hina

    2016-03-01

    In the present study, the effect of different in vitro cultures (callus, in vitro shoots) and commercially available peppercorn extract was investigated for its activity against toxic metabolite-producing strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Candida albicans). These in vitro cultures were extracted with ethanol, hexane, and chloroform, and the antipathogenic activity was determined by well-diffusion method. Hexane extract of callus showed 22 mm zone of inhibition against B. cereus, 23 mm against S. aureus, while regenerated shoots and seeds have shown 24.3 and 26 mm zones of inhibition. The ethanolic extracts of regenerated Piper shoots have shown 25 mm activity against S. aureus, 21 mm against B. cereus, and 16 mm in the case of C. albicans in comparison with standard antibiotics. Peppercorn extracts in chloroform and ethanol had shown activities against B. cereus (23.6 mm) and B. subtilis (23.5 mm). During in vitro organogenesis and morphogenesis, cells and tissues produced a comparable phytochemicals profile like mother plant. Morphogenesis is critically controlled by the application of exogenous plant-growth regulators. Such addition alters the hormonal transduction pathways, and cells under in vitro conditions regenerate tissues, which are dependant on the physiological state of cells, and finally enhance the production of secondary metabolites. To the best of our knowledge, this is the first report to compare the antimicrobial potential of in vitro regenerated tissues and peppercorn with standard antibiotics. In conclusion, most of the extracts showed pronounced activities against all the pathogenic microbes. This is a preliminary work, and the minimum inhibitory concentration values needs to be further explored. Regenerated tissues of P. nigrum are a good source of biologically active metabolites for antimicrobial activities, and callus culture presented itself as a good candidate for such activities. © The Author(s) 2013.

  11. Microbial Detoxification of Deoxynivalenol (DON), Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1

    PubMed Central

    Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris

    2017-01-01

    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose–response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity. PMID:28208799

  12. Microbial Detoxification of Deoxynivalenol (DON), Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1.

    PubMed

    Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris

    2017-02-13

    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose-response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity.

  13. Role of Metabolism in Arsenic-Induced Toxicity: Identification and Quantification of Arsenic Metabolites in Tissues and Excreta

    EPA Science Inventory

    Arsenic is a known toxicant and carcinogen. Methylation of inorganic arsenic was once thought to be a detoxification mechanism because of the rapid excretion and relatively lower toxicity of the pentavalent organic arsenical metabolites. Advances in analytical chemistry have al...

  14. Inhibition of biofouling by marine microorganisms and their metabolites.

    PubMed

    Dobretsov, Sergey; Dahms, Hans-Uwe; Qian, Peri-Yuan

    2006-01-01

    Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.

  15. Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans.

    PubMed

    Deline, Marshall; Keller, Julia; Rothe, Michael; Schunck, Wolf-Hagen; Menzel, Ralph; Watts, Jennifer L

    2015-10-21

    Dietary fats are not created equally, slight differences in structure lead to crucial differences in function. Muticellular organisms use polyunsaturated fatty acid as substrates to produce potent signaling molecules crucial for many physiological processes, including reproduction. Here we explored the mechanism responsible for germ cell loss induced by dietary supplementation of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) in the roundworm Caenorhabditis elegans. In this study we found that C. elegans CYP-33E2 activity produces a range of epoxy and hydroxy metabolites from dietary DGLA. Knockdown of cyp-33E2 suppressed the DGLA-induced sterility phenotype. Additionally, direct exposure of two specific DGLA-derived epoxy products, 8,9- and 14,15-epoxyeicosadienoic acids, produced germ cell abnormalities in the C. elegans gonad. We propose that sterility is mediated by the production of toxic DGLA-derived epoxides that trigger germ cell destruction. These studies are the first to establish a biological activity for a CYP-produced metabolite of DGLA.

  16. Testicular distribution and toxicity of a novel LTA4H inhibitor in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, P.D., E-mail: pward4@its.jnj.com; La, D.

    JNJ 40929837, a novel leukotriene A4 hydrolase inhibitor in drug development, was reported to induce testicular toxicity in rats. The mechanism of toxicity was considered to be rodent specific and not relevant to humans. To further investigate this finding in rats, the distribution and toxicokinetics of JNJ 40929837 and its two metabolites, M1 and M2, were investigated. A quantitative whole body autoradiography study showed preferential distribution and retention of JNJ 40929837-derived radioactivity in the testes consistent with the observed site of toxicity. Subsequent studies with unlabeled JNJ 40929837 showed different metabolite profiles between the plasma and testes. Following a singlemore » oral 50 mg/kg dose of JNJ 40929837, M2 was the primary metabolite in plasma whereas M1 was the primary metabolite in testes. The exposure of M1 was 386-fold higher in the testes compared to plasma whereas M2 had limited exposure in testes. Furthermore, the T{sub max} of M1 was 48 h in testes suggesting a large accumulation potential of this metabolite in testes compared to plasma. Following six months of repeated daily oral dosing, M1 accumulated approximately five-fold in the testes whereas the parent did not accumulate. These results indicate that the toxicokinetic profiles of JNJ 40929837 and its two metabolites in testes are markedly different compared to plasma and support the importance of understanding the toxicokinetic profiles of compounds and their metabolites in organs/tissues where toxicity is observed. - Highlights: • JNJ 40929837-derived radioactivity preferentially distributed into testes • Primary metabolite flip-flop in plasma and testes • The primary metabolite in testes accumulated 5-fold but not parent.« less

  17. Bacterial Metabolism of Chlorinated Dehydroabietic Acids Occurring in Pulp and Paper Mill Effluents

    PubMed Central

    Mohn, W. W.; Stewart, G. R.

    1997-01-01

    Chlorinated dehydroabietic acids are formed during the chlorine bleaching of wood pulp and are very toxic to fish. Thus, destruction of these compounds is an important function of biological treatment systems for pulp and paper mill effluents. In this study, 12 strains of diverse, aerobic resin acid-degrading bacteria were screened for the ability to grow on chlorinated dehydroabietic acids as sole organic substrates. All seven strains of the class Proteobacteria able to use dehydroabietic acid were also able to use a mixture of 12- and 14-chlorodehydroabietic acid (Cl-DhA). None of the strains used 12,14-dichlorodehydroabietic acid. Sphingomonas sp. strain DhA-33 grew best on Cl-DhA and simultaneously removed both Cl-DhA isomers. Ralstonia sp. strain BKME-6 was typical of most of the strains tested, growing more slowly on Cl-DhA and leaving higher residual concentrations of Cl-DhA than DhA-33 did. Strains DhA-33 and BKME-6 mineralized (converted to CO(inf2) plus biomass) 32 and 43%, respectively, of carbon in Cl-DhA consumed. Strain DhA-33 produced a metabolite from Cl-DhA, tentatively identified as 3-oxo-14-chlorodehydroabietin, and both strains produced dissolved organic carbon which may include unidentified metabolites. Cl-DhA removal was inducible in both DhA-33 and BKME-6, and induced DhA-33 cells also removed 12,14-dichlorodehydroabietic acid. Based on activities of strains DhA-33 and BKME-6, chlorinated DhAs, and potentially toxic metabolite(s) of these compounds, are relatively persistent in biological treatment systems and in the environment. PMID:16535663

  18. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops, food distribution, and human environments.

  19. Reduced metabolites of nitroaromatics are distributed in the environment via the food chain.

    PubMed

    Nisar, Numrah; Cheema, Kausar J; Powell, Glen; Bennett, Mark; Chaudhary, Safee Ullah; Qadri, Rashad; Yang, Yaodong; Azam, Muhammad; Rossiter, John T

    2018-05-15

    Increased industrial processes have introduced emerging toxic pollutants into the environment. Phytoremediation is considered to be a very useful, economical and ecofriendly way of controlling these pollutants, however, certain pollutants can potentially travel through the food chain and accumulate at hazardous levels. Four isomers of dinitrotoluenes (DNT) were investigated and observed their potential toxicity towards A. thaliana. Two different aphid species (generalist and specialist) were allowed to feed on plants treated with DNTs and toxicity to aphids determined. Reduced metabolites of DNT (in both plant and aphids) were recovered and quantified through GC-MS analyses. 2,6-DNT was observed to be the toxic of the DNTs tested. Complete metabolism of DNTs to their reduced products was never achieved for higher concentrations. Regioselectivity was observed in the case of 2,4-DNT, with 4A2NT as the dominant isomer. Feeding aphids showed a similar toxicity pattern for DNT isomers as host plants. Metabolites were recovered from the body of aphids, demonstrating the potential transport of metabolites through the food chain. Plants show varied toxicity responses towards the DNT isomers. Aphids fed on A. thaliana plants treated with DNTs were shown to have ANTs present, which reflects the propagation of DNT metabolites through the food chain. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Complementing in vitro screening assays with in silico ...

    EPA Pesticide Factsheets

    High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive under assay conditions but that can generate active metabolites under in vivo conditions. To address this potential issue, a case study will be presented to demonstrate the use of in silico tools to identify inactive parents with the ability to generate active metabolites. This case study used the results from an orthogonal assay designed to improve confidence in the identification of active chemicals tested across eighteen estrogen receptor (ER)-related in vitro assays by accounting for technological limitations inherent within each individual assay. From the 1,812 chemicals tested within the orthogonal assay, 1,398 were considered inactive. These inactive chemicals were analyzed using Chemaxon Metabolizer software to predict the first and second generation metabolites. From the nearly 1,400 inactive chemicals, over 2,200 first-generation (i.e., primary) metabolites and over 5,500 second-generation (i.e., secondary) metabolites were predicted. Nearly 70% of primary metabolites were immediately detoxified or converted to other metabolites, while over 70% of secondary metabolites remained stable. Among these predicted metabolites, those that are most likely to be produced and remain

  1. A Study of the Toxicity of the Metabolites of the Cruise Missile Fuel JP-10 on Several Animal Species.

    DTIC Science & Technology

    1986-09-30

    AD-A174 758 A STUDY OF THE TOXICITY OF THE NETABOLITES OF THE t/1 CRUISE MISSILE FUEL JP- (U) WRIGHT STATE UNIV DAYTON OHIO M P SERVE 38 SEP 86 WSU...rri P.-d n- i approved po’ i.’ ! v I,,AF:R 19 ,)-12. KA TTHEW J. Chief, Techl-icl Informt ion Division A STUDY OF THE TOXICITY OF TH4E METABOLITES OF...Security Class, fcation)IrC A study of the toxicity of the --tim..... f 0.01. metabolites of the cruise missle fuel JP-10 on several animal species. 12

  2. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products.

    PubMed

    Dekant, Wolfgang; Melching-Kollmuss, Stephanie; Kalberlah, Fritz

    2010-03-01

    In Europe, limits for tolerable concentrations of "non-relevant metabolites" for active ingredients (AI) of plant protection products in drinking water between 0.1 and 10 microg/L are discussed depending on the toxicological information available. "Non-relevant metabolites" are degradation products of AIs, which do not or only partially retain the targeted toxicities of AIs. For "non-relevant metabolites" without genotoxicity (to be confirmed by testing in vitro), the application of the concept of "thresholds of toxicological concern" results in a health-based drinking water limit of 4.5 microg/L even for Cramer class III compounds, using the TTC threshold of 90 microg/person/day (divided by 10 and 2). Taking into account the thresholds derived from two reproduction toxicity data bases a drinking water limit of 3.0 microg/L is proposed. Therefore, for "non-relevant metabolites" whose drinking water concentration is below 3.0 microg/L, no toxicity testing is necessary. This work develops a toxicity assessment strategy as a basis to delineate health-based limits for "non-relevant metabolites" in ground and drinking water. Toxicological testing is recommended to investigate, whether the metabolites are relevant or not, based on the hazard properties of the parent AIs, as outlined in the SANCO Guidance document. Also, genotoxicity testing of the water metabolites is clearly recommended. In this publication, tiered testing strategies are proposed for non-relevant metabolites, when drinking water concentrations >3.0 microg/L will occur. Conclusions based on structure-activity relationships and the detailed toxicity database on the parent AI should be included. When testing in animals is required for risk assessment, key aspects are studies along OECD-testing guidelines with "enhanced" study designs addressing additional endpoints such as reproductive toxicity and a developmental screening test to derive health-based tolerable drinking water limits with a limited number of animals. The testing strategies are similar to those used in the initial hazard assessment of high production volume (HPV) chemicals. For "non-relevant metabolites" which are also formed as products of the biotransformation of the parent AI in mammals, the proposed toxicity testing strategies uses the repeat-dose oral toxicity study combined with a reproductive/developmental screening as outlined in OECD test guidelines 407 and 422 with integration of determination of hormonal activities. For "non-relevant metabolites" not formed during biotransformation of the AI in mammals, the strategy relies on an "enhanced" 90-day oral study covering additional endpoints regarding hormonal effects and male and female fertility in combination with a prenatal developmental toxicity study (OECD test guideline 414). The integration of the results of these studies into the risk assessment process applies large minimal margins of exposure (MOEs) to compensate for the shorter duration of the studies. The results of the targeted toxicity testing will provide a science basis for setting tolerable drinking water limits for "non-relevant metabolites" based on their toxicology. Based on the recommendations given in the SANCO guidance document and the work described in this and the accompanying paper, a concise re-evaluation of the Guidance document is proposed. (c) 2009 Elsevier Inc. All rights reserved.

  3. Comparative Metabolism of Furan in Rodent and Human Cryopreserved Hepatocytes

    PubMed Central

    Gates, Leah A.; Phillips, Martin B.; Matter, Brock A.

    2014-01-01

    Furan is a liver toxicant and carcinogen in rodents. Although humans are most likely exposed to furan through a variety of sources, the effect of furan exposure on human health is still unknown. In rodents, furan requires metabolism to exert its toxic effects. The initial product of the cytochrome P450 2E1-catalyzed oxidation is a reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). BDA is toxic and mutagenic and consequently is considered responsible for the toxic effects of furan. The urinary metabolites of furan in rats are derived from the reaction of BDA with cellular nucleophiles, and precursors to these metabolites are detected in furan-exposed hepatocytes. Many of these precursors are 2-(S-glutathionyl)butanedial-amine cross-links in which the amines are amino acids and polyamines. Because these metabolites are derived from the reaction of BDA with cellular nucleophiles, their levels are a measure of the internal dose of this reactive metabolite. To compare the ability of human hepatocytes to convert furan to the same metabolites as rodent hepatocytes, furan was incubated with cryopreserved human and rodent hepatocytes. A semiquantitative liquid chromatography with tandem mass spectrometry assay was developed for a number of the previously characterized furan metabolites. Qualitative and semiquantitative analysis of the metabolites demonstrated that furan is metabolized in a similar manner in all three species. These results indicate that humans may be susceptible to the toxic effects of furan. PMID:24751574

  4. Toxicity of harmful cyanobacterial blooms to bream and roach.

    PubMed

    Trinchet, Isabelle; Cadel-Six, Sabrina; Djediat, Chakib; Marie, Benjamin; Bernard, Cécile; Puiseux-Dao, Simone; Krys, Sophie; Edery, Marc

    2013-09-01

    Aquatic ecosystems are facing increasing environmental pressures, leading to an increasing frequency of cyanobacterial Harmful Algal Blooms (cHABs) that have emerged as a worldwide concern due to their growing frequency and their potential toxicity to the fauna that threatens the functioning of ecosystems. Cyanobacterial blooms raise concerns due to the fact that several strains produce potent bioactive or toxic secondary metabolites, such as the microcystins (MCs), which are hepatotoxic to vertebrates. These strains of cyanobacteria may be potentially toxic to fish via gastrointestinal ingestion and also by direct absorption of the toxin MC from the water. The purpose of our study was to investigate toxic effects observed in fish taken from several lakes in the Ile-de-France region, where MCs-producing blooms occur. This study comprises histological studies and the measurement of MC concentrations in various organs. The histological findings are similar to those obtained following laboratory exposure of medaka fish to MCs: hepatic lesions predominate and include cell lysis and cell detachment. MC concentrations in the organs revealed that accumulation was particularly high in the digestive tract and the liver, which are known to be classical targets of MCs. In contrast concentrations were very low in the muscles. Differences in the accumulation of MC variants produced by blooms indicate that in order to more precisely evaluate the toxic potential of a specific bloom it is necessary not only to consider the concentration of toxins, but also the variants produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in several important food and feed crops such as maize, peanut, cottonseed and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs)...

  6. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells.

    PubMed

    Wang, Xu; Yang, Chunhui; Ihsan, Awais; Luo, Xun; Guo, Pu; Cheng, Guyue; Dai, Menghong; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui

    2016-02-03

    Quinoxaline 1,4-dioxide derivatives (QdNOs) with a wide range of biological activities are used in animal husbandry worldwide. It was found that QdNOs significantly inhibited the gene expression of CYP11B1 and CYP11B2, the key aldosterone synthases, and thus reduced aldosterone levels. However, whether the metabolites of QdNOs have potential adrenal toxicity and the role of oxidative stress in the adrenal toxicity of QdNOs remains unclear. The relatively new QdNOs, cyadox (CYA), mequindox (MEQ), quinocetone (QCT) and their metabolites, were selected for elucidation of their toxic mechanisms in H295R cells. Interestingly, the results showed that the main toxic metabolites of QCT, MEQ, and CYA were their N1-desoxy metabolites, which were more harmful than other metabolites and evoked dose and time-dependent cell damage on adrenal cells and inhibited aldosterone production. Gene and protein expression of CYP11B1 and CYP11B2 and mRNA expression of transcription factors, such as NURR1, NGFIB, CREB, SF-1, and ATF-1, were down regulated by N1-desoxy QdNOs. The natural inhibitors of oxidant stress, oligomeric proanthocyanidins (OPC), could upregulate the expression of diverse transcription factors, including CYP11B1 and CYP11B2, and elevated aldosterone levels to reduce adrenal toxicity. This study demonstrated for the first time that N1-desoxy QdNOs have the potential to be the major toxic metabolites in adrenal toxicity, which may shed new light on the adrenal toxicity of these fascinating compounds and help to provide a basic foundation for the formulation of safety controls for animal products and the design of new QdNOs with less harmful effects. Copyright © 2016. Published by Elsevier Ireland Ltd.

  7. Pharmacologically active plant metabolites as survival strategy products.

    PubMed

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological biochemistry".

  8. Biotransformation and Rearrangement of Laromustine.

    PubMed

    Nassar, Alaa-Eldin F; Wisnewski, Adam V; King, Ivan

    2016-08-01

    This review highlights the recent research into the biotransformations and rearrangement of the sulfonylhydrazine-alkylating agent laromustine. Incubation of [(14)C]laromustine with rat, dog, monkey, and human liver microsomes produced eight radioactive components (C-1 to C-8). There was little difference in the metabolite profile among the species examined, partly because NADPH was not required for the formation of most components, which instead involved decomposition and/or hydrolysis. The exception was C-7, a hydroxylated metabolite, largely formed by CYP2B6 and CYP3A4/5. Liquid chromatography-multistage mass spectrometry (LC-MS(n)) studies determined that collision-induced dissociation, and not biotransformation or enzyme catalysis, produced the unique mass spectral rearrangement. Accurate mass measurements performed with a Fourier-transform ion cyclotron resonance mass spectrometer (FTICR-MS) significantly aided determination of the elemental compositions of the fragments and in the case of laromustine revealed the possibility of rearrangement. Further, collision-induced dissociation produced the loss of nitrogen (N2) and methylsulfonyl and methyl isocyanate moieties. The rearrangement, metabolite/decomposition products, and conjugation reactions were analyzed utilizing hydrogen-deuterium exchange, exact mass, (13)C-labeled laromustine, nuclear magnetic resonance spectroscopy (NMR), and LC-MS(n) experiments to assist with the assignments of these fragments and possible mechanistic rearrangement. Such techniques produced valuable insights into these functions: 1) Cytochrome P450 is involved in C-7 formation but plays little or no role in the conversion of [(14)C]laromustine to C-1 through C-6 and C-8; 2) the relative abundance of individual degradation/metabolite products was not species-dependent; and 3) laromustine produces several reactive intermediates that may produce the toxicities seen in the clinical trials. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Tobacco nitrosamines as culprits in disease: mechanisms reviewed

    PubMed Central

    Yalcin, Emine

    2016-01-01

    The link between tobacco abuse and cancer is well-established. However, emerging data indicate that toxins in tobacco smoke cause cellular injury due to enhanced toxic/metabolic effects of metabolites, disruption of intracellular signaling mechanisms, and formation of DNA, protein, and lipid adducts that impair function and promote oxidative stress and inflammation. These effects of smoking, which are largely non-carcinogenic, can be produced by tobacco-specific nitrosamines and their metabolites. These factors could account for the increased rates of neurodegeneration and insulin resistance diseases among smokers. Herein, we review nicotine and tobacco-specific nitrosamine metabolism, mechanisms of adduct formation, DNA damage, mutagenesis, and potential mechanisms of disease. PMID:26767836

  10. Occurrence of Stachybotrys chartarum chemotype S in dried culinary herbs.

    PubMed

    Biermaier, Barbara; Gottschalk, Christoph; Schwaiger, Karin; Gareis, Manfred

    2015-02-01

    Stachybotrys (S.) chartarum is an omnipresent cellulolytic mould which produces secondary metabolites, such as the highly toxic macrocyclic trichothecenes. While it is known to occur in animal feed like hay and straw as well as in water-damaged indoor environments, there is little knowledge about the occurrence of S. chartarum and its secondary metabolites in food. The objective of the present study was to examine selected dried culinary herbs for the presence of S. chartarum chemotype S, to assess the potential risk of a contamination of foods with macrocyclic trichothecenes. In total, 50 Stachybotrys isolates from different types of culinary herbs (n=100) such as marjoram (Origanum majorana Linné (L.)), oregano (Origanum vulgare L.), thyme (Thymus vulgaris L.), and savory (Satureja hortensis L.) were examined by MTT-cell culture test (effect-based bioassay), ELISA, and by liquid chromatography tandem mass spectrometry (LC-MS/MS). Selected toxic and non-toxic isolates (n=15) were genetically characterized by PCR and sequencing. Five isolates (10%) were highly toxic in the MTT-cell culture test, and the production of macrocyclic trichothecenes was proven by ELISA and LC-MS/MS. These five isolates were genetically confirmed as S. chartarum chemotype S. To the best of our knowledge, this is the first report about a contamination of dried culinary herbs with toxigenic S. chartarum.

  11. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    PubMed

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH-SY5Y cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Metabolic activation of hepatotoxic drug (benzbromarone) induced mitochondrial membrane permeability transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirakawa, Maho; Sekine, Shuichi; Tanaka, Ayaka

    The risk of drug-induced liver injury (DILI) is of great concern to the pharmaceutical industry. It is well-known that metabolic activation of drugs to form toxic metabolites (TMs) is strongly associated with DILI onset. Drug-induced mitochondrial dysfunction is also strongly associated with increased risk of DILI. However, it is difficult to determine the target of TMs associated with exacerbation of DILI because of difficulties in identifying and purifying TMs. In this study, we propose a sequential in vitro assay system to assess TM formation and their ability to induce mitochondrial permeability transition (MPT) in a one-pot process. In this assaymore » system, freshly-isolated rat liver mitochondria were incubated with reaction solutions of 44 test drugs preincubated with liver microsomes in the presence or absence of NADPH; then, NADPH-dependent MPT pore opening was assessed as mitochondrial swelling. In this assay system, several hepatotoxic drugs, including benzbromarone (BBR), significantly induced MPT in a NADPH-dependent manner. We investigated the rationality of using BBR as a model drug, since it showed the most prominent MPT in our assay system. Both the production of a candidate toxic metabolite of BBR (1′,6-(OH){sub 2} BBR) and NADPH-dependent MPT were inhibited by several cytochrome P450 (CYP) inhibitors (clotrimazole and SKF-525A, 100 μM). In summary, this assay system can be used to evaluate comprehensive metabolite-dependent MPT without identification or purification of metabolites. - Highlights: • We constructed a sequential assay system for toxic metabolite induced MPT in one pot. • 14 drugs (e.g. benzbromarone (BBR)) induced toxic metabolite dependent MPT. • Both the production of toxic metabolite and MPT could be inhibited by CYP inhibitors. • This system could evaluate the comprehensive MPT without purification of metabolites.« less

  13. Identification of potential genomic biomarkers of hepatotoxicity caused by reactive metabolites of N-methylformamide: Application of stable isotope labeled compounds in toxicogenomic studies.

    PubMed

    Mutlib, Abdul; Jiang, Ping; Atherton, Jim; Obert, Leslie; Kostrubsky, Seva; Madore, Steven; Nelson, Sidney

    2006-10-01

    The inability to predict if a metabolically bioactivated compound will cause toxicity in later stages of drug development or post-marketing is of serious concern. One approach for improving the predictive success of compound toxicity has been to compare the gene expression profile in preclinical models dosed with novel compounds to a gene expression database generated from compounds with known toxicity. While this guilt-by-association approach can be useful, it is often difficult to elucidate gene expression changes that may be related to the generation of reactive metabolites. In an effort to address this issue, we compared the gene expression profiles obtained from animals treated with a soft-electrophile-producing hepatotoxic compound against corresponding deuterium labeled analogues resistant to metabolic processing. Our aim was to identify a subset of potential biomarker genes for hepatotoxicity caused by soft-electrophile-producing compounds. The current study utilized a known hepatotoxic compound N-methylformamide (NMF) and its two analogues labeled with deuterium at different positions to block metabolic oxidation at the formyl (d(1)) and methyl (d(3)) moieties. Groups of mice were dosed with each compound, and their livers were harvested at different time intervals. RNA was prepared and analyzed on Affymetrix GeneChip arrays. RNA transcripts showing statistically significant changes were identified, and selected changes were confirmed using TaqMan RT-PCR. Serum clinical chemistry and histopathologic evaluations were performed on selected samples as well. The data set generated from the different groups of animals enabled us to determine which gene expression changes were attributed to the bioactivating pathway. We were able to selectively modulate the metabolism of NMF by labeling various positions of the molecule with a stable isotope, allowing us to monitor gene changes specifically due to a particular metabolic pathway. Two groups of genes were identified, which were associated with the metabolism of a certain part of the NMF molecule. The metabolic pathway leading to the production of reactive methyl isocyanate resulted in distinct expression patterns that correlated with histopathologic findings. There was a clear correlation between the expression of certain genes involved in the cell cycle/apoptosis and inflammatory pathways and the presence of reactive metabolite. These genes may serve as potential genomic biomarkers of hepatotoxicity induced by soft-electrophile-producing compounds. However, the robustness of these potential genomic biomarkers will need to be validated using other hepatotoxicants (both soft- and hard-electrophile-producing agents) and compounds known to cause idiosyncratic liver toxicity before being adopted into the drug discovery screening process.

  14. Fusarial toxins: secondary metabolites of Fusarium fungi.

    PubMed

    Nesic, Ksenija; Ivanovic, Snezana; Nesic, Vladimir

    2014-01-01

    Exposure to mycotoxins occurs worldwide, even though there are geographic and climatic differences in the amounts produced and occurrence of these substances.Mycotoxins are secondary chemical metabolites of different fungi. They are natural contaminants of cereals, so their presence is often inevitable. Among many genera that produce mycotoxins, Fusarium fungi are the most widespread in cereal-growing areas of the planet. Fusarium fungi produce a diversity of mycotoxin types, whose distributions are also diverse. What is produced and where it is produced is influenced primarily by environmental conditions, and crop production and storage methods. The amount of toxin produced depends on physical (viz., moisture, relative humidity, temperature, and mechanical damage), chemical (viz., carbon dioxide,oxygen, composition of substrate, insecticides and fungicides), and biological factors (viz., plant variety, stress, insects, spore load, etc.). Moisture and temperature have a major influence on mold growth rate and mycotoxin production.Among the most toxic and prevalent fusaria) toxins are the following: zearalenone,fumonisins, moniliformin and trichothecenes (T-2/HT-2 toxin, deoxynivalenol,diacetoxyscirpenol, nivalenol). Zearalenone (ZEA; ZON, F-2 toxin) isaphy to estrogenic compound, primarily a field contaminant, which exhibits estrogenic activity and has been implicated in numerous mycotoxicoses of farm animals,especially pigs. Recently, evidence suggests that ZEA has potential to stimulate the growth of human breast cancer cells. Fumonisins are also cancer-promoting metabolites,of which Fumonisin 8 I (FBI) is the most important. Moniliformin (MON) isalso highly toxic to both animals and humans. Trichothecenes are classified as gastrointestinal toxins, dermatotoxins, immunotoxins, hematotoxins, and gene toxins.T-2 and HT-2 toxin, and diacetoxyscirpenol (DAS, anguidine) are the most toxic mycotoxins among the trichothecene group. Deoxynivalenol (DON, vomitoxin) and nivalenol although less toxic are important because they frequently occur at levels high enough to cause adverse effects.The presence of mycotoxins in the animal diet can produce significant production losses. Any considerable presence of mycotoxins, in major dietary components,confirms the need to adopt a continuous prevention and control program. Such programs are usually based on several common approaches to minimize mycotoxin contamination in the food chain. Major strategies include preventing fungal growth and therefore mycotoxin formation, reducing or eliminating mycotoxins from contaminated feedstuffs, or diverting contaminated products to low risk uses. Because of the complexity of their chemical structures, mycotoxins also present a major analytical challenge. They are also found in a vast array of feed matrices. Analysis is essential for determining the extent of mycotoxin contamination, for risk analysis, confirming the diagnosis of a mycotoxicosis and for monitoring mycotoxin mitigation strategies.For the future, adequately controlling the mycotoxin problem in the livestock economy will depend on implementing appropriate agricultural management policies,as well as augmenting production and storage systems and analysis methods.Only such policies offer the opportunity to bring solid and long-lasting economical results to the livestock industry that is afflicted with the mycotoxin problem.

  15. Toxic micromycetes in grain raw material during its processing.

    PubMed

    Lugauskas, Albinas; Raila, Algirdas; Railiene, Marija; Raudoniene, Vita

    2006-01-01

    In 2003-2005 micromycetes were isolated and identified from wheat, barley, rye, buckwheat grain brought into mills or from processing enterprises. Contamination of the produced flour with micromycete propagules (cfu g(-1)), changes in micromycete diversity and abundance in the course of flour storage, preparation and baking of bread, production of groats or other food products and fodder were determined. Most attention was given to widely distributed micromycetes, known producers of toxins: Alternaria alternata, Aspergillus candidus, A. clavatus, A. flavus, A. fumigatus, A. niger, A. oryzae, A. (=Eurotium) repens, Fusarium culmorum, F. equiseti, F. graminearum, F. moniliforme, F. oxysporum, F. poae, F. sporotrichioides, Penicillium brevicompactum, P. chrysogenum, P. cyclopium, P. daleae, P. expansum, P. funiculosum, P. roqueforti, P. urticae, P. verruculosum, P. viridicatum, Phoma exiqua, Rhizomucor pusillus, Rhizopus stolonifer, Trichothecium roseum. Abilities of these micromycetes to produce secondary toxic metabolites were determined as well as possible hazard caused to people consuming the contaminated products.

  16. Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente

    2008-10-15

    4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objectivemore » was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [{sup 14}C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [{sup 14}C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity may be decreased conjugation of reactive DAPM metabolites, leading to greater levels of protein adduct formation.« less

  17. Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils.

    PubMed

    Mtibaà, Rim; Olicón-Hernández, Dario Rafael; Pozo, Clementina; Nasri, Moncef; Mechichi, Tahar; González, Jesus; Aranda, Elisabet

    2018-07-30

    Four different laccase-producing strains were isolated from arid soils and used for bisphenol A (BPA) degradation. These strains were identified as Chaetomium strumarium G5I, Thielavia arenaria CH9, Thielavia arenaria HJ22 and Thielavia arenaria SM1(III) by internal transcribed spacer 5.8 S rDNA analysis. Residual BPA was evaluated by HPLC analysis during 48 h of incubation. A complete removal of BPA was observed by the whole cell fungal cultures within different times, depending on each strain. C. strumarium G5I was the most efficient degrader, showing 100% of removal within 8 h of incubation. The degradation of BPA was accompanied by the production of laccase and dye decolorizing peroxidase (DyP) under degradation conditions. The presence of aminobenzotriazole (ABT) as an inhibitor of cytochrome P450s monooxygenases (CYP) demonstrated a slight decrease in BPA removal rate, suggesting the effective contribution of CYP in the conversion. The great involvement of laccase in BPA transformation together with cell-associated enzymes, such as CYP, was supported by the identification of hydroxylated metabolites by ultra-high performance liquid chromatography-mass spectroscopy (UHPLC-MS). The metabolic pathway of BPA transformation was proposed based on the detected metabolites. The acute toxicity of BPA and its products was investigated and showed a significant reduction, except for T. arenaria SM1(III) that did not caused reduction of toxicity (IC 50 < 8%), possibly due to the presence of toxic metabolites. The results of the present study point out the potential application of the isolated ascomycetes in pollutant removal processes, especially C. strumarium G5I as an efficient degrader of BPA. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. For re-submission to Mutation Research, 7/30/07 Depletion of WRN Enhances DNA Damage in HeLa Cells Exposed to the Benzene Metabolite, Hydroquinone

    PubMed Central

    Galván, Noé; Lim, Sophia; Zmugg, Stephan; Smith, Martyn T.; Zhang, Luoping

    2012-01-01

    Werner syndrome is a progeroid disorder caused by mutations of the WRN gene. The encoded WRN protein belongs to the family of RecQ helicases that plays a role in the maintenance of genomic stability. Single nucleotide polymorphisms in WRN have been associated with an increased risk for some cancers and were recently linked to benzene hematotoxicity. To further address the role of WRN in benzene toxicity, we employed RNA interference (RNAi) to silence endogenous WRN in HeLa cells and examined the susceptibility of these WRN-depleted cells to the toxic effects of the benzene metabolite hydroquinone. HeLa cells were used as the experimental model because RNAi is highly effective in this system producing almost complete depletion of the target protein. Depletion of WRN led to a decrease in cell proliferation and an enhanced susceptibility to hydroquinone cytotoxicity as revealed by an increase in necrosis. WRN-depleted HeLa cells treated with hydroquinone also displayed an increase in the amount of DNA double strand breaks as determined by the Comet assay, and an elevated DNA damage response as indicated by the 7-fold induction of γH2AX and acetyl-p53 (Lys373 and Lys382) over control levels. Together, these results show that WRN plays an important role in the protection of HeLa cells against the toxicity of the benzene metabolite hydroquinone, specifically in mounting a normal DNA damage response following the induction of DNA double-strand breaks. Further studies in bone marrow-derived stem or progenitor cells are required to confirm our findings in HeLa cells and expand our ability to extrapolate the results to benzene toxicity in humans. PMID:17875398

  19. [Determination of the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato].

    PubMed

    Benavidez Rozo, Martha Elizabeth; Patriarca, Andrea; Cabrera, Gabriela; Fernández Pinto, Virginia E

    2014-01-01

    Many Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii. To determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification. The profiles of secondary metabolites were determined by HPLC MS. The Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins. Secondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  20. Application of the "threshold of toxicological concern" to derive tolerable concentrations of "non-relevant metabolites" formed from plant protection products in ground and drinking water.

    PubMed

    Melching-Kollmuss, Stephanie; Dekant, Wolfgang; Kalberlah, Fritz

    2010-03-01

    Limits for tolerable concentrations of ground water metabolites ("non-relevant metabolites" without targeted toxicities and specific classification and labeling) derived from active ingredients (AI) of plant protection products (PPPs) are discussed in the European Union. Risk assessments for "non-relevant metabolites" need to be performed when concentrations are above 0.75 microg/L. Since oral uptake is the only relevant exposure pathway for "non-relevant metabolites", risk assessment approaches as used for other chemicals with predominantly oral exposure in humans are applicable. The concept of "thresholds of toxicological concern" (TTC) defines tolerable dietary intakes for chemicals without toxicity data and is widely applied to chemicals present in food in low concentrations such as flavorings. Based on a statistical evaluation of the results of many toxicity studies and considerations of chemical structures, the TTC concept derives a maximum daily oral intake without concern of 90 microg/person/day for non-genotoxic chemicals, even for those with appreciable toxicity. When using the typical exposure assessment for drinking water contaminants (consumption of 2L of drinking water/person/day, allocation of 10% of the tolerable daily intake to drinking water), a TTC-based upper concentration limit of 4.5 microg/L for "non-relevant metabolites" in ground/drinking water is delineated. In the present publication it has been evaluated, whether this value would cover all relevant toxicities (repeated dose, reproductive and developmental, and immune effects). Taking into account, that after evaluation of specific reproduction toxicity data from chemicals and pharmaceuticals, a value of 1 microg/kgbw/day has been assessed as to cover developmental and reproduction toxicity, a TTC value of 60 microg/person/day was assessed as to represent a safe value. Based on these reasonable worst case assumptions, a TTC-derived threshold of 3 microg/L in drinking water is derived. When a non-relevant metabolite is present in concentration below 3 microg/L, animal testing for toxicity is not considered necessary for a compound-specific risk assessment since the application of the TTC covers all relevant toxicities to be considered in such assessment and any health risk resulting from these exposures is very low. (c) 2009 Elsevier Inc. All rights reserved.

  1. Mutagenic activity of austocystins - secondary metabolites of Aspergillus ustus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kfir, R.; Johannsen, E.; Vleggaar, R.

    1986-11-01

    Mycotoxins constitute a group of toxic secondary fungal metabolites. Fungi that produce these toxins frequently contaminate food and feed, creating a potential threat to human and animal health. Biological activities of mycotoxins include, amongst others: toxicity, mutagenicity and carcinogenicity, which can be expressed with or without metabolic activation. Austocystins are similar in structure to aflatoxin B/sup 1/ and are probably synthesized in a similar manner. The Ames Salmonella test, a widely accepted method employed for the detection of mutagenic activity of various chemical compounds was used for testing the mutagenic activity of different mycotoxins. As aflatoxin B/sup 1/ was foundmore » by the Ames test to be highly mutagenic, the same test was applied for the study of possible mutagenicity of the austocystins. The mutagenic activity of these compounds was studied with and without metabolic activation using two tester strains of S. typhimurium, one capable of detecting frame shift mutation (strain TA98) and the other capable of detecting base pair substitution (strain TA100).« less

  2. Towards the identification and quantification of candidate metabolites of tebuconazole fungicide.

    NASA Astrophysics Data System (ADS)

    El Azhari, Najoi; Dermou, Eftychia; Botteri, Lucio; Lucini, Luigi; Karas, Panagiotis; Karpouzas, Dimitris; Tsiamis, George; Martin-Laurent, Fabrice; Trevisan, Marco; Rossi, Riccardo; Ferrari, Federico

    2017-04-01

    Tebuconazole belongs to the family of triazole fungicides, used for crop protection and human health applications. In the environment, the dissipation of the parent molecule leads to the formation of metabolites that are of unknown identity or toxicity. In order to identify and determine the putative identity of those metabolites and their po- tential toxicity, a quadrupole time-of-flight (Q-TOF) approach is often used. Q-SAR ap- proaches help to predict their toxicity by comparing them to a known database of mole- cules with known properties. All together the information on the candidate by-products may help to select relevant sub-set of metabolites for further quantification by LC or GC coupled with MS. It is thereby possible to select putative toxic compounds for further quanti- fication using chemical analysis. Previous work allowed the identification of potential metabolites of tebuconazole. Triazole, triazolyl acetic acid and p-chlorophenol were suspected to result from the decomposition of tebuconazole. Tebuconazole degradation kinetics was followed for 125 days by quanti- fying the dissipation of the parent molecule and the emergence of the three candidate metabolites by LC/MS for tebuconazole, triazol and triazolyl acetate and by GC/MS for p- chlorophenol. The data allowed the proposition of several metabolic pathways.

  3. Isolation and screening of proangiogenic and antiangiogenic metabolites producing rare actinobacteria from soil.

    PubMed

    Azarakhsh, Y; Mohammadipanah, F; Nassiri, S M; Siavashi, V; Hamedi, J

    2017-06-01

    Angiogenesis is a physiological process that has important impacts on the pathology and healing of various diseases, and its induction or inhibition by bioactive actinobacterial metabolites can help the treatment of some diseases. In this study, the effects of actinobacterial extract in the process of angiogenesis have been explored. In this research, proangiogenic and antiangiogenic metabolites producing actinobacteria were isolated from soil samples and their fermentation broth were extracted and after evaluation of their toxicity by MTT assay, antiangiogenic and proangiogenic activities were screened against human umbilical vein endothelial cells (HUVECs) by in vitro tube formation and migration assay. Isolated strains were identified through molecular techniques. The results showed that Nocardiopsis arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts had a high potential of anti-angiogenic activity on HUVECs. For the first time proangiogenic potency of a rare actinobacterium, Kribbella sp. UTMC 522, was reported, and N. arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts inhibits the proliferation, migration and angiogenesis activity of HUVECs with reasonable potency. Metabolites of the introduced rare actinobacteria are potent proangiogenic and angiogenic inhibitors. Identification of angiogenic-antiangiogenic mechanisms and purification of the extracts would be useful in therapeutic angiogenesis. © 2017 The Society for Applied Microbiology.

  4. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hvastkovs, Eli, G.; Schenkman, John B.; Rusling, James, F.

    2012-07-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.

  5. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  6. Phase I Metabolic Stability and Electrophilic Reactivity of 2-Phenylaminophenylacetic Acid Derived Compounds.

    PubMed

    Pang, Yi Yun; Tan, Yee Min; Chan, Eric Chun Yong; Ho, Han Kiat

    2016-07-18

    Diclofenac and lumiracoxib are two highly analogous 2-phenylaminophenylacetic acid anti-inflammatory drugs exhibiting occasional dose-limiting hepatotoxicities. Prior data indicate that bioactivation and reactive metabolite formation play roles in the observed toxicity, but the exact chemical influence of the substituents remains elusive. In order to elucidate the role of chemical influence on metabolism related toxicity, metabolic stability and electrophilic reactivity were investigated for a series of structurally related analogues and their resulting metabolites. The resulting analogues embody progressive physiochemical changes through varying halogeno- and aliphatic substituents at two positions and were subjected to in vitro human liver microsomal metabolic stability and cell-based GSH depletion assays (to measure electrophilic reactivity). LC-MS/MS analysis of the GSH trapped reactive intermediates derived from the analogues was then used to identify the putative structures of reactive metabolites. We found that chemical modifications of the structural backbone led to noticeable perturbations of metabolic stability, electrophilic reactivity, and structures and composition of reactive metabolites. With the acquired data, the relationships between stability, reactivity, and toxicity were investigated in an attempt to correlate between Phase I metabolism and in vitro toxicity. A positive correlation was identified between reactivity and in vitro toxicity, indicating that electrophilic reactivity can be an indicator for in vitro toxicity. All in all, the effect of substituents on the structures and reactivity of the metabolites, however subtle the changes, should be taken into consideration during future drug design involving similar chemical features.

  7. Acute toxicity of 353-nonylphenol and its metabolites for zebrafish embryos.

    PubMed

    Kammann, Ulrike; Vobach, Michael; Wosniok, Werner; Schäffer, Andreas; Telscher, Andreas

    2009-03-01

    Nonylphenol (NP) can be detected in the aquatic environment all over the world. It is applied as a technical mixture of isomers of which 353-NP is the most relevant both in terms of abundance (about 20% of total mass) and endocrine potential. 353-NP is metabolised in sewage sludge. The aims of the present study were to determine and to compare the acute toxicity of t-NP, 353-NP and its metabolites as well as to discuss if the toxicity of 353-NP changes during degradation. 353-NP and two of its metabolites were synthesised. The zebrafish embryo test was performed according to standard protocols. Several lethal and non-lethal endpoints during embryonal development were reported. NOEL, LOEL and EC50 were calculated. All tested compounds caused lethal as well as non-lethal malformations during embryo development. 353-NP showed a higher toxicity (EC50 for lethal endpoints 6.7 mg/L) compared to its metabolites 4-(3.5-dimethyl-3-heptyl)-2-nitrophenol (EC50 13.3 mg/L) and 4-(3,5-dimethyl-3-heptyl)-2-bromophenol (EC50 27.1 mg/L). In surface water, concentrations of NP are far below the NOEC identified by the zebrafish embryo test. However, in soils and sewage sludge, concentrations may reach or even exceed these concentrations. Therefore, sludge-treated sites close to surface waters should be analysed for NP and its metabolites in order to detect an unduly high contamination due to runoff events. The results of the present study point out that the toxicity of 353-NP probably declines during metabolisation in water, sediment and soil, but does not vanish since the major metabolites exhibit a clear toxic potential for zebrafish embryos. Metabolites of environmental pollutants should be included in the ecotoxicological test strategy for a proper risk assessment.

  8. Airway toxicity of house dust and its fungal composition.

    PubMed

    Piecková, Elena; Wilkins, Ken

    2004-01-01

    House dust is an important source of different toxic metabolites as well as allergens, including those of fungal origin, in the indoor environment. A bio-assay employing 1-day-old chick tracheas was used to characterize airway effects of 2-butanone and dimethylsulphoxide (Me2SO) extracts of 23 dust samples collected from water damaged (13) and control (10) Danish schools. Direct microscopical analysis of samples, followed by cultivation on dichloran 18 % glycerol agar at 25 degrees C for 10 days to establish their mycoflora, was performed. The in vitro ciliostatic potential of the chloroform-extractable endo- and exometabolites of 41 representative fungal isolates was determined. Nine dust extracts in 2-butanone (2 from damp rooms) or 10 (6) in Me(2)SO showed some ciliostatic activity in the 3-days' experiment. Fungal composition of dust from buildings with leakage was almost identical with that from undamaged houses, as well as the fungal colony counts from the damp schools and the control samples. Aspergillus spp. were prevalent in the samples - 31 or 40 % of all fungi, followed by Penicillium spp. and Cladosporium cladosporioides. Alternaria spp., Chaetomium spp., Mucor spp., Mycelia sterilia, Paecilomyces variotii, Rhizopus sp., Ulocladium sp. and yeasts were each isolated in less than 8 % of the fungal content. No Aspergillus flavus isolate (8 in total) was aflatoxigenic,em>in vitro. Alternaria spp., Aspergillus spp., Botrytis cinerea, Penicillium spp., C. cladosporioides, Chaetomium spp. and Ulocladium sp.; in total, 88 % of all fungi tested, produced ciliostatically active metabolites. These toxigenic strains were also present in 4 dust samples from controls and 5 dust samples from water damaged buildings. Extracts of these dust samples were also toxic in bioassay. There were bio-detectable concentrations (10-20 microg of extracts/ml of the organ culture medium) of toxic compounds in house dust. Contribution of fungal metabolites to its toxic effect should be studied further.

  9. Accumulation, metabolism and toxicity of parathion in tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, R.J.

    1990-04-01

    Earlier work exposing tadpoles to organophosphorus pesticides indicated the great resistance of tadpoles of the bullfrog (Rana catesbeiana) to these chemicals and their surprising ability to accumulate parathion and fenthion from water. These qualities seemed to make them an ideal model with which to test a hypothesis advanced by Burke and Ferguson, who noted that parathion is more toxic to resistant mosquitofish in static water than in flowing water--a reversal of the pattern normally seen. They believed that highly toxic metabolite paraoxon was produced by the fish and that its buildup in static systems resulted in the unexpected mortality. Amphibiansmore » have been shown to produce paraoxon and to accumulate the parent compound parathion to levels that are potentially hazardous to other organisms. In the course of examining paraoxon production by tadpoles, it would also be possible to learn more about their patterns of parathion uptake and elimination. Retention of residues is also a matter of concern given the high levels observed in the earlier studies.« less

  10. DEVELOPMENTAL TOXICITY OF ATRAZINE METABOLITES IN FISCHER 344 RATS

    EPA Science Inventory

    Previously we have shown that atrazine, a commonly used herbicide, causes full-litter resorption (FLR) in Fischer 344 rats at 50 mg/kg. In this study, we tested four atrazine metabolites for their potential to cause FLR and developmental toxicity. Desethylatrazine (DEA), desis...

  11. Towards microbial fermentation metabolites as markers for health benefits of prebiotics.

    PubMed

    Verbeke, Kristin A; Boobis, Alan R; Chiodini, Alessandro; Edwards, Christine A; Franck, Anne; Kleerebezem, Michiel; Nauta, Arjen; Raes, Jeroen; van Tol, Eric A F; Tuohy, Kieran M

    2015-06-01

    Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.

  12. [Multicomponent antithrombotic effect of the neuroprotective prolyl dipeptide GVS-111 and its major metabolite cyclo-L-prolylglycine].

    PubMed

    Ostrovskaia, R U; Liapina, L A; Pastorova, V E; Mirzoev, T Kh; Gudasheva, T A; Seredenin, S B; Ashmarin, I P

    2002-01-01

    The experiments in vivo showed that the new nootropic prolyl-containing GVS-111 produces an antithrombotic effect, influencing various stages of the blood coagulation process. GVS-111 exhibits anticoagulant and fibrinolytic properties and enhances fibrin destabilization by reducing the XIIIa factor activity. These effects are manifested upon both intraperitoneal (1 mg/kg) and peroral (10 mg/kg) administration of GVS-111 (in both cases, a single daily treatment over a period of 10 days). The same effects (anticoagulant, fibrinolytic, antifibrin-stabilizing) were observed in in vitro experiments with both GVS-111 (10(-3)-10(-6) M) and its main metabolite cyclo-L-prolylglycine (up to 10(-10) M). In addition, the latter metabolite exhibited an antiaggregant effect. The antithrombotic activity of GVS-111, together with previously established neuroprotector properties, low toxicity, and the absence of complications, makes this compound a promising antistroke drug.

  13. Interaction of secalonic acid D with phenobarbital, 3-methyl cholanthrene, and SKF-525A in mice.

    PubMed

    Reddy, C S; Reddy, R V; Hayes, A W

    1983-01-01

    Secalonic acid D (SAD) is an acutely toxic and teratogenic fungal metabolite produced by Penicillium oxalium in corn and other cereal grains. Experiments were conducted to study the effects of single and multiple doses of SAD on pentobarbital-induced narcosis, as an index of the modulating effect of SAD on the hepatic drug metabolizing enzymes in mice. The effects of known enzyme modulators-phenobarbital (PB), 3-methyl cholanthrene (3-MC), and diethylaminoethyl diphenylproply acetate hydrochloride (SKF-525A)-on the acute toxicity of SAD in mice were also studied using body weights, mortality, and histopathology as indices. Results of this study failed to demonstrate any modulating effect by SAD of pentobarbital metabolizing enzymes. Pretreatment with SKF-525A, an enzyme inhibitor, enhanced SAD toxicity in mice, whereas pretreatment with PB or 3-MC, known enzyme inducers, had no effect. Further studies of interaction of [14C]SAD with PB and SKF-525A revealed that although neither PB nor SKF-525A altered the ratio of parent compound to total metabolites excreted in bile, SKF-525A significantly reduced the bile flow as well as the elimination of SAD-derived radioactivity in bile. These results strongly suggest the possibility that the effects of SKF-525A, other than the enzyme inhibition, may be responsible for its enhancement of SAD toxicity in mice.

