Toxicity Studies on Antiradiation Agents.
1979-03-01
Mice 193-403 WI 2823 Acute Oral and IP Toxicity in Guinea Pigs 193-404 WR 2823 14-Day IV Toxicity in Rats 193-405 WI 2823 Acute IV Toxicity in Dogs ...193-406 W 2823 14-Day Subacute IV Toxicity in Dogs 193-407 WI 2721 28-Day Oral Toxicity in Monkeys 193-408 WI 2529 Acute Oral Toxicity in Mice 193-409... Dogs 193-415 WI 149, 024 Acute IV Toxicity in Monkeys 193-416 WI 149, 024 2-Week IV Toxicity in Dogs 193-417 WI 149, 024 2-Week Toxicity in Monkeys 193
CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals
Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.
[Current situation of toxicity classification of Chinese materia medica and its research thoughts].
Sun, Wenyan; Hou, Xiujuan; Wang, Bin; Zhu, Yuelan; Zhang, Shuofeng; Chang, Hongsheng; Sun, Jianning
2012-08-01
Toxicity of Chinese materia medica (CMM) is an important part of Chinese herbal nature theory. In clinical application, the dosage, time limitation and compatibility of CMM is mainly determined by toxicity. At present, there is no uniform toxicity classification standard for the evaluation of Chinese herbal toxicity. Therefore, it is significant to research toxicity classification of CMM. The current situation of toxicity classification of CMM is reviewed in this paper, and proposed research thoughts are as follows: the measurement of toxicity parameters, the confirmation of poisoning target organs, the investigation on toxic mechanism by serum pharmacology and toxicokinetics, the comprehensive evaluation on toxicity based on quantitative theory.
Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.
Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.
Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.
Nendza, Monika; Müller, Martin; Wenzel, Andrea
2017-03-22
Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR predictions.
Zhao, Junning; Ye, Zuguang
2012-08-01
Toxic classification of traditional Chinese medicine, as a contribution of traditional Chinese medicine (TCM) to the recognition of medicinal toxicity and rational use of medicinal materials by Chinese people, is now a great issue related to safe medication, sustainable development and internationalization of Chinese medicine. In this article, the origination and development of toxic classification theory was summarized and analyzed. Because toxic classification is an urgent issue related to TCM industrialization, modernization and internationalization, this article made a systematic analysis on the nature and connotation of toxic classification as well as risk control for TCM industry due to the medicinal toxicity. Based on the toxic studies, this article made some recommendations on toxic classification of Chinese medicinal materials for the revision of China Pharmacopeia (volume 1). From the aspect of scientific research, a new technical guideline for research on toxic classification of Chinese medicine should be formulated based on new biological toxicity test technology such as Microtox and ADME/Tox, because the present classification of acute toxicity of mice/rats can not met the modern development of Chinese medicine any more. The evaluation system and technical SOP of TCM toxic classification should also be established, and they should well balance TCM features, superiority and international requirements. From the aspect of medicine management, list of toxic medicines and their risk classification should be further improved by competent government according to scientific research. In China Pharmacopeia (volume I), such descriptions of strong toxicity, toxicity or mild toxicity should be abandoned when describing medicine nature and flavor. This revision might help promote TCM sustainable development and internationalization, and enhance the competitive capacity of Chinese medicine in both domestic and international market. However, description of strong toxicity, toxicity or mild toxicity might be used when making cautions for the medicine, stating that the description is based on Chinese classic works. In this way, TCM traditional theory might be inherited and features of Chinese medicine maintained and reflected. Besides, modern findings should be added to the cautions, including dose-response relationship, toxic mechanism, and toxic elements. The traditional toxic descriptions and modern findings, as a whole, can make the caution clear and scientific, and then promote safe medication and TCM modernization and internationalization.
Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...
Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors.
Pearcy, Krysta; Elphick, James; Burnett-Seidel, Charlene
2015-07-01
The present study was performed to investigate the toxicity of fluoride to a variety of freshwater aquatic organisms and to establish whether water quality variables contribute substantively to modifying its toxicity. Water hardness, chloride, and alkalinity were tested as possible toxicity modifying factors for fluoride using acute toxicity tests with Hyalella azteca and Oncorhynchus mykiss. Chloride appeared to be the major toxicity modifying factor for fluoride in these acute toxicity tests. The chronic toxicity of fluoride was evaluated with a variety of species, including 3 fish (Pimephales promelas, O. mykiss, and Salvelinus namaycush), 3 invertebrates (Ceriodaphnia dubia, H. azteca, and Chironomus dilutus), 1 plant (Lemna minor), and 1 alga (Pseudokirchneriella subcapitata). Hyalella azteca was the most sensitive species overall, and O. mykiss was the most sensitive species of fish. The role of chloride as a toxicity modifying factor was inconsistent between species in the chronic toxicity tests. © 2015 SETAC.
Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H
2015-07-01
Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermal Stress and Toxicity | Science Inventory | US EPA
Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable
Yi, Xiaoyi; Li, Huizhen; Ma, Ping; You, Jing
2015-08-01
Sediments in urban waterways of Guangzhou, China, were contaminated by a variety of chemicals and showed prevalent toxicity to benthic organisms. A combination of whole-sediment toxicity identification evaluation (TIE) and bioavailability-based extraction was used to identify the causes of sediment toxicity. Of the 6 sediment samples collected, 4 caused 100% mortality to Chironomus dilutus in 10-d bioassays, and the potential toxicants were assessed using TIE in these sediments after dilution. The results of phase I characterization showed that organic contaminants were the principal contributors to the mortality of the midges in 2 sediments and that metals and organics jointly caused the mortality in the other 2 sediments. Ammonia played no role in the mortality for any samples. Conventional toxic unit analysis in phase II testing identified Cr, Cu, Ni, Pb, and Zn as the toxic metals, with cypermethrin, lambda-cyhalothrin, deltamethrin, and fipronils being the toxic organics. To improve the accuracy of identifying the toxicants, 4-step sequential extraction and Tenax extraction were conducted to analyze the bioavailability of the metals and organics, respectively. Bioavailable toxic unit analysis narrowed the list of toxic contributors, and the putative toxicants included 3 metals (Zn, Ni, and Pb) and 3 pesticides (cypermethrin, lambda-cyhalothrin, and fipronils). Metals contributed to the mortality in all sediments, but sediment dilution reduced the toxicity and confounded the characterization of toxicity contribution from metals in 2 sediments in phase I. Incorporating bioavailability-based measurements into whole-sediment TIE improved the accuracy of identifying the causative toxicants in urban waterways where multiple stressors occurred and contributed to sediment toxicity jointly. © 2015 SETAC.
A Study on the D. magna and V. fischeri Toxicity Relationship of Industrial Wastewater from Korea
NASA Astrophysics Data System (ADS)
Pyo, S.; Lee, S.; Chun Sang, H.; Park, T. J.; Kim, M. S.
2015-12-01
It is well known that high concentration of TDS (total dissolved solid) in industrial effluent gives rise to the toxicity to the Daphnia magna toxicity test. D. magna is vulnerable to relatively low TDS concentration showing the 24-hr EC50 of Salinity 0.6% (as the sea salt concentration). Recently, standard mandatory toxicity testing using Daphnia magna has been used to monitor industrial effluent toxicity according to Korea standard method (Acute Toxicity Test Method of the Daphnia magna Straus (Cladocera, Crustacea), ES 04704. 1a) under regulation. Since only one acute toxicity testing is applied in the present, we are trying to introduce microbial battery for more complete toxicity assessment. In this study, the acute toxicities between daphnids and microbes were compared. The results of D. magna and Vibrio fischeri toxicity test from 165 industrial wastewater effluents showed high positive correlation. In addition, the possibility of predicting daphnia toxicity from the bacterial toxicity data amounts to 92.6% if we consider salinity effect (>5ppt) together. From this study, we found that the V. fischeri toxicity test is a powerful battery tool to assess the industrial wastewater toxicity. Here, we suggest that luminescent bacteria toxicity test be useful not only for complete toxicity assessment which can't be obtained by daphnia toxicity testing only but also for the reduction cost, time, and labor in the Korean society. Keywords : D. magna, V. fischeri, Industrial waste water, battery test Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government
Discrimination of excess toxicity from baseline level for ionizable compounds: Effect of pH.
Li, Jin J; Zhang, Xu J; Wang, Xiao H; Wang, Shuo; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H
2016-03-01
The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.
Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F
2016-03-01
The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.
Review of toxicity studies performed on an underground coal gasification condensate water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, F.P.
1987-09-01
Three studies related to the toxicity of underground coal gasification (UCG) waters have bee conducted: (1) toxicity study of UCG water and its fractions as determined by the Microtox test, (2) toxicity study of biotreated UCG water as determined by the Microtox test, and (3) toxicity study of UCG water to macroinvertebrates. The results of these studies are summarized herein. The gas condensate water from the UCG process is extremely toxic as determined by assays with photoluminescent bacteria (Microtox), benthic (bottom-dwelling) macroinvertebrates (mayflies), and Daphnia magna (water flea). Microtox bioassays reveal that the toxic components of the water reside inmore » both the organophilic and hydrophilic fractions, although the organophilic fraction is notably more toxic. A sequential treatment process reduced the toxicity of the UCG water, as measured by the Microtox test. Solvent extraction (to remove phenols) followed by ammonia stripping yielded a less toxic water. Additional treatment by activated sludge further reduced toxicity. Finally, the addition of powdered activated carbon to the activated sludge yielded the least toxic water. A bioassay technique was developed for lotic (running water) macroinvertebrates (Drunella doddsi and Iron longimanus). The toxicity results were compared with results from the traditional test animal, Daphnia magna. Short-term exposures to the UCG waters were more toxic to Daphnia magna than to Drunella doddsi or Iron longimanus, although the toxicity values begin to merge with longer test exposure. The greater toxicity seems to be related to a thinner exoskeleton. 26 refs., 2 figs., 6 tabs.« less
40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this subpart...
40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this subpart...
40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this subpart...
40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this subpart...
40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this subpart...
Contact toxicity of 14 insecticides tested on pine butterfly larvae
Robert L. Lyon; Sylvia J. Brown
1971-01-01
Fourteen insecticides were evaluated for contact toxicity to 3rd and 4th stage pine butterfly larvae (Neophasia menapia F. & F.) in a laboratory spray chamber. All candidate insecticides except trichlorfon were more toxic than the standard DDT. The ranking of toxicity at LD90 and toxicity indexes (times more toxic than DDT...
Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.
Na, Joorim; Yoo, Jisu; Nam, Gwiwoong; Jung, Jinho
2017-09-20
This study aimed to identify the source of toxicity in textile dyeing effluent collected from February to July 2016, using Daphnia magna as a test organism. Toxicity identification evaluation (TIE) procedures were used to identify the toxicants in textile dyeing effluent, and Jar testing to simulate the Fenton process was conducted to identify the source of toxicants. Textile dyeing effluent was acutely toxic to D. magna [from 1.5 to 9.7 toxic units (TU)] during the study period. TIE results showed that Zn derived from the Fenton process was a key toxicant in textile dyeing effluent. Additionally, Jar testing revealed that low-purity Fenton reagents (FeCl 2 and FeSO 4 ), which contained large amounts of Zn (89 838 and 610 mg L -1 , respectively), were the source of toxicity. Although we were unable to conclusively identify the residual toxicity (approx. 1.4 TU of 9.71 TU) attributable to unknown toxicants in textile dyeing effluent, the findings of this study suggest that careful operation of the Fenton treatment process could contribute to eliminating its unintended toxic effects on aquatic organisms.
Watanabe, Haruna; Tamura, Ikumi; Abe, Ryoko; Takanobu, Hitomi; Nakamura, Ataru; Suzuki, Toshinari; Hirose, Akihiko; Nishimura, Tetsuji; Tatarazako, Norihisa
2016-04-01
Principles of concentration addition and independent action have been used as effective tools to predict mixture toxicity based on individual component toxicity. The authors investigated the toxicity of a pharmaceutical mixture composed of the top 10 detected active pharmaceutical ingredients (APIs) in the Tama River (Tokyo, Japan) in a relevant concentration ratio. Both individual and mixture toxicities of the 10 APIs were evaluated by 3 short-term chronic toxicity tests using the alga Pseudokirchneriella subcapitata, the daphnid Ceriodaphnia dubia, and the zebrafish Danio rerio. With the exception of clarithromycin toxicity to alga, the no-observed-effect concentration of individual APIs for each test species was dramatically higher than the highest concentration of APIs found in the environment. The mixture of 10 APIs resulted in toxicity to alga, daphnid, and fish at 6.25 times, 100 times, and 15,000 times higher concentrations, respectively, than the environmental concentrations of individual APIs. Predictions by concentration addition and independent action were nearly identical for alga, as clarithromycin was the predominant toxicant in the mixture. Both predictions described the observed mixture toxicity to alga fairly well, whereas they slightly underestimated the observed mixture toxicity in the daphnid test. In the fish embryo test, the observed toxicity fell between the predicted toxicity by concentration addition and independent action. These results suggested that the toxicity of environmentally relevant pharmaceutical mixtures could be predicted by individual toxicity using either concentration addition or independent action. © 2015 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.T.; Wang, L.S.; Chen, S.P.
1996-12-31
The fundamental differentiation of toxicity is between reactive and nonreactive toxicity. Reactive toxicity is associated with a specific mechanism for the reaction with an enzyme or inhibition of a metabolic pathway, and nonreactive toxicity is related directly to the quantity of toxicant acting upon the cell. The quantitative structure-activity relationships (QSARs) have been successfully used in the nonreactive toxicity, such as prediction of the toxicity of nonreactive compounds based on their solubility in the lipids of organisms. The elements of molecular structure that are most closely related to nonreactive toxicity are those that describe the partitioning of the toxicant intomore » the organism, while QSARs for the reactive toxicity are less common in the environmental toxicology literature. With the recent increase in the use of synthetic substituted benzenes as industrial chemicals, the accurate analysis of the effect of reactive toxic chemicals has become recognized with QSAR. For this purpose, we selected the fish (Carassias auratus) as the test organism, measured the acute toxicity of 50% lethal concentration (LC{sub 50}) of the chemicals and the adenosine triphosphate (ATP) content of the liver cells for the organism. These determined the relationships of the acute toxicity of some substituted benzenes with their physicochemical structural parameters. The effects on the ATP content was also compared to predict biological reactivities of the chemicals, so as to find some clues to explain the mode of mechanism of the toxicity. 17 refs., 1 tab.« less
Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals.
Allegra, Enrico; Titball, Richard W; Carter, John; Champion, Olivia L
2018-05-01
The acute toxicities of 19 chemicals were assessed using G. mellonella larvae. The results obtained were compared against LD50 values derived from in vitro cytotoxicity tests and against in vivo acute oral LD50 values. In general, cell culture systems overestimated the toxicity of chemicals, especially low toxicity chemicals. In contrast, toxicity testing in G. mellonella larvae was found to be a reliable predictor for low toxicity chemicals. For the 9 chemicals tested which were assigned to Globally Harmonised System (GHS) category 5, the toxicity measured in G. mellonella larvae was consistent with their GHS categorisation but cytotoxicity measured in 3T3 or NHK cells predicted 4 out of 9 chemicals as having low toxicity. A more robust assessment of the likely toxicity of chemicals in mammals could be made by taking into account their toxicities in both cell cultures and in G. mellonella larvae. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of Shodhana Treatment on Chronic Toxicity and Recovery of Aconite
Sarkar, P.K.; Prajapati, P.K.; Shukla, V.J.; Ravishankar, B.
2012-01-01
Aconite is one of the poisonous plants used therapeutically in practice of Ayurveda after proper treatment called as ‘Shodhana’. To determine the effect of Shodhana treatment on chronic toxicity and to assess the effect of recovery period after chronic toxicity of aconite. Raw aconite (RV), urine treated aconite (SM), and milk treated aconite (SD) were administered in 6.25 mg/kg dose in Charles Foster strain albino rats for 90 days for chronic toxicity. Six rats from each were kept for another 30 days without test drugs treatment to observe recovery from chronic toxicity. RV was found to be highly toxic in chronic exposure, SM had no apparent toxicity, but SD had mild toxicity in kidney. The toxicities of RV and SD were reversible, but sudden withdrawal of SM caused adverse effects, suggestive of tapering withdrawal. Shodhana treatments remove toxic effects from raw aconite. Chronic toxicity of aconite is reversible. Confirmed the arrangement of abstract PMID:22736901
Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral te...
40 CFR 80.915 - How are the baseline toxics value and baseline toxics volume determined?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are the baseline toxics value and... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Baseline Determination § 80.915 How are the baseline toxics value and baseline toxics volume determined? (a...
40 CFR 80.915 - How are the baseline toxics value and baseline toxics volume determined?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are the baseline toxics value and... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Baseline Determination § 80.915 How are the baseline toxics value and baseline toxics volume determined? (a...
Sponza, Delia Teresa
2002-01-01
Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.
He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H
2015-06-01
The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae
Zhang, Weicheng; Bao, Shaopan; Fang, Tao
2016-01-01
Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions. PMID:27094203
The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Zhang, Weicheng; Bao, Shaopan; Fang, Tao
2016-04-01
Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.
The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae.
Zhang, Weicheng; Bao, Shaopan; Fang, Tao
2016-04-20
Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te ((particle)) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs' nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te ((particle)) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te ((ion)) efficiently determined the NPs toxicity associated with released ions.
Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure
Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...
Chatterjee, Nivedita; Yang, Ji Su; Park, Kwangsik; Oh, Seung Min; Park, Jeonggue; Choi, Jinhee
2015-01-01
The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nananomaterials (GFNs) in alternative in vitro and in vivo toxicity testing models. The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [NH2]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine>NH2>COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.
Hughes, Sarah A; Mahaffey, Ashley; Shore, Bryon; Baker, Josh; Kilgour, Bruce; Brown, Christine; Peru, Kerry M; Headley, John V; Bailey, Howard C
2017-11-01
Previous assessments of oil sands process-affected water (OSPW) toxicity were hampered by lack of high-resolution analytical analysis, use of nonstandard toxicity methods, and variability between OSPW samples. We integrated ultrahigh-resolution mass spectrometry with a toxicity identification evaluation (TIE) approach to quantitatively identify the primary cause of acute toxicity of OSPW to rainbow trout (Oncorhynchus mykiss). The initial characterization of OSPW toxicity indicated that toxicity was associated with nonpolar organic compounds, and toxicant(s) were further isolated within a range of discrete methanol fractions that were then subjected to Orbitrap mass spectrometry to evaluate the contribution of naphthenic acid fraction compounds to toxicity. The results showed that toxicity was attributable to classical naphthenic acids, with the potency of individual compounds increasing as a function of carbon number. Notably, the mass of classical naphthenic acids present in OSPW was dominated by carbon numbers ≤16; however, toxicity was largely a function of classical naphthenic acids with ≥17 carbons. Additional experiments found that acute toxicity of the organic fraction was similar when tested at conductivities of 400 and 1800 μmhos/cm and that rainbow trout fry were more sensitive to the organic fraction than larval fathead minnows (Pimephales promelas). Collectively, the results will aid in developing treatment goals and targets for removal of OSPW toxicity in water return scenarios both during operations and on mine closure. Environ Toxicol Chem 2017;36:3148-3157. © 2017 SETAC. © 2017 SETAC.
Temporal pattern of toxicity in runoff from the Tijuana River Watershed.
Gersberg, Richard M; Daft, Daniel; Yorkey, Darryl
2004-02-01
Samples were collected from the Tijuana River under both dry weather (baseflow) conditions and during wet weather, and tested for toxicity using Ceriodaphnia dubia tests. Toxicity of waters in the Tijuana River was generally low under baseflow conditions, but increased markedly during high flow runoff events. In order to determine the temporal pattern of toxicity during individual rain events, sequential grab samples were collected using an autosampler at 5-7 h intervals after the start of the rain event, and tested for acute toxicity. In all cases, peak toxicity values (ranging from 2.8 to 5.8TU) for each storm occurred within the first 1-2 h of initiation of the rain event, and were statistically higher (using the 95% CL) for each of the pre-storm base flow values. However, there was no statistically significant correlation (p<0.05) between flow rate and toxicity when all storm data was pooled. Additionally, we used toxicity identification evaluation (TIE) procedures to attempt to identify the classes of chemicals that account for this early storm toxicity. Solid phase extraction was the only treatment that showed consistent and significant (P<0.05) removal of toxicity. These TIEs, conducted on the most toxic sample of the river's flow during runoff events, suggest that non-polar organics may be responsible for such toxicity. The temporal pattern of toxicity, both during a given storm event and seasonally, indicates that wash-off from the watershed by rainfall may deplete the supply of toxicity available for wash-off in subsequent events, so that a clearly consistent relationship between flow and toxicity was not evident.
Classification of Chemicals Based On Structured Toxicity Information
Thirty years and millions of dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data within the Toxicity Reference Database (ToxRefDB). Toxicity-bas...
Development of Ecological Toxicity and Biomagnification Data for Explosives Contaminants in Soil
2003-07-01
explosive contaminated soil leachates to Daphnia magna using an adapted toxicity characteristic leaching procedure. U.S. Army Chemical and Biological...1993) Toxicity determination of explosive contaminated soil leachates to Daphnia magna using an adapted toxicity characteristic leaching procedure...Sadusky, M. (1993). Toxicity determination of explosive contaminated soil leachates to Daphnia magna using C-46 an adapted toxicity
Patterns and trends in sediment toxicity in the San Francisco Estuary
Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.
2007-01-01
Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pixberg, Caroline; Koch, Raphael; Eich, Hans Theodor, E-mail: Hans.Eich@ukmuenster.de
Purpose: In the context of oncologic therapy for children, radiation therapy is frequently indicated. This study identified the frequency of and reasons for the development of high-grade acute toxicity and possible sequelae. Materials and Methods: Irradiated children have been prospectively documented since 2001 in the Registry for the Evaluation of Side Effects After Radiation in Childhood and Adolescence (RiSK) database in Germany and since 2008 in the registry for radiation therapy toxicity (RADTOX) in Sweden. Data were collected using standardized, published forms. Toxicity classification was based on Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: Asmore » of June 2013, 1500 children have been recruited into the RiSK database and 485 into the RADTOX registry leading to an analysis population of 1359 patients (age range 0-18). A total of 18.9% (n=257) of all investigated patients developed high-grade acute toxicity (grades 3/4). High-grade toxicity of the bone marrow was documented for 63.8% (n=201) of those patients, oral mucositis for 7.6% (n=24), and dermatitis for 7.6% (n=24). Patients with high-grade acute toxicity received concomitant chemotherapy more frequently (56%) than patients with no or lower acute toxicity (31.5%). In multivariate analyses, concomitant chemotherapy, diagnosis of Ewing sarcoma, and total radiation dose showed a statistically noticeable effect (P≤.05) on acute toxicity, whereas age, concomitant chemotherapy, Hodgkin lymphoma, Ewing sarcoma, total radiation dose, and acute toxicity influenced the time until maximal late toxicity. Conclusions: Generally, high-grade acute toxicity after irradiation in children and adolescence occurs in a moderate proportion of patients (18.9%). As anticipated, the probability of acute toxicity appeared to depend on the prescribed dose as well as concomitant chemotherapy. The occurrence of chronic toxicity correlates with the prior acute toxicity grade. Age seems to influence the time until maximal late toxicity but not the development of acute toxicity.« less
Causes of toxicity in stormwater runoff from sawmills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, H.C.; Elphick, J.R.; Potter, A.
1999-07-01
Samples of stormwater runoff from nine sawmills in British Columbia, Canada, were tested for acute toxicity with juvenile rainbow trout over a 23-month period. Forty-two of the 58 samples tested exhibited toxicity. Causes of toxicity were investigated using toxicity identification evaluation techniques. Toxicity was attributed to divalent cations, particularly zinc, in 32 of the samples. The low hardness associated with most of the samples increased the potential for metal toxicity. For example, the LC50 of zinc was 14 {micro}g/L at a hardness of 5 mg/L. Toxicity in the remaining samples was largely attributed to tannins and lignins and was associatedmore » with areas of bulk log handling. No evidence was found to indicate that antisapstain chemicals applied to freshly cut wood contributed to toxicity.« less
Toxicity reduction of photo processing wastewaters
Wang, W.
1992-01-01
The photo processing industry can be characterized by treatment processes and subsequent silver recovery. The effluents generated all contain various amounts of silver. The objectives of this study were to determine toxicity of photo processing effluents and to explore their toxicity mitigation. Six samples, from small shops to a major photo processing center, were studied. Two samples (I and VI) were found to be extremely toxic, causing 100 and 99% inhibition of duckweed frond reproduction, respectively, and were used for subsequent toxicity reduction experiments. Lime and sodium sulfide were effective for the toxicity reduction of Sample VI; both reduced its toxicity to negligible. Sample I was far more toxic and was first diluted to 2.2% and then treated with 0.5 g lime/100 mL, reducing toxicity from 100% to 12% inhibition.
Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji
2014-01-30
Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.
Identification of acute toxicants in New Bedford Harbor sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, K.T.; McKinney, R.A.; Kuhn, A.
1997-03-01
New Bedford Harbor (NBH) is a marine Superfund site contaminated with high concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and metals. Experiments were conducted to determine the causal toxic agent(s) in pore waters from New Bedford Harbor sediments to amphipods and mysid shrimp. Chemical manipulations to characterize toxicity revealed that pore-water toxicity was organic in nature. Fractionation and subsequent mass spectral identification of peaks in the toxic fraction indicated that PCBs. PAHs, and unknown compounds were present. Comparisons of PAH LC50s and PAH concentrations in this fraction indicated that the toxicity was not due to PAHs because themore » PAH concentrations were much lower than the reported PAH LC50s. One unknown peak was positively identified as bis(2-ethylhexyl) phthalate, and the other tentatively identified as pyrazole. Toxicity tests and comparison of toxicity in the blank and toxic fractions eliminated the two unknowns as toxic causal agents. The authors determined the range of PCB LC50s to fall between 10 and 110 ppb for Mysidopsis bahia and Ampelisca abdita. Concentrations of PCBs for the toxic fractions ranged from 12 to 27 ppb. This range falls within the observed PCB LC50s for M. bahia and A. abdita. Based upon these PCB concentrations, they concluded that PCBs were the acute toxic agents in NBH pore waters. Other compounds in the toxic fractions, or compounds that coeluted and were undistinguished from PCBs had minor contributions to the measured toxicity.« less
TOXICITY TESTS FOR SEDIMENT QUALITY ASSESSMENTS
Toxic sediments have contributed to a wide-variety of environmental problems around the world. The observed effects include direct toxic effects to aquatic life, bio-magnification of toxicants in the food chain, and economic impacts. This chapter discusses the use of toxicity...
Classification and Dose-Response Characterization of ...
Thirty years and over a billion of today’s dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data, within the U.S. Environmental Protection Agency’s (EPA) Toxicity Reference Database (ToxRefDB). The source toxicity data in ToxRefDB covers multiple study types, including subchronic, developmental, reproductive, chronic, and cancer studies, resulting in a diverse set of endpoints and toxicities. Novel approaches to chemical classification are performed as a model application of ToxRefDB and as an essential need for highly detailed chemical classifications within the EPA’s ToxCast™ research program. In order to develop predictive models and biological signatures utilizing high-throughput screening (HTS) and in vitro genomic data, endpoints and toxicities must first be identified and globally characterized for ToxCast Phase I chemicals. Secondarily, dose-response characterization within and across toxicity endpoints provide insight into key precursor toxicity events and overall endpoint relevance. Toxicity-based chemical classification and dose-response characterization utilizing ToxRefDB prioritized toxicity endpoints and differentiated toxicity outcomes across a large chemical set.
In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.
Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan
2009-05-01
Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.
Brown, Alastair; Thatje, Sven; Hauton, Chris
2017-09-05
Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.
Metabolite toxicity determines the pace of molecular evolution within microbial populations.
Lilja, Elin E; Johnson, David R
2017-02-14
The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.
Genetic and Biochemical Analysis of High Iron Toxicity in Yeast
Lin, Huilan; Li, Liangtao; Jia, Xuan; Ward, Diane McVey; Kaplan, Jerry
2011-01-01
Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity. PMID:21115478
The taste of toxicity: A quantitative analysis of bitter and toxic molecules.
Nissim, Ido; Dagan-Wiener, Ayana; Niv, Masha Y
2017-12-01
The role of bitter taste-one of the few basic taste modalities-is commonly assumed to signal toxicity and alert animals against consuming harmful compounds. However, it is known that some toxic compounds are not bitter and that many bitter compounds have negligible toxicity while having important health benefits. Here we apply a quantitative analysis of the chemical space to shed light on the bitterness-toxicity relationship. Using the BitterDB dataset of bitter molecules, The BitterPredict prediction tool, and datasets of toxic compounds, we quantify the identity and similarity between bitter and toxic compounds. About 60% of the bitter compounds have documented toxicity and only 56% of the toxic compounds are known or predicted to be bitter. The LD 50 value distributions suggest that most of the bitter compounds are not very toxic, but there is a somewhat higher chance of toxicity for known bitter compounds compared to known nonbitter ones. Flavonoids and alpha acids are more common in the bitter dataset compared with the toxic dataset. In contrast, alkaloids are more common in the toxic datasets compared to the bitter dataset. Interestingly, no trend linking LD 50 values with the number of activated bitter taste receptors (TAS2Rs) subtypes is apparent in the currently available data. This is in accord with the newly discovered expression of TAS2Rs in several extra-oral tissues, in which they might be activated by yet unknown endogenous ligands and play non-gustatory physiological roles. These results suggest that bitter taste is not a very reliable marker for toxicity, and is likely to have other physiological roles. © 2017 IUBMB Life, 69(12):938-946, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo
2018-06-01
Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.
Chin, Stephen; Aherne, Noel J; Last, Andrew; Assareh, Hassan; Shakespeare, Thomas P
2017-12-01
We evaluated single institution toxicity outcomes after post-prostatectomy radiotherapy (PPRT) via image-guided intensity-modulated radiation therapy (IG-IMRT) with implanted fiducial markers following national eviQ guidelines, for which late toxicity outcomes have not been published. Prospectively collected toxicity data were retrospectively reviewed for 293 men who underwent 64-66 Gy IG-IMRT to the prostate bed between 2007 and 2015. Median follow-up after PPRT was 39 months. Baseline grade ≥2 genitourinary (GU), gastrointestinal (GI) and sexual toxicities were 20.5%, 2.7% and 43.7%, respectively, reflecting ongoing toxicity after radical prostatectomy. Incidence of new (compared to baseline) acute grade ≥2 GU and GI toxicity was 5.8% and 10.6%, respectively. New late grade ≥2 GU, GI and sexual toxicity occurred in 19.1%, 4.7% and 20.2%, respectively. However, many patients also experienced improvements in toxicities. For this reason, prevalence of grade ≥2 GU, GI and sexual toxicities 4 years after PPRT was similar to or lower than baseline (21.7%, 2.6% and 17.4%, respectively). There were no grade ≥4 toxicities. Post-prostatectomy IG-IMRT using Australian contouring guidelines appears to have tolerable acute and late toxicity. The 4-year prevalence of grade ≥2 GU and GI toxicity was virtually unchanged compared to baseline, and sexual toxicity improved over baseline. This should reassure radiation oncologists following these guidelines. Late toxicity rates of surgery and PPRT are higher than following definitive IG-IMRT, and this should be taken into account if patients are considering surgery and likely to require PPRT. © 2017 The Royal Australian and New Zealand College of Radiologists.
Toxicities of triclosan, phenol, and copper sulfate in activated sludge.
Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf
2005-04-01
The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.
DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK
A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...
Stochastic Human Exposure and Dose Simulation for Air Toxics
The Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) is a multimedia, multipathway population-based exposure and dose model for air toxics developed by the US EPA's National Exposure Research Laboratory (NERL). SHEDS-AirToxics uses a probabili...
Herkovits, Jorge; Perez-Coll, Cristina; Herkovits, Francisco D
2002-01-01
The toxicity of 34 environmental samples from potentially polluted and reference stations were evaluated by means of the AMPHITOX test from acute to chronic exposure according to the toxicity found in each sample. The samples were obtained from surface and ground water, leaches, industrial effluents and soils. The data, expressed in acute, short-term chronic and chronic Toxicity Units (TUa, TUstc and TUc) resulted in a maximal value of 1000 TUc, found in a leach, while the lower toxicity value was 1.4 TUa corresponding to two surface water samples. In five samples (four providing from reference places) no toxicity was detected. The results point out the possibility of evaluating the toxicity of a wide diversity of samples by means of AMPHITOX as a customized toxicity test. The fact that almost all samples with suspected toxicity in rivers and streams from the Metropolitan area of Buenos Aires city resulted toxic, indicates the need of enhanced stewardship of chemical substances for environmental and human health protection purposes.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Acute Toxicity to Daphnia: ASTM E 729 3. Toxicity to Plants (Algae): ASTM E 1218 Test Group 2 for C1: 1. Chronic Toxicity to Daphnia: ASTM E 1193 2. Toxicity to Plants (Algae): ASTM E 1218 The following are the... conditions. Test Group 1 for C2: 1. Acute Toxicity to Daphnia: ASTM E 729 2. Toxicity to Plants (Algae): ASTM...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Acute Toxicity to Daphnia: ASTM E 729 3. Toxicity to Plants (Algae): ASTM E 1218 Test Group 2 for C1: 1. Chronic Toxicity to Daphnia: ASTM E 1193 2. Toxicity to Plants (Algae): ASTM E 1218 The following are the... conditions. Test Group 1 for C2: 1. Acute Toxicity to Daphnia: ASTM E 729 2. Toxicity to Plants (Algae): ASTM...
Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.
Besser, John M; Brumbaugh, William G; Allert, Ann L; Poulton, Barry C; Schmitt, Christopher J; Ingersoll, Christopher G
2009-02-01
We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.
Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water
Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.
2009-01-01
We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.
Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity.
Alarcón-Herrera, Norberto; Flores-Maya, Saúl; Bellido, Belén; García-Bores, Ana M; Mendoza, Ernesto; Ávila-Acevedo, Guillermo; Hernández-Echeagaray, Elizabeth
2017-11-01
Mitochondrial inhibition with the toxin 3-Nitropropionic acid (3-NP) has been used to study the underlying mechanisms in striatal neurodegeneration, but few experiments have evaluated its toxicity and genotoxicity of in vivo administration. Furthermore, different antioxidant molecules may prevent degeneration induced by the toxic effects of 3-NP. Therefore, the purpose of this study was to evaluate the toxicity and genotoxicity induced by 3-NP (15 mg/kg) in the micronuclei assay method; also, we assessed chlorogenic acid (CGA, 100 mg/kg) for its anti-toxic and anti-genotoxic effect in damage produced by in vivo treatment with 3-NP. 3-NP induced toxicity and genotoxicity. CGA administered as a co-treatment with 3-NP (3-NP + CA) reduced toxicity by 32.76%, as a pre-treatment for 5 days only, followed by 3-NP treatment (P/CA, 3-NP) inhibiting toxicity by 24.04%, or as a pre-treatment, plus a co-treatment with 3-NP (P/CA, 3-NP + CA) avoided any toxic effect. CGA alone did not exhibit any toxic effect. Only P/CGA, 3-NP + CGA group, avoided toxicity and genotoxicity, suggesting that CGA could be suitable to prevent, reduce or delay toxicity and cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling
2016-10-01
Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.
1996-01-01
We developed and evaluated a total toxic units modeling approach for predicting mean toxicity as measured in laboratory tests for Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pesticides, chlorinated dioxins, and metals). The approach incorporates equilibrium partitioning and organic carbon control of bioavailability for organic contaminants and acid volatile sulfide (AVS) control for metals, and includes toxic equivalency for planar organic chemicals. A toxic unit is defined as the ratio of the estimated pore-water concentration of a contaminant to the chronic toxicity of that contaminant, as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC). The toxic unit models we developed assume complete additivity of contaminant effects, are completely mechanistic in form, and were evaluated without any a posteriori modification of either the models or the data from which the models were developed and against which they were tested. A linear relationship between total toxic units, which included toxicity attributable to both iron and un-ionized ammonia, accounted for about 88% of observed variability in mean toxicity; a quadratic relationship accounted for almost 94%. Exclusion of either bioavailability components (i.e., equilibrium partitioning control of organic contaminants and AVS control of metals) or iron from the model substantially decreased its ability to predict mean toxicity. A model based solely on un-ionized ammonia accounted for about 47% of the variability in mean toxicity. We found the toxic unit approach to be a viable method for assessing and ranking the relative potential toxicity of contaminated sediments.
Tian, Dayong; Lin, Zhifen; Yin, Daqiang; Zhang, Yalei; Kong, Deyang
2012-02-01
Environmental contaminants are usually encountered as mixtures, and many of these mixtures yield synergistic or antagonistic effects attributable to an intracellular chemical reaction that pose a potential threat on ecological systems. However, how atomic charges of individual chemicals determine their intracellular chemical reactions, and then determine the joint effects for mixtures containing reactive toxicants, is not well understood. To address this issue, the joint effects between cyanogenic toxicants and aldehydes on Photobacterium phosphoreum were observed in the present study. Their toxicological joint effects differed from one another. This difference is inherently related to the two atomic charges of the individual chemicals: the oxygen charge of -CHO (O(aldehyde toxicant)) in aldehyde toxicants and the carbon-atom charge of a carbon chain in the cyanogenic toxicant (C(cyanogenic toxicant)). Based on these two atomic charges, the following QSAR (quantitative structure-activity relationship) model was proposed: When (O(aldehyde toxicant) -C(cyanogenic toxicant) )> -0.125, the joint effect of equitoxic binary mixtures at median inhibition (TU, the sum of toxic units) can be calculated as TU = 1.00 ± 0.20; when (O(aldehyde toxicant) -C(cyanogenic toxicant) ) ≤ -0.125, the joint effect can be calculated using TU = - 27.6 x O (aldehyde toxicant) - 5.22 x C (cyanogenic toxicant) - 6.97 (n = 40, r = 0.887, SE = 0.195, F = 140, p < 0.001, q(2) (Loo) = 0.748; SE is the standard error of the regression, F is the F test statistic). The result provides insight into the relationship between the atomic charges and the joint effects for mixtures containing cyanogenic toxicants and aldehydes. This demonstrates that the essence of the joint effects resulting from intracellular chemical reactions depends on the atomic charges of individual chemicals. The present study provides a possible approach for the development of a QSAR model for mixtures containing reactive toxicants based on the atomic charges. Copyright © 2011 SETAC.
Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P
2009-07-01
Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Alexandra, E-mail: a.gilbert@leeds.ac.uk; Ziegler, Lucy; Martland, Maisie
The use of multimodal treatments for rectal cancer has improved cancer-related outcomes but makes monitoring toxicity challenging. Optimizing future radiation therapy regimens requires collection and publication of detailed toxicity data. This review evaluated the quality of toxicity information provided in randomized controlled trials (RCTs) of radiation therapy in rectal cancer and focused on the difference between clinician-reported and patient-reported toxicity. Medline, EMBASE, and the Cochrane Library were searched (January 1995-July 2013) for RCTs reporting late toxicity in patients treated with regimens including preoperative (chemo)radiation therapy. Data on toxicity measures and information on toxicity reported were extracted using Quantitative Analyses ofmore » Normal Tissue Effects in the Clinic recommendations. International Society for Quality of Life Research standards on patient-reported outcomes (PROs) were used to evaluate the quality of patient-reported toxicity. Twenty-one RCT publications met inclusion criteria out of 4144 articles screened. All PRO studies reported higher rates of toxicity symptoms than clinician-reported studies and reported on a wider range and milder symptoms. No clinician-reported study published data on sexual dysfunction. Of the clinician-reported studies, 55% grouped toxicity data related to an organ system together (eg “Bowel”), and 45% presented data only on more-severe (grade ≥3) toxicity. In comparison, all toxicity grades were reported in 79% of PRO publications, and all studies (100%) presented individual symptom toxicity data (eg bowel urgency). However, PRO reporting quality was variable. Only 43% of PRO studies presented baseline data, 28% did not use any psychometrically validated instruments, and only 29% of studies described statistical methods for managing missing data. Analysis of these trials highlights the lack of reporting standards for adverse events and reveals the differences between clinician and patient reporting of toxicity. Recommendations for improving the quality of adverse event data collection are provided, with the aim of improving critical appraisal of outcomes for future studies.« less
Jereczek-Fossa, Barbara A; Ciardo, Delia; Ferrario, Silvia; Fossati, Piero; Fanetti, Giuseppe; Zerini, Dario; Zannoni, Davide; Fodor, Cristiana; Gerardi, Marianna A; Surgo, Alessia; Muto, Matteo; Cambria, Raffaella; De Cobelli, Ottavio; Orecchia, Roberto
2016-07-01
To compare the toxicity of image-guided intensity-modulated radiotherapy (IG-IMRT) to the pelvis or prostate bed (PB) only. To test the hypothesis that the potentially injurious effect of pelvic irradiation can be counterbalanced by reduced irradiated normal tissue volume using IG-IMRT. Between February 2010 and February 2012, 208 patients with prostate cancer were treated with adjuvant or salvage IG-IMRT to the PB (102 patients, Group PB) or the pelvis and prostate bed (P) (106 patients, Group P). The Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria were used to evaluate toxicity. Median follow-up was 27 months. Toxicity G ≥ 2 in Group PB: in the bowel acute and late toxicities were 11.8% and 10%, respectively; urinary acute and late toxicities were 10.8% and 15%, respectively. Toxicity G ≥ 2 in Group P: in the bowel acute and late toxicities were both 13.2%; urinary acute and late toxicities were 13.2% and 15.1%, respectively. No statistical difference in acute or late toxicity between the groups was found (bowel: p = 0.23 and p = 0.89 for acute and late toxicity, respectively; urinary: p = 0.39 and p = 0.66 for acute and late toxicity, respectively). Of the clinical variables, only previous abdominal surgery was correlated with acute bowel toxicity. Dosimetric parameters that correlated with bowel toxicity were identified. The toxicity rates were low and similar in both groups, suggesting that IG-IMRT allows for a safe post-operative irradiation of larger volumes. Further investigation is warranted to exclude bias owing to non-randomized character of the study. Our report shows that modern radiotherapy technology and careful planning allow maintaining the toxicity of pelvic lymph node treatment at the acceptable level, as it is in the case of PB radiotherapy.