  14. Oxidative metabolism of BDE-99 by human liver microsomes: predominant role of CYP2B6.

    PubMed

    Erratico, Claudio A; Szeitz, András; Bandiera, Stelvio M

    2012-10-01

    Hydroxylated polybrominated diphenyl ethers (PBDEs) have been found in human serum, suggesting that they are formed by in vivo oxidative metabolism of PBDEs. However, the biotransformation of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a major PBDE detected in human tissue and environmental samples, is poorly understood. In the present study, the oxidative metabolism of BDE-99 was assessed using pooled and single-donor human liver microsomes, a panel of human recombinant cytochrome P450 (CYP) enzymes, and CYP-specific antibodies. Hydroxylated metabolites were quantified using a liquid chromatography/tandem mass spectrometry-based method. In total, 10 hydroxylated metabolites of BDE-99 were produced by human liver microsomes. Six metabolites were identified as 2,4,5-tribromophenol (2,4,5-TBP), 4-OH-BDE-90, 5'-OH-BDE-99, 6'-OH-BDE-99, 4'-OH-BDE-101, and 2-OH-BDE-123 using authentic standards. Three monohydroxy- and one dihydroxy-pentabrominated metabolites were unidentified. Rates of formation of the three major metabolites (2,4,5-TBP, 5'-OH-BDE-99, and 4'-OH-BDE-101) by human liver microsomes ranged from 24.4 to 44.8 pmol/min/mg protein. Additional experiments demonstrated that the dihydroxylated metabolite was a primary metabolite of BDE-99 and was not produced by hydroxylation of a monohydroxy metabolite. Among the panel of recombinant CYP enzymes tested, formation of all 10 hydroxylated metabolites was catalyzed solely by CYP2B6. A combined approach using antibodies to CYP2B6 and single-donor liver microsomes expressing a wide range of CYP2B6 levels confirmed that CYP2B6 was responsible for the biotransformation of BDE-99. Collectively, the results show that the oxidative metabolism of BDE-99 by human liver microsomes is catalyzed solely by CYP2B6 and is an important determinant of the toxicity and bioaccumulation of BDE-99 in humans.

  15. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  16. Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor.

    PubMed

    Carles, Louis; Joly, Muriel; Bonnemoy, Frédérique; Leremboure, Martin; Donnadieu, Florence; Batisson, Isabelle; Besse-Hoggan, Pascale

    2018-04-21

    The prediction of chemical mixture toxicity is a major concern regarding unintentional mixture of pesticides from agricultural lands treated with various such compounds. We focused our work on a mixture of three herbicides commonly applied on maize crops within a fortnight, namely mesotrione (β-triketone), nicosulfuron (sulfonylurea) and S-metolachlor (chloroacetanilide). The metabolic pathways of mesotrione and nicosulfuron were qualitatively and quantitatively determined with a bacterial strain (Bacillus megaterium Mes11). This strain was isolated from an agricultural soil and able to biotransform both these herbicides. Although these pathways were unaffected in the case of binary or ternary herbicide mixtures, kinetics of nicosulfuron disappearance and also of mesotrione and nicosulfuron metabolite formation was strongly modulated. The toxicity of the parent compounds and metabolites was evaluated for individual compounds and mixtures with the standardized Microtox® test. Synergistic interactions were evidenced for all the parent compound mixtures. Synergistic, antagonistic or additive toxicity was obtained depending on the metabolite mixture. Overall, these results emphasize the need to take into account the active ingredient and metabolites all together for the determination of environmental fate and toxicity of pesticide mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Microbial degradation of an organophosphate pesticide, malathion.

    PubMed

    Singh, Baljinder; Kaur, Jagdeep; Singh, Kashmir

    2014-05-01

    Organophosphorus pesticide, malathion, is used in public health, residential, and agricultural settings worldwide to control the pest population. It is proven that exposure to malathion produce toxic effects in humans and other mammals. Due to high toxicity, studies are going on to design effective methods for removal of malathion and its associated compounds from the environment. Among various techniques available, degradation of malathion by microbes proves to be an effective and environment friendly method. Recently, research activities in this area have shown that a diverse range of microorganisms are capable of degrading malathion. Therefore, we aimed at providing an overview of research accomplishments on this subject and discussed the toxicity of malathion and its metabolites, various microorganisms involved in its biodegradation and effect of various environmental parameters on its degradation.

  18. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers.

    PubMed

    Papadopoulou, Evangelia S; Tsachidou, Bella; Sułowicz, Sławomir; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-01-15

    Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers

    PubMed Central

    Papadopoulou, Evangelia S.; Tsachidou, Bella; Sułowicz, Sławomir; Menkissoglu-Spiroudi, Urania

    2015-01-01

    Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed. PMID:26590271

  20. Metabolism of (R)- and (S)-3-(phenylamino)propane-1,2-diol in C57BL/6- and A/J-strain mice. Identification of new metabolites with potential toxicological significance to the toxic oil syndrome.

    PubMed

    Bujons, J; Ladona, M G; Messeguer, A; Morató, A; Ampurdanés, C

    2001-08-01

    The Toxic Oil Syndrome was a massive food-borne intoxication that occurred in Spain in 1981. Epidemiological studies point to 3-(phenylamino)propane-1,2-diol (PAP) derivatives as the putative toxic agents. We report further identification of metabolites cleared in urine of A/J and C57BL/6 mice in which (R)- and (S)-3-(phenylamino)propane-1,2-diol were administered intraperitoneally. This investigation is an extension of previous studies carried out with the racemic compound [Ladona, M. G., Bujons, J., Messeguer, A., Ampurdanés, C., Morató, A., and Corbella, J. (1999) Chem. Res. Toxicol. 12, 1127-1137]. Both PAP enantiomers were extensively metabolized, and several metabolites were eliminated in urine. The HPLC profiles of the urine samples of both mouse strains treated with each enantiomer were qualitatively similar, but differences were found in a relatively higher proportion of several detected metabolites in mice treated with (R)-PAP compared with those treated with (S)-PAP. The main urine metabolite continues to be 2-hydroxy-3-(phenylamino)propanoic acid (1), which confirms our previous results obtained with rac-PAP. In addition to the detection of other metabolites already reported in our previous paper, interesting evidence is provided on the presence of 4-aminophenol and paracetamol conjugates in the urine samples from both mouse strains. The detection of these metabolites suggests the in vivo formation of quinoneimine PAP derivatives. Indeed, some quinoneimine species (11 and 12), as well as other PAP metabolites (13) that bear modifications in the alkyl chain, have been tentatively identified in mouse urine. These metabolic findings might imply a potential toxicological significance for the Toxic Oil Syndrome.

  1. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography–Mass Spectrometry

    PubMed Central

    Hvastkovs, Eli G.; Schenkman, John B.; Rusling, James F.

    2012-01-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography–mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates. PMID:22482786

  2. The Metabolism of CIS - and Trans - Decalin in Fischer 344 Rats.

    DTIC Science & Technology

    1985-12-09

    I. SUBJECT Teams lCeameu Onl MWMeE Affcary and Identify Joy blotib loumb. I FIELD GROUP *s. Ga. Decalin metabolism~, renal toxicity ruine metabolites...the metabolites of high-boiling cyclic hydrocarbons may provide valuable information regarding the renal toxicity mechanism. It was proposed that the...metabolism of other cyclic hydrocarbons be examined to see if a comonality of metabolism yielded similar toxic effects. The first chemical to be

  3. Warfarin Toxicity and Individual Variability—Clinical Case

    PubMed Central

    Piatkov, Irina; Rochester, Colin; Jones, Trudi; Boyages, Steven

    2010-01-01

    Warfarin is a widely used anticoagulant in the treatment and prevention of thrombosis, in the treatment for chronic atrial fibrillation, mechanical valves, pulmonary embolism, and dilated cardiomyopathy. It is tasteless and colorless, was used as a poison, and is still marketed as a pesticide against rats and mice. Several long-acting warfarin derivatives—superwarfarin anticoagulants—such as brodifacoum, diphenadione, chlorophacinone, bromadiolone, are used as pesticides and can produce profound and prolonged anticoagulation. Several factors increase the risk of warfarin toxicity. However, polymorphisms in cytochrome P450 genes and drug interactions account for most of the risk for toxicity complications. Each person is unique in their degree of susceptibility to toxic agents. The toxicity interpretation and the health risk of most toxic substances are a subject of uncertainty. Genetically determined low metabolic capacity in an individual can dramatically alter the toxin and metabolite levels from those normally expected, which is crucial for drugs with a narrow therapeutic index, like warfarin. Personalized approaches in interpretation have the potential to remove some of the scientific uncertainties in toxicity cases. PMID:22069565

  4. Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.

    PubMed

    Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan

    2011-03-01

    Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.

  5. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid

    PubMed Central

    Lock, Edward A; Reed, Celia J; McMillan, JoEllyn M; Oatis, John R; Schnellmann, Rick G

    2007-01-01

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3–3mM CH for 3 days or 0.03–3mM CH for 10 days respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolised CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and 3-fold greater capacity than HRPTC to form TCE-OH and TCA respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days (Lock et al., 2006) supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity. PMID:17161896

  6. Microbial Inhibition of Fusarium Pathogens and Biological Modification of Trichothecenes in Cereal Grains

    PubMed Central

    Wachowska, Urszula; Packa, Danuta

    2017-01-01

    Fungi of the genus Fusarium infect cereal crops during the growing season and cause head blight and other diseases. Their toxic secondary metabolites (mycotoxins) contaminate grains. Several dozen toxic compounds produced by fungal pathogens have been identified to date. Type B trichothecenes—deoxynivalenol, its acetyl derivatives and nivalenol (produced mainly by F. graminearum and F. culmorum)—are most commonly detected in cereal grains. “T-2 toxin” (produced by, among others, F. sporotrichioides) belongs to type-A trichothecenes which are more toxic than other trichothecenes. Antagonistic bacteria and fungi can affect pathogens of the genus Fusarium via different modes of action: direct (mycoparasitism or hyperparasitism), mixed-path (antibiotic secretion, production of lytic enzymes) and indirect (induction of host defense responses). Microbial modification of trichothecenes involves acetylation, deacetylation, oxidation, de-epoxidation, and epimerization, and it lowers the pathogenic potential of fungi of the genus Fusarium. Other modifing mechanisms described in the paper involve the physical adsorption of mycotoxins in bacterial cells and the conjugation of mycotoxins to glucose and other compounds in plant and fungal cells. The development of several patents supports the commercialization and wider application of microorganisms biodegrading mycotoxins in grains and, consequently, in feed additives. PMID:29261142

  7. Differential fipronil susceptibility and metabolism in two rice stem borers from China.

    PubMed

    Fang, Qi; Huang, Cheng-Hua; Ye, Gong-Yin; Yao, Hong-Wei; Cheng, Jia-An; Akhtar, Zunnu-Raen

    2008-08-01

    The susceptibilities of larvae of two rice stem borers, namely, Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Sesamia inferens (Walker) (Lepidoptera: Nocutidae) to fipronil and its metabolites were investigated, and then the activities of microsomal O-demethylase, and glutathione transferase (GST) in two species were measured. The metabolism of fipronil in both stem borers was determined in vivo and in vitro. The LD50 value of fipronil to S. inferens was 118.5-fold higher than that of C. suppressalis. The bioassay results offipronil metabolites showed that the toxicities of sulfone and sulfide were higher than fipronil for both species, and the differential toxicity between sulfone and fipronil was remarkable. Alternatively, the activities of microsomal O-demethylase and GST of C. suppressalis were 1.35- and 2.06-fold higher than S. inferens, respectively. The in vivo and in vitro studies on metabolism of fipronil showed that all of fipronil, sulfone, and sulfide were detected and the content of sulfone was higher than sulfide in both stem borers. The residue of sulfone in C. suppressalis was significantly higher than that in S. inferens. These results suggest that the higher activity of mixed function oxidases may cause the higher capacity of C. suppressalis to produce fipronil-sulfone, which is more toxic than fipronil leading to the higher susceptibility of this species.

  8. The Ability of Bacterial Cocaine Esterase to Hydrolyze Cocaine Metabolites and Their Simultaneous Quantification Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Brim, Remy L.; Noon, Kathleen R.; Collins, Gregory T.; Nichols, Joseph; Narasimhan, Diwahar; Sunahara, Roger K.

    2011-01-01

    Cocaine toxicity is a widespread problem in the United States, responsible for more than 500,000 emergency department visits a year. There is currently no U.S. Food and Drug Administration-approved pharmacotherapy to directly treat cocaine toxicity. To this end, we have developed a mutant bacterial cocaine esterase (DM-CocE), which has been previously shown to rapidly hydrolyze cocaine into inert metabolites, preventing and reversing toxicity with limited immunogenic potential. Herein we describe the ability of DM-CocE to hydrolyze the active cocaine metabolites norcocaine and cocaethylene and its inability to hydrolyze benzoylecgonine. DM-CocE hydrolyzes norcocaine and cocaethylene with 58 and 45% of its catalytic efficiency for cocaine in vitro as measured by a spectrophotometric assay. We have developed a mass spectrometry method to simultaneously detect cocaine, benzoylecgonine, norcocaine, and ecgonine methyl ester to quantify the effect of DM-CocE on normal cocaine metabolism in vivo. DM-CocE administered to rats 10 min after a convulsant dose of cocaine alters the normal metabolism of cocaine, rapidly decreasing circulating levels of cocaine and norcocaine while increasing ecgonine methyl ester formation. Benzoylecgonine was not hydrolyzed in vivo, but circulating concentrations were reduced, suggesting that DM-CocE may bind and sequester this metabolite. These findings suggest that DM-CocE may reduce cocaine toxicity by eliminating active and toxic metabolites along with the parent cocaine molecule. PMID:21885621

  9. Health Effects of Toxic Cyanobacteria in U.S. Drinking and Recreational Waters: Our Current Understanding and Proposed Direction.

    PubMed

    Otten, Timothy G; Paerl, Hans W

    2015-03-01

    Cyanobacterial-derived water quality impairment issues are a growing concern worldwide. In addition to their ecological impacts, these organisms are prolific producers of bioactive secondary metabolites, many of which are known human intoxicants. To date only a handful of these compounds have been thoroughly studied and their toxicological risks estimated. While there are currently no national guidelines in place to deal with this issue, it is increasingly likely that within the next several years guidelines will be implemented. The intent of this review is to survey all relevant literature pertaining to cyanobacterial harmful algal bloom secondary metabolites, to inform a discussion on how best to manage this global public health threat.

  10. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Aspergillus niger-mediated biotransformation of methenolone enanthate, and immunomodulatory activity of its transformed products.

    PubMed

    Hussain, Zahid; Dastagir, Nida; Hussain, Shabbir; Jabeen, Almas; Zafar, Salman; Malik, Rizwana; Bano, Saira; Wajid, Abdul; Choudhary, M Iqbal

    2016-08-01

    Two fungal cultures Aspergillus niger and Cunninghamella blakesleeana were used for the biotransformation of methenolone enanthate (1). Biotransformation with A. niger led to the synthesis of three new (2-4), and three known (5-7) metabolites, while fermentation with C. blakesleeana yielded metabolite 6. Substrate 1 and the resulting metabolites were evaluated for their immunomodulatory activities. Substrate 1 was found to be inactive, while metabolites 2 and 3 showed a potent inhibition of ROS generation by whole blood (IC50=8.60 and 7.05μg/mL), as well as from isolated polymorphonuclear leukocytes (PMNs) (IC50=14.0 and 4.70μg/mL), respectively. Moreover, compound 3 (34.21%) moderately inhibited the production of TNF-α, whereas 2 (88.63%) showed a potent inhibition of TNF-α produced by the THP-1 cells. These activities indicated immunomodulatory potential of compounds 2 and 3. All products were found to be non-toxic to 3T3 mouse fibroblast cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Toxicity and Detoxification Effects of Herbal Caowu via Ultra Performance Liquid Chromatography/Mass Spectrometry Metabolomics Analyzed using Pattern Recognition Method

    PubMed Central

    Yan, Yan; Zhang, Aihua; Dong, Hui; Yan, Guangli; Sun, Hui; Wu, Xiuhong; Han, Ying; Wang, Xijun

    2017-01-01

    Background: Caowu (Radix Aconiti kusnezoffii, CW), the root of Aconitum kusnezoffii Reichb., has widely used clinically in rheumatic arthritis, painful joints, and tumors for thousands of years. However, the toxicity of heart and central nervous system induced by CW still limited the application. Materials and Methods: Metabolomics was performed to identify the sensitive and reliable biomarkers and to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity, and the detoxification by combinatorial intervention of CW with Gancao (Radix Glycyrrhizae) (CG), Baishao (Radix Paeoniae Alba) (CB), and Renshen (Radix Ginseng) (CR) was also analyzed by pattern recognition methods. Results: As a result, the metabolites were characterized and responsible for pentose and glucuronate interconversions, tryptophan metabolism, amino sugar and nucleotide sugar metabolism, taurine and hypotaurine metabolism, fructose and mannose metabolism, and starch and sucrose metabolism, six networks of which were the same to the metabolic pathways of Chuanwu (Radix Aconiti, CHW) group. The ascorbate and aldarate metabolism was also characterized by CW group. The urinary metabolomics also revealed CW-induced serious toxicity to heart and liver. Thirteen significant metabolites were identified and had validated as phenotypic toxicity biomarkers of CW, five biomarkers of which were commonly owned in Aconitum. The changes of toxicity metabolites obtained from combinatorial intervention of CG, CB, and CR also were analyzed to investigate the regulation degree of toxicity biomarkers adjusted by different combinatorial interventions at 6th month. Conclusion: Metabolomics analyses coupled with pattern recognition methods in the evaluation of drug toxicity and finding detoxification methods were highlighted in this work. SUMMARY Metabolomics was performed to characterize the biochemical potential mechanisms of Caowu toxicityThirteen significant metabolites were identified and validated as phenotypic toxicity biomarkers of CaowuMetabolite changes of toxicity obtained can be adjusted by different combinatorial interventions.Pattern recognition plot reflects the toxicity effects tendency of the urine metabolic fluctuations according to time after treatment of herbal Caowu. Abbreviations used: CW: Caowu (Radix Aconiti kusnezoffii); CHW: Chuanwu (Radix Aconiti); TCM: Traditional Chinese Medicine; CG: Caowu and Gancao; CB: Caowu and Baishao; CR: Caowu and Renshen; QC: Quality control; UPLC: Ultra performance liquid chromatography; MS: Mass spectrometry; PCA: Principal component analysis; PLS-DA: Partial least squares-discriminant analysis; OPLS: Orthogonal projection to latent structures analysis. PMID:29200734

  13. Species differences in the metabolism of benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, R.F.

    1996-12-01

    The pathways of metabolism of benzene appear to be qualitatively similar in all species studied thus far. However, there are quantitative differences in the fraction of benzene metabolized by the different pathways. These species differences become important for risk assessments based on animal data. Mice have a greater overall capacity to metabolize benzene than rats or primates, based on mass balance studies conducted in vivo using radiolabled benzene. Mice and monkeys metabolize more of the benzene to hydroquinone metabolites than do rats or chimpanzees, especially at low doses. Nonhuman primates metabolize less of the benzene to muconic acid than domore » rodents or humans. In all species studied, a greater proportion of benzene is converted to hydroquinone and ring-breakage metabolites at low doses than at high doses. This finding should be considered in attempting to extrapolate the toxicity of benzene observed at high doses to predicted toxicity at low doses. Because ring-breakage metabolites and hydroquinone have both been implicated in the toxicity of benzene, the higher formation of those metabolites in the mouse may partially explain why mice are more sensitive to benzene than are rats. Metabolism of benzene in humans, the species of interest, does not exactly mimic that of any animal species studied. More information on the urinary and blood metabolites of occupationally exposed people is required to determine the fractional conversion of benzene to putative toxic metabolites and the degree of variability present in human subjects. 12 refs., 4 tabs.« less

  14. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Han, Hongxing; Xiao, Hailong; Lu, Zhenmei

    2016-02-15

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The role of wastewater treatment in reducing pollution of surface waters with zearalenone.

    PubMed

    Gromadzka, Karolina; Waśkiewicz, Agnieszka; Świetlik, Joanna; Bocianowski, Jan; Goliński, Piotr

    2015-06-01

    Zearalenone (ZEA) is a mycotoxin produced by some Fusarium species in food and feed. The toxicity of ZEA and its metabolites is related to the chemical structure of the mycotoxin, which is similar to naturally occurring oestrogens. Currently, there is increasing awareness of the presence of fungi and their toxic metabolites in the aquatic environment. One of the sources of these compounds are the effluents from wastewater treatment plants. The average annual efficiency of zearalenone reduction in the Łęczyca plant in our three-year study was in the range from 51.35 to 69.70 %. The threeway analysis of variance (year, month, and kind of wastewater) shows that the main effects of all factors and all interactions between them were significant for zearalenone and dissolved organic carbon content. Our findings suggest that wastewater is not the main source of surface water pollution with zearalenone. Future research should investigate the means to reduce ZEA and its migration from the fields through prevention strategies such as breeding for crops, plant debris management (crop rotation, tillage), and/or chemical and biological control.

  16. Role of Phytotoxins in Pine Wilt Diseases

    PubMed Central

    Oku, Hachiro

    1988-01-01

    Characteristic rapid death of pines after infection by Bursaphelenchus xylophilus suggests the involvement of phytotoxins in the pine wilt disease syndrome. Crude extract from diseased pine is toxic to pine seedlings, whereas an extract from healthy pine is not. The response of seedlings to the crude toxin is more prominent in susceptible pine species than in resistant ones. Benzoic acid, catechol, dihydroconiferyl alcohol, 8-hydroxycarvotanacetone (carvone hydrate), and 10-hydroxyverbenone, which are toxic, low molecular weight metabolites, can be isolated from diseased pines. Other unidentified toxins are also found. The toxicity of some of these metabolites correlates positively to the susceptibility of pines to B. xylophilus. Some of these abnormal metabolites show synergistic toxicity when in combination. The D-isomer of 8-hydroxycarvotanacetone, dihydroconiferylalcohol, and 10-hydroxyverbenone inhibited the reproduction of B. xylophilus. Cellulase excreted by pinewood nematode also may be involved in rapid wilting. PMID:19290208

  17. TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC AND ITS METHYLATED METABOLITES IN C57BL/6 MICE FOLLOWING SUBCHRONIC EXPOSURE TO ARSENATE (ASV) IN DRINKING WATER

    EPA Science Inventory

    The relationship of exposure and tissue concentration of parent chemical and metabolites over prolonged exposure is a critical issue for chronic toxicities mediated by metabolite(s) rather than parent chemical alone. This is an issue for AsV because its trivalent metabolites hav...

  18. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system.

    PubMed

    González-Arias, Cyndia A; Marín, Sonia; Rojas-García, Aurora E; Sanchis, Vicente; Ramos, Antonio J

    2017-11-01

    Ochatoxin A (OTA) is one of the most important mycotoxins based on its toxicity. The oral route is the main gateway of entry of OTA into the human body, and specialized epithelial cells constitute the first barrier. The present study investigated the in vitro cytotoxic effect of OTA (5, 15 and 45 μM) and production of OTA metabolities in Caco-2 and HepG2 cells using a co-culture Transwell System to mimic the passage through the intestinal epithelium and hepatic metabolism. The results derived from MTS cell viability assays and transepithelial electrical resistance measurements showed that OTA was slightly cytotoxic at the lowest concentration at 3 h, but significant toxicity was observed at all concentrations at 24 h. OTA metabolites generated in this co-culture were ochratoxin B (OTB), OTA methyl ester, OTA ethyl ester and the OTA glutathione conjugate (OTA-GSH). OTA methyl ester was the major metabolite found in both Caco-2 and HepG2 cells after all treatments. Our results showed that OTA can cause cell damage through several mechanisms and that the OTA exposure time is more important that the dosage in in vitro studies. OTA methyl ester is proposed as an OTA exposure biomarker, although future studies should be conducted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids

    PubMed Central

    Chowański, Szymon; Adamski, Zbigniew; Marciniak, Paweł; Rosiński, Grzegorz; Büyükgüzel, Ender; Büyükgüzel, Kemal; Falabella, Patrizia; Scrano, Laura; Ventrella, Emanuela; Lelario, Filomena; Bufo, Sabino A.

    2016-01-01

    Only a small percentage of insect species are pests. However, pest species cause significant losses in agricultural and forest crops, and many are vectors of diseases. Currently, many scientists are focused on developing new tools to control insect populations, including secondary plant metabolites, e.g., alkaloids, glycoalkaloids, terpenoids, organic acids and alcohols, which show promise for use in plant protection. These compounds can affect insects at all levels of biological organization, but their action generally disturbs cellular and physiological processes, e.g., by altering redox balance, hormonal regulation, neuronal signalization or reproduction in exposed individuals. Secondary plant metabolites cause toxic effects that can be observed at both lethal and sublethal levels, but the most important effect is repellence. Plants from the Solanaceae family, which contains numerous economically and ecologically important species, produce various substances that affect insects belonging to most orders, particularly herbivorous insects and other pests. Many compounds possess insecticidal properties, but they are also classified as molluscides, acaricides, nematocides, fungicides and bactericides. In this paper, we present data on the sublethal and lethal toxicity caused by pure metabolites and crude extracts obtained from Solanaceae plants. Pure substances as well as water and/or alcohol extracts cause lethal and sublethal effects in insects, which is important from the economical point of view. We discuss the results of our study and their relevance to plant protection and management. PMID:26938561

  20. Identification of imidacloprid metabolites in onion (Allium cepa L.) using high-resolution mass spectrometry and accurate mass tools.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Zavitsanos, Paul; Zweigenbaum, Jerry A

    2013-09-15

    Imidacloprid is a potent and widely used insecticide on vegetable crops, such as onion (Allium cepa L.). Because of possible toxicity to beneficial insects, imidacloprid and several metabolites have raised safety concerns for pollenating insects, such as honey bees. Thus, imidacloprid metabolites continue to be an important subject for new methods that better understand its dissipation and fate in plants, such as onions. One month after a single addition of imidacloprid to soil containing onion plants, imidacloprid and its metabolites were extracted from pulverized onion with a methanol/water-buffer mixture and analyzed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) using a labeled imidacloprid internal standard and tandem mass spectrometric (MS/MS) analysis. Accurate mass tools were developed and applied to detect seven new metabolites of imidacloprid with the goal to better understand its fate in onion. The accurate mass tools include: database searching, diagnostic ions, chlorine mass filters, Mass Profiler software, and manual use of metabolic analogy. The new metabolites discovered included an amine reduction product (m/z 226.0854), and its methylated analogue (m/z 240.1010), and five other metabolites, all of unknown toxicity to insects. The accurate mass tools were combined with LC/QTOF-MS and were able to detect both known and new metabolites of imidacloprid using fragmentation studies of both parent and labeled standards. New metabolites and their structures were inferred from these MS/MS studies with accurate mass, which makes it possible to better understand imidacloprid metabolism in onion as well as new metabolite targets for toxicity studies. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Cytochrome P{sub 450}-dependent toxic effects of primaquine on human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shobana; Department of Pharmacology, School of Pharmacy, University of Mississippi, University MS 38677; Tekwani, Babu L., E-mail: btekwani@olemiss.ed

    Primaquine, an 8-aminoquinoline, is the drug of choice for radical cure of relapsing malaria. Use of primaquine is limited due to its hemotoxicity, particularly in populations with glucose-6-phosphate dehydrogenase deficiency [G6PD(-)]. Biotransformation appears to be central to the anti-infective and hematological toxicities of primaquine, but the mechanisms are still not well understood. Metabolic studies with primaquine have been hampered due to the reactive nature of potential hemotoxic metabolites. An in vitro metabolism-linked hemotoxicity assay has been developed. Co-incubation of the drug with normal or G6PD(-) erythrocytes, microsomes or recombinant cytochrome P{sub 450} (CYP) isoforms has allowed in situ generation ofmore » potential hemotoxic metabolite(s), which interact with the erythrocytes to generate hemotoxicity. Methemoglobin formation, real-time generation of reactive oxygen intermediates (ROIs) and depletion of reactive thiols were monitored as multiple biochemical end points for hemotoxicity. Primaquine alone did not produce any hemotoxicity, while a robust increase was observed in methemoglobin formation and generation of ROIs by primaquine in the presence of human or mouse liver microsomes. Multiple CYP isoforms (CYP2E1, CYP2B6, CYP1A2, CYP2D6 and CYP3A4) variably contributed to the hemotoxicity of primaquine. This was further confirmed by significant inhibition of primaquine hemotoxicity by the selective CYP inhibitors, namely thiotepa (CYP2B6), fluoxetine (CYP2D6) and troleandomycin (CYP3A4). Primaquine caused similar methemoglobin formation in G6PD(-) and normal human erythrocytes. However, G6PD(-) erythrocytes suffered higher oxidative stress and depletion of thiols than normal erythrocytes due to primaquine toxicity. The results provide significant insights regarding CYP isoforms contributing to hemotoxicity and may be useful in controlling toxicity of primaquine to increase its therapeutic utility.« less

  2. Life cycle of petroleum biodegradation metabolite plumes, and implications for risk management at fuel release sites.

    PubMed

    Zemo, Dawn A; O'Reilly, Kirk T; Mohler, Rachel E; Magaw, Renae I; Espino Devine, Catalina; Ahn, Sungwoo; Tiwary, Asheesh K

    2017-07-01

    This paper summarizes the results of a 5-y research study of the nature and toxicity of petroleum biodegradation metabolites in groundwater at fuel release sites that are quantified as diesel-range "Total Petroleum Hydrocarbons" (TPH; also known as TPHd, diesel-range organics (DRO), etc.), unless a silica gel cleanup (SGC) step is used on the sample extract prior to the TPH analysis. This issue is important for site risk management in regulatory jurisdictions that use TPH as a metric; the presence of these metabolites may preclude site closure even if all other factors can be considered "low-risk." Previous work has shown that up to 100% of the extractable organics in groundwater at petroleum release sites can be biodegradation metabolites. The metabolites can be separated from the hydrocarbons by incorporating an SGC step; however, regulatory agency acceptance of SGC has been inconsistent because of questions about the nature and toxicity of the metabolites. The present study was conducted to answer these specific questions. Groundwater samples collected from source and downgradient wells at fuel release sites were extracted and subjected to targeted gas chromatography-mass spectrometry (GC-MS) and nontargeted two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-MS) analyses, and the metabolites identified in each sample were classified according to molecular structural classes and assigned an oral reference dose (RfD)-based toxicity ranking. Our work demonstrates that the metabolites identified in groundwater at biodegrading fuel release sites are in classes ranked as low toxicity to humans and are not expected to pose significant risk to human health. The identified metabolites naturally attenuate in a predictable manner, with an overall trend to an increasingly higher proportion of organic acids and esters, and a lower human toxicity profile, and a life cycle that is consistent with the low-risk natural attenuation paradigm adopted by many regulatory agencies for petroleum release sites. Integr Environ Assess Manag 2017;13:714-727. © 2016 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2016 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  3. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sungkyoon; Kim, David; Pollack, Gary M.

    2009-07-01

    Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA,more » DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was {approx} 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities ({approx} 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.« less

  4. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine

    PubMed Central

    Kim, Sungkyoon; Kim, David; Pollack, Gary M.; Collins, Leonard B.; Rusyn, Ivan

    2009-01-01

    Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ~74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 hr, 0.081 ml/hr; TCA: 12 hr, 3.80 ml/hr; DCVG: 1.4 hr, 16.8 ml/hr; DCVC: 1.2 hr, 176 ml/hr. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (~3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment. PMID:19409406

  5. Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta.

    PubMed

    Nyanhongo, Gibson S; Couto, Susana Rodríguez; Guebitz, Georg M

    2006-06-01

    During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.

  6. Differences in the metabolism and disposition of inhaled (3H)benzene by F344/N rats and B6C3F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.J.; Bechtold, W.E.; Birnbaum, L.S.

    1988-06-15

    Benzene is a potent hematotoxin and has been shown to cause leukemia in man. Chronic toxicity studies indicate that B6C3F1 mice are more susceptible than F334/N rats to benzene toxicity. The purpose of the studies presented in this paper was to determine if there were metabolic differences between F344/N rats and B6C3F1 mice which might be responsible for this increased susceptibility. Metabolites of benzene in blood, liver, lung, and bone marrow were measured during and following a 6-hr 50 ppm exposure to benzene vapor. Hydroquinone glucuronide, hydroquinone, and muconic acid, which reflect pathways leading to potential toxic metabolites of benzene,more » were present in much greater concentrations in the mouse than in rat tissues. Phenylsulfate, a detoxified metabolite, and an unknown water-soluble metabolite were present in approximately equal concentrations in these two species. These results indicate that the proportion of benzene metabolized via pathways leading to the formation of potentially toxic metabolites as opposed to detoxification pathways was much higher in B6C3F1 mice than in F344 rats, which may explain the higher susceptibility of mice to benzene-induced hematotoxicity and carcinogenicity.« less

  7. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, Fabrizio

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore tomore » the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis. • Photochemical and EPR studies support generation of aryl radicals by C-Cl cleavage. • The aminoalkyl side chain of metabolites modulates the photo(geno)toxic potential.« less

  8. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin.

    PubMed

    Beversdorf, Lucas J; Rude, Kayla; Weirich, Chelsea A; Bartlett, Sarah L; Seaman, Mary; Kozik, Christine; Biese, Peter; Gosz, Timothy; Suha, Michael; Stempa, Christopher; Shaw, Christopher; Hedman, Curtis; Piatt, Joseph J; Miller, Todd R

    2018-04-16

    Freshwater cyanobacterial blooms are becoming increasingly problematic in regions that rely on surface waters for drinking water production. Microcystins (MCs) are toxic peptides produced by multiple cyanobacterial genera with a global occurrence. Cyanobacteria also produce a variety of other toxic and/or otherwise bioactive peptides (TBPs) that have gained less attention including cyanopeptolins (Cpts), anabaenopeptins (Apts), and microginins (Mgn). In this study, we compared temporal and spatial trends of four MCs (MCLR, MCRR, MCYR, MCLA), three Cpts (Cpt1020, Cpt1041, Cpt1007), two Apts (AptF, AptB), and Mgn690 in raw drinking water and at six surface water locations above these drinking water intakes in a eutrophic lake. All four MC congeners and five of six TBPs were detected in lake and raw drinking water. Across all samples, MCLR was the most frequently detected metabolite (100% of samples) followed by MCRR (97%) > Cpt1007 (74%) > MCYR (69%) > AptF (67%) > MCLA (61%) > AptB (54%) > Mgn690 (29%) and Cpt1041 (15%). Mean concentrations of MCs, Apts, and Cpts into two drinking water intakes were 3.9 ± 4.7, 0.14 ± 0.21, and 0.38 ± 0.92, respectively. Mean concentrations in surface water were significantly higher (p < 0.05) than in drinking water intakes for MCs but not for Cpts and Apts. Temporal trends in MCs, Cpts, and Apts in the two raw drinking water intakes were significantly correlated (p < 0.05) with measures of cell abundance (chlorophyll-a, Microcystis cell density), UV absorbance, and turbidity in surface water. This study expands current information about cyanobacterial TBPs that occur in lakes and that enter drinking water treatment plants and underscores the need to determine the fate of less studied cyanobacterial metabolites during drinking water treatment that may exacerbate toxicity of more well-known cyanobacterial toxins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    PubMed

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  10. Towards a Cancer Drug of Fungal Origin

    PubMed Central

    Kornienko, Alexander; Evidente, Antonio; Vurro, Maurizio; Mathieu, Véronique; Cimmino, Alessio; Evidente, Marco; van Otterlo, Willem A. L.; Dasari, Ramesh; Lefranc, Florence; Kiss, Robert

    2015-01-01

    Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed and potential solutions that could be pursued by researchers are highlighted. PMID:25850821

  11. Inhibition of HIV-1 Replication by Secondary Metabolites From Endophytic Fungi of Desert Plants

    PubMed Central

    Wellensiek, Brian P.; Ramakrishnan, Rajesh; Bashyal, Bharat P.; Eason, Yvette; Gunatilaka, A. A. Leslie; Ahmad, Nafees

    2013-01-01

    Most antiretroviral drugs currently in use to treat an HIV-1 infection are chemically synthesized and lead to the development of viral resistance, as well as cause severe toxicities. However, a largely unexplored source for HIV-1 drug discovery is endophytic fungi that live in a symbiotic relationship with plants. These fungi produce biologically active secondary metabolites, which are natural products that are beneficial to the host. We prepared several hundred extracts from endophytic fungi of desert plants and evaluated the inhibitory effects on HIV-1 replication of those extracts that showed less than 30% cytotoxicity in T-lymphocytes. Those extracts that inhibited viral replication were fractionated in order to isolate the compounds responsible for activity. Multiple rounds of fractionation and antiviral evaluation lead to the identification of four compounds, which almost completely impede HIV-1 replication. These studies demonstrate that metabolites from endophytic fungi of desert plants can serve as a viable source for identifying potent inhibitors of HIV-1 replication. PMID:23961302

  12. Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168.

    PubMed

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2009-09-01

    Micrococcus glutamicus NCIM-2168 exhibited complete decolorization and degradation of C.I. Reactive Green 19A (an initial concentration of 50 mg l(-1)) within 42 h at temperature 37 degrees C and pH 8, under static condition. Extent of mineralization was determined with total organic carbon (TOC) and chemical oxygen demand (COD) measurement, showing a satisfactory reduction of TOC (72%) and COD (66%) within 42 h. Enzyme studies shows involvement of oxidoreductive enzymes in decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Reactive Green 19A into various metabolites. The microbial toxicity and phytotoxicity assay revealed that the degradation of Reactive Green 19A produced nontoxic metabolites. In addition, the M. glutamicus strain was applied to decolorize a mixture of ten reactive dyes showing a 63% decolorization (in terms of decrease in ADMI value) within 72 h, along with 48% and 42% reduction in TOC and COD under static condition.

  13. Further insights into brevetoxin metabolism by de novo radiolabeling.

    PubMed

    Calabro, Kevin; Guigonis, Jean-Marie; Teyssié, Jean-Louis; Oberhänsli, François; Goudour, Jean-Pierre; Warnau, Michel; Bottein, Marie-Yasmine Dechraoui; Thomas, Olivier P

    2014-06-10

    The toxic dinoflagellate Karenia brevis, responsible for early harmful algal blooms in the Gulf of Mexico, produces many secondary metabolites, including potent neurotoxins called brevetoxins (PbTx). These compounds have been identified as toxic agents for humans, and they are also responsible for the deaths of several marine organisms. The overall biosynthesis of these highly complex metabolites has not been fully ascertained, even if there is little doubt on a polyketide origin. In addition to gaining some insights into the metabolic events involved in the biosynthesis of these compounds, feeding studies with labeled precursors helps to discriminate between the de novo biosynthesis of toxins and conversion of stored intermediates into final toxic products in the response to environmental stresses. In this context, the use of radiolabeled precursors is well suited as it allows working with the highest sensitive techniques and consequently with a minor amount of cultured dinoflagellates. We were then able to incorporate [U-¹⁴C]-acetate, the renowned precursor of the polyketide pathway, in several PbTx produced by K. brevis. The specific activities of PbTx-1, -2, -3, and -7, identified by High-Resolution Electrospray Ionization Mass Spectrometer (HRESIMS), were assessed by HPLC-UV and highly sensitive Radio-TLC counting. We demonstrated that working at close to natural concentrations of acetate is a requirement for biosynthetic studies, highlighting the importance of highly sensitive radiolabeling feeding experiments. Quantification of the specific activity of the four, targeted toxins led us to propose that PbTx-1 and PbTx-2 aldehydes originate from oxidation of the primary alcohols of PbTx-7 and PbTx-3, respectively. This approach will open the way for a better comprehension of the metabolic pathways leading to PbTx but also to a better understanding of their regulation by environmental factors.

  14. Further Insights into Brevetoxin Metabolism by de Novo Radiolabeling

    PubMed Central

    Calabro, Kevin; Guigonis, Jean-Marie; Teyssié, Jean-Louis; Oberhänsli, François; Goudour, Jean-Pierre; Warnau, Michel; Dechraoui Bottein, Marie-Yasmine; Thomas, Olivier P.

    2014-01-01

    The toxic dinoflagellate Karenia brevis, responsible for early harmful algal blooms in the Gulf of Mexico, produces many secondary metabolites, including potent neurotoxins called brevetoxins (PbTx). These compounds have been identified as toxic agents for humans, and they are also responsible for the deaths of several marine organisms. The overall biosynthesis of these highly complex metabolites has not been fully ascertained, even if there is little doubt on a polyketide origin. In addition to gaining some insights into the metabolic events involved in the biosynthesis of these compounds, feeding studies with labeled precursors helps to discriminate between the de novo biosynthesis of toxins and conversion of stored intermediates into final toxic products in the response to environmental stresses. In this context, the use of radiolabeled precursors is well suited as it allows working with the highest sensitive techniques and consequently with a minor amount of cultured dinoflagellates. We were then able to incorporate [U-14C]-acetate, the renowned precursor of the polyketide pathway, in several PbTx produced by K. brevis. The specific activities of PbTx-1, -2, -3, and -7, identified by High-Resolution Electrospray Ionization Mass Spectrometer (HRESIMS), were assessed by HPLC-UV and highly sensitive Radio-TLC counting. We demonstrated that working at close to natural concentrations of acetate is a requirement for biosynthetic studies, highlighting the importance of highly sensitive radiolabeling feeding experiments. Quantification of the specific activity of the four, targeted toxins led us to propose that PbTx-1 and PbTx-2 aldehydes originate from oxidation of the primary alcohols of PbTx-7 and PbTx-3, respectively. This approach will open the way for a better comprehension of the metabolic pathways leading to PbTx but also to a better understanding of their regulation by environmental factors. PMID:24918358

  15. Reactive Metabolites in the Biotransformation of Molecules Containing a Furan Ring

    PubMed Central

    Peterson, Lisa A.

    2012-01-01

    Many xenobiotics containing a furan ring are toxic and/or carcinogenic. The harmful effects of these compounds require furan ring oxidation. This reaction generates an electrophilic intermediate. Depending on the furan ring substituents, the intermediate is either an epoxide or a cis-enedione with more ring substitution favoring epoxide formation. Either intermediate reacts with cellular nucleophiles such as protein or DNA to trigger toxicities. The reactivity of the metabolite determines which cellular nucleophiles are targeted. The toxicity of a particular furan is also influenced by the presence of competing metabolic pathways or efficient detoxification routes. GSH plays an important role in modulating the harmful effects of this class of compound by reacting with the reactive metabolite. However, this may not represent a detoxification step in all cases. PMID:23061605

  16. [Investigation of metabolites of Triptergium wilfordii on liver toxicity by LC-MS].

    PubMed

    Zhao, Xiao-mei; Liu, Xin-ying; Xu, Chang; Ye, Tao; Jin, Cheng; Zhao, Kui-jun; Ma, Zhi-jie; Xiao, Xiao-he

    2015-10-01

    In this paper, biomarkers of liver toxicity of Triptergium wilfordii based on metabolomics was screened, and mechanism of liver toxicity was explored to provide a reference for the clinical diagnosis for liver toxicity of Triptergium wilfordii. MS method was carried on the analysis to metabolic fingerprint spectrum between treatment group and control group. The potential biomarkers were compared and screened using the multivariate statistical methods. As well, metabolic pathway would be detailed description. Combined with PCA and OPLS-DA pattern recognition analysis, 20 metabolites were selected which showed large differences between model group and blank group (VIP > 1.0). Seven possible endogenous biomarkers were analyzed and identified. They were 6-phosphate glucosamine, lysophospholipid, tryptophan, guanidine acetic acid, 3-indole propionic acid, cortisone, and ubiquinone. The level changes of above metabolites indicated that the metabolism pathways of amino acid, glucose, phospholipid and hormone were disordered. It is speculated that liver damage of T. wilfordii may be associated with the abnormal energy metabolism in citric acid cycle, amino acid metabolism in urea cycle, and glucose metabolism. It will be helpful to further research liver toxicity ingredients of Triptergium wilfordii.

  17. Biotransformation of the mycotoxin enniatin B1 in pigs: A comparative in vitro and in vivo approach.

    PubMed

    Ivanova, Lada; Uhlig, Silvio; Devreese, Mathias; Croubels, Siska; Fæste, Christiane Kruse

    2017-07-01

    Enniatins (ENNs) are hexadepsipeptidic mycotoxins produced by Fusarium species. They occur in mg/kg levels in grain from Northern climate areas. Major ENNs such as ENN B and B1 have shown considerable cytotoxicity in different in vitro test systems. To adequately assess exposure and in vivo toxicity the toxicokinetic properties need to be investigated. The present study describes the metabolism of ENN B1 both in vitro and in vivo in pigs, comparing metabolites found in vitro in experiments with liver microsomes from different pig strains to those found in the plasma of pigs after single oral or intravenous application of ENN B1. Metabolites of hepatic biotransformation were tentatively identified and characterised by high performance liquid chromatography coupled to ion trap and high-resolution mass spectrometry, as well as chemical derivatisations. Kinetic parameters of metabolite formation and elimination were determined. Metabolite formation was higher when ENN B1 was absorbed from the gut compared to intravenous administration indicating pre-systemic metabolism of ENN B1 after oral uptake. The in vitro approach resulted in the detection of ten ENN B1 metabolites, while six were detected in in vivo samples. The putative ENN B1 metabolites were products of hydroxylation, carbonylation, carboxylation and oxidative demethylation reactions. Copyright © 2017. Published by Elsevier Ltd.

  18. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin.

    PubMed

    Pearson, Leanne; Mihali, Troco; Moffitt, Michelle; Kellmann, Ralf; Neilan, Brett

    2010-05-10

    The cyanobacteria or "blue-green algae", as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins). However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites.

  19. TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ACUTE ORAL ADMINISTRATION OF ARSENATE

    EPA Science Inventory

    ABSTRACT The relationship of exposure dose and tissue concentration of parent chemical and metabolites is a critical issue in cases where toxicity may be mediated by a metabolite or parent chemical and metabolite acting together. This has emerged as an issue for inorganic ars...

  20. Filamentous fungal biofilm for production of human drug metabolites.

    PubMed

    Amadio, Jessica; Casey, Eoin; Murphy, Cormac D

    2013-07-01

    In drug development, access to drug metabolites is essential for assessment of toxicity and pharmacokinetic studies. Metabolites are usually acquired via chemical synthesis, although biological production is potentially more efficient with fewer waste management issues. A significant problem with the biological approach is the effective half-life of the biocatalyst, which can be resolved by immobilisation. The fungus Cunninghamella elegans is well established as a model of mammalian metabolism, although it has not yet been used to produce metabolites on a large scale. Here, we describe immobilisation of C. elegans as a biofilm, which can transform drugs to important human metabolites. The biofilm was cultivated on hydrophilic microtiter plates and in shake flasks containing a steel spring in contact with the glass. Fluorescence and confocal scanning laser microscopy revealed that the biofilm was composed of a dense network of hyphae, and biochemical analysis demonstrated that the matrix was predominantly polysaccharide. The medium composition was crucial for both biofilm formation and biotransformation of flurbiprofen. In shake flasks, the biofilm transformed 86% of the flurbiprofen added to hydroxylated metabolites within 24 h, which was slightly more than planktonic cultures (76%). The biofilm had a longer effective lifetime than the planktonic cells, which underwent lysis after 2×72 h cycles, and diluting the Sabouraud dextrose broth enabled the thickness of the biofilm to be controlled while retaining transformation efficiency. Thus, C. elegans biofilm has the potential to be applied as a robust biocatalyst for the production of human drug metabolites required for drug development.

  1. Roxarsone and its metabolites in chicken manure significantly enhance the uptake of As species by vegetables.

    PubMed

    Huang, Lianxi; Yao, Lixian; He, Zhaohuan; Zhou, Changmin; Li, Guoliang; Yang, Baomei; Deng, Xiancai

    2014-04-01

    Roxarsone is an organoarsenic feed additive which can be finally degraded to other higher toxic metabolites after excreted by animal. In this work, the uptake of As species by vegetables treated with chicken manure bearing roxarsone and its metabolites was investigated. It was showed that more than 96% of roxarsone added in chicken feed was degraded and converted to arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate, 4-hydroxyphenylarsonic acid and other unknown As species. Arsenite and arsenate could be found in roots of vegetables but only arsenite transported up to shoots. Chicken manure bearing roxarsone and its metabolites increased 33-175% of arsenite and 28% ∼ seven times of arsenate in vegetable roots, 68-175% of arsenite in edible vegetable shoots. Arsenite, the most toxic As form, was the major extractable As species in vegetables accounted for 79-98%. The results reflected that toxic element As could be absorbed by vegetables via the way: roxarsone in feed → animal → animal manure → soil → crop and the uptake of As species would be enhanced by using chicken manure bearing roxarsone and its metabolites as organic fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.

    PubMed

    Medinsky, M A; Schlosser, P M; Bond, J A

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes, such as enzymatic oxidation, and deactivation processes, like conjugation and excretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes.

    PubMed

    De La Rosa, Vanessa Y; Asfaha, Jonathan; Fasullo, Michael; Loguinov, Alex; Li, Peng; Moore, Lee E; Rothman, Nathaniel; Nakamura, Jun; Swenberg, James A; Scelo, Ghislaine; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2017-11-01

    Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    PubMed Central

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-01-01

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975

  5. Evidence that Formation of Protoanemonin from Metabolites of 4-Chlorobiphenyl Degradation Negatively Affects the Survival of 4-Chlorobiphenyl-Cometabolizing Microorganisms

    PubMed Central

    Blasco, R.; Mallavarapu, M.; Wittich, R.; Timmis, K. N.; Pieper, D. H.

    1997-01-01

    A rapid decline in cell viability of different PCB-metabolizing organisms was observed in soil microcosms amended with 4-chlorobiphenyl. The toxic effect could not be attributed to 4-chlorobiphenyl but was due to a compound formed from the transformation of 4-chlorobiphenyl by the natural microflora. Potential metabolites of 4-chlorobiphenyl, 4-chlorobenzoate and 4-chlorocatechol, caused similar toxic effects. We tested the hypothesis that the toxic effects are due to the formation of protoanemonin, a plant-derived antibiotic, which is toxic to microorganisms and which has been shown to be formed from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. Consistent with our hypothesis, addition to soil microcosms of strains able to reroute intermediary 4-chlorocatechol from the 3-oxoadipate pathway and into the meta-cleavage pathway or able to mineralize 4-chlorocatechol by a modified ortho-cleavage pathway resulted in reversal of this toxic effect. Surprisingly, while direct addition of protoanemonin influenced both the viability of fungi and the microbial activity of the soil microcosm, there was little effect on bacterial viability due to its rapid degradation. This rapid degradation accounts for our inability to detect this compound in soils amended with 4-chlorocatechol. However, significant accumulation of protoanemonin was observed by a mixed bacterial community enriched with benzoate or a mixture of benzoate and 4-methylbenzoate, providing the metabolic potential of the soil to form protoanemonin. The effects of soil heterogeneity and microcosm interactions are discussed in relation to the different effects of protoanemonin when applied as a shock load and when it is produced in small amounts from precursors over long periods. PMID:16535507

  6. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM BY ION-EXCHANGE MEMBRANES

    EPA Science Inventory

    Metabolites such as ammonia and lactic acid formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. Cell culture conducted in the presence of such accumulated metabolites is therefore limited in pro...

  7. Detection and quantification of three distinct Neotyphodium lolii endophytes in Lolium perenne by real time PCR of secondary metabolite genes.

    PubMed

    Zhou, Yanfei; Bradshaw, Rosie E; Johnson, Richard D; Hume, David E; Simpson, Wayne R; Schmid, Jan

    2014-03-01

    Perennial ryegrass (Lolium perenne) is a widely used pasture grass, which is frequently infected by Neotyphodium lolii endophytes that enhance grass performance but can produce alkaloids inducing toxicosis in livestock. Several selected endophyte strains with reduced livestock toxicity, but that confer insect resistance, are now in common use. Little is known regarding the survival and persistence of these endophytes when in competition with common toxic endophytes. This is mainly because there are currently no assays available to easily and reliably quantify different endophytes in pastures or in batches of seeds infected with multiple strains. We developed real time PCR assays, based on secondary metabolite genes known to differ between N. lolii endophyte strains, to quantify two selected endophytes, AR1 and AR37, and a common toxic ecotype used in New Zealand. A duplex PCR allowed assessment of endophyte:grass DNA ratios with high sensitivity, specificity and precision. Endophyte specific primers/probes could detect contamination of AR37 seeds with other endophytes down to a level of 3-25%. We demonstrated that it is possible to quantify different endophyte strains simultaneously using multiplex PCR. This method has potential applications in management of endophytes in pastures and in fundamental research into this important plant-microbe symbiosis. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Toxic phytoplankton in San Francisco Bay

    USGS Publications Warehouse

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  9. Oxidative stress due to (R)-styrene oxide exposure and the role of antioxidants in non-Swiss albino (NSA) mice.

    PubMed

    Meszka-Jordan, Anna; Mahlapuu, Riina; Soomets, Ursel; Carlson, Gary P

    2009-01-01

    Styrene produces lung and liver damage that may be related to oxidative stress. The purpose of this study was to investigate the toxicity of (R)-styrene oxide (R-SO), the more active enantiomeric metabolite of styrene, and the protective properties of the antioxidants glutathione (GSH), N-acetylcysteine (NAC), and 4-methoxy-L-tyrosinyl-gamma-L-glutamyl-L-cysteinyl-glycine (UPF1) against R-SO-induced toxicity in non-Swiss Albino (NSA) mice. UPF1 is a synthetic GSH analog that was shown to have 60 times the ability to scavenge reactive oxygen species (ROS) in comparison to GSH. R-SO toxicity to the lung was measured by elevations in the activity of lactate dehydrogenase (LDH), protein concentration, and number of cells in bronchoalveolar lavage fluid (BALF). Toxicity to the liver was measured by increases in serum sorbitol dehydrogenase (SDH) activity. Antioxidants were not able to decrease the adverse effects of R-SO on lung. However, NAC (200 mg/kg) ip and GSH (600 mg/kg), administered orally prior to R-SO (300 mg/kg) ip, showed significant protection against liver toxicity as measured by SDH activity. Unexpectedly, a synthetic GSH analog, UPF1 (0.8 mg/kg), administered intravenously (iv) prior to R-SO, produced a synergistic effect with regard to liver and lung toxicity. Treatment with UPF1 (0.8 mg/kg) iv every other day for 1 wk for preconditioning prior to R-SO ip did not result in any protection against liver and lung toxicity, but rather enhanced the toxicity when administered prior R-SO. The results of the present study demonstrated protection against R-SO toxicity in liver but not lung by the administration of the antioxidants NAC and GSH.

  10. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs.

    PubMed

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-09-02

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds.

  11. Tissue Distribution And Urinary Excretion Of Inorganic Arsenic And Its Methylated Metabolites In C57BL6 Mice Following Subchronic Exposure To Arsenate In Drinking Water

    EPA Science Inventory

    The relationship of exposure and tissue concentration of parent chemical and metabolites over prolonged exposure is a critical issue for chronic toxicities mediated by metabolite(s) rather than parent chemical alone. This is an issue for AsV because its trivalent meta...

  12. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S.

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Bothmore » FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.« less

  13. The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora.

    PubMed

    Schindler, Daniel; Nowrousian, Minou

    2014-07-01

    Filamentous ascomycetes have long been known as producers of a variety of secondary metabolites, many of which have toxic effects on other organisms. However, the role of these metabolites in the biology of the fungi that produce them remains in most cases enigmatic. A major group of fungal secondary metabolites are polyketides. They are chemically diverse, but have in common that their chemical scaffolds are synthesized by polyketide synthases (PKSs). In a previous study, we analyzed development-dependent expression of pks genes in the filamentous ascomycete Sordaria macrospora. Here, we show that a deletion mutant of the pks4 gene is sterile, producing only protoperithecia but no mature perithecia, whereas overexpression of pks4 leads to enlarged, malformed fruiting bodies. Thus, correct expression levels of pks4 are essential for wild type-like perithecia formation. The predicted PKS4 protein has a domain structure that is similar to homologs in other fungi, but conserved residues of a methyl transferase domain present in other fungi are mutated in PKS4. Expression of several developmental genes is misregulated in the pks4 mutant. Surprisingly, the development-associated app gene is not downregulated in the mutant, in contrast to all other previously studied mutants with a block at the protoperithecial stage. Our data show that the polyketide synthase gene pks4 is essential for sexual development and plays a role in regulating fruiting body morphology. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Demonstration of carboxylesterase in cytology samples of human nasal respiratory epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, D.A.; Nikula, K.J.; Avila, K.

    1995-12-01

    The epithelial lining of the nasal airways is a target for responses induced by a variety of toxicant exposures. The high metabolic capacity of this tissue has been suggested to play a role in both protection of the airways through detoxication of certain toxicants, as well as in activation of other compounds to more toxic metabolites. Specifically, nasal carboxylesterase (CE) has been shown to mediate the toxicity of inhaled esters and acrylates by converting them to more toxic acid and alcohol metabolites which can be cytotoxic and/or carcinogenic to the nasal mucosa. Due to difficulties in extrapolating rodent models tomore » human, new paradigms using human cells and tissues are essential to understanding and evaluating the metabolic processes in human nasal epithelium.« less

  15. Bioactivation, protein haptenation, and toxicity of sulfamethoxazole and dapsone in normal human dermal fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaiya, Payal; Roychowdhury, Sanjoy; Vyas, Piyush M.

    2006-09-01

    Cutaneous drug reactions (CDRs) associated with sulfonamides are believed to be mediated through the formation of reactive metabolites that result in cellular toxicity and protein haptenation. We evaluated the bioactivation and toxicity of sulfamethoxazole (SMX) and dapsone (DDS) in normal human dermal fibroblasts (NHDF). Incubation of cells with DDS or its metabolite (D-NOH) resulted in protein haptenation readily detected by confocal microscopy and ELISA. While the metabolite of SMX (S-NOH) haptenated intracellular proteins, adducts were not evident in incubations with SMX. Cells expressed abundant N-acetyltransferase-1 (NAT1) mRNA and activity, but little NAT2 mRNA or activity. Neither NAT1 nor NAT2 proteinmore » was detected. Incubation of NHDF with S-NOH or D-NOH increased reactive oxygen species formation and reduced glutathione content. NHDF were less susceptible to the cytotoxic effect of S-NOH and D-NOH than are keratinocytes. Our studies provide the novel observation that NHDF are able to acetylate both arylamine compounds and bioactivate the sulfone DDS, giving rise to haptenated proteins. The reactive metabolites of SMX and DDS also provoke oxidative stress in these cells in a time- and concentration-dependent fashion. Further work is needed to determine the role of the observed toxicity in mediating CDRs observed with these agents.« less

  16. A New Ochratoxin A Biodegradation Strategy Using Cupriavidus basilensis Őr16 Strain

    PubMed Central

    Krifaton, Csilla; Szoboszlay, Sándor; Kukolya, József; Szőke, Zsuzsanna; Kőszegi, Balázs; Albert, Mihály; Barna, Teréz; Mézes, Miklós; Kovács, Krisztina J.; Kriszt, Balázs

    2014-01-01

    Ochratoxin-A (OTA) is a mycotoxin with possibly carcinogenic and nephrotoxic effects in humans and animals. OTA is often found as a contaminant in agricultural commodities. The aim of the present work was to evaluate OTA-degrading and detoxifying potential of Cupriavidus basilensis ŐR16 strain. In vivo administration of OTA in CD1 male mice (1 or 10 mg/kg body weight for 72 hours or 0.5 mg/kg body weight for 21 days) resulted in significant elevation of OTA levels in the blood, histopathological alterations- and transcriptional changes in OTA-dependent genes (annexinA2, clusterin, sulphotransferase and gadd45 and gadd153) in the renal cortex. These OTA-induced changes were not seen in animals that have been treated with culture supernatants in which OTA was incubated with Cupriavidus basilensis ŐR16 strain for 5 days. HPLC and ELISA methods identified ochratoxin α as the major metabolite of OTA in Cupriavidus basilensis ŐR16 cultures, which is not toxic in vivo. This study has demonstrated that Cupriavidus basilensis ŐR16 efficiently degrade OTA without producing toxic adventitious metabolites. PMID:25302950

  17. Ability of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) to detoxify juglone, the main secondary metabolite of the non-host plant walnut.

    PubMed

    Piskorski, Rafal; Ineichen, Simon; Dorn, Silvia

    2011-10-01

    Many plant species produce toxic secondary metabolites that limit attacks by herbivorous insects, and may thereby constrain insect expansion to new hosts. Walnut is a host for the codling moth Cydia pomonella, which efficiently detoxifies the main walnut defensive compound juglone (5-hydroxy-1,4-naphthoquinone). The oriental fruit moth Grapholita molesta, which also belongs to the tribe Grapholitini, does not feed on walnut. We tested the performance of G. molesta, a highly invasive species, on artificial diets containing juglone at levels mimicking those found in walnut over the growing season. Juglone-fed G. molesta survived relatively well to adulthood, but larval and adult body weights were reduced, and larval developmental time was prolonged in a dose-dependent fashion. Chemical analysis of frass from larvae that had been fed a juglone-containing diet suggests that G. molesta reduces juglone to non-toxic 1,4,5-trihydroxynaphthalene in its gut. This unexpected tolerance of G. molesta to high levels of juglone may facilitate expansion of the host range beyond the current rosacean fruit trees used by this invasive pest.

  18. Enzymatic Degradation of Phenazines Can Generate Energy and Protect Sensitive Organisms from Toxicity

    PubMed Central

    Costa, Kyle C.; Bergkessel, Megan; Saunders, Scott; Korlach, Jonas

    2015-01-01

    ABSTRACT Diverse bacteria, including several Pseudomonas species, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulated in situ and what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of three Pseudomonas-derived phenazines: phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and pyocyanin (PYO). PCA can be used as the sole carbon source for growth by these organisms. Deletion of several genes in Mycobacterium fortuitum abolishes the degradation phenotype, and expression of two genes in a heterologous host confers the ability to degrade PCN and PYO. In cocultures with phenazine producers, phenazine degraders alter the abundance of different phenazine types. Not only does degradation support mycobacterial catabolism, but also it provides protection to bacteria that would otherwise be inhibited by the toxicity of PYO. Collectively, these results serve as a reminder that microbial metabolites can be actively modified and degraded and that these turnover processes must be considered when the fate and impact of such compounds in any environment are being assessed. PMID:26507234

  19. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities.

    PubMed

    Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie

    2017-07-28

    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

  20. Degradation in soil and water and ecotoxicity of rimsulfuron and its metabolites.

    PubMed

    Martins, J M; Chevre, N; Spack, L; Tarradellas, J; Mermoud, A

    2001-11-01

    The degradation and ecotoxicity of sulfonylurea herbicide rimsulfuron and its major metabolites were examined in batch samples of an alluvial sandy loam and in freshwater. An HPLC-DAD method was adapted to simultaneously identify and quantify rimsulfuron and its metabolites, which was successfully validated by GC-MS analysis. In aqueous solutions, pure rimsulfuron was rapidly hydrolyzed into metabolite 1 (N-(4,6-dimethoxypyrimidin-2-yl)-N-(3-(ethylsulfonyl)-2-pyridinylurea)), which itself was transformed into the more stable metabolite 2 (N-((3-(ethylsulfonyl)-2-pyridinyl)-4,6-dimethoxy-2-pyrimidineamine)), with half-life (t(1/2)) values of 2 and 2.5 days, respectively. Hydrolysis was instantaneous under alkaline conditions (pH = 10). In aqueous suspensions of the alluvial soil (pH = 8), formulated rimsulfuron had a half-life of 7 days, whereas that of metabolite 1 was similar to that in water (about 3.5 days). The degradation of the two major metabolites was also studied in soil suspensions with the pure compounds at concentrations ranging from 1 to 10 mg l(-1). The half-life of metabolite 1 ranged from 3.9 to 5 days, close to the previous values. Metabolite 2 was more persistent and its degradation is strongly dependent on the initial concentration (C0): half-life values ranged from 8.1 to 55 days at 2-10 mg l(-1), respectively. These values are higher than those determined from the kinetics of metabolite 1 transformation into metabolite 2 (t(1/2) = 8-19 days). The ecotoxicity of the three chemicals was evaluated through their effect on Daphnia magna and Vibrio fischeri (Microtox bioassay). No effect was observed on D. magna with 24 and 48 h acute toxicity tests. Similarly, no toxic effect was observed with the Microtox test for the three chemicals in the range of concentrations tested that included the field application dose. Thus, being of low persistence and lacking acute toxicity, these chemicals present a low environmental risk. However, chronic effects should be studied in order to confirm the safety of rimsulfuron and its major metabolites.

  1. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    PubMed

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  2. On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin

    PubMed Central

    Pearson, Leanne; Mihali, Troco; Moffitt, Michelle; Kellmann, Ralf; Neilan, Brett

    2010-01-01

    The cyanobacteria or “blue-green algae”, as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins). However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites. PMID:20559491

  3. Chlordane Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    USGS Publications Warehouse

    Eisler, R.

    1990-01-01

    Technical chlordane is an organochlorine compound first introduced into the United States in 1947 in a variety of formulations for use as a broad-spectrum pesticide. By 1974, about 9.5 million kilograms of chlordane were produced annually. Concern over the potential carcinogenicity of chlordane has led to sharply curtailed production. Since 1983, chlordane use in the United States has been prohibited, except for control of underground termites. Chlordane is readily absorbed by warmblooded animals through skin, diet, and inhalation, and distributed throughout the body. In general, residues of chlordane and its metabolites are not measurable in tissues 4 to 8 weeks after exposure, although metabolism rates varied significantly between species. Food chain biomagnification is usually low, except in some marine mammals. In most mammals, the metabolite oxychlordane has proven much more toxic and persistent than the parent chemical.

  4. Old drug new use - Amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity

    PubMed Central

    Kong, Ren; Liu, Timothy; Zhu, Xiaoping; Ahmad, Syed; Williams, Alfred L.; Phan, Alexandria T; Zhao, Hong; Scott, John E.; Yeh, Li-An; Wong, Stephen TC

    2014-01-01

    Purpose Irinotecan (CPT-11) induced diarrhea occurs frequently in cancer patients and limits its usage. Bacteria β-glucuronidase (GUS) enzymes in intestines convert the non-toxic metabolite of CPT-11, SN-38G, to toxic SN-38, and finally lead to damage of intestinal epithelial cells and diarrhea. We previously reported amoxapine as potent GUS inhibitor in vitro. To further understand the molecular mechanism of amoxapine and its potential for treatment of CPT-11 induced diarrhea, we studied the binding modes of amoxapine and its metabolites by docking and molecular dynamics simulation, and tested the in vivo efficacy on mice in combination with CPT-11. Experimental Design The binding of amoxapine, its metabolites, 7-hydroxyamoxapine and 8-hydroxyamoxapine, and a control drug loxapine with GUS was explored by computational protocols. The in vitro potencies of metabolites were measured by E. Coli GUS enzyme and cell-based assay. Low dosage daily oral administration was designed to use along with CPT-11 to treat tumor-bearing mice. Results Computational modeling results indicated that amoxapine and its metabolites bound in the active site of GUS and satisfied critical pharmacophore features: aromatic features near bacterial loop residue F365’ and hydrogen bond toward E413. Amoxapine and its metabolites were demonstrated as potent in vitro. Administration of low dosages of amoxapine with CPT-11 in mice achieved significant suppression of diarrhea and reduced tumor growth. Conclusions Amoxapine has great clinical potential to be rapidly translated to human subjects for irinotecan induced diarrhea. PMID:24780296

  5. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-08-01

    Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas.

  6. Ochratoxin A in Moroccan foods: occurrence and legislation.

    PubMed

    Zinedine, Abdellah

    2010-05-01

    Ochratoxin A (OTA) is secondary metabolite naturally produced in food and feed by toxigenic fungi, especially some Aspergillus species and Penicillium verucosum. OTA is one of the most studied mycotoxins and is of great interest due to its toxic effects on human and animals. OTA is produced in different food and feed matrices and contaminates a large range of base foods including cereals and derivatives, spices, dried fruits, wine and coffee, etc. Morocco, a North African country, has a climate characterized by high humidity and temperature, which probably favors the growth of molds. This contribution gives an overview of principal investigations about the presence of OTA in foods available in Morocco. Due to its toxicity, OTA presence is increasingly regulated worldwide, especially in countries of the European Union. However, up until now, no regulation limits were in force in Morocco, probably due to the ignorance of the health and economic problems resulting from OTA contamination. Finally, recommendations and future research directions are given required to assess the situation completely.

  7. Ochratoxin A in Moroccan Foods: Occurrence and Legislation

    PubMed Central

    Zinedine, Abdellah

    2010-01-01

    Ochratoxin A (OTA) is secondary metabolite naturally produced in food and feed by toxigenic fungi, especially some Aspergillus species and Penicillium verucosum. OTA is one of the most studied mycotoxins and is of great interest due to its toxic effects on human and animals. OTA is produced in different food and feed matrices and contaminates a large range of base foods including cereals and derivatives, spices, dried fruits, wine and coffee, etc. Morocco, a North African country, has a climate characterized by high humidity and temperature, which probably favors the growth of molds. This contribution gives an overview of principal investigations about the presence of OTA in foods available in Morocco. Due to its toxicity, OTA presence is increasingly regulated worldwide, especially in countries of the European Union. However, up until now, no regulation limits were in force in Morocco, probably due to the ignorance of the health and economic problems resulting from OTA contamination. Finally, recommendations and future research directions are given required to assess the situation completely. PMID:22069630

  8. Evaluation of hepatic biotransformation of polybrominated diphenyl ethers in the polar bear (Ursus maritimus).

    PubMed

    Krieger, Lisa K; Szeitz, András; Bandiera, Stelvio M

    2016-03-01

    Polar bears are at the top of the Arctic marine food chain and are subject to exposure and bioaccumulation of environmental chemicals of concern such as polybrominated diphenyl ethers (PBDEs), which were widely used as flame retardants. The aim of the present study was to evaluate the in vitro oxidative metabolism of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabrominated diphenyl ether (BDE-99) by polar bear liver microsomes. The identification and quantification of the hydroxy-brominated diphenyl ethers formed were assessed using an ultra-high performance liquid chromatography-tandem mass spectrometry-based method. Incubation of BDE-47 with archived individual liver microsomes, prepared from fifteen polar bears from northern Canada, produced a total of eleven hydroxylated metabolites, eight of which were identified using authentic standards. The major metabolites were 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether and 5'-hydroxy-2,2',4,4'-tetrabromodiphenyl ether. Incubation of BDE-99 with polar bear liver microsomes produced a total of eleven hydroxylated metabolites, seven of which were identified using authentic standards. The major metabolites were 2,4,5-tribromophenol and 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether. Among the CYP specific antibodies tested, anti-rat CYP2B was found to be the most active in inhibiting the formation of hydroxylated metabolites of both BDE-47 and BDE-99, indicating that CYP2B was the major CYP enzyme involved in the oxidative biotransformation of these two congeners. Our study shows that polar bears are capable of forming multiple hydroxylated metabolites of BDE-47 and BDE-99 in vitro and demonstrates the role of CYP2B in the biotransformation and possibly in the toxicity of BDE-47 and BDE-99 in polar bears. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites.

    PubMed

    Shahbaz, M; Stuiver, C E E; Posthumus, F S; Parmar, S; Hawkesford, M J; De Kok, L J

    2014-01-01

    The toxicity of high copper (Cu) concentrations in the root environment of Chinese cabbage (Brassica pekinensis) was little influenced by the sulphur nutritional status of the plant. However, Cu toxicity removed the correlation between sulphur metabolism-related gene expression and the suggested regulatory metabolites. At high tissue Cu levels, there was no relation between sulphur metabolite levels viz. total sulphur, sulphate and water-soluble non-protein thiols, and the expression and activity of sulphate transporters and expression of APS reductase under sulphate-sufficient or-deprived conditions, in the presence or absence of H2 S. This indicated that the regulatory signal transduction pathway of sulphate transporters was overruled or by-passed upon exposure to elevated Cu concentrations. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Comparison of Toxicity of Benzene Metabolite Hydroquinone in Hematopoietic Stem Cells Derived from Murine Embryonic Yolk Sac and Adult Bone Marrow

    PubMed Central

    Zhu, Jie; Wang, Hong; Yang, Shuo; Guo, Liqiao; Li, Zhen; Wang, Wei; Wang, Suhan; Huang, Wenting; Wang, Liping; Yang, Tan; Ma, Qiang; Bi, Yongyi

    2013-01-01

    Benzene is an occupational toxicant and an environmental pollutant that potentially causes hematotoxicity and leukemia in exposed populations. Epidemiological studies suggest an association between an increased incidence of childhood leukemia and benzene exposure during the early stages of pregnancy. However, experimental evidence supporting the association is lacking at the present time. It is believed that benzene and its metabolites target hematopoietic stem cells (HSCs) to cause toxicity and cancer in the hematopoietic system. In the current study, we compared the effects of hydroquinone (HQ), a major metabolite of benzene in humans and animals, on mouse embryonic yolk sac hematopoietic stem cells (YS-HSCs) and adult bone marrow hematopoietic stem cells (BM-HSCs). YS-HSCs and BM-HSCs were isolated and enriched, and were exposed to HQ at increasing concentrations. HQ reduced the proliferation and the differentiation and colony formation, but increased the apoptosis of both YS-HSCs and BM-HSCs. However, the cytotoxic and apoptotic effects of HQ were more apparent and reduction of colony formation by HQ was more severe in YS-HSCs than in BM-HSCs. Differences in gene expression profiles were observed in HQ-treated YS-HSCs and BM-HSCs. Cyp4f18 was induced by HQ both in YS-HSCs and BM-HSCs, whereas DNA-PKcs was induced in BM-HSCs only. The results revealed differential effects of benzene metabolites on embryonic and adult HSCs. The study established an experimental system for comparison of the hematopoietic toxicity and leukemogenicity of benzene and metabolites during mouse embryonic development and adulthood. PMID:23940708

  11. In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum.

    PubMed

    Sánchez, Vladimir; Rebolledo, Oscar; Picaso, Rosa M; Cárdenas, Elizabeth; Córdova, Jesús; González, Orfil; Samuels, Gary J

    2007-01-01

    Seventy-nine Trichoderma strains were isolated from soil taken from 28 commercial plantations of Agave tequilana cv. 'Azul' in the State of Jalisco, Mexico. Nine of these isolates produced nonvolatile metabolites that completely inhibited the growth of Thielaviopsis paradoxa on potato dextrose agar plates. These isolates were identified as Trichoderma longibrachiatum on the basis of their morphology and DNA sequence analysis of two genes (ITS rDNA and translation elongation factor EF-1alpha). Mycoparasitism of Th. paradoxa by T. longibrachiatum strains in dual cultures was examined by scanning electron microscopy. The Trichoderma hyphae grew alongside the Th. paradoxa hyphae, but penetration of Thielaviopsis hyphae by Trichoderma was no apparent. Aleurioconidia of Th. paradoxa were parasitized by Trichoderma. Both hyphae and aleurioconidia of Th. paradoxa lost turgor pressure, wrinkled, collapsed and finally disintegrated. In liquid cultures, all nine Trichoderma isolates produced proteases, beta-1,3-glucanases and chitinases that would be responsible for the degradation of Thielaviopsis hyphae. These results demonstrate that the modes of action of T. longibrachiatum involved against Th. paradoxa in vitro experiments are mycoparasitism and the production of nonvolatile toxic metabolites.

  12. Nutritional control of antibiotic production by Streptomyces platensis MA7327: importance of l-aspartic acid.

    PubMed

    Falzone, Maria; Crespo, Emmanuel; Jones, Klarissa; Khan, Gulaba; Korn, Victoria L; Patel, Amreen; Patel, Mira; Patel, Krishnaben; Perkins, Carrie; Siddiqui, Sana; Stenger, Drew; Yu, Eileen; Gelber, Michael; Scheffler, Robert; Nayda, Vasyl; Ravin, Ariela; Komal, Ronica; Rudolf, Jeffrey D; Shen, Ben; Gullo, Vincent; Demain, Arnold L

    2017-07-01

    Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin also has activity against diabetes in a mouse model. We have been interested in studying the effects of primary metabolites on production of these antibiotics in our chemically defined production medium. In the present work, we tested 32 primary metabolites for their effect. They included 20 amino acids, 7 vitamins and 5 nucleic acid derivatives. Of these, only l-aspartic acid showed stimulation of antibiotic production. We conclude that the stimulatory effect of aspartic acid is due to its role as a precursor involved in the biosynthesis of aspartate-4-semialdehyde, which is the starting point for the biosynthesis of the 3-amino-2,4-dihydroxy benzoic acid portion of the platensimycin molecule.

  13. Nutritional control of antibiotic production by Streptomyces platensis MA7327: importance of L-aspartic acid

    PubMed Central

    Falzone, Maria; Crespo, Emmanuel; Jones, Klarissa; Khan, Gulaba; Korn, Victoria L; Patel, Amreen; Patel, Mira; Patel, Krishnaben; Perkins, Carrie; Siddiqui, Sana; Stenger, Drew; Yu, Eileen; Gelber, Michael; Scheffler, Robert; Nayda, Vasyl; Ravin, Ariela; Komal, Ronica; Rudolf, Jeffrey D; Shen, Ben; Gullo, Vincent; Demain, Arnold L

    2017-01-01

    Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin also has activity against diabetes in a mouse model. We have been interested in studying the effects of primary metabolites on production of these antibiotics in our chemically defined production medium. In the present work, we tested 32 primary metabolites for their effect. They included 20 amino acids, 7 vitamins and 5 nucleic acid derivatives. Of these, only L-aspartic acid showed stimulation of antibiotic production. We conclude that the stimulatory effect of aspartic acid is due to its role as a precursor involved in the biosynthesis of aspartate-4-semialdehyde, which is the starting point for the biosynthesis of the 3-amino-2,4-dihydroxy benzoic acid portion of the platensimycin molecule. PMID:28465627

  14. Rational biosynthetic approaches for the production of new-to-nature compounds in fungi.

    PubMed

    Boecker, Simon; Zobel, Sophia; Meyer, Vera; Süssmuth, Roderich D

    2016-04-01

    Filamentous fungi have the ability to produce a wide range of secondary metabolites some of which are potent toxins whereas others are exploited as food additives or drugs. Fungal natural products still play an important role in the discovery of new chemical entities for potential use as pharmaceuticals. However, in most cases they cannot be directly used as drugs due to toxic side effects or suboptimal pharmacokinetics. To improve drug-like properties, including bioactivity and stability or to produce better precursors for semi-synthetic routes, one needs to generate non-natural derivatives from known fungal secondary metabolites. In this minireview, we describe past and recent biosynthetic approaches for the diversification of fungal natural products, covering examples from precursor-directed biosynthesis, mutasynthesis, metabolic engineering and biocombinatorial synthesis. To illustrate the current state-of-the-art, challenges and pitfalls, we lay particular emphasis on the class of fungal cyclodepsipeptides which have been studied longtime for product diversification and which are of pharmaceutical relevance as drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in this model. To determine whether TxA_2 was involved in toxicity induced by PMN and PMA, lungs were coperfused with the cyclooxygenase inhibitor, indomethacin or the thromboxane synthase inhibitor, Dazmegrel. Experiments were also performed using lungs and/or PMN that had been pretreated with aspirin. These drug treatments had little effect, if any, on the pressure increase; however, they protected lungs against edema development. These results suggest that TxA_2 may participate in the pathogenesis of edema by some other mechanism than by increasing vascular pressure. In conclusion, results from studies performed in this thesis suggest that both active oxygen species and thromboxane are involved in toxicity to the isolated rat lung induced by PMA and PMN. How both of these interact to produce lung injury is a question which remains to be answered.

  16. Identification of the potentiating mutations and synergistic epistasis that enabled the evolution of inter-species cooperation

    DOE PAGES

    Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.; ...

    2017-05-11

    Microbes often engage in cooperation through releasing biosynthetic compounds required by other species to grow. Given that production of costly biosynthetic metabolites is generally subjected to multiple layers of negative feedback, single mutations may frequently be insufficient to generate cooperative phenotypes. Synergistic epistatic interactions between multiple coordinated changes may thus often underlie the evolution of cooperation through overproduction of metabolites. To test the importance of synergistic mutations in cooperation we used an engineered bacterial consortium of an Escherichia coli methionine auxotroph and Salmonella enterica. S. enterica relies on carbon by-products from E. coli if lactose is the only carbon source.more » Directly selecting wild-type S. enterica in an environment that favored cooperation through secretion of methionine only once led to a methionine producer, and this producer both took a long time to emerge and was not very effective at cooperating. On the other hand, when an initial selection for resistance of S. enterica to a toxic methionine analog, ethionine, was used, subsequent selection for cooperation with E. coli was rapid, and the resulting double mutants were much more effective at cooperation. We found that potentiating mutations in metJ increase expression of metA, which encodes the first step of methionine biosynthesis. This increase in expression is required for the previously identified actualizing mutations in metA to generate cooperation. This work highlights that where biosynthesis of metabolites involves multiple layers of regulation, significant secretion of those metabolites may require multiple mutations, thereby constraining the evolution of cooperation.« less

  17. Inflammation-associated gene expression in RAW 264.7 macrophages induced by toxins from fungi common on damp building materials.

    PubMed

    Rand, Thomas G; Chang, Carolyn T; McMullin, David R; Miller, J David

    2017-09-01

    Most fungi that grow on damp building materials produce low molecular weight compounds, some of which are known to be toxic. In this study, we tested the hypothesis that exposure to some metabolites of fungi common on damp building materials would result in time-, dose-, and compound-specific responses in the production of various chemokines by RAW 264.7 cells. Cell cultures were exposed to a 10 -7 M or 10 -8 M metabolite dose for 2, 4, 8 or 24h. Metabolite concentrations used were based on those that might be expected in alveolar macrophages due to inhalation exposure from living or working in a damp building. Compared to controls, exposure provoked significant time-, dose- and compound-specific responses manifest as differentially elevated secretion of three of nine cytokines tested in culture supernatant of treated cells. The greatest number of cytokines produced in response to the metabolites tested were in andrastin A-treated cells (GM-CSF, TGFβ1, Tnf-α) followed by koninginin A (TGFβ1 and Tnf-α) and phomenone (GM-CSF, TGFβ1). Chaetoglobosin A, chaetomugilin D and walleminone exposures each resulted in significant time-specific production of Tnf-α only. This investigation adds to a body of evidence supporting the role of low molecular weight compounds from damp building materials as pathogen associated molecular patterns (PAMPs). Along with fungal glucan and chitin, these compounds contribute to the non-allergy based respiratory outcomes for people living and working in damp buildings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Identification of the potentiating mutations and synergistic epistasis that enabled the evolution of inter-species cooperation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.

    Microbes often engage in cooperation through releasing biosynthetic compounds required by other species to grow. Given that production of costly biosynthetic metabolites is generally subjected to multiple layers of negative feedback, single mutations may frequently be insufficient to generate cooperative phenotypes. Synergistic epistatic interactions between multiple coordinated changes may thus often underlie the evolution of cooperation through overproduction of metabolites. To test the importance of synergistic mutations in cooperation we used an engineered bacterial consortium of an Escherichia coli methionine auxotroph and Salmonella enterica. S. enterica relies on carbon by-products from E. coli if lactose is the only carbon source.more » Directly selecting wild-type S. enterica in an environment that favored cooperation through secretion of methionine only once led to a methionine producer, and this producer both took a long time to emerge and was not very effective at cooperating. On the other hand, when an initial selection for resistance of S. enterica to a toxic methionine analog, ethionine, was used, subsequent selection for cooperation with E. coli was rapid, and the resulting double mutants were much more effective at cooperation. We found that potentiating mutations in metJ increase expression of metA, which encodes the first step of methionine biosynthesis. This increase in expression is required for the previously identified actualizing mutations in metA to generate cooperation. This work highlights that where biosynthesis of metabolites involves multiple layers of regulation, significant secretion of those metabolites may require multiple mutations, thereby constraining the evolution of cooperation.« less

  19. Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation

    PubMed Central

    Zhu, Yingdong; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4–M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC50 of 24.43 µM in HCT-116 human colon cancer cells and an IC50 of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC50 values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4–M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC50s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment. PMID:23382939

  20. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation.

    PubMed

    Zhu, Yingdong; Warin, Renaud F; Soroka, Dominique N; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4-M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC(50) of 24.43 µM in HCT-116 human colon cancer cells and an IC(50) of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC(50) values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4-M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC(50)s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment.

  1. DITOP: drug-induced toxicity related protein database.

    PubMed

    Zhang, Jing-Xian; Huang, Wei-Juan; Zeng, Jing-Hua; Huang, Wen-Hui; Wang, Yi; Zhao, Rui; Han, Bu-Cong; Liu, Qing-Feng; Chen, Yu-Zong; Ji, Zhi-Liang

    2007-07-01

    Drug-induced toxicity related proteins (DITRPs) are proteins that mediate adverse drug reactions (ADRs) or toxicities through their binding to drugs or reactive metabolites. Collection of these proteins facilitates better understanding of the molecular mechanisms of drug-induced toxicity and the rational drug discovery. Drug-induced toxicity related protein database (DITOP) is such a database that is intending to provide comprehensive information of DITRPs. Currently, DITOP contains 1501 records, covering 618 distinct literature-reported DITRPs, 529 drugs/ligands and 418 distinct toxicity terms. These proteins were confirmed experimentally to interact with drugs or their reactive metabolites, thus directly or indirectly cause adverse effects or toxicities. Five major types of drug-induced toxicities or ADRs are included in DITOP, which are the idiosyncratic adverse drug reactions, the dose-dependent toxicities, the drug-drug interactions, the immune-mediated adverse drug effects (IMADEs) and the toxicities caused by genetic susceptibility. Molecular mechanisms underlying the toxicity and cross-links to related resources are also provided while available. Moreover, a series of user-friendly interfaces were designed for flexible retrieval of DITRPs-related information. The DITOP can be accessed freely at http://bioinf.xmu.edu.cn/databases/ADR/index.html. Supplementary data are available at Bioinformatics online.

  2. Acetaminophen structure-toxicity studies: In vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, S.A.; Price, V.F.; Jollow, D.J.

    1990-09-01

    High doses of 3-hydroxyacetanilide (3HAA), a structural isomer of acetaminophen, do not produce hepatocellular necrosis in normal male hamsters or in those sensitized to acetaminophen-induced liver damage by pretreatment with a combination of 3-methylcholanthrene, borneol, and diethyl maleate. Although 3HAA was not hepatotoxic, the administration of acetyl-labeled (3H or 14C)3HAA (400 mg/kg, ip) produced levels of covalently bound radiolabel that were similar to those observed after an equimolar, hepatotoxic dose of (G-3H)acetaminophen. The covalent nature of 3HAA binding was demonstrated by retention of the binding after repetitive organic solvent extraction following protease digestion. Hepatic and renal covalent binding after 3HAAmore » was approximately linear with both dose and time. In addition, 3HAA produced only a modest depletion of hepatic glutathione, suggesting the lack of a glutathione threshold. 3-Methylcholanthrene pretreatment increased and pretreatment with cobalt chloride and piperonyl butoxide decreased the hepatic covalent binding of 3HAA, indicating the involvement of cytochrome P450 in the formation of the 3HAA reactive metabolite. The administration of multiple doses or a single dose of (ring-3H)3HAA to hamsters pretreated with a combination of 3-methylcholanthrene, borneol, and diethyl maleate produced hepatic levels of 3HAA covalent binding that were in excess of those observed after a single, hepatotoxic acetaminophen dose. These data suggest that the nature and/or the intracellular processing of the reactive metabolites of acetaminophen and 3HAA are different. These data also demonstrate that absolute levels of covalently bound xenobiotic metabolites cannot be utilized as absolute predictors of cytotoxic potential.« less

  3. Changes in hepatic gene expression and serum metabolites after oral administration of overdosed vitamin-E-loaded nanoemulsion in rats.

    PubMed

    Park, Chae Young; Jang, Chul Ho; Lee, Do Yup; Cho, Hyung Taek; Kim, Young Jun; Park, Yoo Heon; Imm, Jee-Young

    2017-11-01

    Vitamin-E-loaded nanoemulsion (Vit E-NE) was produced, and the effects of repeated oral administration of Vit E-NE (2 g/kg/day) for five days on hepatic gene expression and serum metabolites were investigated in rats. The mean particle diameter and zeta potential of Vit E-NE was 112 nm and 56 mV, respectively. Vit E-NE administered rats showed significantly higher triglyceride content than of standard diet (control) or Vit E control emulsion (Vit E-CE) group but no toxicity symptoms were found in blood biochemical analysis. Next generation sequencing analysis of rat liver revealed that several genes related to energy and xenobiotic metabolism (CYP1A1 and glutathione S-transferase) were significantly altered. Serum metabolites (B-hydroxybutyrate and palmitoleic acid) indicating ketone body production and activation of stearoyl-CoAdesaturase were significantly increased by administration of Vit E-NE. The results of this study suggest that excessive consumption of edible nano-sized food ingredients can possibly cause adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Screening and analysis of aconitum alkaloids and their metabolites in rat urine after oral administration of aconite roots extract using LC-TOFMS-based metabolomics.

    PubMed

    Tan, Guangguo; Lou, Ziyang; Jing, Jing; Li, Wuhong; Zhu, Zhenyu; Zhao, Liang; Zhang, Guoqing; Chai, Yifeng

    2011-12-01

    Aconite roots are popularly used in herbal medicines in China. Many cases of accidental and intentional intoxication with this plant have been reported; some of these are fatal because the toxicity of aconitum is very high. It is thus important to detect and identify aconitum alkaloids in biofluids. In this work, an improved method employing LC-TOFMS with multivariate data analysis was developed for screening and analysis of major aconitum alkaloids and their metabolites in rat urine following oral administration of aconite roots extract. Thirty-four signals highlighted by multivariate statistical analyses including 24 parent components and 10 metabolites were screened out and further identified by adjustment of the fragmentor voltage to produce structure-relevant fragment ions. It is helpful for studying aconite roots in toxicology, pharmacology and forensic medicine. This work also confirmed that the metabolomic approach provides effective tools for screening multiple absorbed and metabolic components of Chinese herbal medicines in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  5. CRISPR system in filamentous fungi: Current achievements and future directions.

    PubMed

    Deng, Huaxiang; Gao, Ruijie; Liao, Xiangru; Cai, Yujie

    2017-09-05

    As eukaryotes, filamentous fungi share many features with humans, and they produce numerous active metabolites, some of which are toxic. Traditional genetic approaches are generally inefficient, but the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system that has been widely used for basic research on bacteria, mammals and plants offers a simple, fast, versatile technology for systemic research on filamentous fungi. In this review, we summarized the current knowledge on Cas9 and its variants, various selective markers used to screen positive clones, different ways used to detect off-target mutations, and different approaches used to express and transform the CRISPR complex. We also highlight several methods that improve the nuclease specificity and efficiency, and discuss current and potential applications of CRISPR/Cas9 system in filamentous fungi for pathogenesis decoding, confirmation of the gene and pathway, bioenergy process, drug discovery, and chromatin dynamics. We also describe how the synthetic gene circuit of CRISPR/Cas9 systems has been used in the response to various complex environmental signals to redirect metabolite flux and ensure continuous metabolite biosynthesis. Copyright © 2017. Published by Elsevier B.V.

  6. The impact of toxic cyanobacteria on the water quality in the Deep Subalpine Lakes (DSL)

    NASA Astrophysics Data System (ADS)

    Cerasino, Leonardo; Shams, Shiva; Salmaso, Nico; Dietrich, Daniel

    2013-04-01

    Toxic cyanobacteria represent an emerging threat for aquatic ecosystems worldwide. Eutrophication and climate changes are mentioned among factors favouring toxic blooms. The toxicity of cyanobacteria is related to the ability of some species (the most common in temperate waters belong to the genera Microcystis, Planktothrix, Dolichospermum) of producing a wide variety of toxic secondary metabolites, i.e. microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins. Some of these toxins can accumulate in water and aquatic organisms. They can therefore produce severe effects on humans by direct exposure (contact or ingestion of contaminated water) or by indirect exposure (by consumption of contaminated food). We have conducted a survey on the distribution of cyanobacterial toxins in the largest Italian lakes (Garda, Iseo, Como, Maggiore, Lugano), which are important water resources for drinking purposes and for recreational use. Cyanobacterial toxins were present in all lakes, although with a big variability in concentration. More specifically, in the frame of the European project EULAKES, we have investigated in detail the temporal dynamics of the toxin production in Lake Garda, and the mechanisms of trophic transfer of the microcystins along the lacustrine food chain. By applying advanced analytical techniques based on LC-MS technologies, we were able to detect several microcystins at sub-ppb level and follow their variations during the year. The total concentrations of microcystins were strictly linked to the temporal and vertical dynamics of Planktothrix rubescens. Laboratory experiments allowed us to determine the kinetics of microcystin accumulation in zooplankton (daphnia magna).

  7. Dietary Factors and Hepatoma in Rainbow Trout (Salmo gairdneri). I. Aflatoxins in Vegetable Protein Feedstuffs

    USGS Publications Warehouse

    Sinnhuber, R.O.; Wales, J.H.; Ayers, J.L.; Engebrecht, R.H.; Amend, D.F.

    1968-01-01

    Aflatoxins (toxic metabolites of the mold Aspergillus flavus) were present in a commercial trout ration causing hepatoma in rainbow trout. Cottonseed meal and solvent extracts of cottonseed meal and of rations containing cottonseed meal and peanut meal were found by chemical assay and confirmed by duckling assay to contain aflatoxins. Diets containing these materials and a purified test diet to which aflatoxins had been added produced microscopic tumors in 6 months and gross lesions of hepatocarcinoma in 9 months. Similar diets without aflatoxin were negative.

  8. Effects of orally administered fumonisin B₁ (FB₁), partially hydrolysed FB₁, hydrolysed FB₁ and N-(1-deoxy-D-fructos-1-yl) FB₁ on the sphingolipid metabolism in rats.

    PubMed

    Hahn, Irene; Nagl, Veronika; Schwartz-Zimmermann, Heidi Elisabeth; Varga, Elisabeth; Schwarz, Christiane; Slavik, Veronika; Reisinger, Nicole; Malachová, Alexandra; Cirlini, Martina; Generotti, Silvia; Dall'Asta, Chiara; Krska, Rudolf; Moll, Wulf-Dieter; Berthiller, Franz

    2015-02-01

    Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in maize-based food and feed. Alkaline processing like nixtamalisation of maize generates partially and fully hydrolysed FB1 (pHFB1 and HFB1) and thermal treatment in the presence of reducing sugars leads to formation of N-(1-deoxy-D-fructos-1-yl) fumonisin B1 (NDF). The toxicity of these metabolites, in particular their effect on the sphingolipid metabolism, is either unknown or discussed controversially. We produced high purity FB1, pHFB1a+b, HFB1 and NDF and fed them to male Sprague Dawley rats for three weeks. Once a week, urine and faeces samples were collected over 24 h and analysed for fumonisin metabolites as well as for the sphinganine (Sa) to sphingosine (So) ratio by validated LC-MS/MS based methods. While the latter was significantly increased in the FB1 positive control group, the Sa/So ratios of the partially and fully hydrolysed fumonisins were indifferent from the negative control group. Although NDF was partly cleaved during digestion, the liberated amounts of FB1 did not raise the Sa/So ratio. These results show that the investigated alkaline and thermal processing products of FB1 were, at the tested concentrations, non-toxic for rats, and suggest that according food processing can reduce fumonisin toxicity for humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Inhibition of UDP-glucose dehydrogenase by 6-thiopurine and its oxidative metabolites: Possible mechanism for its interaction within the bilirubin excretion pathway and 6TP associated liver toxicity.

    PubMed

    Weeramange, Chamitha J; Binns, Cassie M; Chen, Chixiang; Rafferty, Ryan J

    2018-03-20

    6-Thiopurine (6TP) is an actively prescribed drug in the treatment of various diseases ranging from Crohn's disease and other inflammatory diseases to acute lymphocytic leukemia and non-Hodgkin's leukemia. While 6TP has beneficial therapeutic uses, severe toxicities are also reported with its use, such as jaundice and liver toxicity. While numerous investigations into the mode in which toxicity originates has been undertaken. None have investigated the effects of inhibition towards UDP-Glucose Dehydrogenase (UDPGDH), an oxidative enzyme responsible for UDP-glucuronic acid (UDPGA) formation or UDP-Glucuronosyl transferase (UGT1A1), which is responsible for the conjugation of bilirubin with UDPGA for excretion. Failure to excrete bilirubin leads to jaundice and liver toxicity. We proposed that either 6TP or its primary oxidative excretion metabolites inhibit one or both of these enzymes, resulting in the observed toxicity from 6TP administration. Inhibition analysis of these purines revealed that 6-thiopurine has weak to no inhibition towards UDPGDH with a K i of 288 μM with regard to varying UDP-glucose, but 6-thiouric (primary end metabolite, fully oxidized at carbon 2 and 8, and highly retained by the body) has a near six-fold increased inhibition towards UDPGDH with a K i of 7 μM. Inhibition was also observed by 6-thioxanthine (oxidized at carbon 2) and 8-OH-6TP with K i values of 54 and 14 μM, respectively. Neither 6-thiopurine or its excretion metabolites were shown to inhibit UGT1A1. Our results show that the C2 and C8 positions of 6TP are pivotal in said inhibition towards UDPGDH and have no effect upon UGT1A1, and that blocking C8 could lead to new analogs with reduced, if not eliminated jaundice and liver toxicities. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In vitro and in vivo metabolic investigation of the Palbociclib by UHPLC-Q-TOF/MS/MS and in silico toxicity studies of its metabolites.

    PubMed

    Chavan, Balasaheb B; Tiwari, Shristy; G, Shankar; Nimbalkar, Rakesh D; Garg, Prabha; R, Srinivas; Talluri, M V N Kumar

    2018-05-14

    Palbociclib (PAB) is a CDK4/6 inhibitor and U. S Food and Drug Administration (FDA) granted regular approval for the treatment of hormone receptor (HR) positive, metastatic breast cancer in combination with an aromatase inhibitor in postmenopausal women. Metabolite identification is a crucial aspect during drug discovery and development as the drug metabolites may be pharmacologically active or possess toxicological activity. As there are no reports on the metabolism studies of the PAB, the present study focused on investigation of the in vitro and in vivo metabolic fate of the drug. The in vitro metabolism studies were carried out by using microsomes (HLM and RLM) and S9 fractions (Human and rat). The in vivo metabolism of the drug was studied by administration of the PAB orally to the Sprague-Dawley rats followed by analysis of urine, faeces and plasma samples. The sample preparation includes simple protein precipitation (PP) followed by solid phase extraction (SPE). The extracted samples were analyzed by ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry (UHPLC/Q-TOF/MS/MS). A total of 14 metabolites were detected in in vivo matrices. The PAB was metabolized via hydroxylation, oxidation, sulphation, N-dealkylation, acetylation and carbonylation pathways. A few of the metabolites were also detected in in vitro samples. Metabolite identification and characterization were performed by using UHPLC/Q-TOF/MS/MS in combination with HRMS data. To identify the toxicity potential of these metabolites, in silico toxicity assessment was carried out using TOPKAT and DEREK softwares. Copyright © 2018. Published by Elsevier B.V.