A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...
Evolving Role of Passive Samplers in Whole Sediment Toxicity Identification Evaluations
In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In Phase II of the TIE, the specific toxicants causing observed toxicity are identified. For a...
Traditionally, chronic toxicity in aquatic organisms and wildlife has been determined from either toxicity test data, acute to chronic ratios, or application of safety factors. A more recent alternative approach has been to estimate chronic toxicity by modeling the time course of...
Toxicity reduction evaluations (TRE) and Toxicity Identification Evaluations (TIE) case examples were the basis of a technical workshop held by SETAC. Techniques to evaluate the mixtures of toxicants by using acute and chronic toxicity endpoints that incorporate marine, estuarine...
Toxic-Waste Disposal by Drain-in-Furnace Technique
NASA Technical Reports Server (NTRS)
Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.
1986-01-01
Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls
Acute toxicity to goldfish of mixtures of chloramines, copper, and linear alkylate sulfonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.F.; McKee, J.A.
1980-01-01
The toxicity to goldfish (Carassius auratus) of mixtures of chloramines, copper, and linear alkylate sulfonate (LAS) was studied by continuous-flow toxicity tests during an exposure period of 96 hours. The individual toxicities of these three chemicals are either additive or synergistic in mixtures, depending on the rate of toxic action of the individual chemical, the toxicity ratio of the chemicals in the mixtures, and the concentration of the mixtures.
Synergistic effect of piperonyl butoxide on acute toxicity of pyrethrins to Hyalella azteca.
Giddings, Jeffrey; Gagne, James; Sharp, Janice
2016-08-01
A series of acute toxicity tests with the amphipod Hyalella azteca was performed to quantify the synergistic effect of piperonyl butoxide (PBO) on pyrethrin toxicity. Concentrations of PBO <4 µg/L caused no toxicity enhancement, whereas toxicity increased with PBO concentrations between 4 µg/L and 15 µg/L. Additive toxicity calculations showed that true synergism accounted for an increase in pyrethrin toxicity (decrease in median lethal concentration) of 1.4-fold to 1.6-fold and varied only slightly between 4 µg/L and 15 µg/L PBO, whereas direct toxicity of PBO accounted for an additional increase in mixture toxicity (up to 3.2-fold) that was proportional to PBO concentration. The results can be used to assess the risk of measured or predicted co-occurring concentrations of PBO and pyrethrins in surface waters. Environ Toxicol Chem 2016;35:2111-2116. © 2016 SETAC. © 2016 SETAC.
Toxicity of medicinal plants used in traditional medicine in Northern Peru
Bussmann, R.W.; Malca, G.; Glenn, A.; Sharon, D.; Nilsen, B.; Parris, B.; Dubose, D; Ruiz, D.; Saleda, J.; Martinez, M.; Carillo, L.; Walker, K.; Kuhlman, A.; Townesmith, A.
2011-01-01
Aim The plant species reported here are traditionally used in Northern Peru for a wide range of illnesses. Most remedies are prepared as ethanol or aqueous extracts and then ingested. The aim of this study was to evaluate the potential toxicity of these extracts. Materials and methods The toxicity of ethanolic and water extracts of 341 plant species was determined using a Brine-Shrimp assay. Results Overall 24% of the species in water extract and 76% of the species in alcoholic extract showed elevated toxicity levels to brine-shrimp. Although in most cases multiple extracts of the same species showed very similar toxicity values, in some cases the toxicity of different extracts of the same species varied from non-toxic to highly toxic. Conclusions Traditional preparation methods take different toxicity levels in aqueous and ethanol extracts into account when choosing the appropriate solvent for the preparation of a remedy. PMID:21575699
DITOP: drug-induced toxicity related protein database.
Zhang, Jing-Xian; Huang, Wei-Juan; Zeng, Jing-Hua; Huang, Wen-Hui; Wang, Yi; Zhao, Rui; Han, Bu-Cong; Liu, Qing-Feng; Chen, Yu-Zong; Ji, Zhi-Liang
2007-07-01
Drug-induced toxicity related proteins (DITRPs) are proteins that mediate adverse drug reactions (ADRs) or toxicities through their binding to drugs or reactive metabolites. Collection of these proteins facilitates better understanding of the molecular mechanisms of drug-induced toxicity and the rational drug discovery. Drug-induced toxicity related protein database (DITOP) is such a database that is intending to provide comprehensive information of DITRPs. Currently, DITOP contains 1501 records, covering 618 distinct literature-reported DITRPs, 529 drugs/ligands and 418 distinct toxicity terms. These proteins were confirmed experimentally to interact with drugs or their reactive metabolites, thus directly or indirectly cause adverse effects or toxicities. Five major types of drug-induced toxicities or ADRs are included in DITOP, which are the idiosyncratic adverse drug reactions, the dose-dependent toxicities, the drug-drug interactions, the immune-mediated adverse drug effects (IMADEs) and the toxicities caused by genetic susceptibility. Molecular mechanisms underlying the toxicity and cross-links to related resources are also provided while available. Moreover, a series of user-friendly interfaces were designed for flexible retrieval of DITRPs-related information. The DITOP can be accessed freely at http://bioinf.xmu.edu.cn/databases/ADR/index.html. Supplementary data are available at Bioinformatics online.
Toxicity of urban highway runoff with respect to storm duration.
Kayhanian, M; Stransky, C; Bay, S; Lau, S-L; Stenstrom, M K
2008-01-25
The toxicity of stormwater runoff during various time-based stages was measured in both grab and composite samples collected from three highly urbanized highway sites in Los Angeles, California between 2002 and 2005. Stormwater runoff samples were tested for toxicity using three freshwater species (the water flea Ceriodaphnia dubia, the fathead minnow Pimephales promelas, and the green algae Pseudokirchneriella subcapitatum) and two marine species (the purple sea urchin Strongylocentrotus purpuratus, and the luminescent bacteria Photobacterium phosphoreum using Microtox. Toxicity results varied substantially throughout the storm events for both freshwater and marine species toxicity tests. In general, however, the first few samples were found to be more toxic compared with those collected during later stages of each storm event. In most cases, more than 40% of the toxicity was associated with the first 20% of discharged runoff volume. Furthermore, on average, 90% of the toxicity was observed during the first 30% of storm duration. Toxicity identification evaluation results found copper and zinc to be the primary cause of toxicity in about 90% of the samples evaluated with these procedures. Surfactants were also found to be the cause of toxicity in less than 10% of the samples.
Erten-Unal, M; Gelderloos, A B; Hughes, J S
1998-07-30
A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.
Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.
2014-01-01
Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.
Sang, Wen; Huang, Zeng-Rong; Yang, Lin-Tong; Guo, Peng; Ye, Xin; Chen, Li-Song
2017-01-01
Citrus are sensitive to boron (B)-toxicity. In China, B-toxicity occurs in some citrus orchards. So far, limited data are available on B-toxicity-responsive proteins in higher plants. Thirteen-week-old seedlings of “Sour pummelo” (Citrus grandis) and “Xuegan” (Citrus sinensis) was fertilized every other day until dripping with nutrient solution containing 10 μM (control) or 400 μM (B-toxicity) H3BO3 for 15 weeks. The typical B-toxic symptom only occurred in 400 μM B-treated C. grandis leaves, and that B-toxicity decreased root dry weight more in C. grandis seedlings than in C. sinensis ones, demonstrating that C. sinensis was more tolerant to B-toxicity than C. grandis. Using a 2-dimensional electrophoresis (2-DE) based MS approach, we identified 27 up- and four down-accumulated, and 28 up- and 13 down-accumulated proteins in B-toxic C. sinensis and C. grandis roots, respectively. Most of these proteins were isolated only from B-toxic C. sinensis or C. grandis roots, only nine B-toxicity-responsive proteins were shared by the two citrus species. Great differences existed in B-toxicity-induced alterations of protein profiles between C. sinensis and C. grandis roots. More proteins related to detoxification were up-accumulated in B-toxic C. grandis roots than in B-toxic C. sinensis roots to meet the increased requirement for the detoxification of the more reactive oxygen species and other toxic compounds such as aldehydes in the former. For the first time, we demonstrated that the active methyl cycle was induced and repressed in B-toxic C. sinensis and C. grandis roots, respectively, and that C. sinensis roots had a better capacity to keep cell wall and cytoskeleton integrity than C. grandis roots in response to B-toxicity, which might be responsible for the higher B-tolerance of C. sinensis. In addition, proteins involved in nucleic acid metabolism, biological regulation and signal transduction might play a role in the higher B-tolerance of C. sinensis. PMID:28261239
Hall, Lenwood W; Anderson, Ronald D; Alden, Raymond W
2002-06-01
The goal of this study was to identify the relative toxicity of ambient areas in the Chesapeake Bay watershed by using a suite of concurrent water column and sediment toxicity tests at seventy-five ambient stations in 20 Chesapeake Bay rivers from 1990 through 1999. Spatial and temporal variability was examined at selected locations throughout the 10 yr study. Inorganic and organic contaminants were evaluated in ambient water and sediment concurrently with water column and sediment tests to assess possible causes of toxicity although absolute causality can not be established. Multivariate statistical analysis was used to develop a multiple endpoint toxicity index (TOX-INDEX) at each station for both water column and sediment toxicity data. Water column tests from the 10 yr testing period showed that 49% of the time, some degree of toxicity was reported. The most toxic sites based on water column results were located in urbanized areas such as the Anacostia River, Elizabeth River and the Middle River. Water quality criteria for copper, lead, mercury, nickel and zinc were exceeded at one or more of these sites. Water column toxicity was also reported in localized areas of the South and Chester Rivers. Both spatial and temporal variability was reported from the suite of water column toxicity tests. Some degree of sediment toxicity was reported from 62% of the tests conducted during the ten year period. The Elizabeth River and Baltimore Harbor stations were reported as the most toxic areas based on sediment results. Sediment toxicity guidelines were exceeded for one or more of the following metals at these two locations: arsenic, cadmium, chromium, copper, lead, nickel and zinc. At the Elizabeth River stations nine of sixteen semi-volatile organics and two of seven pesticides measured exceeded the ER-M values in 1990. Ambient sediment toxicity tests in the Elizabeth River in 1996 showed reduced toxicity. Various semi-volatile organics exceeded the ER-M values at a number of Baltimore Harbor sites; pyrene and dibenzo(a,h)anthracene were particularly high at one of the stations (Northwest Harbor). Localized sediment toxicity was also reported in the Chester, James, Magothy, Rappahannock, and Potomac Rivers but the link with contaminants was not determined. Both spatial and temporal variability was less for sediment toxicity data when compared with water column toxicity data. A comparison of water column and sediment toxicity data for the various stations over the 10 yr study showed that approximately half the time agreement occurred (either both suite of tests showed toxicity or neither suite of tests showed toxicity).
NASA Astrophysics Data System (ADS)
Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory
2014-12-01
This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given the lack of association between Microtox results and discharge from Terra Nova, coupled with the confounding effects of other variables, the usefulness of Microtox toxicity tests within the context of environmental monitoring for the Terra Nova and, potentially, other offshore oil operations needs to be questioned. The amphipod toxicity tests showed that sediments in the vicinity of discharges of synthetic-based drilling mud cuttings are rarely toxic.
Lithner, Delilah; Halling, Maja; Dave, Göran
2012-05-01
Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model
Jackson, George R.; Maione, Anna G.; Klausner, Mitchell
2018-01-01
Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643
NASA Astrophysics Data System (ADS)
Lee, S.; Keum, H.; Chun Sang, H.
2015-12-01
In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government
Mackay, Donald; Celsie, Alena K D; Parnis, J Mark; McCarty, Lynn S; Arnot, Jon A; Powell, David E
2017-05-01
A 1-compartment toxicokinetic model is used to characterize the chemical exposure toxicity space (CETS), providing a novel graphic tool that can aid in the design of aquatic toxicity tests for fish and for interpreting their results. The graph depicts the solution to the differential equation describing the uptake kinetics of a chemical by a modeled fish under conventional bioassay conditions. The model relates the exposure concentration in the water to a dimensionless time and the onset of toxicity as determined by an estimated or assumed critical body residue or incipient lethal aqueous concentration. These concentration graphs are specific to each chemical and exposure and organism parameters and clearly demonstrate differences in toxicity between chemicals and how factors such as hydrophobicity influence the toxic endpoint. The CETS plots can also be used to assess bioconcentration test conditions to ensure that concentrations are well below toxic levels. Illustrative applications are presented using a recent set of high-quality toxicity data. Conversion of concentrations to chemical activities in the plots enables results for different baseline toxicants to be superimposed. For chemicals that have different modes of toxic action, the increased toxicity then becomes apparent. Implications for design and interpretation of aquatic toxicity tests are discussed. The model, and pictorial visualization of the time-course of aquatic toxicity tests, may contribute to improvements in test design, implementation, and interpretation, and to reduced animal usage. Environ Toxicol Chem 2017;36:1389-1396. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
Klüver, Nils; Vogs, Carolina; Altenburger, Rolf; Escher, Beate I; Scholz, Stefan
2016-12-01
Fish embryos have become a popular model in ecotoxicology and toxicology. The fish embryo acute toxicity test (FET) with the zebrafish embryo was recently adopted by the OECD as technical guideline TG 236 and a large database of concentrations causing 50% lethality (LC 50 ) is available in the literature. Quantitative Structure-Activity Relationships (QSARs) of baseline toxicity (also called narcosis) are helpful to estimate the minimum toxicity of chemicals to be tested and to identify excess toxicity in existing data sets. Here, we analyzed an existing fish embryo toxicity database and established a QSAR for fish embryo LC 50 using chemicals that were independently classified to act according to the non-specific mode of action of baseline toxicity. The octanol-water partition coefficient K ow is commonly applied to discriminate between non-polar and polar narcotics. Replacing the K ow by the liposome-water partition coefficient K lipw yielded a common QSAR for polar and non-polar baseline toxicants. This developed baseline toxicity QSAR was applied to compare the final mode of action (MOA) assignment of 132 chemicals. Further, we included the analysis of internal lethal concentration (ILC 50 ) and chemical activity (La 50 ) as complementary approaches to evaluate the robustness of the FET baseline toxicity. The analysis of the FET dataset revealed that specifically acting and reactive chemicals converged towards the baseline toxicity QSAR with increasing hydrophobicity. The developed FET baseline toxicity QSAR can be used to identify specifically acting or reactive compounds by determination of the toxic ratio and in combination with appropriate endpoints to infer the MOA for chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.
Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J
2018-06-01
Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.
Effects of Lunar Dust Simulant (JSC-1A-vf) on WI-38 Human Embryonic Lung Cells
NASA Technical Reports Server (NTRS)
Currie, Stephen; Hammond, Dianne; Jeevarajan, Anthony
2007-01-01
In order to develop appropriate countermeasures for NASA's return mission to the moon, the potential toxicity of lunar dust needs to be examined. Due to its abrasiveness, reactivity, composition and small size, lunar dust may pose a serious health risk to astronauts who inhale it. This project focuses on the toxicity of lunar dust simulant (JSC-1A-vf) using WI-38 human embryonic lung cells. Past results show that the simulant has toxic effects on small animals using intratracheal instillation. Earlier studies in this lab suggest that the dust remaining in media after low speed centrifugation is toxic. In order to better assess its toxicity, the simulant has been diluted in media, filtered with a 5 micron filter before combining it with media. This filtered dust is compared with dust centrifuged in media. Whole dust toxicity is also tested. Toxicity is estimated using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity test which measures the activity of reducing enzymes in the mitochondria of viable cells. Preliminary results suggest that simulant which is diluted in media at different concentrations is slightly toxic. Interestingly, the cells appear to sweep up and collect the simulant. Whether this contributes to its toxicity is unclear. This project provides possible toxicity testing protocols for lunar dust and contributes to the knowledge of nanosize particle toxicity.
Modeling Aquatic Toxicity through Chromatographic Systems.
Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí
2017-08-01
Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.
Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan
2018-02-01
In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.
Ruiz, Patricia; Begluitti, Gino; Tincher, Terry; Wheeler, John; Mumtaz, Moiz
2012-07-27
Predicting toxicity quantitatively, using Quantitative Structure Activity Relationships (QSAR), has matured over recent years to the point that the predictions can be used to help identify missing comparison values in a substance's database. In this manuscript we investigate using the lethal dose that kills fifty percent of a test population (LD₅₀) for determining relative toxicity of a number of substances. In general, the smaller the LD₅₀ value, the more toxic the chemical, and the larger the LD₅₀ value, the lower the toxicity. When systemic toxicity and other specific toxicity data are unavailable for the chemical(s) of interest, during emergency responses, LD₅₀ values may be employed to determine the relative toxicity of a series of chemicals. In the present study, a group of chemical warfare agents and their breakdown products have been evaluated using four available rat oral QSAR LD₅₀ models. The QSAR analysis shows that the breakdown products of Sulfur Mustard (HD) are predicted to be less toxic than the parent compound as well as other known breakdown products that have known toxicities. The QSAR estimated break down products LD₅₀ values ranged from 299 mg/kg to 5,764 mg/kg. This evaluation allows for the ranking and toxicity estimation of compounds for which little toxicity information existed; thus leading to better risk decision making in the field.
Contact toxicity of twenty insecticides applied to Symmerista canicosta
Jacqueline L. Robertson; Robert L. Lyon; Fay L. Shon; Nancy L. Gillette
1972-01-01
Twenty insecticides were tested by topical application on mixed groups of 4th- and 5th -stage larvae of Symmerista canicosta Franclemont. Four exceeded DDT in toxicity at LD50 but only resmethrin was significantly mor toxic. Most of the compounds showed unusually high toxicities. Twelve, listed in decreasing order of toxicity...
Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...
We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...
Distributed Structure-Searchable Toxicity (DSSTox) Database Network: Making Public Toxicity Data Resources More Accessible and U sable for Data Exploration and SAR Development
Many sources of public toxicity data are not currently linked to chemical structure, are not ...
PH DEPENDENT TOXICITY OF FIVE METALS TO THREE MARINE ORGANISMS
The pH of natural marine systems is relatively stable; this may explain why metal toxicity changes with pH have not been well documented. However, changes in metal toxicity with pH in marine waters are of concern in toxicity testing. During porewater toxicity testing pH can chang...
Li, Bo; Zhang, Hongtao; Ma, Yibing; McLaughlin, Mike J
2013-10-01
The toxicity of copper (Cu) and nickel (Ni) to bok choy and tomato shoot growth was investigated in a wide range of Chinese soils with and without leaching with artificial rainwater. The results showed that the variations of Ni toxicity induced by soil properties were wider than those of Cu toxicity to both tomato and bok choy plant growth. Leaching generally decreased the toxicity of Cu and Ni added to soils, which also depended on soils, metals, and test plant species. Soil factors controlling metal phytotoxicity were found to be soil pH and soil organic carbon content for Cu, and soil pH for Ni. It was also found that soil pH had stronger effects on Ni toxicity than on Cu toxicity. Predictive toxicity models based on these soil factors were developed. These toxicity models for Cu and Ni toxicity to tomato plant growth were validated using an independent data set for European soils. These models could be applied to predict the Cu and Ni phytotoxicity in not only Chinese soils but also European soils. © 2013 SETAC.
Abedini, Andisheh; Plesner, Annette; Cao, Ping; Ridgway, Zachary; Zhang, Jinghua; Tu, Ling-Hsien; Middleton, Chris T; Chao, Brian; Sartori, Daniel J; Meng, Fanling; Wang, Hui; Wong, Amy G; Zanni, Martin T; Verchere, C Bruce; Raleigh, Daniel P; Schmidt, Ann Marie
2016-01-01
Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI: http://dx.doi.org/10.7554/eLife.12977.001 PMID:27213520
Radiotherapy for malignancy in patients with scleroderma: The Mayo Clinic experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, Douglas G.; Miller, Robert C.; Petersen, Ivy A.
2007-02-01
Purpose: To determine the frequency of acute and chronic adverse effects in patients with scleroderma who receive radiotherapy for treatment of cancer. Methods and Materials: Records were reviewed of 20 patients with scleroderma who received radiotherapy. Acute and chronic toxic effects attributable to radiotherapy were analyzed, and freedom from radiation-related toxicity was calculated. Results: Of the 20 patients, 15 had acute toxic effects, with Grade 3 or higher toxicity for 3 patients. Seven patients had self-limited Grade 1 or 2 radiation dermatitis, and no patient had Grade 3 or higher radiation dermatitis. Thirteen patients had chronic toxic effects, with Grademore » 3 or higher chronic toxicity for 3 patients. The median estimated time to any grade chronic toxicity was 0.4 years, and the median estimated time to Grade 3 or higher chronic toxicity has not been reached. Conclusions: The results suggest that although some patients with scleroderma treated with radiation experience considerable toxic effects, the occurrence of Grade 3 or higher toxicity may be less than previously anticipated.« less
Cryoprotectant Toxicity: Facts, Issues, and Questions
2015-01-01
Abstract High levels of penetrating cryoprotectants (CPAs) can eliminate ice formation during cryopreservation of cells, tissues, and organs to cryogenic temperatures. But CPAs become increasingly toxic as concentration increases. Many strategies have been attempted to overcome the problem of eliminating ice while minimizing toxicity, such as attempting to optimize cooling and warming rates, or attempting to optimize time of adding individual CPAs during cooling. Because strategies currently used are not adequate, CPA toxicity remains the greatest obstacle to cryopreservation. CPA toxicity stands in the way of cryogenic cryopreservation of human organs, a procedure that has the potential to save many lives. This review attempts to describe what is known about CPA toxicity, theories of CPA toxicity, and strategies to reduce CPA toxicity. Critical analysis and suggestions are also included. PMID:25826677
Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.
2016-01-01
Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR < –1) to both species indicate that the bioconcentration potential of a chemical plays a very important role in the identification of excess toxicity and MOAs. PMID:26901437
Preventing and Managing Toxicities of High-Dose Methotrexate.
Howard, Scott C; McCormick, John; Pui, Ching-Hon; Buddington, Randall K; Harvey, R Donald
2016-12-01
: High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%-12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase allow renal recovery without the need for dialysis. This article, based on a review of the current associated literature, provides comprehensive recommendations for prevention of toxicity and, when necessary, detailed treatment guidance to mitigate AKI and subsequent toxicity. ©AlphaMed Press.
Preventing and Managing Toxicities of High-Dose Methotrexate
McCormick, John; Pui, Ching-Hon; Buddington, Randall K.; Harvey, R. Donald
2016-01-01
High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%–12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. Implications for Practice: High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase allow renal recovery without the need for dialysis. This article, based on a review of the current associated literature, provides comprehensive recommendations for prevention of toxicity and, when necessary, detailed treatment guidance to mitigate AKI and subsequent toxicity. PMID:27496039
Toxic substances alert program
NASA Technical Reports Server (NTRS)
Junod, T. L.
1978-01-01
A toxicity profile is provided, of 187 toxic substances procured by NASA Lewis Research Center during a 3 1/2 year period, including 27 known or suspected carcinogens. The goal of the program is to assure that the center's health and safety personnel are aware of the procurement and use of toxic substances and to alert and inform the users of these materials as to the toxic characteristics and the control measures needed to ensure their safe use. The program also provides a continuing record of the toxic substances procured, who procured them, what other toxic substances the user has obtained in the past, and where similar materials have been used elsewhere at the center.
Chen, C Y
2001-11-01
In an attempt to feed purple clams (Hiatula rostrata) with dinoglagellate Alexandrium minutum, the maximal accumulation toxicity of paralytic shellfish poisoning (PSP) toxins reached 40.6 MU/g on day 5 of feeding. Subsequently, the toxicity increased no further, although purple clams ingested more toxic algae. Furthermore, when milkfish (Chanos chanos) larvae were treated with toxic, nontoxic A. minutum or PSP toxin-containing extract in the water medium, it was found that the mortality of fish increased with the increasing concentrations of toxic algae. PSP toxin-containing extract did not show any toxic effect on milkfish larvae.
Langholz, Bryan; Skolnik, Jeffrey M.; Barrett, Jeffrey S.; Renbarger, Jamie; Seibel, Nita L.; Zajicek, Anne; Arndt, Carola A.S.
2011-01-01
Background Dactinomycin (AMD) and vincristine (VCR) have been used for the treatment of childhood cancer over the past 40 years but evidence-based dosing guidance is lacking. Methods Patient AMD and VCR dose and drug-related adverse event (AE) information from four rhabdomyosarcoma (RMS) and two Wilms tumor (WT) studies were assembled. Statistical modeling was used to account for differences in AE data collection across studies, develop rate models for grade 3/4 CTCAE v3 hepatic- (AMD) and neuro- (AMD) toxicity, assess variation in toxicity rates over age and other factors, and predict toxicity risk under current dosing guidelines. Results For the same dose/body size, AMD toxicity rates were higher in patients <1 year than older patients and VCR toxicity rates increased with age. The statistical model provided estimates for AMD and VCR toxicity risk under current dosing schedules and indicated that patients of smaller body size were at lower risk of VCR toxicity than larger patients of the same age. The rate of AMD toxicity was highest early in treatment and was lower in patients who tolerated initial AMD without toxicity. Conclusion The observed decrease in AMD toxicity rate with cumulative dose may indicate sensitivity in a subgroup of patients while the observed increase in VCR toxicity risk with age may indicate changing sensitivity to VCR. Current dosing practices result in a fairly uniform toxicity profile within age group. However, PK/PD studies should be done to provide further provide further information on best dosing guidelines. PMID:21671362
A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.
Azevedo, S L; Holz, T; Rodrigues, J; Monteiro, T; Costa, F M; Soares, A M V M; Loureiro, S
2017-02-01
Nanotechnology is a rising field and nanomaterials can now be found in a vast variety of products with different chemical compositions, sizes and shapes. New nanostructures combining different nanomaterials are being developed due to their enhancing characteristics when compared to nanomaterials alone. In the present study, the toxicity of a nanostructure composed by a ZnO nanomaterial with Ag nanomaterials on its surface (designated as ZnO/Ag nanostructure) was assessed using the model-organism Daphnia magna and its toxicity predicted based on the toxicity of the single components (Zn and Ag). For that ZnO and Ag nanomaterials as single components, along with its mixture prepared in the laboratory, were compared in terms of toxicity to ZnO/Ag nanostructures. Toxicity was assessed by immobilization and reproduction tests. A mixture toxicity approach was carried out using as starting point the conceptual model of Concentration Addition. The laboratory mixture of both nanomaterials showed that toxicity was dependent on the doses of ZnO and Ag used (immobilization) or presented a synergistic pattern (reproduction). The ZnO/Ag nanostructure toxicity prediction, based on the percentage of individual components, showed an increase in toxicity when compared to the expected (immobilization) and dependent on the concentration used (reproduction). This study demonstrates that the toxicity of the prepared mixture of ZnO and Ag and of the ZnO/Ag nanostructure cannot be predicted based on the toxicity of their components, highlighting the importance of taking into account the interaction between nanomaterials when assessing hazard and risk. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belinsky, S. A.; Hoover, M. D.; Bradley, P. L.
This document from the Inhalation Toxicology Research Institute includes annual reports in the following general areas: (I) Aerosol Technology and Characterization of Airborne Materials; (II) Deposition, transport, and clearance of inhaled Toxicants; (III) Metabolism and Markers of Inhaled Toxicants; (IV) Carcinogenic Responses to Toxicants; (V) Mechanisms of carcinogenic response to Toxicants; (VI) Non carcinogenic responses to inhaled toxicants; (VII) Mechanisms of noncarcinogenic Responses to Inhaled Toxicants; (VIII) The application of Mathematical Modeling to Risk Estimates. 9 appendices are also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Welch, K D; Stonecipher, C A; Green, B T; Gardner, D R; Cook, D; Pfister, J A
2017-03-15
Larkspurs (Delphinium spp.) are a serious toxic plant problem for cattle in western North America. There are two chemotypes of D. occidentale, a more toxic and a less toxic chemotype. The objective of this study was to evaluate the acute toxicity of the less toxic chemotype when administered in multiple doses to cattle. These results suggest that cattle could consume enough of the less toxic chemotype to be poisoned in a range setting. Published by Elsevier Ltd.
Fu, Ling; Huang, Tao; Wang, Shuo; Wang, Xiaohong; Su, Limin; Li, Chao; Zhao, Yuanhui
2017-02-01
Although modes of action (MOAs) play a key role in the understanding of the toxic mechanism of chemicals, the MOAs have not been investigated for antibiotics to green algae. This paper is to discriminate excess toxicity from baseline level and investigate the MOAs of 13 different antibiotics to algae by using the determined toxicity values. Comparison of the toxicities shows that the inhibitors of protein synthesis to bacteria, such as azithromycin, doxycycline, florfenicol and oxytetracycline, exhibit significantly toxic effects to algae. On the other hand, the cell wall synthesis inhibitors, such as cefotaxime and amoxicillin, show relatively low toxic effects to the algae. The concentrations determined by HPLC indicate that quinocetone and amoxicillin can be easily photodegraded or hydrolyzed during the toxic tests. The toxic effects of quinocetone and amoxicillin to the algae are attributed to not only their parent compounds, but also their metabolites. Investigation on the mode of action shows that, except rifampicin, all the tested antibiotics exhibit excess toxicity to Pseudokirchneriella subcapitata (P. subcapitata). These antibiotics can be identified as reactive modes of action to the algae. They act as electrophilic mechanism of action to P. subcapitata. These results are valuable for the understanding of the toxic mechanism to algae. Copyright © 2016 Elsevier Ltd. All rights reserved.
A test strategy for the assessment of additive attributed toxicity of tobacco products.
Kienhuis, Anne S; Staal, Yvonne C M; Soeteman-Hernández, Lya G; van de Nobelen, Suzanne; Talhout, Reinskje
2016-08-01
The new EU Tobacco Product Directive (TPD) prohibits tobacco products containing additives that are toxic in unburnt form or that increase overall toxicity of the product. This paper proposes a strategy to assess additive attributed toxicity in the context of the TPD. Literature was searched on toxicity testing strategies for regulatory purposes from tobacco industry and governmental institutes. Although mainly traditional in vivo testing strategies have been applied to assess toxicity of unburnt additives and increases in overall toxicity of tobacco products due to additives, in vitro tests combined with toxicogenomics and validated using biomarkers of exposure and disease are most promising in this respect. As such, tests are needed that are sensitive enough to assess additive attributed toxicity above the overall toxicity of tobacco products, which can associate assay outcomes to human risk and exposure. In conclusion, new, sensitive in vitro assays are needed to conclude whether comparable testing allows for assessment of small changes in overall toxicity attributed to additives. A more pragmatic approach for implementation on a short-term is mandated lowering of toxic emission components. Combined with risk assessment, this approach allows assessment of effectiveness of harm reduction strategies, including banning or reducing of additives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.
Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen
2014-04-01
Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, W.S.; Hayes, K.R.
1994-12-31
The IQ TOXICITY TEST{trademark} is a toxicity screening test that evaluates the organism`s galactosidase enzyme system functionality as a predictor of acute toxicity. Organisms are exposed to a potentially toxic solution for approximately one hour. Following the exposure, the organisms are exposed to a slurry of a galactoside sugar tagged with a fluorescent marker (methylumbelliferyl galactoside) for 15--20 minutes. A black light can then be used to examine whether the hemolymph of the organism contains free umbelliferone, which brightly fluoresces. The organisms are then scored as ``on`` or ``off`` with respect to free umbelliferone. This endpoint can then be usedmore » to calculate an EC50, which is comparable to a whole effluent, pure compound, or sediment toxicity test. Slightly different methodologies are used for different toxicity test organisms. The objective of this presentation is to discuss the use of the IQ{trademark} methodology with porewater extract exposures of the amphipod Hyalella azteca as a predictor of results of whole sediment toxicity tests. The results of over thirty 10 and 28-day whole sediment toxicity tests and the concurrent Hyalella azteca 10 TOXICITY TESTS{trademark} are compared and discussed. The use of screening tests as a reduced cost method for initial site assessment will be discussed.« less
Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.
2010-01-01
This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity. ?? 2010 Springer Science+Business Media, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandecasteele, Katrien, E-mail: Katrien.Vandecasteele@uzgent.be; Tummers, Philippe; Makar, Amin
2012-10-01
Purpose: To report on toxicity after postoperative intensity-modulated arc therapy (IMAT) for cervical (CC) and endometrial cancer (EC). Methods and Materials: Twenty-four CC and 41 EC patients were treated with postoperative IMAT. If indicated, para-aortic lymph node irradiation (preventive or when affected, PALN) and/or concomitant cisplatin (40 mg/m Superscript-Two , weekly) was administered. The prescribed dose for IMAT was 45 Gy (CC, 25 fractions) and 46 Gy (EC, 23 fractions), followed by a brachytherapeutic boost if possible. Radiation-related toxicity was assessed prospectively. The effect of concomitant cisplatin and PALN irradiation was evaluated. Results: Regarding acute toxicity (n = 65), Grademore » 3 and 2 acute gastrointestinal toxicity was observed in zero and 63% of patients (79% CC, 54% EC), respectively. Grade 3 and 2 acute genitourinary toxicity was observed in 1% and 18% of patients, respectively. Grade 2 (21%) and 3 (12%) hematologic toxicity (n = 41) occurred only in CC patients. Seventeen percent of CC patients and 2% of EC patients experienced Grade 2 fatigue and skin toxicity, respectively. Adding cisplatin led to an increase in Grade >2 nausea (57% vs. 9%; p = 0.01), Grade 2 nocturia (24% vs. 4%; p = 0.03), Grade {>=}2 hematologic toxicity (38% vs. nil, p = 0.003), Grade {>=}2 leukopenia (33% vs. nil, p = 0.009), and a strong trend toward more fatigue (14% vs. 2%; p = 0.05). Para-aortic lymph node irradiation led to an increase of Grade 2 nocturia (31% vs. 4%, p = 0.008) and a strong trend toward more Grade >2 nausea (44% vs. 18%; p = 0.052). Regarding late toxicity (n = 45), no Grade 3 or 4 late toxicity occurred. Grade 2 gastrointestinal toxicity, genitourinary toxicity, and fatigue occurred in 4%, 9%, and 1% of patients. Neither concomitant cisplatin nor PALN irradiation increased late toxicity rates. Conclusions: Postoperative IMAT for EC or CC is associated with low acute and late toxicity. Concomitant chemotherapy and PALN irradiation influences acute but not late toxicity.« less
40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...
40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...
40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...
Turning the Tide on Toxics in the Home.
ERIC Educational Resources Information Center
Washington State Dept. of Ecology, Olympia.
This booklet provides a guide for the safe use and disposal of toxic chemicals found around the home. Toxicity ratings given to compounds are explained along with the amount needed for a probable fatal dose for a 150-pound person. Each category of hazardous waste is provided with typical examples of the toxicants, a toxicity rating, several…
75 FR 14082 - Ammonium Salts of Fatty Acids (C8
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... study did not see any significant systemic toxicity from nonanoic acid (C 9 saturated) given to rats at... approach based on a common mechanism of toxicity, EPA has not made a common mechanism of toxicity finding... systemic toxicity or developmental toxicity in rats at doses up to 1,500 mg/kg/day in a developmental...
Sediment Toxicity Identification Evaluation
Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...
Acute toxicity and associated mechanisms of four strobilurins in algae.
Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen
2018-06-01
Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans
Yang, Zhendong; Xue, Kathy S.; Sun, Xiulan; Tang, Lili; Wang, Jia-Sheng
2015-01-01
Aflatoxins B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 toxin (T-2), and zearalenone (ZEA) are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg/L, the growth endpoint was relatively sensitive for AFB1 toxic effects, and the reproduction endpoint was more sensitive for toxicities of AFB1, FB1, and ZEA. Moreover, the lifespan endpoint was sensitive to toxic effects of all five tested mycotoxins. Data obtained from this study may serve as an important contribution to knowledge on assessment of mycotoxin toxic effects, especially for assessing developmental and reproductive toxic effects, using the C. elegans model. PMID:26633509
Evaluation of water treatment sludges toxicity using the Daphnia bioassay.
Sotero-Santos, Rosana B; Rocha, Odete; Povinelli, Jurandyr
2005-10-01
Alum and ferric chloride sludges from two water treatment plants (WTPs) were analyzed regarding their physicochemical characteristics and toxicity to Daphnia similis. Experiments were carried out in the dry and rainy seasons. Acute and chronic toxicity was measured using survival and reproduction as measurement endpoints. No acute toxicity of the sludge was observed in 48 h exposure. Ferric chloride sludge caused chronic toxicity, demonstrated by low fecundity and some mortality, while alum sludge caused chronic toxicity characterized by low fecundity. Some sludge characteristics varied between samplings, including turbidity, solids contents, N, P and metal (Al and Fe) concentrations. These variables and the increase of chemical oxygen demand (COD) were identified as the main cause of degradation of the receiving waters. However, no relationship was observed between these variables and degree of toxicity. It is apparent from these results that water treatment sludges may be toxic and therefore may impair receiving waters. Alum sludge was less toxic than ferric chloride sludge.
Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.
Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B
2017-11-01
Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.
Methods For Collecting , Culturing And Performing Toxicity Tests With Daphnia ambigua
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Winona L.
2005-07-01
Toxicity tests conducted on water collected from impacted locations in SRS streams often failed chronic toxicity tests and sometimes failed acute toxicity tests (Specht 1995). These findings prompted SRS to determine the cause of the failures. Some SRS NPDES outfalls were also failing chronic toxicity tests, even though no toxicant could be identified and when TIEs were performed, none of the TIE treatments removed the toxicity. Ultimately, it was determined that the failures were due to the low hardness of SRS surface waters, rather than to the presence of a toxicant. The species of cladoceran that the EPA recommends formore » toxicity testing, Ceriodaphnia dubia, is stressed by the very low hardness of SRS waters. SRS developed an alternate species toxicity test that is similar to the EPA test, but uses an indigenous cladoceran, Daphnia ambigua (Specht and Harmon, 1997; Harmon et al., 2003). In 2001, SCDHEC approved the use of D. ambigua for toxicity testing at SRS, contingent upon approval by EPA Region 4. In 2002, EPA Region 4 approved the use of this species for compliance toxicity testing at SRS. Ultimately, the use of this species demonstrated that SRS effluents were not toxic, and most toxicity testing requirements were removed from the NPDES permit that was issued in December 2003, with the exception of one round of chronic definitive testing on outfalls A-01, A-11, and G-10 just before the next NPDES permit application is submitted to SCDHEC. Although the alternate species test was developed at SRS (1996-1998), the culture was transferred to a contract toxicity testing lab (ETT Environmental) located in Greer, SC in 1998. ETT Environmental became certified by SCDHEC to perform toxicity tests using D. ambigua in 2002, and at this time is the only laboratory certified by SCDHEC to perform tests with this species. Because of the expense associated with maintaining the D. ambigua culture for several years when no toxicity testing is required, SRS decided to suspend financial support associated with maintaining the cultures until testing is needed. The purpose of this document is to provide guidance on how to establish a laboratory culture of D. ambigua so that a culture can be restarted when needed.« less
Enhanced toxic cloud knockdown spray system for decontamination applications
Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM
2011-09-06
Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.