  11. Indoor Trichoderma strains emitting peptaibols in guttation droplets.

    PubMed

    Castagnoli, E; Marik, T; Mikkola, R; Kredics, L; Andersson, M A; Salonen, H; Kurnitski, J

    2018-05-19

    The production of peptaibols, toxic secondary metabolites of Trichoderma, in the indoor environment is not well-documented. Here we investigated the toxicity of peptaibols in the guttation droplets and biomass of Trichoderma strains isolated from problematic buildings. Seven indoor-isolated strains of T. atroviride, T. trixiae, T. paraviridescens and T. citrinoviride were cultivated on malt extract agar, gypsum boards and paperboards. Their biomass extracts and guttation droplets were highly cytotoxic in resting and motile boar sperm cell assays and in inhibition of somatic cell proliferation assays. The toxins were identified with HPLC/ESI-MS/MS as trichorzianines, trilongins, trichostrigocins and trichostrigocin-like peptaibols. They exhibited toxicity profiles similar to the reference peptaibols alamethicin, trilongins, and trichorzianine TA IIIc purified from T. atroviride H1/226. Particular Trichoderma strains emitted the same peptaibols in both their biomasses and exudate droplets. The trilongin-producing T. citrinoviride SJ40 strain grew at 37°C. To our knowledge, this is the first report of indoor-isolated Trichoderma strains producing toxic peptaibols in their guttation droplets. This report proves that indoor isolates of Trichoderma release peptaibols in their guttation droplets. The presence of toxins in these type of exudates may serve as a mechanism of aerosol formation for nonvolatile toxins in the indoor air. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field

    PubMed Central

    Ianora, Adrianna; Bentley, Matthew G.; Caldwell, Gary S.; Casotti, Raffaella; Cembella, Allan D.; Engström-Öst, Jonna; Halsband, Claudia; Sonnenschein, Eva; Legrand, Catherine; Llewellyn, Carole A.; Paldavičienë, Aistë; Pilkaityte, Renata; Pohnert, Georg; Razinkovas, Arturas; Romano, Giovanna; Tillmann, Urban; Vaiciute, Diana

    2011-01-01

    Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality. PMID:22131962

  13. Organ specific acute toxicity of the carcinogen trans-4-acetylaminostilbene is not correlated with macromolecular binding.

    PubMed

    Pfeifer, A; Neumann, H G

    1986-09-01

    trans-4-Acetylaminostilbene (trans-AAS) is acutely toxic in rats and lesions are produced specifically in the glandular stomach. Toxicity is slightly increased by pretreating the animals with phenobarbital (PB) and is completely prevented by pretreatment with methylcholanthrene (MC). The prostaglandin inhibitors, indomethacin and acetyl salicylic acid, do not reduce toxicity. The high efficiency of MC suggested that toxicity is caused by reactive metabolites. trans-[3H]-AAS was administered orally to untreated and to PB- or MC-pretreated female Wistar rats and target doses in different tissues were measured by means of covalent binding to proteins, RNA and DNA. Macromolecular binding in the target tissue of poisoned animals was significantly lower than in liver and kidney and comparable to other non-target tissues. Pretreatment with MC lowered macromolecular binding in all extrahepatic tissues but not in liver. These findings are not in line with tissue specific metabolic activation. The only unique property of the target tissue, glandular stomach, that we observed was a particular affinity for the systemically available parent compound. In the early phase of poisoning, tissue concentrations were exceedingly high and the stomach function was impaired.

  14. Competitive interaction between Ditylum Brightwellii and Skeletonema Costatum by toxic metabolites

    NASA Astrophysics Data System (ADS)

    Rijstenbil, J. W.

    Comparative growth experiments were carried out in order to examine the role of toxic metabolites in the competition between two marine diatom species. Ditylum brightwellii and Skeletonema costatum exhibited mutual inhibition and auto-inhibition. Charcoal filtration did not entirely remove the toxicity. Algal extracts were more toxic than algal filtrates. Cell lysis induced by osmotic-shock treatment caused auto-inhibition in a dense culture of D. brightwellii; cells of this species recovered from a low salinity treatment after addition of charcoal to a culture. In mixed cultures the growth of both species may be affected by mutual inhibition. Toxicity of media depends on the growth phase of the competitors. In dense cultures, comparable with algal blooms in eutrophic waters, exocrines may be more effective than in diluted cultures ( cf. mesotrophic waters.) Substances excreted in dense blooms of S. costatum may inhibit competing species.

  15. Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal Within-Subjects Observational Study

    PubMed Central

    Gawron, Michal; Smith, Danielle M.; Peng, Margaret; Jacob, Peyton; Benowitz, Neal L.

    2017-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. Methods: We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. Results: In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p < .05). After 1 week, the greatest percentage reductions in biomarkers levels were observed for metabolites of 1,3-butadiene, benzene, and acrylonitrile. Total NNAL, a metabolite of NNK, declined by 57% and 64% after 1 and 2 weeks, respectively, while 3-hydroxyfluorene levels declined by 46% at week 1, and 34% at week 2. Conclusions: After switching from tobacco to e-cigarettes, nicotine exposure remains unchanged, while exposure to selected carcinogens and toxicants is substantially reduced. Implications: To our knowledge, this is the first study that demonstrates that substituting tobacco cigarettes with an e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device. PMID:27613896

  16. Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal Within-Subjects Observational Study.

    PubMed

    Goniewicz, Maciej L; Gawron, Michal; Smith, Danielle M; Peng, Margaret; Jacob, Peyton; Benowitz, Neal L

    2017-02-01

    Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p < .05). After 1 week, the greatest percentage reductions in biomarkers levels were observed for metabolites of 1,3-butadiene, benzene, and acrylonitrile. Total NNAL, a metabolite of NNK, declined by 57% and 64% after 1 and 2 weeks, respectively, while 3-hydroxyfluorene levels declined by 46% at week 1, and 34% at week 2. After switching from tobacco to e-cigarettes, nicotine exposure remains unchanged, while exposure to selected carcinogens and toxicants is substantially reduced. To our knowledge, this is the first study that demonstrates that substituting tobacco cigarettes with an e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity?

    PubMed Central

    Fantegrossi, William E.; Moran, Jeffery H.; Radominska-Pandya, Anna; Prather, Paul L.

    2013-01-01

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a “safe” and “legal” alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed “advantages” have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. PMID:24084047

  18. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity?

    PubMed

    Fantegrossi, William E; Moran, Jeffery H; Radominska-Pandya, Anna; Prather, Paul L

    2014-02-27

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. © 2013.

  19. Identifying Safer Anti-Wear Triaryl Phosphate Additives for Jet Engine Lubricants

    PubMed Central

    Baker, Paul E.; Cole, Toby B.; Cartwright, Megan; Suzuki, Stephanie M.; Thummel, Kenneth E.; Lin, Yvonne S.; Co, Aila L.; Rettie, Allan E.; Kim, Jerry H.; Furlong, Clement E.

    2013-01-01

    Individuals aboard jet aircraft may be exposed to potentially toxic triaryl organophosphate anti-wear lubricant additives (TAPs) that are converted by cytochromes P450 into toxic metabolites. Consequences of exposure could be reduced by using less toxic TAPs. Our goal was to determine whether an in vitro assay for inhibition of butyrylcholinesterase (BChE) by bioactivated TAPs would be predictive of inhibition of serine active-site enzymes in vivo. The in vitro assay involved TAP bioactivation with liver microsomes and NADPH, followed by incubation with human BChE and measurement of BChE activity. Of 19 TAPs tested, tert-butylated isomers produced the least BChE inhibition. To determine the relevance of these results in vivo, mice were exposed to Durad 125 (D125; a commercial mixture of TAP esters) or to TAPs demonstrating low or no BChE inhibition when assayed in vitro. Inhibition of BChE by bioactivated TAPs in vitro correlated well with inhibition of other serine active-site enzymes in vivo, with the exception of brain acetylcholinesterase and neuropathy target esterase (NTE), which were not inhibited by any TAP tested following single exposures. A recombinant catalytic domain of NTE (rNEST) exhibited classical kinetic properties of NTE. The metabolite of tri-(o-cresyl) phosphate (ToCP), 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP), inhibited rNEST in vitro, but with an IC50 value almost 6-times higher than for inhibition of BChE. Physiologically-relevant concentrations of the flavonoid, naringenin, dramatically reduced D125 bioconversion in vitro. The in vitro assay should provide a valuable tool for prescreening candidate TAP anti-wear additives, identifying safer additives and reducing the number of animals required for in vivo toxicity testing. PMID:23085349

  20. Identifying safer anti-wear triaryl phosphate additives for jet engine lubricants.

    PubMed

    Baker, Paul E; Cole, Toby B; Cartwright, Megan; Suzuki, Stephanie M; Thummel, Kenneth E; Lin, Yvonne S; Co, Aila L; Rettie, Allan E; Kim, Jerry H; Furlong, Clement E

    2013-03-25

    Individuals aboard jet aircraft may be exposed to potentially toxic triaryl organophosphate anti-wear lubricant additives (TAPs) that are converted by cytochromes P450 into toxic metabolites. Consequences of exposure could be reduced by using less toxic TAPs. Our goal was to determine whether an in vitro assay for inhibition of butyrylcholinesterase (BChE) by bioactivated TAPs would be predictive of inhibition of serine active-site enzymes in vivo. The in vitro assay involved TAP bioactivation with liver microsomes and NADPH, followed by incubation with human BChE and measurement of BChE activity. Of 19 TAPs tested, tert-butylated isomers produced the least BChE inhibition. To determine the relevance of these results in vivo, mice were exposed to Durad 125 (D125; a commercial mixture of TAP esters) or to TAPs demonstrating low or no BChE inhibition when assayed in vitro. Inhibition of BChE by bioactivated TAPs in vitro correlated well with inhibition of other serine active-site enzymes in vivo, with the exception of brain acetylcholinesterase and neuropathy target esterase (NTE), which were not inhibited by any TAP tested following single exposures. A recombinant catalytic domain of NTE (rNEST) exhibited classical kinetic properties of NTE. The metabolite of tri-(o-cresyl) phosphate (ToCP), 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP), inhibited rNEST in vitro, but with an IC(50) value almost 6-times higher than for inhibition of BChE. Physiologically-relevant concentrations of the flavonoid naringenin dramatically reduced D125 bioconversion in vitro. The in vitro assay should provide a valuable tool for prescreening candidate TAP anti-wear additives, identifying safer additives and reducing the number of animals required for in vivo toxicity testing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    PubMed

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  2. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs

    PubMed Central

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-01-01

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds. PMID:26364643

  3. Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells.

    PubMed

    Fernandes, Jolyn; Chandler, Joshua D; Liu, Ken H; Uppal, Karan; Go, Young-Mi; Jones, Dean P

    2018-06-01

    Disrupted polyamine metabolism with elevated putrescine is associated with neuronal dysfunction. Manganese (Mn) is an essential nutrient that causes neurotoxicity in excess, but methods to evaluate biochemical responses to high Mn are limited. No information is available on dose-response effects of Mn on putrescine abundance and related polyamine metabolism. The present research was to test the hypothesis that Mn causes putrescine accumulation over a physiologically adequate to toxic concentration range in a neuronal cell line. We used human SH-SY5Y neuroblastoma cells treated with MnCl 2 under conditions that resulted in cell death or no cell death after 48 h. Putrescine and other metabolites were analyzed by liquid chromatography-ultra high-resolution mass spectrometry. Putrescine-related pathway changes were identified with metabolome-wide association study (MWAS). Results show that Mn caused a dose-dependent increase in putrescine over a non-toxic to toxic concentration range. MWAS of putrescine showed positive correlations with the polyamine metabolite N8-acetylspermidine, methionine-related precursors, and arginine-associated urea cycle metabolites, while putrescine was negatively correlated with γ-aminobutyric acid (GABA)-related and succinate-related metabolites (P < 0.001, FDR < 0.01). These data suggest that measurement of putrescine and correlated metabolites may be useful to study effects of Mn intake in the high adequate to UL range. Copyright © 2018. Published by Elsevier Ltd.

  4. Toxicity of bioactive and probiotic marine bacteria and their secondary metabolites in Artemia sp. and Caenorhabditis elegans as eukaryotic model organisms.

    PubMed

    Neu, Anna Katrin; Månsson, Maria; Gram, Lone; Prol-García, María J

    2014-01-01

    We have previously reported that some strains belonging to the marine Actinobacteria class, the Pseudoalteromonas genus, the Roseobacter clade, and the Photobacteriaceae and Vibrionaceae families produce both antibacterial and antivirulence compounds, and these organisms are interesting from an applied point of view as fish probiotics or as a source of pharmaceutical compounds. The application of either organisms or compounds requires that they do not cause any side effects, such as toxicity in eukaryotic organisms. The purpose of this study was to determine whether these bacteria or their compounds have any toxic side effects in the eukaryotic organisms Artemia sp. and Caenorhabditis elegans. Arthrobacter davidanieli WX-11, Pseudoalteromonas luteoviolacea S4060, P. piscicida S2049, P. rubra S2471, Photobacterium halotolerans S2753, and Vibrio coralliilyticus S2052 were lethal to either or both model eukaryotes. The toxicity of P. luteoviolacea S4060 could be related to the production of the antibacterial compound pentabromopseudilin, while the adverse effect observed in the presence of P. halotolerans S2753 and V. coralliilyticus S2052 could not be explained by the production of holomycin nor andrimid, the respective antibiotic compounds in these organisms. In contrast, the tropodithietic acid (TDA)-producing bacteria Phaeobacter inhibens DSM17395 and Ruegeria mobilis F1926 and TDA itself had no adverse effect on the target organisms. These results reaffirm TDA-producing Roseobacter bacteria as a promising group to be used as probiotics in aquaculture, whereas Actinobacteria, Pseudoalteromonas, Photobacteriaceae, and Vibrionaceae should be used with caution.

  5. Toxicity of Bioactive and Probiotic Marine Bacteria and Their Secondary Metabolites in Artemia sp. and Caenorhabditis elegans as Eukaryotic Model Organisms

    PubMed Central

    Neu, Anna Katrin; Månsson, Maria; Prol-García, María J.

    2014-01-01

    We have previously reported that some strains belonging to the marine Actinobacteria class, the Pseudoalteromonas genus, the Roseobacter clade, and the Photobacteriaceae and Vibrionaceae families produce both antibacterial and antivirulence compounds, and these organisms are interesting from an applied point of view as fish probiotics or as a source of pharmaceutical compounds. The application of either organisms or compounds requires that they do not cause any side effects, such as toxicity in eukaryotic organisms. The purpose of this study was to determine whether these bacteria or their compounds have any toxic side effects in the eukaryotic organisms Artemia sp. and Caenorhabditis elegans. Arthrobacter davidanieli WX-11, Pseudoalteromonas luteoviolacea S4060, P. piscicida S2049, P. rubra S2471, Photobacterium halotolerans S2753, and Vibrio coralliilyticus S2052 were lethal to either or both model eukaryotes. The toxicity of P. luteoviolacea S4060 could be related to the production of the antibacterial compound pentabromopseudilin, while the adverse effect observed in the presence of P. halotolerans S2753 and V. coralliilyticus S2052 could not be explained by the production of holomycin nor andrimid, the respective antibiotic compounds in these organisms. In contrast, the tropodithietic acid (TDA)-producing bacteria Phaeobacter inhibens DSM17395 and Ruegeria mobilis F1926 and TDA itself had no adverse effect on the target organisms. These results reaffirm TDA-producing Roseobacter bacteria as a promising group to be used as probiotics in aquaculture, whereas Actinobacteria, Pseudoalteromonas, Photobacteriaceae, and Vibrionaceae should be used with caution. PMID:24141121

  6. Increased Sensitivity of Estrogen Receptor Alpha Overexpressing Antral Follicles to Methoxychlor and Its Metabolites

    PubMed Central

    Paulose, Tessie; Hernández-Ochoa, Isabel; Basavarajappa, Mallikarjuna S.; Peretz, Jackye; Flaws, Jodi A.

    2011-01-01

    Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary. PMID:21252393

  7. Aldaulactone - An Original Phytotoxic Secondary Metabolite Involved in the Aggressiveness of Alternaria dauci on Carrot.

    PubMed

    Courtial, Julia; Hamama, Latifa; Helesbeux, Jean-Jacques; Lecomte, Mickaël; Renaux, Yann; Guichard, Esteban; Voisine, Linda; Yovanopoulos, Claire; Hamon, Bruno; Ogé, Laurent; Richomme, Pascal; Briard, Mathilde; Boureau, Tristan; Gagné, Séverine; Poupard, Pascal; Berruyer, Romain

    2018-01-01

    Qualitative plant resistance mechanisms and pathogen virulence have been extensively studied since the formulation of the gene-for-gene hypothesis. The mechanisms involved in the quantitative traits of aggressiveness and plant partial resistance are less well-known. Nevertheless, they are prevalent in most plant-necrotrophic pathogen interactions, including the Daucus carota - Alternaria dauci interaction. Phytotoxic metabolite production by the pathogen plays a key role in aggressiveness in these interactions. The aim of the present study was to explore the link between A. dauci aggressiveness and toxin production. We challenged carrot embryogenic cell cultures from a susceptible genotype (H1) and two partially resistant genotypes (I2 and K3) with exudates from A. dauci strains with various aggressiveness levels. Interestingly, A. dauci -resistant carrot genotypes were only affected by exudates from the most aggressive strain in our study (ITA002). Our results highlight a positive link between A. dauci aggressiveness and the fungal exudate cell toxicity. We hypothesize that the fungal exudate toxicity was linked with the amount of toxic compounds produced by the fungus. Interestingly, organic exudate production by the fungus was correlated with aggressiveness. Hence, we further analyzed the fungal organic extract using HPLC, and correlations between the observed peak intensities and fungal aggressiveness were measured. One observed peak was closely correlated with fungal aggressiveness. We succeeded in purifying this peak and NMR analysis revealed that the purified compound was a novel 10-membered benzenediol lactone, a polyketid that we named 'aldaulactone'. We used a new automated image analysis method and found that aldaulactone was toxic to in vitro cultured plant cells at those concentrations. The effects of both aldaulactone and fungal organic extracts were weaker on I2-resistant carrot cells compared to H1 carrot cells. Taken together, our results suggest that: (i) aldaulactone is a new phytotoxin, (ii) there is a relationship between the amount of aldaulactone produced and fungal aggressiveness, and (iii) carrot resistance to A. dauci involves mechanisms of resistance to aldaulactone.

  8. Aldaulactone – An Original Phytotoxic Secondary Metabolite Involved in the Aggressiveness of Alternaria dauci on Carrot

    PubMed Central

    Courtial, Julia; Hamama, Latifa; Helesbeux, Jean-Jacques; Lecomte, Mickaël; Renaux, Yann; Guichard, Esteban; Voisine, Linda; Yovanopoulos, Claire; Hamon, Bruno; Ogé, Laurent; Richomme, Pascal; Briard, Mathilde; Boureau, Tristan; Gagné, Séverine; Poupard, Pascal; Berruyer, Romain

    2018-01-01

    Qualitative plant resistance mechanisms and pathogen virulence have been extensively studied since the formulation of the gene-for-gene hypothesis. The mechanisms involved in the quantitative traits of aggressiveness and plant partial resistance are less well-known. Nevertheless, they are prevalent in most plant-necrotrophic pathogen interactions, including the Daucus carota–Alternaria dauci interaction. Phytotoxic metabolite production by the pathogen plays a key role in aggressiveness in these interactions. The aim of the present study was to explore the link between A. dauci aggressiveness and toxin production. We challenged carrot embryogenic cell cultures from a susceptible genotype (H1) and two partially resistant genotypes (I2 and K3) with exudates from A. dauci strains with various aggressiveness levels. Interestingly, A. dauci-resistant carrot genotypes were only affected by exudates from the most aggressive strain in our study (ITA002). Our results highlight a positive link between A. dauci aggressiveness and the fungal exudate cell toxicity. We hypothesize that the fungal exudate toxicity was linked with the amount of toxic compounds produced by the fungus. Interestingly, organic exudate production by the fungus was correlated with aggressiveness. Hence, we further analyzed the fungal organic extract using HPLC, and correlations between the observed peak intensities and fungal aggressiveness were measured. One observed peak was closely correlated with fungal aggressiveness. We succeeded in purifying this peak and NMR analysis revealed that the purified compound was a novel 10-membered benzenediol lactone, a polyketid that we named ‘aldaulactone’. We used a new automated image analysis method and found that aldaulactone was toxic to in vitro cultured plant cells at those concentrations. The effects of both aldaulactone and fungal organic extracts were weaker on I2-resistant carrot cells compared to H1 carrot cells. Taken together, our results suggest that: (i) aldaulactone is a new phytotoxin, (ii) there is a relationship between the amount of aldaulactone produced and fungal aggressiveness, and (iii) carrot resistance to A. dauci involves mechanisms of resistance to aldaulactone. PMID:29774035

  9. Hepatocyte spheroids as a competent in vitro system for drug biotransformation studies: nevirapine as a bioactivation case study.

    PubMed

    Pinheiro, Pedro F; Pereira, Sofia A; Harjivan, Shrika G; Martins, Inês L; Marinho, Aline T; Cipriano, Madalena; Jacob, Cristina C; Oliveira, Nuno G; Castro, Matilde F; Marques, M Matilde; Antunes, Alexandra M M; Miranda, Joana P

    2017-03-01

    The development of metabolically competent in vitro models is of utmost importance for predicting adverse drug reactions, thereby preventing attrition-related economical and clinical burdens. Using the antiretroviral drug nevirapine (NVP) as a model, this work aimed to validate rat hepatocyte 3D spheroid cultures as competent in vitro systems to assess drug metabolism and bioactivation. Hepatocyte spheroids were cultured for 12 days in a stirred tank system (3D cultures) and exposed to equimolar dosages of NVP and its two major Phase I metabolites, 12-OH-NVP and 2-OH-NVP. Phase I NVP metabolites were detected in the 3D cultures during the whole culture time in the same relative proportions reported in in vivo studies. Moreover, the modulation of SULT1A1 activity by NVP and 2-OH-NVP was observed for the first time, pointing their synergistic effect as a key factor in the formation of the toxic metabolite (12-sulfoxy-NVP). Covalent adducts formed by reactive NVP metabolites with N-acetyl-L-cysteine and bovine serum albumin were also detected by high-resolution mass spectrometry, providing new evidence on the relative role of the reactive NVP metabolites, 12-sulfoxy-NVP, and NVP quinone methide, in toxicity versus excretion pathways. In conclusion, these results demonstrate the validity of the 3D culture system to evaluate drug bioactivation, enabling the identification of potential biomarkers of bioactivation/toxicity, and providing new evidence to the mechanisms underlying NVP-induced toxic events. This model, integrated with the analytical strategies described herein, is of anticipated usefulness to the pharmaceutical industry, as an upstream methodology for flagging drug safety alerts in early stages of drug development.

  10. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control.

    PubMed

    Chilaka, Cynthia Adaku; De Boevre, Marthe; Atanda, Olusegun Oladimeji; De Saeger, Sarah

    2017-01-05

    Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium . These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives.

  11. Methodology for determining toxicity of pesticides to wild vertebrates

    USGS Publications Warehouse

    DeWitt, James B.; Moore, N.W.

    1966-01-01

    The effects of pesticidal contamination of wildlife habitats may be expected to be proportional to the toxicity of the compounds, the rate and manner of application, persistence of the basic chemical and/or any toxic metabolites, and the extent to which these substances are stored in animal tissues or concentrated by successive elements of wildlife food chains. Measurement of these effects under field conditions is difficult, but the need for field studies may be reduced or eliminated by controlled laboratory tests. Representatives of the birds, mammals and aquatic animals in treated areas should be examined at all stages in the life cycle. Suitable species include laboratory rats, rabbits, dogs, bobwhite or coturnix quail, ringneck pheasant, trout, sunfish, oysters. The quantity of pesticide (ppm in diet or environment; mg/kg consumed) should be determined which produces acute or chronic poisoning or which shows measurable sublethal effects on growth or reproduction. Tissues (including gonads and eggs) should be analysed at each degree of exposure.

  12. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control

    PubMed Central

    Chilaka, Cynthia Adaku; De Boevre, Marthe; Atanda, Olusegun Oladimeji; De Saeger, Sarah

    2017-01-01

    Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium. These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives. PMID:28067768

  13. Mini review on photosensitization by plants in grazing herbivores.

    PubMed

    Hussain, Syeda M; Herling, Valdo Rodrigues; Rodrigues, Paulo Henrique Mazza; Naz, Ishrat; Khan, Hamayun; Khan, Muhammad Tahir

    2018-06-01

    Photosensitization is severe dermatitis or oxidative/chemical changes in the epidermal tissues activated by the light-induced excitation of molecules within the tissue. It is a series of reactions mediated through light receptors and is more common when the plant-produced metabolites are heterocyclic/polyphenols in nature. The areas affected are exposed body parts and mostly non-pigmented areas with least ultraviolet protection. Similarly, cellular alteration also occurs in the affected animal's dermal tissues and body parts and grazing animals by the accumulation and activation of photodynamic molecules. Photo-oxidation can also occur within the plant due to the generation of reactive oxygen species causing damage and degradation in the form of free radicals and DNA. During the last few decades, many new tropical grass species have been introduced in the grazing lands which are genetically modified, and the animals grazing on them are facing various forms of toxicity including photosensitization. The plant's secondary metabolites/drugs may cause toxicity when bacteria, viral agents, fungi (Pithomyces chartarum), or neoplasia injures the liver and prevents the phylloerythrin excretion. All these may disturb the liver enzymes and blood profile causing a decrease in weight and production (wool and milk etc.) with severe dermal, digestive, and nervous problems. Recent advancements in OMICS (cellomics, ethomics, metabolomics, metabonomics, and glycomics) have enabled us to detect and identify the plants' secondary metabolites and changes in the animal's physiology and histopathology as a causative of photosensitivity. The review focuses on types of photosensitization, reasons, secondary metabolic compounds, chemistry, and environmental effect on plants.

  14. The Occurrence of Veterinary Pharmaceuticals in the Environment: A Review

    PubMed Central

    Kaczala, Fabio; Blum, Shlomo E.

    2016-01-01

    It is well known that there is a widespread use of veterinary pharmaceuticals and consequent release into different ecosystems such as freshwater bodies and groundwater systems. Furthermore, the use of organic fertilizers produced from animal waste manure has been also responsible for the occurrence of veterinary pharmaceuticals in agricultural soils. This article is a review of different studies focused on the detection and quantification of such compounds in environmental compartments using different analytical techniques. Furthermore, this paper reports the main challenges regarding veterinary pharmaceuticals in terms of analytical methods, detection/quantification of parent compounds and metabolites, and risks/toxicity to human health and aquatic ecosystems. Based on the existing literature, it is clear that only limited data is available regarding veterinary compounds and there are still considerable gaps to be bridged in order to remediate existing problems and prevent future ones. In terms of analytical methods, there are still considerable challenges to overcome considering the large number of existing compounds and respective metabolites. A number of studies highlight the lack of attention given to the detection and quantification of transformation products and metabolites. Furthermore more attention needs to be given in relation to the toxic effects and potential risks that veterinary compounds pose to environmental and human health. To conclude, the more research investigations focused on these subjects take place in the near future, more rapidly we will get a better understanding about the behavior of these compounds and the real risks they pose to aquatic and terrestrial environments and how to properly tackle them. PMID:28579931

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Hongxing; Xiao, Hailong; Lu, Zhenmei, E-mail: lzhenmei@zju.edu.cn

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0 mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0 mg/kg bw. Histopathology changesmore » of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. - Highlights: • 4-Epioxytetracycline (4-EOTC) induced damages in liver and kidney. • Metabonomics changes especially amino acid and purine metabolism were observed. • Security of OTC metabolite 4-EOTC should be taken into serious reconsideration.« less

  16. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.

    PubMed

    Chai, Yunrong; Beauregard, Pascale B; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2012-01-01

    Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. Bacteria switch from unicellular to multicellular states by producing extracellular matrices that contain exopolysaccharides. In such aggregates, known as biofilms, bacteria are more resistant to antibiotics. This makes biofilms a serious problem in clinical settings. The resilience of biofilms makes them very useful in industrial settings. Thus, understanding the production of biofilm matrices is an important problem in microbiology. In studying the synthesis of the biofilm matrix of Bacillus subtilis, we provide further understanding of a long-standing microbiological observation that certain mutants defective in the utilization of galactose became sensitive to it. In this work, we show that the toxicity observed before was because cells were grown under conditions that were not propitious to produce the exopolysaccharide component of the matrix. When cells are grown under conditions that favor matrix production, the toxicity of galactose is relieved. This allowed us to demonstrate that galactose metabolism is essential for the synthesis of the extracellular matrix.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardiola, John J.

    Background: Occupational vinyl chloride (VC) exposures have been associated with toxicant-associated steatohepatitis and liver cancer. Metabolomics has been used to clarify mode of action in drug-induced liver injury but has not been performed following VC exposures. Methods: Plasma samples from 17 highly exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained for metabolite extraction and GC/MS and LC/MS{sup 2} analysis. Following ion identification/quantification, Ingenuity pathway analysis was performed. Results: 613 unique named metabolites were identified. Of these, 189 metabolites were increased in the VC exposure group while 94 metabolites were decreased. Random Forest analysis indicated thatmore » the metabolite signature could separate the groups with 94% accuracy. VC exposures were associated with increased long chain (including arachidonic acid) and essential (including linoleic acid) fatty acids. Occupational exposure increased lipid peroxidation products including monohydroxy fatty acids (including 13-HODE); fatty acid dicarboxylates; and oxidized arachidonic acid products (including 5,9, and 15-HETE). Carnitine and carnitine esters were decreased, suggesting peroxisomal/mitochondrial dysfunction and alternate modes of lipid oxidation. Differentially regulated metabolites were shown to interact with extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, AMP-activated protein kinase (AMPK), and the N-Methyl-D-aspartate (NMDA) receptor. The top canonical pathways affected by occupational exposure included tRNA charging, nucleotide degradation, amino acid synthesis/degradation and urea cycle. Methionine and homocysteine was increased with decreased cysteine, suggesting altered 1-carbon metabolism. Conclusions: Occupational exposure generated a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. ERK1/2, Akt, AMPK, and NMDA were identified as protein targets for vinyl chloride toxicity. - Highlights: • Occupational vinyl chloride exposure is linked to toxicant-associated steatohepatitis, liver cancer, and other diseases. • Vinyl chloride exposure led to a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. • A metabolomics approach can provide useful information regarding exposure in chemical workers.« less

  18. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.

    PubMed

    Burden, Natalie; Maynard, Samuel K; Weltje, Lennart; Wheeler, James R

    2016-10-01

    The European Plant Protection Products Regulation 1107/2009 requires that registrants establish whether pesticide metabolites pose a risk to the environment. Fish acute toxicity assessments may be carried out to this end. Considering the total number of pesticide (re-) registrations, the number of metabolites can be considerable, and therefore this testing could use many vertebrates. EFSA's recent "Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters" outlines opportunities to apply non-testing methods, such as Quantitative Structure Activity Relationship (QSAR) models. However, a scientific evidence base is necessary to support the use of QSARs in predicting acute fish toxicity of pesticide metabolites. Widespread application and subsequent regulatory acceptance of such an approach would reduce the numbers of animals used. The work presented here intends to provide this evidence base, by means of retrospective data analysis. Experimental fish LC50 values for 150 metabolites were extracted from the Pesticide Properties Database (http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm). QSAR calculations were performed to predict fish acute toxicity values for these metabolites using the US EPA's ECOSAR software. The most conservative predicted LC50 values generated by ECOSAR were compared with experimental LC50 values. There was a significant correlation between predicted and experimental fish LC50 values (Spearman rs = 0.6304, p < 0.0001). For 62% of metabolites assessed, the QSAR predicted values are equal to or lower than their respective experimental values. Refined analysis, taking into account data quality and experimental variation considerations increases the proportion of sufficiently predictive estimates to 91%. For eight of the nine outliers, there are plausible explanation(s) for the disparity between measured and predicted LC50 values. Following detailed consideration of the robustness of this non-testing approach, it can be concluded there is a strong data driven rationale for the applicability of QSAR models in the metabolite assessment scheme recommended by EFSA. As such there is value in further refining this approach, to improve the method and enable its future incorporation into regulatory guidance and practice. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdi, Mohamad; Yoshinaga, Masafumi; Packianathan, Charles

    2012-07-15

    Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As{sup III}) produces organic arsenicals, including MMA{sup III}, MMA{sup V} and DMA{sup V} with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt wasmore » universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As{sup III} to DMA{sup V} as an end product and produced MMA{sup III} and MMA{sup V} as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As{sup III} as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. -- Highlights: ► Zebrafish methylated As{sup III} to MMA{sup III}, MMA{sup V} and DMA{sup V}. ► A zebrafish arsenic methyltransferase (As3mt) was purified in E. coli. ► As3mt catalyzed biomethylation of As{sup III} to DMA{sup V} and produced toxic intermediates. ► As3mt activity is inhibited by elevated substrate concentrations and selenite. ► C160 and C165 are predicted as As{sup III} binding sites.« less

  20. Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux.

    PubMed

    Zemva, Johanna; Fink, Christoph Andreas; Fleming, Thomas Henry; Schmidt, Leonard; Loft, Anne; Herzig, Stephan; Knieß, Robert André; Mayer, Matthias; Bukau, Bernd; Nawroth, Peter Paul; Tyedmers, Jens

    2017-10-01

    Energy production is inevitably linked to the generation of toxic metabolites, such as reactive oxygen and carbonyl species, known as major contributors to ageing and degenerative diseases. It remains unclear how cells can adapt to elevated energy flux accompanied by accumulating harmful by-products without taking any damage. Therefore, effects of a sudden rise in glucose concentrations were studied in yeast cells. This revealed a feedback mechanism initiated by the reactive dicarbonyl methylglyoxal, which is formed non-enzymatically during glycolysis. Low levels of methylglyoxal activate a multi-layered defence response against toxic metabolites composed of prevention, detoxification and damage remission. The latter is mediated by the protein quality control system and requires inducible Hsp70 and Btn2, the aggregase that sequesters misfolded proteins. This glycohormetic mechanism enables cells to pre-adapt to rising energy flux and directly links metabolic to proteotoxic stress. Further data suggest the existence of a similar response in endothelial cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Genome-Wide Functional Profiling Reveals Genes Required for Tolerance to Benzene Metabolites in Yeast

    PubMed Central

    North, Matthew; Tandon, Vickram J.; Thomas, Reuben; Loguinov, Alex; Gerlovina, Inna; Hubbard, Alan E.; Zhang, Luoping; Smith, Martyn T.; Vulpe, Chris D.

    2011-01-01

    Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease. PMID:21912624

  2. Simultaneous quantification of VX and its toxic metabolite in blood and plasma samples and its application for in vivo and in vitro toxicological studies.

    PubMed

    Reiter, Georg; Mikler, John; Hill, Ira; Weatherby, Kendal; Thiermann, Horst; Worek, Franz

    2011-09-15

    The present study was initiated to develop a sensitive and highly selective method for the simultaneous quantification of the nerve agent VX (O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate) and its toxic metabolite (EA-2192) in blood and plasma samples in vivo and in vitro. For the quantitative detection of VX and EA-2192 the resolution was realized on a HYPERCARB HPLC phase. A specific procedure was developed to isolate both toxic analytes from blood and plasma samples. The limit of detection was 0.1 pg/ml and the absolute recovery of the overall sample preparation procedure was 74% for VX and 69% for EA-2192. After intravenous and percutaneous administration of a supralethal doses of VX in anaesthetised swine both VX and EA-2192 could be quantified over 540 min following exposure. This study is the first to verify the in vivo formation of the toxic metabolite EA-2192 after poisoning with the nerve agent VX. Further toxicokinetic and therapeutic studies are required in order to determine the impact of EA-2192 on the treatment of acute VX poisoning. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The glycolytic metabolite methylglyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe.

    PubMed

    Zuin, Alice; Vivancos, Ana P; Sansó, Miriam; Takatsume, Yoshifumi; Ayté, José; Inoue, Yoshiharu; Hidalgo, Elena

    2005-11-04

    Methylglyoxal, a toxic metabolite synthesized in vivo during glycolysis, inhibits cell growth. One of the mechanisms protecting eukaryotic cells against its toxicity is the glyoxalase system, composed of glyoxalase I and II (glo1 and glo2), which converts methylglyoxal into d-lactic acid in the presence of glutathione. Here we have shown that the two principal oxidative stress response pathways of Schizosaccharomyces pombe, Sty1 and Pap1, are involved in the response to methylglyoxal toxicity. The mitogen-activated protein kinase Sty1 is phosphorylated and accumulates in the nucleus following methylglyoxal treatment. Moreover, glo2 expression is induced by methylglyoxal and environmental stresses in a Sty1-dependent manner. The transcription factor Pap1 also accumulates in the nucleus, activating the expression of its target genes following methylglyoxal treatment. Our studies showed that the C-terminal cysteine-rich domain of Pap1 is sufficient for methylglyoxal sensing. Furthermore, the redox status of Pap1 is not changed by methylglyoxal. We propose that methylglyoxal treatment triggers Pap1 and Sty1 nuclear accumulation, and we describe the molecular basis of such activation mechanisms. In addition, we discuss the potential physiological significance of these responses to a natural toxic metabolite.

  4. Adverse health effects of indoor moulds.

    PubMed

    Piecková, Elena

    2012-12-01

    Building associated illnesses - sick building syndrome (SBS) as a common example - are associated with staying in buildings with poor indoor air quality. The importance of indoor fungal growth in this phenomenon continues to be evident, even though no causative relation has been established so far. Indoor humidity is strongly associated with the symptoms of SBS. Fungal metabolites that may induce ill health in susceptible occupants comprise beta-D-glucan, mycotoxins, and volatile organic compounds as known irritants and/or immunomodulators. Indoor toxic fungal metabolites might be located in micromycetal propagules (endometabolites), in (bio-)aerosol, detritus, and house dust (exometabolites) as their particular carriers. It is highly probable that hyphal fragments, dust, and particles able to reach the alveoli have the strongest depository and toxic potential. Most fungal spores are entrapped by the upper respiratory tract and do not reach further than the bronchi because of their size, morphology, and the mode of propagation (such as slime heads and aggreggation). This is why studies of the toxic effects of fungal spores prefer directly applying metabolite mixtures over mimicking real exposure. Chronic low-level exposure to a mixture of fungal toxicants and other indoor stressors may have synergistic effects and lead to severe neuroendocrineimmune changes.

  5. Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease.

    PubMed

    Mobbs, Charles V; Mastaitis, Jason W; Zhang, Minhua; Isoda, Fumiko; Cheng, Hui; Yen, Kelvin

    2007-01-01

    Elevated blood glucose associated with diabetes produces progressive and apparently irreversible damage to many cell types. Conversely, reduction of glucose extends life span in yeast, and dietary restriction reduces blood glucose. Therefore it has been hypothesized that cumulative toxic effects of glucose drive at least some aspects of the aging process and, conversely, that protective effects of dietary restriction are mediated by a reduction in exposure to glucose. The mechanisms mediating cumulative toxic effects of glucose are suggested by two general principles of metabolic processes, illustrated by the lac operon but also observed with glucose-induced gene expression. First, metabolites induce the machinery of their own metabolism. Second, induction of gene expression by metabolites can entail a form of molecular memory called hysteresis. When applied to glucose-regulated gene expression, these two principles suggest a mechanism whereby repetitive exposure to postprandial excursions of glucose leads to an age-related increase in glycolytic capacity (and reduction in beta-oxidation of free fatty acids), which in turn leads to an increased generation of oxidative damage and a decreased capacity to respond to oxidative damage, independent of metabolic rate. According to this mechanism, dietary restriction increases life span and reduces pathology by reducing exposure to glucose and therefore delaying the development of glucose-induced glycolytic capacity.

  6. Pharmacokinetics, pharmacodynamics, metabolism, toxicology and residues of phenylbutazone in humans and horses.

    PubMed

    Lees, Peter; Toutain, Pierre-Louis

    2013-06-01

    The presence of horse meat in food products destined for human consumption and labelled as beef has raised several concerns of public interest. This review deals solely with one aspect of these concerns; samples of equine tissue from horses destined for the human food chain have tested positive for the non-steroidal anti-inflammatory drug, phenylbutazone. The safety of some or all such foods for human consumers is a major concern, because it was shown many years ago that phenylbutazone therapy in humans can be associated with life threatening blood dyscrasias. As an initial basis for assessing the potential toxicity of foods containing phenylbutazone and its metabolites, this article reviews (1) the pharmacokinetic, pharmacodynamic, metabolic and toxicological profiles of phenylbutazone, with particular reference to horses and humans; (2) toxicity data in laboratory animals; (3) phenylbutazone residues in food producing species, and (4) as a preliminary assessment, the potential hazard associated with the consumption of horse meat containing phenylbutazone and its metabolites. Since phenylbutazone cannot be classified as a carcinogenic substance in humans, and noting that blood dyscrasias in humans are likely to be dose and treatment duration-dependent, the illegal and erratic presence of trace amount residues of phenylbutazone in horse meat is not a public health issue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. IDENTIFICATION OF NOVEL TOXICITY-ASSOCIATED METABOLITES BY METABOLOMICS AND MASS ISOTOPOMER ANALYSIS OF ACETAMINOPHEN METABOLISM IN WILD-TYPE AND CYP2E1-NULL MICE

    PubMed Central

    Chen, Chi; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2008-01-01

    CYP2E1 is recognized as the most important enzyme for initiation of acetaminophen (APAP)-induced toxicity. In this study, the resistance of Cyp2e1-null mice to APAP treatment was confirmed by comparing serum aminotransferase activities and blood urea nitrogen levels in wild-type and Cyp2e1-null mice. However, unexpectedly, profiling of major known APAP metabolites in urine and serum revealed that the contribution of CYP2E1 to APAP metabolism decreased with increasing APAP doses administered. Measurement of hepatic glutathione and hydrogen peroxide levels exposed the importance of oxidative stress in determining the consequence of APAP overdose. Subsequent metabolomic analysis was capable of constructing a principal components analysis (PCA) model that delineated a relationship between urinary metabolomes and the responses to APAP treatment. Urinary ions high in wild-type mice treated with 400 mg/kg APAP were elucidated as 3-methoxy-APAP glucuronide (VII) and three novel APAP metabolites, including S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid (VI, formed by a Cys-APAP transamination reaction in kidney), 3,3′-biacetaminophen (VIII, an APAP dimer) and a benzothiazine compound (IX, originated from deacetylated APAP), through mass isotopomer analysis, accurate mass measurement, tandem MS fragmentation, in vitro reactions and chemical treatments. Dose-, time- and genotype-dependent appearance of these minor APAP metabolites implied their association with the APAP-induced toxicity and potential biomarker application. Overall, the oxidative stress elicited by CYP2E1-mediated APAP metabolism might significantly contribute to APAP-induced toxicity. The combination of genetically-modified animal models, mass isotopomer analysis and metabolomics provides a powerful and efficient technical platform to characterize APAP-induced toxicity through identifying novel biomarkers and unravelling novel mechanisms. PMID:18093979

  8. A full evaluation for the enantiomeric impacts of lactofen and its metabolites on aquatic macrophyte Lemna minor.

    PubMed

    Wang, Fang; Liu, Donghui; Qu, Han; Chen, Li; Zhou, Zhiqiang; Wang, Peng

    2016-09-15

    Pesticide pollution of surface water represents a considerable danger for the aquatic plants which play very crucial roles in aquatic system such as oxygen production, nutrient cycling, water quality controlling and sediment stabilization. In this work, the toxic effects of the chiral herbicide lactofen and its three metabolites (desethyl lactofen, acifluorfene and amino acifluorfene) to the aquatic plant Lemna minor (L. minor) on enantiomeric level were evaluated. The influences on growth rate, fresh weight, content of photosynthetic pigment, protein and malondialdehyde (MDA) and the activities of antioxidant defense enzymes (catalase (CAT) and superoxide dismutase (SOD)) were measured after 7 days of exposure. L. minor growth was inhibited in the order of (S)-desethyl lactofen > racemic-desethyl lactofen > (R)-desethyl lactofen > racemic-lactofen > (S)-lactofen > (R)-lactofen > acifluorfene > amino acifluorfene, and the IC50 (7d) values showed desethyl lactofen was the most powerful compound which was about twice as toxic as lactofen. The contents of chlorophylls (Chl) and carotenoids (Car) were significantly reduced by the chemicals, while, the levels of protein, MDA and the activity of CAT and SOD enzymes increased in most cases. The obtained results revealed that lactofen and its metabolites had an undesirable effect on L. minor, in terms of physiological and biochemical aspects. Besides, enantioselective toxicity of lactofen and desethyl lactofen to L. minor was observed. The S-enantiomer of desethyl lactofen was more toxic than the corresponding R-enantiomer. Furthermore, racemic lactofen was more toxic than the individual enantiomers. The side effects of pesticide metabolites and the enantioselectivity should be considered in developing optically pure products and risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A tricyclic pyrrolobenzodiazepine produced by Klebsiella oxytoca is associated with cytotoxicity in antibiotic-associated hemorrhagic colitis.

    PubMed

    Tse, Herman; Gu, Qiangshuai; Sze, Kong-Hung; Chu, Ivan K; Kao, Richard Y-T; Lee, Kam-Chung; Lam, Ching-Wan; Yang, Dan; Tai, Sherlock Shing-Chiu; Ke, Yihong; Chan, Elaine; Chan, Wan-Mui; Dai, Jun; Leung, Sze-Pui; Leung, Suet-Yi; Yuen, Kwok-Yung

    2017-11-24

    Cytotoxin-producing Klebsiella oxytoca is the causative agent of antibiotic-associated hemorrhagic colitis (AAHC). Recently, the cytotoxin associated with AAHC was identified as tilivalline, a known pentacyclic pyrrolobenzodiazepine (PBD) metabolite produced by K. oxytoca Although this assertion of tilivalline's role in AAHC is supported by evidence from animal experiments, some key aspects of this finding appear to be incompatible with toxicity mechanisms of known PBD toxins. We therefore hypothesized that K. oxytoca may produce some other uncharacterized cytotoxins. To address this question, we investigated whether tilivalline alone is indeed necessary and sufficient to induce cytotoxicity or whether K. oxytoca also produces other cytotoxins. LC-MS- and NMR-based metabolomic analyses revealed the presence of an abundant tricyclic PBD, provisionally designated kleboxymycin, in the supernatant of toxigenic K. oxytoca strains. Moreover, by generating multiple mutants with gene deletions affecting tilivalline biosynthesis, we show that a tryptophanase-deficient, tilivalline-negative K. oxytoca mutant induced cytotoxicity in vitro similar to tilivalline-positive K. oxytoca strains. Furthermore, synthetic kleboxymycin exhibited greater than 9-fold higher cytotoxicity than tilivalline in TC 50 cell culture assays. We also found that the biosynthetic pathways for kleboxymycin and tilivalline appear to overlap, as tilivalline is an indole derivative of kleboxymycin. In summary, our results indicate that tilivalline is not essential for inducing cytotoxicity observed in K. oxytoca -associated AAHC and that kleboxymycin is a tilivalline-related bacterial metabolite with even higher cytotoxicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. HIM-herbal ingredients in-vivo metabolism database.

    PubMed

    Kang, Hong; Tang, Kailin; Liu, Qi; Sun, Yi; Huang, Qi; Zhu, Ruixin; Gao, Jun; Zhang, Duanfeng; Huang, Chenggang; Cao, Zhiwei

    2013-05-31

    Herbal medicine has long been viewed as a valuable asset for potential new drug discovery and herbal ingredients' metabolites, especially the in vivo metabolites were often found to gain better pharmacological, pharmacokinetic and even better safety profiles compared to their parent compounds. However, these herbal metabolite information is still scattered and waiting to be collected. HIM database manually collected so far the most comprehensive available in-vivo metabolism information for herbal active ingredients, as well as their corresponding bioactivity, organs and/or tissues distribution, toxicity, ADME and the clinical research profile. Currently HIM contains 361 ingredients and 1104 corresponding in-vivo metabolites from 673 reputable herbs. Tools of structural similarity, substructure search and Lipinski's Rule of Five are also provided. Various links were made to PubChem, PubMed, TCM-ID (Traditional Chinese Medicine Information database) and HIT (Herbal ingredients' targets databases). A curated database HIM is set up for the in vivo metabolites information of the active ingredients for Chinese herbs, together with their corresponding bioactivity, toxicity and ADME profile. HIM is freely accessible to academic researchers at http://www.bioinformatics.org.cn/.

  11. Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast.

    PubMed

    Peters, Frank T; Bureik, Matthias; Maurer, Hans H

    2009-07-01

    Cytochrome P450 mono-oxygenases (CYPs) are the major enzymes involved in the metabolism of drugs and poisons in humans. The variation of their activity - due to genetic polymorphisms or enzyme inhibition/induction - potentially increases the risk of side effects or toxicity. Studies on CYP-dependent metabolism are important in drug-development or toxicity studies. Reference standards of drug metabolites required for such studies, especially in the context of metabolites in safety testing (MIST), are often not commercially available and their classical chemical synthesis can be cumbersome. Recently, a biotechnological approach using human CYP isozymes heterologously expressed in fission yeast was developed for the synthesis of drug metabolites. Among other aspects, this approach has the distinct advantages that the reactions run under mild conditions and that only the final product must be isolated and characterized. This review overviews the first practical applications of this new approach and discusses the selection of substrates, metabolites and fission yeast strains as well as important aspects of incubation, product isolation and clean-up.

  12. Arsenolysis and Thiol-Dependent Arsenate Reduction

    EPA Science Inventory

    Conversion of arsenate to arsenite is a critical event in the pathway that leads from inorganic arsenic to a variety of methylated metabolites. The formation of methylated metabolites influences distribution and retention of arsenic and affects the reactivity and toxicity of thes...

  13. Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii.