Influence of UV irradiation on the toxicity of phenylurea herbicides using Microtox test.
Bonnemoy, F; Lavédrine, B; Boulkamh, A
2004-02-01
Halogenated phenylurea herbicides are not very toxic by themselves to animals, but their exposure to UV light may significantly increase the toxicity of their solutions. Absorption of light may indeed induce a phototransformation of the herbicide with a possible formation of more toxic intermediate photoproducts. Fortunately in environmental conditions photolysis is usually slow and photoproducts do not accumulate appreciably. Microtox was used for the evaluation of the toxicity of the crude irradiated solutions of some phenylurea herbicides. The sharp initial increase of toxicity shown by metobromuron solutions is mainly due to intermediate photoproducts which rapidly disappear. In the case of diuron and metoxuron toxicity is due to minor photoproducts and it does not disappear so rapidly. Hence the decrease of herbicide concentration is not necessarily associated to a lower toxicity of the solution.
Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S
2017-04-18
Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.
Willis, Alison M; Oris, James T
2014-09-01
The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms. © 2014 SETAC.
Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition.
Sørli, Jorid B; Huang, Yishi; Da Silva, Emilie; Hansen, Jitka S; Zuo, Yi Y; Frederiksen, Marie; Nørgaard, Asger W; Ebbehøj, Niels E; Larsen, Søren T; Hougaard, Karin S
2018-01-01
Private consumers and professionals may experience acute inhalation toxicity after inhaling aerosolized impregnation products. The distinction between toxic and non-toxic products is difficult to make for producers and product users alike, as there is no clearly described relationship between the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21 impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if the products inhibited surfactant function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e., the in vitro method predicted all the products that were toxic for mice to inhale. The specificity of the in vitro test was 63%, i.e., the in vitro method found three false positives in the 21 tested products. Six of the products had been involved in accidental human inhalation where they caused acute inhalation toxicity. All of these six products inhibited lung surfactant function in vitro and were toxic to mice.
Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.
1998-01-01
Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.
Oil and oil dispersant do not cause synergistic toxicity to fish embryos.
Adams, Julie; Sweezey, Michael; Hodson, Peter V
2014-01-01
Atlantic herring (Clupea harengus) embryos were exposed to water accommodated fractions (WAFs; oil dissolved in water) and chemically enhanced water accommodated fractions (CEWAFs; oil dispersed in water with Corexit 9500A) of Medium South American (MESA) crude oil. The CEWAF was approximately 100-fold more toxic than WAF based on nominal loadings of test solutions (% v/v). In contrast, the ratio of WAF and CEWAF toxicity expressed as measured oil concentrations approximated 1.0, indicating that the higher toxicity of CEWAFs was caused by an increase in exposure to hydrocarbons with chemical dispersion. In a second experiment, the chronic toxicity of Corexit 9500A and chemically dispersed heavy fuel oil 7102 (HFO 7102) to rainbow trout (Oncorhynchus mykiss) embryos was compared to chemically dispersed Nujol, a nontoxic mineral oil. Dispersant alone was toxic, but caused different signs of toxicity than HFO 7102. Nujol at a dispersant-to-oil ratio of 1:20 was nontoxic, suggesting that dispersant was sequestered by oil and not present at toxic concentrations. In contrast, the same nominal loadings of dispersed HFO 7102 caused concentration-dependent increases in toxicity. Both experiments suggest that chemically dispersed oil was more toxic to fish embryos than solutions created by mechanical mixing due to the increased exposure of fish to petroleum hydrocarbons and not to changes in hydrocarbon toxicity. The Nujol control discriminated between the toxicity of oil and chemical dispersant and would be a practical addition to programs of dispersant testing.
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Alamsyah, R. I.; Widiyani, T.; Artanti, A. N.
2018-03-01
Bay leaf (Eugenia polyantha) is widely used as an alternative therapy for diabetic and hypercholesterol. However, the administration of the extract has a low oral bioavailability, therefore it is prepared by Self Nanoemulsifying Drug Delivery Systems (SNEDDS) ethyl acetate extract of bay leaf. Therefore, acute and subchronic toxicity test is required. The toxicity test performed was an experimental study, including acute and subchronic toxicity tests. Animal experiments were used using Wistar strain rats. Acute toxicity test using 5 groups (n=5) consisted of 1 control group and 4 groups of SNEDDS dose with 48 mg/kgBW 240 mg/kg, 1200 mg/kg, and 6000 mg/kg, while for subchronic toxicity test with 1 group control and 3 groups of doses of SNEDDS with dose group variation 91.75 mg/kgBW, 183.5 mg/kg, and 367 mg/kg. Duration of observation at acute toxicity test for 14 days while for subcronic toxicity test for 28 days with continuous SNEDDS dosage. The results of the acute toxicity test showed toxic symptoms and obtained median lethal dose (LD50) values from SNEDDS from ethyl acetate extract of bay leaf 1409.30 mg/kgBW belonging to slightly toxic category. Subchronic toxicity studies show that the test drug has minor damage in liver and kidneys and moderate damage in pancreas.
Potential fluoride toxicity from oral medicaments: A review.
Ullah, Rizwan; Zafar, Muhammad Sohail; Shahani, Nazish
2017-08-01
The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, toxic effects, and management of fluoride toxicity. The main aim of this review is to highlight the potential adverse effects of fluoride overdose and poorly understood toxicity. In addition, the related clinical significance of fluoride overdose and toxicity has been discussed.
Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauscher, J.D.
1988-01-01
Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects ofmore » Se and Cu on planarians.« less
Aquatic Toxicity Screening of Fire Fighting Agents; 2003 Report
2003-06-02
Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an acute, static, range-finding...five concentrations of 3M Light Water Brand Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an...experimental foam concentrates against current Military Specification MIL-F-24385F Fire Extinguishing Agent, Aqueous Film Forming Foam
Carr, R.S.; Nipper, M.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.
2001-01-01
A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log Kow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses.
A combined evaluation of the characteristics and acute toxicity of antibiotic wastewater.
Yu, Xin; Zuo, Jiane; Li, Ruixia; Gan, Lili; Li, Zaixing; Zhang, Fei
2014-08-01
The conventional parameters and acute toxicities of antibiotic wastewater collected from each treatment unit of an antibiotic wastewater treatment plant have been investigated. The investigation of the conventional parameters indicated that the antibiotic wastewater treatment plant performed well under the significant fluctuation in influent water quality. The results of acute toxicity indicated that the toxicity of antibiotic wastewater could be reduced by 94.3 percent on average after treatment. However, treated antibiotic effluents were still toxic to Vibrio fischeri. The toxicity of antibiotic production wastewater could be attributed to the joint effects of toxic compound mixtures in wastewater. Moreover, aerobic biological treatment processes, including sequencing batch reactor (SBR) and aerobic biofilm reactor, played the most important role in reducing toxicity by 92.4 percent. Pearson׳s correlation coefficients revealed that toxicity had a strong and positive linear correlation with organic substances, nitrogenous compounds, S(2-), volatile phenol, cyanide, As, Zn, Cd, Ni and Fe. Ammonia nitrogen (NH4(+)) was the greatest contributor to toxicity according to the stepwise regression method. The multiple regression model was a good fit for [TU50-15 min] as a function of [NH₄(+)] with the determination coefficient of 0.981. Copyright © 2014 Elsevier Inc. All rights reserved.
Sediment quality assessment studies of Tampa bay, Florida
Carr, Scott R.; Chapman, Duane C.; Long, Edward R.; Windom, Herbert L.; Thursby, Glen; Sloane, Gail M.; Wolfe, Douglas A.
1996-01-01
A survey of the toxicity of sediments throughout the Tampa Bay estuary was performed as part of the National Oceanic and Atmospheric Administration's National Status and Trends Program. The objectives of the survey were to determine the spatial extent and severity of toxicity and to identify relationships between chemical contamination and toxicity. Three independent toxicity tests were performed: a 10-d amphipod survival test of the whole sediments with Ampelisca abdita, a sea urchin fertilization test of sediment pore water with Arbacia punctulata, and a 5-min Microtox® bioluminescence test with solvent extracts of the sediments. Seventy-three percent of the 165 undiluted sediment pore-water samples were significantly toxic relative to reference samples with the sea urchin fertilization test. In contrast, only 2% of the 165 samples were significantly toxic in the amphipod tests. The causes of toxicity were not determined. However, concentrations of numerous trace metals, pesticides, polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), and ammonia were highly correlated with pore-water toxicity. Concentrations of many substances, especially total dichlorodiphenyltrichloroethanes (DDTs), endrin, total PCBs, certain PAHs, lead, and zinc, occurred at concentrations in the toxic samples that equaled or exceeded concentrations that have been previously associated with sediment toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, X.D.; Krylov, S.N.; Ren, L.
1997-11-01
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) occurs via photosensitization reactions (e.g., generation of singlet-state oxygen) and by photomodification (photooxidation and/or photolysis) of the chemicals to more toxic species. The quantitative structure-activity relationship (QSAR) described in the companion paper predicted, in theory, that photosensitization and photomodification additively contribute to toxicity. To substantiate this QSAR modeling exercise it was necessary to show that toxicity can be described by empirically derived parameters. The toxicity of 16 PAHs to the duckweed Lemna gibba was measured as inhibition of leaf production in simulated solar radiation (a light source with a spectrum similar to thatmore » of sunlight). A predictive model for toxicity was generated based on the theoretical model developed in the companion paper. The photophysical descriptors required of each PAH for modeling were efficiency of photon absorbance, relative uptake, quantum yield for triplet-state formation, and the rate of photomodification. The photomodification rates of the PAHs showed a moderate correlation to toxicity, whereas a derived photosensitization factor (PSF; based on absorbance, triplet-state quantum yield, and uptake) for each PAH showed only a weak, complex correlation to toxicity. However, summing the rate of photomodification and the PSF resulted in a strong correlation to toxicity that had predictive value. When the PSF and a derived photomodification factor (PMF; based on the photomodification rate and toxicity of the photomodified PAHs) were summed, an excellent explanatory model of toxicity was produced, substantiating the additive contributions of the two factors.« less
Hazardous and toxic waste management in Botswana: practices and challenges.
Mmereki, Daniel; Li, Baizhan; Meng, Liu
2014-12-01
Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.
Brix, Kevin V; Gerdes, Robert; Grosell, Martin
2010-10-01
A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized. Copyright © 2010 Elsevier Inc. All rights reserved.
Roberson Ii, John D; McDonald, Andrew M; Baden, Craig J; Lin, Chee Paul; Jacob, Rojymon; Burnett Iii, Omer L
2016-03-14
To further define variables associated with increased incidences of severe toxicities following administration of yttrium-90 ((90)Y) microspheres. Fifty-eight patients undergoing 79 treatments were retrospectively assessed for development of clinical and laboratory toxicity incidence following (90)Y administration. Severe toxicity events were defined using Common Terminology Criteria for Adverse Events version 4.03 and defined as grade ≥ 3. Univariate logistic regression analyses were used to evaluate the effect of different factors on the incidence of severe toxicity events. Multicollinearity was assessed for all factors with P < 0.1 using Pearson correlation matrices. All factors not excluded due to multicollinearity were included in a multivariate logistic regression model for each measurement of severe toxicity. Severe (grade ≥ 3) toxicities occurred following 21.5% of the 79 treatments included in our analysis. The most common severe laboratory toxicities were severe alkaline phosphatase (17.7%), albumin (12.7%), and total bilirubin (10.1%) toxicities. Decreased pre-treatment albumin (OR = 26.2, P = 0.010) and increased pre-treatment international normalized ratio (INR) (OR = 17.7, P = 0.048) were associated with development of severe hepatic toxicity. Increased pre-treatment aspartate aminotransferase (AST; OR = 7.4, P = 0.025) and decreased pre-treatment hemoglobin (OR = 12.5, P = 0.025) were associated with severe albumin toxicity. Increasing pre-treatment model for end-stage liver disease (MELD) score (OR = 1.8, P = 0.033) was associated with severe total bilirubin toxicity. Colorectal adenocarcinoma histology was associated with severe alkaline phosphatase toxicity (OR = 5.4, P = 0.043). Clinicians should carefully consider pre-treatment albumin, INR, AST, hemoglobin, MELD, and colorectal histology when choosing appropriate candidates for (90)Y microsphere therapy.
Mount, David R.; Erickson, Russell J.; Highland, Terry L.; Hockett, J. Russell; Hoff, Dale J.; Jenson, Correne T.; Norberg-King, Teresa J.; Peterson, Kira N.; Polaske, Zach; Wisniewski, Stephanie
2018-01-01
The ions Na+, K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3−/CO32− (referred to here as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can increase to harmful levels from a variety of anthropogenic activities. It is also known that the toxicities of major ion salts can vary depending on the concentrations of other ions, and understanding these relationships is key to establishing appropriate environmental limits. In this paper we present a series of experiments with Ceriodaphnia dubia to evaluate the acute toxicity of twelve major ion salts and to determine how toxicity of these salts varies as a function of background water chemistry. All salts except CaSO4 and CaCO3 were acutely toxic below saturation, with the lowest LC50s found for K salts. All ten salts that showed toxicity also showed some degree of reduced toxicity as the ionic content of the background water increased. Experiments that independently varied Ca:Mg ratio, Na:K ratio, Cl:SO4 ratio, and alkalinity/pH demonstrated that Ca concentration was the primary factor influencing the toxicities of Na and Mg salts, while the toxicities of K salts were primarily influenced by the concentration of Na. These experiments also indicated multiple mechanisms of toxicity and suggested important aspects of dosimetry: the toxicities of K, Mg, and Ca salts were best related to the chemical activity of the cation, while the toxicities of Na salts also reflected an influence of the anions and were well correlated with osmolarity. Understanding these relationships between major ion toxicity and background water chemistry should aid in the development of sensible risk assessment and regulatory standards. PMID:27167636
Discriminating modes of toxic action in mice using toxicity in BALB/c mouse fibroblast (3T3) cells.
Huang, Tao; Yan, Lichen; Zheng, Shanshan; Wang, Yue; Wang, Xiaohong; Fan, Lingyun; Li, Chao; Zhao, Yuanhui; Martyniuk, Christopher J
2017-12-01
The objective of this study was to determine whether toxicity in mouse fibroblast cells (3T3 cells) could predict toxicity in mice. Synthesized data on toxicity was subjected to regression analysis and it was observed that relationship of toxicities between mice and 3T3 cells was not strong (R 2 = 0.41). Inclusion of molecular descriptors (e.g. ionization, pKa) improved the regression to R 2 = 0.56, indicating that this relationship is influenced by kinetic processes of chemicals or specific toxic mechanisms associated to the compounds. However, to determine if we were able to discriminate modes of action (MOAs) in mice using the toxicities generated from 3T3 cells, compounds were first classified into "baseline" and "reactive" guided by the toxic ratio (TR) for each compound in mice. Sequence, binomial and recursive partitioning analyses provided strong predictions of MOAs in mice based upon toxicities in 3T3 cells. The correct classification of MOAs based on these methods was 86%. Nearly all the baseline compounds predicted from toxicities in 3T3 cells were identified as baseline compounds from the TR in mice. The incorrect assignment of MOAs for some compounds is hypothesized to be due to experimental uncertainty that exists in toxicity assays for both mice and 3T3 cells. Conversely, lack of assignment can also arise because some reactive compounds have MOAs that are different in mice compared to 3T3 cells. The methods developed here are novel and contribute to efforts to reduce animal numbers in toxicity tests that are used to evaluate risks associated with organic pollutants in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arning, Jürgen; Matzke, Marianne; Stolte, Stefan; Nehen, Frauke; Bottin-Weber, Ulrike; Böschen, Andrea; Abdulkarim, Salha; Jastorff, Bernd; Ranke, Johannes
2009-12-01
To demonstrate how baseline toxicity can be separated from other more specific modes of toxic action and to address possible pitfals when dealing with hydrophobic substances, the four isothiazol-3-one biocides N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT), and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) as an example for reactive electrophilic xenobiotics were tested for their cytotoxic effects on the human hepatoblastoma cell line Hep G2, on the marine bacterium Vibrio fischeri, and on the limnic green alga Scenedesmus vacuolatus. In each of the three test systems, toxic effects were observed in a consistent pattern. The two chlorinated compounds and OIT were found to be significantly more toxic than MIT. As compared to baseline toxicants, the small and polar MIT and CIT exhibited pronounced excess toxicity in each of the three test systems that is presumably triggered by their intrinsic reactivity toward cellular thiols. In contrast, OIT and DCOIT showed mainly toxicities that could be explained by their hydrophobicity. Analyzing and comparing these results using the toxic ratio concept and with data that indicate a dramatic depletion of cellular glutathione levels after incubation with DCOIT reveals that for highly hydrophobic substances, baseline level toxicity in an assay for acute toxicity can lead to an oversight of other more specific modes of toxic action that may cause significant effects that might be less reversible than those caused by unreactive baseline toxicants. This possibility should be taken into account in the hazard assessment of chemicals that are both hydrophobic and reactive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poorvu, Philip D.; Sadow, Cheryl A.; Townamchai, Kanokpis
2013-04-01
Purpose: To characterize the rates of acute and late duodenal and other gastrointestinal (GI) toxicities among patients treated for cervical and endometrial cancers with extended-field intensity modulated radiation therapy (EF-IMRT) to the paraaortic nodes and to analyze dose-volume relationships of GI toxicities. Methods and Materials: Fifty-three patients with endometrial or cervical cancer underwent EF-IMRT to the paraaortic nodes, of whom 46 met the inclusion criteria for GI toxicity and 45 for duodenal toxicity analysis. The median prescribed dose to the paraaortic nodes was 54 Gy (range, 41.4-65 Gy). The 4 duodenal segments, whole duodenum, small bowel loops, peritoneum, and peritoneummore » plus retroperitoneal segments of colon were contoured retrospectively, and dosimetric analysis was performed to identify dose-volume relationships to grade ≥3 acute (<90 day) and late (≥90 day) GI toxicity. Results: Only 3/46 patients (6.5%) experienced acute grade ≥3 GI toxicity and 3/46 patients (6.5%) experienced late grade ≥3 GI toxicity. The median dose administered to these 6 patients was 50.4 Gy. One of 12 patients who received 63 to 65 Gy at the level of the renal hilum experienced grade 3 GI toxicity. Dosimetric analysis of patients with and without toxicity revealed no differences between the mean absolute or fractional volumes at any 5-Gy interval between 5 Gy and the maximum dose. None of the patients experienced duodenal toxicity. Conclusions: Treatment of paraaortic nodes with IMRT is associated with low rates of GI toxicities and no duodenal-specific toxicity, including patients treated with concurrent chemotherapy. This technique may allow sufficient dose sparing of the bowel to enable safe dose escalation to at least 65 Gy.« less
Genetics Home Reference: Stevens-Johnson syndrome/toxic epidermal necrolysis
... Conditions Stevens-Johnson syndrome/toxic epidermal necrolysis Stevens-Johnson syndrome/toxic epidermal necrolysis Printable PDF Open All ... to view the expand/collapse boxes. Description Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is a ...
A general mechanism for intracellular toxicity of metal-containing nanoparticles
NASA Astrophysics Data System (ADS)
Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo
2014-05-01
The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01234h
NASA Astrophysics Data System (ADS)
Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho
2018-04-01
We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondi, Vinai, E-mail: gondi@humonc.wisc.edu; Bentzen, Soren M.; Sklenar, Kathryn L.
2012-11-15
Purpose: To compare rates of severe late toxicities following concomitant chemoradiotherapy and radiotherapy alone for cervical cancer. Methods and Materials: Patients with cervical cancer were treated at a single institution with radiotherapy alone or concomitant chemoradiotherapy for curative intent. Severe late toxicity was defined as grade {>=}3 vaginal, urologic, or gastrointestinal toxicity or any pelvic fracture, using Common Terminology Criteria for Adverse Events version 4.0 (CTCAE), occurring {>=}6 months from treatment completion and predating any salvage therapy. Severe late toxicity rates were compared after adjusting for pertinent covariates. Results: At 3 years, probability of vaginal severe late toxicity was 20.2%more » for radiotherapy alone and 35.1% for concomitant chemoradiotherapy (P=.026). At 3 years, probability of skeletal severe late toxicity was 1.6% for radiotherapy alone and 7.5% for concomitant chemoradiotherapy (P=.010). After adjustment for case mix, concomitant chemoradiotherapy was associated with higher vaginal (hazard ratio [HR] 3.0, 95% confidence interval [CI], 1.7-5.2, P<.001), and skeletal (HR 7.0, 95% CI 1.4-34.1, P=.016) severe late toxicity. Compared to high dilator compliance, moderate (HR 3.6, 95% CI 2.0-6.5, P<.001) and poor (HR 8.5, 95% CI 4.3-16.9, P<.001) dilator compliance was associated with higher vaginal severe late toxicity. Age >50 was associated with higher vaginal (HR 1.8, 95% CI 1.1-3.0, P=.013) and skeletal (HR 5.7, 95% CI 1.2-27.0, P=.028) severe late toxicity. Concomitant chemoradiotherapy was not associated with higher gastrointestinal (P=.886) or urologic (unadjusted, P=.053; adjusted, P=.063) severe late toxicity. Conclusion: Compared to radiotherapy alone, concomitant chemoradiotherapy is associated with higher rates of severe vaginal and skeletal late toxicities. Other predictive factors include dilator compliance for severe vaginal late toxicity and age for severe vaginal and skeletal late toxicities.« less
Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.
Sharma, Virender K; McDonald, Thomas J; Sohn, Mary; Anquandah, George A K; Pettine, Maurizio; Zboril, Radek
2017-12-01
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
The efficacy of Pistacia Terebinthus soap in the treatment of cetuximab-induced skin toxicity.
Tastekin, Didem; Tambas, Makbule; Kilic, Kemal; Erturk, Kayhan; Arslan, Deniz
2014-12-01
This open-labeled phase II, efficacy-finding study evaluated the efficiency and safety of Pistacia terebinthus soap in metastatic colorectal cancer patients who developed cetuximab induced skin toxicity. Patients who received cetuximab plus chemotherapy and developed Grade 2 or 3 skin toxicity were treated twice daily with a soap made of oil extracted from Pistacia terebinthus. During treatment, no topical or oral antibiotics, corticosteroids or other moisturizers were used. Patients were examined 1 week later and their photographs were taken. Fifteen mCRC patients who developed skin toxicity while receiving first-line CTX in combination with chemotherapy were included into the study. Eight patients were male and the median age was 58 (25-70). Sixty percent of the patients (n:9) had Grade 3 skin toxicity. Complete response rates in patients with Grade 2 and Grade 3 skin toxicities were 100 and 33%, respectively. In the remaining patients with Grade 3 toxicity the skin toxicity regressed to Grade 1. The objective response rate was 100%, and no delay, dose reduction or discontinuation of CTX treatment due to skin toxicity was necessary. Skin toxicity reoccurred in all patients when patients stopped administering the soap and therefore they used it throughout the cetuximab treatment. Pistacia terebinthus soap seemed to be used safely and effectively in the treatment of skin toxicity induced by Cetuximab.
Bowen, J M; White, I; Smith, L; Tsykin, A; Kristaly, K; Thompson, S K; Karapetis, C S; Tan, H; Game, P A; Irvine, T; Hussey, D J; Watson, D I; Keefe, D M K
2015-11-01
Esophageal cancer has a high mortality rate, and its multimodality treatment is often associated with significant rates of severe toxicity. Effort is needed to uncover ways to maximize effectiveness of therapy through identification of predictive markers of response and toxicity. As such, the aim of this study was to identify genes predictive of chemoradiotherapy-induced gastrointestinal toxicity using an immune pathway-targeted approach. Adults with esophageal cancer treated with chemotherapy consisting of 5-fluorouracil and cisplatin and 45-50 Gy radiation were recruited to the study. Pre-therapy-collected whole blood was analyzed for relative expression of immune genes using real-time polymerase chain reaction (RT-PCR). Gene expression was compared between patients who experienced severe regimen-related gastrointestinal toxicity vs. those experiencing mild to moderate toxicity. Blood from 31 patients were analyzed by RT-PCR. Out of 84 immune genes investigated, TNF was significantly elevated (2.05-fold, p = 0.025) in the toxic group (n = 12) compared to the non-toxic group (n = 19). Nausea and vomiting was the most commonly documented severe toxicity. No associations between toxicity and response, age, sex, histology, or treatment were evident. This study supports evidence of TNF as a predictive biomarker in regimen-related gastrointestinal toxicity. Confirming these findings in a larger cohort is warranted.
Toxicity Estimation Software Tool (TEST)
The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...
Classification of Chemicals Based On Structured Toxicity ...
Thirty years and millions of dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data within the Toxicity Reference Database (ToxRefDB). Toxicity-based classifications of chemicals were performed as a model application of ToxRefDB. These endpoints will ultimately provide the anchoring toxicity information for the development of predictive models and biological signatures utilizing in vitro assay data. Utilizing query and structured data mining approaches, toxicity profiles were uniformly generated for greater than 300 chemicals. Based on observation rate, species concordance and regulatory relevance, individual and aggregated effects have been selected to classify the chemicals providing a set of predictable endpoints. ToxRefDB exhibits the utility of transforming unstructured toxicity data into structured data and, furthermore, into computable outputs, and serves as a model for applying such data to address modern toxicological problems.
Acute lethal toxicity of environmental pollutants to aquatic organisms.
Yen, Jui-Hung; Lin, Kuo-Hsiung; Wang, Yei-Shung
2002-06-01
The acute lethal toxicity of environment pollutants including chlorophenol, haloalkane, quinone, and substituted nitrobenzene (i.e., nitrophenol, nitrobenzene, nitrotoluene, and aniline) compounds to aquatic organisms was determined. Determination of toxicity of chemicals was performed with chlorella, daphnia, carp, and tilapia. The toxicity of chlorophenols had no relation to the number of chlorine atoms on the benzene ring, but monochlorophenol had lower activity than more chlorine-substituted compounds. The tolerance levels of daphnia and carp to haloalkanes was found to be higher than that of chlorella; toxicity to chlorella was several hundred times higher than to daphnia. The toxicity of naphthoquinone compounds to chlorella and carp was higher than that of anthraquinone. A compound with a monochloride substitution on anthraquinone ring was less toxic to carp than those substituted with amine, hydroxyl, and dichlorine groups. Nitrobenzene compounds with an additional substitution group on the p position were extremely toxic to daphnia and carp. (c) 2002 Elsevier Science (USA).
Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.
Libralato, G; Ghirardini, A Volpi; Avezzù, F
2008-05-30
Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.
Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure
2000-09-30
Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure Principal Investigator: Roger M. Nisbet Department of Ecology, Evolution...DATES COVERED 00-00-2000 to 00-00-2000 4. TITLE AND SUBTITLE Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure 5a...those of real populations. We have also investigated how toxicants may affect the stability of the system. If the toxicant effect is primarily an
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamstra, Daniel A.; Stenmark, Matt H.; Ritter, Tim
2013-04-01
Purpose: To assess the impacts of patient age and comorbid illness on rectal toxicity following external beam radiation therapy (EBRT) for prostate cancer and to assess the Qualitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) normal tissue complication probability (NTCP) model in this context. Methods and Materials: Rectal toxicity was analyzed in 718 men previously treated for prostate cancer with EBRT (≥75 Gy). Comorbid illness was scored using the Charlson Comorbidity Index (CCMI), and the NTCP was evaluated with the QUANTEC model. The influence of clinical and treatment-related parameters on rectal toxicity was assessed by Kaplan-Meier and Coxmore » proportional hazards models. Results: The cumulative incidence of rectal toxicity grade ≥2 was 9.5% and 11.6% at 3 and 5 years and 3.3% and 3.9% at 3 and 5 years for grade ≥3 toxicity, respectively. Each year of age predicted an increasing relative risk of grade ≥2 (P<.03; hazard ratio [HR], 1.04 [95% confidence interval (CI), 1.01-1.06]) and ≥3 rectal toxicity (P<.0001; HR, 1.14 [95% CI,1.07-1.22]). Increasing CCMI predicted rectal toxicity where a history of either myocardial infarction (MI) (P<.0001; HR, 5.1 [95% CI, 1.9-13.7]) or congestive heart failure (CHF) (P<.0006; HR, 5.4 [95% CI, 0.6-47.5]) predicted grade ≥3 rectal toxicity, with lesser correlation with grade ≥2 toxicity (P<.02 for MI, and P<.09 for CHF). An age comorbidity model to predict rectal toxicity was developed and confirmed in a validation cohort. The use of anticoagulants increased toxicity independent of age and comorbidity. NTCP was prognostic for grade ≥3 (P=.015) but not grade ≥2 (P=.49) toxicity. On multivariate analysis, age, MI, CHF, and an NTCP >20% all correlated with late rectal toxicity. Conclusions: Patient age and a history of MI or CHF significantly impact rectal toxicity following EBRT for the treatment of prostate cancer, even after controlling for NTCP.« less
Yim, Jin Hee; Kim, Kyoung W; Kim, Sang D
2006-11-02
In this study, the effect of hardness on the combined outcome of metal mixtures was investigated using Daphnia magna. The toxic unit (TU) was calculated using modified LC(50) values based on the hardness (i.e., LC(50-soft) and LC(50-hard)). From a bioassay test, the degree of sensitivity to hardness on the toxicity changes was in the order: Cd
Lasier, Peter J.; Hardin, Ian R.
2010-01-01
Chronic toxicities of Cl-, SO42-, and HCO3- to Ceriodaphnia dubia were evaluated in low- and moderate-hardness waters using a three-brood reproduction test method. Toxicity tests of anion mixtures were used to determine interaction effects and to produce models predicting C. dubia reproduction. Effluents diluted with low- and moderate-hardness waters were tested with animals acclimated to low- and moderate-hardness conditions to evaluate the models and to assess the effects of hardness and acclimation. Sulfate was significantly less toxic than Cl- and HCO3- in both types of water. Chloride and HCO3- toxicities were similar in low-hardness water, but HCO3- was the most toxic in moderate-hardness water. Low acute-to-chronic ratios indicate that toxicities of these anions will decrease quickly with dilution. Hardness significantly reduced Cl- and SO42- toxicity but had little effect on HCO3-. Chloride toxicity decreased with an increase in Na+ concentration, and CO3- toxicity may have been reduced by the dissolved organic carbon in effluent. Multivariate models using measured anion concentrations in effluents with low to moderate hardness levels provided fairly accurate predictions of reproduction. Determinations of toxicity for several effluents differed significantly depending on the hardness of the dilution water and the hardness of the water used to culture test animals. These results can be used to predict the contribution of elevated anion concentrations to the chronic toxicity of effluents; to identify effluents that are toxic due to contaminants other than Cl-, SO42-, and HCO3-; and to provide a basis for chemical substitutions in manufacturing processes.
Du, Ye; Lv, Xiao-Tong; Wu, Qian-Yuan; Zhang, Da-Yin; Zhou, Yu-Ting; Peng, Lu; Hu, Hong-Ying
2017-08-01
Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs. Genotoxicity by umu-test and estrogenic activity were decreased after chlorination because of destruction of toxic chemicals. During chlorination, water quality significantly impacted changes in toxicity. Ammonium tended to attenuate toxicity changes by reacting with chlorine to form chloramine, while bromide tended to aggravate toxicity changes by forming hypobromous acid. During pretreatment by ozonation and coagulation, disinfection byproduct formation potential (DBPFP) and toxicity formation potential (TFP) occasionally increase, which is accompanied by DOC removal; thus, the decrease of DOC was limited to indicate the decrease of DBPFP and TFP. It is more important to eliminate the key fraction of precursors such as hydrophobic acid and hydrophilic neutrals. During chlorination, toxicities can increase with the increasing chlorine dose and contact time. To control the excessive toxicity formation, a relatively low chlorine dose and short contact time were required. Quenching chlorine residual with reductive reagents also effectively abated the formation of toxic compounds. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Thomas W., E-mail: Thomas.Sawyer@drdc-rddc.gc.ca; Nelson, Peggy; Bjarnason, Stephen
The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1 h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC{sub 50} values of {approx} 100-150 {mu}M when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner tomore » values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.« less
Corsi, Steven R; Geis, Steven W; Loyo-Rosales, Jorge E; Rice, Clifford P
2006-12-01
Characterization of the effects of aircraft deicer and anti-icer fluid (ADAF) runoff on aquatic organisms in receiving streams is a complex issue because the identities of numerous toxic additives are proprietary and not publicly available. Most potentially toxic and endocrine disrupting effects caused by ADAF are due to the numerous additive package ingredients which vary among manufacturers and types of ADAF formulation. Toxicity investigations of nine ADAF formulations indicate that endpoint concentrations for formulations of different manufacturers are widely variable. Type IV ADAF (anti-icers) are more toxic than Type I (deicers) for the four organisms tested (Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Selenastrum capricornutum). Acute toxicity endpoint concentrations ranged from 347 to 7700 mg/L as ADAF for Type IV and from 1550 to 45,100 mg/L for Type I formulations. Chronic endpoint concentrations ranged from 70 to 1300 mg/L for Type IV and from 37 to 18,400 mg/L for Type I formulations. Alkylphenol ethoxylates and tolyltriazoles are two known classes of additives. Nonylphenol, nonylphenol ethoxylates, octylphenol, octylphenol ethoxylates, and 4,5-methyl-1H-benzotriazoles were quantified in the nine ADAF formulations, and toxicity tests were conducted with nonylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles. Toxicity units computed for glycol and these additives, with respect to toxicity of the ADAF formulations, indicate that a portion of ADAF toxicity can be explained by the known additives and glycols, but much of the toxicity is due to unidentified additives.
Dose-finding designs using a novel quasi-continuous endpoint for multiple toxicities
Ezzalfani, Monia; Zohar, Sarah; Qin, Rui; Mandrekar, Sumithra J; Deley, Marie-Cécile Le
2013-01-01
The aim of a phase I oncology trial is to identify a dose with an acceptable safety profile. Most phase I designs use the dose-limiting toxicity, a binary endpoint, to assess the unacceptable level of toxicity. The dose-limiting toxicity might be incomplete for investigating molecularly targeted therapies as much useful toxicity information is discarded. In this work, we propose a quasi-continuous toxicity score, the total toxicity profile (TTP), to measure quantitatively and comprehensively the overall severity of multiple toxicities. We define the TTP as the Euclidean norm of the weights of toxicities experienced by a patient, where the weights reflect the relative clinical importance of each grade and toxicity type. We propose a dose-finding design, the quasi-likelihood continual reassessment method (CRM), incorporating the TTP score into the CRM, with a logistic model for the dose–toxicity relationship in a frequentist framework. Using simulations, we compared our design with three existing designs for quasi-continuous toxicity score (the Bayesian quasi-CRM with an empiric model and two nonparametric designs), all using the TTP score, under eight different scenarios. All designs using the TTP score to identify the recommended dose had good performance characteristics for most scenarios, with good overdosing control. For a sample size of 36, the percentage of correct selection for the quasi-likelihood CRM ranged from 80% to 90%, with similar results for the quasi-CRM design. These designs with TTP score present an appealing alternative to the conventional dose-finding designs, especially in the context of molecularly targeted agents. PMID:23335156
How toxic is coal ash? A laboratory toxicity case study
Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen
2014-12-08
Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authoritymore » (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.« less
[Comprehensive analysis on "toxicity and effect" of Chinese pharmaceutical preparations].
Hu, Hui-Ling; Fu, Chao-Mei; Zhao, Xuan; Zhang, Jin-Ming; Gao, Fei; He, Yao; Fu, Shu; Li, Ling
2016-09-01
The manufacturing process of Chinese medicines is the significant link to achieve "effect-enhancing and toxicity-reducing", including an interaction between "toxicity and effect". This paper would elucidate the effects of Chinese herbal compound decoction, preparation, dosage forms, route of administration and quality of pharmaceutical excipients on "toxicity-effect" theory from the formulation approaches. The article pointed out that the comprehensive analysis on "toxicity-effect" theory should be strengthened from the aspects of overall manufacturing, fundamental research and modern Chinese preparation, to explore the mechanism of "effect-enhancing and toxicity-reducing" in the manufacturing process, clarify the core status of Chinese preparation in "toxicity-effect" theory, and ensure the security and effectiveness in traditional Chinese medicine clinical application. Copyright© by the Chinese Pharmaceutical Association.
Toxicity of pyrolysis gases from synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Soriano, J. A.; Kosola, K. L.; Kourtides, D. A.; Parker, J. A.
1977-01-01
The screening test method was used to investigate toxicity in polyethylene, polystyrene, polymethyl methacrylate, polyaryl sulfone, polyether sulfone, polyphenyl sulfone, and polyphenylene sulfide. Changing from a rising temperature program to a fixed temperature program resulted on shorter times to animal responses. This effect was attributed in part to more rapid generation of toxicants. The toxicants from the sulfur containing polymers appeared to act more rapidly than the toxicants from the other polymers. It was not known whether this effect was due primarily to difference in concentration or in the nature of the toxicants. The carbon monoxide concentration found did not account for the results observed with the sulfur containing polymers. Polyphenyl sulfone appeared to exhibit the least toxicity among the sulfur containing polymers evaluated under these test conditions.
Final Recommendations of the Air Toxics Work Group
The Air Toxics Workgroup was organized under the Clean Air Act Advisory Committee for the purpose of discussing and identifying recommendations related to Urban Air Toxics. The workgroup is part of the Permits, New Source Review and Toxics Subcommittee.
Community-Scale Air Toxics Ambient Monitoring Grant - Closed Announcement FY 2015
Grant to fund projects designed to assist state, local and tribal communities in identifying air toxics sources, characterizing the degree and extent of local-scale air toxics problems, tracking progress of air toxics reduction activities, etc.
APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS
Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation (TIE) methods for contaminated sediments and focusing on three toxicant groups (ammoni...
TOXICITY SCREENING WITH ZEBRAFISH ASSAY
The proposed toxicity screening will help EPA to prioritize chemicals for further testing, and it may also alert chemical manufacturers that some of their commercial products may be toxic. The proposed toxicity pathway studies will improve the research community’s abi...
Causes of highway road dust toxicity to an estuarine amphipod: Evaluating the effects of nicotine.
Hiki, Kyoshiro; Nakajima, Fumiyuki; Tobino, Tomohiro
2017-02-01
Urban road dust can potentially have adverse effects on ecosystems if it is discharged into receiving waters. This study investigated the causes of highway road dust toxicity by performing sediment toxicity identification evaluation (TIE) tests with an estuarine amphipod, Grandidierella japonica. In addition to metals and polycyclic aromatic hydrocarbons, which are traditionally considered to be the major toxicants in road runoff, we focused on dissolved nicotine as a causative toxicant. The sediment TIE results suggested that organic contaminants contributed to the majority of toxicity, and that the contribution of unionized nicotine to the toxicity was the highest among the chemicals considered. However, additional mortality tests with 48-h pulsed nicotine exposure demonstrated that exposure to nicotine at the same concentration as the baseline level in TIE tests did not cause significant 10-day amphipod mortality. Thus, the road dust toxicity could not be explained only by unionized nicotine, thereby suggesting contributions from joint effects of the measured toxicants and the presence of other unmeasured factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Jae Woo
2012-01-01
This article schematically reviews the clinical features, diagnostic approaches to, and toxicological implications of toxic encephalopathy. The review will focus on the most significant occupational causes of toxic encephalopathy. Chronic toxic encephalopathy, cerebellar syndrome, parkinsonism, and vascular encephalopathy are commonly encountered clinical syndromes of toxic encephalopathy. Few neurotoxins cause patients to present with pathognomonic neurological syndromes. The symptoms and signs of toxic encephalopathy may be mimicked by many psychiatric, metabolic, inflammatory, neoplastic, and degenerative diseases of the nervous system. Thus, the importance of good history-taking that considers exposure and a comprehensive neurological examination cannot be overemphasized in the diagnosis of toxic encephalopathy. Neuropsychological testing and neuroimaging typically play ancillary roles. The recognition of toxic encephalopathy is important because the correct diagnosis of occupational disease can prevent others (e.g., workers at the same worksite) from further harm by reducing their exposure to the toxin, and also often provides some indication of prognosis. Physicians must therefore be aware of the typical signs and symptoms of toxic encephalopathy, and close collaborations between neurologists and occupational physicians are needed to determine whether neurological disorders are related to occupational neurotoxin exposure. PMID:23251840
Toxicity evaluation of the process effluent streams of a petrochemical industry.