    PubMed

    Urrutia-Cordero, Pablo; Agha, Ramsy; Cirés, Samuel; Lezcano, María Ángeles; Sánchez-Contreras, María; Waara, Karl-Otto; Utkilen, Hans; Quesada, Antonio

    2013-04-15

    Grazing is a major regulating factor in cyanobacterial population dynamics and, subsequently, considerable effort has been spent on investigating the effects of cyanotoxins on major metazoan grazers. However, protozoan grazers such as free-living amoebae can also feed efficiently on cyanobacteria, while simultaneously posing a major threat for public health as parasites of humans and potential reservoirs of opportunistic pathogens. In this study, we conducted several experiments in which the freshwater amoeba Acanthamoeba castellanii was exposed to pure microcystin-LR (MC-LR) and six cyanobacterial strains, three MC-producing strains (MC-LR, MC-RR, MC-YR, MC-WR, [Dha7] MC-RR) and three strains containing other oligopeptides such as anabaenopeptins and cyanopeptolins. Although the exposure to high concentrations of pure MC-LR yielded no effects on amoeba, all MC-producing strains inflicted high mortality rates on amoeba populations, suggesting that toxic effects must be mediated through the ingestion of toxic cells. Interestingly, an anabaenopeptin-producing strain caused the greatest inhibition of amoeba growth, indicating that toxic bioactive compounds other than MCs are of great importance for amoebae grazers. Confocal scanning microscopy revealed different alterations in amoeba cytoskeleton integrity and as such, the observed declines in amoeba densities could have indeed been caused via a cascade of cellular events primarily triggered by oligopeptides with protein-phosphatase inhibition capabilities such as MCs or anabaenopeptins. Moreover, inducible-defense mechanisms such as the egestion of toxic, MC-producing cyanobacterial cells and the increase of resting stages (encystation) in amoebae co-cultivated with all cyanobacterial strains were observed in our experiments. Consequently, cyanobacterial strains showed different susceptibilities to amoeba grazing which were possibly influenced by the potentiality of their toxic secondary metabolites. Hence, this study shows the importance of cyanobacterial toxicity against amoeba grazing and, that cyanobacteria may contain a wide range of chemical compounds capable of negatively affect free-living, herbivorous amoebae. Moreover, this is of high importance for understanding the interactions and population dynamics of such organisms in aquatic ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa.

    PubMed

    Kumari, Rima; Barsainya, Manjari; Singh, Devendra Pratap

    2017-02-01

    Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO 3 + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45-100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.

  15. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer.

    PubMed

    Kovacic, Peter

    2005-01-01

    Cocaine is one of the principal drugs of abuse. Although impressive advances have been made, unanswered questions remain concerning mechanism of toxicity and addiction. Discussion of action mode usually centers on receptor binding and enzyme inhibition, with limited attention to events at the molecular level. This review provides extensive evidence in support of the hypothesis that oxidative metabolites play important roles comprising oxidative stress (OS), reactive oxygen species (ROS), and electron transfer (ET). The metabolites include norcocaine and norcocaine derivatives: nitroxide radical, N-hydroxy, nitrosonium, plus cocaine iminium and formaldehyde. Observed formation of ROS is rationalized by redox cycling involving several possible ET agents. Three potential ones are present in the form of oxidative metabolites, namely, nitroxide, nitrosonium, and iminium. Most attention has been devoted to the nitroxide-hydroxylamine couple which has been designated by various investigators as the principal source of ROS. The proximate ester substituent is deemed important for intramolecular stabilization of reactive intermediates. Reduction potential of nitroxide is in accord with plausibility of ET in the biological milieu. Toxicity by cocaine, with evidence for participation of OS, is demonstrated for many body components, including liver, central nervous system, cardiovascular system, reproductive system, kidney, mitochondria, urine, and immune system. Other adverse effects associated with ROS comprise teratogenesis and apoptosis. Examples of ROS generated are lipid peroxides and hydroxyl radical. Often observed were depletion of antioxidant defenses, and protection by added antioxidants, such as, thiol, salicylate, and deferoxamine. Considerable evidence supports the contention that oxidative ET metabolites of cocaine are responsible for much of the observed OS. Quite significantly, the pro-oxidant, toxic effects, including generation of superoxide and lipid peroxyl radicals, plus depletion of glutathione, elicited by nitroxide or the hydroxylamine derivative, were greater than for the parent drug. The formaldehyde metabolite also appears to play a role. Mechanistic similarity to the action of neurotoxin 3,3'-iminodipropionitrile is pointed out. A number of literature strategies for treatment of addiction are addressed. However, no effective interventions are currently available. An hypothesis for addiction is offered based on ET and ROS at low concentrations. Radicals may aid in cell signaling entailing redox processes which influence ion transport, neuromodulation, and transcription. Ideas are suggested for future work dealing with health promotion. These include use of AOs, both dietary and supplemental, trapping of the norcocaine metabolite by non-toxic complexing agents, and use of nitrones for capturing harmful radical species.

  16. Pesticides in agricultural headwater streams in southwestern Germany and effects on macroinvertebrate populations.

    PubMed

    Weber, Gero; Christmann, Nicole; Thiery, Ann-Cathrin; Martens, Dieter; Kubiniok, Jochen

    2018-04-01

    Pesticides are a major burden for stream ecosystems in the central European cultivated landscape. The objective of the present study was to investigate the applicability of ecological indicator methods in relation to toxicity of pesticides under the specific hydro-morphological conditions in small water bodies. Thus, an association of toxicity evaluating methods with different ecological indicators was to be attempted. Based on three random samples taken within the 2016 vegetation period, 23 headwater areas in the Saarland were investigated to test for pesticides and their metabolites. The macroinvertebrate population was also surveyed in 16 of these streams. Evidence was found of 41 substances in total. Most dominant substances include atrazine, isoproturone, quinmerac and tebuconazol as well as metabolites of dimethenamid, chloridazon and metazachlor. At 9 of the 23 sampling points, over 10 plant protection products and metabolites were found. Only 17% of the water bodies investigated contained fewer than 5 substances. Around half of the bodies of water investigated show noticeably high concentrations of metabolites of plant protection products. Maximum concentrations exceeding environmental quality standards or the Health-oriented Guideline Values were measured for 13 substances at individual sampling points. Analysis of the biological data for only 4 of the water bodies investigated resulted in the Ecological Status Class (ESC) "good". All others fell short of the quality target, although they were classified as "good" or "very good" according to the Saprobic index. SPEAR pesticides as a measurement of the sensitivity of the biocoenosis to pesticides shows their influence in a few water bodies. Likewise, high toxic unit values have also been calculated, indicating the presence of toxic substances at relevant concentrations. However, an actual correlation between SPEAR pesticides and toxic unit could not be derived. Clearly in these very headwater streams other habitat-determining hydromorphological factors overlay the toxic impact of pesticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites

    PubMed Central

    Veeramachaneni, D. N. Rao; Walters, William A.; Lozupone, Catherine; Palmer, Jennifer; Hewage, M. K. Kurundu; Bhatnagar, Rohil; Amir, Amnon; Kennett, Mary J.; Knight, Rob

    2017-01-01

    ABSTRACT Bisphenol A (BPA) accumulates in the maturing gut and liver in utero and is known to alter gut bacterial profiles in offspring. Gut bacterial dysbiosis may contribute to chronic colonic and systemic inflammation. We hypothesized that perinatal BPA exposure-induced intestinal (and liver) inflammation in offspring is due to alterations in the microbiome and colonic metabolome. The 16S rRNA amplicon sequencing analysis revealed differences in beta diversity with a significant reduction in the relative abundances of short-chain fatty acid (SCFA) producers such as Oscillospira and Ruminococcaceae due to BPA exposure. Furthermore, BPA exposure reduced fecal SCFA levels and increased systemic lipopolysaccharide (LPS) levels. BPA exposure-increased intestinal permeability was ameliorated by the addition of SCFA in vitro. Metabolic fingerprints revealed alterations in global metabolism and amino acid metabolism. Thus, our findings indicate that perinatal BPA exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to chronic colon and liver inflammation. IMPORTANCE Emerging evidence suggests that environmental toxicants may influence inflammation-promoted chronic disease susceptibility during early life. BPA, an environmental endocrine disruptor, can transfer across the placenta and accumulate in fetal gut and liver. However, underlying mechanisms for BPA-induced colonic and liver inflammation are not fully elucidated. In this report, we show how perinatal BPA exposure in rabbits alters gut microbiota and their metabolite profiles, which leads to colonic and liver inflammation as well as to increased gut permeability as measured by elevated serum lipopolysaccharide (LPS) levels in the offspring. Also, perinatal BPA exposure leads to reduced levels of gut bacterial diversity and bacterial metabolites (short-chain fatty acids [SCFA]) and elevated gut permeability—three common early biomarkers of inflammation-promoted chronic diseases. In addition, we showed that SCFA ameliorated BPA-induced intestinal permeability in vitro. Thus, our study results suggest that correcting environmental toxicant-induced bacterial dysbiosis early in life may reduce the risk of chronic diseases later in life. PMID:29034330

  18. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Salem, Intidhar; Boussabbeh, Manel

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). In the present study, we investigated the underlying mechanism of the toxicity induced by ZEN, α-ZOL and β-ZOL in cardiac cells (H9c2). We show that treatment with ZEN or its metabolites induces the activation of the mitochondrial pathway of apoptosis as characterized by an increase in ROS generation, a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspases. Besides, we demonstrate that these mycotoxins promote the activation of autophagy beforemore » the onset of apoptosis. Indeed, we observed that a short-time (6 h) treatment with ZEN, α-ZOL or β-ZOL, increased the level of Beclin-1 and LC3-II and induced the accumulation of the CytoID® autophagy detection probe. Moreover, the inhibition of autophagy by Chloroquine significantly increased cell death induced by ZEN, α-ZOL or β-ZOL, suggesting that the activation of autophagy serves as a cardioprotective mechanism against these mycotoxins. In addition, we found that the inhibition (EX527) or the knockdown of SIRT1 (siRNA) significantly increased apoptosis induced by ZEN or its derivatives, whereas SIRT1 activation with RSV greatly prevents the cytotoxic effects of these mycotoxins. By contrast, when autophagy was inhibited by CQ, the activation of SIRT1 by RSV had no protection against the cardiotoxicity of ZEN or its metabolites, suggesting that SIRT1 protects cardiac cells by an autophagy-dependent pathway. - Highlights: • ZEN, α- and β-ZOL induce the mitochondrial pathway of apoptosis in cardiac cells. • Inhibition of autophagy enhanced ZEN-, α-ZOL- and β-ZOL-induced apoptosis. • SIRT1 activates autophagy to protect cells from ZEN, α- and β-ZOL-induced toxicity.« less

  19. Distribution of toxic alkaloids in tissues from three herbal medicine Aconitum species using laser micro-dissection, UHPLC-QTOF MS and LC-MS/MS techniques.

    PubMed

    Jaiswal, Yogini; Liang, Zhitao; Ho, Alan; Wong, LaiLai; Yong, Peng; Chen, Hubiao; Zhao, Zhongzhen

    2014-11-01

    Aconite poisoning continues to be a major type of poisoning caused by herbal drugs in many countries. Nevertheless, despite its toxic characteristics, aconite is used because of its valuable therapeutic benefits. The aim of the present study was to determine the distribution of toxic alkaloids in tissues of aconite roots through chemical profiling. Three species were studied, all being used in traditional Chinese Medicine (TCM) and traditional Indian medicine (Ayurveda), namely: Aconitum carmichaelii, Aconitum kusnezoffii and Aconitum heterophyllum. Laser micro-dissection was used for isolation of target microscopic tissues, such as the metaderm, cortex, xylem, pith, and phloem, with ultra-high performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) employed for detection of metabolites. Using a multi-targeted approach through auto and targeted LC-MS/MS, 48 known compounds were identified and the presence of aconitine, mesaconitine and hypaconitine that are the biomarkers of this plant was confirmed in the tissues. These results suggest that the three selected toxic alkaloids were exclusively found in A. carmichaelii and A. kusnezoffii. The most toxic components were found in large A. carmichaelii roots with more lateral root projections, and specifically in the metaderm, cork and vascular bundle tissues. The results from metabolite profiling were correlated with morphological features to predict the tissue specific distribution of toxic components and toxicity differences among the selected species. By careful exclusion of tissues having toxic diester diterpenoid alkaloids, the beneficial effects of aconite can still be retained and the frequency of toxicity occurrences can be greatly reduced. Knowledge of tissue-specific metabolite distribution can guide users and herbal drug manufacturers in prudent selection of relatively safer and therapeutically more effective parts of the root. The information provided from this study can contribute towards improved and effective management of therapeutically important, nonetheless, toxic drug such as Aconite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    USGS Publications Warehouse

    Davis, John M.; Ekman, Drew R.; Teng, Quincy; Ankley, Gerald T.; Berninger, Jason P.; Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Schroeder, Anthony L.; Villeneuve, Daniel L.; Jorgenson, Zachary G.; Lee, Kathy E.; Collette, Timothy W.

    2016-01-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493–2502.

  1. N-terminal valine adduct from the anti-HIV drug abacavir in rat haemoglobin as evidence for abacavir metabolism to a reactive aldehyde in vivo

    PubMed Central

    Charneira, C; Grilo, NM; Pereira, SA; Godinho, ALA; Monteiro, EC; Marques, MM; Antunes, AMM

    2012-01-01

    BACKGROUND AND PURPOSE The aim of this study was to obtain evidence for the activation of the nucleoside reverse transcriptase inhibitor abacavir to reactive aldehyde metabolites in vivo. Protein haptenation by these reactive metabolites may be a factor in abacavir-induced toxic events. EXPERIMENTAL APPROACH The formation of N-terminal valine adducts from the abacavir-derived aldehydes was investigated in the haemoglobin of Wistar rats treated with eight daily doses (120 mg·kg−1) of abacavir. The analyses were conducted by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry upon comparison with synthetic standards. KEY RESULTS An N-terminal valine haemoglobin adduct derived from an α,β-unsaturated aldehyde metabolite of abacavir was identified in vivo for the first time. CONCLUSIONS AND IMPLICATIONS This preliminary work on abacavir metabolism provides the first unequivocal evidence for the formation of an α,β-unsaturated aldehyde metabolite in vivo and of its ability to form haptens with proteins. The methodology described herein can be used to assess the formation of this metabolite in human samples and has the potential to become a valuable pharmacological tool for mechanistic studies of abacavir toxicity. In fact, the simplicity of the method suggests that the abacavir adduct with the N-terminal valine of haemoglobin could be used to investigate abacavir-induced toxicity for accurate risk/benefit estimations. PMID:22725138

  2. N-terminal valine adduct from the anti-HIV drug abacavir in rat haemoglobin as evidence for abacavir metabolism to a reactive aldehyde in vivo.

    PubMed

    Charneira, C; Grilo, N M; Pereira, S A; Godinho, A L A; Monteiro, E C; Marques, M M; Antunes, A M M

    2012-11-01

    The aim of this study was to obtain evidence for the activation of the nucleoside reverse transcriptase inhibitor abacavir to reactive aldehyde metabolites in vivo. Protein haptenation by these reactive metabolites may be a factor in abacavir-induced toxic events. The formation of N-terminal valine adducts from the abacavir-derived aldehydes was investigated in the haemoglobin of Wistar rats treated with eight daily doses (120 mg·kg(-1)) of abacavir. The analyses were conducted by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry upon comparison with synthetic standards. An N-terminal valine haemoglobin adduct derived from an α,β-unsaturated aldehyde metabolite of abacavir was identified in vivo for the first time. This preliminary work on abacavir metabolism provides the first unequivocal evidence for the formation of an α,β-unsaturated aldehyde metabolite in vivo and of its ability to form haptens with proteins. The methodology described herein can be used to assess the formation of this metabolite in human samples and has the potential to become a valuable pharmacological tool for mechanistic studies of abacavir toxicity. In fact, the simplicity of the method suggests that the abacavir adduct with the N-terminal valine of haemoglobin could be used to investigate abacavir-induced toxicity for accurate risk/benefit estimations. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  3. IN VITRO CYTOTOXICITY OF BTEX METABOLITES IN HELA CELL LINES

    EPA Science Inventory

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied exte...

  4. Assessing Protection Against OP Pesticides and Nerve Agents Provided by Wild-Type HuPON1 Purified from Trichoplusia ni Larvae or Induced via Adenoviral Infection

    DTIC Science & Technology

    2013-01-01

    times the median lethal dose (LD50) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic...metabolite of the OP pesticide chlorpyrifos . In the second model, mice were infected with an adenovirus that induced expression of HuPON1 and then...mice are dramati- cally more susceptible to the toxic metabolites of the OP pesticides diazinon and chlorpyrifos (diazoxon and chlorpyrifos oxon

  5. Influence of surfactants and humic acids on Artemia Franciscana's embryonic phospho-metabolite profile as measured by 31P NMR.

    PubMed

    Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J; Cook, Robert L

    2017-05-01

    Surfactants, such as triton X-100 (Tx-100), cetylpyridinium chloride (CPC), and sodium dodecyl sulfate (SDS) are known to be toxic to Artemia Franciscana (Artemia) - an organism, frequently used to monitor the health of the aquatic environment. The phospho-metabolite profile of a living organism is often indicative of imbalances that may have been caused by environmental stressors, such as surfactants. This study utilizes in vivo 31 P NMR to monitor temporal changes in the phospho-metabolite profile of Artemia caused by Tx-100, CPC, and SDS and the ability of humic acid (HA) to mitigate the toxicity of these surfactants. It was found that, while Tx-100 does not have any effect on the phospho-metabolite profile, both CPC and SDS cause a complete retardation in growth of the phosphodiester (PDE) peak in the 31 P NMR spectrum, which is indicative of the inhibited cell replication. This growth inhibition was independently verified by the decreased guanosine triphosphate (GTP) concentration in the CPC and SDS-exposed Artemia. In addition, upon introduction of HA to the CPC and SDS-exposed Artemia, an increase of PDE peak over time is indicative of HA mitigating toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Risk Assessment of Shellfish Toxins

    PubMed Central

    Munday, Rex; Reeve, John

    2013-01-01

    Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved. PMID:24226039

  7. [Polyamines and cell growth: specific aspects in Amoeba proteus and in certain cancer cell lines].

    PubMed

    Dubois, J; Schenkel, E; Hanocq, M

    1995-01-01

    The differences between the metabolic schemes of polyamines can be the starting point to investigate the discovery of new antiparasitic or anticancer drugs which would be cell type specific. The studies, which were undertaken with the P388 cancer cells and Amoeba proteus, have shown that the pool of polyamine was very different in both cell types. Moreover, the cytotoxicity of putrescine, spermidine, spermine and 1-3 diaminopropane was found to be dependent of the activity of cell enzymes which could play a role to control cell proliferation by producing toxic metabolites.

  8. Exposure to crude oil micro-droplets causes reduced food uptake in copepods associated with alteration in their metabolic profiles.

    PubMed

    Hansen, Bjørn Henrik; Altin, Dag; Nordtug, Trond; Øverjordet, Ida Beathe; Olsen, Anders J; Krause, Dan; Størdal, Ingvild; Størseth, Trond R

    2017-03-01

    Acute oil spills and produced water discharges may cause exposure of filter-feeding pelagic organisms to micron-sized dispersed oil droplets. The dissolved oil components are expected to be the main driver for oil dispersion toxicity; however, very few studies have investigated the specific contribution of oil droplets to toxicity. In the present work, the contribution of oil micro-droplet toxicity in dispersions was isolated by comparing exposures to oil dispersions (water soluble fraction with droplets) to concurrent exposure to filtered dispersions (water-soluble fractions without droplets). Physical (coloration) and behavioral (feeding activity) as well as molecular (metabolite profiling) responses to oil exposures in the copepod Calanus finmarchicus were studied. At high dispersion concentrations (4.1-5.6mg oil/L), copepods displayed carapace discoloration and reduced swimming activity. Reduced feeding activity, measured as algae uptake, gut filling and fecal pellet production, was evident also for lower concentrations (0.08mg oil/L). Alterations in metabolic profiles were also observed following exposure to oil dispersions. The pattern of responses were similar between two comparable experiments with different oil types, suggesting responses to be non-oil type specific. Furthermore, oil micro-droplets appear to contribute to some of the observed effects triggering a starvation-type response, manifested as a reduction in metabolite (homarine, acetylcholine, creatine and lactate) concentrations in copepods. Our work clearly displays a relationship between crude oil micro-droplet exposure and reduced uptake of algae in copepods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-resolution MS and MS(n) investigation of ozone oxidation products from phenazone-type pharmaceuticals and metabolites.

    PubMed

    Favier, Maxime; Dewil, Raf; Van Eyck, Kwinten; Van Schepdael, Ann; Cabooter, Deirdre

    2015-10-01

    Phenazone-type pharmaceuticals, such as aminopyrine, metamizole, phenazone and propyphenazone, are widely used analgesics that have been detected in wastewater treatment plant effluents in μg L(-1) concentrations. Acetamido antipyrine (AAA) and formyl aminoantipyrine (FAA) - the main metabolites of aminopyrine and metamizole - have also been detected in sub μg L(-1) concentrations in environmental water bodies and in resources used to produce drinking water, suggesting their highly persistent character. In this study phenazone, propyphenazone, AAA and FAA were treated with ozone under laboratory conditions and 17 degradation products were identified by an elucidation approach based on high-resolution mass spectrometry (LTQ Orbitrap). Typical oxidation of carbon-carbon double bonds by ozone was observed among other mechanisms of ring opening. It was demonstrated that reactivity of these compounds with ozone is high (rate constants kO3 ranging from 6.5×10(4) to 2.4×10(6) M(-1) s(-1)). The toxicity of the degradation products from ozonation was estimated by quantitative structure-activity relationships (QSAR). It was shown that, when the carbon-carbon double bond is partially oxidized to an epoxy, the toxicity towards fish and daphnids is higher than that of the parent compound. By further oxidizing the molecules, a common degradation product - 1-acetyl-1-methyl-2-phenylhydrazide (AMPH) - was also found to be more toxic than its parent compounds, which is of concern since this compound has previously been reported in environmental waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri.

    PubMed

    de Oliveira, Admilton G; Spago, Flavia R; Simionato, Ane S; Navarro, Miguel O P; da Silva, Caroline S; Barazetti, André R; Cely, Martha V T; Tischer, Cesar A; San Martin, Juca A B; de Jesus Andrade, Célia G T; Novello, Cláudio R; Mello, João C P; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL(-1). In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker.

  11. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri

    PubMed Central

    de Oliveira, Admilton G.; Spago, Flavia R.; Simionato, Ane S.; Navarro, Miguel O. P.; da Silva, Caroline S.; Barazetti, André R.; Cely, Martha V. T.; Tischer, Cesar A.; San Martin, Juca A. B.; de Jesus Andrade, Célia G. T.; Novello, Cláudio R.; Mello, João C. P.; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker. PMID:26903992

  12. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.

    PubMed

    Evans, M V; Chiu, W A; Okino, M S; Caldwell, J C

    2009-05-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA administered directly, which is inconsistent with the hypothesis that TCA alone accounts for TCE-induced hepatomegaly. In addition, TCE-induced hepatomegaly showed a much more consistent relationship with PBPK model predictions of total oxidative metabolism than with predictions of TCE area-under-the-curve in blood, consistent with toxicity being induced by oxidative metabolites rather than the parent compound. Therefore, these results strongly suggest that oxidative metabolites in addition to TCA are necessary contributors to TCE-induced liver weight changes in mice.

  13. Paenilarvins: Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae.

    PubMed

    Sood, Sakshi; Steinmetz, Heinrich; Beims, Hannes; Mohr, Kathrin I; Stadler, Marc; Djukic, Marvin; von der Ohe, Werner; Steinert, Michael; Daniel, Rolf; Müller, Rolf

    2014-09-05

    The bacterium Paenibacillus larvae has been extensively studied as it is an appalling honey bee pathogen. In the present work, we screened crude extracts derived from fermentations of P. larvae genotypes ERIC I and II for antimicrobial activity, following the detection of four putative secondary metabolite gene clusters that show high sequence homology to known biosynthetic gene clusters for the biosynthesis of antibiotics. Low molecular weight metabolites produced by P. larvae have recently been shown to have toxic effects on honey bee larvae. Moreover, a novel tripeptide, sevadicin, was recently characterized from laboratory cultures of P. larvae. In this study, paenilarvins, which are iturinic lipopeptides exhibiting strong antifungal activities, were obtained by bioassay-guided fractionation from cultures of P. larvae, genotype ERIC II. Their molecular structures were determined by extensive 2D NMR spectroscopy, high resolution mass spectrometry, and other methods. Paenilarvins are the first antifungal secondary metabolites to be identified from P. larvae. In preliminary experiments, these lipopeptides also affected honey bee larvae and might thus play a role in P. larvae survival and pathogenesis. However, further studies are needed to investigate their function. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes.

    PubMed

    Degenkolb, Thomas; Vilcinskas, Andreas

    2016-05-01

    Plant-parasitic nematodes are estimated to cause global annual losses of more than US$ 100 billion. The number of registered nematicides has declined substantially over the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, are therefore urgently required. Nematophagous fungi are natural antagonists of nematode parasites, and these offer an ecophysiological source of novel biocontrol strategies. In this first section of a two-part review article, we discuss 83 nematicidal and non-nematicidal primary and secondary metabolites found in nematophagous ascomycetes. Some of these substances exhibit nematicidal activities, namely oligosporon, 4',5'-dihydrooligosporon, talathermophilins A and B, phomalactone, aurovertins D and F, paeciloxazine, a pyridine carboxylic acid derivative, and leucinostatins. Blumenol A acts as a nematode attractant. Other substances, such as arthrosporols and paganins, play a decisive role in the life cycle of the producers, regulating the formation of reproductive or trapping organs. We conclude by considering the potential applications of these beneficial organisms in plant protection strategies.

  15. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    EPA Science Inventory

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  16. Protection against methanol-induced retinal toxicity by LED photostimulation

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Wong-Riley, Margaret T. T.; Eells, Janis T.

    2002-06-01

    We have initiated experiments designed to test the hypothesis that 670-nm Light-Emitting Diode (LED) exposure will attenuate formate-induced retinal dysfunction in a rodent model of methanol toxicity. Methanol intoxication produces toxic injury to the retina. The toxic metabolite formed in methanol intoxication is formic acid, a mitochondrial toxin known to inhibit cytochrome oxidase activity. 670-nm LED light has been hypothesized to act by stimulating cytochrome oxidase activity. To test this hypothesis, one group of animals was intoxicated with methanol, a second group was intoxicated with methanol and LED-treated and a third group was untreated. LED treatment (670 nm for 1 min 45 seconds equals 50 mW/cm2, 4 joules/cm2) was administered at 5, 25, and 50 hours after the initial dose of methanol. At 72 hours of methanol intoxication, retinal function was assessed by measurement of ERG responses and retinas were prepared for histologic analysis. ERG responses recorded in methanol-intoxicated animals revealed profound attenuation of both rod-dominated and UV-cone mediated responses. In contrast, methanol- intoxicated animals exposed to LED treatment exhibited a nearly complete recovery of rod-dominated ERG responses and a slight improvement of UV-cone mediated ERG responses. LED treatment also protected the retina against the histopathologic changes produced by formate in methanol intoxication. These data provide evidence that LED phototherapy protects the retina against the cytotoxic actions of formate and are consistent with the hypothesis that LED photostimulation improves mitochondrial respiratory chain function.

  17. An isotope dilution gas chromatography/mass spectrometry method for trace analysis of xylene and its metabolites in tissues following threshold limit value exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyon, K.H.; Kracko, D.A.; Strunk, M.R.

    1995-12-01

    The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, alongmore » with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.« less

  18. Intracellular studies of the nucleoside reverse transcriptase inhibitor active metabolites: a review.

    PubMed

    Rodriguez Orengo, J F; Santana, J; Febo, I; Diaz, C; Rodriguez, J L; Garcia, R; Font, E; Rosario, O

    2000-03-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) plasma concentrations do not correlate with clinical efficacy or toxicity. These agents need to be phosphorylated to become active against HIV-infection. Thus, the characterization of the NRTIs intracellular metabolite pharmacological parameters will provide a better understanding that could lead to the development of more rational dose regimens in the HIV-infected population. Furthermore, intracellular measurements of NRTIs may provide a better marker with respect to clinical efficacy and toxicity than plasma concentrations. Thus, in this article we review the latest information regarding the intracellular pharmacological parameters of zidovudine (ZDV) and lamivudine (3TC) active metabolites in HIV-infected patients including the results from our recent clinical studies. We will start the discussion with ZDV and 3TC clinical efficacy, followed by systemic pharmacokinetics studies. We will then discuss the in vitro and in vivo intracellular studies with particular emphasis in the method development to measure these metabolites and we will conclude with the most current data from our clinical trials.

  19. Absorption, Distribution, Metabolism and Excretion of 3-MCPD 1-Monopalmitate after Oral Administration in Rats.

    PubMed

    Gao, Boyan; Liu, Man; Huang, Guoren; Zhang, Zhongfei; Zhao, Yue; Wang, Thomas T Y; Zhang, Yaqiong; Liu, Jie; Yu, Liangli

    2017-03-29

    Fatty acid esters of monochloropropane 1,2-diol (3-MCPD) are processing-induced toxicants and have been detected in several food categories. This study investigated the absorption, distribution, metabolism, and excretion of 3-MCPD esters in Sprague-Dawley (SD) rats using 3-MCPD 1-monopalmitate as the probe compound. The kinetics of 3-MCPD 1-monopalmitate in plasma was investigated using SD rats, and the results indicated that 3-MCPD 1-monopalmitate was absorbed directly in vivo and metabolized. Its primary metabolites in the liver, kidney, testis, brain, plasma, and urine were tentatively identified and measured at 6, 12, 24, and 48 h after oral administration. Structures were proposed for eight metabolites. 3-MCPD 1-monopalmitate was converted to free 3-MCPD, which formed the phase II metabolites. All of the metabolites were chlorine-related chemical components; most of them existed in urine, reflecting the excretion pattern of 3-MCPD esters. Understanding the metabolism of 3-MCPD esters in vivo is critical for assessing their toxicities.

  20. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    PubMed

    Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2011-05-04

    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  1. Cyanide and the human brain: perspectives from a model of food (cassava) poisoning.

    PubMed

    Tshala-Katumbay, Desire D; Ngombe, Nadege N; Okitundu, Daniel; David, Larry; Westaway, Shawn K; Boivin, Michael J; Mumba, Ngoyi D; Banea, Jean-Pierre

    2016-08-01

    Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 μmol/l) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual-spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. © 2016 New York Academy of Sciences.

  2. Cyanide and the human brain: perspectives from a model of food (cassava) poisoning

    PubMed Central

    Tshala-Katumbay, Desire D.; Ngombe, Nadege N.; Okitundu, Daniel; David, Larry; Westaway, Shawn K.; Boivin, Michael J.; Mumba, Ngoyi D.; Banea, Jean-Pierre

    2016-01-01

    Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 µmol/L) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual–spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. PMID:27450775

  3. An in vitro approach for comparative interspecies metabolism of agrochemicals.

    PubMed

    Whalley, Paul M; Bartels, Michael; Bentley, Karin S; Corvaro, Marco; Funk, Dorothee; Himmelstein, Matthew W; Neumann, Birgit; Strupp, Christian; Zhang, Fagen; Mehta, Jyotigna

    2017-08-01

    The metabolism and elimination of a xenobiotic has a direct bearing on its potential to cause toxicity in an organism. The confidence with which data from safety studies can be extrapolated to humans depends, among other factors, upon knowing whether humans are systemically exposed to the same chemical entities (i.e. a parent compound and its metabolites) as the laboratory animals used to study toxicity. Ideally, to understand a metabolite in terms of safety, both the chemical structure and the systemic exposure would need to be determined. However, as systemic exposure data (i.e. blood concentration/time data of test material or metabolites) in humans will not be available for agrochemicals, an in vitro approach must be taken. This paper outlines an in vitro experimental approach for evaluating interspecies metabolic comparisons between humans and animal species used in safety studies. The aim is to ensure, where possible, that all potential human metabolites are also present in the species used in the safety studies. If a metabolite is only observed in human in vitro samples and is not present in a metabolic pathway defined in the toxicological species already, the toxicological relevance of this metabolite must be evaluated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Identification of phase-I metabolites and chronic toxicity study of the Kv1.3 blocker PAP-1 (5-(4-phenoxybutoxy)psoralen) in the rat.

    PubMed

    Hao, B; Chen, Z-W; Zhou, X-J; Zimin, P I; Miljanich, G P; Wulff, H; Wang, Y-X

    2011-03-01

    1. PAP-1 (5-(4-phenoxybutoxy)psoralen), a potent small-molecule blocker of the voltage-gated potassium Kv1.3 channel, is currently in preclinical development for psoriasis. This study was undertaken to identify the major phase I metabolites of PAP-1 in Sprague-Dawley (SD) rats. 2. Five phase I metabolites, that is 5-(oxybutyric-acid)psoralen (M1), 5-[4-(4-hydroxybutoxy)]psoralen (M2), 5-[4-(4-hydroxyphenoxy)butoxy]psoralen (M3), 5-[4-(3-hydroxyphenoxy)butoxy]psoralen (M4), and 8-hydroxyl-5-(4-phenoxybutoxy)psoralen (M5), were isolated from the bile of rats and identified by mass spectrometry and NMR spectroscopy. The last four metabolites are new compounds. 3. Incubation of PAP-1 with SD rat liver microsomes rendered the same five major metabolites in a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent manner suggesting that cytochrome P450 (CYP) enzymes are involved in PAP-1 metabolism. Inhibitors of rat CYP1A1/2 (alpha-naphthoflavone) and CYP3A (ketoconazole) but not CYP2D6 (quinidine), CYP2E (diethyldithiocarbamate), or CYP2C9 (sulphaphenazole) blocked the metabolism of PAP-1 in rat microsomes. 4. Of the five metabolites M3, M4, and M5 were found to inhibit Kv1.3 currents with nanomolar IC50s, while M1 and M2 were inactive. Our results identified the Kv1.3-inactive M1 as the major phase I metabolite, and suggest that hydroxylation and O-dealkylation are the major pathways of PAP-1 metabolism. 5. We further conducted a 6-month repeat-dose toxicity study with PAP-1 at 50 mg/kg in both male and female Lewis rats and did not observe any toxic effects.

  5. Biotransformation of trans-1-chloro-3,3,3-trifluoropropene (trans-HCFO-1233zd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Tobias; Bertermann, Rüdiger; Rusch, George M.

    2013-05-01

    trans-1-Chloro-3,3,3-trifluoropropene (trans-HCFO-1233zd) is a novel foam blowing and precision cleaning agent with a very low impact for global warming and ozone depletion. trans-HCFO-1233zd also has a low potential for toxicity in rodents and is negative in genotoxicity testing. The biotransformation of trans-HCFO-1233zd and kinetics of metabolite excretion with urine were assessed in vitro and in animals after inhalation exposures. For in vitro characterization, liver microsomes from rats, rabbits and humans were incubated with trans-HCFO-1233zd. Male Sprague Dawley rats and female New Zealand White rabbits were exposed to 2,000, 5,000 and 10,000 ppm for 6 h and urine was collected formore » 48 h after the end of the exposure. Study specimens were analyzed for metabolites using {sup 19}F NMR, LC-MS/MS and GC/MS. S-(3,3,3-trifluoro-trans-propenyl)-glutathione was identified as predominant metabolite of trans-HCFO-1233zd in all microsomal incubation experiments in the presence of glutathione. Products of the oxidative biotransformation of trans-HCFO-1233zd were only minor metabolites when glutathione was present. In rats, both 3,3,3-trifluorolactic acid and N-acetyl-(3,3,3-trifluoro-trans-propenyl)-L-cysteine were observed as major urinary metabolites. 3,3,3-Trifluorolactic acid was not detected in the urine of rabbits. Quantitation showed rapid excretion of both metabolites in both species (t{sub 1/2} < 6 h) and the extent of biotransformation of trans-HCFO-1233zd was determined as approximately 0.01% of received dose in rabbits and approximately 0.002% in rats. trans-HCFO-1233zd undergoes both oxidative biotransformation and glutathione conjugation at very low rates. The low extent of biotransformation and the rapid excretion of metabolites formed are consistent with the very low potential for toxicity of trans-HCFO-1233zd in mammals. - Highlights: ► No lethality and clinical signs were observed. ► Glutathione S-transferase and cytochrome P-450 dependent biotransformation in vivo. ► Low biotransformation (< 0.01%) and fast metabolite excretion (t{sub 1/2} < 6 h). ► Glutathione adduct as predominant in vitro metabolite in all tested species. ► Toxic metabolites could not be detected in any great extent.« less

  6. Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid.

    PubMed

    Ding, Tengda; Lin, Kunde; Bao, Lianjun; Yang, Mengting; Li, Juying; Yang, Bo; Gan, Jay

    2018-03-01

    Triclosan is one of the most frequently detected emerging contaminants in aquatic environment. In this study, we investigated the biouptake, toxicity and biotransformation of triclosan in freshwater algae Cymbella sp. The influence of humic acid, as a representative of dissolved organic matter, was also explored. Results from this study showed that triclosan was toxic to Cymbella sp. with 72 h EC 50 of 324.9 μg L -1 . Humic acid significantly reduced the toxicity and accumulation of triclosan in Cymbella sp. SEM analysis showed that Cymbella sp. were enormously damaged under 1 mg L -1 triclosan exposure and repaired after the addition of 20 mg L -1 humic acid. Triclosan can be significantly taken up by Cymbella sp. The toxicity of triclosan is related to bioaccumulated triclosan as the algal cell numbers decreased when intracellular triclosan increased. A total of 11 metabolites were identified in diatom cells and degradation pathways are proposed. Hydroxylation, methylation, dechlorination, amino acids conjunction and glucuronidation contributed to the transformative reactions of triclosan in Cymbella sp., producing biologically active products (e.g., methyl triclosan) and conjugation products (e.g., glucuronide or oxaloacetic acid conjugated triclosan), which may be included in the detoxification mechanism of triclosan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity.

    PubMed

    Birnbaum, Stephanie S L; Rinker, David C; Gerardo, Nicole M; Abbot, Patrick

    2017-12-01

    Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths. © 2017 John Wiley & Sons Ltd.

  8. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity

    NASA Astrophysics Data System (ADS)

    Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2016-09-01

    Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.

  9. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity.

    PubMed

    Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2016-09-02

    Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.

  10. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prouillac, Caroline, E-mail: c.prouillac@vetagro-sup.fr; Koraichi, Farah; Videmann, Bernadette

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as amore » potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.« less

  11. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    PubMed

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  12. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures.

    PubMed

    Ehrlich, Kenneth C; Chang, Perng-Kuang; Scharfenstein, Leslie L; Cary, Jeffrey W; Crawford, Jason M; Townsend, Craig A

    2010-04-01

    Biosynthesis of the highly toxic and carcinogenic aflatoxins in select Aspergillus species from the common intermediate O-methylsterigmatocystin has been postulated to require only the cytochrome P450 monooxygenase, OrdA (AflQ). We now provide evidence that the aryl alcohol dehydrogenase NorA (AflE) encoded by the aflatoxin biosynthetic gene cluster in Aspergillus flavus affects the accumulation of aflatoxins in the final steps of aflatoxin biosynthesis. Mutants with inactive norA produced reduced quantities of aflatoxin B(1) (AFB(1)), but elevated quantities of a new metabolite, deoxyAFB(1). To explain this result, we suggest that, in the absence of NorA, the AFB(1) reduction product, aflatoxicol, is produced and is readily dehydrated to deoxyAFB(1) in the acidic medium, enabling us to observe this otherwise minor toxin produced in wild-type A. flavus.

  13. Cells producing their own nemesis: understanding methylglyoxal metabolism.

    PubMed

    Chakraborty, Sangeeta; Karmakar, Kapudeep; Chakravortty, Dipshikha

    2014-10-01

    Methylglyoxal, which is technically known as 2-oxopropanal or pyruvaldehyde, shows typical reactions of carbonyl compounds as it has both an aldehyde and a ketone functional group. It is an extremely cytotoxic physiological metabolite, which is generated by both enzymatic and nonenzymatic reactions. The deleterious nature of the compound is due to its ability to glycate and crosslink macromolecules like protein and DNA, respectively. However, despite having toxic effects on cellular processes, methylglyoxal retains its efficacy as an anticancer drug. Indeed, methylglyoxal is one of the well-known anticancer therapeutic agents used in the treatment. Several studies on methylglyoxal biology revolve around the manifestations of its inhibitory effects and toxicity in microbial growth and diabetic complications, respectively. Here, we have revisited the chronology of methylglyoxal research with emphasis on metabolism of methylglyoxal and implications of methylglyoxal production or detoxification on bacterial pathogenesis and disease progression. © 2014 International Union of Biochemistry and Molecular Biology.

  14. Risk analysis of main mycotoxins occurring in food for children: An overview.

    PubMed

    Raiola, Assunta; Tenore, Gian Carlo; Manyes, Lara; Meca, Giuseppe; Ritieni, Alberto

    2015-10-01

    Mycotoxins are secondary metabolites produced by fungi contaminating the food chain that are toxic to animals and humans. Children up to 12 years old are recognized as a potentially vulnerable subgroup with respect to consumption of these contaminants. Apart from having a higher exposure per kg body weight, they have a different physiology from that of adults. Therefore they may be more sensitive to neurotoxic, endocrine and immunological effects. For these reasons, a specific and up-to-date risk analysis for this category is of great interest. In this review, an accurate analysis of the main mycotoxins occurring in food intended for children (deoxynivalenol, aflatoxins, ochratoxins, patulin and fumonisins) is presented. In particular, known mechanisms of toxicity and levels of exposure and bioaccessibility in children are shown. In addition, recent discoveries about the strategies of mycotoxins managing are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    PubMed

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  16. Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors

    PubMed Central

    Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.

    2012-01-01

    Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy)32+ as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. PMID:23100998

  17. Mechanisms for Hepatobiliary Toxicity in Rats Treated with an Antagonist of Melanin Concentrating Hormone Receptor 1 (MCHR1).

    PubMed

    Otieno, Monicah A; Bhaskaran, Vasanthi; Janovitz, Evan; Callejas, Yimer; Foster, William B; Washburn, William; Megill, John R; Lehman-McKeeman, Lois; Gemzik, Brian

    2017-02-01

    The objective of this work was to investigate the mechanisms of hepatobiliary toxicity caused by thienopyrimidone MCHR1 antagonists using BMS-773174 as a tool molecule. Co-administration of the pan CYP inhibitor 1-aminobenzotriazole with BMS-773174 prevented hepatobiliary damage, and direct delivery of the diol metabolite BMS-769750 caused hepatobiliary toxicity, identifying the diol and possibly its downstream hydroxyacid (BMS-800754) metabolite as the toxic species. Rat liver gene expression revealed treatment-related changes in hepatic transporters and induction of oval cell-specific genes including deleted malignant tumor 1 (Dmbt1). The metabolites did not alter hepatic transporter activities, suggesting that transporter-mediated cholestasis was not involved. Because injury to biliary epithelium can result in adaptive hyperplasia, rat biliary epithelial cells (BECs) were isolated and exposed to the oxidative metabolites. BMS-769750 was cytotoxic to BECs, but not rat hepatocytes, suggesting a role of the diol in biliary epithelial injury. BMS-800754 was cytotoxic to rat hepatocytes therefore its contribution to hepatocyte injury in rats is a possibility. Induction of Dmbt1 in rat BECs was investigated because of its role in hepatic progenitor cell differentiation/proliferation during injury. Dmbt1 mRNA was induced by BMS-769750, but not BMS-800754 in BECs; this induction and cellular injury was confirmed with diol metabolites formed by other compounds with the same hepatobiliary liability. In conclusion, hepatobiliary injury by thienopyrimidinone MCHR1 antagonists was driven through a CYP-mediated bioactivation pathway. Induction of Dmbt1 mRNA coupled with cellular injury suggests that injury of biliary epithelium may be the first step toward an adaptive proliferative response causing BDH by these compounds. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Caffeine - rich infusion from Cola nitida (kola nut) inhibits major carbohydrate catabolic enzymes; abates redox imbalance; and modulates oxidative dysregulated metabolic pathways and metabolites in Fe2+-induced hepatic toxicity.

    PubMed

    Erukainure, Ochuko L; Oyebode, Olajumoke A; Sokhela, Mxolisi K; Koorbanally, Neil A; Islam, Md Shahidul

    2017-12-01

    The antioxidative and antidiabetic effects and toxicity of caffeine-rich infusion of Cola nitida were investigated using in vitro, ex vivo and in silico models. C. nitida was infused in boiling water and allowed to cool before concentrating at <50°C. HPLC analysis of the infusion revealed a caffeine content of 80.08%. The infusion showed potent in vitro antioxidant activity by significantly (p<0.05) scavenging 2,2'-diphenyl-1-picrylhydrazyl (DPPH). It significantly (p<0.05) inhibited α-glucosidase and α-amylase activities. Treatment of Fe 2+ induced oxidative hepatic tissues with the infusion led to increase Superoxide Dismutase (SOD) and catalase activities, and glutathione (GSH) level as well as decreased malondialdehyde (MDA) level. FTIR spectroscopy of hepatic metabolite revealed restoration of oxidative-induced depleted functional groups by the infusion. LC-MS analysis of the metabolite also revealed restoration of most depleted metabolites with concomitant generation of 4-O-Methylgallic, (-)-Epicatechin sulfate, L-Arginine, L-tyrosine, Citric acid and Decanoic acid in infusion-treated tissues. Pathway analysis of the identified metabolites revealed the presence of 21 metabolic pathways involved in normal hepatic tissues, 12 in oxidative injured tissues and 17 in the treated tissues. Treatment with the infusion restored 4 metabolic pathways common to the normal tissue and further activated 4 additional pathways. Prediction of oral toxicity of caffeine showed it to belong to class 3, with a LD 50 of 127mg/kg. Its toxicity target was predicted as Adenosine Receptor A2a. It was also predicted to be an inhibitor of CYP1A2. These results suggest the antioxidative and antidiabetic properties of C. nitida infusion, with caffeine as the major constituent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Isolation, synthesis, and pharmacology of metabolites of 1-(3,4-dichlorobenzyl)-3,4,5,6-tetrahydro-2(1H)-pyrimidone.

    PubMed

    Schwan, T J; Ellis, K O; Wessels, F L; Pugh, D; Bell, R

    1980-10-01

    The metabolism of 1-(3,4-dichlorobenzyl)-3,4,5,6-tetrahydro-2(1H)-pyrimidone, an antianxiety/antidepressant agent, in dogs is reported. Two metabolites, 3-[1-(3,4-dichlorobenzyl)-1-ureido]propanoic acid and 1-(3,4-dichlorobenzyl)uracil, were isolated, characterized, and synthesized. Neither metabolite was acutely toxic, and they did not exhibit antidepressant or antianxiety/anticonvulsant activity.

  20. Incorporation of absorption and metabolism into liver toxicity prediction for phytochemicals: A tiered in silico QSAR approach.

    PubMed

    Liu, Yitong

    2018-05-18

    An increased use of herbal dietary supplements has been associated with adverse liver effects such as elevated serum enzymes and liver failure. The safety assessment for herbal dietary supplements is challenging since they often contain complex mixtures of phytochemicals, most of which have unknown pharmacokinetic and toxicological properties. Rapid tools are needed to evaluate large numbers of phytochemicals for potential liver toxicity. The current study demonstrates a tiered approach combining identification of phytochemicals in liver toxic botanicals, followed by in silico quantitative structure-activity relationship (QSAR) evaluation of these phytochemicals for absorption (e.g. permeability), metabolism (cytochromes P450) and liver toxicity (e.g. elevated transaminases). First, 255 phytochemicals from 20 botanicals associated with clinical liver injury were identified, and the phytochemical structures were subsequently used for QSAR evaluation. Among these identified phytochemicals, 193 were predicted to be absorbed and then used to generate metabolites, which were both used to predict liver toxicity. Forty-eight phytochemicals were predicted as liver toxic, either due to parent phytochemicals or metabolites. Among them, nineteen phytochemicals have previous evidence of liver toxicity (e.g. pyrrolizidine alkaloids), while the majority were newly discovered (e.g. sesquiterpenoids). These findings help reveal new toxic phytochemicals in herbal dietary supplements and prioritize future toxicological testing. Published by Elsevier Ltd.

  1. Simultaneous production of rhamnolipids, 2-alkyl-4-hydroxyquinolines, and phenazines by clinical isolates of Pseudomonas aeruginosa.

    PubMed Central

    Smeal, B C; Bender, L; Jungkind, D L; Hastie, A T

    1987-01-01

    Of 72 clinical isolates of Pseudomonas aeruginosa examined for simultaneous production of secondary metabolites, 86% produced 2-alkyl-4-hydroxyquinolines, 75% produced rhamnolipids, and 58% produced phenazines, including pyocyanin. Whereas isolates producing two or one constituted smaller groups, 39% released all three metabolites. Metabolite production did not appear to influence site of infection. PMID:3112182

  2. MODELING CHEMICAL FATE AND METABOLISM FOR COMPUTATIONAL TOXICOLOGY

    EPA Science Inventory

    The goal of ORD's Computational Toxicology initiative is to develop the science for EPA to prioritize toxicity-testing requirements for chemicals subject to regulation. Many toxic effects, however, result from metabolism of parent chemicals to form metabolites that are much more...

  3. Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA.

    PubMed

    Fan, P W; Bolton, J L

    2001-06-01

    Despite the beneficial effects of tamoxifen in the treatment and prevention of breast cancer, long-term usage of this popular antiestrogen has been linked to an increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. Alternatively, tamoxifen could undergo O-dealkylation to give cis/trans-1,2-diphenyl-1-(4-hydroxyphenyl)-but-1-ene, which is commonly known as metabolite E. Because of its structural similarity to 4-hydroxytamoxifen, metabolite E could also be biotransformed to a quinone methide, which has the potential to alkylate DNA and may contribute to the genotoxic effects of tamoxifen. To further probe the chemical reactivity/toxicity of such an electrophilic species, we have prepared metabolite E quinone methide chemically and enzymatically and examined its reactivity with glutathione (GSH) and DNA. Like 4-hydroxytamoxifen quinone methide, metabolite E quinone methide is quite stable; its half-life under physiological conditions is around 4 h, and its half-life in the presence of GSH is approximately 4 min. However, unlike the unstable GSH adducts of 4-hydroxytamoxifen quinone methide, metabolite E GSH adducts are stable enough to be isolated and characterized by NMR and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Reaction of metabolite E quinone methide with DNA generated exclusively deoxyguanosine adducts, which were characterized by LC/MS/MS. These data suggest that metabolite E has the potential to cause cytotoxicity/genotoxicity through the formation of a quinone methide.

  4. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  5. Final report on the safety assessment of ethoxyethanol and ethoxyethanol acetate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Ethoxyethanol is an ether alcohol described as a solvent and viscosity-decreasing agent for use in cosmetics. Ethoxyethanol Acetate is the ester of Ethoxyethanol and acetic acid described as a solvent for use in cosmetics. Although these ingredients have been used in the past, neither ingredient is in current use. Ethoxyethanol is produced by reacting ethylene oxide with ethyl alcohol. Ethoxyethanol Acetate is produced via an esterification of Ethoxyethanol and acetic acid, acetic acid anhydride, or acetic chloride. Ethoxyethanol is metabolized to ethoxyacetaldehyde, which is further metabolized to ethoxyacetic acid, which is also a metabolite of Ethoxyethanol Acetate. Low to moderate acute inhalation toxicity is seen in animals studies. Acute oral toxicity studies in several species reported kidney damage, including extreme tubular degeneration. Kidney damage was also seen in acute dermal toxicity studies in rats and rabbits. Minor liver and kidney damage was also seen in short-term studies of rats injected subcutaneously with Ethoxyethanol, but was absent in dogs dosed intravenously. Mixed toxicity results were also seen in subchronic tests in mice and rats. Ethoxyethanol and Ethoxyethanol Acetate were mild to moderate eye irritants in rabbits; mild skin irritants in rabbits, and nonsensitizing in guinea pigs. Most genotoxicity tests were negative, but chromosome aberrations and sister-chromatid exchanges were among the positive results seen. Numerous reproductive and developmental toxicity studies, across several species, involving various routes of administration, indicate that Ethoxyethanol and Ethoxyethanol Acetate are reproductive toxicants and teratogens. Mild anemia was reported in individuals exposed occupationally to Ethoxyethanol, which resolved when the chemical was not used. Reproductive effects have been noted in males exposed occupationally to Ethoxyethanol. Although there are insufficient data to determine the potential carcinogenic effects of Ethoxyethanol or Ethoxyethanol Acetate, there is evidence that these chemicals are absorbed across human skin and that they are reproductive and developmental toxicants via dermal exposure. Therefore, these ingredients are unsafe for use in cosmetic formulations.

  6. Multi-commutated fluorometric optosensor for the determination of citrinin in rice and red yeast rice supplements.

    PubMed

    Jiménez-López, J; Llorent-Martínez, E J; Ortega-Barrales, P; Ruiz-Medina, A

    2014-01-01

    Citrinin is a toxic secondary metabolite first isolated from Penicillium citrinum, although is also produced by other species of Penicillium and Aspergillus. It has highly toxic, mutagenic, teratogenic and carcinogenic properties and is often found in crops, vegetables and fruit. To our knowledge there is no specific legislation on maximum levels permitted for citrinin, so no official analytical method is currently available for its determination. Our laboratory developed a fluorometric flow-through optosensor using Sephadex SPC-25 as solid support. Multi-commutated flow injection analysis was used for the construction of the manifold and for handling solutions. In this way, we minimised waste generation and human intervention, which are critical aspects when dealing with highly toxic compounds such as citrinin. The optimum excitation/emission wavelengths were set at 330/494 nm; the calibration curve was linear in the concentration range 35-900 ng ml⁻¹. A detection limit of 10.5 ng ml⁻¹ and relative standard deviations (RSDs) lower than 3% were obtained. The developed optosensor was applied to the determination of citrinin in rice and dietary supplements containing red yeast rice.

  7. Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism.

    PubMed

    Tak, Jun-Hyung; Isman, Murray B

    2016-10-01

    Although screening for new and reliable sources of botanical insecticides remains important, finding ways to improve the efficacy of those already in use through better understanding of their modes-of-action or metabolic pathways, or by improving formulations, deserves greater attention as the latter may present lesser regulation hurdles. Metabolic processing of citral (a combination of the stereoisomers geranial and neral), a main constituent of lemongrass (Cymbopogon citratus) essential oil has not been previously examined in insects. To address this, we investigated insecticidal activities of lemongrass oil and citral, as well as the metabolism of citral in larvae of the cabbage looper, Trichoplusia ni, in associations with well-known enzyme inhibitors. Among the inhibitors tested, piperonyl butoxide showed the highest increase in toxicity followed by triphenyl phosphate, but no synergistic interaction between the inhibitors was observed. Topical application of citral to fifth instar larvae produced mild reductions in food consumption, and frass analysis after 24h revealed geranic acid (99.7%) and neric acid (98.8%) as major metabolites of citral. Neither citral nor any other metabolites were found following in vivo analysis of larvae after 24h, and no significant effect of enzyme inhibitors was observed on diet consumption or citral metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals.

    PubMed

    De Zutter, N; Audenaert, K; Arroyo-Manzanares, N; De Boevre, M; Van Poucke, C; De Saeger, S; Haesaert, G; Smagghe, G

    2016-12-08

    Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON.

  9. Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals

    PubMed Central

    De Zutter, N.; Audenaert, K.; Arroyo-Manzanares, N.; De Boevre, M.; Van Poucke, C.; De Saeger, S.; Haesaert, G.; Smagghe, G.

    2016-01-01

    Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON. PMID:27929076

  10. Molecular Response to Toxic Diatom-Derived Aldehydes in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G.; Ruocco, Nadia; Costantini, Maria

    2014-01-01

    Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes. PMID:24714125

  11. Evolution of Saxitoxin Synthesis in Cyanobacteria and Dinoflagellates

    PubMed Central

    Hackett, Jeremiah D.; Wisecaver, Jennifer H.; Brosnahan, Michael L.; Kulis, David M.; Anderson, Donald M.; Bhattacharya, Debashish; Plumley, F. Gerald; Erdner, Deana L.

    2013-01-01

    Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some evolutionarily related proteins. The biological role of STX is not well understood in either cyanobacteria or dinoflagellates. However, STX production in these two ecologically distinct groups of organisms suggests that this toxin confers a benefit to producers that we do not yet fully understand. PMID:22628533

  12. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates.

    PubMed

    Hackett, Jeremiah D; Wisecaver, Jennifer H; Brosnahan, Michael L; Kulis, David M; Anderson, Donald M; Bhattacharya, Debashish; Plumley, F Gerald; Erdner, Deana L

    2013-01-01

    Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some evolutionarily related proteins. The biological role of STX is not well understood in either cyanobacteria or dinoflagellates. However, STX production in these two ecologically distinct groups of organisms suggests that this toxin confers a benefit to producers that we do not yet fully understand.

  13. Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system

    PubMed Central

    Kirkby, Nicholas S.; Lundberg, Martina H.; Harrington, Louise S.; Leadbeater, Philip D. M.; Milne, Ginger L.; Potter, Claire M. F.; Al-Yamani, Malak; Adeyemi, Oladipupo; Warner, Timothy D.; Mitchell, Jane A.

    2012-01-01

    Prostacyclin is an antithrombotic hormone produced by the endothelium, whose production is dependent on cyclooxygenase (COX) enzymes of which two isoforms exist. It is widely believed that COX-2 drives prostacyclin production and that this explains the cardiovascular toxicity associated with COX-2 inhibition, yet the evidence for this relies on indirect evidence from urinary metabolites. Here we have used a range of experimental approaches to explore which isoform drives the production of prostacyclin in vitro and in vivo. Our data show unequivocally that under physiological conditions it is COX-1 and not COX-2 that drives prostacyclin production in the cardiovascular system, and that urinary metabolites do not reflect prostacyclin production in the systemic circulation. With the idea that COX-2 in endothelium drives prostacyclin production in healthy individuals removed, we must seek new answers to why COX-2 inhibitors increase the risk of cardiovascular events to move forward with drug discovery and to enable more informed prescribing advice. PMID:23045674

  14. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro

    PubMed Central

    Griggs, Amy M.; Agim, Zeynep S.; Mishra, Vartika R.; Tambe, Mitali A.; Director-Myska, Alison E.; Turteltaub, Kenneth W.; McCabe, George P.; Rochet, Jean-Christophe; Cannon, Jason R.

    2014-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4′-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4′-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704

  15. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.

  16. Rapid removal of bacterial endotoxin and natural organic matter in water by dielectric barrier discharge plasma: Efficiency and toxicity assessment.

    PubMed

    Zhang, Can; Fang, Zhendong; Liu, Wenjun; Tian, Fang; Bai, Miao

    2016-11-15

    Low-temperature plasma was used to control bacteria, endotoxins and natural organic matter (NOM) in water by a dielectric barrier discharge (DBD) device. Results indicate that DBD plasma has an obvious inactivation effect on various bacteria in water. The degree of inactivation from difficult to easy is as follows: Bacillus subtilis>Escherichia coli>Staphylococcus aureus. Activated ultrapure water treated using DBD plasma exhibited a sustained sterilization effect, but this sterilization effect decreased gradually after 1h. The total-endotoxin (free-endotoxin and bound-endotoxin) released by Escherichia coli during inactivation, as well as artificially simulated endotoxin in a control solution, was significantly controlled by DBD plasma. Both the metabolites that appeared after inactivation of microorganisms by plasma treatment, and the NOM in filtration effluent of a water treatment plant were well removed by DBD plasma if the treatment duration was sufficiently long. However, the acute toxicity increased significantly, and persisted for at least 2h, indicating that some long-life active substances were generated during the DBD process. Therefore, the removal of bacteria, endotoxins or NOM does not mean a safe water is produced. It is also important to eliminate the toxicity and byproducts produced during water treatment for the continuous promotion and industrial application of DBD plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Allelopathic effect of Chattonella marina var. marina (Raphidophyceae) on Gymnodinium catenatum (Dinophycea).

    PubMed

    Fernández-Herrera, Leyberth J; Band-Schmidt, Christine J; López-Cortés, David J; Hernández-Guerrero, Claudia J; Bustillos-Guzmán, José J; Núñez-Vázquez, Erick

    2016-01-01

    The allelopathic effect of the raphidophyte Chattonella marina var. marina on the dinoflagellate Gymnodinium catenatum was determined. Both species are harmful algal bloom forming algae, produce toxic metabolites, and can co-exist in the environment. In general, raphidophytes tend to dominate over dinoflagellates, which may indicate an allelopathic effect of the former algae. Strains of C. marina var. marina and G. catenatum isolated from Bahía de La Paz were cultured in bi-algal cultures with and without cell contact. Additionally, cultures of G. catenatum were exposed to cell-free culture filtrates of the raphidophyte to test whether soluble allelopathic molecules are active. During late stationary phase, both species were cultivated in mixed cultures for 72h using the following cell abundance proportions: 20×10 3 cellsL -1 : 20×10 3 cellsL -1 (1:1; G. catenatum: C. marina); 10×10 3 cellsL -1 : 20×10 3 cellsL -1 (1:2), and 20×10 3 cellsL -1 : 10×10 3 cellsL -1 (2:1). Cells of G. catenatum were also exposed to different volumes of cell filtrates of C. marina (10, 20, and 50mL) using the same cell abundance proportions for 24h. Samples were taken daily for cell counts and microscopic observations. Growth inhibition was higher when there was cell contact between both species, however mortality of G. catenatum was also observed without direct cell contact, indicating that toxic metabolites are liberated to the culture medium. Changes in cell morphology of G. catenatum occurred in the presence of cells and filtrates of C. marina, such as loss of flagella and motility, swelling, loss of girdle and sulci, prominent nucleus, rupture of cell membrane, and cell lysis. Induction of temporary cysts was also observed. These results suggest that toxic metabolites are liberated to the medium by C. marina, affecting G. catenatum by inhibiting its growth and causing changes in its life history, providing new insights of interactions between raphidophytes and dinoflagellates that could happen in the natural environment when both species are present. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fungi producing significant mycotoxins.

    PubMed

    2012-01-01

    Mycotoxins are secondary metabolites of microfungi that are known to cause sickness or death in humans or animals. Although many such toxic metabolites are known, it is generally agreed that only a few are significant in causing disease: aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, and ergot alkaloids. These toxins are produced by just a few species from the common genera Aspergillus, Penicillium, Fusarium, and Claviceps. All Aspergillus and Penicillium species either are commensals, growing in crops without obvious signs of pathogenicity, or invade crops after harvest and produce toxins during drying and storage. In contrast, the important Fusarium and Claviceps species infect crops before harvest. The most important Aspergillus species, occurring in warmer climates, are A. flavus and A. parasiticus, which produce aflatoxins in maize, groundnuts, tree nuts, and, less frequently, other commodities. The main ochratoxin A producers, A. ochraceus and A. carbonarius, commonly occur in grapes, dried vine fruits, wine, and coffee. Penicillium verrucosum also produces ochratoxin A but occurs only in cool temperate climates, where it infects small grains. F. verticillioides is ubiquitous in maize, with an endophytic nature, and produces fumonisins, which are generally more prevalent when crops are under drought stress or suffer excessive insect damage. It has recently been shown that Aspergillus niger also produces fumonisins, and several commodities may be affected. F. graminearum, which is the major producer of deoxynivalenol and zearalenone, is pathogenic on maize, wheat, and barley and produces these toxins whenever it infects these grains before harvest. Also included is a short section on Claviceps purpurea, which produces sclerotia among the seeds in grasses, including wheat, barley, and triticale. The main thrust of the chapter contains information on the identification of these fungi and their morphological characteristics, as well as factors influencing their growth and the various susceptible commodities that are contaminated. Finally, decision trees are included to assist the user in making informed choices about the likely mycotoxins present in the various crops.

  19. The Use of Immobilized Cytochrome P4502C9 in PMMA-Based Plug-Flow Bioreactors for the Production of Drug Metabolites

    PubMed Central

    Wollenberg, Lance A.; Kabulski, Jarod L.; Powell, Matthew J.; Chen, Jifeng; Flora, Darcy R.; Tracy, Timothy S.; Gannett, Peter M.

    2013-01-01

    Cytochrome P450 enzymes play a key role in the metabolism of pharmaceutical agents. To determine metabolite toxicity, it is necessary to obtain P450 metabolites from various pharmaceutical agents. Here, we describe a bioreactor that is made by immobilizing cytochrome P450 2C9 (CYP2C9) to a poly (methyl methacrylate) surface and, as an alternative to traditional chemical synthesis, can be used to biosynthesize P450 metabolites in a plug-flow bioreactor. As part of the development of the CYP2C9 bioreactor, we have studied two different methods of attachment: 1) coupling via the N-terminus using N-hydroxysulfosuccinimide 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 2) using the Ni(II) chelator 1-acetato-4-benzyl-triazacyclononane to coordinate the enzyme to the surface using a C-terminal histidine tag. Additionally, the propensity for metabolite production of the CYP2C9 proof-of-concept bioreactors as a function of enzyme attachment conditions (e.g., time and enzyme concentration) was examined. Our results show that the immobilization of CYP2C9 enzymes to a PMMA surface represents a viable and alternative approach to the preparation of CYP2C9 metabolites for toxicity testing. Furthermore, the basic approach can be adapted to any cytochrome P450 enzyme and in a high-throughput, automated process. PMID:24166101

  20. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Liver Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE. PMID:25424544

  1. Gene Transcription, Metabolite and Lipid Profiling in Eco-Indicator Daphnia magna Indicate Diverse Mechanisms of Toxicity by Legacy and Emerging Flame-Retardants

    EPA Science Inventory

    The use of chemical flame-retardants (FR) in consumer products has steadily increased over the last 30 years. Toxicity data exist for legacy FRs such as pentabromodiphenyl ether (pentaBDE), but less is known about effects of new formulations. To address this issue, the toxicity o...

  2. Ashwagandha Leaf Derived Withanone Protects Normal Human Cells Against the Toxicity of Methoxyacetic Acid, a Major Industrial Metabolite

    PubMed Central

    Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C.; Wadhwa, Renu

    2011-01-01

    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates. PMID:21573189

  3. Metabolism and metabolites of polychlorinated biphenyls (PCBs)

    PubMed Central

    Grimm, FA; Hu, D; Kania-Korwel, I; Lehmler, HJ; Ludewig, G; Hornbuckle, KC; Duffel, MW; Bergman, A; Robertson, LW

    2015-01-01

    The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity and thereby assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general and in humans in particular. The aim of this document is to provide an overview of PCB metabolism and to identify metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed. PMID:25629923

  4. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    PubMed

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. [Hallucinogenic mushrooms].

    PubMed

    Reingardiene, Dagmara; Vilcinskaite, Jolita; Lazauskas, Robertas

    2005-01-01

    The group of hallucinogenic mushrooms (species of the genera Conocybe, Gymnopilus, Panaeolus, Pluteus, Psilocybe, and Stropharia) is psilocybin-containing mushrooms. These "magic", psychoactive fungi have the serotonergic hallucinogen psilocybin. Toxicity of these mushrooms is substantial because of the popularity of hallucinogens. Psilocybin and its active metabolite psilocin are similar to lysergic acid diethylamide. These hallucinogens affect the central nervous system rapidly (within 0.5-1 hour after ingestion), producing ataxia, hyperkinesis, and hallucinations. In this review article there are discussed about history of use of hallucinogenic mushrooms and epidemiology; pharmacology, pharmacodynamics, somatic effects and pharmacokinetics of psilocybin, the clinical effects of psilocybin and psilocin, signs and symptoms of ingestion of hallucinogenic mushrooms, treatment and prognosis.

  6. Alcohol and acetaldehyde in public health: from marvel to menace.

    PubMed

    Guo, Rui; Ren, Jun

    2010-04-01

    Alcohol abuse is a serious medical and social problem. Although light to moderate alcohol consumption is beneficial to cardiovascular health, heavy drinking often results in organ damage and social problems. In addition, genetic susceptibility to the effect of alcohol on cancer and coronary heart disease differs across the population. A number of mechanisms including direct the toxicity of ethanol, its metabolites [e.g., acetaldehyde and fatty acid ethyl esters (FAEEs)] and oxidative stress may mediate alcoholic complications. Acetaldehyde, the primary metabolic product of ethanol, is an important candidate toxin in developing alcoholic diseases. Meanwhile, free radicals produced during ethanol metabolism and FAEEs are also important triggers for alcoholic damages.

  7. Analysis of the Aspergillus flavus transcriptome reveals a key role of secondary metabolite production in isolate oxidative stress responses

    USDA-ARS?s Scientific Manuscript database

    The purpose of the production of secondary metabolites in fungi are various and include stress responses, competitive antimicrobial activity, and the elimination of toxic compounds. However, the purpose of the production of aflatoxin, a carcinogenic mycotoxin, by Aspergillus flavus, is unknown. Prev...

  8. Biotechnological and industrial significance of cyanobacterial secondary metabolites.

    PubMed

    Rastogi, Rajesh P; Sinha, Rajeshwar P

    2009-01-01

    Cyanobacteria are considered to be a rich source of novel metabolites of a great importance from a biotechnological and industrial point of view. Some cyanobacterial secondary metabolites (CSMs), exhibit toxic effects on living organisms. A diverse range of these cyanotoxins may have ecological roles as allelochemicals, and could be employed for the commercial development of compounds with applications such as algaecides, herbicides and insecticides. Recently, cyanobacteria have become an attractive source of innovative classes of pharmacologically active compounds showing interesting and exciting biological activities ranging from antibiotics, immunosuppressant, and anticancer, antiviral, antiinflammatory to proteinase-inhibiting agents. A different but not less interesting property of these microorganisms is their capacity of overcoming the toxicity of ultraviolet radiation (UVR) by means of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. These last two compounds are true 'multipurpose' secondary metabolites and considered to be natural photoprotectants. In this sense, they may be biotechnologically exploited by the cosmetic industry. Overall CSMs are striking targets in biotechnology and biomedical research, because of their potential applications in agriculture, industry, and especially in pharmaceuticals.

  9. Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry.

    PubMed

    Righetti, Laura; Dellafiora, Luca; Cavanna, Daniele; Rolli, Enrico; Galaverna, Gianni; Bruni, Renato; Suman, Michele; Dall'Asta, Chiara

    2018-04-30

    Zearalenone (ZEN) major biotransformation pathways described so far are based on glycosylation and sulfation, although acetylation of trichothecenes has been reported as well. We investigated herein the ZEN acetylation metabolism route in micropropagated durum wheat leaf, artificially contaminated with ZEN. We report the first experimental evidence of the formation of novel ZEN acetylated forms in wheat, attached both to the aglycone backbone as well as on the glucose moiety. Thanks to the advantages provided by high-resolution mass spectrometry, identification and structure annotation of 20 metabolites was achieved. In addition, a preliminary assessment of the toxicity of the annotated metabolites was performed in silico focusing on the toxicodynamic of ZEN group toxicity. All the metabolites showed a worse fitting within the estrogen receptor pocket in comparison with ZEN. Nevertheless, possible hydrolysis to the respective parent compounds (i.e., ZEN) may raise concern from the health perspective because these are well-known xenoestrogens. These results further enrich the biotransformation profile of ZEN, providing a helpful reference for assessing the risks to animals and humans. Graphical abstract ᅟ.

  10. Chiral PCB 91 and 149 Toxicity Testing in Embryo and Larvae (Danio rerio): Application of Targeted Metabolomics via UPLC-MS/MS

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Yin, Zhiqiang; Yang, Yang; Qiu, Jing; Wang, Chengju

    2016-09-01

    In this study, we aimed to investigate the dysfunction of zebrafish embryos and larvae induced by rac-/(+)-/(-)- PCB91 and rac-/(-)-/(+)- PCB149. UPLC-MS/MS (Ultra-performance liquid chromatography coupled with mass spectrometry) was employed to perform targeted metabolomics analysis, including the quantification of 22 amino acids and the semi-quantitation of 22 other metabolites. Stereoselective changes in target metabolites were observed in embryos and larvae after exposure to chiral PCB91 and PCB149, respectively. In addition, statistical analyses, including PCA and PLS-DA, combined with targeted metabolomics were conducted to identify the characteristic metabolites and the affected pathways. Most of the unique metabolites in embryos and larvae after PCB91/149 exposure were amino acids, and the affected pathways for zebrafish in the developmental stage were metabolic pathways. The stereoselective effects of PCB91/149 on the metabolic pathways of zebrafish embryos and larvae suggest that chiral PCB91/149 exposure has stereoselective toxicity on the developmental stages of zebrafish.

  11. Cytological effects of fungal metabolites produced by fungi isolated from Egyptian poultry feedstuffs.

    PubMed

    Abdou, R F; Megalla, S E; Moharram, A M; Abdel-Gawad, K M; Sherif, T H; el-Syed Mahmood, A L; Lottfy, A E

    1989-01-01

    The cytogenetic effects of fungal metabolites produced by 113 strains belonging to 36 fungal species and isolated form 5 substrates of commercial poultry feedstuffs were tested for their effect on the growing root meristems of Allium cepa. The fungal metabolites of Paecilomyces canescens, Aspergillus fumigatus, Syncephalastrum racemosum, Aspergillus terreus and Mucor hiemalis strongly suppressed cell division. Metabolites from other strains had less effect on cell division but permitted the appearance of several abnormalities through different mitotic stages. In general, chromosomal aberrations were more obvious with metabolites of Aspergillus species, Mucor circinelloides and Cladosporium cladosporioides. The mutagenic effects produced by these fungal metabolites reflect the risk that might take place through the consumption of these contaminated feedstuffs.

  12. [Evaluation of Brodifacoum-induced Toxicity by Metabonomics Approach Based on HPLC-TOF-MS].

    PubMed

    Yan, H; Zhuo, X Y; Shen, B H; Xiang, P; Shen, M

    2017-06-01

    To analyse the metabolic changes in urine of rats with brodifacoum intoxication, and to reveal the molecular mechanism of brodifacoum-induced toxicity on rats. By establishing a brodifacoum poisoning rats model, the urine metabolic profiling data of rats were acquired using high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF-MS). The orthogonal partial least squares analysis-discrimination analysis (OPLS-DA) was applied for the multivariate statistics and the discovery of differential metabolites closely related to toxicity of brodifacoum. OPLS-DA score plot showed that the urinary metabolic at different time points before and after drug administration had good similarity within time period and presented clustering phenomenon. Comparing the urine samples of rats before drug administration with which after drug administration, twenty-two metabolites related to brodifacoum-induced toxicity were selected. The toxic effect of brodifacoum worked by disturbing the metabolic pathways in rats such as tricarboxylic cycle, glycolysis, sphingolipid metabolism and tryptophan metabolism, and the toxicity of brodifacoum is characterized of accumulation effect. The metabonomic method based on urine HPLC-TOF-MS can provide a novel insight into the study on molecular mechanism of brodifacoum-induced toxicity. Copyright© by the Editorial Department of Journal of Forensic Medicine

  13. Toxic metabolites, Sertoli cells and Y chromosome related genes are potentially linked to the reproductive toxicity induced by mequindox.

    PubMed

    Liu, Qianying; Lei, Zhixin; Dai, Menghong; Wang, Xu; Yuan, Zonghui

    2017-10-20

    Mequindox (MEQ) is a relatively new synthetic antibacterial agent widely applied in China since the 1980s. However, its reproductive toxicity has not been adequately performed. In the present study, four groups of male Kunming mice (10 mice/group) were fed diets containing MEQ (0, 25, 55 and 110 mg/kg in the diet) for up to 18 months. The results show that M4 could pass through the blood-testis barrier (BTB), and demonstrate that Sertoli cells (SCs) are the main toxic target for MEQ to induce spermatogenesis deficiency. Furthermore, adrenal toxicity, adverse effects on the hypothalamic-pituitary-testicular axis (HPTA) and Leydig cells, as well as the expression of genes related to steroid biosynthesis and cholesterol transport, were responsible for the alterations in sex hormones in the serum of male mice after exposure to MEQ. Additionally, the changed levels of Y chromosome microdeletion related genes, such as DDX3Y, HSF2, Sly and Ssty2 in the testis might be a mechanism for the inhibition of spermatogenesis induced by MEQ. The present study illustrates for the first time the toxic metabolites of MEQ in testis of mice, and suggests that SCs, sex hormones and Y chromosome microdeletion genes are involved in reproductive toxicity mediated by MEQ in vivo .

  14. Single Aflatoxin Contaminated Corn Kernel Analysis with Fluorescence Hyperspectral Image

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...

  15. TOXICITY, INTERACTIONS, AND METABOLISM OF FORMAMIDINE PESTICIDES IN MAMMALS

    EPA Science Inventory

    The overall goal of this research project was to investigate the mechanism(s) of acute toxicity of formamidine pesticides in mammals using chlordimeform (N'-(4-chloro-o-tolyl)-N,N-dimethylformamidine) and its metabolites as the primary model compounds. The role of biotransformati...

  16. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity.

    PubMed

    Jabir, Rafid Salim; Naidu, Rakesh; Annuar, Muhammad Azrif Bin Ahmad; Ho, Gwo Fuang; Munisamy, Murali; Stanslas, Johnson

    2012-12-01

    Interindividual variability in drug response and the emergence of adverse drug effects are the main causes of treatment failure in cancer therapy. Functional membrane drug transporters play important roles in altering pharmacokinetic profile, resistance to treatment, toxicity and patient survival. Pharmacogenetic studies of these transporters are expected to provide new approaches for optimizing therapy. Taxanes are approved for the treatment of various cancers. Circulating taxanes are taken up by SLCO1B3 into hepatocytes. The CYP450 enzymes CYP3A4, CYP3A5 and CYP2C8 are responsible for the conversion of taxanes into their metabolites. Ultimately, ABCB1 and ABCC2 will dispose the metabolites into bile canaliculi. Polymorphisms of genes encoding for proteins involved in the transport and clearance of taxanes reduce excretion of the drugs, leading to development of toxicity in patients. This review addresses current knowledge on genetic variations of transporters affecting taxanes pharmacokinetics and toxicity, and provides insights into future direction for personalized medicine.

  17. Ecotoxicity of quinoline and hydroxylated derivatives and their occurrence in groundwater of a tar-contaminated field site.

    PubMed

    Neuwoehner, Judith; Reineke, Anne-Kirsten; Hollender, Juliane; Eisentraeger, Adolf

    2009-03-01

    In the groundwater of a timber impregnation site higher concentrations of hydroxylated quinolines compared to their parent compounds quinoline and isoquinoline were found. Studying the toxicity of parent compounds and metabolites, genotoxicity was found with metabolic activation in the SOS-Chromotest and Ames fluctuation test only for quinoline. An adverse effect on algae was observed only for the parent compounds quinoline and isoquinoline, while in the Daphnia magna immobilization assay most hydroxylated quinoline derivatives showed toxicity. The highest ecotoxic potential was observed in the Vibrio fischeri luminescence-inhibition assay. Comparing experimental EC50-values with QSAR predicted ones, for all compounds apart from isoquinoline and 2(1H)-quinolinone in the V. fischeri test baseline toxicity or polar nacrosis is indicated. In conclusion, the hydroxylation of quinoline leads to a detoxification of the genotoxic potential, while taken additive mixture toxicity and a safety factor into account parent compounds and metabolites are found of ecotoxicological relevance in the groundwater.

  18. Toxicity of the lichen secondary metabolite (+)-usnic acid in domestic sheep.

    PubMed

    Dailey, R N; Montgomery, D L; Ingram, J T; Siemion, R; Vasquez, M; Raisbeck, M F

    2008-01-01

    Toxicity following ingestion of the vagrant, foliose lichen Xanthoparmelia chlorochroa was identified as the putative etiology in the death of an estimated 400-500 elk on the Red Rim-Daley Wildlife Habitat Management Area in Wyoming during the winter of 2004. A single, unsubstantiated report in 1939 attributed toxicity of X. chlorochroa in cattle and sheep to usnic acid, a common lichen secondary metabolite. To test the hypothesis that usnic acid is the proximate cause of death in animals poisoned by lichen, domestic sheep were dosed PO with (+)-usnic acid. Clinical signs in symptomatic ewes included lethargy, anorexia, and signs indicative of abdominal discomfort. Serum creatine kinase, aspartate aminotransferase, and lactate dehydrogenase activities were considerably elevated in symptomatic sheep. Similarly, only symptomatic ewes exhibited appreciable postmortem lesions consisting of severe degenerative appendicular skeletal myopathy. The median toxic dose (ED(50)) of (+)-usnic acid in domestic sheep was estimated to be between 485 and 647 mg/kg/day for 7 days.

  19. Autoclave sterilization produces acrylamide in rodent diets: implications for toxicity testing.

    PubMed

    Twaddle, Nathan C; Churchwell, Mona I; McDaniel, L Patrice; Doerge, Daniel R

    2004-06-30

    Acrylamide (AA) is a neurotoxic and carcinogenic contaminant that is formed during the cooking of starchy foods. Assessment of human risks from toxicants is routinely performed using laboratory rodents, and such testing requires careful control of unintended exposures, particularly through the diet. This study describes an analytical method based on liquid chromatography with electrospray tandem mass spectrometry that was used to measure endogenous AA in rodent diets and to survey a number of commercial products for contamination. Method sensitivity permitted accurate quantification of endogenous levels of AA in raw diets below 20 ppb. Autoclaving a standard rodent diet (NIH-31) increased the AA content 14-fold, from 17 to 240 ppb. A nutritionally equivalent diet that was sterilized by irradiation was found to contain approximately 10 ppb of AA (NIH-31IR). A toxicokinetic study of AA and its epoxide metabolite, glycidamide, was performed by switching mice from NIH-31IR to the autoclaved diet for a 30 min feeding period (average AA dose administered was 4.5 microg/kg of body weight). The concentrations of AA and glycidamide were measured in serum collected at various times. The elimination half-lives and the areas under the respective concentration-time curves were similar for AA and glycidamide. Mice maintained on autoclaved NIH-31 diet, but otherwise untreated, showed elevated steady state levels of a glycidamide-derived DNA adduct in liver relative to mice maintained on the irradiated diet. This study demonstrates that a heat sterilization procedure used in laboratory animal husbandry (i.e., autoclaving) can lead to the formation of significant levels of AA in basal diets used for toxicity testing. AA in rodent diets is bioavailable, is distributed to tissues, and is metabolically activated to a genotoxic metabolite, which produces quantifiable cumulative DNA damage. Although the contribution of endogenous AA to the incidence of tumors in multiple organs of rodents otherwise untreated in chronic carcinogenicity bioassays (i.e., control groups) is not known, the reduction of endogenous AA through the use of a suitable irradiated diet was deemed to be critical for ongoing studies of AA carcinogenicity and neurotoxicity.

  20. Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley

    PubMed Central

    Morcia, Caterina; Tumino, Giorgio; Ghizzoni, Roberta; Badeck, Franz W.; Lattanzio, Veronica M.T.; Pascale, Michelangelo; Terzi, Valeria

    2016-01-01

    T-2 and HT-2 toxins are two of the most toxic members of type-A trichothecenes, produced by a number of Fusarium species. The occurrence of these mycotoxins was studied in barley samples during a survey carried out in the 2011–2014 growing seasons in climatically different regions in Italy. The percentage of samples found positive ranges from 22% to 53%, with values included between 26 and 787 μg/kg. The percentage of samples with a T-2 and HT-2 content above the EU indicative levels for barley of 200 μg/kg ranges from 2% to 19.6% in the 2011–2014 period. The fungal species responsible for the production of these toxins in 100% of positive samples has been identified as Fusarium langsethiae, a well-known producer of T-2 and HT-2 toxins. A positive correlation between the amount of F. langsethiae DNA and of the sum of T-2 and HT-2 toxins was found. This is the first report on the occurrence of F. langsethiae—and of its toxic metabolites T-2 and HT-2—in malting barley grown in Italy. PMID:27556490

  1. Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley.

    PubMed

    Morcia, Caterina; Tumino, Giorgio; Ghizzoni, Roberta; Badeck, Franz W; Lattanzio, Veronica M T; Pascale, Michelangelo; Terzi, Valeria

    2016-08-20

    T-2 and HT-2 toxins are two of the most toxic members of type-A trichothecenes, produced by a number of Fusarium species. The occurrence of these mycotoxins was studied in barley samples during a survey carried out in the 2011-2014 growing seasons in climatically different regions in Italy. The percentage of samples found positive ranges from 22% to 53%, with values included between 26 and 787 μg/kg. The percentage of samples with a T-2 and HT-2 content above the EU indicative levels for barley of 200 μg/kg ranges from 2% to 19.6% in the 2011-2014 period. The fungal species responsible for the production of these toxins in 100% of positive samples has been identified as Fusarium langsethiae, a well-known producer of T-2 and HT-2 toxins. A positive correlation between the amount of F. langsethiae DNA and of the sum of T-2 and HT-2 toxins was found. This is the first report on the occurrence of F. langsethiae-and of its toxic metabolites T-2 and HT-2-in malting barley grown in Italy.

  2. Effect of cyanamide on toxicity and glutathione depletion in rat hepatocyte cultures: differences between two dichloropropanol isomers.

    PubMed

    Hammond, A H; Fry, J R

    1999-09-30

    The effect of aldehyde dehydrogenase inhibition by cyanamide pre-treatment in vitro on dichloropropanol-dependent toxicity and glutathione depletion was investigated in 24 h rat hepatocyte cultures. Cyanamide pre-treatment had no effect on nitrophenol hydroxylase, 7-methoxy-, 7-ethoxy- or 7-benzyloxyresorufin O-dealkylase activities in 24 h cultures from untreated rats, and had no effect on intracellular glutathione content in cultures from untreated rats, or in cultures from isoniazid-treated rats in which cytochrome P4502E1 (CYP2E1) is increased. In cultures from untreated animals the primary alcohol, 2,3-dichloropropanol, was not toxic and did not significantly deplete glutathione. Cyanamide pre-treatment however, potentiated both toxicity and glutathione depletion. Induction of CYP2E1 also potentiated the toxicity of 2,3-dichloropropanol, and in these cultures cyanamide pre-treatment significantly increased both toxicity and glutathione depletion. Cyanamide did not alter the toxicity or glutathione depletion due to the secondary alcohol, 1,3-dichloropropanol, irrespective of CYP2E1 induction. These results indicate that the primary alcohol isomer is metabolised to an aldehyde intermediate which depletes glutathione. Under basal conditions this metabolite appears to be effectively detoxified, but increased CYP2E1 activity and/or decreased aldehyde dehydrogenase activity promotes accumulation of metabolite, and therefore increases glutathione depletion and toxicity.

  3. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    USGS Publications Warehouse

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  4. Gene PA2449 Is Essential for Glycine Metabolism and Pyocyanin Biosynthesis in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lundgren, Benjamin R.; Thornton, William; Dornan, Mark H.; Villegas-Peñaranda, Luis Roberto; Boddy, Christopher N.

    2013-01-01

    Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria. PMID:23457254

  5. The Presence of Salt and a Curing Agent Reduces Bacteriocin Production by Lactobacillus sakei CTC 494, a Potential Starter Culture for Sausage Fermentation

    PubMed Central

    Leroy, Frédéric; de Vuyst, Luc

    1999-01-01

    The specific conditions in the batter of raw fermented sausages may reduce the efficiency of bacteriocin-producing starter cultures. In this work, using in vitro fermentation, we found that sodium chloride and sodium nitrite interfere with the growth of Lactobacillus sakei CTC 494, an organism which produces the antilisterial bacteriocin sakacin K. Because sakacin K production follows primary metabolite kinetics, a decrease in cell formation resulted in a decrease in sakacin K production as well. Sodium chloride dramatically influenced bacteriocin production by decreasing both biomass production and specific bacteriocin production. Sodium nitrite, however, had no effect on specific bacteriocin production and decreased bacteriocin production only because of its effect on cell growth. Moreover, sodium nitrite enhanced the toxic effect of lactic acid on bacterial growth. PMID:10583988

  6. The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis

    PubMed Central

    Sulyok, Michael; Liu, Xingzhong; Rao, Mingyong

    2016-01-01

    Pu-erh is a tea produced in Yunnan, China by microbial fermentation of fresh Camellia sinensis leaves by two processes, the traditional raw fermentation and the faster, ripened fermentation. We characterized fungal and bacterial communities in leaves and both Pu-erhs by high-throughput, rDNA-amplicon sequencing and we characterized the profile of bioactive extrolite mycotoxins in Pu-erh teas by quantitative liquid chromatography-tandem mass spectrometry. We identified 390 fungal and 629 bacterial OTUs from leaves and both Pu-erhs. Major findings are: 1) fungal diversity drops and bacterial diversity rises due to raw or ripened fermentation, 2) fungal and bacterial community composition changes significantly between fresh leaves and both raw and ripened Pu-erh, 3) aging causes significant changes in the microbial community of raw, but not ripened, Pu-erh, and, 4) ripened and well-aged raw Pu-erh have similar microbial communities that are distinct from those of young, raw Ph-erh tea. Twenty-five toxic metabolites, mainly of fungal origin, were detected, with patulin and asperglaucide dominating and at levels supporting the Chinese custom of discarding the first preparation of Pu-erh and using the wet tea to then brew a pot for consumption. PMID:27337135

  7. Regulatory cross talk and microbial induction of fungal secondary metabolite gene clusters.

    PubMed

    Nützmann, Hans-Wilhelm; Schroeckh, Volker; Brakhage, Axel A

    2012-01-01

    Filamentous fungi are well-known producers of a wealth of secondary metabolites with various biological activities. Many of these compounds such as penicillin, cyclosporine, or lovastatin are of great importance for human health. Genome sequences of filamentous fungi revealed that the encoded potential to produce secondary metabolites is much higher than the actual number of compounds produced during cultivation in the laboratory. This finding encouraged research groups to develop new methods to exploit the silent reservoir of secondary metabolites. In this chapter, we present three successful strategies to induce the expression of secondary metabolite gene clusters. They are based on the manipulation of the molecular processes controlling the biosynthesis of secondary metabolites and the simulation of stimulating environmental conditions leading to altered metabolic profiles. The presented methods were successfully applied to identify novel metabolites. They can be also used to significantly increase product yields. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Old drug new use--amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity.

    PubMed

    Kong, Ren; Liu, Timothy; Zhu, Xiaoping; Ahmad, Syed; Williams, Alfred L; Phan, Alexandria T; Zhao, Hong; Scott, John E; Yeh, Li-An; Wong, Stephen T C

    2014-07-01

    Irinotecan (CPT-11) induced diarrhea occurs frequently in patients with cancer and limits its usage. Bacteria β-glucuronidase (GUS) enzymes in intestines convert the nontoxic metabolite of CPT-11, SN-38G, to toxic SN-38, and finally lead to damage of intestinal epithelial cells and diarrhea. We previously reported amoxapine as a potent GUS inhibitor in vitro. To further understand the molecular mechanism of amoxapine and its potential for treatment of CPT-11-induced diarrhea, we studied the binding modes of amoxapine and its metabolites by docking and molecular dynamics simulation, and tested the in vivo efficacy on mice in combination with CPT-11. The binding of amoxapine, its metabolites, 7-hydroxyamoxapine and 8-hydroxyamoxapine, and a control drug loxapine with GUS was explored by computational protocols. The in vitro potencies of metabolites were measured by Escherichia coli GUS enzyme and cell-based assay. Low-dosage daily oral administration was designed to use along with CPT-11 to treat tumor-bearing mice. Computational modeling results indicated that amoxapine and its metabolites bound in the active site of GUS and satisfied critical pharmacophore features: aromatic features near bacterial loop residue F365' and hydrogen bond toward E413. Amoxapine and its metabolites were demonstrated as potent in vitro. Administration of low dosages of amoxapine with CPT-11 in mice achieved significant suppression of diarrhea and reduced tumor growth. Amoxapine has great clinical potential to be rapidly translated to human subjects for irinotecan-induced diarrhea. ©2014 American Association for Cancer Research.

  9. A STUDY OF THE INTERCONVERSION OF METHYLATED ARSENIC OXIDES TO METHYLATED ARSENIC SULFIDES IN SOLUTIONS CONTAINING FREE SULFIDE

    EPA Science Inventory

    Evidence suggests that thiolated arsenicals are urinary metabolites in both humans and rats. These thiolated species may be formed in the digestive system or as metabolites within the body. The role they may play in the overall toxicity of arsenic is an active area of research....

  10. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR INTRAVENOUS AND INHALATION-ROUTE PHARMACOKINETICS OF BUTYL ACETATE AND METABOLITES N-BUTANOL AND N-BUTYRIC ACID

    EPA Science Inventory

    Risk assessment for n-butyl acetate and metabolites n-butanol and n-butyric acid (the butyl series) can be accomplished with limited toxicity data and pharmacokinetic data for each compound through application of the "family approach" (Barton et al., 2000). The necessary quantita...

  11. Determination of the 4-monohydroxy metabolites of perhexiline in human plasma, urine and liver microsomes by liquid chromatography.

    PubMed

    Davies, Benjamin J; Herbert, Megan K; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2006-11-07

    The use of perhexiline (PHX) is limited by hepatic and neurological toxicity associated with elevated concentrations in plasma that are the result of polymorphism of the cytochrome P450 2D6 isoform (CYP2D6). PHX is cleared by hepatic oxidation that produces three 4-monohydroxy metabolites: cis-OH-PHX, trans1-OH-PHX and trans2-OH-PHX. The current study describes an HPLC-fluorescent method utilising pre-column derivatization with dansyl chloride. Following derivatization, the metabolites were resolved on a C18 column with a gradient elution using a mobile phase composed of methanol and water. The method described is suitable for the quantification of the metabolites in human plasma and urine following clinical doses and for kinetic studies using human liver microsomes. The method demonstrates sufficient sensitivity, accuracy and precision between 5.0 and 0.01, 50.0 and 0.2 and 1.0 and 0.005 mg/l in human plasma, urine and liver microsomes, respectively, with intra-assay coefficients of variation and bias <15%, except at the lowest limit of quantification (<20%). The inter-assay coefficients of variation and bias were <15%. The application of this method to plasma and urine samples of five CYP2D6 extensive metaboliser (EM) patients at steady state with respect to PHX dosing determined that the mean (+/-S.D.) renal clearances of trans1-OH-PHX and cis-OH-PHX were 1.58+/-0.35 and 0.16+/-0.06l/h, respectively. The mean (+/-S.D.) dose recovered in urine as free and glucuronidated 4-monohydroxy PHX metabolites was 20.6+/-11.6%.

  12. TISSUE DISTRIBUTION OF ARSENIC SPECIES IN MICE CHRONICALLY EXPOSED TO METHYLARSONOUS ACID

    EPA Science Inventory

    The metabolism of inorganic arsenic (iAs) in humans yields toxic and carcinogenic methyl-As (MAs) and dimethyl-As (DMAs) intermediates. Methylarsonous acid (MAsIII) is the most acutely toxic species of characterized iAs metabolites. Here, we examined the concentrations of As spec...

  13. New brominated flame retardants and their metabolites as activators of the pregnane X receptor.

    PubMed

    Gramec Skledar, Darja; Tomašič, Tihomir; Carino, Adriana; Distrutti, Eleonora; Fiorucci, Stefano; Peterlin Mašič, Lucija

    2016-09-30

    The present study investigated the activities on different nuclear receptors of the new brominated flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), and their main carboxylic acid metabolites 2,3,4,5-tetrabromobenzoic acid (TBBA) and mono(2-ethylhexyl) tetrabromophthalate (TBMEPH). None of selected chemicals exhibited marked activity towards PPARα and PPARγ by the use of transactivation assays in HepG2 cells transfected with peroxisome proliferator-activated receptors. In contrast, selected flame retardants all exhibited potent agonist activity on pregnane X receptor (PXR), with EC50 values of 5.5μM for TBPH and 2.0μM for its metabolite TBMEPH. Molecular docking of TBPH and TBMEPH to the PXR ligand binding site revealed similar interactions, with differences only for conformation and orientation of the alkyl chains. Additionally, TBPH showed antagonist activity on PXR (IC50, 13.9μM). Moreover, there was significant up-regulation of CYP3A4 expression via PXR activation for TBB and TBPH and their metabolites. Induction of CYP3A4 might cause undesired drug-drug interactions, lower bioavailability of pharmaceutical drugs, higher formation of reactive toxic metabolites, or enhanced elimination of endogenous hormones, such as T3/T4, to lead to endocrine disruption. These data provide new and important insights into the toxicity of these new polybrominated flame retardants, TBB and TBPH, and their metabolites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline.

    PubMed

    Lee, Jung-Bok; Sohn, Ho-Yong; Shin, Kee-Sun; Kim, Jong-Sik; Jo, Min-Sub; Jeon, Chun-Pyo; Jang, Jong-Ok; Kim, Jang-Eok; Kwon, Gi-Seok

    2008-02-01

    Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5- dichloroaniline in a minimal medium containing vinclozolin (200 microg/ml) or 3,5-dichloroaniline (120 microg/ml) were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

  15. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes.

    PubMed

    Sandoval, Nicholas R; Papoutsakis, Eleftherios T

    2016-10-01

    Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Copper sulphate (CuSO4) toxicity on tissue phosphatases activity and carbohydrates turnover in Achatina fulica.

    PubMed

    Ramalingam, K; Indra, D

    2002-04-01

    A time course study on the sublethal toxicity of CuSO4 on tissue carbohydrate metabolites level and their phosphatases activity in Achatina fulica revealed differential response. The levels of total carbohydrates and glycogen in the body mass muscle, foot muscle and hemolymph revealed their involvement in the endogenous derivation of energy during stress. The same metabolites in digestive gland revealed its importance to reproduction and development. The lactate accumulated in all the tissues implied the mechanism of CuSO4 toxicosis in the metabolic acidosis. The decrease of pyruvate in foot muscle, body mass muscle and hemolymph inferred the preponderance of glycolysis in energy derivation. In contrast, the pyruvate concentration in digestive gland revealed its differential response in the stress metabolic sequence of changes, as a unique tissue. The lactate/pyruvate ratio and the calcium content in tissues constitute direct evidences for the snails adaptation to toxic stress.

  17. Ethylene glycol poisoning in three dogs: Importance of early diagnosis and role of hemodialysis as a treatment option.

    PubMed

    Schweighauser, A; Francey, T

    2016-02-01

    Poisoning with ethylene glycol as contained in antifreeze can rapidly lead to irreversible acute renal failure and other organ damage. It carries a grave prognosis unless diagnosed early and adequate treatment is initiated within 8 hours of ingestion. Toxicity of ethylene glycol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), leading to early signs of severe polyuria (PU) and polydipsia (PD), gastritis, ataxia and central nervous depression, followed by progressive dehydration, and ultimately oligoanuric renal failure. In addition to general supportive care, therapeutic interventions must include either antidotes blocking ADH-mediated metabolism or blood purification techniques to remove both the parent compound and the toxic metabolites. The goal of this case report is to describe three cases of acute antifreeze intoxication in dogs, and to discuss treatment options available for this poisoning.

  18. Integrated Metabolomics and Morphogenesis Reveal Volatile Signaling of the Nematode-Trapping Fungus Arthrobotrys oligospora.

    PubMed

    Wang, Bai-Le; Chen, Yong-Hong; He, Jia-Ning; Xue, Hua-Xi; Yan, Ni; Zeng, Zhi-Jun; Bennett, Joan W; Zhang, Ke-Qin; Niu, Xue-Mei

    2018-05-01

    The adjustment of metabolic patterns is fundamental to fungal biology and plays vital roles in adaptation to diverse ecological challenges. Nematode-trapping fungi can switch their lifestyle from saprophytic to pathogenic by developing specific trapping devices induced by nematodes to infect their prey as a response to nutrient depletion in nature. However, the chemical identity of the specific fungal metabolites used during the switch remains poorly understood. We hypothesized that these important signal molecules might be volatile in nature. Gas chromatography-mass spectrometry was used to carry out comparative analysis of fungal metabolomics during the saprophytic and pathogenic lifestyles of the model species Arthrobotrys oligospora Two media commonly used in research on this species, cornmeal agar (CMA) and potato dextrose agar (PDA), were chosen for use in this study. The fungus produced a small group of volatile furanone and pyrone metabolites that were associated with the switch from the saprophytic to the pathogenic stage. A. oligospora fungi grown on CMA tended to produce more traps and employ attractive furanones to improve the utilization of traps, while fungi grown on PDA developed fewer traps and used nematode-toxic furanone metabolites to compensate for insufficient traps. Another volatile pyrone metabolite, maltol, was identified as a morphological regulator for enhancing trap formation. Deletion of the gene AOL_s00079g496 in A. oligospora led to increased amounts of the furanone attractant (2-fold) in mutants and enhanced the attractive activity (1.5-fold) of the fungus, while it resulted in decreased trap formation. This investigation provides new insights regarding the comprehensive tactics of fungal adaptation to environmental stress, integrating both morphological and metabolomic mechanisms. IMPORTANCE Nematode-trapping fungi are a unique group of soil-living fungi that can switch from the saprophytic to the pathogenic lifestyle once they come into contact with nematodes as a response to nutrient depletion. In this study, we investigated the metabolic response during the switch and the key types of metabolites involved in the interaction between fungi and nematodes. Our findings indicate that A. oligospora develops multiple and flexible metabolic tactics corresponding to different morphological responses to nematodes. A. oligospora can use similar volatile furanone and pyrone metabolites with different ecological functions to help capture nematodes in the fungal switch from the saprophytic to the pathogenic lifestyle. Furthermore, studies with A. oligospora mutants with increased furanone and pyrone metabolites confirmed the results. This investigation reveals the importance of volatile signaling in the comprehensive tactics used by nematode-trapping fungi, integrating both morphological and metabolomic mechanisms. Copyright © 2018 Wang et al.