Reis, J L R; Dezotti, M; Sant'Anna, G L
2007-02-01
The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.
Ma, Hongbo; Wallis, Lindsay K; Diamond, Steve; Li, Shibin; Canas-Carrell, Jaclyn; Parra, Amanda
2014-10-01
The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiation (SSR). Photocatalytic ROS generation and particle dissolution were measured on a time-course basis. Two toxicity mitigation assays using CaCl2 and N-acetylcysteine were performed to differentiate the relative importance of these two modes of action. Enhanced ZnO nanoparticle toxicity under SSR was in parallel with photocatalytic ROS generation and enhanced particle dissolution. Toxicity mitigation by CaCl2 to a less extent under SSR than under lab light demonstrates the role of ROS generation in ZnO toxicity. Toxicity mitigation by N-acetylcysteine under both irradiation conditions confirms the role of particle dissolution and ROS generation. These findings demonstrate the importance of considering environmental solar UV radiation when assessing ZnO nanoparticle toxicity and risk in aquatic systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen
2005-11-01
The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.
Naidoo, V; du Preez, M; Rakgotho, T; Odhav, B; Buckley, C A
2002-01-01
Industrial effluents and leachates from hazardous landfill sites were tested for toxicity using the anaerobic toxicity assay. This test was done on several industrial effluents (brewery spent grain effluent, a chemical industry effluent, size effluent), and several hazardous landfill leachates giving vastly different toxicity results. The brewery effluent, spent grain effluent and size effluent were found to be less toxic than the chemical effluent and hazardous landfill leachate samples. The chemical industry effluent was found to be most toxic. Leachate samples from the H:h classified hazardous landfill site were found to be less toxic at high concentrations (40% (v/v)) while the H:H hazardous landfill leachate samples were found to be more toxic even at low concentrations of 4% (v/v). The 30 d biochemical methane potential tests revealed that the brewery effluent, organic spent grain effluent and size effluent were 89%, 63%, and 68% biodegradable, respectively. The leachate from Holfontein hazardous landfill site was least biodegradable (19%) while the chemical effluent and Aloes leachate were 29% and 32% biodegradable under anaerobic conditions.
Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines
Ingersoll, C.G.; MacDonald, D.D.; Wang, N.; Crane, J.L.; Field, L.J.; Haverland, P.S.; Kemble, N.E.; Lindskoog, R.A.; Severn, C.; Smorong, D.E.
2001-01-01
The objectives of this study were to compare approaches for evaluating the combined effects of chemical mixtures on the toxicity in field-collected sediments and to evaluate the ability of consensus-based probable effect concentrations (PECs) to predict toxicity in a freshwater database on both a national and regional geographic basis. A database was developed from 92 published reports, which included a total of 1,657 samples with high-quality matching sediment toxicity and chemistry data from across North America. The database was comprised primarily of 10- to 14-day or 28- to 42-day toxicity tests with the amphipod Hyalella azteca (designated as the HA10 or HA28 tests) and 10- to 14-day toxicity tests with the midges Chironomus tentans or C. riparius (designated as the CS10 test). Mean PEC quotients were calculated to provide an overall measure of chemical contamination and to support an evaluation of the combined effects of multiple contaminants in sediments. There was an overall increase in the incidence of toxicity with an increase in the mean quotients in all three tests. A consistent increase in the toxicity in all three tests occurred at a mean quotient > 0.5, however, the overall incidence of toxicity was greater in the HA28 test compared to the short-term tests. The longer-term tests, in which survival and growth are measured, tend to be more sensitive than the shorter-term tests, with acute to chronic ratios on the order of six indicated for H. azteca. Different patterns were observed among the various procedures used to calculate mean quotients. For example, in the HA28 test, a relatively abrupt increase in toxicity was associated with elevated polychlorinated biphenyls (PCBs) alone or with elevated polycyclic aromatic hydrocarbons (PAHs) alone, compared to the pattern of a gradual increase in toxicity observed with quotients calculated using a combination of metals, PAHs, and PCBs. These analyses indicate that the different patterns in toxicity may be the result of unique chemical signals associated with individual contaminants in samples. Though mean quotients can be used to classify samples as toxic or nontoxic, individual quotients might be useful in helping identify substances that may be causing or substantially contributing to the observed toxicity. An increase in the incidence of toxicity was observed with increasing mean quotients within most of the regions, basins, and areas in North America for all three toxicity tests. The results of these analyses indicate that the consensus-based PECs can be used to reliably predict toxicity of sediments on both a regional and national basis.
Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)
Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.
Toxicity Relationship Analysis Program (TRAP) Version 1.21
The Toxicity Relationship Analysis Program (TRAP) fits a sigmoidal toxic response versus exposure variable relationship to standard toxicity test data. It will analyze binary (e.g., survival) or continuous (e.g., growth, reproduction) biological effect variables as a function o...
Photoenhanced Toxicity of Oil to Larval Fish
Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. Oil products, weathered oils, combusted oil products, and specific polycyclic aromatic compounds in oil ha...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
...) 886-6030. 4. Mail: Carlton T. Nash, Chief, Toxics and Global Atmosphere Section, Air Toxics and..., Illinois 60604. 5. Hand Delivery: Carlton T. Nash, Chief, Toxics and Global Atmosphere Section, Air Toxics...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
..., Chief, Toxics and Global Atmosphere Section, Air Toxics and Assessment Branch (AT-18J), U.S.... Nash, Chief, Toxics and Global Atmosphere Section, Air Toxics and Assessment Branch (AT-18J), U.S...
RESULTS OF APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS
Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation TIE) methods for contaminated sediments and are focusing on three toxicant groups (amm...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 2007). 2. Acute Toxicity to Daphnia: ASTM E 729-96 (Reapproved 2007). 3. Toxicity to Plants (Algae...). 2. Toxicity to Plants (Algae): ASTM E 1218-04 e1 The following are the special conditions for C1, C2... (Reapproved 2007). 2. Toxicity to Plants (Algae): ASTM E 1218-04 e1 Test Group 2 for C2: 1. Chronic Toxicity...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 2007). 2. Acute Toxicity to Daphnia: ASTM E 729-96 (Reapproved 2007). 3. Toxicity to Plants (Algae...). 2. Toxicity to Plants (Algae): ASTM E 1218-04 e1 The following are the special conditions for C1, C2... (Reapproved 2007). 2. Toxicity to Plants (Algae): ASTM E 1218-04 e1 Test Group 2 for C2: 1. Chronic Toxicity...
Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird
van Gils, Jan A.; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J.; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis
2013-01-01
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative. PMID:23740782
Bergsten-Torralba, L.R.; Nishikawa, M.M.; Baptista, D.F.; Magalhães, D.P.; da Silva, M.
2009-01-01
The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198), Reactive Blue 214 (RB214), Reactive Blue 21 (RB21) and the mixture of the three dyes (MXD) by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50). P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments. PMID:24031428
Monitoring late-onset toxicities in phase I trials using predicted risks
Bekele, B. Nebiyou; Ji, Yuan; Shen, Yu; Thall, Peter F.
2008-01-01
Late-onset (LO) toxicities are a serious concern in many phase I trials. Since most dose-limiting toxicities occur soon after therapy begins, most dose-finding methods use a binary indicator of toxicity occurring within a short initial time period. If an agent causes LO toxicities, however, an undesirably large number of patients may be treated at toxic doses before any toxicities are observed. A method addressing this problem is the time-to-event continual reassessment method (TITE-CRM, Cheung and Chappell, 2000). We propose a Bayesian dose-finding method similar to the TITE-CRM in which doses are chosen using time-to-toxicity data. The new aspect of our method is a set of rules, based on predictive probabilities, that temporarily suspend accrual if the risk of toxicity at prospective doses for future patients is unacceptably high. If additional follow-up data reduce the predicted risk of toxicity to an acceptable level, then accrual is restarted, and this process may be repeated several times during the trial. A simulation study shows that the proposed method provides a greater degree of safety than the TITE-CRM, while still reliably choosing the preferred dose. This advantage increases with accrual rate, but the price of this additional safety is that the trial takes longer to complete on average. PMID:18084008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snell, T.W.; Carmona, M.J.
Cyclically parthenogenetic zooplankters like rotifers are important tools for assessing toxicity in aquatic environments. Sexual reproduction is an essential component of rotifer life cycles, but current toxicity tests utilize only asexual reproduction. The authors compared the effects of four toxicants on asexual and sexual reproduction of the rotifer Brachionus calyciflorus. Toxicants had a differential effect on sexual and asexual reproduction, with sexual reproduction consistently the most sensitive. Concentrations of 0.2 {mu}g/ml PCP (sodium pentachlorophenate) had no effect on the asexual reproductive rate, but significantly reduced sexual reproduction. Likewise, chlorpyrifos concentrations of 0.3 {mu}g/ml had no significant effect on asexual reproduction,more » but sexual reproduction was significantly reduced. There was no difference in NOECs, LOECs, and chronic values for asexual and sexual reproduction for cadmium and naphthol tests. However, comparison of toxicant effect levels revealed that sexual reproduction was more strongly reduced at each toxicant concentration. The four toxicants tested inhibited sexual reproduction 2 to 68 times more than asexual reproduction at the lowest observed effect concentrations. Toxicants inhibited sexual reproduction in its initial step: sexual female production. Because sexual reproduction is more sensitive, toxicity tests based exclusively on asexual reproduction may not be protective of rotifer life cycles.« less
Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird.
van Gils, Jan A; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis
2013-07-22
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.
Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P
2017-11-01
Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.
SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...
Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, L; Zhi, W; Liu, YS
Lead (Pb) is a prominent toxic metal in natural and engineered systems. Current knowledge on Pb toxicity to the activated sludge has been limited to short-term (<= 24 h) toxicity. The effect of extended Pb exposure on process performance, bacterial viability, and community compositions remains unknown. We quantified the 24-h and 7-day Pb toxicity to chemical oxygen demand (COD) and NH3-N removal, bacterial viability, and community compositions using lab-scale experiments. Our results showed that 7-day toxicity was significantly higher than the short-term 24-h toxicity. Ammonia-oxidizing bacteria were more susceptible than the heterotrophs to Pb toxicity. The specific oxygen uptake ratemore » responded quickly to Pb addition and could serve as a rapid indicator for detecting Pb pollutions. Microbial viability decreased linearly with the amount of added Pb at extended exposure. The bacterial community diversity was markedly reduced with elevated Pb concentrations. Surface analysis suggested that the adsorbed form of Pb could have contributed to its toxicity along with the dissolved form. Our study provides for the first time a systematic investigation of the effect of extended exposure of Pb on the performance and microbiology of aerobic treatment processes, and it indicates that long-term Pb toxicity has been underappreciated by previous studies.« less
Complex Mixture-Associated Hormesis and Toxicity: The Case of Leather Tanning Industry
Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco
2008-01-01
A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process. PMID:19088903
Complex mixture-associated hormesis and toxicity: the case of leather tanning industry.
Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco
2008-01-01
A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels > or =1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels > or =1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.
Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi
2016-09-01
Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lammer, E; Carr, G J; Wendler, K; Rawlings, J M; Belanger, S E; Braunbeck, Th
2009-03-01
The fish acute toxicity test is a mandatory component in the base set of data requirements for ecotoxicity testing. The fish acute toxicity test is not compatible with most current animal welfare legislation because mortality is the primary endpoint and it is often hypothesized that fish suffer distress and perhaps pain. Animal alternative considerations have also been incorporated into new European REACH regulations through strong advocacy for the reduction of testing with live animals. One of the most promising alternative approaches to classical acute fish toxicity testing with live fish is the fish embryo toxicity (FET) test. The FET has been a mandatory component in routine whole effluent testing in Germany since 2005 and has already been standardized at the international level. In order to analyze the applicability of the FET also in chemical testing, a comparative re-evaluation of both fish and fish embryo toxicity data was carried out for a total of 143 substances, and statistical approaches were developed to evaluate the correlation between fish and fish embryo toxicity data. Results confirm that fish embryo tests are neither better nor worse than acute fish toxicity tests and provide strong scientific support for the FET as a surrogate for the acute fish toxicity test.
Exploring the Impact of Toxic Attitudes and a Toxic Environment on the Veterinary Healthcare Team.
Moore, Irene C; Coe, Jason B; Adams, Cindy L; Conlon, Peter D; Sargeant, Jan M
2015-01-01
The objective of this qualitative study was to compare veterinarians' and Registered Veterinary Technicians' (RVT's) perceptions of the veterinary healthcare team with respect to the impact of toxic attitudes and a toxic environment. Focus group interviews using a semi-structured interview guide and follow up probes were held with four veterinarian groups (23 companion animal veterinarians) and four Registered Veterinary Technician groups (26 RVTs). Thematic analysis of the discussions indicated both veterinarian and RVT participants felt team members with manifestations of toxic attitudes negatively impacted veterinary team function. These manifestations included people being disrespectful, being resistant to change, always wanting to be the "go to person," avoiding conflict, and lacking motivation. When conflict was ignored, or when people with toxic attitudes were not addressed, a toxic environment often resulted. A toxic environment sometimes manifested when "broken communication and tension between staff members" occurred as a result of employees lacking confidence, skills, or knowledge not being managed properly. It also occurred when employees did not feel appreciated, when there was difficulty coping with turnover, and when there were conflicting demands. The presence of people manifesting a toxic attitude was a source of frustration for both veterinarian and RVT participants. Prompt and consistent attention to negative behaviors is recommended to reduce the development of a toxic environment.
Russo, Giacomo; Capuozzo, Antonella; Barbato, Francesco; Irace, Carlo; Santamaria, Rita; Grumetto, Lucia
2018-06-01
Bisphenol A (BPA) is a chemical used in numerous industrial applications. Due to its well ascertained toxicity as endocrine disruptor, industries have started to replace it with other bisphenols whose alleged greater safety is scarcely supported by literature studies. In this study, the toxicity of seven BPA analogues was evaluated using both in silico and in vitro techniques, as compared to BPA toxicity. Furthermore, their affinity indexes for phospholipids (i.e. phospholipophilicity) were determined by immobilized artificial membrane liquid chromatography (IAM-LC) and possible relationships with in vitro toxic activity were also investigated. The results on four different cell cultures yielded similar ranking of toxicity for the bisphenols considered, with IC 50 values confirming their poor acute toxicity. As compared to BPA, bisphenol AF, bisphenol B, bisphenol M, and bisphenol A diglycidyl ether resulted more toxic, while bisphenol S, bisphenol F and bisphenol E were found as the less toxic congeners. These results are partly consistent with the scale of phospholipid affinity showing that toxicity increases at increasing membrane affinity. Therefore, phospholipophilicity determination can be assumed as a useful preliminary tool to select less toxic congeners to surrogate BPA in industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Establishment of a bioassay for the toxicity evaluation and quality control of Aconitum herbs.
Qin, Yi; Wang, Jia-bo; Zhao, Yan-ling; Shan, Li-mei; Li, Bao-cai; Fang, Fang; Jin, Cheng; Xiao, Xiao-he
2012-01-15
Currently, no bioassay is available for evaluating the toxicity of Aconitum herbs, which are well known for their lethal cardiotoxicity and neurotoxicity. In this study, we established a bioassay to evaluate the toxicity of Aconitum herbs. Test sample and standard solutions were administered to rats by intravenous infusion to determine their minimum lethal doses (MLD). Toxic potency was calculated by comparing the MLD. The experimental conditions of the method were optimized and standardized to ensure the precision and reliability of the bioassay. The application of the standardized bioassay was then tested by analyzing 18 samples of Aconitum herbs. Additionally, three major toxic alkaloids (aconitine, mesaconitine, and hypaconitine) in Aconitum herbs were analyzed using a liquid chromatographic method, which is the current method of choice for evaluating the toxicity of Aconitum herbs. We found that for all Aconitum herbs, the total toxicity of the extract was greater than the toxicity of the three alkaloids. Therefore, these three alkaloids failed to account for the total toxicity of Aconitum herbs. Compared with individual chemical analysis methods, the chief advantage of the bioassay is that it characterizes the total toxicity of Aconitum herbs. An incorrect toxicity evaluation caused by quantitative analysis of the three alkaloids might be effectively avoided by performing this bioassay. This study revealed that the bioassay is a powerful method for the safety assessment of Aconitum herbs. Copyright © 2011 Elsevier B.V. All rights reserved.
Mixture toxicity of wood preservative products in the fish embryo toxicity test.
Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja
2012-06-01
Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.
McAdam, Kevin; Murphy, James; Eldridge, Alison; Meredith, Clive; Proctor, Christopher
2018-06-01
The concept of a risk continuum for tobacco and nicotine products has been proposed, which differentiates products according to their propensity to reduce toxicant exposure and risk. Cigarettes are deemed the most risky and medicinal nicotine the least. We assessed whether a Reduced-Toxicant Prototype (RTP) cigarette could sufficiently reduce exposure to toxicants versus conventional cigarettes to be considered a distinct category in the risk continuum. We present findings from both pre-clinical and clinical studies in order to examine the potential for reduced smoke toxicant emissions to lower health risks associated with cigarette smoking. We conclude that current toxicant reducing technologies are unable to reduce toxicant emissions sufficiently to manifest beneficial disease-relevant changes in smokers. These findings point to a minimum toxicant exposure standard that future potentially reduced risk products would need to meet to be considered for full biological assessment. The RTP met WHO TobReg proposed limits on cigarette toxicant emissions, however the absence of beneficial disease relevant changes in smokers after six months reduced toxicant cigarette use, does not provide evidence that these regulatory proposals will positively impact risks of smoking related diseases. Greater toxicant reductions, such as those that can be achieved in next generation products e.g. tobacco heating products and electronic cigarettes are likely to be necessary to clearly reduce risks compared with conventional cigarettes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Deanovic, Linda A; Stillway, Marie; Hammock, Bruce G; Fong, Stephanie; Werner, Inge
2018-02-01
Pyrethroid insecticides are commonly used in pest control and are present at toxic concentrations in surface waters of agricultural and urban areas worldwide. Monitoring is challenging as a result of their high hydrophobicity and low toxicity thresholds, which often fall below the analytical methods detection limits (MDLs). Standard daphnid bioassays used in surface water monitoring are not sensitive enough to protect more susceptible invertebrate species such as the amphipod Hyalella azteca and chemical loss during toxicity testing is of concern. In the present study, we quantified toxicity loss during storage and testing, using both natural and synthetic water, and presented a tool to enhance toxic signal strength for improved sensitivity of H. azteca toxicity tests. The average half-life during storage in low-density polyethylene (LDPE) cubitainers (Fisher Scientific) at 4 °C of 5 pyrethroids (permethrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, and esfenvalerate) and one organophosphate (chlorpyrifos; used as reference) was 1.4 d, and piperonyl butoxide (PBO) proved an effective tool to potentiate toxicity. We conclude that toxicity tests on ambient water samples containing these hydrophobic insecticides are likely to underestimate toxicity present in the field, and mimic short pulse rather than continuous exposures. Where these chemicals are of concern, the addition of PBO during testing can yield valuable information on their presence or absence. Environ Toxicol Chem 2018;37:462-472. © 2017 SETAC. © 2017 SETAC.
Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition
Deese, Rachel D.; LeBlanc, Madeline R.
2016-01-01
Surfactants can be extremely toxic to aquatic species and are introduced to the environment in a variety of ways. It is thus important to understand how other environmental constituents, in this case humic acids (HAs), may alter the toxicity of anthropogenic surfactants. Hatching and mortality assays of Artemia Franciscana were performed for three different toxic surfactants: Triton X-100 (Tx-100, non-ionic), cetylpyridinium chloride (CPC, cationic), and sodium dodecyl sulfate (SDS, anionic). Humic acids of varying composition and concentrations were added to the assays to determine the toxicity mitigating ability of the HAs. Tx-100 had a significant toxic effect on Artemia mortality rates and HAs from terrestrial sources were able to mitigate the toxicity, but an aquatic HA did not. CPC and SDS limited hatching success of the Artemia and, as HAs were added, the hatching percentages increased for all HA sources, indicating toxicity mitigation. In order to determine which functional groups within HAs were responsible for the interaction with the surfactants, the HAs were chemically modified by: (i) bleaching to reduce aromatics, (ii) Soxhlet extraction to reduce lipids, and (iii) acid hydrolysis to reduce O- and N-alkyl groups. Although most of the modified HAs had some toxicity mitigating ability for each of the surfactants, there were two notable differences: 1) the lipid-extracted HA did not reduce the toxicity of Tx-100 and 2) the bleached HA had a lower toxicity mitigating ability for CPC than the other modified HAs. PMID:27453688
SAR STUDY OF NASAL TOXICITY: LESSONS FOR MODELING SMALL TOXICITY DATASETS
Most toxicity data, particularly from whole animal bioassays, are generated without the needs or capabilities of structure-activity relationship (SAR) modeling in mind. Some toxicity endpoints have been of sufficient regulatory concern to warrant large scale testing efforts (e.g....
The goal of this document is to assist the regulated community to make proper utilization of the Toxicity Characteristic Leaching Procedure (TCLP) to demonstrate compliance with the Toxicity Characteristic (TC) and Land Ban Regulations.
Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...
Photoenhanced toxicity of oil to larval fish - abstract
Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. A variety of oil products, weathered and chemically dispersed oils, and specific polycyclic aromatic compo...
Phthalate esters and reproductive toxicity the presentation described the uses of phthalates, the toxicity to mammals with a focus on reproductive toxicity and the potency of these chemicals to disrupt mammalian reproductive development in utero
Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on ...
Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish
Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds in oil. Phototoxicity is observed as a twofold to greater than 1000-fold increase in chemical toxicity to aquati...
40 CFR 401.15 - Toxic pollutants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Toxic pollutants. 401.15 Section 401.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.15 Toxic pollutants. The following comprise the list of toxic pollutants...
Development of whole sediment toxicity identification and evaluation (TIEs) methods has been under way for approximately four years. These methods are necessary to define cause and effect relationships in toxic sediments during ecological risk assessments, remediation and disposa...
GENE INDUCTION STUDIES AND TOXICITY OF CHEMICAL MIXTURES
As part of its mixtures program the Agency for Toxic Substances and Disease Registry (ATSDR) supports in vitro and limited in vivo toxicity testing to further our understanding of the toxicity and health effects of chemical mixtures. There are increasing concerns that environment...
Effect of test conditions on relative toxicity rankings of fifteen materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.
1977-01-01
Fifteen materials were evaluated for relative toxicity of pyrolysis effluents, using different test conditions in the USF methodology. Wool fabrics were consistently among the most toxic materials, and polystyrene and polychloroprene flexible foam were consistently among the least toxic materials.
Multigeneration reproduction studies are used to characterize parental and offspring systemic toxicity, as well as reproductive toxicity of pesticides, industrial chemicals and pharmaceuticals. Results from 329 multigeneration studies on 316 chemicals have been digitized into sta...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...
Integration of genomic endpoints into toxicity identification evaluations
Toxicity identification and evaluations (TIEs) use physical/chemical manipulation of a sample to isolate or change the potency of different groups of toxicants potentially present in a sample. Organisms are then exposed to these fractions to determine if their toxicity has change...
Relative toxicity of pyrolysis products of some materials used in home furnishings
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Furst, A.
1976-01-01
Seventy samples of cushioning and upholstery materials used in home furnishings were evaluated for relative toxicity by means of the USF/NASA toxicity screening test. The materials were variably toxic under pyrolysis conditions, and this test appeared suitable for discriminating among them on the bases of time to incapacitation and time to death. The addition of fire retardants to these materials to comply with flammability regulations either had no significant effect on toxicity, or resulted in a reduction in relative toxicity. The modification of materials to comply with California upholstered furniture flammability regulations appears to have resulted in desirable limitations on toxicity. Fifty percent of the 70 materials tested caused incapacitation earlier than did the materials in compliance, and 30 percent caused death earlier.
Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salt, D.E.; Blaylock, M.; Kumar, N. P.B.A.
1995-05-01
Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction: the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration: the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization: the use of plants to eliminate the bioavailability of toxic metals in soils. Biological mechanisms of toxic metal uptake,more » translocation and resistance as well as strategies for improving phytoremediation are also discussed. 83 refs., 4 figs., 1 tab.« less
Lead Toxicity in the Pediatric Patient with Sickle Cell Disease: Unique Risks and Management.
Jung, Josephine Misun; Peddinti, Radhika
2018-01-01
Lead toxicity is the result of lead ingestion, one of the most common ingestions in the pediatric population. Nationwide and statewide efforts to recognize and curtail this epidemic have led to declining rates of toxicity. In patients with sickle cell disease (SCD), lead toxicity can be an elusive diagnosis due to overlapping symptom profiles, and inconsistent follow-up with a primary care physician can make the diagnosis even more difficult. In this article, two illustrative cases of lead toxicity in patients with SCD are described. The discussion reviews the current risk factors, screening, and inpatient management of lead toxicity, as well as describing the unique and sometimes confounding presentations of lead toxicity versus sickle cell crisis. [Pediatr Ann. 2018;47(1):e36-e40.]. Copyright 2018, SLACK Incorporated.
Campbell, Jared M; Bateman, Emma; Peters, Micah Dj; Bowen, Joanne M; Keefe, Dorothy M; Stephenson, Matthew D
2016-03-01
Fluoropyrimidine (FU) and platinum-based chemotherapies are greatly complicated by their associated toxicities. This umbrella systematic review synthesized all systematic reviews that investigated associations between germline variations and toxicity, with the aim of informing personalized medicine. Systematic reviews are important in pharmacogenetics where false positives are common. Four systematic reviews were identified for FU-induced toxicity and three for platinum. Polymorphisms of DPYD and TYMS, but not MTHFR, were statistically significantly associated with FU-induced toxicity (although only DPYD had clinical significance). For platinum, GSTP1 was found to not be associated with toxicity. This umbrella systematic review has synthesized the best available evidence on the pharmacogenetics of FU and platinum toxicity. It provides a useful reference for clinicians and identifies important research gaps.
Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph Bidwell; Jonathan Fisher; Naomi Cooper
2008-03-31
This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were alsomore » analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was limited to sediment depths of 10 cm or greater, which is outside of the primary zone of biological activity. Further, exposure to site sediments did not have any effects on test organisms, and macroinvertebrate communities did not indicate impairment at the oil production site as compared to a reference site. In situ experiments with H. azteca and C. fluminea, indicated a sublethal site effect (on growth of both species), but these could not be definitively linked with produced water infiltration. Severe weather conditions (drought followed by flooding) negatively influenced the intensity of lake sampling aimed at delineating produced water infiltration. Due to the lack of clear evidence of produced water infiltration into the sub-littoral zone of the lake, it was not possible to assess whether the laboratory bioassays of produced water effectively indicate risk in the receiving system. However, the acutely toxic nature of the produced water and general lack of biological effects in the lake at the oil production site suggest minimal to no produced water infiltration into surficial lake sediments and the near-shore water column. This study was able to demonstrate the utility of ion toxicity modeling to support data from toxicity identification evaluations aimed at identifying key toxic constituents in produced water. This information could be used to prioritize options for treating produced water in order to reduce toxic constituents and enhance options for reuse. The study also demonstrated how geographic information systems, toxicity modeling, and toxicity assessment could be used to facilitate future site assessments.« less
Neves, Raquel A. F.; Fernandes, Tainá; dos Santos, Luciano Neves; Nascimento, Silvia M.
2017-01-01
Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs. PMID:28388672
Neves, Raquel A F; Fernandes, Tainá; Santos, Luciano Neves Dos; Nascimento, Silvia M
2017-01-01
Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.
Wildhaber, M.L.; Schmitt, C.J.
1998-01-01
We evaluated the toxic-units model developed by Wildhaber and Schmitt (1996) as a predictor of indices of mean tolerance to pollution (i.e., Lenat, 1993; Hilsenhoff, 1987) and other benthic community indices from Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls – PCBs, polycyclic aromatic hydrocarbons – PAHs, pesticides, chlorinated dioxins, and metals). Sediment toxic units were defined as the ratio of the estimated pore-water concentration of a contaminant to its chronic toxicity as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC) or other applicable standard. The total hazard of a sediment to aquatic life was assessed by summing toxic units for all contaminants quantified. Among the benthic community metrics evaluated, total toxic units were most closely correlated with Lenat's (1993) and Hilsenhoff's (1987) indices of community tolerance (TL and TH, respectively); toxic units accounted for 42% TL and 53% TH of variability in community tolerance as measured by Ponar grabs. In contrast, taxonomic richness and Shannon-Wiener diversity were not correlated (P > 0.05) with toxic units. Substitution of order- or family-level identifications for lowest possible (mostly genus- or species-) level identifications in the calculation of TL and TH indices weakened the relationships with toxic units. Tolerance values based on order- and family-level identifications of benthos for artificial substrate samples were more strongly correlated with toxic units than tolerance values for benthos from Ponar grabs. The ability of the toxic-units model to predict the other two components (i.e., laboratory-measured sediment toxicity and benthic community composition) of the Sediment Quality Triad (SQT) may obviate the need for the SQT in some situations.
Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.
Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi
2013-10-01
Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.
Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan
2017-11-01
Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling
2017-10-01
The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.
Albuquerque, Kevin; Rodgers, Kellie; Spangler, Ann; Rahimi, Asal; Willett, DuWayne
2018-03-01
The on-treatment visit (OTV) for radiation oncology is essential for patient management. Radiation toxicities recorded during the OTV may be inconsistent because of the use of free text and the lack of treatment site-specific templates. We developed a radiation oncology toxicity recording instrument (ROTOX) in a health system electronic medical record (EMR). Our aims were to assess improvement in documentation of toxicities and to develop clinic toxicity benchmarks. A ROTOX that was based on National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0) with flow-sheet functionality was developed in the EMR. Improvement in documentation was assessed at various time intervals. High-grade toxicities (ie, grade ≥ 3 by CTCAE) by site were audited to develop benchmarks and to track nursing and physician actions taken in response to these. A random sample of OTV notes from each clinic physician before ROTOX implementation was reviewed and assigned a numerical document quality score (DQS) that was based on completeness and comprehensiveness of toxicity grading. The mean DQS improved from an initial level of 41% to 99% (of the maximum possible DQS) when resampled at 6 months post-ROTOX. This high-level DQS was maintained 3 years after ROTOX implementation at 96% of the maximum. For months 7 to 9 after implementation (during a 3-month period), toxicity grading was recorded in 4,443 OTVs for 698 unique patients; 107 episodes of high-grade toxicity were identified during this period, and toxicity-specific intervention was documented in 95%. An EMR-based ROTOX enables consistent recording of treatment toxicity. In a uniform sample of patients, local population toxicity benchmarks can be developed, and clinic response can be tracked.
Analysis of Toxic and Non-Toxic Alexandrium (Dinophyceae) Species Using Ribosomal RNA Gene Sequences
1993-02-01
Therriault, J.-C. (1988). Cladistic analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonyaulax. Botanica Marina 31: 39- 51. 8... Botanica Marina 34: 575-587. Halegraeff, G. M., and Bolch, C.J. (1992). Transport of toxic dinoflagellate cysts via ship’s ballast water: implications...analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonv-u.!a,. Botanica Marina 31: 39-51. Curran, J., Baillie, D.L
Reclassification of Materials Listed as Transportation Health Hazards
1972-08-01
f. Hyg., 7:233, 1887. 152.3 Prentiss, A. M., Chemicals in War, McGrall-Hill, N. Y., 1937. A-183 TOXICITY DATA SHEET COMPOUND: CHLORINE TRIFLUORIDE ...l%3 Chlorine Trifluoride to # 161 Diborane Highly Toxic Extrenmely Toxic 169 Fluorine 171 Hlydrazine. anhydrous Toxic- Highly Toxic. 1I 172...were run on mice and rats exposed to chlorine , anhy lrous ammonia and hydrogen sulfide. Results have been included and reflected in the
Translation of Toxicity Data into CW Agent Toxicity Estimates
2003-07-01
UNLIMITED UNCLASSIFIED/UNLIMITEDPrepared by Douglas R. Sommerville, PE US Army ECBC, APG, MD Dependence of Toxic Effect on Exposure Time Inhalation (IH...to longer exposure durations. Toxicity estimates for exposure durations ranging from 2 to 360 minutes have been derived for six agents (GA, GB, GD...individuals having effects greater in severity than the defining effect of the ECTYY Cn T = k Toxic load equation 5 6 Edgewood Chemical Biological Center
The Preparation of Some Compounds for Testing as Insect Repellents
1945-12-28
have been submitted for 90-day subacute toxicity studies « 0-7139, 0-7209 and 0-7227 have passed acute toxicity tests (0- 7227 with reservations...but have not been submitted for 90-day subacute toxicity studies , 0-7392, 0-7430 and 0-13058 have been submitted for acute toxicity tests. Forty-fivo...evaluate adequately the promising candidate insect repellents prepared under this contract. Some toxicity studies as indicated above are being made
McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.
1996-01-01
Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.
Smith, Kathleen S.; Ranville, James F.; Adams, M.; Choate, LaDonna M.; Church, Stan E.; Fey, David L.; Wanty, Richard B.; Crock, James G.
2006-01-01
The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory water-quality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site- specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas.
Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T
2017-10-01
Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.
Thaler, Josef; Karthaus, Meinolf; Mineur, Laurent; Greil, Richard; Letocha, Henry; Hofheinz, Ralf; Fernebro, Eva; Gamelin, Erick; Baños, Ana; Köhne, Claus-Henning
2012-09-29
Integument-related toxicities are common during epidermal growth factor receptor (EGFR)-targeted therapy. Panitumumab is a fully human monoclonal antibody targeting the EGFR that significantly improves progression-free survival when added to chemotherapy in patients with metastatic colorectal cancer who have wild-type (WT) KRAS tumours. Primary efficacy and tolerability results from a phase II single-arm study of first-line panitumumab plus FOLFIRI in patients with metastatic colorectal cancer have been reported. Here we report additional descriptive tolerability and quality of life data from this trial. Integument-related toxicities and quality of life were analysed; toxicities were graded using modified National Cancer Institute Common Toxicity Criteria. Kaplan-Meier estimates of time to and duration of first integument-related toxicity were prepared. Quality of life was measured using EuroQoL EQ-5D and EORTC QLQ-C30. Best overall response was analysed by skin toxicity grade and baseline quality of life. Change in quality of life was analysed by skin toxicity severity. 154 patients were enrolled (WT KRAS n = 86; mutant KRAS n = 59); most (98%) experienced integument-related toxicities (most commonly rash [42%], dry skin [40%] and acne [36%]). Median time to first integument-related toxicity was 8 days; median duration was 334 days. Overall, proportionally more patients with grade 2+ skin toxicity responded (56%) compared with those with grade 0/1 (29%). Mean overall EQ-5D health state index scores (0.81 vs. 0.78), health rating scores (72.5 vs. 71.0) and QLQ-C30 global health status scores (65.8 vs. 66.7) were comparable at baseline vs. safety follow-up (8 weeks after completion), respectively and appeared unaffected by skin toxicity severity. First-line panitumumab plus FOLFIRI has acceptable tolerability and appears to have little impact on quality of life, despite the high incidence of integument-related toxicity. ClinicalTrials.gov NCT00508404.
Multivariate analysis of toxicity experimental results of environmental endpoints. (FutureToxII)
The toxicity of hundreds of chemicals have been assessed in laboratory animal studies through EPA chemical regulation and toxicological research. Currently, over 5000 laboratory animal toxicity studies have been collected in the Toxicity Reference Database (ToxRefDB). In addition...
TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES
Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...
TOXICITY OF SILVER NANOPARTICLES TO DAPHNIA MAGNA
Relatively little is known regarding toxicity of nanoparticles in the environment. It is widely assumed that the toxicity of nanoparticles will be less than that of their metallic ions. Also the effect of organics on metal toxicity is well established. Presented here are the resu...
40 CFR 372.45 - Notification about toxic chemicals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...
40 CFR 372.45 - Notification about toxic chemicals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...
A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...
Review: Endogenously Produced Volatiles for In Vitro Toxicity Testing Using Cell Lines
Due to the approximately 86,000 chemicals registered under the Toxic Substances Control Act and increasing ethical concerns regarding animal testing, it is not economically or technically feasible to screen every registered chemical for toxicity using animal-based toxicity assays...
DETECTION OF TOXICANTS ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK
A critical step prior to reoccupation of any facility following a chemical attack will be the monitoring of toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after decontamination...
40 CFR 372.45 - Notification about toxic chemicals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...
40 CFR 372.45 - Notification about toxic chemicals.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...
40 CFR 372.45 - Notification about toxic chemicals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...
Exposure Science for Chemical Prioritization and Toxicity Testing
Currently, a significant research effort is underway to apply new technologies to screen and prioritize chemicals for toxicity testing as well as to improve understanding of toxicity pathways (Dix et al. 2007, Toxicol Sci; NRC, 2007, Toxicity Testing in the 21st Century; Collins ...
TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS
We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...
TOXICITY IDENTIFICATION EVALUATION OF A WASTEWATER TREATMENT PLANT EFFLUENT WITH IONIC TOXICANTS
A publicly owned treatment works (POTW) effluent had been shown to cause chronic toxicity with the cladoceran, Ceriodaphnia dubia. We conducted A TIE and the weight-of-evidence approach identified chloride as a major contributor to the effluent toxicity. Several characterization...
HUMAN EXPOSURE MEASUREMENTS OF AIR TOXICS
EPA's air toxics program is moving toward a risk-based focus. The framework for such a focus was laid out in the National Air Toxics Program: Integrated Urban Strategy which included the requirement for EPA to conduct a National-Scale Air Toxics Assessment (NATA) of human expos...
Alves, L; Paixão, S M
2011-10-01
The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice.
Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru
2011-07-01
We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity.
Suppression of a NAC-Like Transcription Factor Gene Improves Boron-Toxicity Tolerance in Rice1
Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru
2011-01-01
We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity. PMID:21543724
NASA Technical Reports Server (NTRS)
Major, Michael A.
2000-01-01
In an effort to modernize and minimize hazards posed by the toxic components of missile propellant, the USACHPPM has been tasked to provide a comparison of the toxicity of compounds currently in use as missile propellants and the suite of compounds proposed to replace them. This report deals with the portion of this work concerning the toxicity of the organometallic compounds used in these formulations. Toxicity assessments of the organic compounds used in these formulations are published elsewhere. In general, toxicity data were available for all the metal compounds of concern or for closely related compounds that can serve as surrogates for the assessment of toxicity. We have high confidence in the reliability of these comparisons. This report is organized by element to provide the reader with an in-depth assessment with a minimum of redundancy. The narrative will first describe general concepts about the toxicity of each metal and then provide a summary of the toxicological information available for the specific compound.
Yi, Xianliang; Kang, Sung-Wook; Jung, Jinho
2010-06-15
Acute toxicity and feeding rate inhibition of effluent from a wastewater treatment plant and its adjacent stream water on Daphnia magna and Moina macrocopa were comparatively studied. The acute toxicity of the final effluent (FE) fluctuated greatly over the sampling period from January to August 2009. Toxicity identification results of the FE in July 2009 showed that Cu originating from the Fenton's reagent was likely a key toxicant. In addition, the feeding rate of both species was still inhibited by the FEs in which acute toxicity was not observed. These findings indicate that the feeding response would be a useful tool for monitoring sublethal effects of industrial effluents. For the acute toxicity test, M. macrocopa was more sensitive than D. magna, but the opposite result was true in the case of the feeding rate inhibition. These suggest that different species have different sensitivities to toxic chemicals and to the test methods. Copyright 2010 Elsevier B.V. All rights reserved.
[Research progress of health effect of polybrominated diphenyl ethers].
Zhai, J X; Tong, S L
2016-06-01
Polybrominated diphenyl ethers (PBDEs) was one of the most common brominated flame retardants, it has been widely used in products such as furnitures, polymer and plastical material, textiles, electronic products and building materials. PBDEs have potential effect such as neurodevelopmental toxicity, reproductive toxicity, thyroid toxicity, immunological toxicity, embryo toxicity, liver toxicity, teratogenicity and potential carcinogenicity. This paper was aimed to review the environmental exposure way, current level, neurotoxicity, neurodevelopmental toxicity and reproductive toxicity of PBDEs. In recent years, PBDEs has been detected in environment, wildlife animal and human body around the world, there were the significant differences of exposure levels of PBDEs. The most abundant congener were tetra-BDE or BDE-47, hexa-BDE or BDE-153, and deca-BDE or BDE-209. Prenatal exposure to PBDEs has great impact on the infants' neurodevelopmental function, induces changes in neuropsychological developmental behavior, decreases of congnition, motivation and attention. High levels of PBDEs have positive relationship with Luteinizing hormone levels, testis disfunction and children's cryptorchidism, and have negative relationship with sperm number and testis size.
Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients.
Al-Dasooqi, Noor; Bowen, Joanne M; Gibson, Rachel J; Sullivan, Thomas; Lees, Jude; Keefe, Dorothy M
2009-04-01
To characterise the gastrointestinal toxicities associated with Trastuzumab administration in HER2-overexpressing breast cancer patients. All patients (n = 46) who received Trastuzumab as a single agent or in conjunction with conventional anti-cancer treatment within the Royal Adelaide Hospital Cancer Centre from 2002-2007 were included in this study. A retrospective analysis of case-notes was conducted to investigate the toxicities associated with Trastuzumab. Trastuzumab as a single agent induced toxicities following 22% of administrations. Gastrointestinal toxicities were observed following 12% of administrations and included nausea and vomiting, diarrhoea, abdominal pain and bloating. However, other prominent toxicities that were not related to the gastrointestinal tract were also observed including fatigue and lung symptoms (10.4%). Elderly patients (> or =60 years) and those with metastatic disease experienced the highest frequency of toxicity. Trastuzumab induces a range of gastrointestinal toxicities in HER2-overexpressing breast cancer patients. These toxicities are separate to those caused by concurrent chemotherapy and/or radiotherapy.
U-937 Toxicity Testing of Lunar Dust Stimulant (JSC-1A-vf)
NASA Technical Reports Server (NTRS)
Bales, Kristyn; Hammond, Dianne; Wallace, William; Jeevarajan, Antony
2007-01-01
With NASA planning to extend the human presence to the moon by 2020, the dangers of the lunar environment must be assessed and appropriate countermeasures must be developed. Possible toxic effects of the lunar dust are of particular importance to human health because of the dust's chemical composition, reactivity, and small size. This project focuses on the toxicity of lunar dust stimulant (JSC-1A-vf), in both its active and passive forms, using U-937 human monocyte cells. Simulant was mechanically activated from its passive form by grinding, and its ability to produce hydroxyl radicals was determined. To test for toxicity, active and passivated simulant was diluted in media and applied to the cells for various time periods. Toxicity was then estimated using flow cytometry on the Guava Personal Cell Analysis system. Preliminary results suggest that passivated stimulant is slightly toxic, with an increase in toxicity for activated stimulant. Toxicity results may be affected by cell lysing behavior and quenching of hydroxyl radical production by the cell media.
Biedenbach, James M.; Carr, Robert S.
2011-01-01
Pore water from coastal beach and marsh sediments from the northern Gulf of Mexico, pre- and post-landfall of the Deepwater Horizon oil release, were collected and evaluated for toxicity with the sea urchin fertilization and embryological development assays. There were 17 pre-landfall samples and 49 post-landfall samples tested using both assays. Toxicity was determined in four pre-landfall sites and in seven post-landfall sites in one or both assays as compared to a known reference sediment pore-water sample collected in Aransas Bay, Texas. Further analysis and testing of five of the post-landfall toxic samples utilizing Toxicity Identification Evaluation techniques indicated that ammonia, and to a lesser extent metals, contributed to most, if not all, of the observed toxicity in four of the five samples. Results of one sample (MS-39) indicated evidence that ammonia, metals, and non-ionic organics were contributing to the observed toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubblefield, W.A.; Hancock, G.A.; Ford, W.H.
1995-12-31
The toxic properties of naturally weathered Exxon Valdez crude oil (WEVC) to avian and mammalian wildlife species were evaluated using the surrogate species, mallard duck, Anas platyrhynchos, and European ferret, Mustela putorius. This study was conducted to evaluate the potential for toxic (rather than physical) injury to wildlife species that may have been exposed to WEVC, either through external contact or through dietary uptake. Previous studies have assessed the toxicity of unweathered crude oils, including Alaska North Slope Crude, but little information exists regarding the toxicity of a naturally weathered crude oil, typical of that encountered following a spill. Amore » battery of laboratory toxicity tests was conducted, in compliance with standard and published test procedures, to evaluate acute and subchronic toxicity of WEVC. These included tests of food avoidance, reproductive effects, and direct eggshell application toxicity. Naturally weathered EVC, recovered postspill from Prince William Sound, was used as the test material. 36 refs., 7 figs., 4 tabs.« less
Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing
2014-09-01
Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.
Naish-Byfield, S; Cooksey, C J; Latter, A M; Johnson, C I; Riley, P A
1991-01-01
The rate of oxidation by purified mushroom tyrosinase of 30 compounds was measured by oximetry, and the tyrosinase-dependent cytotoxicity of each estimated in an in vitro assay using exposure of non-melanogenic cells to the agents in the presence and absence of tyrosinase. Cytotoxicity was estimated by immediate inhibition of DNA synthesis; 4-hydroxyanisole was used as the reference material. Compounds that were not oxidized by tyrosinase were found to be non-toxic but there was no direct relationship between the rate of oxidation and the relative cytotoxicity of those materials that acted as substrates for the enzyme. Thioethers were found to be more cytotoxic than the corresponding phenoxyethers. This was partly due to their greater rate of oxidation by tyrosinase and, in the case of propylthiophenol, the consequence of higher effective toxicity of the lipophilic species. The optimum chain length for the side chain of the oxyethers was three saturated carbon atoms and the toxicity appeared to be influenced by the lipophilicity of the compounds, possibly reflecting the relative lipid solubility of the putative toxic ortho-quinones generated from them. The maximum tyrosinase-dependent toxicity observed was in the range 5-6 times the relative toxicity of 4-hydroxyanisole. Sulphinyl and sulphonyl derivatives were inactive. In addition to oxyethers and thioethers, esters and glycosides of oxyethers were also examined and were found to be toxic in the presence of tyrosinase when hydrolysed. The succinates were found to be oxidized and toxic in our test system, suggesting that they rapidly underwent spontaneous hydrolysis. Oximetry data suggest that slight spontaneous hydrolysis of the other compounds occurs but they were not toxic in our assay. Ring-methylated phenoxyethers were oxidized relatively slowly and were non-toxic. Fluorine-substituted phenoxyethers were oxidized slightly more rapidly and exhibited clear toxicity in our system. Sesamol was oxidized to a black pigment but was non-toxic in our assay. A water-soluble vitamin E derivative was not oxidized and was non-toxic. Allyl hydroquinone was not oxidized but exhibited significant direct toxicity.
Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan
2015-06-02
The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish acute toxicity test or application of assessment factors while considering the very good fish embryo-acute fish toxicity correlation for other compounds.
Wang, Wenguo; Li, Rui; Zhu, Qili; Tang, Xiaoyu; Zhao, Qi
2016-04-18
Plants can suffer ammonium (NH4 (+)) toxicity, particularly when NH4 (+) is supplied as the sole nitrogen source. However, our knowledge about the underlying mechanisms of NH4 (+) toxicity is still largely unknown. Lemna minor, a model duckweed species, can grow well in high NH4 (+) environment but to some extent can also suffer toxic effects. The transcriptomic and physiological analysis of L. minor responding to high NH4 (+) may provide us some interesting and useful information not only in toxic processes, but also in tolerance mechanisms. The L. minor cultured in the Hoagland solution were used as the control (NC), and in two NH4 (+) concentrations (NH4 (+) was the sole nitrogen source), 84 mg/L (A84) and 840 mg/L (A840) were used as stress treatments. The NH4 (+) toxicity could inhibit the growth of L. minor. Reactive oxygen species (ROS) and cell death were studied using stained fronds under toxic levels of NH4 (+). The malondialdehyde content and the activities of superoxide dismutase and peroxidase increased from NC to A840, rather than catalase and ascorbate peroxidase. A total of 6.62G nucleotides were generated from the three distinct libraries. A total of 14,207 differentially expressed genes (DEGs) among 70,728 unigenes were obtained. All the DEGs could be clustered into 7 profiles. Most DEGs were down-regulated under NH4 (+) toxicity. The genes required for lignin biosynthesis in phenylpropanoid biosynthesis pathway were up-regulated. ROS oxidative-related genes and programmed cell death (PCD)-related genes were also analyzed and indicated oxidative damage and PCD occurring under NH4 (+) toxicity. The first large transcriptome study in L. minor responses to NH4 (+) toxicity was reported in this work. NH4 (+) toxicity could induce ROS accumulation that causes oxidative damage and thus induce cell death in L. minor. The antioxidant enzyme system was activated under NH4 (+) toxicity for ROS scavenging. The phenylpropanoid pathway was stimulated under NH4 (+) toxicity. The increased lignin biosynthesis might play an important role in NH4 (+) toxicity resistance.
Evaluation of p,p'-DDT as a reference toxicant in bioassays
Marking, Leif L.
1966-01-01
p,p'-DDT was tested as a reference standard toxicant against 19 species of freshwater fish, including 39 lots from 10 sources. In particular, the rapidity, nonselectivity, and consistency of its toxicity to fish were evaluated in 96-hour static bioassays. The chemical was rapidly and consistently toxic to lake trout, carp, green sunfish, bluegill, and yellow perch. It lacked either rapid or consistent toxicity to rainbow trout, brook trout, goldfish, fathead minnows, and longear sunfish in 96-hour tests. Thus, p,p'-DDT is of limited usefulness as a reference standard toxicant in large bioassays with many species of fish.
NASA Technical Reports Server (NTRS)
Macewen, J. D.; Vernot, E. H.
1971-01-01
The activities of the Toxic Hazards Research Unit (THRU) for the period of June 1970 through May 1971 reviewed. Modification of the animal exposure facilities primarily for improved human safety but also for experimental integrity and continuity are discussed. Acute toxicity experiments were conducted on hydrogen fluoride (HF), hydrogen chloride (HCl), nitrogen dioxide (NO2), and hydrogen cyanide (HCN) both singly and in combination with carbon dioxide (CO). Additional acute toxicity experiments were conducted on oxygen difluoride (OF2) and chlorine pentafluoride (ClF5). Subacute toxicity studies were conducted on methylisobutylketone and dichloromethane (methylene dichloride). The interim results of further chronic toxicity experiments on monomethylhydrazine (MMH) are also described.
RIFM fragrance ingredient safety assessment, α-Ionone, CAS Registry Number 127-41-3.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 10 mg/kg/day. A dietary 90-day subchronic toxicity study conducted in rats resulted in a MOE of 182 while assuming 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.
RIFM fragrance ingredient safety assessment, isoeugenol, CAS Registry Number 97-54-1.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 37.5 mg/kg/day. A gavage 13-week subchronic toxicity study conducted in mice resulted in a MOE of 5769 while considering 38.4% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of in Vitro Biotransformation Data and ...
The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the target tissues of an exposed organism. The exposure concentration of a toxic substance is usually not the same as the concentration of the active form of the toxicant that reaches the target tissues following absorption, distribution, and biotransformation of the parent toxicant. Biotransformation modulates the biological activity of chemicals through bioactivation and detoxication pathways. Many toxicants require biotransformation to exert their adverse biological effects. Considerable species differences in biotransformation and other pharmacokinetic processes can make extrapolation of toxicity data from laboratory animals to humans problematic. Additionally, interindividual differences in biotransformation among human populations with diverse genetics and lifestyles can lead to considerable variability in the bioactivation of toxic chemicals. Compartmental pharmacokinetic models of animals and humans are needed to understand the quantitative relationships between chemical exposure and target tissue dose as well as animal to human differences and interindividual differences in human populations. The data-based compartmental pharmacokinetic models widely used in clinical pharmacology ha
Morén, Constanza; Hernández, Sandra; Guitart-Mampel, Mariona; Garrabou, Glòria
2014-09-22
Mitochondrial toxicity can be one of the most dreadful consequences of exposure to a wide range of external agents including pathogens, therapeutic agents, abuse drugs, toxic gases and other harmful chemical substances. However, little is known about the effects of mitochondrial toxicity on pregnant women exposed to these agents that may exert transplacental activity and condition fetal remodeling. It has been hypothesized that mitochondrial toxicity may be involved in some adverse obstetric outcomes. In the present study, we investigated the association between exposure to mitochondrial toxic agents and pathologic conditions ranging from fertility defects, detrimental fetal development and impaired newborn health due to intra-uterine exposure. We have reviewed data from studies in human subjects to propose mechanisms of mitochondrial toxicity that could be associated with the symptoms present in both exposed pregnant and fetal patients. Since some therapeutic interventions or accidental exposure cannot be avoided, further research is needed to gain insight into the molecular pathways leading to mitochondrial toxicity during pregnancy. The ultimate objective of these studies should be to reduce the mitochondrial toxicity of these agents and establish biomarkers for gestational monitoring of harmful effects.
Application of Toxic Chinese Medicine in Chinese Pharmacopoeia
NASA Astrophysics Data System (ADS)
Zhao, Hui; Feng, Yu; Mao, Mingsan
2018-01-01
Objective: Explore the application characteristics of proprietary Chinese medicine prescriptions containing toxic herbs in pharmacopoeia. Methods: In this paper, according to the clinical application of pharmacopoeia proprietary Chinese medicine is divided into table agent, Qushu agent, diarrhea agent, heat agent, Wen Li agent, cough and asthma agents, resuscitation agent, Gutian agent, Fuzheng agent, Anshen agent, hemostatic agent, The traditional Chinese medicine prescription and the clinical application of the Chinese herbal medicine containing the toxic Chinese medicine were analyzed and sorted out., Summed up the compatibility of toxic herbs and application characteristics. Results: Toxic Chinese herbal medicine in the cure of traditional Chinese medicine to play a long-standing role, through the overall thinking, dialectical thinking, and thinking of toxic Chinese medicine in the analysis of Chinese medicine that [2], toxic Chinese medicine in the application of proprietary Chinese medicine can not lack. Conclusion: Pharmacopoeia included proprietary Chinese medicine not only in the clinical treatment of good, but also the application of its toxic traditional Chinese medicine and its understanding of the enrichment of the toxic characteristics of traditional Chinese medicine and treatment-related disease pathology between the points of contact for patients with clinical applications Based on and theoretical guidance of Chinese medicine [3].
The classification and application of toxic Chinese materia medica.
Liu, Xinmin; Wang, Qiong; Song, Guangqing; Zhang, Guangping; Ye, Zuguang; Williamson, Elizabeth M
2014-03-01
Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China. Copyright © 2013 John Wiley & Sons, Ltd.
Yamada, Takashi; Tanaka, Yushiro; Hasegawa, Ryuichi; Sakuratani, Yuki; Yamazoe, Yasushi; Ono, Atsushi; Hirose, Akihiko; Hayashi, Makoto
2014-12-01
We propose a category approach to assessing the testicular toxicity of chemicals with a similar structure to ethylene glycol methyl ether (EGME). Based on toxicity information for EGME and related chemicals and accompanied by adverse outcome pathway information on the testicular toxicity of EGME, this category was defined as chemicals that are metabolized to methoxy- or ethoxyacetic acid, a substance responsible for testicular toxicity. A Japanese chemical inventory was screened using the Hazard Evaluation Support System, which we have developed to support a category approach for predicting the repeated-dose toxicity of chemical substances. Quantitative metabolic information on the related chemicals was then considered, and seventeen chemicals were finally obtained from the inventory as a shortlist for the category. Available data in the literature shows that chemicals for which information is available on the metabolic formation of EGME, ethylene glycol ethyl ether, methoxy- or ethoxyacetic acid do in fact possess testicular toxicity, suggesting that testicular toxicity is a concern, due to metabolic activation, for the remaining chemicals. Our results clearly demonstrate practical utility of AOP-based category approach for predicting repeated-dose toxicity of chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.
Treosulfan induces distinctive gonadal toxicity compared with busulfan
Levi, Mattan; Stemmer, Salomon M.; Stein, Jerry; Shalgi, Ruth; Ben-Aharon, Irit
2018-01-01
Treosulfan (L-treitol-1,4-bis-methanesulfonate) has been increasingly incorporated as a main conditioning protocol for hematopoietic stem cell transplantation in pediatric malignant and non-malignant diseases. Treosulfan presents lower toxicity profile than other conventional alkylating agents containing myeloablative and immunosuppressive traits such as busulfan. Yet, whereas busulfan is considered highly gonadotoxic, the gonadal toxicity profile of treosulfan remains to be elucidated. To study the gonadotoxicity of treosulfan, pubertal and prepubertal male and female mice were injected with treosulfan or busulfan and sacrificed one week, one month or six months later. Testicular function was assessed by measurements of sperm properties, testes and epididymides weights as well as markers for testicular reserve, proliferation and apoptosis. Ovarian function was assessed by measurements of ovary weight and markers for ovarian reserve, proliferation and apoptosis. Treosulfan testicular toxicity was milder than that of busulfan toxicity; possibly by sparing the stem spermatogonia in the testicular sanctuary. By contrast, ovarian toxicity of both treosulfan and busulfan was severe and permanent and displayed irreversible reduction of reserve primordial follicles in the ovaries. Our data indicate that treosulfan exerts a different gonadal toxicity profile from busulfan, manifested by mild testicular toxicity and severe ovarian toxicity. PMID:29721205
Weng, Jingxia; Jia, Huichao; Wu, Bing; Pan, Bingcai
2018-01-01
Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV 254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV 254 ) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Building a developmental toxicity ontology.
Baker, Nancy; Boobis, Alan; Burgoon, Lyle; Carney, Edward; Currie, Richard; Fritsche, Ellen; Knudsen, Thomas; Laffont, Madeleine; Piersma, Aldert H; Poole, Alan; Schneider, Steffen; Daston, George
2018-04-03
As more information is generated about modes of action for developmental toxicity and more data are generated using high-throughput and high-content technologies, it is becoming necessary to organize that information. This report discussed the need for a systematic representation of knowledge about developmental toxicity (i.e., an ontology) and proposes a method to build one based on knowledge of developmental biology and mode of action/ adverse outcome pathways in developmental toxicity. This report is the result of a consensus working group developing a plan to create an ontology for developmental toxicity that spans multiple levels of biological organization. This report provide a description of some of the challenges in building a developmental toxicity ontology and outlines a proposed methodology to meet those challenges. As the ontology is built on currently available web-based resources, a review of these resources is provided. Case studies on one of the most well-understood morphogens and developmental toxicants, retinoic acid, are presented as examples of how such an ontology might be developed. This report outlines an approach to construct a developmental toxicity ontology. Such an ontology will facilitate computer-based prediction of substances likely to induce human developmental toxicity. © 2018 Wiley Periodicals, Inc.
DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY ...
The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These diverse interests often employ different approaches and have different criteria and use for toxicity assessments, but they share a need for unrestricted access to existing public toxicity data linked with chemical structure information. Currently, there exists no central repository of toxicity information, commercial or public, that adequately meets the data requirements for flexible analogue searching, SAR model development, or building of chemical relational databases (CRD). The Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network is being proposed as a community-supported, web-based effort to address these shared needs of the SAR and toxicology communities. The DSSTox project has the following major elements: 1) to adopt and encourage the use of a common standard file format (SDF) for public toxicity databases that includes chemical structure, text and property information, and that can easily be imported into available CRD applications; 2) to implement a distributed source approach, managed by a DSSTox Central Website, that will enable decentralized, free public access to structure-toxicity data files, and that will effectively link knowledgeable toxicity data s
NASA Astrophysics Data System (ADS)
Zhi, Lingtong; Ren, Mingxia; Qu, Man; Zhang, Hanyu; Wang, Dayong
2016-12-01
In this study, we investigated the possible involvement of Wnt signals in the control of graphene oxide (GO) toxicity using the in vivo assay system of Caenorhabditis elegans. In nematodes, the Wnt ligands, CWN-1, CWN-2, and LIN-44, were found to be involved in the control of GO toxicity. Mutation of cwn-1 or lin-44 gene induced a resistant property to GO toxicity and resulted in the decreased accumulation of GO in the body of nematodes, whereas mutation of cwn-2 gene induces a susceptible property to GO toxicity and an enhanced accumulation of GO in the body of nematodes. Genetic interaction assays demonstrated that mutation of cwn-1 or lin-44 was able to suppress the susceptibility to GO toxicity shown in the cwn-2 mutants. Loss-of-function mutations in all three of these Wnt ligand genes resulted in the resistance of nematodes to GO toxicity. Moreover, the Wnt ligands might differentially regulate the toxicity and translocation of GO through different mechanisms. These findings could be important in understanding the function of Wnt signals in the regulation of toxicity from environmental nanomaterials.
NASA Astrophysics Data System (ADS)
Zhuang, Ziheng; Li, Min; Liu, Hui; Luo, Libo; Gu, Weidong; Wu, Qiuli; Wang, Dayong
2016-08-01
Caenorhabditis elegans is an important non-mammalian alternative assay model for toxicological study. Previous study has indicated that exposure to multi-walled carbon nanotubes (MWCNTs) dysregulated the transcriptional expression of mir-259. In this study, we examined the molecular basis for mir-259 in regulating MWCNTs toxicity in nematodes. Mutation of mir-259 induced a susceptible property to MWCNTs toxicity, and MWCNTs exposure induced a significant increase in mir-259::GFP in pharyngeal/intestinal valve and reproductive tract, implying that mir-259 might mediate a protection mechanisms for nematodes against MWCNTs toxicity. RSKS-1, a putative ribosomal protein S6 kinase, acted as the target for mir-259 in regulating MWCNTs toxicity, and mutation of rsks-1 suppressed the susceptible property of mir-259 mutant to MWCNTs toxicity. Moreover, mir-259 functioned in pharynx-intestinal valve and RSKS-1 functioned in pharynx to regulate MWCNTs toxicity. Furthermore, RSKS-1 regulated MWCNTs toxicity by suppressing the function of AAK-2-DAF-16 signaling cascade. Our results will strengthen our understanding the microRNAs mediated protection mechanisms for animals against the toxicity from certain nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novotny, A.N.; Ezzard, C.L.; Douglas, W.S.
1995-12-31
The IQ Toxicity Test, which is a rapid screening toxicity test consisting of the observation of in-vivo inhibition of an enzymatic process using a fluorescent substrate, has proven successful for the determination of 24 and 48-hour EC50`s of D. magna, C. dubia, D. pulex and M. bahia. The application of this concept to utilize the freshwater amphipod Hyalella azteca may be an excellent way in which to reduce the standard 28-day chronic sediment toxicity test to possibly one hour`s time. This study incorporates an additive experimental design to explore the effects of and interactions between five specific variables: size ofmore » the amphipod, exposure time to the toxicant, concentration of substrate, exposure time to the substrate, and length of time starved prior to testing. The results of the IQ toxicity test were compared to those of a 28-day chronic sediment toxicity test. Preliminary data indicate that there is an optimal combination of these variables which results in a concise, reproducible toxicity test for use with Hyalella azteca, and would potentially be applicable to other freshwater amphipods in the future.« less
Toxicity identification evaluation of cosmetics industry wastewater.
de Melo, Elisa Dias; Mounteer, Ann H; Leão, Lucas Henrique de Souza; Bahia, Renata Cibele Barros; Campos, Izabella Maria Ferreira
2013-01-15
The cosmetics industry has shown steady growth in many developing countries over the past several years, yet little research exists on toxicity of wastewaters it generates. This study describes a toxicity identification evaluation conducted on wastewater from a small Brazilian hair care products manufacturing plant. Physicochemical and ecotoxicological analyses of three wastewater treatment plant inlet and outlet samples collected over a six month period revealed inefficient operation of the treatment system and thus treated wastewater organic matter, suspended solids and surfactants contents consistently exceeded discharge limits. Treated wastewater also presented high acute toxicity to Daphnia similis and chronic toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata. This toxicity was associated with suspended solids, volatile or sublatable and non-polar to moderately polar organic compounds that could be recovered in filtration and aeration residues. Seven surfactants used in the largest quantities in the production process were highly toxic to P. subcapitata and D. similis. These results indicated that surfactants, important production raw materials, are a probable source of toxicity, although other possible sources, such as fragrances, should not be discarded. Improved treatment plant operational control may reduce toxicity and lower impact of wastewater discharge to receiving waters. Copyright © 2012 Elsevier B.V. All rights reserved.
Losso, Chiara; Novelli, Alessandra Arizzi; De Salvador, Davide; Ghetti, Pier Francesco; Ghirardini, Annamaria Volpi
2010-12-01
Marine and coastal quality assessment, based on test batteries involving a wide array of endpoints, organisms and test matrices, needs for setting up toxicity indices that integrate multiple toxicological measures for decision-making processes and that classify the continuous toxicity response into discrete categories according to the European Water Framework Directive. Two toxicity indices were developed for the lagoon environment such as the Venice Lagoon. Stepwise procedure included: the construction of a database that identified test-matrix pairs (indicators); the selection of a minimum number of ecotoxicological indicators, called toxicological core metrics (CMs-tox) on the basis of specific criteria; the development of toxicity scores for each CM-tox; the integration of the CMs-tox into two indices, the Toxicity Effect Index (TEI), based on the transformation of Toxic Unit (TU) data that were integrated as logarithmic sum, and the Weighted Average Toxicity Index (WATI), starting from toxicity classes integrated as weighted mean. Results from the indices are compared; advantages and drawbacks of both approaches are discussed. Copyright © 2010. Published by Elsevier Ltd.
Short-term bioassay responses to sludge products and leachate.
Fjällborg, B; Gustafsson, N
2006-10-01
Recycling of sewage sludge is needed in a sustainable society. Quality aspects of sludge include hygiene (pathogens), nutrients (N and P), and toxicants (metals and organics). Metals are of particular concern because they are not degradable, but their hazards are related to their bioavailability and chemical speciation. In this article, the effect on sludge quality of two treatment methods, incineration and pelletization, has been determined for digested sludge from two treatment plants. The combined effect of nutrients and toxicants in sludge and sludge product was determined for spring wheat, Triticum aestivum, and the toxicity of the leachate water was determined for water fleas, Daphnia magna, and seeds of lettuce, Lactuca sativa. Toxicity Identification Evaluation was used to determine whether metals were possible toxicants. The results indicated that incineration decreased toxicity, whereas leachability of metals and the fertilizing effect was unaffected. Pelletization seemed to increase toxicity and leachability of metals and also decreased the fertilizing effect of the sludge. Thus, the results suggest that pelletization of digested sewage sludge increased the toxicity of the sludge and thus decreased the quality of the sludge, whereas incineration apparently reduced toxicity for the two sludges tested.
2013-01-01
Background Very little is known about manganese (Mn)-toxicity-responsive genes in citrus plants. Seedlings of ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) were irrigated for 17 weeks with nutrient solution containing 2 μM (control) or 600 μM (Mn-toxicity) MnSO4. The objectives of this study were to understand the mechanisms of citrus Mn-tolerance and to identify differentially expressed genes, which might be involved in Mn-tolerance. Results Under Mn-toxicity, the majority of Mn in seedlings was retained in the roots; C. sinensis seedlings accumulated more Mn in roots and less Mn in shoots (leaves) than C. grandis ones and Mn concentration was lower in Mn-toxicity C. sinensis leaves compared to Mn-toxicity C. grandis ones. Mn-toxicity affected C. grandis seedling growth, leaf CO2 assimilation, total soluble concentration, phosphorus (P) and magenisum (Mg) more than C. sinensis. Using cDNA-AFLP, we isolated 42 up-regulated and 80 down-regulated genes in Mn-toxicity C. grandis leaves. They were grouped into the following functional categories: biological regulation and signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, lipid metabolism, cell wall metabolism, stress responses and cell transport. However, only 7 up-regulated and 8 down-regulated genes were identified in Mn-toxicity C. sinensis ones. The responses of C. grandis leaves to Mn-toxicity might include following several aspects: (1) accelerating leaf senescence; (2) activating the metabolic pathway related to ATPase synthesis and reducing power production; (3) decreasing cell transport; (4) inhibiting protein and nucleic acid metabolisms; (5) impairing the formation of cell wall; and (6) triggering multiple signal transduction pathways. We also identified many new Mn-toxicity-responsive genes involved in biological and signal transduction, carbohydrate and protein metabolisms, stress responses and cell transport. Conclusions Our results demonstrated that C. sinensis was more tolerant to Mn-toxicity than C. grandis, and that Mn-toxicity affected gene expression far less in C. sinensis leaves. This might be associated with more Mn accumulation in roots and less Mn accumulation in leaves of Mn-toxicity C. sinensis seedlings than those of C. grandis seedlings. Our findings increase our understanding of the molecular mechanisms involved in the responses of plants to Mn-toxicity. PMID:24034812
cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity.
Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Jiang, Huan-Xin; Huang, Jing-Hao; Chen, Li-Song
2014-10-28
Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. C. sinensis leaves could tolerate higher level of B than C. grandis ones, thus improving the B-tolerance of C. sinensis plants. Our findings reveal some novel mechanisms on the tolerance of plants to B-toxicity at the gene expression level.
Widdows, John; Chaparro, Oscar R.; Ortíz, Alejandro; Mellado, Carla; Villanueva, Paola A.
2018-01-01
This study investigates the effects of toxic and non-toxic dinoflatellates on two sympatric bivalves, the clam Mulinia edulis and the mussel Mytilus chilensis. Groups of bivalves were fed one of three diets: (i) the toxic paralytic shellfish producing (PSP) Alexandrium catenella + Isochrysis galbana; (ii) the non-toxic Alexandrium affine + Isochrysis galbana and (iii) the control diet of Isochrysis galbana. Several physiological traits were measured, such as, clearance rate, pre-ingestive selection efficiency and particle transport velocity in the gill. The clearance rates of both M. chilensis and M. edulis showed a significant reduction when fed a mixed toxic diet of 50% Alexandrium catenella: 50% Isochrysis galbana. Similarly, when both species of bivalves were fed with the non-toxic diet (50% A. affine: 50% I. galbana), clearance rate was significantly lower compared with a diet of 100% I. galbana. Under all the experimental diets, M. chilensis showed higher clearance rate values, slightly more than double that of M. edulis. M. edulis and M. chilensis have the ability to select particles at the pre-ingestive level, thus eliminating a larger proportion of the toxic dinoflagellate A. catenella as well as the non-toxic A. affine in the form of pseudofaeces. Higher values of selection efficiency were registered in M. edulis than in M. chilensis when exposed to the toxic diet. Similar results were observed when these two species were exposed to the diet containing the non-toxic dinoflagellate, explained by the fact that the infaunal Mulinia edulis is adapted to dealing with larger particle sizes and higher particle densities (Navarro et al., 1993). The lower transport particle velocity observed in the present work for both species, is related to the reduced clearance rate, the higher particle concentration, and the presence of larger, toxic dinoflagellates. In addition, the species differ in their feeding responses to diets, with and without A. catenella or A. affine, largely reflecting their adaptations to different environmental conditions. The results suggest that the presence of a dinoflagellate bloom, whether toxic or non-toxic spp in Yaldad Bay, is likely to have a greater impact on the Mytilus chilensis than the infaunal Mulinia edulis, based on the combined effects on clearance rate, selection efficiency and particle transport velocity. PMID:29474467
Navarro, Jorge M; Widdows, John; Chaparro, Oscar R; Ortíz, Alejandro; Mellado, Carla; Villanueva, Paola A
2018-01-01
This study investigates the effects of toxic and non-toxic dinoflatellates on two sympatric bivalves, the clam Mulinia edulis and the mussel Mytilus chilensis. Groups of bivalves were fed one of three diets: (i) the toxic paralytic shellfish producing (PSP) Alexandrium catenella + Isochrysis galbana; (ii) the non-toxic Alexandrium affine + Isochrysis galbana and (iii) the control diet of Isochrysis galbana. Several physiological traits were measured, such as, clearance rate, pre-ingestive selection efficiency and particle transport velocity in the gill. The clearance rates of both M. chilensis and M. edulis showed a significant reduction when fed a mixed toxic diet of 50% Alexandrium catenella: 50% Isochrysis galbana. Similarly, when both species of bivalves were fed with the non-toxic diet (50% A. affine: 50% I. galbana), clearance rate was significantly lower compared with a diet of 100% I. galbana. Under all the experimental diets, M. chilensis showed higher clearance rate values, slightly more than double that of M. edulis. M. edulis and M. chilensis have the ability to select particles at the pre-ingestive level, thus eliminating a larger proportion of the toxic dinoflagellate A. catenella as well as the non-toxic A. affine in the form of pseudofaeces. Higher values of selection efficiency were registered in M. edulis than in M. chilensis when exposed to the toxic diet. Similar results were observed when these two species were exposed to the diet containing the non-toxic dinoflagellate, explained by the fact that the infaunal Mulinia edulis is adapted to dealing with larger particle sizes and higher particle densities (Navarro et al., 1993). The lower transport particle velocity observed in the present work for both species, is related to the reduced clearance rate, the higher particle concentration, and the presence of larger, toxic dinoflagellates. In addition, the species differ in their feeding responses to diets, with and without A. catenella or A. affine, largely reflecting their adaptations to different environmental conditions. The results suggest that the presence of a dinoflagellate bloom, whether toxic or non-toxic spp in Yaldad Bay, is likely to have a greater impact on the Mytilus chilensis than the infaunal Mulinia edulis, based on the combined effects on clearance rate, selection efficiency and particle transport velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha
Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data,more » optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the constructed (c) DTB and (d) DTF regression models to predict the T. pyriformis toxicity of diverse chemicals. - Highlights: • Ensemble learning (EL) based models constructed for toxicity prediction of chemicals • Predictive models used a few simple non-quantum mechanical molecular descriptors. • EL-based DTB/DTF models successfully discriminated toxic and non-toxic chemicals. • DTB/DTF regression models precisely predicted toxicity of chemicals in multi-species. • Proposed EL based models can be used as tool to predict toxicity of new chemicals.« less
Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...
NASA Technical Reports Server (NTRS)
Macewen, J. W.
1973-01-01
Oxygen toxicity is examined, including the effects of oxygen partial pressure variations on toxicity and oxygen effects on ozone and nitrogen dioxide toxicity. Toxicity of fuels and oxidizers, such as hydrazines, are reported. Carbon monoxide, spacecraft threshold limit values, emergency exposure limits, spacecraft contaminants, and water quality standards for space missions are briefly summarized.
USDA-ARS?s Scientific Manuscript database
Liver toxicity is frequently seen in relation to allogeneic hematopoietic stem cell transplantation (HSCT), but pathogenesis and the risk factors are poorly understood. The purpose of this study was to investigate associations between liver toxicity, gastrointestinal toxicity, and levels of immune-r...
SEDIMENT TOXICITY ASSESSMENT: COMPARISON OF STANDARD AND NEW TESTING DESIGNS
Standard methods of sediment toxicity testing are fairly well accepted; however, as with all else, evolution of these methods is inevitable. We compared a standard ASTM 10-day amphipod toxicity testing method with smaller, 48- and 96-h test methods using very toxic and reference ...
A TOXICITY ASSESSMENT APPROACH TO EVALUATING IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS
Freshwater and marine sediment toxicity tests were used to measure baseline toxicity of sediment samples collected from New Jersey/New York Harbor (NJ/NY) (non-PAH- contaminated) sediment (ERC). Four freshwater toxicity tests were used: 1) amphipod (Hyalella azteca) mortality and...
POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY
The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...
Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Toxicity to Plants (Algae): ASTM E 1218 Test Group 2 for C1: 1. Chronic Toxicity to Daphnia: ASTM E 1193 2. Toxicity to Plants (Algae): ASTM E 1218 The following are the special conditions for C1, C2, C3, C4, C5.... Acute Toxicity to Daphnia: ASTM E 729 2. Toxicity to Plants (Algae): ASTM E 1218 Test Group 2 for C2: 1...
Behavior as a common focus of toxicology and nutrition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, B.
1980-01-01
Behavior as an index of toxicity parallels its role as an index of nutritional impairment, just as toxicology and nutrition share other common themes. Intersections among the three disciplines arise because foodstuffs serve as one of the major routes of toxic exposure and also because food elements modify toxicity. With this perspective, the safety of our food supply is examined in the contexts of essential nutrients, toxins, toxic metals, manufactured contaminants, self-administered toxicants, and food additives.
A Review of the Toxicity of Compounds Found in Herbal Dietary Supplements.
Hudson, Amy; Lopez, Elizabeth; Almalki, Ahmad J; Roe, Amy L; Calderón, Angela I
2018-07-01
Use of herbal dietary supplements by the public is common and has been happening for centuries. In the United States, the Food and Drug Administration has a limited scope of regulation over marketed herbal dietary supplements, which may contain toxic botanical compounds that pose a public health risk. While the Food and Drug Administration has made efforts to prohibit the sale of unsafe herbal dietary supplements, numerous reports have proliferated of adverse events due to these supplements. This literature review investigates bioactive plant compounds commonly used in herbal dietary supplements and their relative toxicities. Using primarily the National Library of Medicine journal database and SciFinder for current reports, 47 toxic compounds in 55 species from 46 plant families were found to demonstrate harmful effects due to hepatic, cardiovascular, central nervous system, and digestive system toxicity. This review further contributes a novel and comprehensive view of toxicity across the botanical dietary market, and investigates the toxicity of the top ten botanical dietary supplements purchased in the United States of America to gauge the exposure risk of toxicity to the public. The criteria of measuring toxicity in this review (plant compound, family, quantity, and toxicity effects) across the entire market in the United States, with special attention to those supplements whose exposure to the consumer is maximal, provides a unique contribution to the investigation of botanical supplements. Georg Thieme Verlag KG Stuttgart · New York.
Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.
Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup
2012-03-01
Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.
Yang, Ruilong; Ren, Mingxia; Rui, Qi; Wang, Dayong
2016-01-01
Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes. PMID:27558892
Microcin Amyloid Fibrils A Are Reservoir of Toxic Oligomeric Species
Shahnawaz, Mohammad; Soto, Claudio
2012-01-01
Microcin E492 (Mcc), a low molecular weight bacteriocin produced by Klebsiella pneumoniae RYC492, has been shown to exist in two forms: soluble forms that are believed to be toxic to the bacterial cell by forming pores and non-toxic fibrillar forms that share similar biochemical and biophysical properties with amyloids associated with several human diseases. Here we report that fibrils polymerized in vitro from soluble forms sequester toxic species that can be released upon changing environmental conditions such as pH, ionic strength, and upon dilution. Our results indicate that basic pH (≥8.5), low NaCl concentrations (≤50 mm), and dilution (>10-fold) destabilize Mcc fibrils into more soluble species that are found to be toxic to the target cells. Additionally, we also found a similar conversion of non-toxic fibrils into highly toxic oligomers using Mcc aggregates produced in vivo. Moreover, the soluble protein released from fibrils is able to rapidly polymerize into amyloid fibrils under fibril-forming conditions and to efficiently seed aggregation of monomeric Mcc. Our findings indicate that fibrillar forms of Mcc constitute a reservoir of toxic oligomeric species that is released into the medium upon changing the environmental conditions. These findings may have substantial implications to understand the dynamic process of interconversion between toxic and non-toxic aggregated species implicated in protein misfolding diseases. PMID:22337880
Palmer, Joshua D; Patel, Tejash T; Eldredge-Hindy, Harriet; Keith, Scott W; Patel, Tapas; Malatesta, Theresa; DiNome, Jessie; Lowther, Anne; Ferguson, Linda; Wagenborg, Sally; Smyles, John; Babaria, Usha; Stabile, Richard; Gressen, Eric; Rudoler, Shari; Fisher, Scot A
2018-06-01
Little is known about the financial burden experienced by patients receiving radiation therapy. Furthermore, currently, no financial toxicity screening tools have been validated for use in radiation oncology. Physician surveys were used to gauge provider understanding of treatment costs and their willingness to adopt the use of financial toxicity screening tools. Post-treatment patient surveys were used to investigate the covariates of treatment-induced financial risk. Of the 210 radiation oncologists who completed our survey, 53% reported being "very concerned" with treatment-related costs negatively affecting their patients, and 80% believed that a financial toxicity screening tool would be useful in practice. An analysis of patient surveys using logistic regression found age and cancer site to be the most important variables associated with financial toxicity. Thirty-four patients (22%) experienced financial toxicity related to treatment. The financial toxicities experienced were loss of job (28%), loss of income (24%), difficulty paying their rent or mortgage (20%), difficulty paying for transportation (15%), and difficulty paying for meals (13%). Financial toxicity is an important measure for patients and providers and is experienced by approximately one quarter of patients. Further studies to improve models to predict financial toxicity and how financial toxicity is related to patient outcomes and quality of life are warranted. Copyright © 2018 Elsevier Inc. All rights reserved.
Burkholder, JoAnn M.; Gordon, Andrew S.; Moeller, Peter D.; Law, J. Mac; Coyne, Kathryn J.; Lewitus, Alan J.; Ramsdell, John S.; Marshall, Harold G.; Deamer, Nora J.; Cary, S. Craig; Kempton, Jason W.; Morton, Steven L.; Rublee, Parke A.