  19. Integrated Metabolomics and Morphogenesis Reveal Volatile Signaling of the Nematode-Trapping Fungus Arthrobotrys oligospora

    PubMed Central

    Wang, Bai-Le; Chen, Yong-Hong; He, Jia-Ning; Xue, Hua-Xi; Yan, Ni; Zeng, Zhi-Jun; Bennett, Joan W.

    2018-01-01

    ABSTRACT The adjustment of metabolic patterns is fundamental to fungal biology and plays vital roles in adaptation to diverse ecological challenges. Nematode-trapping fungi can switch their lifestyle from saprophytic to pathogenic by developing specific trapping devices induced by nematodes to infect their prey as a response to nutrient depletion in nature. However, the chemical identity of the specific fungal metabolites used during the switch remains poorly understood. We hypothesized that these important signal molecules might be volatile in nature. Gas chromatography-mass spectrometry was used to carry out comparative analysis of fungal metabolomics during the saprophytic and pathogenic lifestyles of the model species Arthrobotrys oligospora. Two media commonly used in research on this species, cornmeal agar (CMA) and potato dextrose agar (PDA), were chosen for use in this study. The fungus produced a small group of volatile furanone and pyrone metabolites that were associated with the switch from the saprophytic to the pathogenic stage. A. oligospora fungi grown on CMA tended to produce more traps and employ attractive furanones to improve the utilization of traps, while fungi grown on PDA developed fewer traps and used nematode-toxic furanone metabolites to compensate for insufficient traps. Another volatile pyrone metabolite, maltol, was identified as a morphological regulator for enhancing trap formation. Deletion of the gene AOL_s00079g496 in A. oligospora led to increased amounts of the furanone attractant (2-fold) in mutants and enhanced the attractive activity (1.5-fold) of the fungus, while it resulted in decreased trap formation. This investigation provides new insights regarding the comprehensive tactics of fungal adaptation to environmental stress, integrating both morphological and metabolomic mechanisms. IMPORTANCE Nematode-trapping fungi are a unique group of soil-living fungi that can switch from the saprophytic to the pathogenic lifestyle once they come into contact with nematodes as a response to nutrient depletion. In this study, we investigated the metabolic response during the switch and the key types of metabolites involved in the interaction between fungi and nematodes. Our findings indicate that A. oligospora develops multiple and flexible metabolic tactics corresponding to different morphological responses to nematodes. A. oligospora can use similar volatile furanone and pyrone metabolites with different ecological functions to help capture nematodes in the fungal switch from the saprophytic to the pathogenic lifestyle. Furthermore, studies with A. oligospora mutants with increased furanone and pyrone metabolites confirmed the results. This investigation reveals the importance of volatile signaling in the comprehensive tactics used by nematode-trapping fungi, integrating both morphological and metabolomic mechanisms. PMID:29453265

  20. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi.

    PubMed

    Frisvad, Jens C; Andersen, Birgitte; Thrane, Ulf

    2008-02-01

    A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.

  1. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities.

    PubMed

    Slack, Gregory J; Puniani, Eva; Frisvad, Jens C; Samson, Robert A; Miller, J David

    2009-04-01

    As part of studies of metabolites from fungi common in the built environment in Canadian homes, we investigated metabolites from strains of three Eurotium species, namely E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally identified as Aspergillus ustus. The latter have been recently assigned as the new species A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metabolites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in E. amstelodami. This species also produced questin and neoechinulin E as minor metabolites. This is the first report of epiheveadride occurring as a natural product, and the first nonadride isolated from Eurotium species. Unlike strains from mainly infection-related samples, largely from Europe, neither ophiobolins G and H nor austins were detected in the Canadian strains of A. insuetus and A. calidoustus tested, all of which had been reported from the latter species. TMC-120 A, B, C and a sesquiterpene drimane are reported with certainty for the first time from indoor isolates, as well as two novel related methyl isoquinoline alkaloids.

  2. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting.

    PubMed

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó; Kuttner, Eva; Ásgeirsdóttir, Margrét E; Young, Louise C; Green, David H; Edrada-Ebel, Ruangelie; Duncan, Katherine R

    2016-01-08

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.

  3. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting

    PubMed Central

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó.; Kuttner, Eva; Ásgeirsdóttir, Margrét E.; Young, Louise C.; Green, David H.; Edrada-Ebel, Ruangelie; Duncan, Katherine R.

    2016-01-01

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations. PMID:26761036

  4. Antidotes for poisoning by alcohols that form toxic metabolites.

    PubMed

    McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik

    2016-03-01

    The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience. © 2015 The British Pharmacological Society.

  5. Toxic metabolites, Sertoli cells and Y chromosome related genes are potentially linked to the reproductive toxicity induced by mequindox

    PubMed Central

    Liu, Qianying; Lei, Zhixin; Dai, Menghong; Wang, Xu; Yuan, Zonghui

    2017-01-01

    Mequindox (MEQ) is a relatively new synthetic antibacterial agent widely applied in China since the 1980s. However, its reproductive toxicity has not been adequately performed. In the present study, four groups of male Kunming mice (10 mice/group) were fed diets containing MEQ (0, 25, 55 and 110 mg/kg in the diet) for up to 18 months. The results show that M4 could pass through the blood-testis barrier (BTB), and demonstrate that Sertoli cells (SCs) are the main toxic target for MEQ to induce spermatogenesis deficiency. Furthermore, adrenal toxicity, adverse effects on the hypothalamic-pituitary-testicular axis (HPTA) and Leydig cells, as well as the expression of genes related to steroid biosynthesis and cholesterol transport, were responsible for the alterations in sex hormones in the serum of male mice after exposure to MEQ. Additionally, the changed levels of Y chromosome microdeletion related genes, such as DDX3Y, HSF2, Sly and Ssty2 in the testis might be a mechanism for the inhibition of spermatogenesis induced by MEQ. The present study illustrates for the first time the toxic metabolites of MEQ in testis of mice, and suggests that SCs, sex hormones and Y chromosome microdeletion genes are involved in reproductive toxicity mediated by MEQ in vivo. PMID:29152098

  6. Gas Chromatography- Mass Spectrometry Based Metabolomic Approach for Optimization and Toxicity Evaluation of Earthworm Sub-Lethal Responses to Carbofuran

    PubMed Central

    Saxena, Prem Narain

    2013-01-01

    Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals) for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS) based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil). Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies. PMID:24324663

  7. Pharmacology of irinotecan.

    PubMed

    Kuhn, J G

    1998-08-01

    Irinotecan (CPT-11 [Camptosar]), a semisynthetic derivative of the plant alkaloid camptothecin, is bioactivated by carboxylesterases (EC3.1.1-) to the topoisomerase I inhibitor SN-38, a minor metabolite. Bioactivation of intravenously administered irinotecan by carboxylesterases occurs predominantly in the liver. Two human carboxylesterase isoforms responsible for SN-38 formation have been characterized. At relevant hepatic irinotecan concentrations up to 12 micrograms/mL, a low-Km isoform is responsible for irinotecan bioactivation. High concentrations of drugs commonly coadministered with irinotecan do not inhibit carboxylesterase activity. Intestinal carboxylesterases can also generate SN-38, followed by subsequent oral absorption. A second major polar metabolite of irinotecan, aminopentanecarboxylic acid (APC), is the product of CYP3A4-mediated oxidation of the terminal piperidine ring. APC is 100-fold less active than SN-38 as a topoisomerase I inhibitor and is a relatively weak inhibitor of acetylcholinesterase. SN-38 is eliminated mainly through conjugation by hepatic uridine glucuronosyltransferase (UGT*1.1), the same isoezyme responsible for glucuronidation of bilirubin. Grade 4 irinotecan-related toxicity (ie, neutropenia, diarrhea) has recently been reported in two patients with deficient UGT*1.1 activity. SN-38 glucuronide (SN-38G), which has only 1/100th the antitumor activity of SN-38, is actively secreted into the bile by a canalicular multispecific organic anion transporter. Deconjugation of SN-38G to SN-38 by beta-glucuronidase produced by the intestinal flora may contribute to enterohepatic recirculation of SN-38 and delayed intestinal toxicity.

  8. Biosynthesis of human diazepam and clonazepam metabolites.

    PubMed

    de Paula, Núbia C; Araujo Cordeiro, Kelly C F; de Melo Souza, Paula L; Nogueira, Diogo F; da Silva e Sousa, Diego B; Costa, Maísa B; Noël, François; de Oliveira, Valéria

    2015-03-01

    A screening of fungal and microbial strains allowed to select the best microorganisms to produce in high yields some of the human metabolites of two benzodiazepine drugs, diazepam and clonazepam, in order to study new pharmacological activities and for chemical standard proposes. Among the microorganisms tested, Cunninghamella echinulata ATCC 9244 and Rhizopus arrhizus ATCC 11145 strains, were the most active producers of the mains metabolites of diazepam which included demethylated, hydroxylated derivatives. Beauveria bassiana ATCC 7159 and Chaetomium indicum LCP 984200 produced the 7 amino-clonazepam metabolite and a product of acid hydrolysis of this benzodiazepine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fungal flora of Egyptian baladi bread with special reference to the mutagenic effects of their toxic metabolites.

    PubMed

    Megalla, S E; Abdou, R F; Bagy, M M

    1985-01-01

    The fungal flora of wheat flour and baladi bread in upper Egypt were investigated. Most of the isolated fungal species belong to the genus Aspergillus. The presence of non heat resistant fungi of the both flat surfaces of baladi bread, came from contamination after baking and from improper handling at homes. Among the heat resistant fungi, A. fumigatus and A. niger, were recorded to inhabit the spongy crumb although the high temperature of baking process which reached approximately 100 degrees C in the center of the bread. The mutagenic effects of the fungal metabolites of the extract of mouldy Egypt were investigated. Most of the isolated fungal species all stages of mitotic division. The most interesting effect of these fungal metabolites were the induction of tripolar and quadripolar spindle. Multinucleate and polyploid cells were also observed under relatively high concentrations. It was noticed that at either higher concentrations or lower concentrations with long exposure, damaged cells were observed. The hazards involved through the consumption of individuals to such mouldy bread, is accumulation of possible deleterious effects from both long and short term exposure to these toxic metabolites.

  10. Improvement of reverse-phase high pressure liquid chromatographic resolution of benzo(a)pyrene metabolites using organic amines: application to metabolites produced by fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjessum, K.; Stegeman, J.J.

    1979-10-15

    Addition of primary organic amines, such as n-butylamine, to the mobile phase altered the capacity factors and selectivity of benzo(a)pyrene metabolites obtained with reverse-phase high pressure liquid chromatography on an ODS column. Separation of benzo(a)pyrene phenols in particular was improved with 8 of the 10 available metabolites resolved, including those known to be biologically produced. The method offers sufficiently improved resolution or convenience that it should prove useful in comparative studies of metabolism of benzo(a)-pyrene and other polynuclear aromatic hydrocarbons. Applying the method to analysis of benzo(a)pyrene metabolites produced in vitro by hepatic microsomes from the marine fish Stenotomus versicolormore » indicated the principal phenolic derivatives produced by this fish were 1-hydroxy-, 3-hydroxy-, 7-hydroxy-, and 9-hydroxybenzo(a)pyrene.« less

  11. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites.

    PubMed

    Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G

    2011-03-21

    Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.

  12. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays.

    PubMed

    Yu, Kyeong-Nam; Nadanaciva, Sashi; Rana, Payal; Lee, Dong Woo; Ku, Bosung; Roth, Alexander D; Dordick, Jonathan S; Will, Yvonne; Lee, Moo-Yeal

    2018-03-01

    Human liver contains various oxidative and conjugative enzymes that can convert nontoxic parent compounds to toxic metabolites or, conversely, toxic parent compounds to nontoxic metabolites. Unlike primary hepatocytes, which contain myriad drug-metabolizing enzymes (DMEs), but are difficult to culture and maintain physiological levels of DMEs, immortalized hepatic cell lines used in predictive toxicity assays are easy to culture, but lack the ability to metabolize compounds. To address this limitation and predict metabolism-induced hepatotoxicity in high-throughput, we developed an advanced miniaturized three-dimensional (3D) cell culture array (DataChip 2.0) and an advanced metabolizing enzyme microarray (MetaChip 2.0). The DataChip is a functionalized micropillar chip that supports the Hep3B human hepatoma cell line in a 3D microarray format. The MetaChip is a microwell chip containing immobilized DMEs found in the human liver. As a proof of concept for generating compound metabolites in situ on the chip and rapidly assessing their toxicity, 22 model compounds were dispensed into the MetaChip and sandwiched with the DataChip. The IC 50 values obtained from the chip platform were correlated with rat LD 50 values, human C max values, and drug-induced liver injury categories to predict adverse drug reactions in vivo. As a result, the platform had 100% sensitivity, 86% specificity, and 93% overall predictivity at optimum cutoffs of IC 50 and C max values. Therefore, the DataChip/MetaChip platform could be used as a high-throughput, early stage, microscale alternative to conventional in vitro multi-well plate platforms and provide a rapid and inexpensive assessment of metabolism-induced toxicity at early phases of drug development.

  13. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    PubMed Central

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Tobias; Bertermann, Rüdiger; Rusch, George M.

    2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a novel refrigerant intended for use in mobile air conditioning. It showed a low potential for toxicity in rodents studies with most NOAELs well above 10,000 ppm in guideline compliant toxicity studies. However, a developmental toxicity study in rabbits showed mortality at exposure levels of 5,500 ppm and above. No lethality was observed at exposure levels of 2,500 and 4,000 ppm. Nevertheless, increased subacute inflammatory heart lesions were observed in rabbits at all exposure levels. Since the lethality in pregnant animals may be due to altered biotransformation of HFO-1234yf and to evaluate the potential risk to pregnantmore » women facing a car crash, this study compared the acute toxicity and biotransformation of HFO-1234yf in male, female and pregnant female rabbits. Animals were exposed to 50,000 ppm and 100,000 ppm for 1 h. For metabolite identification by {sup 19}F NMR and LC/MS-MS, urine was collected for 48 h after inhalation exposure. In all samples, the predominant metabolites were S-(3,3,3-trifluoro-2-hydroxypropanyl)-mercaptolactic acid and N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine. Since no major differences in urinary metabolite pattern were observed between the groups, only N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine excretion was quantified. No significant differences in recovery between non-pregnant (43.10 ± 22.35 μmol) and pregnant female (50.47 ± 19.72 μmol) rabbits were observed, male rabbits exposed to 100,000 ppm for one hour excreted 86.40 ± 38.87 μmol. Lethality and clinical signs of toxicity were not observed in any group. The results suggest that the lethality of HFO-1234yf in pregnant rabbits unlikely is due to changes in biotransformation patterns or capacity in pregnant rabbits. -- Highlights: ► No lethality and clinical signs were observed. ► No differences in metabolic pattern between pregnant and non-pregnant rabbits. ► Rapid and similar metabolite excretion in all groups. ► Very low amount of biotransformation in all groups (< 0.1%).« less

  15. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    PubMed

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ammonium and arsenic trioxide are potent facilitators of oligonucleotide function when delivered by gymnosis

    PubMed Central

    Zhang, Xiaowei; Castanotto, Daniela; Liu, Xueli; Shemi, Amotz; Stein, Cy A

    2018-01-01

    Abstract Oligonucleotide (ON) concentrations employed for therapeutic applications vary widely, but in general are high enough to raise significant concerns for off target effects and cellular toxicity. However, lowering ON concentrations reduces the chances of a therapeutic response, since typically relatively small amounts of ON are taken up by targeted cells in tissue culture. It is therefore imperative to identify new strategies to improve the concentration dependence of ON function. In this work, we have identified ammonium ion (NH4+) as a non-toxic potent enhancer of ON activity in the nucleus and cytoplasm following delivery by gymnosis. NH4+ is a metabolite that has been extensively employed as diuretic, expectorant, for the treatment of renal calculi and in a variety of other diseases. Enhancement of function can be found in attached and suspension cells, including in difficult-to-transfect Jurkat T and CEM T cells. We have also demonstrated that NH4+ can synergistically interact with arsenic trioxide (arsenite) to further promote ON function without producing any apparent increased cellular toxicity. These small, inexpensive, widely distributed molecules could be useful not only in laboratory experiments but potentially in therapeutic ON-based combinatorial strategy for clinical applications. PMID:29522198

  17. Reactive aldehyde metabolites from the anti-HIV drug abacavir: amino acid adducts as possible factors in abacavir toxicity.

    PubMed

    Charneira, Catarina; Godinho, Ana L A; Oliveira, M Conceição; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2011-12-19

    Abacavir is a nucleoside reverse transcriptase inhibitor marketed since 1999 for the treatment of infection with the human immunodeficiency virus type 1 (HIV). Despite its clinical efficacy, abacavir administration has been associated with serious and sometimes fatal toxic events. Abacavir has been reported to undergo bioactivation in vitro, yielding reactive species that bind covalently to human serum albumin, but the haptenation mechanism and its significance to the toxic events induced by this anti-HIV drug have yet to be elucidated. Abacavir is extensively metabolized in the liver, resulting in inactive glucuronide and carboxylate metabolites. The metabolism of abacavir to the carboxylate involves a two-step oxidation via an unconjugated aldehyde, which under dehydrogenase activity isomerizes to a conjugated aldehyde. Concurrently with metabolic oxidation, the two putative aldehyde metabolites may be trapped by nucleophilic side groups in proteins yielding covalent adducts, which can be at the onset of the toxic events associated with abacavir. To gain insight into the role of aldehyde metabolites in abacavir-induced toxicity and with the ultimate goal of preparing reliable and fully characterized prospective biomarkers of exposure to the drug, we synthesized the two putative abacavir aldehyde metabolites and investigated their reaction with the α-amino group of valine. The resulting adducts were subsequently stabilized by reduction with sodium cyanoborohydride and derivatized with phenyl isothiocyanate, leading in both instances to the formation of the same phenylthiohydantoin, which was fully characterized by NMR and MS. These results suggest that the unconjugated aldehyde, initially formed in vivo, rapidly isomerizes to the thermodynamically more stable conjugated aldehyde, which is the electrophilic intermediate mainly involved in reaction with bionucleophiles. Moreover, we demonstrated that the reaction of the conjugated aldehyde with nitrogen bionucleophiles occurs exclusively via Schiff base formation, whereas soft sulfur nucleophiles react by Michael-type 1,4-addition to the α,β-unsaturated system. The synthetic phenylthiohydantoin adduct was subsequently used as standard for LC-ESI-MS monitoring of N-terminal valine adduct formation, upon modification of human hemoglobin in vitro with the conjugated abacavir aldehyde, followed by reduction and Edman degradation. The same postmodification strategy was applied to investigate the products formed by incubation of abacavir with rat liver cytosol, followed by trapping with ethyl valinate. In both instances, the major adduct detected corresponded to the synthetic phenylthiohydantoin standard. These results suggest that abacavir metabolism to the carboxylate(s) via aldehyde intermediate(s) could be a factor in the toxic events elicited by abacavir administration. Furthermore, the availability of a reliable and fully characterized synthetic standard of the abacavir adduct with the N-terminal valine of hemoglobin and its easy detection in the model hemoglobin modifications support the usefulness of this adduct as a prospective biomarker of abacavir toxicity in humans. © 2011 American Chemical Society

  18. Metabolism and Tissue Distribution of Orally Administered Trichloroethylene in Male and Female Rats: Identification of Glutathione- and Cytochrome P450-Derived Metabolites in Liver, Kidney, Blood and Urine

    PubMed Central

    Lash, Lawrence H.; Putt, David A.; Parker, Jean C.

    2006-01-01

    Male and female Fischer 344 rats were administered trichloroethylene (TRI) (2, 5, or 15 mmol/kg body weight) in corn oil by oral gavage and TRI and its metabolites were measured at times up to 48 hr in liver, kidney, blood, and urine. We tested the hypothesis that sex-dependent differences in distribution and metabolism of TRI could help explain differences in toxicity. Higher levels of TRI were generally observed in tissues of males. A biphasic pattern of TRI concentration was observed in liver, kidney, and blood of both males and females, consistent with enterohepatic recirculation. Higher concentrations of cytochrome P450 (P450)-derived metabolites (chloral hydrate, trichloroacetate, trichloroethanol) were observed in livers of males than in livers of females whereas the opposite pattern was observed in kidneys. Chloral hydrate was the primary P450-derived metabolite in blood and urine of males whereas trichloroacetate was the primary P450-derived metabolite in blood and urine of females. S-(1,2-Dichlorovinyl)glutathione (DCVG) was recovered in liver and kidney of female rats only and in blood of both male and female rats, with generally higher amounts found in females. S-(1,2-Dichlorovinyl)-l-cysteine (DCVC), the penultimate nephrotoxic metabolite, was recovered in male and female liver, female kidney, male blood, and in urine of both males and females. The results demonstrate sex-dependent differences in recovery of key metabolites of TRI that may help explain differences in susceptibility to TRI-induced toxicity with both the liver and kidney as target organs. PMID:16754541

  19. TISSUE DISTRIBUTION OF ARSENIC SPECIES IN MICE CHRONICALLY EXPOSED TO ARSENITE OR METHYLARSONOUS ACID

    EPA Science Inventory

    e metabolism of inorganic arsenic (iAs) in humans yields toxic and carcinogenic methyl-As (MAs) and dimethyl-As (DMAs) intermediates. Methylarsonous acid (MAsIII) is the most acutely toxic species among known iAs metabolites. In this study, we examined the concentrations of As sp...

  20. Perspectives on essential oil-loaded nano-delivery packaging technology for controlling stored cereal and grain pests

    USDA-ARS?s Scientific Manuscript database

    Insect pests and food-borne fungi and their associated toxic metabolites cause significant losses in stored food products. Plant-derived essential oils (EOs) can control the growth and proliferation of insect and fungal pests. Plant EOs are environmentally friendly and non-toxic, and their applicati...

  1. The Distribution of Fruit and Seed Toxicity during Development for Eleven Neotropical Trees and Vines in Central Panama

    PubMed Central

    Beckman, Noelle G.

    2013-01-01

    Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions. PMID:23843965

  2. A Case of 3,4-Dimethoxyamphetamine (3,4-DMA) and 3,4-Methylenedioxymethamphetamine (MDMA) Toxicity with Possible Metabolic Interaction.

    PubMed

    Darracq, Michael A; Thornton, Stephen L; Minns, Alicia B; Gerona, Roy R

    2016-01-01

    We present a case of "ecstasy" ingestion revealing 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-dimethoxyamphetamine (3,4-DMA) and absence of cytochrome P450 (CYP)-2D6 MDMA metabolites. A 19-year-old presented following a seizure. Initial vital signs were normal. Laboratories were normal with the exception of sodium 127 mEq/L and urine drugs of abuse screen positive for amphetamines. Twelve hours later, serum sodium was 114 mEq/L and a second seizure occurred. After receiving hypertonic saline (3%), the patient had improvement in mental status and admitted to taking "ecstasy" at a rave prior to her initial presentation. Liquid chromatography-time-of-flight mass spectrometry (LC-TOF/MS) of serum and urine revealed MDMA, 3,4-DMA, and the CYP-2B6 MDMA metabolites 3,4-methylendioxyamphetamine (MDA) and 4-hydroxy-3-methoxyamphetamine (HMA). The CYP2D6 metabolites of MDMA, 3,4-dihydromethamphetamine (HHMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), were detected at very low levels. This case highlights the polypharmacy which may exist among users of psychoactive illicit substances and demonstrates that concurrent use of MDMA and 3,4-DMA may predispose patients to severe toxicity. Toxicologists and other healthcare providers should be aware of this potential toxicity.

  3. Metabolism by conjugation appears to confer resistance to paracetamol (acetaminophen) hepatotoxicity in the cynomolgus monkey.

    PubMed

    Yu, Hong; Barrass, Nigel; Gales, Sonya; Lenz, Eva; Parry, Tony; Powell, Helen; Thurman, Dale; Hutchison, Michael; Wilson, Ian D; Bi, Luke; Qiao, Junwen; Qin, Qiuping; Ren, Jin

    2015-03-01

    1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.

  4. Sex Is a Determinant for Deoxynivalenol Metabolism and Elimination in the Mouse

    PubMed Central

    Pestka, James J.; Clark, Erica S.; Schwartz-Zimmermann, Heidi E.

    2017-01-01

    Based on prior observations that deoxynivalenol (DON) toxicity is sex-dependent, we compared metabolism and clearance of this toxin in male and female mice. Following intraperitoneal challenge with 1 mg/kg bw DON, the dose used in the aforementioned toxicity study, ELISA and LC–MS/MS analyses revealed that by 24 h, most DON and DON metabolites were excreted via urine (49–86%) as compared to feces (1.2–8.3%). Females excreted DON and its principal metabolites (DON-3-, DON-8,15 hemiketal-8-, and iso-DON-8-glucuronides) in urine more rapidly than males. Metabolite concentrations were typically 2 to 4 times higher in the livers and kidneys of males than females from 1 to 4 h after dosing. Trace levels of DON-3-sulfate and DON-15-sulfate were found in urine, liver and kidneys from females but not males. Fecal excretion of DON and DON sulfonates was approximately 2-fold greater in males than females. Finally, decreased DON clearance rates in males could not be explained by glucuronidation activities in liver and kidney microsomes. To summarize, increased sensitivity of male mice to DON’s toxic effects as compared to females corresponds to decreased ability to clear the toxin via urine but did not appear to result from differences in toxin metabolism. PMID:28777306

  5. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhong-Ze; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showedmore » that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.« less

  6. Excessive S-Adenosyl-L-Methionine-Dependent Methylation Increases Levels of Methanol, Formaldehyde and Formic Acid in Rat Brain Striatal Homogenates: Possible role in S-adenosyl-L-methionine-induced Parkinson’s disease-like disorders

    PubMed Central

    Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel

    2009-01-01

    Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743

  7. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae.

    PubMed

    Pérez, Melisa P; Sauka, Diego H; Onco, María I; Berretta, Marcelo F; Benintende, Graciela B

    Preliminary bioassays with whole cultures (WC) of 124 Bacillus thuringiensis strains were performed with neonate larvae of Anthonomus grandis, a major cotton pest in Argentina and other regions of the Americas. Three exotic and four native strains were selected for causing more than 50% mortality. All of them were β-exotoxin producers. The native strains shared similar morphology of parasporal crystals, similar protein pattern and identical insecticidal gene profiles. These features resembled Lepidoptera-toxic strains. Furthermore, these strains showed a Rep-PCR pattern identical to lepidoptericidal strain HD-1, suggesting that these strains may belong to serovar kurstaki. However, some differences were observed in the plasmid profiles and in the production of β-exotoxin. To determine the culture fractions where the insecticidal metabolites were present, bioassays including resuspended spore-crystal pellets, filtered supernatants (FS) were compared with those of WC. Both fractions tested showed some level of insecticidal activity. The results may suggest that the main toxic factors can be found in FS and could be directly correlated with the presence of β-exotoxin. Based on the bioassays with FS and autoclaved FS, the participation of thermolabile virulence factors such as Cry1I in toxicity is neither discarded. In the selected strains, β-exotoxin would be the major associated virulence factor; therefore, their use in biological control of A. grandis should be restricted. Nevertheless, these strains could be the source of genes (e.g., cry1Ia) to produce transgenic cotton plants resistant to this pest. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice.

    PubMed

    Druart, Céline; Bindels, Laure B; Schmaltz, Robert; Neyrinck, Audrey M; Cani, Patrice D; Walter, Jens; Ramer-Tait, Amanda E; Delzenne, Nathalie M

    2015-08-01

    The gut microbiota is able to modulate host physiology through the production of bioactive metabolites. Our recent studies suggest that changes in gut microbiota composition upon prebiotics supplementation alter tissue levels of PUFA-derived metabolites in mice. However, in vivo evidence that gut microbes produces PUFA-derived metabolites is lacking. This study aimed to decipher the contribution of gut microbes versus that of the host in PUFA-derived metabolite production. To achieve this goal, we compared the proportion of PUFA-derived metabolites and the expression of fatty acid desaturases in germ-free (GF) and conventionalized (CONV) mice fed either a low fat or Western diet. Higher concentrations of PUFA-derived metabolites were found in the colonic contents of conventionalized mice (CONV) mice compared to GF mice. The abundance of these metabolites in host tissues was modulated by dietary treatments but not by microbial status. Although microbial status did significantly influence desaturase expression, no correlations between host enzymes and tissue PUFA-derived metabolite levels were observed. Together, these results highlight the ability of the gut microbiota to produce PUFA-derived metabolites from dietary PUFA. However, microbial production of these metabolites in colonic contents is not necessarily associated with modifications of their concentration in host tissues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects

    PubMed Central

    Zanchett, Giliane; Oliveira-Filho, Eduardo C.

    2013-01-01

    Cyanobacteria or blue-green algae are among the pioneer organisms of planet Earth. They developed an efficient photosynthetic capacity and played a significant role in the evolution of the early atmosphere. Essential for the development and evolution of species, they proliferate easily in aquatic environments, primarily due to human activities. Eutrophic environments are conducive to the appearance of cyanobacterial blooms that not only affect water quality, but also produce highly toxic metabolites. Poisoning and serious chronic effects in humans, such as cancer, have been described. On the other hand, many cyanobacterial genera have been studied for their toxins with anticancer potential in human cell lines, generating promising results for future research toward controlling human adenocarcinomas. This review presents the knowledge that has evolved on the topic of toxins produced by cyanobacteria, ranging from their negative impacts to their benefits. PMID:24152991

  10. Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides

    PubMed Central

    Berry, John P.; Gantar, Miroslav; Perez, Mario H.; Berry, Gerald; Noriega, Fernando G.

    2008-01-01

    Cyanobacteria (“blue-green algae”) from marine and freshwater habitats are known to produce a diverse array of toxic or otherwise bioactive metabolites. However, the functional role of the vast majority of these compounds, particularly in terms of the physiology and ecology of the cyanobacteria that produce them, remains largely unknown. A limited number of studies have suggested that some of the compounds may have ecological roles as allelochemicals, specifically including compounds that may inhibit competing sympatric macrophytes, algae and microbes. These allelochemicals may also play a role in defense against potential predators and grazers, particularly aquatic invertebrates and their larvae. This review will discuss the existing evidence for the allelochemical roles of cyanobacterial toxins, as well as the potential for development and application of these compounds as algaecides, herbicides and insecticides, and specifically present relevant results from investigations into toxins of cyanobacteria from the Florida Everglades and associated waterways. PMID:18728763

  11. Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects.

    PubMed

    Zanchett, Giliane; Oliveira-Filho, Eduardo C

    2013-10-23

    Cyanobacteria or blue-green algae are among the pioneer organisms of planet Earth. They developed an efficient photosynthetic capacity and played a significant role in the evolution of the early atmosphere. Essential for the development and evolution of species, they proliferate easily in aquatic environments, primarily due to human activities. Eutrophic environments are conducive to the appearance of cyanobacterial blooms that not only affect water quality, but also produce highly toxic metabolites. Poisoning and serious chronic effects in humans, such as cancer, have been described. On the other hand, many cyanobacterial genera have been studied for their toxins with anticancer potential in human cell lines, generating promising results for future research toward controlling human adenocarcinomas. This review presents the knowledge that has evolved on the topic of toxins produced by cyanobacteria, ranging from their negative impacts to their benefits.

  12. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role formore » metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.« less

  13. Deoxynivalenol: A Major Player in the Multifaceted Response of Fusarium to Its Environment

    PubMed Central

    Audenaert, Kris; Vanheule, Adriaan; Höfte, Monica; Haesaert, Geert

    2013-01-01

    The mycotoxin deoxynivalenol (DON), produced by several Fusarium spp., acts as a virulence factor and is essential for symptom development after initial wheat infection. Accumulating evidence shows that the production of this secondary metabolite can be triggered by diverse environmental and cellular signals, implying that it might have additional roles during the life cycle of the fungus. Here, we review data that position DON in the saprophytic fitness of Fusarium, in defense and in the primary C and N metabolism of the plant and the fungus. We combine the available information in speculative models on the role of DON throughout the interaction with the host, providing working hypotheses that await experimental validation. We also highlight the possible impact of control measures in the field on DON production and summarize the influence of abiotic factors during processing and storage of food and feed matrices. Altogether, we can conclude that DON is a very important compound for Fusarium to cope with a changing environment and to assure its growth, survival, and production of toxic metabolites in diverse situations. PMID:24451843

  14. Achieving optimal growth: lessons from simple metabolic modules

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Chen, Thomas; Wingreen, Ned

    2009-03-01

    Metabolism is a universal property of living organisms. While the metabolic network itself has been well characterized, the logic of its regulation remains largely mysterious. Recent work has shown that growth rates of microorganisms, including the bacterium Escherichia coli, correlate well with optimal growth rates predicted by flux-balance analysis (FBA), a constraint-based computational method. How difficult is it for cells to achieve optimal growth? Our analysis of representative metabolic modules drawn from real metabolism shows that, in all cases, simple feedback inhibition allows nearly optimal growth. Indeed, product-feedback inhibition is found in every biosynthetic pathway and constitutes about 80% of metabolic regulation. However, we find that product-feedback systems designed to approach optimal growth necessarily produce large pool sizes of metabolites, with potentially detrimental effects on cells via toxicity and osmotic imbalance. Interestingly, the sizes of metabolite pools can be strongly restricted if the feedback inhibition is ultrasensitive (i.e. with high Hill coefficient). The need for ultrasensitive mechanisms to limit pool sizes may therefore explain some of the ubiquitous, puzzling complexity found in metabolic feedback regulation at both the transcriptional and post-transcriptional levels.

  15. 3'-NADP and 3'-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1.

    PubMed

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-10-28

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), are substantially different from the ubiquitous co-enzyme 2'-NADP and the calcium mobilizer 2'-NAADP. Interestingly, 3'-NADP and 3'-NAADP have previously been used as inhibitors or signaling molecules but were regarded as "artificial" compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3'-phosphorylated NAD derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Antagonistic potential of Gliocladium virens and Trichoderma longibrachiatum to phytopathogenic fungi.

    PubMed

    Sreenivasaprasad, S; Manibhushanrao, K

    1990-01-01

    Three isolates of Gliocladium virens (G1, G2 and G3) and two of Trichoderma longibrachiatum (T1 and T2) were screened against isolates of three soilborne plant pathogens namely Rhizoctonia solani, Sclerotium rolfsii and Pythium aphanidermatum. G. virens exhibited stronger hyperparasitism and wider biological spectrum than T. longibrachiatum. Further, similarities as well as variation was observed in the ability of the various isolates to invade the test pathogens in dual culture. For the hyperparasites, acidic pH range (5.0 to 5.5) favoured both growth and spore germination. The hyperparasites made direct contact with the pathogens followed by varied modes of attack invariably leading to cell disruption. Antagonists, G1 and G3 revealed strong antibiosis while T2 showed moderate effect. All the isolates produced enhanced levels of lytic enzymes adaptively and there were marked differences among them. However, no correlation was observed between these attributes and the hyperparasitic potential of the various isolates in dual culture. The relevance and the role of enzymes and toxic metabolite(s) in the antagonism of G. virens and T. longibrachiatum to these pathogens are discussed.

  17. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov; Smith, A.M.; West, P.R.

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoAmore » biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal development and pregnancy. Black-Right-Pointing-Pointer Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.« less

  18. Serotonergic Neurotoxic Thioether Metabolites of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”): Synthesis, Isolation and Characterization of Diastereoisomers

    PubMed Central

    Pizarro, Nieves; de la Torre, Rafael; Joglar, Jesús; Okumura, Noriko; Perfetti, Ximena; Lau, Serrine S.; Monks, Terrence J.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a synthetic recreational drug of abuse that produces long-term toxicity associated with the degeneration of serotonergic nerve terminals. In various animal models direct administration of MDMA into the brain fails to reproduce the serotonergic neurotoxicity, implying a requirement for the systemic metabolism and bioactivation of MDMA. Catechol-thioether metabolites of MDMA, formed via oxidation of 3,4-dihydroxymetamphetamine and 3,4-dihydroxyamphetamine (HHMA and HHA) and subsequent conjugation with glutathione (GSH), are selective serotonergic neurotoxicants when administered directly into brain. Moreover, following systemic administration of MDMA, the thioether adducts are present in rat brain dialysate. MDMA contains a stereogenic center, and is consumed as a racemate. Interestingly, different pharmacological properties have been attributed to the two enantiomers, (S)-MDMA being the most active in the central nervous system and responsible for the entactogenic effects, and most likely also for the neurodegeneration. The present study focused on the synthesis and stereochemical analysis of the neurotoxic MDMA thioether metabolites, 5-(glutathion-S-yl)-HHMA, 5-(N-acetylcysteine-S-yl)-HHMA, 2,5-bis-(glutathion-S-yl)-HHMA and 2,5-bis-(N-acetylcysteine-S-yl)-HHMA. Both enzymatic and electrochemical syntheses were explored, and methodologies for analytical and semi-preparative diastereoisomeric separation of MDMA thioether conjugates by HPLC-CEAS and HPLC-UV respectively were developed. Synthesis, diastereoisomeric separation, and unequivocal identification of the thioether conjugates of MDMA provide the chemical tools necessary for appropriate toxicological and metabolic studies on MDMA metabolites contributing to its neurotoxicity. PMID:19548351

  19. Detoxification and elimination of nicotine by nectar-feeding birds.

    PubMed

    Lerch-Henning, S; Du Rand, E E; Nicolson, S W

    2017-05-01

    Many dilute nectars consumed by bird pollinators contain secondary metabolites, potentially toxic chemicals produced by plants as defences against herbivores. Consequently, nectar-feeding birds are challenged not only by frequent water excess, but also by the toxin content of their diet. High water turnover, however, could be advantageous to nectar consumers by enabling them to excrete secondary metabolites or their transformation products more easily. We investigated how the alkaloid nicotine, naturally present in nectar of Nicotiana species, influences osmoregulation in white-bellied sunbirds Cinnyris talatala and Cape white-eyes Zosterops virens. We also examined the metabolic fate of nicotine in these two species to shed more light on the post-ingestive mechanisms that allow nectar-feeding birds to tolerate nectar nicotine. A high concentration of nicotine (50 µM) decreased cloacal fluid output and increased its osmolality in both species, due to reduced food intake that led to dehydration. White-eyes excreted a higher proportion of the ingested nicotine-containing diet than sunbirds. However, sugar concentration did not affect nicotine detoxification and elimination. Both species metabolised nicotine, excreting very little unchanged nicotine. Cape white-eyes mainly metabolised nicotine through the cotinine metabolic pathway, with norcotinine being the most abundant metabolite in the excreta, while white-bellied sunbirds excreted mainly nornicotine. Both species also utilized phase II conjugation reactions to detoxify nicotine, with Cape white-eyes depending more on the mercapturic acid pathway to detoxify nicotine than white-bellied sunbirds. We found that sunbirds and white-eyes, despite having a similar nicotine tolerance, responded differently and used different nicotine-derived metabolites to excrete nicotine.

  20. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin.

    PubMed

    Davis, John M; Ekman, Drew R; Teng, Quincy; Ankley, Gerald T; Berninger, Jason P; Cavallin, Jenna E; Jensen, Kathleen M; Kahl, Michael D; Schroeder, Anthony L; Villeneuve, Daniel L; Jorgenson, Zachary G; Lee, Kathy E; Collette, Timothy W

    2016-10-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1 H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493-2502. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  1. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    PubMed

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Transcriptome Analysis of Scrippsiella trochoidea CCMP 3099 Reveals Physiological Changes Related to Nitrate Depletion

    PubMed Central

    Cooper, Joshua T.; Sinclair, Geoffrey A.; Wawrik, Boris

    2016-01-01

    Dinoflagellates are a major component of marine phytoplankton and many species are recognized for their ability to produce harmful algal blooms (HABs). Scrippsiella trochoidea is a non-toxic, marine dinoflagellate that can be found in both cold and tropic waters where it is known to produce “red tide” events. Little is known about the genomic makeup of S. trochoidea and a transcriptome study was conducted to shed light on the biochemical and physiological adaptations related to nutrient depletion. Cultures were grown under N and P limiting conditions and transcriptomes were generated via RNAseq technology. De novo assembly reconstructed 107,415 putative transcripts of which only 41% could be annotated. No significant transcriptomic response was observed in response to initial P depletion, however, a strong transcriptional response to N depletion was detected. Among the down-regulated pathways were those for glutamine/glutamate metabolism as well as urea and nitrate/nitrite transporters. Transcripts for ammonia transporters displayed both up- and down-regulation, perhaps related to a shift to higher affinity transporters. Genes for the utilization of DON compounds were up-regulated. These included transcripts for amino acids transporters, polyamine oxidase, and extracellular proteinase and peptidases. N depletion also triggered down regulation of transcripts related to the production of Photosystems I & II and related proteins. These data are consistent with a metabolic strategy that conserves N while maximizing sustained metabolism by emphasizing the relative contribution of organic N sources. Surprisingly, the transcriptome also contained transcripts potentially related to secondary metabolite production, including a homolog to the Short Isoform Saxitoxin gene (sxtA) from Alexandrium fundyense, which was significantly up-regulated under N-depletion. A total of 113 unique hits to Sxt genes, covering 17 of the 34 genes found in C. raciborskii were detected, indicating that S. trochoidea has previously unrecognized potential for the production of secondary metabolites with potential toxicity. PMID:27242681

  3. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol

    DOE PAGES

    Cui, Jinyu; Good, Nathan M.; Hu, Bo; ...

    2016-04-26

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targetedmore » metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.« less

  4. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jinyu; Good, Nathan M.; Hu, Bo

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targetedmore » metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.« less

  5. Croton grewioides Baill. (Euphorbiaceae) Shows Antidiarrheal Activity in Mice

    PubMed Central

    da Silva, Anne Dayse Soares; de Melo e Silva, Karoline; Neto, José Clementino; Costa, Vicente Carlos de Oliveira; Pessôa, Hilzeth de Luna F.; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Cavalcante, Fabiana de Andrade

    2016-01-01

    Based on chemotaxonomy, we decided to investigate the possible antidiarrheal activity in mice of a crude ethanolic extract obtained from aerial parts of Croton grewioides (CG-EtOH). We tested for any possible toxicity in rat erythrocytes and acute toxicity in mice. Antidiarrheal activity was assessed by determining the effect of CG-EtOH on defecation frequency, liquid stool, intestinal motility and intestinal fluid accumulation. CG-EtOH showed no in vitro cytotoxicity and was not orally lethal. In contrast, the extract given intraperitoneally (at 2000 mg/kg) was lethal, but only in females. CG-EtOH produced a significant and equipotent antidiarrheal activity, both in defecation frequency (ED50 = 106.0 ± 8.1 mg/kg) and liquid stools (ED50 = 105.0 ± 9.2 mg/kg). However, CG-EtOH (125 mg/kg) decreased intestinal motility by only 22.7% ± 4.4%. Moreover, extract markedly inhibited the castor oil-induced intestinal contents (ED50 = 34.6 ± 5.4 mg/kg). We thus conclude that CG-EtOH is not orally lethal and contains active principles with antidiarrheal activity, and this effect seems to involve mostly changes in intestinal secretion. SUMMARY CG-EtOH showed no in vitro cytotoxicity and was not orally lethal. In contrast, the extract given intraperitoneally (at 2000 mg/kg) was lethal, but only in females.CG-EtOH probably contains active metabolites with antidiarrheal activity.CG-EtOH reduced the frequency and number of liquid stools.Metabolites presents in the CG-EtOH act mainly by reducing intestinal fluid and, to a lesser extent, reducing intestinal motility. Abbreviations Used: CG-EtOH: crude ethanolic extract obtained from the aerial parts of C. grewioides; WHO: World Health Organization; ED50: dose of a drug that produces 50% of its maximum effect; Emax: maximum effect PMID:27365990

  6. Occurrence of Ochratoxins, Fumonisin B2 , Aflatoxins (B1 and B2 ), and Other Secondary Fungal Metabolites in Dried Date Palm Fruits from Egypt: A Mini-Survey.

    PubMed

    Abdallah, Mohamed F; Krska, Rudolf; Sulyok, Michael

    2018-02-01

    This study was conducted to investigate the natural co-occurrence of 295 fungal and bacterial metabolites in 28 samples of dried date palm fruits collected from different shops distributed in Assiut Governorate, Upper Egypt in 2016. Extraction and quantification of the target analytes were done using the "dilute and shoot" approach followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In total, 30 toxic fungal metabolites were detected. Among these metabolites, 4 types of ochratoxins including ochratoxin type A and B were quantified in 3 samples (11%) with a contamination range from 1.48 to 6070 μg/kg for ochratoxin A and from 0.28 to 692 μg/kg for ochratoxin B. In addition, fumonisin B 2 was observed in 2 (7%) samples with contamination levels ranging from 4.99 to 16.2 μg/kg. The simultaneous detection of fumonisin B 2 in the same contaminated samples with ochratoxins indicates the fungal attack by Aspergillus niger species during storage. Only 1 sample was contaminated with aflatoxin B 1 (14.4 μg/kg) and B 2 (2.44 μg/kg). The highest maximum concentration (90400 μg/kg) was for kojic acid that contaminated 43% of the samples. To the best of the authors' knowledge, this is the first report of the natural co-occurrence of fumonisin B 2 and ochratoxin A and B in addition to a wide range of other fungal metabolites in date palm fruits. Mycotoxins are secondary metabolites produced by different fungi. These metabolites pose a potential risk on human health since they contaminate many food commodities. Among these, date palm fruits which are an integral part of diet in several countries. Therefore, detection of mycotoxins is a prerequisite to insure the safety of food. Here, different types of mycotoxins have been detected in levels that may have health hazard. © 2018 Institute of Food Technologists®.

  7. Severe overdosage with the antiepileptic drug oxcarbazepine

    PubMed Central

    van Opstal, J M; Janknegt, R; Cilissen, J; L’Ortije, W H V M; Nel, J E; De Heer, F

    2004-01-01

    Few published human data are available concerning the acute toxicity of the new antiepileptic drug oxcarbazepine of which the metabolite 10- monohydroxy derivate (MHD) is the pharmacologically effective compound. Two hours after a documented overdosage of more than 100 tablets oxcarbazepine, the serum level of the parent compound was 10-fold higher than the therapeutic dosage (31.6 mg l−1). However, the concentration of MHD, which peaked 7 h after intake, was only twofold higher (59.0 mg l−1). No life-threatening situations occurred and the patient fully recovered. The fact that oxcarbazepine is a prodrug and that the formation of the active MHD metabolite is a rate-limiting process may contribute to the relative low toxicity of the drug in overdose. PMID:15327594

  8. Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments

    PubMed Central

    Casero, María Cristina

    2017-01-01

    Cyanotoxins are secondary metabolites produced by cyanobacteria, of varied chemical nature and toxic effects. Although cyanobacteria thrive in all kinds of ecosystems on Earth even under very harsh conditions, current knowledge on cyanotoxin distribution is almost restricted to freshwaters from temperate latitudes. In this review, we bring to the forefront the presence of cyanotoxins in extreme environments. Cyanotoxins have been reported especially in polar deserts (both from the Arctic and Antarctica) and alkaline lakes, but also in hot deserts, hypersaline environments, and hot springs. Cyanotoxins detected in these ecosystems include neurotoxins—anatoxin-a, anatoxin-a (S), paralytic shellfish toxins, β-methylaminopropionic acid, N-(2-aminoethyl) glycine and 2,4-diaminobutyric acid- and hepatotoxins –cylindrospermopsins, microcystins and nodularins—with microcystins being the most frequently reported. Toxin production there has been linked to at least eleven cyanobacterial genera yet only three of these (Arthrospira, Synechococcus and Oscillatoria) have been confirmed as producers in culture. Beyond a comprehensive analysis of cyanotoxin presence in each of the extreme environments, this review also identifies the main knowledge gaps to overcome (e.g., scarcity of isolates and –omics data, among others) toward an initial assessment of ecological and human health risks in these amazing ecosystems developing at the very edge of life. PMID:28737704

  9. Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments.

    PubMed

    Cirés, Samuel; Casero, María Cristina; Quesada, Antonio

    2017-07-24

    Cyanotoxins are secondary metabolites produced by cyanobacteria, of varied chemical nature and toxic effects. Although cyanobacteria thrive in all kinds of ecosystems on Earth even under very harsh conditions, current knowledge on cyanotoxin distribution is almost restricted to freshwaters from temperate latitudes. In this review, we bring to the forefront the presence of cyanotoxins in extreme environments. Cyanotoxins have been reported especially in polar deserts (both from the Arctic and Antarctica) and alkaline lakes, but also in hot deserts, hypersaline environments, and hot springs. Cyanotoxins detected in these ecosystems include neurotoxins-anatoxin-a, anatoxin-a (S), paralytic shellfish toxins, β-methylaminopropionic acid, N -(2-aminoethyl) glycine and 2,4-diaminobutyric acid- and hepatotoxins -cylindrospermopsins, microcystins and nodularins-with microcystins being the most frequently reported. Toxin production there has been linked to at least eleven cyanobacterial genera yet only three of these ( Arthrospira , Synechococcus and Oscillatoria ) have been confirmed as producers in culture. Beyond a comprehensive analysis of cyanotoxin presence in each of the extreme environments, this review also identifies the main knowledge gaps to overcome (e.g., scarcity of isolates and -omics data, among others) toward an initial assessment of ecological and human health risks in these amazing ecosystems developing at the very edge of life.

  10. Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox.