2005-01-01
Toxicity and its detection in the dinoflagellate fish predators Pfiesteria piscicida and Pfiesteria shumwayae depend on the strain and the use of reliable assays. Two assays, standardized fish bioassays (SFBs) with juvenile fish and fish microassays (FMAs) with larval fish, were compared for their utility to detect toxic Pfiesteria. The comparison included strains with confirmed toxicity, negative controls (noninducible Pfiesteria strains and a related nontoxic cryptoperidiniopsoid dinoflagellate), and P. shumwayae strain CCMP2089, which previously had been reported as nontoxic. SFBs, standardized by using toxic Pfiesteria (coupled with tests confirming Pfiesteria toxin) and conditions conducive to toxicity expression, reliably detected actively toxic Pfiesteria, but FMAs did not. Pfiesteria toxin was found in fish- and algae-fed clonal Pfiesteria cultures, including CCMP2089, but not in controls. In contrast, noninducible Pfiesteria and cryptoperidiniopsoids caused no juvenile fish mortality in SFBs even at high densities, and low larval fish mortality by physical attack in FMAs. Filtrate from toxic strains of Pfiesteria spp. in bacteria-free media was cytotoxic. Toxicity was enhanced by bacteria and other prey, especially live fish. Purified Pfiesteria toxin extract adversely affected mammalian cells as well as fish, and it caused fish death at environmentally relevant cell densities. These data show the importance of testing multiple strains when assessing the potential for toxicity at the genus or species level, using appropriate culturing techniques and assays. PMID:15728353
Exploring the Impact of Toxic Attitudes and a Toxic Environment on the Veterinary Healthcare Team
Moore, Irene C.; Coe, Jason B.; Adams, Cindy L.; Conlon, Peter D.; Sargeant, Jan M.
2015-01-01
The objective of this qualitative study was to compare veterinarians’ and Registered Veterinary Technicians’ (RVT’s) perceptions of the veterinary healthcare team with respect to the impact of toxic attitudes and a toxic environment. Focus group interviews using a semi-structured interview guide and follow up probes were held with four veterinarian groups (23 companion animal veterinarians) and four Registered Veterinary Technician groups (26 RVTs). Thematic analysis of the discussions indicated both veterinarian and RVT participants felt team members with manifestations of toxic attitudes negatively impacted veterinary team function. These manifestations included people being disrespectful, being resistant to change, always wanting to be the “go to person,” avoiding conflict, and lacking motivation. When conflict was ignored, or when people with toxic attitudes were not addressed, a toxic environment often resulted. A toxic environment sometimes manifested when “broken communication and tension between staff members” occurred as a result of employees lacking confidence, skills, or knowledge not being managed properly. It also occurred when employees did not feel appreciated, when there was difficulty coping with turnover, and when there were conflicting demands. The presence of people manifesting a toxic attitude was a source of frustration for both veterinarian and RVT participants. Prompt and consistent attention to negative behaviors is recommended to reduce the development of a toxic environment. PMID:26779492
Ebert, Timothy; Derksen, Richard
2004-04-01
Current theory governing the biological effectiveness of toxicants stresses the dose-response relationship and focuses on uniform toxicant distributions in the insect's environment. However, toxicants are seldom uniformly dispersed under field conditions. Toxicant distribution affects bioavailability, but the mechanics of such interactions is not well documented. We present a geometric model of the interactions between insects and heterogeneously distributed toxicants. From the model, we conclude the following: 1) There is an optimal droplet size, and droplets both smaller and larger than this optimum will decrease efficacy. 2) There is an ideal droplet distribution. Droplets should be spaced based on two criteria: calculate the allowable damage, double this quantity, and one lethal deposit should be placed in this area; and define the quantity of leaf the larva could eat before the toxicant decays below the lethal level and place one lethal deposit within this area. 3) Distributions of toxicant where deposits are sublethal will often be ineffective, but the application is wasteful if deposits contain more than a lethal dose. 4) Insect behavior both as individuals and collectively influences the level of crop production provided by an application. This conclusion has implications for both crop protection and natural plant-insect interactions. The effective utilization of new more environmentally sensitive toxicants may depend on how well we understand how heterogeneous toxicant distributions interact with insect behavior to determine the biological outcome.
A novel continuous toxicity test system using a luminously modified freshwater bacterium.
Cho, Jang-Cheon; Park, Kyung-Je; Ihm, Hyuk-Soon; Park, Ji-Eun; Kim, Se-Young; Kang, Ilnam; Lee, Kyu-Ho; Jahng, Deokjin; Lee, Dong-Hun; Kim, Sang-Jong
2004-09-15
An automated continuous toxicity test system was developed using a recombinant bioluminescent freshwater bacterium. The groundwater-borne bacterium, Janthinobacterium lividum YH9-RC, was modified with luxAB and optimized for toxicity tests using different kinds of organic carbon compounds and heavy metals. luxAB-marked YH9-RC cells were much more sensitive (average 7.3-8.6 times) to chemicals used for toxicity detection than marine Vibrio fischeri cells used in the Microtox assay. Toxicity tests for wastewater samples using the YH9-RC-based toxicity assay showed that EC50-5 min values in an untreated raw wastewater sample (23.9 +/- 12.8%) were the lowest, while those in an effluent sample (76.7 +/- 14.9%) were the highest. Lyophilization conditions were optimized in 384-multiwell plates containing bioluminescent bacteria that were pre-incubated for 15 min in 0.16 M of trehalose prior to freeze-drying, increasing the recovery of bioluminescence and viability by 50%. Luminously modified cells exposed to continuous phenol or wastewater stream showed a rapid decrease in bioluminescence, which fell below detectable range within 1 min. An advanced toxicity test system, featuring automated real-time toxicity monitoring and alerting functions, was designed and finely tuned. This novel continuous toxicity test system can be used for real-time biomonitoring of water toxicity, and can potentially be used as a biological early warning system.
Wik, Anna; Dave, Göran
2006-09-01
Large amounts of tire rubber are deposited along the roads due to tread wear. Several compounds may leach from the rubber and cause toxicity to aquatic organisms. To investigate the toxic effects of tire wear material from different tires, rubber was abraded from the treads of twenty-five tires. Leachates were prepared by allowing the rubber to equilibrate with dilution water at 44 degrees C for 72 h. Then the rubber was filtered from the leachates, and test organisms (Daphnia magna) were added. Forty-eight hour EC50s ranged from 0.5 to >10.0 g l(-1). The toxicity identification evaluation (TIE) indicated that non-polar organic compounds caused most of the toxicity. UV exposure of the filtered tire leachates caused no significant increase in toxicity. However, when tested as unfiltered leachates (the rubber was not filtered from the leachates before addition of D. magna) photo-enhanced toxicity was considerable for some tires, which means that test procedures are important when testing tire leachates for aquatic (photo) toxicity. The acute toxicity of tire wear for Daphnia magna was found to be <40 times a predicted environmental concentration based on reports on the concentration of a tire component found in environmental samples, which emphasizes the need for a more extensive risk assessment of tire wear for the environment.
Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.
Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P
2015-10-20
Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.
NASA Astrophysics Data System (ADS)
Yang, Ruilong; Ren, Mingxia; Rui, Qi; Wang, Dayong
2016-08-01
Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes.
Westlund, Paul; Nasuhoglu, Deniz; Isazadeh, Siavash; Yargeau, Viviane
2018-05-01
High-throughput acute and chronic toxicity tests using Vibrio fischeri were used to assess the toxicity of a variety of fungicides, herbicides, and neonicotinoids. The use of time points beyond the traditional 30 min of an acute test highlighted the sensitivity and applicability of the chronic toxicity test and indicated that for some compounds toxicity is underestimated using only the acute test. The comparison of EC 50 values obtained from acute and chronic tests provided insight regarding the toxicity mode of action, either being direct or indirect. Using a structure-activity relationship approach similar to the one used in hazard assessments, the relationship between toxicity and key physicochemical properties of pesticides was investigated and trends were identified. This study not only provides new information regarding acute toxicity of some pesticides but also is one of the first studies to investigate the chronic toxicity of pesticides using the test organism V. fischeri. The findings demonstrated that the initial bioluminescence has a large effect on the calculated effective concentrations for target compounds in both acute and chronic tests, providing a way to improve and standardize the test protocol. In addition, the findings emphasize the need for additional investigation regarding the relationship between a toxicant's physicochemical properties and mode of action in nontarget organisms.
Food plant toxicants and safety Risk assessment and regulation of inherent toxicants in plant foods.
Essers, A J; Alink, G M; Speijers, G J; Alexander, J; Bouwmeister, P J; van den Brandt, P A; Ciere, S; Gry, J; Herrman, J; Kuiper, H A; Mortby, E; Renwick, A G; Shrimpton, D H; Vainio, H; Vittozzi, L; Koeman, J H
1998-05-01
The ADI as a tool for risk management and regulation of food additives and pesticide residues is not readily applicable to inherent food plant toxicants: The margin between actual intake and potentially toxic levels is often small; application of the default uncertainty factors used to derive ADI values, particularly when extrapolating from animal data, would prohibit the utilisation of the food, which may have an overall beneficial health effect. Levels of inherent toxicants are difficult to control; their complete removal is not always wanted, due to their function for the plant or for human health. The health impact of the inherent toxicant is often modified by factors in the food, e.g. the bioavailability from the matrix and interaction with other inherent constituents. Risk-benefit analysis should be made for different consumption scenarios, without the use of uncertainty factors. Crucial in this approach is analysis of the toxicity of the whole foodstuff. The relationship between the whole foodstuff and the pure toxicant is expressed in the `product correction factor' (PCF). Investigations in humans are essential so that biomarkers of exposure and for effect can be used to analyse the difference between animals and humans and between the food and the pure toxicant. A grid of the variables characterising toxicity is proposed, showing their inter-relationships. A flow diagram for risk estimate is provided, using both toxicological and epidemiological studies.
Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria
NASA Astrophysics Data System (ADS)
Cui, Li; Chen, Shaode; Zhang, Kaisong
2015-02-01
Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.
Pham, Thanh-Luu; Shimizu, Kazuya; Dao, Thanh-Son; Hong-Do, Lan-Chi; Utsumi, Motoo
2015-01-01
We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana . Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin)-LR eq L -1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs) by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). Clam accumulated MCs (up to 12.7 ± 2.5 μg g -1 dry weight (DW) of free MC and 4.2 ± 0.6 μg g -1 DW of covalently bound MC). Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO) provisional tolerable daily intake (0.04 μg kg -1 day -1 ), suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.
Vyas, Nimish B.; Rattner, Barnett A.
2012-01-01
Avian risk assessments for rodenticides are often driven by the results of standardized acute oral toxicity tests without regards to a toxicant's mode of action and time course of adverse effects. First generation anticoagulant rodenticides (FGARs) generally require multiple feedings over several days to achieve a threshold concentration in tissue and cause adverse effects. This exposure regimen is much different than that used in the standardized acute oral toxicity test methodology. Median lethal dose values derived from standardized acute oral toxicity tests underestimate the environmental hazard and risk of FGARs. Caution is warranted when FGAR toxicity, physiological effects, and pharmacokinetics derived from standardized acute oral toxicity testing are used for forensic confirmation of the cause of death in avian mortality incidents and when characterizing FGARs' risks to free-ranging birds.
Reduced Toxicity Fuel Satellite Propulsion System
NASA Technical Reports Server (NTRS)
Schneider, Steven J. (Inventor)
2001-01-01
A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.
Reduced Toxicity Fuel Satellite Propulsion System Including Plasmatron
NASA Technical Reports Server (NTRS)
Schneider, Steven J. (Inventor)
2003-01-01
A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster. whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.
Wang, Huali; Zhang, Jinsong; Yu, Hanqing
2007-05-15
Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.
Groendahl, Sophie; Fink, Patrick
2017-05-18
Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.
2000-04-01
A multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites and in the conduct of environmental risk assessments. The research approach is based on the predominance of three classes of toxicants in sediments: ammonia, nonpolar organic chemicals, and metals. Here the authors describe a procedure for characterizing acute toxicity caused by metals in whole marine sediments. The procedure involves adding a chelating resin to sediments, resulting in the sequestration of bioavailable metal while not stressing testing organisms. Within the testing chambers,more » the presence of resin resulted in statistically significant reductions in the overlying and interstitial water concentrations of five metals (cadmium, copper, nickel, lead, and zinc) generally by factors of 40 and 200. Toxicity to both the amphipod Ampelisca abdita and mysid Americamysis bahia (formerly Mysidopsis bahia) of sediments spiked with the five metals was decreased by approximately a factor of four when resin was present. While very effective at reducing the concentrations and toxicity of metals, the resin has only minor ameliorative effects on the toxicity of ammonia and a representative nonpolar toxicant (Endosulfan). Resin and accumulated metal were easily isolated from the testing system following exposures allowing for the initiation of phase II TIE (identification) procedures. This procedure using the addition of a chelating resin provides an approach for determining the importance of metals to the toxicity of marine sediments. Work is continuing to validate the method with environmentally contaminated sediments.« less
Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities
Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.
2012-01-01
The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561
Campbell, Jared M; Bateman, Emma; Stephenson, Matthew D; Bowen, Joanne M; Keefe, Dorothy M; Peters, Micah D J
2016-07-01
Methotrexate chemotherapy is associated with various toxicities which can result in the interruption or discontinuation of treatment and a subsequently raised risk of relapse. This umbrella systematic review was conducted to synthesize the results of all existing systematic reviews that investigate the pharmacogenetics of methotrexate-induced toxicity, with the aim of developing a comprehensive reference for personalized medicine. Databases searched were PubMed, Embase, JBI Database of Systematic Reviews and Implementation Reports, DARE, and ProQuest. Papers were critically appraised by two reviewers, and data were extracted using a standardized tool. Three systematic reviews on methotrexate-induced toxicity were included in the review. Meta-analyses were reported across Asian, Caucasian, pediatric and adult patients for the MTHFR C677T and A1298C polymorphisms. Toxicity outcomes included different forms of hematologic, ectodermal and hepatic toxicities. Results varied considerably depending on the patient groups and subgroups investigated in the different systematic reviews, as well as the genetic models utilized. However, significant associations were found between the MTHFR C677T allele and; hepatic toxicity, myelosuppression, oral mucositis, gastrointestinal toxicity, and skin toxicity. Additionally, limited evidence suggests that the MTHFR A1298C polymorphism may be associated with decreased risk of skin toxicity and leukopenia. This umbrella systematic review has synthesized the best available evidence on the pharmacogenetics of methotrexate toxicity. The next step in making personalized medicine for methotrexate therapy a clinical reality is research on the effectiveness and cost-effectiveness of MTHFR genotype testing to enable the close monitoring of at-risk patients for the timely initiation of rescue therapies.
Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma.
Zhu, Shu-Chai; Shen, Wen-Bin; Liu, Zhi-Kun; Li, Juan; Su, Jing-Wei; Wang, Yu-Xiang
2011-01-01
Radiation-induced lung toxicity occurs frequently in patients with esophageal carcinoma. This study aims to evaluate the clinical and three-dimensional dosimetric parameters associated with lung toxicity after radiotherapy for esophageal carcinoma. The records of 56 patients treated for esophageal carcinoma were reviewed. The Radiation Therapy Oncology Group criteria for grading of lung toxicity were followed. Spearman's correlation test, the chi-square test and logistic regression analyses were used for statistical analysis. Ten of the 56 patients developed acute toxicity. The toxicity grades were grade 2 in 7 patients and grade 3 in 3 patients; none of the patients developed grade 4 or worse toxicity. One case of toxicity occurred during radiotherapy and 9 occurred 2 weeks to 3 months after radiotherapy. The median time was 2.0 months after radiotherapy. Fourteen patients developed late irradiated lung injury, 3 after 3.5 months, 7 after 9 months, and 4 after 14 months. Radiographic imaging demonstrated patchy consolidation (n = 5), atelectasis with parenchymal distortion (n = 6), and solid consolidation (n = 3). For acute toxicity, the irradiated esophageal volume, number of fields, and most dosimetric parameters were predictive. For late toxicity, chemotherapy combined with radiotherapy and other dosimetric parameters were predictive. No obvious association between the occurrence of acute and late injury was observed. The percent of lung tissue receiving at least 25 Gy (V25), the number of fields, and the irradiated length of the esophagus can be used as predictors of the risk of acute toxicity. Lungs V30, as well as chemotherapy combined with radiotherapy, are predictive of late lung injury.
Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors
Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug
2010-01-01
Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288
A comprehensive approach to predicting chronic toxicity from acute.toxicity data was developed in which simultaneous consideration is given to concentration, degree of response, and time course of effect. onsistent endpoint (lethality) and degree of response (O%) were used to com...
A comprehensive approach to predicting chronic toxicity from cute toxicity data was developed in which simultaneous onsideration is given to concentration, degree of response, and ime course of effect. onsistent endpoint (lethality) and degree of response (0 percent) were used to...
48 CFR 52.223-14 - Toxic Chemical Release Reporting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Toxic Chemical Release....223-14 Toxic Chemical Release Reporting. As prescribed in 23.906(b), insert the following clause: Toxic Chemical Release Reporting (AUG 2003) (a) Unless otherwise exempt, the Contractor, as owner or...
16 CFR 260.10 - Non-toxic claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pose any risk to humans or the environment, including household pets. If the cleaning product poses no... implication, that a product, package, or service is non-toxic. Non-toxic claims should be clearly and... product, package, or service is non-toxic both for humans and for the environment generally. Therefore...
16 CFR 260.10 - Non-toxic claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pose any risk to humans or the environment, including household pets. If the cleaning product poses no... implication, that a product, package, or service is non-toxic. Non-toxic claims should be clearly and... product, package, or service is non-toxic both for humans and for the environment generally. Therefore...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...
40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...
DETERMINANTS OF VARIABILITY IN ACUTE TO CHRONIC TOXICITY RATIOS IN AQUATIC INVERTEBRATES AND FISH
Variability in acute to chronic ratios (ACRs; LC50/chronic value) has been a continuing interest in aquatic toxicology because of the reliance on ACRs to estimate chronic toxicity for chemicals and species with known acute toxicity but limited or no information on sublethal toxic...
Oxidative stress is known to play important roles in nanomaterial-induced toxicities. However, the proteins and signaling pathways associated with nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify oxidative stress-responding toxicity pathways an...
Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...
78 FR 22789 - Methyl Jasmonate; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
.... The acute toxicity data show virtual non-toxicity for all routes of exposure and suggest that any...) and confirmed virtual non-toxicity through the oral route of exposure. There were no observed... virtual non-toxicity through the dermal route of exposure. (MRID No. 48653902). Methyl jasmonate is...
A SURROGATE SUBCHRONIC TOXICITY TEST METHOD FOR WATERS WITH HIGH TOTAL DISSOLVED SOLIDS
Total dissolved solids (TDS) are often identified as a toxicant in whole-effluent toxicity (WET) testing. The primary test organism used in WET testing, Ceriodaphnia dubia, is very sensitive to TDS ions, which can be problematic when differentiating the toxicity of TDS from those...
Principles and Procedures for Evaluating the Toxicity of Household Substances. Revised.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Assembly of Life Sciences.
This report was prepared for use by the professional toxicologist. It contains chapters on ingestion exposure, dermal and dye toxicity tests, inhalation exposure, chronic toxicity and carcinogenicity tests, mutagenicity tests, reproduction and teratogenicity tests, and behavioral toxicity tests. In addition, regulations under the Federal Hazardous…
EVALUATION OF ALTERNATIVE REFERENCE TOXICANTS FOR USE IN THE EARTHWORM TOXICITY TEST
The use of the 14-d earthworm toxicity test to aid in the evaluation of the ecological impact of contaminated soils is becoming increasingly widespread. However,the method is in need of further standardization. As part of this continuing process, the choice of reference toxicants...
40 CFR 372.22 - Covered facilities for toxic chemical release reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic chemical...
Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds (PACs) in oil. Phototoxicity is observed as a 2 to greater than 1000 fold increase in chemical toxicity to aqua...
Testing of environmental and industrial chemicals for toxicity potential is a daunting task because of the wide range of possible toxicity mechanisms. Although animal testing is one means of achieving broad toxicity coverage, evaluation of large numbers of chemicals is challengin...
TEST (Toxicity Estimation Software Tool) Ver 4.1
The Toxicity Estimation Software Tool (T.E.S.T.) has been developed to allow users to easily estimate toxicity and physical properties using a variety of QSAR methodologies. T.E.S.T allows a user to estimate toxicity without requiring any external programs. Users can input a chem...
The EPA DSSTox website (http://www/epa.gov/nheerl/dsstox) publishes standardized, structure-annotated toxicity databases, covering a broad range of toxicity disciplines. Each DSSTox database features documentation written in collaboration with the source authors and toxicity expe...
The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...
tThe mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity andas an alternative to chemical class-based predictive toxicity modeling. However, the development ofquantitative structure activity relationship (QSAR) and other models has been limite...
Toxicity data from laboratory rodents are widely available and frequently used in human health assessments as an animal model. We explore the possibility of using single rodent acute toxicity values to predict chemical toxicity to a diversity of wildlife species and to estimate ...
This paper presents an oveview of the transport of toxic pollutants through multiple media in the urban environment. Discussions include the sources of particulate-associated toxic substances and the relationship of these toxics to atmospheric deposition, overland accumulation an...
USING THE MEDAKA EMBRYO ASSAY TO INVESTIGATE DEVELOPMENTAL ETHANOL TOXICITY.
Ethanol (EtOH) is a well-known developmental toxicant that produces a range of abnormal phenotypes. While the toxic potential of developmental EtOH exposure is well characterized, the effect of the timing of exposure on the extent of toxicity remains unknown. Fish models such as ...
Toxicity of selected insecticides applied to western spruce budworm
Jacqueline L. Robertson; Nancy L. Gillette; Melvin Look; Barbara A. Lucas; Robert L. Lyon
1975-01-01
The contact toxicity of 100 insecticides to last stage larvae of Choristoneura occidentalis Freeman was tested by topical application in a 10-yr series of screening experiments. Pyrethroids were generally the most toxic group of chemicals tested. Compounds more toxic than the standard, mexacarbate, at Ld50 were:...
40 CFR 798.4900 - Developmental toxicity study.
Code of Federal Regulations, 2011 CFR
2011-07-01
... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...
40 CFR 798.4900 - Developmental toxicity study.
Code of Federal Regulations, 2012 CFR
2012-07-01
... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...
40 CFR 798.4900 - Developmental toxicity study.
Code of Federal Regulations, 2013 CFR
2013-07-01
... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...
40 CFR 798.4900 - Developmental toxicity study.
Code of Federal Regulations, 2014 CFR
2014-07-01
... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...
WHAT’S CAUSING TOXICITY IN SEDIMENTS? RESULTS OF 20 YEARS OF TOXICITY IDENTIFICATION AND EVALUATIONS
Sediment toxicity identification and evaluation (TIE) methods have been used for 20 yr to identify the causes of toxicity in sediments around the world. In the present study, the authors summarize and categorize results of 36 peer-reviewed TIE studies (67 sediments) into nonioni...
Sediment Toxicity Identification and Evaluation (TIEs) methods have been used for twenty years to identify the causes of toxicity in sediments around the world. We summarized and categorized results of more than 80 peer-reviewed TIE studies into non-ionic organic, cationic, ammo...
Applicability of ambient toxicity testing to national or regional water-quality assessment
Elder, John F.
1990-01-01
Comprehensive assessment of the quality of natural waters requires a multifaceted approach. Descriptions of existing conditions may be achieved by various kinds of chemical and hydrologic analyses, whereas information about the effects of such conditions on living organisms depends on biological monitoring. Toxicity testing is one type of biological monitoring that can be used to identify possible effects of toxic contaminants. Based on experimentation designed to monitor responses of organisms to environmental stresses, toxicity testing may have diverse purposes in water-quality assessments. These purposes may include identification of areas that warrant further study because of poor water quality or unusual ecological features, verification of other types of monitoring, or assessment of contaminant effects on aquatic communities. Toxicity-test results are most effective when used as a complement to chemical analyses, hydrologic measurements, and other biological monitoring. However, all toxicity-testing procedures have certain limitations that must be considered in developing the methodology and applications of toxicity testing in any large-scale water-quality-assessment program. A wide variety of toxicity-test methods have been developed to fulfill the needs of diverse applications. The methods differ primarily in the selections made relative to four characteristics: (1) test species, (2) endpoint (acute or chronic), (3) test-enclosure type, and (4) test substance (toxicant) that functions as the environmental stress. Toxicity-test approaches vary in their capacity to meet the needs of large-scale assessments of existing water quality. Ambient testing, whereby the test organism is exposed to naturally occurring substances that contain toxicant mixtures in an organic or inorganic matrix, is more likely to meet these needs than are procedures that call for exposure of the test organisms to known concentrations of a single toxicant. However, meaningful interpretation of ambient test results depends on the existence of accompanying chemical analysis of the ambient media. The ambient test substance may be water or sediments. Sediment tests have had limited application, but they are useful because most toxicants tend to accumulate in sediments and many test species either inhabit the sediments or are in frequent contact with them. Biochemical testing methods, which have been developing rapidly in recent years, are likely to be among the most useful procedures for large-scale water-quality assessments. They are relatively rapid and simple, and more. importantly, they focus on biochemical changes that are the initial responses of virtually all organisms to environmental stimuli. Most species are sensitive to relatively few toxicants, and their sensitivities vary as conditions change. Therefore, each test method has particular uses and limitations, and no single test has universal applicability. One of the most informative approaches to toxicity testing is to combine biochemical tests with other test methods in a 'battery of tests' that is diversified enough to characterize different types of toxicants and different trophic levels. However, such an approach can be costly, and if not carefully designed, it may not yield enough additional information to warrant the additional cost. The application of toxicity tests to large-scale water-quality assessments is hampered by a number of difficulties. Toxicity tests often are not sensitive enough to enable detection of most contaminant problems in the natural environment. Furthermore, because sensitivities among different species and test conditions can be highly variable, conclusions about the toxicant problems of an ecosystem are strongly dependent on the test procedure used. In addition, the experimental systems used in toxicity tests cannot replicate the complexity or variability of natural conditions, and positive test results cannot identify the source or nature of
Toxic responses of bivalves to metal mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, P.; Menon, N.R.
Although there is a growing body of information on the toxicity of individual heavy metals to economically important on the toxicity of individual heavy metals to economically important species of bivalves, literature on the lethal toxicity of metal mixtures to bivalves under controlled conditions is rather limited. In the present investigation the toxic effects of combinations of copper - mercury and copper - mercury and copper - cadmium at lethal levels of two marine bivalve species, Perna indica and Donax incarnatus, have been delineated.
Saline Infusion and Amiloride in the Management of Lithium Toxicity
Czerniewski, Ian W D; Short, Jacquline A; McConnell, A A
1990-01-01
This paper describes the case of a 74 year old patient who became lithium toxic after 15 years of lithium therapy. We discuss the clinical presentation of the case and some of the possible causes of the sudden development of his toxicity. Although haemodialysis is the treatment of choice for severe lithium toxicity it is not always available. In this paper we propose that the combination of saline diuresis and Amiloride may provide a suitable alternative in the management of lithium toxicity. PMID:2093357
Toxicity study of Vernonia cinerea.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2010-01-01
The methanol extract of Vernonia cinerea Less (Asteraceae), which exhibited antimicrobial activity, was tested for toxicity. In an acute toxicity study using mice, the median lethal dose (LD(50)) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. As well as the oral acute toxicity study, the brine shrimp lethality test was also done. Brine shrimp test LC(50) values were 3.87 mg/mL (6 h) and 2.72 mg/mL (24 h), exhibiting no significant toxicity result. In conclusion, the methanol extract of V. cinerea did not produce toxic effects in mice and brine shrimp.
Physician Beware: Severe Cyanide Toxicity from Amygdalin Tablets Ingestion
Dang, Tam; Nguyen, Cham
2017-01-01
Despite the risk of cyanide toxicity and lack of efficacy, amygdalin is still used as alternative cancer treatment. Due to the highly lethal nature of cyanide toxicity, many patients die before getting medical care. Herein, we describe the case of a 73-year-old female with metastatic pancreatic cancer who developed cyanide toxicity from taking amygdalin. Detailed history and physical examination prompted rapid clinical recognition and treatment with hydroxocobalamin, leading to resolution of her cyanide toxicity. Rapid clinical diagnosis and treatment of cyanide toxicity can rapidly improve patients' clinical outcome and survival. Inquiries for any forms of ingestion should be attempted in patients with clinical signs and symptoms suggestive of poisoning. PMID:28912981
Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesnor, J.D.
1993-10-26
The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessmentmore » of Toxic By-Product Control Technologies; and Test Protocol Definition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, P.R.; Macauley, J.M.; Montgomery, R.M.
1988-01-01
Toxicity tests were conducted with two laboratory-prepared generic drilling fluids (muds) and six commonly used drilling-fluid additives to determine their toxicity, alone and combined, to mysids (Mysidopsis bahia). In 25 tests, the acute toxicity of combinations of one, two, or three of the drilling-fluid additives mixed with either drilling fluid was less than the toxicity predicted from the empirical 96-h LC50s for drilling fluid additive(s) and/or drilling fluid alone; the observed 96-h LC50s of the mixtures were from 1.3 to 23.6 times the values predicted from the presumption of additive toxicity.
RIFM fragrance ingredient safety assessment, α-Methylbenzyl acetate, CAS Registry Number 93-92-5.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Developmental toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 100 mg/kg/day. A gavage developmental toxicity study conducted in rats on a suitable read across analog resulted in aMOE of 3571 while considering 78.7% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radiation Dose-Volume Effects in the Stomach and Small Bowel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanagh, Brian D., E-mail: Brian.Kavanagh@ucdenver.ed; Pan, Charlie C.; Dawson, Laura A.
2010-03-01
Published data suggest that the risk of moderately severe (>=Grade 3) radiation-induced acute small-bowel toxicity can be predicted with a threshold model whereby for a given dose level, D, if the volume receiving that dose or greater (VD) exceeds a threshold quantity, the risk of toxicity escalates. Estimates of VD depend on the means of structure segmenting (e.g., V15 = 120 cc if individual bowel loops are outlined or V45 = 195 cc if entire peritoneal potential space of bowel is outlined). A similar predictive model of acute toxicity is not available for stomach. Late small-bowel/stomach toxicity is likely relatedmore » to maximum dose and/or volume threshold parameters qualitatively similar to those related to acute toxicity risk. Concurrent chemotherapy has been associated with a higher risk of acute toxicity, and a history of abdominal surgery has been associated with a higher risk of late toxicity.« less
Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M
2015-08-19
Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.
Jiang, Pingzhe; Ni, Zaizhong; Wang, Bin; Ma, Baicheng; Duan, Huikun; Li, Xiaodan; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Liu, Qiqi; Xing, Shuguang; Li, Minggang
2017-04-01
A new trend has been developed using vanadium and organic ligands to form novel compounds in order to improve the beneficial actions and reduce the toxicity of vanadium compounds. In present study, vanadyl trehalose was explored the oral acute toxicity, 28 days repeated dose toxicity and genotoxicity in Kunming mice. The Median Lethal Dose (LD 50 ) of vanadyl trehalose was revealed to be 1000 mg/kg body weight in fasted Kunming mice. Stomach and intestine were demonstrated to be the main target organs of vanadyl trehalose through 28 days repeated dose toxicity study. And vanadyl trehalose also showed particular genotoxicity through mouse bone marrow micronucleus and mouse sperm malformation assay. In brief, vanadyl trehalose presented certain, but finite toxicity, which may provide experimental basis for the clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.
Can, Alper
2014-11-04
Organophosphate insecticides are the most commonly used pesticides in the world. In this study, quantitative structure-toxicity relationship (QSTR) models were derived for estimating the acute oral toxicity of organophosphate insecticides to male rats. The 20 chemicals of the training set and the seven compounds of the external testing set were described by means of using descriptors. Descriptors for lipophilicity, polarity and molecular geometry, as well as quantum chemical descriptors for energy were calculated. Model development to predict toxicity of organophosphate insecticides in different matrices was carried out using multiple linear regression. The model was validated internally and externally. In the present study, QSTR model was used for the first time to understand the inherent relationships between the organophosphate insecticide molecules and their toxicity behavior. Such studies provide mechanistic insight about structure-toxicity relationship and help in the design of less toxic insecticides. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mechanisms of Drug Toxicity and Relevance to Pharmaceutical Development
Guengerich, F. Peter
2016-01-01
Toxicity has been estimated to be responsible for the attrition of ~ 1/3 of drug candidates and is a major contributor to the high cost of drug development, particularly when not recognized until late in the clinical trials or post-marketing. The causes of drug toxicity can be organized in several ways and include mechanism-based (on-target) toxicity, immune hypersensitivity, off-target toxicity, and bioactivation/covalent modification. In addition, idiosyncratic responses are rare but one of the most problematic issues; several hypotheses for these have been advanced. Although covalent binding of drugs to proteins was described almost 40 years ago, the significance to toxicity has been difficult to establish; recent literature in this field is considered. The development of more useful biomarkers and short-term assays for rapid screening of drug toxicity early in the drug discovery/development process is a major goal, and some progress has been made using “omics” approaches. PMID:20978361
NASA Technical Reports Server (NTRS)
Schneider, Steven J. (Inventor)
2001-01-01
A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.
Bacterial toxicity comparison between nano- and micro-scaled oxide particles.
Jiang, Wei; Mashayekhi, Hamid; Xing, Baoshan
2009-05-01
Toxicity of nano-scaled aluminum, silicon, titanium and zinc oxides to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles but titanium oxide showed higher toxicity (at 20 mg/L) than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three nanoparticles, causing 100% mortality to the three tested bacteria. Al(2)O(3) nanoparticles had a mortality rate of 57% to B. subtilis, 36% to E. coli, and 70% to P. fluorescens. SiO(2) nanoparticles killed 40% of B. subtilis, 58% of E. coli, and 70% of P. fluorescens. TEM images showed attachment of nanoparticles to the bacteria, suggesting that the toxicity was affected by bacterial attachment. Bacterial responses to nanoparticles were different from their bulk counterparts; hence nanoparticle toxicity mechanisms need to be studied thoroughly.
Is cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer?
Beukema, Jannet C; van Luijk, Peter; Widder, Joachim; Langendijk, Johannes A; Muijs, Christina T
2015-01-01
In recent years several papers have been published on radiation-induced cardiac toxicity, especially in breast cancer patients. However, in esophageal cancer patients the radiation dose to the heart is usually markedly higher. To determine whether radiation-induced cardiac toxicity is also a relevant issue for this group, we conducted a review of the current literature. A literature search was performed in Medline for papers concerning cardiac toxicity in esophageal cancer patients treated with radiotherapy with or without chemotherapy. The overall crude incidence of symptomatic cardiac toxicity was as high as 10.8%. Toxicities corresponded with several dose-volume parameters of the heart. The most frequently reported complications were pericardial effusion, ischemic heart disease and heart failure. Cardiac toxicity is a relevant issue in the treatment of esophageal cancer. However, valid Normal Tissue Complication Probability models for esophageal cancer are not available at present. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
As part of its whole effluent testing program, the USEPA developed an effects-directed analysis (EDA) approach to identifying the cause of toxicity in toxic effluents or ambient waters, an EDA process termed a “Toxicity Identification Evaluation” (TIE), which is the focus of this...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
Code of Federal Regulations, 2012 CFR
2012-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
Code of Federal Regulations, 2011 CFR
2011-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
Code of Federal Regulations, 2013 CFR
2013-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
46 CFR 153.526 - Toxic vapor detectors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...
46 CFR 153.526 - Toxic vapor detectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...
46 CFR 153.526 - Toxic vapor detectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...
46 CFR 153.526 - Toxic vapor detectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...
46 CFR 153.526 - Toxic vapor detectors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...
Workshops on maternal toxicity were held at the annual meetings of the Society of Toxicology, Teratology Society, and European Teratology Society in 2009. Prior to a general discussion of the issues involved with maternal toxicity and its impact on study design and data interpret...
EPA's Toxicity Reference Databases (ToxRefDB) was developed by the National Center for Computational Toxicology in partnership with EPA's Office of Pesticide Programs, to store data derived from in vivo animal toxicity studies [www.epa.gov/ncct/toxrefdb/]. The initial build of To...
Children's Ability to Recognise Toxic and Non-Toxic Fruits
ERIC Educational Resources Information Center
Fancovicova, Jana; Prokop, Pavol
2011-01-01
Children's ability to identify common plants is a necessary prerequisite for learning botany. However, recent work has shown that children lack positive attitudes toward plants and are unable to identify them. We examined children's (aged 10-17) ability to discriminate between common toxic and non-toxic plants and their mature fruits presented in…
The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...
The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...
A Java-based web service is being developed within the US EPA’s Chemistry Dashboard to provide real time estimates of toxicity values and physical properties. WebTEST can generate toxicity predictions directly from a simple URL which includes the endpoint, QSAR method, and ...
A Java-based web service is being developed within the US EPA’s Chemistry Dashboard to provide real time estimates of toxicity values and physical properties. WebTEST can generate toxicity predictions directly from a simple URL which includes the endpoint, QSAR method, and ...
[Use of dinoflagellates as a metal toxicity assessment tool in aquatic system].
Yuan, Li-juan; He, Meng-chang
2009-10-15
Although dinoflagellates have been used to assess biological toxicity of contaminants, this method still lacks of corresponding toxicity assessment standard. This study appraised the toxicity of selected heavy metals to dinoflagellates based on the dinoflagellates bioluminescence with QwikLite developed by the United States Navy. The results show that single heavy metal biological toxicity is in the order: Hg2+ > Cu2+ > Cd2+ > As5+ > Pb2+ > Cr6+; Two, three and four heavy metal mixture experiments show synergism primarily, antagonism is in minority. pH has not remarkable effect on dinoflagellates, they can be applied directly in natural water, but pH influence Hg2+ and Cu2+ toxicity greatly, eliminating the influence of pH is essential when doing these two kind of ions measurements. The nutrients has little influence on dinoflagellates, change in COD has obvious effect on the response relationships between dinoflagellates and Hg2+ or CU2+. Metal toxicity assessment using dinoflagellates shows great sensitivity, narrow response scope and high stability. Dinoflagellates are good species for heavy metal biological toxicity test in aquatic system.
Wang, Li; Chen, Chuanyue; Liu, Wanjing; Xia, Hu; Li, Jian; Zhang, Xuezhen
2017-03-01
Toxic cyanobacterial blooms result in the production of an organic biomass containing cyanotoxins (e.g. microcystins) and an elevated ammonia concentration in the water environment. The ingestion of toxic cyanobacteria and exposure to ammonia are grave hazards for fish. The present study assessed the effects of dietary toxic cyanobacteria and ammonia exposure on the flesh quality of blunt snout bream (Megalobrama amblycephala). Dietary toxic cyanobacteria and ammonia exposure had no impact on fish growth performance, fillet proximate composition and drip loss, whereas it significantly decreased fillet total amino acids, total essential amino acids, hardness and gumminess, and increased fillet ultimate pH as well as malondialdehyde content. However, there was no significant interaction between dietary toxic cyanobacteria and ammonia exposure on these parameters. Additionally, dietary toxic cyanobacteria significantly increased fillet initial pH, thaw loss and protein carbonyl content, whereas ammonia exposure did not. The results of the present study indicate that dietary toxic cyanobacteria and ammonia exposure reduced the quality of blunt snout bream fillet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Toxicities of emamectin benzoate homologues and photodegradates to Lepidoptera.
Argentine, Joseph A; Jansson, Richard K; Starner, Van R; Halliday, W Ross
2002-12-01
The toxicity of a number of emamectin benzoate homologues and photodegradates to five species of Lepidoptera was investigated using diet and foliar bioassays. The emamectin benzoate homologues B1a and B1b were equally toxic in the diet and foliar assays to Spodoptera exigua (Hübner), Heliothis virescens (F.), Tricoplusia ni (Hübner), and Spodoptera frugiperda (J. E. Smith), within each of these species. Plutella xylostella (L.) was the most sensitive species to emamectin benzoate. The AB1a photodegradate of emamectin benzoate was as toxic as the parent compound in the diet assay. However, in the foliage assay AB1a was 4.4-fold less toxic to S. exigua than the parent compound. The MFB1a photodegradate of emamectin benzoate was as toxic as the parent compound to P. xylostella, and 3.1 to 6.2 times as toxic as the parent compound to the other species in the diet assay. The order of toxicity of the photodegradates were AB1a > MFB1a > FAB1a > 8,9-Z-MAB1a > PAB1a.
Hudson, R.H.; Haegele, M.A.; Tucker, R.K.
1979-01-01
Acute oral (po) and 24-hr percutaneous (perc) LD50 values for 21 common pesticides (19 anticholinesterases, of which 18 were organophosphates, and one was a carbamate; one was an organochlorine central nervous system stimulant; and one was an organonitrogen pneumotoxicant) were determined in mallards (Anas platyrhynchos). Three of the pesticides tested were more toxic percutaneously than orally. An index to the percutaneous hazard of a pesticide, the dermal toxicity index (DTI = po LD50/perc LD50 ? 100), was also calculated for each pesticide. These toxicity values in mallards were compared with toxicity data for rats from the literature. Significant positive correlations were found between log po and log percutaneous LD50 values in mallards (r = 0.65, p 0.10). Variations in percutaneous methodologies are discussed with reference to interspecies variation in toxicity values. It is recommended that a mammalian DTI value approaching 30 be used as a guideline for the initiation of percutaneous toxicity studies in birds, when the po LD50 and/or projected percutaneous LD50 are less than expected field exposure levels.
[Priority pollutants ranking and screening of coke industry based on USEtox model].
Hao, Tian; Du, Peng-Fei; Du, Bin; Zeng, Si-Yu
2014-01-01
Thesis aims at evaluating and setting priority to human toxicity and ecotoxicity of coking pollutants. A field research and sampling project are conducted in coke plant in Shanxi so as to complete the coke emission inventory. The USEtox model representing recommended practice in LCIA characterization is applied to the emission inventory to quantify the potential impacts on human toxicity and ecotoxicity of emerging pollutants. Priority pollutants, production procedures and effects of changing plant site on the toxicity are analyzed. As conclusions, benzo(a) pyrene, benzene, Zn and As are identified as the priority pollutants in human toxicity, while pyrene and anthracene in ecotoxicity. Coal charging is the dominant procedure for organic toxicity and priority pollutants include benzo (a) pyrene, benzene, naphthalene, etc. While coke drenching is the dominant procedure for metal toxicity and priority pollutants include Zn, As, Ti, Hg etc. Emission to rural environment can reduce the organic toxicity significantly compared to the emission to urban environment. However, the site changing has no effect on metal toxicity and might increase the risk of the metal pollution to rural water and soil.
A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations
Thiel, Christoph; Cordes, Henrik; Fabbri, Lorenzo; Aschmann, Hélène Eloise; Baier, Vanessa; Atkinson, Francis; Blank, Lars Mathias; Kuepfer, Lars
2017-01-01
Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general understanding of the molecular mechanisms accompanying the transition from desired drug effects to adverse events following administration of either therapeutic or toxic doses, in particular within a patient context. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes. The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events in clinical application. PMID:28151932
Are silver nanoparticles always toxic in the presence of environmental anions?
Guo, Zhi; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Huang, Zhenzhen; Jiang, Luhua; Peng, Chuan; Wang, Jiajia; Xiao, Zhihua
2017-03-01
Increasing amounts of silver nanoparticles (AgNPs) are expected to enter the ecosystems where their toxicity in the environment is proposed. In this study, we exploited the effect of environmental anions on AgNP toxicity. AgNP were mixed with various environmental anions, and then exposed to Escherichia coli to determine the effect on bacteria growth inhibition. The results demonstrated that AgNP are not always toxic in the presence of sulfide, but can stimulate microbial growth at certain concentrations. Environmental chloride and phosphate anions cannot induce the stimulation because of their weak capacity to control the release of Ag + from AgNP. Ag + that released from AgNP is proven to be responsible for AgNP toxicity. Moreover, we found that AgNP toxicity is dependent on sulfuration rate. At the same sulfuration rate, AgNP shows an identical pattern of toxicity. This study indicates that only sulfide of the tested environmental anions can induce AgNP stimulation to microbial growth in a sulfuration rate dependent pattern and the toxicity originate from Ag + that released from AgNP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo
King-Heiden, Tisha C.; Wiecinski, Paige N.; Mangham, Andrew N.; Metz, Kevin M.; Nesbit, Dorothy; Pedersen, Joel A.; Hamers, Robert J.; Heideman, Warren; Peterson, Richard E.
2009-01-01
Quantum dots (QDs) hold promise for several biomedical, life sciences and photovoltaic applications. Substantial production volumes and environmental release are anticipated. QD toxicity may be intrinsic to their physicochemical properties, or result from the release of toxic components during breakdown. We hypothesized that developing zebrafish could be used to identify and distinguish these different types of toxicity. Embryos were exposed to aqueous suspensions of CdSecore/ZnSshell QDs functionalized with either poly-L-lysine or poly(ethylene glycol) terminated with methoxy, carboxylate, or amine groups. Toxicity was influenced by the QD coating, which also contributed to the QD suspension stability. At sublethal concentrations, many QD preparations produced characteristic signs of Cd toxicity that weakly correlated with metallothionein expression, indicating that QDs are only slightly degraded in vivo. QDs also produced distinctly different toxicity that could not be explained by Cd release. Using the zebrafish model, we were able to distinguish toxicity intrinsic to QDs from that caused by released metal ions. We conclude that developing zebrafish provide a rapid, low- cost approach for assessing structure-toxicity relationships of nanoparticles. PMID:19350942
Kleinhenz, Linda S; Nugegoda, Dayanthi; Verspaandonk, Emily R; Coombes, Darcy C; Howe, Steffan; Shimeta, Jeff
2016-08-15
Coastal weeds are often treated with herbicides without knowledge of non-target impacts, and toxicity data from standardized test species can have limited applicability. We evaluated toxicity to invertebrates from Fusilade Forte® and the adjuvant Hasten® in the control of invasive salt marsh grass, Spartina anglica. For 3 of 4 local invertebrates, Fusilade Forte® was moderately toxic (96h LC50 5.4-144mgL(-1)), whereas Hasten® was less toxic (14.2-450mgL(-1)). For most species, the mixture was more toxic than the herbicide alone, with 96h LC50 reduced 23-45%. However, a field experiment applying typical concentrations (1000×the lowest 96h LC50) showed low concentrations of herbicide residues and no detrimental impacts on invertebrates over 6months. The results reveal the importance of testing locally relevant species for potential toxicity, and of comparison tests with field exposures to determine the realised toxicity in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Chemicals toxic to the olfactory system. Analysis and description].
Norès, J M; Biacabe, B; Bonfils, P
2000-10-28
AN IMPORTANT PROBLEM: Occupational exposure to chemical products can have toxic effects on the olfactory system. An important number of patients have experienced olfactory disorders subsequent to the development of the chemical industry and atmospheric pollution. EPIDEMIOLOGY DATA: Straightforward data are difficult to collect because several cofactors other than the toxic product are involved. Two lists of toxic products can be made. The first list includes products for which scientific data is available and the second products for which data is lacking. Olfactory tests also differ between authors and countries. TWO TYPES OF TOXICITY: Acute, accidental toxicity is evidenced by the lesions caused by inhalation of high-doses of strongly toxic agents. Chronic intoxication caused by lower concentrations of these inhaled agents does not produce a trigeminal reflex leading to a modified respiratory rate reducing the airborne aggression. APPROXIMATIONS: Clinical data describing the olfactory toxicity of certain industrial and chemical compounds are very significant but often cannot prove a cause and effect relationship. Data obtained with experimental models in rodents are difficult to extrapolate to humans.
Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P
2011-09-01
Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hvastkovs, Eli, G.; Schenkman, John B.; Rusling, James, F.
2012-07-01
New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.
Lee, Sundong; Cho, Myung-Haing
2014-01-01
Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011
NASA Astrophysics Data System (ADS)
Şimşek, Şeyda; Yaman, Cennet; Yarımoǧlu, Berkan; Yılmaz, Ayşegül
2017-04-01
In the present study, experiments were conducted to investigate fumigant toxicity of the essential oil from Myrtus sp plants for adult Aconthocelides obtectus, Sitophilus oryzea and Rhizoperta dominica in vitro conditions. The essential oils were isolated with the water distillation method by Neo-Clevenger apparatus. During the study 10% (v/v) doses of oils in 20 cc of compressed rubber-capped glass tubes were used. After 24 hours mortality rates of the essential oil were compared. Myrtus sp essential oil showed the highest fumigant toxicity on A. obtectus (46.66%). The lowest fumigant toxicity on S. oryzea (8.88%). The contact toxicity plant extracts (Prangos ferulacea, Alkanna orientalis, Myrtus communis) were tested against S. oryzea under laboratory conditions. Single dose contact toxicity effects of plant extracts were tested on S. oryzea adults via applying 1 µl extract suspension (10% w/v) to individual insect. The greatest contact toxicity to S. oryzea adults was observed with M. communis (43.33%) and A. orientalis (41.11%) extracts. P. ferulacea (34.44%) extracts produced moderate toxicity to S. oryzea adults.
Safety assessment of hydroethanolic rambutan rind extract: acute and sub-chronic toxicity studies.
Thinkratok, Aree; Suwannaprapha, Parin; Srisawat, Rungrudee
2014-10-01
This study evaluated the safety of rambutan rind extract (RRE) in male Wistar rats. While acute toxicity was evaluated by feeding the rats with single doses of RRE (1000, 2000, 3000, 4000, and 5000 mg/kg) and its sub-chronic toxicity was observed in rats orally administered with RRE (500, 1000, and 2000 mg/kg) daily for 30 days. In acute toxicity study, the LD50 was found to be greater than 5000 mg/kg of RRE. In sub-chronic toxicity study, no mortality and sign of toxicity was found up to 1000 mg/kg/day of RRE. At 2000 mg/kg/day dose, the mortality rate was 12.5%. Significant decreases in body weight gain and food consumption were found in both acute and sub-chronic toxicity studies. In acute toxicity study, all the studied doses of RRE did not alter serum levels of triglyceride (TG), aspartate aminotransferase (AST) andalanine aminotransferase (ALT). In sub-chronic toxicity study, all studied doses of RRE significantly decreased plasma levels of TG and blood urea nitrogen, but did not alter plasma levels of AST and ALT. TC levels did not show any significant change in both the studies. The obtained results provide basic information for in vivo experimental studies of the pharmacological potentiality of RRE.
Sediment toxicity testing with the amphipod Ampelisca abdita in Calcasieu Estuary, Louisiana
Redmond, M.S.; Crocker, P.A.; McKenna, K.M.; Petrocelli, E.A.; Scott, K.J.; Demas, C.R.
1996-01-01
Discharges from chemical and petrochemical manufacturing facilities have contaminated portions of Louisiana's Calcasieu River estuary with a variety of organic and inorganic contaminants. As part of a special study, sediment toxicity testing was conducted to assess potential impact to the benthic community. Ten-day flow-through sediment toxicity tests with the amphipod Ampelisca abdita revealed significant toxicity at 68% (26 of 38) of the stations tested. A. abdita mortality was highest in the effluent-dominated bayous, which are tributaries to the Calcasieu River. Mortality was correlated with total heavy metal and total organic compound concentrations in the sediments. Ancillary experiments showed that sediment interstitial water salinity as low as 2.5 o/o-o did not significantly affect A. abdita's, response in the flow-through system; sediment storage for 7 weeks at 4??C did not significantly affect toxicity. Sediment toxicity to A. abdita was more prevalent than receiving water toxicity using three short-term chronic bioassays. Results suggest that toxicity testing using this amphipod is a valuable tool when assessing sediments containing complex contaminant mixtures and for assessing effects of pollutant loading over time. In conjunction with chemical analyses, the testing indicated that the effluent-dominated, brackish bayous (Bayou d'Inde and Bayou Verdine) were the portions of the estuary most impacted by toxicity.
Residual toxicity after biodegradation: interactions among benzene, toluene, and chloroform.
da Silva Nunes-Halldorson, Vânia; Steiner, Robert L; Smith, Geoffrey B
2004-02-01
A microbial enrichment originating from a pristine aquifer was found to aerobically biodegrade benzene and toluene, but not chloroform. This enrichment culture was used to study changes in pollutant toxicity as affected by biodegradative activity. Two assays for toxicity were used: (1) a 48-h acute toxicity test using the freshwater invertebrate Ceriodaphnia dubia and (2) microbial biodegradation activity as affected by the presence of mixed pollutants. At 20-ppm concentrations, toluene was significantly more toxic (99% mortality) to C. dubia than benzene (48% mortality) or chloroform (40% mortality). Also at 20-ppm concentrations, but before biodegradation, toluene was significantly more toxic (88% mortality) to C. dubia than benzene (33% mortality). After biodegradation of 98% of toluene and benzene, significant residual toxicity still remained in the bacterial supernatant: toluene-degraded supernatant caused 33% mortality in C. dubia and benzene-degraded supernatant caused 24% mortality. In the second toxicity assay, examining the effect of mixed pollutants on biodegradation activity, the presence of benzene slowed the biodegradation of toluene, but chloroform had no effect on either benzene or toluene biodegradation. Results indicate that significant toxicity remain after biodegradation and that halogenated aliphatic hydrocarbons may have little or no effect on aromatic hydrocarbon biodegradation at sites impacted by mixed pollutants.
Elshama, Said Said; Osman, Hosam-Eldin Hussein; El-Kenawy, Ayman El-Meghawry; Youseef, Hamdi Mohamed
2016-02-17
Vitamin D3 has increased risk of toxicity due to its common use in multivitamin preparations. Vitamin K and vitamin A play an important role in vitamin D action. The goal of the current study was to compare the protective effects of vitamin K and vitamin A on the modulation of hypervitaminosis D3 toxicity in rats by assessing serum calcium, renal function tests, cardiac enzymes, and related histopathological changes. Eighty adult albino rats were divided into four groups; each group consisted of 20 rats. The first group received water; the second received a toxic dose of vitamin D3; the third received a toxic dose of vitamin D3 with vitamin A; and the fourth received a toxic dose of vitamin D3 with vitamin K. Vitamin D3 toxicity led to significant abnormalities of cardiac enzymes, renal function tests, and serum calcium associated with histopathological changes in the kidney, heart, lung, adrenal gland, and aorta. Individual administration of vitamin A or vitamin K with a toxic dose of vitamin D improved the biochemical and histopathological abnormalities of hypervitaminosis D3. Vitamins A and K showed the same protective effects in the modulation of hypervitaminosis D3 short-term toxicity.
Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.
Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay
2015-04-01
Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results. Copyright © 2015 Elsevier B.V. All rights reserved.
Acute and sub-chronic toxicity studies of honokiol microemulsion.
Zhang, Qianqian; Li, Jianguo; Zhang, Wei; An, Quan; Wen, Jianhua; Wang, Aiping; Jin, Hongtao; Chen, Shizhong
2015-04-01
The purpose of this study was to investigate the acute and sub-chronic toxicity of honokiol microemulsion. In the acute toxicity tests, the mice were intravenously injected graded doses of honokiol microemulsion and were observed for toxic symptoms and mortality daily for 14 days. In the sub-chronic toxicity study, rats were injected honokiol microemulsion at doses of 100, 500, 2500 μg/kg body weight (BW) for 30 days. After 30 days treatment and 14 days recovery, the rats were sacrificed for hematological, biochemical and histological examination. In the acute toxicity tests, the estimated median lethal dosage (LD50) was 50.5mg/kg body weight in mice. In the sub-chronic toxicity tests, the non-toxic reaction dose was 500 μg/kg body weight. In each treatment group, degeneration or/and necrosis in vascular endothelial cells and structure change of vessel wall can be observed in the injection site (cauda vein) of a few animals while there were no changes in the vessels of other organs. The overall findings of this study indicate that the honokiol microemulsion is non-toxic up to 500 μg/kg body weight, and it has irritation to the vascular of the injection site which should be paid attention to in clinical medication. Copyright © 2015. Published by Elsevier Inc.
Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven
2011-11-01
Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms. Copyright © 2011 SETAC.
Lee, Kyun-Woo; Shim, Won Joon; Yim, Un Hyuk; Kang, Jung-Hoon
2013-08-01
We determined the toxicity of the water accommodated hydrocarbon fraction (WAF), two chemically enhanced WAFs (CEWAFs; CEWAF-C, Crude oil+Corexit 9500 and CEWAF-H, Crude oil+Hiclean) of crude oil and two dispersants (Corexit 9500 and Hiclean) to the rock pool copepod Tigriopus japonicus. In the acute toxicity test, Corexit 9500 was the most toxic of all the chemicals studied. The nauplius stage of T. japonicus was more susceptible to the toxic chemicals studied than the adult female. The toxicity data using the nauplius stage was then considered as baseline to determine the spiking concentration of chemicals for chronic toxicity tests on the copepod. As the endpoints in the chronic toxicity test, survival, sex ratio, developmental time and fecundity of the copepod were used. All chemicals used in this study resulted in increased toxicity in the F1 generation. The lowest-observed-adverse-effect (LOAE) concentrations of WAF, CEWAF-H, CEWAF-C, Hiclean and Corexit 9500 were observed to be 50%, 10%, 0.1%, 1% and 1%, respectively. The results in present study imply that copepods in marine may be negatively influenced by spilled oil and dispersant. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes.
Bejgarn, Sofia; MacLeod, Matthew; Bogdal, Christian; Breitholtz, Magnus
2015-08-01
Between 60% and 80% of all marine litter is plastic. Leachate from plastics has previously been shown to cause acute toxicity in the freshwater species Daphnia magna. Here, we present an initial screening of the marine environmental hazard properties of leachates from weathering plastics to the marine harpacticoid copepod [Crustacea] Nitocra spinipes. Twenty-one plastic products made of different polymeric materials were leached and irradiated with artificial sunlight. Eight of the twenty-one plastics (38%) produced leachates that caused acute toxicity. Differences in toxicity were seen for different plastic products, and depending on the duration of irradiation. There was no consistent trend in how toxicity of leachate from plastics changed as a function of irradiation time. Leachate from four plastics became significantly more toxic after irradiation, two became significantly less toxic and two did not change significantly. Analysis of leachates from polyvinyl chloride (PVC) by liquid chromatography coupled to a full-scan high-resolution mass spectrometer showed that the leachates were a mixture of substances, but did not show evidence of degradation of the polymer backbone. This screening study demonstrates that leachates from different plastics differ in toxicity to N. spinipes and that the toxicity varies under simulated weathering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
THE TOXICITY OF RUBBERS AND PLASTICS USED IN TRANSFUSION-GIVING SETS
Cruickshank, C. N. D.; Hooper, Caroline; Lewis, H. B. M.; MacDougall, J. D. B.
1960-01-01
The toxicity of different rubbers and plastics used in transfusion-giving sets has been investigated by examining their effects on (a) cultures of chick embryo tissues, (b) the oxygen uptake of guinea-pig skin tissue cultures, and (c) the growth of Str. pyogenes. The results of the laboratory tests have been compared with the incidence of thrombophlebitis after prolonged transfusions through the various materials. It was found that where the materials inhibited the growth of Str. pyogenes they were also toxic to tissue cultures, but that some materials which were toxic to tissue cultures did not inhibit bacterial growth. The assessments of the relative toxicity of the materials tested by the two tissue culture methods were in agreement. The skin respiration studies, however, gave more information on the early effects of the toxic materials. The relative toxicity of the materials as revealed by these tests could be correlated with the differences in the incidence of thrombophlebitis following intravenous infusions administered through giving-sets assembled with the materials tested. It is suggested therefore that the toxicity revealed by these tests is of clinical importance, and that tissue culture toxicity tests will prove to be of value in selecting rubbers and plastics for clinical purposes. Images PMID:13813084
Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana
2014-12-01
A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. Copyright © 2014 Elsevier Inc. All rights reserved.
A toxicity-based method for evaluating safety of reclaimed water for environmental reuses.
Xu, Jianying; Zhao, Chuntao; Wei, Dongbin; Du, Yuguo
2014-10-01
A large quantity of toxic chemical pollutants possibly remains in reclaimed water due to the limited removal efficiency in traditional reclamation processes. It is not enough to guarantee the safety of reclaimed water using conventional water quality criteria. An integrated assessment method based on toxicity test is necessary to vividly depict the safety of reclaimed water for reuse. A toxicity test battery consisting of lethality, genotoxicity and endocrine disrupting effect was designed to screen the multiple biological effects of residual toxic chemicals in reclaimed water. The toxicity results of reclaimed water were converted into the equivalent concentrations of the corresponding positive reference substances (EQC). Simultaneously, the predicted no-effect concentration (PNEC) of each positive reference substance was obtained by analyzing the species sensitivity distribution (SSD) of toxicity data. An index "toxicity score" was proposed and valued as 1, 2, 3, or 4 depending on the ratio of the corresponding EQC to PNEC. For vividly ranking the safety of reclaimed water, an integrated assessment index "toxicity rank" was proposed, which was classified into A, B, C, or D rank with A being the safest. The proposed method was proved to be effective in evaluating reclaimed water samples in case studies. Copyright © 2014. Published by Elsevier B.V.
Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen
2016-09-01
This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.
Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Farwell, Andrea J; Dixon, D George
2017-03-01
The Alberta oil sands are one of the largest global petroleum deposits and, due to non-release practices for oil sands process-affected waters, produced tailings are stored in large ponds. The acid extractable organic (AEO) compounds in oil sands process-affected water are of greatest concern due to their persistence and toxicity to a variety of aquatic biota. The present study evaluated the toxicity of the five AEO fractions to two fish species: Oryzias latipes (Japanese medaka) and Pimephales promelas (fathead minnow). The fractions (F1-F5) were comprised of AEO with increasing mean molecular weight and subsequent increases in cyclicity, aromaticity, degree of oxygenation, and heteroatom content. The lowest molecular weight fraction, F1, displayed the lowest acute toxicity to both fish species. For fathead minnow, F5 displayed the greatest toxic potency, while F2 to F4 displayed intermediate toxicities. For Japanese medaka, F2 and F3 displayed the greatest acute toxicities and F1, F4 and F5 were significantly less potent. Overall, fathead minnow were more acutely sensitive to AEO than Japanese medaka. The present study indicates that AEO toxicity may not be solely driven by a narcotic mode of action, but chemical composition such as aromaticity and heteroatom content and their relation to toxicity suggest other drivers indicative of additional modes of toxic action. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baun, A.; Jensen, S.D.; Bjerg, P.L.
2000-05-01
The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additionalmore » genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.« less
Use of porewater extracts to identify the cause of toxicity in marine and estuarine sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, W.S.
1994-12-31
Amphipod toxicity tests in the evaluation of dredged material proposed for ocean disposal has come under increased scrutiny by the regulated community in the Port of NY/NJ. In recent large-scale assessments of sediment quality in the harbor, the vast majority of locations were deemed highly contaminated when tested with Ampelisca abdita. Toxicity tests, by themselves, do not provide data regarding the cause of toxicity of these sediments. The enormous potential costs associated with most proposed alternatives to ocean disposal of dredged sediments has prompted the investigation of the causative agents of toxicity in sediments of the NY/NJ Harbor. Sediment frommore » five locations in the harbor, selected in consultation with local regulatory agencies to represent diverse potential contamination scenarios, was collected and tested for toxicity to the amphipods Ampelisca abdita, Leptocheirus plumulosus, Eohaustorius estuadus, Rhepoxynius abronius, and the mysid shrimp, Mysidopsis bahia, using 10-day static bioassays. Porewater from each of the five sediments was extracted under centrifugation and used in water-only toxicity tests with A. abdita, L. plumulosus, R. abronius, E. estuadus, M. bahia, M. beryllina, and Microtox. A Phase 1 Toxicity Identification Evaluation of the three most toxic porewater samples was conducted using several of the species tested. Results from the preliminary investigations and the ongoing TIE`s will be presented. Species selection, porewater toxicity test procedures, and Phase 1, 2, and 3 paradigms will be discussed.« less
Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.A.; Razo-Flores, E.; Field, J.A.
1995-11-01
N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less
Using enzyme bioassays as a rapid screen for metal toxicity
Choate, LaDonna M.; Ross, P.E.; Blumenstein, E. P.; Ranville, James F.
2005-01-01
Mine tailings piles and abandoned mine soils are often contaminated by a suite of toxic metals, which were released in the mining process. Traditionally, toxicity of such areas has been determined by numerous chemical methods including the Toxicity Characteristic Leachate Procedure (TCLP) and traditional toxicity tests using organisms such as the cladoceran Ceriodaphnia dubia. Such tests can be expensive and time-consuming. Enzymatic bioassays may provide an easier, less costly, and more time-effective toxicity screening procedure for mine tailings and abandoned mine soil leachates. This study evaluated the commercially available MetPLATE™ enzymatic toxicity assay test kit. The MetPLATE™ assay uses a modified strain of Escherichia coli bacteria as the test organism. Toxicity is defined by the activity of β-galactosidase enzyme which is monitored colorometrically with a 96-well spectrophotometer. The study used water samples collected from North Fork Clear Creek, a mining influenced water (MIW) located in Colorado. A great benefit to using the MetPLATE™ assay over the TCLP is that it shows actual toxicity of a sample by taking into account the bioavailability of the toxicants rather than simply measuring the metal concentration present. Benefits of the MetPLATE™ assay over the use of C. dubia include greatly reduced time for the testing process (∼2 hours), a more continuous variable due to a greater number of organisms present in each sample (100,000+), and the elimination of need to maintain a culture of organisms at all times.
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175
Manganelli, Maura; Scardala, Simona; Stefanelli, Mara; Vichi, Susanna; Mattei, Daniela; Bogialli, Sara; Ceccarelli, Piegiorgio; Corradetti, Ernesto; Petrucci, Ines; Gemma, Simonetta; Testai, Emanuela; Funari, Enzo
2010-03-01
Increasing concern for human health related to cyanotoxin exposure imposes the identification of pattern and level of exposure; however, current monitoring programs, based on cyanobacteria cell counts, could be inadequate. An integrated approach has been applied to a small lake in Italy, affected by Planktothrix rubescens blooms, to provide a scientific basis for appropriate monitoring program design. The cyanobacterium dynamic, the lake physicochemical and trophic status, expressed as nutrients concentration and recycling rates due to bacterial activity, the identification/quantification of toxic genotype and cyanotoxin concentration have been studied. Our results indicate that low levels of nutrients are not a marker for low risk of P. rubescens proliferation and confirm that cyanobacterial density solely is not a reliable parameter to assess human exposure. The ratio between toxic/non-toxic cells, and toxin concentrations, which can be better explained by toxic population dynamic, are much more diagnostic, although varying with time and environmental conditions. The toxic fraction within P. rubescens population is generally high (30-100%) and increases with water depth. The ratio toxic/non-toxic cells is lowest during the bloom, suggesting a competitive advantage for non-toxic cells. Therefore, when P. rubescens is the dominant species, it is important to analyze samples below the thermocline, and quantitatively estimate toxic genotype abundance. In addition, the identification of cyanotoxin content and congeners profile, with different toxic potential, are crucial for risk assessment. Copyright 2009 Elsevier Ltd. All rights reserved.
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.
Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials
Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori
2016-01-01
Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Herkovits, F.D.; Perez-Coll, C.S.
The water quality based toxics control is essential to evaluate the aggregate toxicity, bioavailability as well as for the detection and/or prediction of ecological impacts. Reconquista River valley is situated in the north area of Great Buenos Aires with a population of three million inhabitants. The river is loaded with industrial and municipal waste water. In the present preliminary study the authors report the toxicity found in surface water at a 6 sample stations (including a reference point and a stream) all of them downstream from mixing zone areas. The ecotoxicological study was performed with three native species (Bufo arenarummore » embryos, Cnesterodon decemmaculatus and a species of shrimp collected in an upstream reference site) during a 7 day renewal toxicity test conducted with 10 individuals (by duplicate) for each condition plus control. The results point out that the Bufo arenarum embryos test is the most sensitive to toxic substances as well as the better adapted species to the changing physico-chemical conditions of this river. The results obtained with embryos, expressed in Acute and Chronic Toxicity Units (according USEPA) range between <0.3--2 and <1--5 respectively (recommended magnitudes for industrial effluents according USEPA: 0.3 and 1 toxicity units respectively). Therefore, the toxicity found in Reconquista River ecosystem was up to 6 times higher than the maximal value recommended for industrial effluents. It is noteworthy that in the place where toxicity starts to rise, a large number of dead fishes were found and from that place downstream, no macroorganisms were found in the river. The results confirm the high sensitivity of Bufo arenarum embryos for continental waters ecotoxicological studies and the possibility of using this test as a short-term chronic toxicity method for water quality-based toxics control.« less
Hudspith, M; Reichelt-Brushett, Amanda; Harrison, Peter L
2017-03-01
Significant amounts of trace metals have been released into both nearshore and deep sea environments in recent years, resulting in increased concentrations that can be toxic to marine organisms. Trace metals can negatively affect external fertilization processes in marine broadcast spawners and may cause a reduction in fertilization success at elevated concentrations. Due to its sensitivity and ecological importance, fertilization success has been widely used as a toxicity endpoint in ecotoxicological testing, which is an important method of evaluating the toxicity of contaminants for management planning. Ecotoxicological data regarding fertilization success are available across the major marine phyla, but there remain uncertainties that impair our ability to confidently interpret and analyse these data. At present, the cellular and biochemical events underlying trace metal toxicity in external fertilization are not known. Metal behavior and speciation play an important role in bioavailability and toxicity but are often overlooked, and disparities in experimental designs between studies limit the degree to which results can be synthesised and compared to those of other relevant species. We reviewed all available literature covering cellular toxicity mechanisms, metal toxicities and speciation, and differences in methodologies between studies. We conclude that the concept of metal toxicity should be approached in a more holistic manner that involves elucidating toxicity mechanisms, improving the understanding of metal behavior and speciation on bioavailability and toxicity, and standardizing the fertilization assay methods among different groups of organisms. We identify opportunities to improve the fertilization assay that will allow robust critical and comparative analysis between species and their sensitivities to trace metals during external fertilization, and enable data to be more readily extrapolated to field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Khoja, Leila; Atenafu, Eshetu G; Ye, Qian; Gedye, Craig; Chappell, Maryanne; Hogg, David; Butler, Marcus O; Joshua, Anthony M
2016-02-01
Approved by the Food and Drug Administration in 2011, the anti-cytotoxic T-lymphocyte-associated protein 4 checkpoint inhibitor ipilimumab has delivered a survival benefit of ≥3 years in a subset of metastatic melanoma patients. After participating in the registration trial, patients were treated with this agent in routine practice. Toxicity and efficacy of agents in "real world" settings may differ from trials. The present study aimed to evaluate, with respect to toxicity and outcome, all patients treated with ipilimumab to date at the Princess Margaret Hospital (Toronto, Canada). Patients treated with ipilimumab between 2008 and 2013 were identified, and patient characteristics (age, gender, tumour burden, oncogenic mutation status, number of treatments received and toxicities from treatment) were collected. Progression-free survival (PFS) and overall survival (OS) were calculated from the commencement of ipilimumab treatment. Associations between clinical characteristics and outcome or toxicity were assessed. Between 2008 and 2013, 129 patients with metastatic cutaneous melanoma were treated. Since, during this period, ipilimumab was approved in the second line setting, ipilimumab was delivered in the second or subsequent line in all patients, and 70% did not receive any further anticancer therapy. Immune-related toxicities were observed, the onset of which varied from 1 to 162 days. The majority resolved within 6 weeks of the final treatment, with the exception of endocrinopathies and bowel related toxicity. The median PFS and OS were 2.83 and 8.44 months, respectively. No pre-treatment factor independently predicted toxicity. The number of infusions (4 vs. ≤3) and presence of toxicity were significantly associated with superior survival. The onset of toxicity secondary to ipilimumab could occur later than previously reported. Toxicities were manageable, but required long-term vigilance.
Bautista, Francisco; Moreno, Lucas; Marshall, Lynley; Pearson, Andrew D J; Geoerger, Birgit; Paoletti, Xavier
2017-11-01
Dose-escalation trials aim to identify the maximum tolerated dose and, importantly, the recommended phase II dose (RP2D) and rely on the occurrence of dose-limiting toxicities (DLTs) during the first treatment cycle. Molecularly targeted agents (MTAs) often follow continuous and prolonged administrations, displaying a distinct toxicity profile compared to conventional chemotherapeutics, and classical DLT criteria might not be appropriate to evaluate MTAs' toxicity. We investigated this issue in children. The Innovative Therapies for Children with Cancer Consortium (ITCC) phase I trials of novel anticancer agents between 2004 and 2015 were analysed. Data from investigational product, trial design, items defining DLT/RP2D were extracted. A survey on dose-escalation process, DLTs and RP2D definition was conducted among the ITCC clinical trials committee members. Thirteen phase I trials with 15 dose-escalation cohorts were analysed. They explored 11 MTAs and 2 novel cytotoxics; 12 evaluated DLT during cycle 1. Definition of DLT was heterogeneous: Grade III-IV haematologic toxicities that were transient or asymptomatic and grade III-IV non-haematological toxicities manageable with adequate supportive care were often excluded, whereas some included dose intensity or grade II toxicities into DLT. None of the studies considered delayed toxicity into the RP2D definition. DLTs should be homogeneously defined across trials, limiting the number of exceptions due to specific toxicities. Dose escalation should still be based on safety data from cycle 1, but delayed and overall toxicities, pharmacokinetic parameters and pharmacodynamic data should be considered to refine the final RP2D. The evaluation of long-term toxicity in the developing child cannot be adequately addressed in early trials. Copyright © 2017 Elsevier Ltd. All rights reserved.
McNulty, E.W.; Dwyer, F.J.; Ellersieck, Mark R.; Greer, E.I.; Ingersoll, C.G.; Rabeni, C.F.
1999-01-01
Standard methods for conducting toxicity tests imply that the condition of test organisms can be established using reference toxicity tests. However, only a limited number of studies have evaluated whether reference toxicity tests can actually be used to determine if organisms are in good condition at the start of a test. We evaluated the ability of reference toxicants to identify stress associated with starvation in laboratory populations of the amphipod Hyalella azteca using acute toxicity tests and four reference toxicants: KCl, CdCl2, sodium pentachlorophenate (NaPCP), and carbaryl. Stress associated with severe starvation was observed with exposure of amphipods to carbaryl or NaPCP but not with exposure to KCl or CdCl2 (i.e., lower LC50 with severe starvation). Although the LC50s for NaPCP and carbaryl were statistically different between starved and fed amphipods, this difference may not be biologically significant given the variability expected in acute lethality tests. Stress associated with sieving, heat shock, or cold shock of amphipods before the start of a test was not evident with exposure to carbaryl or KCl as reference toxicants. The chemicals evaluated in this study provided minimal information about the condition of the organisms used to start a toxicity test. Laboratories should periodically perform reference toxicity tests to assess the sensitivity of life stages or strains of test organisms. However, use of other test acceptability criteria required in standard methods such as minimum survival, growth, or reproduction of organisms in the control treatment at the end of a test, provides more useful information about the condition of organisms used to start a test compared to data generated from reference toxicity tests.
Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Ingersoll, C.G.
2003-01-01
We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of both Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 ??g Cd/g and 493 ??g Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Rana, S; Larson, G
Purpose: To analyze the toxicity of uniform scanning proton therapy for lung cancer patients and its correlation with dose distribution. Methods: In this study, we analyzed the toxicity of 128 lung cancer patients, including 18 small cell lung cancer and 110 non small cell lung cancer patients. Each patient was treated with uniform scanning proton beams at our center using typically 2–4 fields. The prescription was typically 74 Cobalt gray equivalent (CGE) at 2 CGE per fraction. 4D Computerized Tomography (CT) scans were used to evaluate the target motion and contour the internal target volume, and repeated 3 times duringmore » the course of treatment to evaluate the need for plan adaptation. Toxicity data for these patients were obtained from the proton collaborative group (PCG) database. For cases of grade 3 toxicities or toxicities of interest such as esophagitis and radiation dermatitis, dose distributions were reviewed and analyzed in attempt to correlate the toxicity with radiation dose. Results: At a median follow up time of about 21 months, none of the patients had experienced Grade 4 or 5 toxicity. The most common adverse effect was dermatitis (81%: 52%-Grade 1, 28%-Grade 2, and 1% Grade 3), followed by fatigue (48%), Cough (46%), and Esophagitis (45%), as shown in Figure 1. Severe toxicities, such as Grade 3 dermatitis or pain of skin, had a clear correlation with high radiation dose. Conclusion: Uniform scanning proton therapy is well tolerated by lung cancer patients. Preliminary analysis indicates there is correlation between severe toxicity and high radiation dose. Understanding of radiation resulted toxicities and careful choice of beam arrangement are critical in minimizing toxicity of skin and other organs.« less
Farré, Marinella; Asperger, Daniela; Kantiani, Lina; González, Susana; Petrovic, Mira; Barceló, Damià
2008-04-01
In this work, the contributions of triclosan and its metabolite methyl triclosan to the overall acute toxicity of wastewater were studied using Vibrio fischeri. The protocol used in this paper involved various steps. First, the aquatic toxicities of triclosan and methyl triclosan were determined for standard substances, and the 50% effective concentrations (EC(50)) were determined for these compounds. Second, the toxic responses to different mixtures of triclosan, methyl triclosan, and surfactants were studied in different water matrices, i.e., Milli-Q water, groundwater and wastewater, in order to evaluate (i) the antagonistic or synergistic effects, and (ii) the influence of the water matrices. Finally, chemical analysis was used in conjunction with the toxicity results in order to assess the aquatic toxicities of triclosan and its derivative in wastewaters. In this study, the toxicities of 45 real samples corresponding to the influents and effluents from eight wastewater treatment works (WWTW) were analyzed. Thirty-one samples were from a wastewater treatment plant (WWTP) equipped with two pilot-scale membrane bioreactors (MBR), and the influent and the effluent samples after various treatments were characterized via different chromatographic approaches, including solid-phase extraction (SPE), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and SPE coupled to gas chromatography-mass spectrometry (GC-MS). The toxicity was determined by measuring the bioluminescence inhibition of Vibrio fischeri. In order to complete the study and to extrapolate the results to different WWTPs, the toxicity to V. fischeri of samples from seven more plants was analyzed, as were their triclosan and methyl triclosan concentrations. Good agreement was established between the overall toxicity values and concentrations of the biocides, indicating that triclosan is one of the major toxic organic pollutants currently found in domestic wastewaters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapet, Olivier, E-mail: olivier.chapet@chu-lyon.fr; EMR3738, Université Lyon 1, Lyon; Decullier, Evelyne
Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Eventsmore » version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.« less
Besser, John M; Brumbaugh, William G; May, Thomas W; Ingersoll, Christopher G
2003-04-01
We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of hoth Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 microg Cd/g and 493 microg Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.
Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.
Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori
2016-04-20
The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.
Bodini, Sergio F; Malizia, Marzio; Tortelli, Annalisa; Sanfilippo, Luca; Zhou, Xingpeng; Arosio, Roberta; Bernasconi, Marzia; Di Lucia, Stefano; Manenti, Angela; Moscetta, Pompeo
2018-08-15
A novel tool, the DAMTA analyzer (Device for Analytical Monitoring and Toxicity Assessment), designed for fully automated toxicity measurements based on luminescent bacteria as well as for concomitant determination of chemical parameters, was developed and field-tested. The instrument is a robotic water analyzer equipped with a luminometer and a spectrophotometer, integrated on a thermostated reaction plate which contains a movable carousel with 80 cuvettes. Acute toxicity is measured on-line using a wild type Photobacterium phosphoreum strain with measurable bioluminescence and unaltered sensitivity to toxicants lasting up to ten days. The EC50 values of reference compounds tested were consistent with A. fischeri and P. phosphoreum international standards and comparable to previously published data. Concurrently, a laboratory trial demonstrated the feasibility of use of the analyzer for the determination of nutrients and metals in parallel to the toxicity measurements. In a prolonged test, the system was installed only in toxicity mode at the premises of the World Fair "Expo Milano-2015″, a high security site to ensure the quality of the supplied drinking water. The monitoring program lasted for six months during which ca. 2400 toxicity tests were carried out; the results indicated a mean non-toxic outcome of -5.5 ± 6.2%. In order to warrant the system's robustness in detecting toxic substances, Zn was measured daily with highly reproducible inhibition results, 70.8 ± 13.6%. These results assure that this novel toxicity monitor can be used as an early warning system for protection of drinking water sources from emergencies involving low probability/high impact contamination events in source water or treated water. Copyright © 2018 Elsevier Inc. All rights reserved.
Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran
2012-06-01
The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.