    PubMed

    Liu, Qianying; Lei, Zhixin; Huang, Anxiong; Wu, Qinghua; Xie, Shuyu; Awais, Ihsan; Dai, Menghong; Wang, Xu; Yuan, Zonghui

    2017-02-03

    Mequindox (MEQ) is a synthetic antimicrobial agent of quinoxaline-1,4-dioxide group (QdNOs). The liver is regarded as the toxicity target of QdNOs, and the role of N → O group-associated various toxicities mediated by QdNOs is well recognized. However, the mechanism underlying the in vivo effects of MEQ on the liver, and whether the metabolic pathway of MEQ is altered in response to the pathophysiological conditions still remain unclear. We now provide evidence that MEQ triggers oxidative damage in the liver. Moreover, using LC/MS-ITTOF analysis, two metabolites of MEQ were detected in the liver, which directly confirms the potential connection between N → O group reduction metabolism of MEQ and liver toxicity. The gender difference in MEQ-induced oxidative stress might be due to adrenal toxicity and the generation of M4 (2-isoethanol 1-desoxymequindox). Furthermore, up-regulation of the MAPK and Nrf2-Keap1 family and phase II detoxifying enzymes (HO-1, GCLC and NQO1) were also observed. The present study demonstrated for the first time the protein peroxidation and a proposal metabolic pathway after chronic exposure of MEQ, and illustrated that the MAPK, Nrf2-Keap1 and NF-кB signaling pathways, as well as the altered metabolism of MEQ, were involved in oxidative toxicity mediated by MEQ in vivo.

  11. Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox

    PubMed Central

    Liu, Qianying; Lei, Zhixin; Huang, Anxiong; Wu, Qinghua; Xie, Shuyu; Awais, Ihsan; Dai, Menghong; Wang, Xu; Yuan, Zonghui

    2017-01-01

    Mequindox (MEQ) is a synthetic antimicrobial agent of quinoxaline-1,4-dioxide group (QdNOs). The liver is regarded as the toxicity target of QdNOs, and the role of N → O group-associated various toxicities mediated by QdNOs is well recognized. However, the mechanism underlying the in vivo effects of MEQ on the liver, and whether the metabolic pathway of MEQ is altered in response to the pathophysiological conditions still remain unclear. We now provide evidence that MEQ triggers oxidative damage in the liver. Moreover, using LC/MS-ITTOF analysis, two metabolites of MEQ were detected in the liver, which directly confirms the potential connection between N → O group reduction metabolism of MEQ and liver toxicity. The gender difference in MEQ-induced oxidative stress might be due to adrenal toxicity and the generation of M4 (2-isoethanol 1-desoxymequindox). Furthermore, up-regulation of the MAPK and Nrf2-Keap1 family and phase II detoxifying enzymes (HO-1, GCLC and NQO1) were also observed. The present study demonstrated for the first time the protein peroxidation and a proposal metabolic pathway after chronic exposure of MEQ, and illustrated that the MAPK, Nrf2-Keap1 and NF-кB signaling pathways, as well as the altered metabolism of MEQ, were involved in oxidative toxicity mediated by MEQ in vivo. PMID:28157180

  12. [Molecular regulation of microbial secondary metabolites--a review].

    PubMed

    Wang, Linqi; Tan, Huarong

    2009-04-01

    Microbial secondary metabolites play an important role in the field of industry, agriculture, medicine and human health. The molecular regulation of secondary metabolites is gradually becoming noticeable and intriguing. In recent years, many researches have demonstrated that secondary metabolite biosynthesis is tightly linked to the physiological and developmental status in its producer. It is suggested that the biosynthesis of secondary metabolites involves in complex process concerning multi-level regulation. Here we reviewed the recent research progress on the molecular regulation of secondary metabolites in microorganisms. In known about ten thousand kinds of natural secondary metabolites, most of them (about 60%) were produced by Streptomycete. Therefore, the regulation of secondary metabolites in Streptomyces is chosen as the mainline in this review. Additionally, several well-studied antibiotics as the representative members were targeted. Finally, some suggestions, in response to the issues at present, have been presented in this paper.

  13. The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria.

    PubMed

    Tyc, Olaf; Song, Chunxu; Dickschat, Jeroen S; Vos, Michiel; Garbeva, Paolina

    2017-04-01

    The rich diversity of secondary metabolites produced by soil bacteria has been appreciated for over a century, and advances in chemical analysis and genome sequencing continue to greatly advance our understanding of this biochemical complexity. However, we are just at the beginning of understanding the physicochemical properties of bacterial metabolites, the factors that govern their production and ecological roles. Interspecific interactions and competitor sensing are among the main biotic factors affecting the production of bacterial secondary metabolites. Many soil bacteria produce both volatile and soluble compounds. In contrast to soluble compounds, volatile organic compounds can diffuse easily through air- and gas-filled pores in the soil and likely play an important role in long-distance microbial interactions. In this review we provide an overview of the most important soluble and volatile classes of secondary metabolites produced by soil bacteria, their ecological roles, and their possible synergistic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Degradation of textile dyes by cyanobacteria.

    PubMed

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. [β-hydroxy-β-methylbutyrate as a dietary supplement (I): metabolism and toxicity].

    PubMed

    Manjarrez-Montes-de-Oca, Rafael; Torres-Vaca, Mateo; González-Gallego, Javier; Alvear-Ordenes, Ildefonso

    2014-11-27

    -hydroxy--methylbutyrate (HMB) is a leucine metabolite produced from -ketoisocaproic acid. HMB supplementation has been used as a dietary supplement in sports since 1997, with the aim of decreasing muscle proteolysis. In recent years, positive effects have been reported in different pathologies, which suggests potential health benefits. The objectives of this review are: to know both HMB metabolism and toxicity, and to identify HMB cellular and molecular mechanisms of action when used as a dietary supplement. A search was performed in the Web of Science, Pubmed and SportDiscus data bases. RESULTS were divided into two parts; this article presents the results about both HMB metabolism and possible toxicity. Studies show that HMB is related to cholesterol metabolism in skeletal muscle, which could reduce proteolysis, through hydroxy-methyl-glutaryl-coenzyme A and mevalonate as a precursor in the synthesis of cholesterol. However, HMB could also be transformed from acetoacetate to beta-hydroxybutyrate by beta-hydrozybutyrate dehydrogenase. The calcium salt of HMB is the most used chemical form in dietary supplements, being the most common dose 3 g of HMB/day. Studies in humans and animals provide evidence that there are no adverse effects associated with HMB supplementation. Metabolic effects and lack of toxicity of HMB make it an adequate compound to be used as a dietary supplement. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Endophytes as sources of antibiotics.

    PubMed

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    PubMed

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.

  18. LC-MS based metabolomics and chemometrics study of the toxic effects of copper on Saccharomyces cerevisiae.

    PubMed

    Farrés, Mireia; Piña, Benjamí; Tauler, Romà

    2016-08-01

    Copper containing fungicides are used to protect vineyards from fungal infections. Higher residues of copper in grapes at toxic concentrations are potentially toxic and affect the microorganisms living in vineyards, such as Saccharomyces cerevisiae. In this study, the response of the metabolic profiles of S. cerevisiae at different concentrations of copper sulphate (control, 1 mM, 3 mM and 6 mM) was analysed by liquid chromatography coupled to mass spectrometry (LC-MS) and multivariate curve resolution-alternating least squares (MCR-ALS) using an untargeted metabolomics approach. Peak areas of the MCR-ALS resolved elution profiles in control and in Cu(ii)-treated samples were compared using partial least squares regression (PLSR) and PLS-discriminant analysis (PLS-DA), and the intracellular metabolites best contributing to sample discrimination were selected and identified. Fourteen metabolites showed significant concentration changes upon Cu(ii) exposure, following a dose-response effect. The observed changes were consistent with the expected effects of Cu(ii) toxicity, including oxidative stress and DNA damage. This research confirmed that LC-MS based metabolomics coupled to chemometric methods are a powerful approach for discerning metabolomics changes in S. cerevisiae and for elucidating modes of toxicity of environmental stressors, including heavy metals like Cu(ii).

  19. Differential toxicity of arsenic on renal oxidative damage and urinary metabolic profiles in normal and diabetic mice.

    PubMed

    Yin, Jinbao; Liu, Su; Yu, Jing; Wu, Bing

    2017-07-01

    Diabetes is a common metabolic disease, which might influence susceptibility of the kidney to arsenic toxicity. However, relative report is limited. In this study, we compared the influence of inorganic arsenic (iAs) on renal oxidative damage and urinary metabolic profiles of normal and diabetic mice. Results showed that iAs exposure increased renal lipid peroxidation in diabetic mice and oxidative DNA damage in normal mice, meaning different effects of iAs exposure on normal and diabetic individuals. Nuclear magnetic resonance (NMR)-based metabolome analyses found that diabetes significantly changed urinary metabolic profiles of mice. Oxidative stress-related metabolites, such as arginine, glutamine, methionine, and β-hydroxybutyrate, were found to be changed in diabetic mice. The iAs exposure altered amino acid metabolism, lipid metabolism, carbohydrate metabolism, and energy metabolism in normal and diabetic mice, but had higher influence on metabolic profiles of diabetic mice than normal mice, especially for oxidative stress-related metabolites and metabolisms. Above results indicate that diabetes increased susceptibility to iAs exposure. This study provides basic information on differential toxicity of iAs on renal toxicity and urinary metabolic profiles in normal and diabetic mice and suggests that diabetic individuals should be considered as susceptible population in toxicity assessment of arsenic.

  20. An assessment of environmental and toxicological risk to pesticide exposure based on a case-based approach to computing

    NASA Astrophysics Data System (ADS)

    Coelho, Cristina; Vicente, Henrique; Rosário Martins, M.; Lima, Nelson; Neves, Mariana; Neves, José

    2017-01-01

    Pesticide environmental fate and toxicity depends on its physical and chemical features, the soil composition, soil adsorption, as well as residues that may be found in different soil slots. Indeed, pesticide degradation in soil may be influenced by either biotic or abiotic factors. In addition, the toxicity of pesticides for living organisms depends on their adsorption, distribution, biotransformation, dissemination of metabolites together with interaction with cellular macromolecules and excretion. Biotransformation may result in the formation of less toxic and/or more toxic metabolites, while other processes determine the balance between toxic and a nontoxic upcoming. Aggregate exposure and risk assessment involve multiple pathways and routes, including the potential for pesticide residues in food and drinking water, in addition to residues from pesticide use in residential and non-occupational environments. Therefore, this work will focus on the development of a decision support system to assess the environmental and toxicological risk to pesticide exposure, built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based attitude to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting.

  1. In vitro metabolism of the pro-carcinogen aflatoxin B1 by liver preparations of the calf, nurse shark and clearnose skate.

    PubMed

    Bodine, A B; Luer, C A; Gangjee, S A; Walsh, C J

    1989-01-01

    1. Liver postmitochondrial supernatant preparations of calf, clearnose skate, and nurse shark were able to metabolize the fungal toxin aflatoxin B1 to various metabolites. 2. Calf liver produced aflatoxin M1 and Q1 as the major chloroform soluble metabolites, with small amounts of aflatoxicol formed during incubation. 3. Liver preparations of the elasmobranchs, however, produced aflatoxicol as the major chloroform soluble metabolite with no other metabolite being detected. 4. The water soluble metabolite profiles for the three species were also quite different with the tris diol adduct being produced to a much greater extent in calf liver preparations. 5. Aflatoxicol production by the elasmobranch liver homogenates was reversible with the skate reconverting a large amount (30%) of aflatoxicol to AFB1. The nurse shark, however, appeared to convert a portion of aflatoxicol to an unknown metabolite more polar than AFB1. 6. Calf liver DNA bound approximately 3 x more 3H-AFB1 than shark liver DNA.

  2. Bioactivation to an aldehyde metabolite--possible role in the onset of toxicity induced by the anti-HIV drug abacavir.

    PubMed

    Grilo, Nádia M; Charneira, Catarina; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2014-01-30

    Aldehydes are highly reactive molecules, which can be generated during numerous physiological processes, including the biotransformation of drugs. Several non-P450 enzymes participate in their metabolism albeit alcohol dehydrogenase and aldehyde dehydrogenase are the ones most frequently involved in this process. Endogenous and exogenous aldehydes have been strongly implicated in multiple human pathologies. Their ability to react with biomacromolecules (e.g. proteins) yielding covalent adducts is suggested to be the common primary mechanism underlying the toxicity of these reactive species. Abacavir is one of the options for combined anti-HIV therapy. Although individual susceptibilities to adverse effects differ among patients, abacavir is associated with idiosyncratic hypersensitivity drug reactions and an increased risk of cardiac dysfunction. This review highlights the current knowledge on abacavir metabolism and discusses the potential role of bioactivation to an aldehyde metabolite, capable of forming protein adducts, in the onset of abacavir-induced toxic outcomes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India.

    PubMed

    Skariyachan, S; G Rao, A; Patil, M R; Saikia, B; Bharadwaj Kn, V; Rao Gs, J

    2014-03-01

    Marine coastal areas of India have vast diversity of sponges which harbours many endosymbiotic bacteria which are the source of many potential antimicrobial metabolites. This study focuses the screening and characterization of drug-producing bacteria symbiotically which are associated with marine sponges collected from Gulf of Mannar, South Coast India. Six different sponges were collected and they were identified on the basis of their morphology. The drug-producing isolates were screened by agar overlay method towards various clinical strains. The secondary metabolites were characterized and were found to be quinones, alkaloids, flavanoids and flavonyl glycosides. The metabolites showed significant inhibitory properties against clinical strains that were further identified as chromophoric and fluorophoric in nature. Ethyl acetate extracts of chromophore and floureophore substances showed significant inhibitory properties against Methicillin resistant Staphylococcus aureus (MRSA) and Salmonella typhi respectively. 16S rRNA gene sequencing of theses isolates revealed that chomophore-producing strain were closely related to Pseudomonas spp. RHLB12, isolated from Callyspongia spp. and floureophore-producing bacteria was related to Bacillus licheniformis T6-1 which was isolated from Haliclona spp. Hence, our study demonstrated that antimicrobial metabolites extracted from symbiotic bacteria associated with marine sponges have high therapeutic potential against many bacterial pathogens including multidrug-resistant strains. This is the first study demonstrating antimicrobial potential of flurophoric and chromophoric metabolites extracted from bacterial biosymbionts associated with marine sponges. Our study has significant scope as Indian coastal area especially harbours vast varieties of sponges with novel secondary metabolites-producing organisms. The natural metabolites extracted from sponge-derived bacteria pave novel therapeutic remedy against various pathogens when most of them are emerged as extreme drug resistant superbugs. Letters in Applied Microbiology © 2013 The Society for Applied Microbiology.

  4. Reactive oxygen species spermine metabolites generated from amine oxidases and radiation represent a therapeutic gain in cancer treatments.

    PubMed

    Amendola, Roberto; Cervelli, Manuela; Fratini, Emiliano; Sallustio, Davide E; Tempera, Giampiero; Ueshima, Taichi; Mariottini, Paolo; Agostinelli, Enzo

    2013-09-01

    The most frequent interventions in cancer therapy are currently the destruction of cells by irradiation or administration of drugs both able to induce radical formation and toxic metabolites by enzyme-catalyzed reactions. The aim of this study was to determine the cell viability of cells undergoing a DNA damage threshold accomplished by ROS overproduction via both ectopic expression of murine spermine oxidase (mSMOX) and bovine serum amine oxidase (BSAO) enzymes. Low dose of X-irradiation delivers a challenging dose of damage as evaluated in proficient Chinese hamster AA8 cell line and both deficient transcription-coupled nucleotide excision repair (NER) UV61 cells and deficient base excision repair (BER) EM9 cells, at 6 and 24 h after exposure. The priming dose of ROS overexposure by mSMOX provokes an adaptive response in N18TG2, AA8 and EM9 cell lines at 24 h. Interestingly, in the UV61 cells, ROS overexposure by mSMOX delivers an earlier adaptive response to radiation. The enzymatic formation of toxic metabolites has mainly been investigated on wild-type (WT) and multidrug-resistant (MDR) cancer cell lines, using and spermine as substrate of the BSAO enzyme. MDR cells are more sensitive to the toxic polyamine metabolites than WT cells, thus indicating a new therapeutic strategy to overcome MDR tumors. Since SMOX in mammals is differentially activated in a tissue-specific manner and cancer cells can differ in terms of DNA repair and MDR capabilities, it could be of interest to simultaneously treat with very low dose of X-rays and/or to alter SMOX metabolism to generate a differential response in healthy and cancer tissues.

  5. Ketamine and the metabolite norketamine: persistence and phototransformation toxicity in hospital wastewater and surface water.

    PubMed

    Lin, Angela Yu-Chen; Lee, Wan-Ning; Wang, Xiao-Huan

    2014-04-15

    Ketamine has been increasingly used both recreationally and medicinally around the world. Although the metabolic pathways to form its metabolite norketamine have been carefully investigated in humans and animals, knowledge of their environmental occurrence and fate is limited. In this study, we investigated the occurrence of ketamine and norketamine in 20 natural bodies of water, effluents from 13 hospitals, two wastewater treatment plants and one water supply plant. Ketamine was found at concentrations as high as 10 μg/L. Ketamine and norketamine were consistently found in similar concentrations (ketamine/norketamine ratio: 0.3-4.6) in the collected water samples, and this ratio similar to that found in urine samples. Dark incubation experiments have shown that ketamine is not susceptible to microbial degradation or hydrolysis. Phototransformation was demonstrated to significantly reduce the concentration of ketamine and norketamine in river waters (t(1/2) = 12.6 ± 0.4 and 10.1 ± 0.4 h, respectively) and resulted in byproducts that are similar to human metabolites. Both direct and indirect photolysis led to the N-demethylation of ketamine to form norketamine and other byproducts, including hydroxy-norketamine (HNK), dehydronorketamine (DNK), hydroxy-ketamine (HK) and isomer forms of ketamine and norketamine. Irradiated solutions exhibited higher toxicity (via the Microtox test). Although a final risk assessment could not be made due to a lack of studies on the chronic effects on aquatic organisms, the high and persistent environmental occurrences of ketamine and norketamine as well as the increasingly acute toxicity of the photo byproducts demonstrate the importance of including metabolites in evaluation of the overall risk of ketamine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Toxic effects of male Perna viridis gonad exposed to BaP, DDT and their mixture: A metabolomic and proteomic study of the underlying mechanism.

    PubMed

    Song, Qinqin; Zheng, Pengfei; Qiu, Liguo; Jiang, Xiu; Zhao, Hongwei; Zhou, Hailong; Han, Qian; Diao, Xiaoping

    2016-01-05

    Benzo(a)pyrene and dichlorodiphenyltrichloroethane are typical persistent organic pollutants, and also the widespread environmental estrogens with known toxicity towards green mussels Perna viridis. In this study, the toxicological effects of BaP and DDT and their mixture were assessed in green mussel gonads using proteomic and metabolomic approaches. Metabolomics by NMR spectroscopy revealed that BaP did not show obvious metabolite changes in the gonad of male green mussel. DDT mainly caused some disturbance of osmotic regulation and energy metabolism by changing BCAAs, alanine, threonine, arginine, etc., unknown metabolite (3.53 ppm), glycine, homarine and ATP at different levels. However, the mixture of BaP and DDT mainly caused some disturbance in osmotic regulation and energy metabolism by differentially altering branched chain amino acids, glutamate, alanine, arginine, unknown metabolite (3.53 ppm), glycine, 4-aminobutyrate, dimethylglycine, homarine and ATP. The results suggest that DDT alone may cause most of metabolites changes in the mixture exposed male mussel gonad, and the results also show that the male P. viridis gonad was more sensitive to DDT than BaP exposures. Proteomic study showed that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced signal transduction, oxidative stress, spermatogenesis, etc. in the male green mussel gonad; whereas DDT exposure altered proteins that were associated with signal transduction, oxidative stress, cytoskeleton and cell structure, cellular organization, energy metabolism, etc. However, the mixture of BaP and DDT affected proteins related to cytoskeleton and cell structure, oxidative stress, cellular organization, etc. This research demonstrated that metabolomic and proteomic approaches could better elucidate the underlying mechanism of environmental pollutants gonad toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future

    PubMed Central

    2016-01-01

    Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans. PMID:27989119

  8. Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades

    PubMed Central

    Berry, John P.; Gantar, Miroslav; Gawley, Robert E.; Wang, Minglei; Rein, Kathleen S.

    2008-01-01

    The genus of filamentous cyanobacteria, Lyngbya, has been found to be a rich source of bioactive metabolites. However, identification of such compounds from Lyngbya has largely focused on a few marine representatives. Here, we report on the pharmacology and toxicology of pahayokolide A from a freshwater isolate, Lyngbya sp. strain 15−2, from the Florida Everglades. Specifically, we investigated inhibition of microbial representatives and mammalian cell lines, as well as toxicity of the compound to both invertebrate and vertebrate models. Pahayokolide A inhibited representatives of Bacillus, as well as the yeast, Saccharomyces cerevisiae. Interestingly, the compound also inhibited several representatives of green algae that were also isolated from the Everglades. Pahayokolide A was shown to inhibit a number of cancer cell lines over a range of concentrations (IC50 varied from 2.13 to 44.57 μM) depending on the cell-type. When tested against brine shrimp, pahayokolide was only marginally toxic at the highest concentrations tested (1 mg/mL). The compound was, however, acutely toxic to zebrafish embryos (LC50=2.15 μM). Possible biomedical and environmental health aspects of the pahayokolides remain to be investigated; however, the identification of bioactive metabolites such as these demonstrates the potential of the Florida Everglades as source of new toxins and drugs. PMID:15683832

  9. Toxic effects of mycotoxins in humans.

    PubMed Central

    Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M.

    1999-01-01

    Mycotoxicoses are diseases caused by mycotoxins, i.e. secondary metabolites of moulds. Although they occur more frequently in areas with a hot and humid climate, favourable for the growth of moulds, they can also be found in temperate zones. Exposure to mycotoxins is mostly by ingestion, but also occurs by the dermal and inhalation routes. Mycotoxicoses often remain unrecognized by medical professionals, except when large numbers of people are involved. The present article reviews outbreaks of mycotoxicoses where the mycotoxic etiology of the disease is supported by mycotoxin analysis or identification of mycotoxin-producing fungi. Epidemiological, clinical and histological findings (when available) in outbreaks of mycotoxicoses resulting from exposure to aflatoxins, ergot, trichothecenes, ochratoxins, 3-nitropropionic acid, zearalenone and fumonisins are discussed. PMID:10534900

  10. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    PubMed Central

    Ferrari, Renata Salatti; Andrade, Cristiano Feijó

    2015-01-01

    Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients. PMID:26161240

  11. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Ruiz-Aracama, Ainhoa; Peijnenburg, Ad; Kleinjans, Jos; Jennen, Danyel; van Delft, Joost; Hellfrisch, Caroline; Lommen, Arjen

    2011-05-20

    In vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the in vitro model system and model toxicant, respectively. The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD. Untargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.

  12. Effects of thiol antioxidants on the atropselective oxidation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) by rat liver microsomes.

    PubMed

    Wu, Xianai; Lehmler, Hans-Joachim

    2016-02-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0-10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol), 4-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol), and 4,5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136, and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo.

  13. EFFECTS OF THIOL ANTIOXIDANTS ON THE ATROPSELECTIVE OXIDATION OF 2,2′,3,3′,6,6′-HEXACHLOROBIPHENYL (PCB 136) BY RAT LIVER MICROSOMES

    PubMed Central

    Wu, Xianai; Lehmler, Hans-Joachim

    2015-01-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0–10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol), 4-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4-ol) and 4,5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136 and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo. PMID:26155892

  14. Sex differences in hepatic and intestinal contributions to nevirapine biotransformation in rats.

    PubMed

    Pinheiro, P F; Marinho, A T; Antunes, A M M; Marques, M M; Pereira, S A; Miranda, J P

    2015-05-25

    The understanding of the intestine contribution to drug biotransformation improved significantly in recent years. However, the sources of inter-individual variability in intestinal drug biotransformation, namely sex-differences, are still elusive. Nevirapine (NVP) is an orally taken anti-HIV drug associated with severe idiosyncratic reactions elicited by toxic metabolites, with women at increased risk. As such, NVP is a good model to assess sex-dimorphic metabolism. The aim of this study was to perform a comparative profiling of NVP biotransformation in rat intestine and liver and evaluate whether or not it is organ- and sex-dependent. Therefore, nevirapine-containing solutions were perfused through the intestine, in a specially designed chamber, or incubated with liver slices, from male and female Wistar rats. The levels of NVP and its Phase I metabolites were quantified by HPLC-UV. Liver incubation experiments yielded the metabolites 2-, 3-, 8-, and 12-OH-NVP, being 12-OH-NVP and 2-OH-NVP the major metabolites in males and females, respectively. Inter-sex differences in the metabolic profile were also detected in the intestine perfusion experiments. Herein, the metabolites 3- and 12-OH-NVP were only found in male rats, whereas 2-OH-NVP levels were higher in females, both in extraluminal (p<0.01) and intraluminal media. The metabolite 8-OH-NVP was not detected in the intraluminal media from either males or females. In this study, important inter-sex differences were detected in both organs, providing further clues to the sex-dimorphic profile of NVP toxicity. Moreover, an extra-hepatic contribution to NVP biotransformation was observed, strengthening the relevance of the intestinal contribution in the biotransformation of orally taken-drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Simultaneous Quantification of Multiple Urinary Naphthalene Metabolites by Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Ayala, Daniel C.; Morin, Dexter; Buckpitt, Alan R.

    2015-01-01

    Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (± 4.5) and 6.8 (± 5.0) %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs) showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up. PMID:25853821

  16. Effects of Cu2+ and humic acids on degradation and fate of TBBPA in pure culture of Pseudomonas sp. strain CDT.

    PubMed

    Ma, Yini; Zhao, Yingying; Wang, Yongfeng; Li, Xiangzhen; Sun, Feifei; Corvini, Phillippe Francois-Xavier; Ji, Rong

    2017-12-01

    Soil contamination with tetrabromobisphenol A (TBBPA) has caused great concerns; however, the presence of heavy metals and soil organic matter on the biodegradation of TBBPA is still unclear. We isolated Pseudomonas sp. strain CDT, a TBBPA-degrading bacterium, from activated sludge and incubated it with 14 C-labeled TBBPA for 87 days in the absence and presence of Cu 2+ and humic acids (HA). TBBPA was degraded to organic-solvent extractable (59.4%±2.2%) and non-extractable (25.1%±1.3%) metabolites, mineralized to CO 2 (4.8%±0.8%), and assimilated into cells (10.6%±0.9%) at the end of incubation. When Cu 2+ was present, the transformation of extractable metabolites into non-extractable metabolites and mineralization were inhibited, possibly due to the toxicity of Cu 2+ to cells. HA significantly inhibited both dissipation and mineralization of TBBPA and altered the fate of TBBPA in the culture by formation of HA-bound residues that amounted to 22.1%±3.7% of the transformed TBBPA. The inhibition from HA was attributed to adsorption of TBBPA and formation of bound residues with HA via reaction of reactive metabolites with HA molecules, which decreased bioavailability of TBBPA and metabolites in the culture. When Cu 2+ and HA were both present, Cu 2+ significantly promoted the HA inhibition on TBBPA dissipation but not on metabolite degradation. The results provide insights into individual and interactive effects of Cu 2+ and soil organic matter on the biotransformation of TBBPA and indicate that soil organic matter plays an essential role in determining the fate of organic pollutants in soil and mitigating heavy metal toxicity. Copyright © 2017. Published by Elsevier B.V.

  17. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic (PBPK) modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice *

    EPA Science Inventory

    Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools used for cal...

  18. Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides.

    PubMed

    Buratti, Franca M; Leoni, Claudia; Testai, Emanuela

    2006-12-15

    In humans organophosphorothionate pesticides (OPT) prenatal exposure has been demonstrated. Since OPT-induced neurodevelopmental effects may be due to in situ bioactivation by foetal enzymes, the catalytic activity of the foetal CYP3A7 toward chlorpyrifos (CPF), parathion (PAR), malathion (MAL) and fenthion (FEN) has been assessed by using recombinant enzymes. A comparison with the adult isoforms CYP3A4 and CYP3A5 has been also carried out. CYP3A7 was able to produce significant levels of oxon or sulfoxide from the four OPTs in the range of tested concentrations (0.05-200 microM). When the efficiencies of CYP3A isoforms were compared, the ranking, expressed as CLi values, were: CPF=3A4>3A5>3A7; PAR=3A4>3A7>3A5; MAL=3A4>3A7>3A5; FEN (sulfoxide formation)=3A4>3A5>3A7. The CYP3A5 efficiency appeared to be more dependent on the single insecticide than its related isozyme CYP3A4. Our results indicate that the levels of toxic metabolite formed in situ by CYP3A7 from CPF, MAL and PAR but not from FEN have the chance to inhibit acetylcholinesterase, following prenatal exposure to OPTs. However, due to the smaller weight of foetal liver, the contribution to total OPT biotransformation is relatively low. On the other hand, our results clearly indicate that at low CPF concentrations, the formation of the non-toxic metabolites is highly favoured in the foetus.

  19. Tobacco Consumption and Toxicant Exposure of Cigarette Smokers Using Electronic Cigarettes.

    PubMed

    Pulvers, Kim; Emami, Ashley S; Nollen, Nicole L; Romero, Devan R; Strong, David R; Benowitz, Neal L; Ahluwalia, Jasjit S

    2018-01-05

    There is considerable debate about the benefits and risks of electronic cigarettes (ECs). To better understand the risk-benefit ratio of ECs, more information is needed about net nicotine consumption and toxicant exposure of cigarette smokers switching to ECs. Forty cigarette smokers (≥1 year of smoking) interested in switching to ECs but not necessarily quitting smoking were enrolled in a 4-week observational study and provided an e-Go C non-variable battery and refillable atomizers and choice of eight flavors in 12 or 24 mg nicotine dosage. Measurement of urinary cotinine (metabolite of nicotine), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL; a pulmonary carcinogen), and eight volatile organic compounds (VOCs) that are toxic tobacco smoke constituents was conducted at baseline and week 4. All participants with follow-up data (92.5%) reported using the study EC. Of the 40 smokers, 16 reported no cigarettes at week 2 (40%) and six continued to report no cigarettes at week 4 (15%). Change in nicotine intake over the 4 weeks was non-significant (p = .90). Carbon monoxide (p < .001), NNAL (p < .01) and metabolites of benzene (p < .01) and acrylonitrile (p = .001) were significantly decreased in the study sample. Smokers switching exclusively to ECs for at least half of the study period demonstrated significant reductions in metabolites of ethylene oxide (p = .03) and acrylamide (p < .01). Smokers using ECs over 4 weeks maintained cotinine levels and experienced significant reductions in carbon monoxide, NNAL, and two out of eight measured VOC metabolites. Those who switched exclusively to ECs for at least half of the study period significantly reduced two additional VOCs. This study extends current literature by measuring change in smoking dependence and disease-associated biomarkers, NNAL and a panel of eight common VOCs that are toxic tobacco smoke constituents in smokers who switch to ECs. The findings support the idea of harm reduction, however some levels of toxicant exposure are still of clinical concern, particularly for dual users. Extrapolation of these results must be careful to separate the different toxic exposure results for exclusive switchers versus dual cigarette + EC users, and not to equate harm reduction with the idea that using ECs is harmless. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. New secondary metabolites of phenylbutyrate in humans and rats.

    PubMed

    Kasumov, Takhar; Brunengraber, Laura L; Comte, Blandine; Puchowicz, Michelle A; Jobbins, Kathryn; Thomas, Katherine; David, France; Kinman, Renee; Wehrli, Suzanne; Dahms, William; Kerr, Douglas; Nissim, Itzhak; Brunengraber, Henri

    2004-01-01

    Phenylbutyrate is used to treat inborn errors of ureagenesis, malignancies, cystic fibrosis, and thalassemia. High-dose phenylbutyrate therapy results in toxicity, the mechanism of which is unexplained. The known metabolites of phenylbutyrate are phenylacetate, phenylacetylglutamine, and phenylbutyrylglutamine. These are excreted in urine, accounting for a variable fraction of the dose. We identified new metabolites of phenylbutyrate in urine of normal humans and in perfused rat livers. These metabolites result from interference between the metabolism of phenylbutyrate and that of carbohydrates and lipids. The new metabolites fall into two categories, glucuronides and phenylbutyrate beta-oxidation side products. Two questions are raised by these data. First, is the nitrogen-excreting potential of phenylbutyrate diminished by ingestion of carbohydrates or lipids? Second, does competition between the metabolism of phenylbutyrate, carbohydrates, and lipids alter the profile of phenylbutyrate metabolites? Finally, we synthesized glycerol esters of phenylbutyrate. These are partially bioavailable in rats and could be used to administer large doses of phenylbutyrate in a sodium-free, noncaustic form.

  1. CYP3A-Mediated Generation of Aldehyde and Hydrazine in Atazanavir MetabolismS⃞

    PubMed Central

    Li, Feng; Lu, Jie; Wang, Laiyou

    2011-01-01

    Atazanavir (ATV) is an antiretroviral drug of the protease inhibitor class. Multiple adverse effects of ATV have been reported in clinical practice, such as jaundice, nausea, abdominal pain, and headache. The exact mechanisms of ATV-related adverse effects are unknown. It is generally accepted that a predominant pathway of drug-induced toxicity is through the generation of reactive metabolites. Our current study was designed to explore reactive metabolites of ATV. We used a metabolomic approach to profile ATV metabolism in mice and human liver microsomes. We identified 5 known and 13 novel ATV metabolites. Three potential reactive metabolites were detected and characterized for the first time: one aromatic aldehyde, one α-hydroxyaldehyde, and one hydrazine. These potential reactive metabolites were primarily generated by CYP3A. Our results provide a clue for studies on ATV-related adverse effects from the aspect of metabolic activation. Further studies are suggested to illustrate the impact of these potential reactive metabolites on ATV-related adverse effects. PMID:21148252

  2. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism*

    PubMed Central

    Heier, Christoph; Taschler, Ulrike; Radulovic, Maja; Aschauer, Philip; Eichmann, Thomas O.; Grond, Susanne; Wolinski, Heimo; Oberer, Monika; Zechner, Rudolf; Kohlwein, Sepp D.; Zimmermann, Robert

    2016-01-01

    Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites. PMID:27036938

  3. Metabolic interaction between ethanol, high-dose alprazolam and its two main metabolites using human liver microsomes in vitro.

    PubMed

    Tanaka, Einosuke; Nakamura, Takako; Terada, Masaru; Shinozuka, Tatsuo; Honda, Katsuya

    2007-08-01

    Alprazolam is widely used as a short-acting antidepressant and anxiolytic agent and its effect appears at very low doses while ethanol is used as a social drug worldwide. Sometimes, toxic interactions occur following combined administration of these two drugs. In this study we have investigated the interaction between ethanol and high-dose alprazolam using human liver microsomes in vitro. The interaction effects between ethanol and alprazolam were examined by a mixed-function oxidation reaction using a human liver microsomal preparation. Alprazolam and its two main metabolites (alpha-hydroxyalprazolam: alpha-OH alprazolam, 4-hydroxyalprazolam: 4-OH alprazolam) were measured by HPLC/UV. The production of 4-OH alprazolam, one main metabolite of alprazolam, was weakly inhibited by higher dose of ethanol, but not alpha-OH alprazolam. These results using a human liver microsomal preparation show that the production of 4-OH alprazolam is weakly inhibited by ethanol but not alpha-OH alprazolam. Toxic levels may be reached by simultaneous administration of ethanol and high-dose alprazolam.

  4. Screening and Identification of the Metabolites in Rat Plasma and Urine after Oral Administration of Areca catechu L. Nut Extract by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Tandem Mass Spectrometry.

    PubMed

    Li, Lulu; Luo, Zhiqiang; Liu, Yang; Wang, Hao; Liu, Aoxue; Yu, Guohua; Li, Mengwei; Yang, Ruirui; Chen, Xinjing; Zhu, Jialian; Zhao, Baosheng

    2017-06-21

    Areca catechu L. nut, a well-known toxic traditional herbal medicine, has been widely used to treat various diseases in China and many other Asian countries for centuries. However, to date the in vivo absorption and metabolism of its multiple bioactive or toxic components still remain unclear. In this study, liquid chromatography coupled with tandem mass spectrometry was used to analyze the major components and their metabolites in rat plasma and urine after oral administration of Areca catechu L. nut extract (ACNE). A total of 12 compounds, including 6 alkaloids, 3 tannins and 3 amino acids, were confirmed or tentatively identified from ACNE. In vivo, 40 constituents, including 8 prototypes and 32 metabolites were identified in rat plasma and urine samples. In summary, this study showed an insight into the metabolism of ACNE in vivo, which may provide helpful chemical information for better understanding of the toxicological and pharmacological profiles of ACNE.

  5. Application of comprehensive NMR-based analysis strategy in annotation, isolation and structure elucidation of low molecular weight metabolites of Ricinus communis seeds.

    PubMed

    Vučković, Ivan; Rapinoja, Marja-Leena; Vaismaa, Matti; Vanninen, Paula; Koskela, Harri

    2016-01-01

    Powder-like extract of Ricinus communis seeds contain a toxic protein, ricin, which has a history of military, criminal and terroristic use. As the detection of ricin in this "terrorist powder" is difficult and time-consuming, related low mass metabolites have been suggested to be useful for screening as biomarkers of ricin. To apply a comprehensive NMR-based analysis strategy for annotation, isolation and structure elucidation of low molecular weight plant metabolites of Ricinus communis seeds. The seed extract was prepared with a well-known acetone extraction approach. The common metabolites were annotated from seed extract dissolved in acidic solution using (1)H NMR spectroscopy with spectrum library comparison and standard addition, whereas unconfirmed metabolites were identified using multi-step off-line HPLC-DAD-NMR approach. In addition to the common plant metabolites, two previously unreported compounds, 1,3-digalactoinositol and ricinyl-alanine, were identified with support of MS analyses. The applied comprehensive NMR-based analysis strategy provided identification of the prominent low molecular weight metabolites with high confidence. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Trichothecenes Mycotoxin Studies

    DTIC Science & Technology

    1986-02-01

    15-monoacetoxyscirpenol with C-UDP-glucuronic acid (data not shown). We were unable to hydrolyze this metabolite by incu- bation with either bovine ...then, this metabolite appears to be non- toxic. This coupled with our findings that this glucuronide is not hydrolyzed by E. coli or bovine liver a...leakage or violation of the skin patches by two of the animals toward the end of these early experiments. Because of their small size and higher level of

  7. The role of 17β-estradiol metabolites in chromium-induced oxidative stress.

    PubMed

    Sawicka, Ewa; Długosz, Anna

    2017-01-01

    The increasing incidence of estrogen-dependent breast cancer and the presence in the environment of a large number of factors that interact with estrogen receptors have sparked interest in chemical influences on estrogen-dependent processes. In a previous work, the authors examined the interaction of estradiol with chromium. In the present article the importance of estradiol biotransformation in these interactions is investigated. There is no information in the available literature about the role of metabolites in exposure to chromium. It seems important because estradiol metabolites have various carcinogenic abilities and their formation during biotransformation could be increased or decreased by environmental enzyme inducers or inhibitors. The metabolites could play a detoxifying role or create a toxic synergism in free radical processes induced by chromium VI (CrVI). The aim of this study was to evaluate the influence of 2 17β-estradiol metabolites - 4-hydroxyestradiol (4-OHE2) and 16α-hydroxyestrone (16α-OHE1) - in conditions of oxidative stress caused by CrVI. Human blood, erythrocytes or mitochondria isolated from human placentas after natural deliveries were used in the experiments. The influence of CrVI, 4-OHE2 and 16-OHE1 on thiobarbituric acid reactive substances (TBARS), the hydroxyl radical (•OH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), and the interactions of the metabolites exposed to chromium expressed by these factors were examined. 4-OHE2 reduced the level of TBARS induced by CrVI in mitochondria (p < 0.05) and in erythrocytes (p < 0.05), and increased SOD activity (p < 0.05). 16α-OHE1 increased the activity of GST in erythrocytes exposed to CrVI (p < 0.05). The metabolites do not have toxic interactions with CrVI. On the contrary, they exhibited a protective effect. The mechanism of protection varied: 4-OHE2 decreased TBARS and increased SOD activity, while 16α-OHE1 increased GST activity.

  8. Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: Current status and future challenges.

    PubMed

    Yu, Miao; Chen, Liangkai; Peng, Zhao; Nüssler, Andreas K; Wu, Qinghua; Liu, Liegang; Yang, Wei

    2017-06-01

    Deoxynivalenol (DON) is a toxic fungal secondary metabolite produced by molds of the Fusarium genus, and it is known to cause a spectrum of diseases both in humans and animals, such as emesis, diarrhea, anorexia, immunotoxicity, hematological disorders, impairment of maternal reproduction, and fetal development. The recently revealed teratogenic potential of DON has received much attention. In various animal models, it has been shown that DON led to skeletal deformities of the fetus. However, the underlying mechanisms are not yet fully understood, and toxicological data are also scarce. Several animal research studies highlight the potential link between morphological abnormalities and changes of autophagy in the reproductive system. Because autophagy is involved in fetal development, maintenance of placental function, and bone remodeling, this mechanism has become a high priority for future research. The general aim of the present review is to deliver a comprehensive overview of the current state of knowledge of DON-induced reproductive toxicity in different animal models and to provide some prospective ideas for further research. The focus of the current review is to summarize toxic and negative effects of DON exposure on the reproductive system and the potential underlying molecular mechanisms in various animal models. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism

    PubMed Central

    Estrela, Sylvie; Trisos, Christopher H.; Brown, Sam P.

    2012-01-01

    Polymicrobial interactions are widespread in nature, and play a major role in maintaining human health and ecosystems. Whenever one organism uses metabolites produced by another organism as energy or nutrient sources, this is called cross-feeding. The ecological outcomes of cross-feeding interactions are poorly understood and potentially diverse: mutualism, competition, exploitation or commensalism. A major reason for this uncertainty is the lack of theoretical approaches linking microbial metabolism to microbial ecology. To address this issue, we explore the dynamics of a one-way interspecific cross-feeding interaction, in which food can be traded for a service (detoxification). Our results show that diverse ecological interactions (competition, mutualism, exploitation) can emerge from this simple cross-feeding interaction, and can be predicted by the metabolic, demographic and environmental parameters that govern the balance of the costs and benefits of association. In particular, our model predicts stronger mutualism for intermediate by-product toxicity because the resource-service exchange is constrained to the service being neither too vital (high toxicity impairs resource provision) nor dispensable (low toxicity reduces need for service). These results support the idea that bridging microbial ecology and metabolism is a critical step towards a better understanding of the factors governing the emergence and dynamics of polymicrobial interactions. PMID:23070318

  10. Metabolomics analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress mechanisms caused by acetaminophen.

    PubMed

    Van den Eede, Nele; Cuykx, Matthias; Rodrigues, Robim M; Laukens, Kris; Neels, Hugo; Covaci, Adrian; Vanhaecke, Tamara

    2015-12-01

    Since the publication of REACH guidelines, the need for in vitro tools for toxicity testing has increased. We present here the development of a hepatotoxicity testing tool using human HepaRG cell cultures and metabolomics. HepaRG cells were exposed to either 4mM acetaminophen (APAP) as reference toxicant for oxidative stress or 50 μM triphenyl phosphate (TPHP) as toxicant with unknown toxicity pathways (TPs). After 72 h exposure, cells were subjected to quenching and liquid-liquid extraction which resulted in a polar and an apolar fraction. Analysis of fractions was performed by ultrahigh performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-QTOF-MS). Significantly up or down regulated metabolites were selected by univariate statistics prior to identification. In order to obtain robust and specific TP biomarkers, the experiment was also repeated using a different culture medium composition to assess which metabolites show consistent changes. Potential biomarkers belonging to different TPs were found for APAP and TPHP. For APAP, the biomarkers were related to a decrease in unsaturated phospholipids, and for TPHP to an accumulation of phosphoglycerolipids and increase of palmitoyl lysophosphatidylcholine. This first proof-of-concept opens new perspectives for the analysis of other (reference) toxicants with different TPs and it can be used to expand the in vitro tool for hepatotoxicity screening of various compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    NASA Astrophysics Data System (ADS)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  12. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jie; Krausz, Kristopher W.; Li, Feng

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-typemore » mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.« less

  13. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective.

    PubMed

    Mousa, Walaa Kamel; Raizada, Manish N

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.

  14. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    PubMed Central

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048

  15. A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti.

    PubMed

    Inocente, Edna Alfaro; Shaya, Marguerite; Acosta, Nuris; Rakotondraibe, L Harinantenaina; Piermarini, Peter M

    2018-02-01

    Plants produce various secondary metabolites that offer a potential source of novel insecticides and repellents for the control of mosquito vectors. Plants of the genus Cinnamosma are endemic to, and widely-distributed throughout, the island of Madagascar. The barks of these species are commonly used in traditional medicines for treating a wide range of maladies. The therapeutic nature of the bark is thought to be associated with its enrichment of pungent drimane sesquiterpenes, which elicit antifeedant and toxic effects in some insects. Here we test the hypothesis that a bark extract of Cinnamosma fragrans (CINEX) and its major drimane sesquiterpenes are insecticidal, antifeedant, and repellent to Aedes aegypti, the principal mosquito vector of chikungunya, dengue, yellow fever, and Zika viruses. We demonstrate that CINEX is 1) toxic to larval and adult female mosquitoes, and 2) antifeedant and repellent to adult female mosquitoes. Moreover, we show that cinnamodial (CDIAL), a sesquiterpene dialdehyde isolated from CINEX, duplicates these bioactivities and exhibits similar toxic potency against pyrethroid-susceptible and -resistant strains of Ae. aegypti. Importantly, we show that CDIAL is an agonist of heterologously-expressed mosquito Transient Receptor Potential A1 (TRPA1) channels, and the antifeedant activity of CDIAL is dampened in a TRPA1-deficient strain of Ae. aegypti (TRPA1-/-). Intriguingly, TRPA1-/- mosquitoes do not exhibit toxic resistance to CDIAL. The data indicate that modulation of TRPA1 is required for the sensory detection and avoidance of CDIAL by mosquitoes, but not for inducing the molecule's toxicity. Our study suggests that CDIAL may serve as a novel chemical platform for the development of natural product-based insecticides and repellents for controlling mosquito vectors.

  16. Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans.

    PubMed

    Rohn, Isabelle; Marschall, Talke Anu; Kroepfl, Nina; Jensen, Kenneth Bendix; Aschner, Michael; Tuck, Simon; Kuehnelt, Doris; Schwerdtle, Tanja; Bornhorst, Julia

    2018-05-17

    The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and γ-glutamyl-MeSeCys (γ-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode.

  17. A Physiologically Based Pharmacokinetic Model of Isoniazid and Its Application in Individualizing Tuberculosis Chemotherapy.

    PubMed

    Cordes, Henrik; Thiel, Christoph; Aschmann, Hélène E; Baier, Vanessa; Blank, Lars M; Kuepfer, Lars

    2016-10-01

    Due to its high early bactericidal activity, isoniazid (INH) plays an essential role in tuberculosis treatment. Genetic polymorphisms of N-acetyltransferase type 2 (NAT2) cause a trimodal distribution of INH pharmacokinetics in slow, intermediate, and fast acetylators. The success of INH-based chemotherapy is associated with acetylator and patient health status. Still, a standard dose recommended by the FDA is administered regardless of acetylator type or immune status, even though adverse effects occur in 5 to 33% of all patients. Slow acetylators have a higher risk of development of drug-induced toxicity, while fast acetylators and immune-deficient patients face lower treatment success rates. To mechanistically assess the trade-off between toxicity and efficacy, we developed a physiologically based pharmacokinetic (PBPK) model describing the NAT2-dependent pharmacokinetics of INH and its metabolites. We combined the PBPK model with a pharmacodynamic (PD) model of antimycobacterial drug effects in the lungs. The resulting PBPK/PD model allowed the simultaneous simulation of treatment efficacies at the site of infection and exposure to toxic metabolites in off-target organs. Subsequently, we evaluated various INH dosing regimens in NAT2-specific immunocompetent and immune-deficient virtual populations. Our results suggest the need for acetylator-specific dose adjustments for optimal treatment outcomes. A reduced dose for slow acetylators substantially lowers the exposure to toxic metabolites and thereby the risk of adverse events, while it maintains sufficient treatment efficacies. Vice versa, intermediate and fast acetylators benefit from increased INH doses and a switch to a twice-daily administration schedule. Our analysis outlines how PBPK/PD modeling may be used to design and individualize treatment regimens. Copyright © 2016 Cordes et al.

  18. Managing Toxicological Risks: The Legacy of Shuttle Operations

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Space toxicology greatly matured as a result of research and operations associated with the Shuttle. Materials offgassing had been a manageable concern since the Apollo days, but we learned to pay careful attention to compounds that could escape containment, to combustion events, to toxic propellants, to overuse of utility compounds, and to microbial and human metabolites. We also learned that flying real-time hardware to monitor air pollutants was a pathway with unanticipated speed bumps. Each new orbiter was tested for any excess offgassing products that could pollute the air during flight. In the late 1990s toxicologists and safety experts developed a 5-level toxicity rating system to guide containment of toxic compounds. This system is now in use aboard the International Space Station (ISS). Several combustion events during Shuttle Mir and also during Shuttle free-flight impelled toxicologists to identify hardware capable of monitoring toxic products; however, rapid adaptation of the hardware for the unique conditions of spaceflight caused unexpected missteps. Current and planned combustion analyzers would be useful to commercial partners that wish to manage the risk of health effects from thermal events. Propellants received special attention during the Shuttle program because of the possibility of bringing them into the habitable volume on extravehicular activity suits. Monitors for the airlocks were developed to mitigate this risk. Utility materials, such as lubricants, posed limited toxicological problems because water was not recovered. One clearly documented case of microbial metabolites polluting the Shuttle atmosphere was noted, and this has implications for commercial flights and control of microbes. Finally, carbon dioxide, the major human metabolite, episodically presented air quality problems aboard Shuttle, especially when nominal air flows were obstructed. Commercial vehicles must maintain robust air circulation given the anticipated high density of human occupants.

  19. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    PubMed Central

    Song, Adelene Ai Lian; Abdullah, Janna O.; Abdullah, Mohd Puad; Shafee, Norazizah; Rahim, Raha A.

    2012-01-01

    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile. PMID:22408409

  20. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetten, Marlon J.A.; Gaj, Stan; Ruiz-Aracama, Ainhoa

    2012-03-15

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome humanmore » miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques outperformed classic clinical chemistry tests. ► Metabolomic analyses led to the detection of five new acetaminophen metabolites. ► Low dose APAP changed immune and oxidative stress related gene expression in blood. ► APAP-induced full-genome human blood miRNA profiles were assessed for the first time.« less

Top