Liao, Qing-Chuan; Li, Xiao-Lei; Liu, Si-Ting; Zhang, Yong; Li, Tian-Yuan; Qiu, Jin-Chun
2012-07-01
To investigate the association between single nucleotide polymorphisms (SNP) and its haplotypes of methylenetetrahydrofolate reductase (MTHFR) gene with high dose methotrexate (HDMTX)-induced toxicity in children with acute lymphoblastic leukemia (ALL). HDMTX-treated children with ALL (1.2 to 14-years old) were selected from inpatient and followed for a retrospective study. The toxicity response of HDMTX chemotherapy was evaluated using WHO common toxicity criteria. Sixty-one patients with therapy-related toxicity and 36 patients without therapy-related toxicity were genotyped for 2 SNP (677C > T and 1298A > C) of the MTHFR gene by polymerase chain reaction-restriction fragment length polymorphism. Frequency of haplotypes and linkage disequilibrium of MTHFR gene were analyzed by SHEsis program. The distribution of MTHFR gene 677C > T polymorphism did not appeare different between groups with or without toxicity response (χ(2) = 4.609, P = 0.100), but the 1298A > C polymorphism was significantly different (χ(2) = 10.192, P = 0.006). Individuals who carried C allele (AC + CC genotype) had a decreased risk of toxicity response compared to AA genotype (OR = 0.245, 95%CI: 0.099 - 0.607, P = 0.002). 677C > T and 1298A > C polymorphisms showed strong linkage disequilibrium (D' = 0.895). The CC haplotype was significantly associated with decreased risk of toxicity response (OR = 0.338, 95%CI: 0.155 - 0.738, P = 0.005), while the TA haplotype was significantly associated with the increased risk of toxicity response (OR = 1.907, 95%CI: 1.045 - 3.482, P = 0.035). MTHFR gene 1298C allele and CC haplotype might serve as protective factors while TA haplotype as a risk factor for the susceptibility to toxicity response of HDMTX chemotherapy in children with ALL.
[Research progress on potential liver toxic components in traditional Chinese medicine].
Wu, Hao; Zhong, Rong-Ling; Xia, Zhi; Huang, Hou-Cai; Zhong, Qing-Xiang; Feng, Liang; Song, Jie; Jia, Xiao-Bin
2016-09-01
In recent years, the proportion of traditional Chinese medicine in scientific research and its clinical use increased gradually. The research result also becomes more and more valuable, but in the process of using traditional Chinese medicine, it also needs to pay more attention. With the gradual deepening of the toxicity of traditional Chinese medicine, some traditional Chinese medicines have also been found to have the potential toxicity, with the exception of some traditional toxicity Chinese medicine. Traditional Chinese medicine in the growth, processing, processing, transportation and other aspects of pollution or deterioration will also cause the side effects to the body. Clinical practice should be based on the theory of traditional Chinese medicine to guide rational drug use and follow the symptomatic medication, the principle of proper compatibility. The constitution of the patients are different, except for a few varieties of traditional Chinese medicines are natural herbs with hepatotoxicity, liver toxicity of most of the traditional Chinese medicine has idiosyncratic features. The liver plays an important role in drug metabolism. It is easy to be damaged by drugs. Therefore, the study of traditional Chinese medicine potential liver toxicity and its toxic components has become one of the basic areas of traditional Chinese medicine research. Based on the review of the literatures, this paper summarizes the clinical classification of liver toxicity, the pathogenesis of target cell injury, and systematically summarizes the mechanism of liver toxicity and toxic mechanism of traditional Chinese medicine. This paper provided ideas for the study of potential liver toxicity of traditional Chinese medicine and protection for clinical safety of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.
Comparative toxicity of oil, dispersant, and oil plus dispersant to several marine species.
Fuller, Chris; Bonner, James; Page, Cheryl; Ernest, Andrew; McDonald, Thomas; McDonald, Susanne
2004-12-01
Dispersants are a preapproved chemical response agent for oil spills off portions of the U.S. coastline, including the Texas-Louisiana coast. However, questions persist regarding potential environmental risks of dispersant applications in nearshore regions (within three nautical miles of the shoreline) that support dense populations of marine organisms and are prone to spills resulting from human activities. To address these questions, a study was conducted to evaluate the relative toxicity of test media prepared with dispersant, weathered crude oil, and weathered crude oil plus dispersant. Two fish species, Cyprinodon variegatus and Menidia beryllina, and one shrimp species, Americamysis bahia (formerly Mysidopsis bahia), were used to evaluate the relative toxicity of the different media under declining and continuous exposure regimes. Microbial toxicity was evaluated using the luminescent bacteria Vibrio fisheri. The data suggested that oil media prepared with a chemical dispersant was equal to or less toxic than the oil-only test medium. Data also indicated that continuous exposures to the test media were generally more toxic than declining exposures. The toxicity of unweathered crude oil with and without dispersant was also evaluated using Menidia beryllina under declining exposure conditions. Unweathered oil-only media were dominated by soluble hydrocarbon fractions and found to be more toxic than weathered oil-only media in which colloidal oil fractions dominated. Total concentrations of petroleum hydrocarbons in oil-plus-dispersant media prepared with weathered and unweathered crude oil were both dominated by colloidal oil and showed no significant difference in toxicity. Analysis of the toxicity data suggests that the observed toxicity was a function of the soluble crude oil components and not the colloidal oil.
Beckman, Noelle G.
2013-01-01
Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions. PMID:23843965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinn, Melva E.; Gold, Douglas G. M.; Petersen, Ivy A.
2008-06-01
Purpose: To determine the acute and chronic toxic effects of radiotherapy in patients with systemic lupus erythematosus (SLE). Methods and Materials: Medical records of 21 consecutive patients with SLE, who had received 34 courses of external beam radiotherapy and one low-dose-rate prostate implant, were retrospectively reviewed. Patients with discoid lupus erythematosus were excluded. Results: Median survival was 2.3 years and median follow-up 5.6 years. Eight (42%) of 19 patients evaluable for acute toxicity during radiotherapy experienced acute toxicity of Grade 1 or greater, and 4 (21%) had acute toxicity of Grade 3 or greater. The 5- and 10-year incidence ofmore » chronic toxicity of Grade 1 or greater was 45% (95% confidence interval [CI], 22-72%) and 56% (95% CI, 28-81%), respectively. The 5- and 10-year incidence of chronic toxicity of Grade 3 or greater was 28% (95% CI, 18-60%) and 40% (95% CI, 16-72%), respectively. Univariate analysis showed that chronic toxicity of Grade 1 or greater correlated with SLE renal involvement (p < 0.006) and possibly with the presence of five or more American Rheumatism Association criteria (p < 0.053). Chronic toxicity of Grade 3 or greater correlated with an absence of photosensitivity (p < 0.02), absence of arthritis (p < 0.03), and presence of a malar rash (p < 0.04). Conclusions: The risk of acute and chronic toxicity in patients with SLE who received radiotherapy was moderate but was not prohibitive of the use of radiotherapy. Patients with more advanced SLE may be at increased risk for chronic toxicity.« less
Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.
Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J
2011-07-01
Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways.
Evaluation of soil toxicity at Joliet Army Ammunition Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simini, M.; Amos, J.C.; Wentsel, R.S.
1995-04-01
Environmental toxicity testing and chemical analyses of soil were performed as part of an ecological risk assessment at the Joliet Army Ammunition Plant (JAAP), Joliet, Illinois. Soils were collected from an area where munitions were loaded, assembled, and packed (area L7, group 1), and from an area where waste explosives were burned on unprotected soil (area L2). Control samples were collected from an adjacent field. Soil toxicity was determined using early seedling growth and vigor tests, earthworm survival and growth tests, and Microtox{reg_sign} assays. Relative toxicity of soils was determined within each area based on statistical significant (p = 0.05)more » of plant and earthworm growth and survival, and the effective concentration at which luminescence of the bacterium Photobacterium phosphoreum was reduced by 50% (EC50) in the Microtox assay. Samples were designated as having high, moderate, or no significant toxicity. Soil that had significant toxicity according to at least one test, and representative samples showing no toxicity, were analyzed for munitions via HPLC. Chemical residues found in soils were 2,4,6-trinitrotoluene (TNT); 1,3,5-trinitrobenzene (TNB); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene; 2-amino-4,6-DNT; 4-amino-2,6-DNT; 1,3,5-trinitro-1,3,5-triazine (RDX); and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). All soils with no significant toxicity were void of these chemicals. However, some soils void of munitions still showed toxicity that may have been caused by elevated levels of heavy metals. Linear regressions of toxicity test results vs. chemical concentrations showed that TNT and TNB accounted for most off the soil toxicity. Lowest-observable-effect concentrations (LOEC) of TNT were determined from these data. This study presents a simple, relatively inexpensive methodology for assessing toxicity of soils containing TNT, RDX, and other contaminants related to munitions production.« less
Identifying the causes of oil sands coke leachate toxicity to aquatic invertebrates.
Puttaswamy, Naveen; Liber, Karsten
2011-11-01
A previous study found that coke leachates (CL) collected from oil sands field sites were acutely toxic to Ceriodaphnia dubia; however, the cause of toxicity was not known. Therefore, the purpose of this study was to generate CL in the laboratory to evaluate the toxicity response of C. dubia and perform chronic toxicity identification evaluation (TIE) tests to identify the causes of CL toxicity. Coke was subjected to a 15-d batch leaching process at pH 5.5 and 9.5. Leachates were filtered on day 15 and used for chemical and toxicological characterization. The 7-d median lethal concentration (LC50) was 6.3 and 28.7% (v/v) for pH 5.5 and 9.5 CLs, respectively. Trace element characterization of the CLs showed Ni and V levels to be well above their respective 7-d LC50s for C. dubia. Addition of ethylenediaminetetraacetic acid significantly (p ≤ 0.05) improved survival and reproduction in pH 5.5 CL, but not in pH 9.5 CL. Cationic and anionic resins removed toxicity of pH 5.5 CL only. Conversely, the toxicity of pH 9.5 CL was completely removed with an anion resin alone, suggesting that the pH 9.5 CL contained metals that formed oxyanions. Toxicity reappeared when Ni and V were added back to anion resin-treated CLs. The TIE results combined with the trace element chemistry suggest that both Ni and V are the cause of toxicity in pH 5.5 CL, whereas V appears to be the primary cause of toxicity in pH 9.5 CL. Environmental monitoring and risk assessments should therefore focus on the fate and toxicity of metals, especially Ni and V, in coke-amended oil sands reclamation landscapes. Copyright © 2011 SETAC.
Direct toxicity assessment - Methods, evaluation, interpretation.
Gruiz, Katalin; Fekete-Kertész, Ildikó; Kunglné-Nagy, Zsuzsanna; Hajdu, Csilla; Feigl, Viktória; Vaszita, Emese; Molnár, Mónika
2016-09-01
Direct toxicity assessment (DTA) results provide the scale of the actual adverse effect of contaminated environmental samples. DTA results are used in environmental risk management of contaminated water, soil and waste, without explicitly translating the results into chemical concentration. The end points are the same as in environmental toxicology in general, i.e. inhibition rate, decrease in the growth rate or in yield and the 'no effect' or the 'lowest effect' measurement points of the sample dilution-response curve. The measurement unit cannot be a concentration, since the contaminants and their content in the sample is unknown. Thus toxicity is expressed as the sample proportion causing a certain scale of inhibition or no inhibition. Another option for characterizing the scale of toxicity of an environmental sample is equivalencing. Toxicity equivalencing represents an interpretation tool which enables toxicity of unknown mixtures of chemicals be converted into the concentration of an equivalently toxic reference substance. Toxicity equivalencing, (i.e. expressing the toxicity of unknown contaminants as the concentration of the reference) makes DTA results better understandable for non-ecotoxicologists and other professionals educated and thinking based on the chemical model. This paper describes and discusses the role, the principles, the methodology and the interpretation of direct toxicity assessment (DTA) with the aim to contribute to the understanding of the necessity to integrate DTA results into environmental management of contaminated soil and water. The paper also introduces the benefits of the toxicity equivalency method. The use of DTA is illustrated through two case studies. The first case study focuses on DTA of treated wastewater with the aim to characterize the treatment efficacy of a biological wastewater treatment plant by frequent bioassaying. The second case study applied DTA to investigate the cover layers of two bauxite residue (red mud) reservoirs. Based on the DTA results the necessary toxicity attenuation rate of the cover layers was estimated. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Fang; Zhou Xin; Behr, Melissa
The herbicide 2,6-dichlorobenzonitril (DCBN) is a potent and tissue-specific toxicant to the olfactory mucosa (OM). The toxicity of DCBN is mediated by cytochrome P450 (P450)-catalyzed bioactivation; however, it is not known whether target-tissue metabolic activation is essential for toxicity. CYP2A5, expressed abundantly in both liver and OM, was previously found to be one of the P450 enzymes active in DCBN bioactivation in vitro. The aims of this study were to determine the role of CYP2A5 in DCBN toxicity in vivo, by comparing the extents of DCBN toxicity between Cyp2a5-null and wild-type (WT) mice, and to determine whether hepatic microsomal P450more » enzymes (including CYP2A5) are essential for the DCBN toxicity, by comparing the extents of DCBN toxicity between liver-Cpr-null (LCN) mice, which have little P450 activity in hepatocytes, and WT mice. We show that the loss of CYP2A5 expression did not alter systemic clearance of DCBN (at 25 mg/kg); but it did inhibit DCBN-induced non-protein thiol depletion and cytotoxicity in the OM. Thus, CYP2A5 plays an essential role in mediating DCBN toxicity in the OM. In contrast to the results seen in the Cyp2a5-null mice, the rates of systemic DCBN clearance were substantially reduced, while the extents of DCBN-induced nasal toxicity were increased, rather than decreased, in the LCN mice, compared to WT mice. Therefore, hepatic P450 enzymes, although essential for DCBN clearance, are not necessary for DCBN-induced OM toxicity. Our findings form the basis for a mechanism-based approach to assessing the potential risks of DCBN nasal toxicity in humans.« less
Hyne, Ross V; Pablo, Fleur; Julli, Moreno; Markich, Scott J
2005-07-01
This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30-125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowell, Dot; Tatter, Stephen B.; Bourland, J. Daniel
Purpose: To assess toxicity in patients with either a collagen vascular disease (CVD) or multiple sclerosis (MS) treated with intracranial radiosurgery. Methods and Materials: Between January 2004 and April 2009, 6 patients with MS and 14 patients with a CVD were treated with Gamma Knife radiosurgery (GKRS) for intracranial tumors. Treated lesions included 15 total brain metastases in 7 patients, 11 benign brain tumors, 1 low grade glioma, and 1 cavernous malformation. Toxicities were graded by the Radiation Therapy Oncology Group Acute/Late Radiation Morbidity Scoring Criteria. 'Rare toxicities' were characterized as those reported in the scientific literature at an incidencemore » of <5%. Results: Median follow-up time was 16 months. Median dose to the tumor margin was 13.0 Gy (range, 12-21 Gy). Median size of tumor was 5.0 cm{sup 3} (range, 0.14-7.8 cm{sup 3}). Of the 14 patients with CVD, none experienced a Grade 3 or 4 toxicity or a toxicity characterized as rare. Of the 6 patients with MS, 3 experienced rare toxicities, and two of these were Grade 3 toxicities. Rare complications included a patient experiencing both communicating hydrocephalus and facial nerve palsy, as well as 2 additional patients with motor cranial nerve palsy. High-grade toxicities included the patient with an acoustic neuroma requiring ventriculoperitoneal shunt placement for obstructive hydrocephalus, and 1 patient with a facial nerve schwannoma who experienced permanent facial nerve palsy. Interval between radiosurgery and high-grade toxicities ranged from 1 week to 4 months. Conclusions: Our series suggests that patients with MS who receive GKRS may be at increased risk of rare and high-grade treatment-related toxicity. Given the time course of toxicity, treatment-related edema or demyelination represent potential mechanisms.« less
Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.
Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S
2003-10-01
The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Diane C.; Vargo, John A.; Ferris, Robert L.
Purpose: To report a 10-year update of our institutional experience with stereotactic body radiation therapy (SBRT) for reirradiation of locally recurrent head and neck cancer, focusing on predictors of toxicity. Methods and Materials: A retrospective review was performed on 291 patients treated with SBRT for recurrent, previously irradiated head and neck cancer between April 2002 and March 2013. Logistic regression analysis was performed to identify predictors of severe acute and late toxicity. Patients with <3 months of follow-up (n=43) or who died within 3 months of treatment (n=21) were excluded from late toxicity analysis. Results: Median time to death or last clinicalmore » follow-up was 9.8 months among the entire cohort and 53.1 months among surviving patients. Overall, 33 patients (11.3%) experienced grade ≥3 acute toxicity and 43 (18.9%) experienced grade ≥3 late toxicity. Compared with larynx/hypopharynx, treatment of nodal recurrence was associated with a lower risk of severe acute toxicity (P=.03), with no significant differences in severe acute toxicity among other sites. Patients treated for a recurrence in the larynx/hypopharynx experienced significantly more severe late toxicity compared with those with oropharyngeal, oral cavity, base of skull/paranasal sinus, salivary gland, or nodal site of recurrence (P<.05 for all). Sixteen patients (50%) with laryngeal/hypopharyngeal recurrence experienced severe late toxicity, compared with 6-20% for other sites. Conclusions: Salvage SBRT is a safe and effective option for most patients with previously irradiated head and neck cancer. However, patients treated to the larynx or hypopharynx experience significantly more late toxicity compared with others and should be carefully selected for treatment, with consideration given to patient performance status, pre-existing organ dysfunction, and goals of care. Treatment toxicity in these patients may be mitigated with more conformal plans to allow for increased sparing of adjacent normal tissues.« less
NASA Astrophysics Data System (ADS)
Horecka, Hannah M.; Thomas, Andrew C.; Weatherbee, Ryan A.
2014-05-01
The Gulf of Maine experiences annual closures of shellfish harvesting due to the accumulation of toxins produced by dinoflagellates of the genus Alexandrium. Factors controlling the timing, location, and magnitude of these events in eastern Maine remain poorly understood. Previous work identified possible linkages between interannual variability of oceanographic variables and shellfish toxicity along the western Maine coastline but no such linkages were evident along the eastern Maine coast in the vicinity of Cobscook Bay, where strong tidal mixing tends to reduce seasonal variability in oceanographic properties. Using 21 years (1985-2005) of shellfish toxicity data, interannual variability in two metrics of annual toxicity, maximum magnitude and total annual toxicity, from stations in the Cobscook Bay region are examined for relationships to a suite of available environmental variables. Consistent with earlier work, no (or only weak) correlations were found between toxicity and oceanographic variables, even those very proximate to the stations such as local sea surface temperature. Similarly no correlations were evident between toxicity and air temperature, precipitation or relative humidity. The data suggest possible connections to local river discharge, but plausible mechanisms are not obvious. Correlations between toxicity and two variables indicative of local meteorological conditions, dew point and atmospheric pressure, both suggest a link between increased toxicity in these eastern Maine stations and weather conditions characterized by clearer skies/drier air (or less stormy/humid conditions). As no correlation of opposite sign was evident between toxicity and local precipitation, one plausible link is through light availability and its positive impact on phytoplankton production in this persistently foggy section of coast. These preliminary findings point to both the value of maintaining long-term shellfish toxicity sampling and a need for inclusion of weather variability in future modeling studies aimed at development of a more mechanistic understanding of factors controlling interannual differences in eastern Gulf of Maine shellfish toxicity.
Effects of calcium, magnesium, and sodium on alleviating cadmium toxicity to Hyalella azteca
Jackson, B.P.; Lasier, P.J.; Miller, W.P.; Winger, P.V.
2000-01-01
Toxicity of trace metal ions to aquatic organisms, arising through either anthropogenic inputs or acidification of surface waters, continues to be both a regulatory and environmental problem. It is generally accepted that the free metal ion is the major toxic species (Florence et a1.,1992) and that inorganic or organic complexation renders the metal ion non-bioavailable (Meador, 1991, Galvez and Wood, 1997). However, water chemistry parameters such as alkalinity, hardness, dissolved organic carbon and pH influence metal ion toxicity either directly by lowering free metal ion concentration or indirectly through synergistic or antagonistic effects. Alkalinity and salinity can affect the speciation of metal ions by increasing ion-pair formation, thus decreasing free metal ion concentration. For example, Cu was found to be less toxic to rainbow trout in waters of high alkalinity (Miller and Mackay, 1980), due to formation of CuCO3 ion pair, and corresponding reduction in free Cu2+ concentration. The influence of salinity on the toxicity of cadmium to various organisms has been demonstrated in a number of studies (Bervoets et al., 1995, Hall et al., 1995, Lin and Dunson, 1993, Blust et al., 1992). In all these studies the apparent toxicity of cadmium was lowered as salinity was increased due to increased formation of CdC1+ and CDCl2 aqueous complexes that are non-toxic or of much lower toxicity than the free Cd2+ ion. Changes in pH exert both a biological and chemical effect on metal ion toxicity (Campbell and Stokes, 1985). Low pH favors greater metal ion solubility, and, in the absence of complexing ions, reduced speciation of the metal ion, which tends to increase toxicity compared to higher pH. However, Iow pH also enhances competition between H+ and metal ion for cell surface binding sites, which tends to decrease metal ion toxicity.
Postel-Vinay, Sophie; Collette, Laurence; Paoletti, Xavier; Rizzo, Elisa; Massard, Christophe; Olmos, David; Fowst, Camilla; Levy, Bernard; Mancini, Pierre; Lacombe, Denis; Ivy, Percy; Seymour, Lesley; Le Tourneau, Christophe; Siu, Lillian L; Kaye, Stan B; Verweij, Jaap; Soria, Jean-Charles
2014-08-01
Traditional dose-limiting toxicity (DLT) definition, which uses grade (G) 3-4 toxicity data from cycle 1 (C1) only, may not be appropriate for molecularly targeted agents (MTAs) of prolonged administration, for which late or lower grade toxicities also deserve attention. In collaboration with pharmaceutical companies and academia, an European Organisation for Research and Treatment of Cancer (EORTC)-led initiative, Dose-Limiting Toxicity and Toxicity Assessment Recommendation Group for Early Trials of Targeted therapies (DLT-TARGETT), collected data from completed phase 1 trials evaluating MTAs as monotherapy. All toxicities at least possibly related to the study drugs that occurred during C1-6, their type, grade (CTCAEv3.0), and duration as well as patients' relative dose-intensity (RDI), were recorded. The 54 eligible trials enrolled 2084 evaluable adult patients with solid tumours between 1999 and 2013, and evaluated small molecules (40), antibodies (seven), recombinant peptides (five) and antisense oligodeoxynucleotides (two). A maximum tolerated dose was set in 43 trials. Fifteen percent of the patients received <75% of the intended RDI in C1, but only 9.1% of them presented protocol-defined DLTs. After C1, 16-19% of patients received <75% of the intended RDI. A similar proportion of G ⩾ 3 toxicities was recorded in C1 and after C1 (936 and 1087 toxicities, respectively), with the first G⩾3 toxicity occurring after C1 in 18.6% of patients. Although protocol-defined DLT period is traditionally limited to C1, almost 20% of patients present significant reductions in RDI at any time in phase 1 trials of MTAs. Recommended phase 2 dose assessment should incorporate all available information from any cycle (notably lower grade toxicities leading to such RDI decrease), and be based on achieving >75% RDI. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Jiayi; Robertson, John M., E-mail: jrobertson@beaumont.edu; Ye Hong
2012-07-15
Purpose: To identify dosimetric predictors for the development of gastrointestinal (GI) toxicity in patients with locally advanced pancreatic adenocarcinoma (LAPC) treated with concurrent full-dose gemcitabine and radiotherapy (GemRT). Methods and Materials: From June 2002 to June 2009, 46 LAPC patients treated with definitive GemRT were retrospectively analyzed. The stomach and duodenum were retrospectively contoured separately to determine their dose-volume histogram (DVH) parameters. GI toxicity was defined as Grade 3 or higher GI toxicity. The follow-up time was calculated from the start of RT to the date of death or last contact. Univariate analysis (UVA) and multivariate analysis (MVA) using Kaplan-Meiermore » and Cox regression models were performed to identify risk factors associated with GI toxicity. The receiver operating characteristic curve and the area under the receiver operating characteristic curve (AUC) were used to determine the best DVH parameter to predict for GI toxicity. Results: Of the patients, 28 (61%) received concurrent gemcitabine alone, and 18 (39%) had concurrent gemcitabine with daily erlotinib. On UVA, only the V{sub 20Gy} to V{sub 35Gy} of duodenum were significantly associated with GI toxicity (all p {<=} 0.05). On MVA, the V{sub 25Gy} of duodenum and the use of erlotinib were independent risk factors for GI toxicity (p = 0.006 and 0.02, respectively). For the entire cohort, the V{sub 25Gy} of duodenum is the best predictor for GI toxicity (AUC = 0.717), and the 12-month GI toxicity rate was 8% vs. 48% for V{sub 25Gy} {<=} 45% and V{sub 25Gy} > 45%, respectively (p = 0.03). However, excluding the erlotinib group, the V{sub 35Gy} is the best predictor (AUC = 0.725), and the 12-month GI toxicity rate was 0% vs. 41% for V{sub 35Gy} {<=} 20% and V{sub 35Gy} > 20%, respectively (p = 0.04). Conclusions: DVH parameters of duodenum may predict Grade 3 GI toxicity after GemRT for LAPC. Concurrent use of erlotinib during GemRT may increase GI toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modh, Ankit; Rimner, Andreas; Williams, Eric
2014-12-01
Purpose: Stereotactic body radiation therapy (SBRT) in central lung tumors has been associated with higher rates of severe toxicity. We sought to evaluate toxicity and local control in a large cohort and to identify predictive dosimetric parameters. Methods and Materials: We identified patients who received SBRT for central tumors according to either of 2 definitions. Local failure (LF) was estimated using a competing risks model, and multivariate analysis (MVA) was used to assess factors associated with LF. We reviewed patient toxicity and applied Cox proportional hazard analysis and log-rank tests to assess whether dose-volume metrics of normal structures correlated with pulmonarymore » toxicity. Results: One hundred twenty-five patients received SBRT for non-small cell lung cancer (n=103) or metastatic lesions (n=22), using intensity modulated radiation therapy. The most common dose was 45 Gy in 5 fractions. Median follow-up was 17.4 months. Incidence of toxicity ≥ grade 3 was 8.0%, including 5.6% pulmonary toxicity. Sixteen patients (12.8%) experienced esophageal toxicity ≥ grade 2, including 50% of patients in whom PTV overlapped the esophagus. There were 2 treatment-related deaths. Among patients receiving biologically effective dose (BED) ≥80 Gy (n=108), 2-year LF was 21%. On MVA, gross tumor volume (GTV) was significantly associated with LF. None of the studied dose-volume metrics of the lungs, heart, proximal bronchial tree (PBT), or 2 cm expansion of the PBT (“no-fly-zone” [NFZ]) correlated with pulmonary toxicity ≥grade 2. There were no differences in pulmonary toxicity between central tumors located inside the NFZ and those outside the NFZ but with planning target volume (PTV) intersecting the mediastinum. Conclusions: Using moderate doses, SBRT for central lung tumors achieves acceptable local control with low rates of severe toxicity. Dosimetric analysis showed no significant correlation between dose to the lungs, heart, or NFZ and severe pulmonary toxicity. Esophageal toxicity may be an underappreciated risk, particularly when PTV overlaps the esophagus.« less
Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius
Buhl, Kevin J.; Faerber, Neil L.
1989-01-01
The acute toxicities of eight commercial herbicides and two surfactants to early fourth instar larvae of the midgeChironomus riparius were determined under static conditions. The formulated herbicides tested were Eradicane® (EPTC), Fargo® (triallate), Lasso® (alachlor), ME4 Brominal® (bromoxynil), Ramrod® (propachlor), Rodeo® (glyphosate), Sencor®(metribuzin), and Sutan (+)® (butylate); the two surfactants were Activator N.F.® and Ortho X-77®. In addition, technical grade alachlor, metribuzin, propachlor, and triallate were tested for comparison with the formulated herbicides. The relative toxicity of the commercial formulations, based on percent active ingredient, varied considerably. The EC50 values ranged from 1.23 mg/L for Fargo® to 5,600 mg/L for Rodeo®. Fargo®, ME4 Brominal®, and Ramrod®were moderately toxic to midge larvae; Lasso®, Sutan (+)®, and Eradicane® were slightly toxic; and Sencor® and Rodeo® were practically non-toxic. The 48-hr EC50 values of the two surfactants were nearly identical and were considered moderately toxic to midges. For two of the herbicides in which the technical grade material was tested, the inert ingredients in the formulations had a significant effect on the toxicity of the active ingredients. Fargo® was twice as toxic as technical grade triallate, whereas Sencor® was considerably less toxic than technical grade metribuzin. A comparison of the slope function values indicated that the toxic action of all the compounds occurred within a relatively narrow range. Published acute toxicity data on these compounds for other freshwater biota were tabulated and compared with our results. In general, the relative order of toxicity toC. riparius was similar to those for other freshwater invertebrates and fish. Maximum concentrations of each herbicide in bulk runoff during a projected “critical” runoff event were calculated as a percentage of the application rate lost in a given volume of runoff. A comparison between estimated maximum herbicide concentrations in runoff and results of acute tests indicated that Ramrod®, ME4 Brominal®, and Lasso® pose the greatest direct risk to midge larvae during a storm event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Jonathan; Sulman, Erik P.; Jhingran, Anuja
Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scoredmore » according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints, consideration should be given to other treatment approaches such as resection or initial chemotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Francois, E-mail: francois.meyer@chuq.qc.ca; Fortin, Andre; Wang, Chang Shu
2012-03-15
Purpose: Radiation therapy (RT) causes acute and late toxicities that affect various organs and functions. In a large cohort of patients treated with RT for localized head and neck cancer (HNC), we prospectively assessed the occurrence of RT-induced acute and late toxicities and identified characteristics that predicted these toxicities. Methods and Materials: We conducted a randomized trial among 540 patients treated with RT for localized HNC to assess whether vitamin E supplementation could improve disease outcomes. Adverse effects of RT were assessed using the Radiation Therapy Oncology Group Acute Radiation Morbidity Criteria during RT and one month after RT, andmore » the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme at six and 12 months after RT. The most severe adverse effect among the organs/tissues was selected as an overall measure of either acute or late toxicity. Grade 3 and 4 toxicities were considered as severe. Stepwise multivariate logistic regression models were used to identify all independent predictors (p < 0.05) of acute or late toxicity and to estimate odds ratios (OR) for severe toxicity with their 95% confidence intervals (CI). Results: Grade 3 or 4 toxicity was observed in 23% and 4% of patients, respectively, for acute and late toxicity. Four independent predictors of severe acute toxicity were identified: sex (female vs. male: OR = 1.72, 95% confidence interval [CI]: 1.06-2.80), Karnofsky Performance Status (OR = 0.67 for a 10-point increment, 95% CI: 0.52-0.88), body mass index (above 25 vs. below: OR = 1.88, 95% CI: 1.22-2.90), TNM stage (Stage II vs. I: OR = 1.91, 95% CI: 1.25-2.92). Two independent predictors were found for severe late toxicity: female sex (OR = 3.96, 95% CI: 1.41-11.08) and weight loss during RT (OR = 1.26 for a 1 kg increment, 95% CI: 1.12-1.41). Conclusions: Knowledge of these predictors easily collected in a clinical setting could help tailoring therapies to reduce toxicities among patients treated with RT for HNC.« less
NASA Astrophysics Data System (ADS)
Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.
2007-11-01
This study focuses on the interactions between toxic phytoplankton and zooplankton grazers. The experimental conditions used are an attempt to simulate situations that have, so far, received little attention. We presume the phytoplankton community to be a set of species where a population of a toxic species is intrinsically diverse by the presence of coexisting strains with different toxic properties. The other species in the community may not always be high-quality food for herbivorous zooplankton. Zooplankton populations may have developed adaptive responses to sympatric toxic phytoplankton species. Zooplankton grazers may perform a specific feeding behaviour and its consequences on fitness will depend on the species ingested, the effect of toxins, and the presence of mechanisms of toxin dilution and compensatory feeding. Our target species are a strain of the dinoflagellate Alexandrium minutum and a sympatric population of the copepod Acartia clausi. Mixed diets were used with two kinds of A. minutum cells: non-toxic and toxic. The flagellate Rhodomonas baltica and the non-toxic dinoflagellate Alexandrium tamarense were added as accompanying species. The effect of each alga was studied in separate diets. The toxic A. minutum cells were shown to have negative effects on egg production, hatching success and total reproductive output, while, in terms of its effect on fitness, the non-toxic A. minutum was the best quality food offered. R. baltica and A. tamarense were in intermediate positions. In the mixed diets, copepods showed a strong preference for toxic A. minutum cells and a weaker one for A. tamarense cells, while non-toxic A. minutum was slightly negatively selected and R. baltica strongly negatively selected. Although the level of toxins accumulated by copepods was very similar, in both the diet with only toxic A. minutum cells and in the mixed diet, the negative effects on fitness in the mixed diet could be offset by toxin dilution mechanisms. The implications of these findings are the fact that mesozooplankton may not play an important role in phytoplankton blooms development. Phytoplankton endotoxin production does not seem to be an evolutionary stable strategy as a defence against some herbivores.
Picone, Marco; Bergamin, Martina; Losso, Chiara; Delaney, Eugenia; Arizzi Novelli, Alessandra; Ghirardini, Annamaria Volpi
2016-01-01
Within the framework of a Weight of Evidence (WoE) approach, a set of four toxicity bioassays involving the amphipod Corophium volutator (10 d lethality test on whole sediment), the sea urchin Paracentrotus lividus (fertilization and embryo toxicity tests on elutriate) and the pacific oyster Crassostrea gigas (embryo toxicity test on elutriate) was applied to sediments from 10 sampling sites of the Venice Lagoon (Italy). Sediments were collected during three campaigns carried out in May 2004 (spring campaign), October 2004 (autumn campaign) and February 2005 (winter campaign). Toxicity tests were performed on all sediment samples. Sediment grain-size and chemistry were measured during spring and autumn campaigns. This research investigated (i) the ability of toxicity tests in discriminating among sites with different contamination level, (ii) the occurrence of a gradient of effect among sampling sites, (iii) the possible correlation among toxicity tests, sediment chemistry, grain size and organic carbon, and (iv) the possible occurrence of toxicity seasonal variability. Sediment contamination levels were from low to moderate. No acute toxicity toward amphipods was observed, while sea urchin fertilization was affected only in few sites in just a single campaign. Short-term effects on larval development of sea urchin and oyster evidenced a clear spatial trend among sites, with increasing effects along the axis connecting the sea-inlets with the industrial area. The set of bioassays allowed the identification of a spatial gradient of effect, with decreasing toxicity from the industrial area toward the sea-inlets. Multivariate data analysis showed that the malformations of oyster embryos were significantly correlated to the industrial contamination (metals, polynuclear aromatic hydrocarbons, hexachlorobenzene and polychlorinated biphenyls), while sea urchin development to sediment concentrations of As, Cr and organic carbon. Both embryo toxicity tests were significantly affected by high ammonia concentrations found in the elutriates extracted from some mudflat and industrial sediments. No significant temporal variation of the toxicity was observed within the experimental period. Amendments to the set of bioassays, with inclusion of chronic tests, can certainly provide more reliability and consistency to the characterization of the (possible) toxic effects. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Toshio, E-mail: ohashi@rad.med.keio.ac.jp; Yorozu, Atsunori; Saito, Shiro
Purpose: To assess, in a nationwide multi-institutional cohort study begun in 2005 and in which 6927 subjects were enrolled by 2010, the urinary and rectal toxicity profiles of subjects who enrolled during the first 2 years, and evaluate the toxicity profiles for permanent seed implantation (PI) and a combination therapy with PI and external beam radiation therapy (EBRT). Methods and Materials: Baseline data for 2339 subjects out of 2354 patients were available for the analyses. Toxicities were evaluated using the National Cancer Institute's Common Terminology Criteria for Adverse Events, and the International Prostate Symptom Scores were recorded prospectively until 36 months after radiationmore » therapy. Results: Grade 2+ acute urinary toxicities developed in 7.36% (172 of 2337) and grade 2+ acute rectal toxicities developed in 1.03% (24 of 2336) of the patients. Grade 2+ late urinary and rectal toxicities developed in 5.75% (133 of 2312) and 1.86% (43 of 2312) of the patients, respectively. A higher incidence of grade 2+ acute urinary toxicity occurred in the PI group than in the EBRT group (8.49% vs 3.66%; P<.01). Acute rectal toxicity outcomes were similar between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late urinary toxicities were 6.04% versus 4.82% for the PI and the EBRT groups, respectively, with no significant differences between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late rectal toxicities were 0.90% versus 5.01% (P<.01) for the PI and the EBRT groups, respectively. The mean of the postimplant International Prostate Symptom Score peaked at 3 months, but it decreased to a range that was within 2 points of the baseline score, which was observed in 1625 subjects (69.47%) at the 1-year follow-up assessment. Conclusions: The acute urinary toxicities observed were acceptable given the frequency and retention, and the late rectal toxicities were more favorable than those of other studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodewein, Lambert
Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96 h and human cancer cell lines for 24 h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, withmore » EC50 values ranging from 0.16 to just below 1.7 μM at 24 and 48 hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values ≥ 402 μM (PAMAMs) and ≤ 240 μM (PPIs) for HepG2 and ≤ 13.24 μM (PAMAMs) and ≤ 12.84 μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. - Highlights: • Zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time. • Zebrafish embryo toxicity of cationic dendrimers did not increase with generation. • Cationic dendrimers induced apoptosis in zebrafish embryos. • Toxicity of cationic dendrimers was lower in HepG2 and DU145 than zebrafish embryos. • Anionic PAMAM dendrimers showed little to no toxicity in fish embryos and cells.« less
Evaluation of processed borax as antidote for aconite poisoning.
Sarkar, Prasanta Kumar; Prajapati, Pradeep K; Shukla, Vinay J; Ravishankar, Basavaiah
2017-06-09
Aconite root is very poisonous; causes cardiac arrhythmias, ventricular fibrillation and ventricular tachycardia. There is no specific antidote for aconite poisoning. In Ayurveda, dehydrated borax is mentioned for management of aconite poisoning. The investigation evaluated antidotal effect of processed borax against acute and sub-acute toxicity, cardiac toxicity and neuro-muscular toxicity caused by raw aconite. For acute protection Study, single dose of toxicant (35mg/kg) and test drug (22.5mg/kg and 112.5mg/kg) was administered orally, and then 24h survival of animals was observed. The schedule was continued for 30 days in sub-acute protection Study with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg and 112.5mg/kg) and vehicle. Hematological and biochemical tests of blood and serum, histopathology of vital organs were carried out. The cardiac activity Study was continued for 30 days with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg), processed borax solution (22.5mg/kg) and vehicle; ECG was taken after 1h of drug administration on 1 TB , 15th and on 30th day. For neuro-muscular activity Study, the leech dorsal muscle response to 2.5µg of acetylcholine followed by response of toxicant at 25µg and 50µg doses and then response of test drug at 25µg dose were recorded. Protection index indicates that treated borax gave protection to 50% rats exposed to the lethal dose of toxicant in acute protection Study. Most of the changes in hematological, biochemical parameters and histopathological Study induced by the toxicant in sub-acute protection Study were reversed significantly by the test drug treatment. The ventricular premature beat and ventricular tachyarrhythmia caused by the toxicant were reversed by the test drug indicate reversal of toxicant induced cardio-toxicity. The acetylcholine induced contractions in leech muscle were inhibited by toxicant and it was reversed by test drug treatment. The processed borax solution is found as an effective protective agent to acute and sub-acute aconite poisoning, and aconite induced cardiac and neuro-muscular toxicity. Processed borax at therapeutic dose (22.5mg/kg) has shown better antidotal activity profile than five times more than therapeutic dose (112.5mg/kg). Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...
48 CFR 252.223-7006 - Prohibition on storage and disposal of toxic and hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... disposal of toxic and hazardous materials. 252.223-7006 Section 252.223-7006 Federal Acquisition... and disposal of toxic and hazardous materials. As prescribed in 223.7103(a), use the following clause: Prohibition on Storage and Disposal of Toxic and Hazardous Materials (APR 2012) (a) Definitions. As used in...
48 CFR 252.223-7006 - Prohibition on storage and disposal of toxic and hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... disposal of toxic and hazardous materials. 252.223-7006 Section 252.223-7006 Federal Acquisition... and disposal of toxic and hazardous materials. As prescribed in 223.7103(a), use the following clause: Prohibition on Storage and Disposal of Toxic and Hazardous Materials (APR 1993) (a) Definitions. As used in...